WorldWideScience

Sample records for learning school science

  1. Home Culture, Science, School and Science Learning: Is Reconciliation Possible?

    Science.gov (United States)

    Tan, Aik-Ling

    2011-01-01

    In response to Meyer and Crawford's article on how nature of science and authentic science inquiry strategies can be used to support the learning of science for underrepresented students, I explore the possibly of reconciliation between the cultures of school, science, school science as well as home. Such reconciliation is only possible when…

  2. Learning to teach science in urban schools

    Science.gov (United States)

    Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea

    2001-10-01

    Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.

  3. Elementary school children's science learning from school field trips

    Science.gov (United States)

    Glick, Marilyn Petty

    This research examines the impact of classroom anchoring activities on elementary school students' science learning from a school field trip. Although there is prior research demonstrating that students can learn science from school field trips, most of this research is descriptive in nature and does not examine the conditions that enhance or facilitate such learning. The current study draws upon research in psychology and education to create an intervention that is designed to enhance what students learn from school science field trips. The intervention comprises of a set of "anchoring" activities that include: (1) Orientation to context, (2) Discussion to activate prior knowledge and generate questions, (3) Use of field notebooks during the field trip to record observations and answer questions generated prior to field trip, (4) Post-visit discussion of what was learned. The effects of the intervention are examined by comparing two groups of students: an intervention group which receives anchoring classroom activities related to their field trip and an equivalent control group which visits the same field trip site for the same duration but does not receive any anchoring classroom activities. Learning of target concepts in both groups was compared using objective pre and posttests. Additionally, a subset of students in each group were interviewed to obtain more detailed descriptive data on what children learned through their field trip.

  4. Investigating Your School's Science Teaching and Learning Culture

    Science.gov (United States)

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  5. High School Students' Implicit Theories of What Facilitates Science Learning

    Science.gov (United States)

    Parsons, Eileen Carlton; Miles, Rhea; Petersen, Michael

    2011-01-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high…

  6. Cooperative learning in science: intervention in the secondary school

    Science.gov (United States)

    Topping, K. J.; Thurston, A.; Tolmie, A.; Christie, D.; Murray, P.; Karagiannidou, E.

    2011-04-01

    The use of cooperative learning in secondary school is reported - an area of considerable concern given attempts to make secondary schools more interactive and gain higher recruitment to university science courses. In this study the intervention group was 259 pupils aged 12-14 years in nine secondary schools, taught by 12 self-selected teachers. Comparison pupils came from both intervention and comparison schools (n = 385). Intervention teachers attended three continuing professional development days, in which they received information, engaged with resource packs and involved themselves in cooperative learning. Measures included both general and specific tests of science, attitudes to science, sociometry, self-esteem, attitudes to cooperative learning and transferable skills (all for pupils) and observation of implementation fidelity. There were increases during cooperative learning in pupil formulation of propositions, explanations and disagreements. Intervened pupils gained in attainment, but comparison pupils gained even more. Pupils who had experienced cooperative learning in primary school had higher pre-test scores in secondary education irrespective of being in the intervention or comparison group. On sociometry, comparison pupils showed greater affiliation to science work groups for work, but intervention pupils greater affiliation to these groups at break and out of school. Other measures were not significant. The results are discussed in relation to practice and policy implications.

  7. High school students' implicit theories of what facilitates science learning

    Science.gov (United States)

    Carlton Parsons, Eileen; Miles, Rhea; Petersen, Michael

    2011-11-01

    Background: Research has primarily concentrated on adults' implicit theories about high quality science education for all students. Little work has considered the students' perspective. This study investigated high school students' implicit theories about what helped them learn science. Purpose: This study addressed (1) What characterizes high school students' implicit theories of what facilitates their learning of science?; (2) With respect to students' self-classifications as African American or European American and female or male, do differences exist in the students' implicit theories? Sample, design and methods: Students in an urban high school located in south-eastern United States were surveyed in 2006 about their thoughts on what helps them learn science. To confirm or disconfirm any differences, data from two different samples were analyzed. Responses of 112 African American and 118 European American students and responses from 297 European American students comprised the data for sample one and two, respectively. Results: Seven categories emerged from the deductive and inductive analyses of data: personal responsibility, learning arrangements, interest and knowledge, communication, student mastery, environmental responsiveness, and instructional strategies. Instructional strategies captured 82% and 80% of the data from sample one and two, respectively; consequently, this category was further subjected to Mann-Whitney statistical analysis at p ethnic differences. Significant differences did not exist for ethnicity but differences between females and males in sample one and sample two emerged. Conclusions: African American and European American students' implicit theories about instructional strategies that facilitated their science learning did not significantly differ but female and male students' implicit theories about instructional strategies that helped them learn science significantly differed. Because students attend and respond to what they think

  8. Social Justice and Out-of-School Science Learning: Exploring Equity in Science Television, Science Clubs and Maker Spaces

    Science.gov (United States)

    Dawson, Emily

    2017-01-01

    This article outlines how social justice theories, in combination with the concepts of infrastructure access, literacies and community acceptance, can be used to think about equity in out-of-school science learning. The author applies these ideas to out-of-school learning via television, science clubs, and maker spaces, looking at research as well…

  9. Learning to teach science for social justice in urban schools

    Science.gov (United States)

    Vora, Purvi

    This study looks at how beginner teachers learn to teach science for social justice in urban schools. The research questions are: (1) what views do beginner teachers hold about teaching science for social justice in urban schools? (2) How do beginner teachers' views about teaching science for social justice develop as part of their learning? In looking at teacher learning, I take a situative perspective that defines learning as increased participation in a community of practice. I use the case study methodology with five teacher participants as the individual units of analysis. In measuring participation, I draw from mathematics education literature that offers three domains of professional practice: Content, pedagogy and professional identity. In addition, I focus on agency as an important component of increased participation from a social justice perspective. My findings reveal two main tensions that arose as teachers considered what it meant to teach science from a social justice perspective: (1) Culturally responsive teaching vs. "real" science and (2) Teaching science as a political act. In negotiating these tensions, teachers drew on a variety of pedagogical and conceptual tools offered in USE that focused on issues of equity, access, place-based pedagogy, student agency, ownership and culture as a toolkit. Further, in looking at how the five participants negotiated these tensions in practice, I describe four variables that either afforded or constrained teacher agency and consequently the development of their own identity and role as socially just educators. These four variables are: (1) Accessing and activating social, human and cultural capital, (2) reconceptualizing culturally responsive pedagogical tools, (3) views of urban youth and (4) context of participation. This study has implications for understanding the dialectical relationship between agency and social justice identity for beginner teachers who are learning how to teach for social justice. Also

  10. Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students

    Science.gov (United States)

    Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung

    2018-01-01

    This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…

  11. Crumpled Molecules and Edible Plastic: Science Learning Activation in Out-of-School Time

    Science.gov (United States)

    Dorph, Rena; Schunn, Christian D.; Crowley, Kevin

    2017-01-01

    The Coalition for Science After School highlights the dual nature of outcomes for science learning during out-of- school time (OST): Learning experiences should not only be positive in the moment, but also position youth for future success. Several frameworks speak to the first set of immediate outcomes--what youth learn, think, and feel as the…

  12. Crossing borders: High school science teachers learning to teach the specialized language of science

    Science.gov (United States)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  13. How Should Students Learn in the School Science Laboratory? The Benefits of Cooperative Learning

    Science.gov (United States)

    Raviv, Ayala; Cohen, Sarit; Aflalo, Ester

    2017-07-01

    Despite the inherent potential of cooperative learning, there has been very little research into its effectiveness in middle school laboratory classes. This study focuses on an empirical comparison between cooperative learning and individual learning in the school science laboratory, evaluating the quality of learning and the students' attitudes. The research included 67 seventh-grade students who undertook four laboratory experiments on the subject of "volume measuring skills." Each student engaged both in individual and cooperative learning in the laboratory, and the students wrote individual or group reports, accordingly. A total of 133 experiment reports were evaluated, 108 of which also underwent textual analysis. The findings show that the group reports were superior, both in terms of understanding the concept of "volume" and in terms of acquiring skills for measuring volume. The students' attitudes results were statistically significant and demonstrated that they preferred cooperative learning in the laboratory. These findings demonstrate that science teachers should be encouraged to implement cooperative learning in the laboratory. This will enable them to improve the quality and efficiency of laboratory learning while using a smaller number of experimental kits. Saving these expenditures, together with the possibility to teach a larger number of students simultaneously in the laboratory, will enable greater exposure to learning in the school science laboratory.

  14. The Influence of Extracurricular Activities on Middle School Students' Science Learning in China

    Science.gov (United States)

    Zhang, Danhui; Tang, Xing

    2017-01-01

    Informal science learning has been found to have effects on students' science learning. Through the use of secondary data from a national assessment of 7410 middle school students in China, this study explores the relationship among five types of extracurricular science activities, learning interests, academic self-concept, and science…

  15. Learning Physics with Digital Game Simulations in Middle School Science

    Science.gov (United States)

    Anderson, Janice L.; Barnett, Mike

    2013-12-01

    The purpose of this work is to share our findings in using video gaming technology to facilitate the understanding of basic electromagnetism with middle school students. To this end, we explored the impact of using a game called Supercharged! on middle school students' understanding of electromagnetic concepts compared to students who conducted a more traditional inquiry-oriented investigation of the same concepts. This study was a part of a larger design experiment examining the pedagogical potential of Supercharged! The control group learned through a series of guided inquiry methods while the experimental group played Supercharged! during the laboratory sections of the science course. There was significant difference, F(2,91) = 3.6, p hands-on activities are integrated, with each activity informing the other, could be a very powerful technique for supporting student scientific understanding. Further, our findings suggest that game designers should embed meta-cognitive activities such as reflective opportunities into educational video games in order to provide scaffolds for students and to reinforce that they are engaged in an educational learning experience.

  16. Change over a service learning experience in science undergraduates' beliefs expressed about elementary school students' ability to learn science

    Science.gov (United States)

    Goebel, Camille A.

    This longitudinal investigation explores the change in four (3 female, 1 male) science undergraduates' beliefs expressed about low-income elementary school students' ability to learn science. The study sought to identify how the undergraduates in year-long public school science-teaching partnerships perceived the social, cultural, and economic factors affecting student learning. Previous service-learning research infrequently focused on science undergraduates relative to science and society or detailed expressions of their beliefs and field practices over the experience. Qualitative methodology was used to guide the implementation and analysis of this study. A sample of an additional 20 science undergraduates likewise involved in intensive reflection in the service learning in science teaching (SLST) course called Elementary Science Education Partners (ESEP) was used to examine the typicality of the case participants. The findings show two major changes in science undergraduates' belief expressions: (1) a reduction in statements of beliefs from a deficit thinking perspective about the elementary school students' ability to learn science, and (2) a shift in the attribution of students, underlying problems in science learning from individual-oriented to systemic-oriented influences. Additional findings reveal that the science undergraduates perceived they had personally and profoundly changed as a result of the SLST experience. Changes include: (1) the gain of a new understanding of others' situations different from their own; (2) the realization of and appreciation for their relative positions of privilege due to their educational background and family support; (3) the gain in ability to communicate, teach, and work with others; (4) the idea that they were more socially and culturally connected to their community outside the university and their college classrooms; and (5) a broadening of the way they understood or thought about science. Women participants stated

  17. Inquiry Learning in the Singaporean Context: Factors affecting student interest in school science

    Science.gov (United States)

    Jocz, Jennifer Ann; Zhai, Junqing; Tan, Aik Ling

    2014-10-01

    Recent research reveals that students' interest in school science begins to decline at an early age. As this lack of interest could result in fewer individuals qualified for scientific careers and a population unprepared to engage with scientific societal issues, it is imperative to investigate ways in which interest in school science can be increased. Studies have suggested that inquiry learning is one way to increase interest in science. Inquiry learning forms the core of the primary syllabus in Singapore; as such, we examine how inquiry practices may shape students' perceptions of science and school science. This study investigates how classroom inquiry activities relate to students' interest in school science. Data were collected from 425 grade 4 students who responded to a questionnaire and 27 students who participated in follow-up focus group interviews conducted in 14 classrooms in Singapore. Results indicate that students have a high interest in science class. Additionally, self-efficacy and leisure-time science activities, but not gender, were significantly associated with an increased interest in school science. Interestingly, while hands-on activities are viewed as fun and interesting, connecting learning to real-life and discussing ideas with their peers had a greater relation to student interest in school science. These findings suggest that inquiry learning can increase Singaporean students' interest in school science; however, simply engaging students in hands-on activities is insufficient. Instead, student interest may be increased by ensuring that classroom activities emphasize the everyday applications of science and allow for peer discussion.

  18. Authentic school science knowing and learning in open-inquiry science laboratories

    CERN Document Server

    Roth, Wolff-Michael

    1995-01-01

    According to John Dewey, Seymour Papert, Donald Schon, and Allan Collins, school activities, to be authentic, need to share key features with those worlds about which they teach. This book documents learning and teaching in open-inquiry learning environments, designed with the precepts of these educational thinkers in mind. The book is thus a first-hand report of knowing and learning by individuals and groups in complex open-inquiry learning environments in science. As such, it contributes to the emerging literature in this field. Secondly, it exemplifies research methods for studying such complex learning environments. The reader is thus encouraged not only to take the research findings as such, but to reflect on the process of arriving at these findings. Finally, the book is also an example of knowledge constructed by a teacher-researcher, and thus a model for teacher-researcher activity.

  19. The Relationships among Scientific Epistemic Beliefs, Conceptions of Learning Science, and Motivation of Learning Science: A Study of Taiwan High School Students

    Science.gov (United States)

    Ho, Hsin-Ning Jessie; Liang, Jyh-Chong

    2015-01-01

    This study explores the relationships among Taiwanese high school students' scientific epistemic beliefs (SEBs), conceptions of learning science (COLS), and motivation of learning science. The questionnaire responses from 470 high school students in Taiwan were gathered for analysis to explain these relationships. The structural equation modeling…

  20. An Examination of High School Social Science Students' Levels Motivation towards Learning Geography

    Science.gov (United States)

    Yildirim, Tahsin

    2017-01-01

    This aim of this research was to examine the levels of motivation among high school social science students towards learning geography. The study group consisted of 397 students from different classes at Aksaray Ahmet Cevdet Pasa High School in the College of Social Science. The research was carried out with a scanning model, with data obtained…

  1. Attractor states in teaching and learning processes : a study of out-of-school science education

    NARCIS (Netherlands)

    Geveke, Carla H.; Steenbeek, Henderien W.; Doornenbal, Jeannette M.; Van Geert, Paul L. C.

    2017-01-01

    In order for out-of-school science activities that take place during school hours but outside the school context to be successful, instructors must have sufficient pedagogical content knowledge (PCK) to guarantee high-quality teaching and learning. We argue that PCK is a quality of the

  2. Professional Learning Communities (PLCs) as a Means for School-Based Science Curriculum Change

    Science.gov (United States)

    Browne, Christi L.

    The challenge of school-based science curriculum change and educational reform is often presented to science teachers and departments who are not necessarily prepared for the complexity of considerations that change movements require. The development of a Professional Learning Community (PLC) focused on a science department's curriculum change efforts, may provide the necessary tools to foster sustainable school-based curriculum science changes. This research presents a case study of an evolving science department PLC consisting of 10 middle school science teachers from the same middle school and their efforts of school-based science curriculum change. A transformative mixed model case study with qualitative data and deepened by quantitative analysis, was chosen to guide the investigation. Collected data worked to document the essential developmental steps, the occurrence and frequency of the five essential dimensions of successful PLCs, and the influences the science department PLC had on the middle school science department's progression through school-based science curriculum change, and the barriers, struggles and inhibiting actions of the science department PLC. Findings indicated that a science department PLC was unique in that it allowed for a focal science departmental lens of science curriculum change to be applied to the structure and function of the PLC and therefore the process, proceedings, and results were directly aligned to and driven by the science department. The science PLC, while logically difficult to set-up and maintain, became a professional science forum where the middle school science teachers were exposed to new science teaching and learning knowledge, explored new science standards, discussed effects on student science learning, designed and critically analyzed science curriculum change application. Conclusions resulted in the science department PLC as an identified tool providing the ability for science departmental actions to lead to

  3. A Case Study of a School Science Department: A Site for Workplace Learning?

    OpenAIRE

    Heighes, Deborah Anne

    2017-01-01

    This descriptive and illuminative case study of one science department in a successful, urban, secondary school in the south of England considers the science department as a site of workplace learning and the experience of beginning teachers in this context. Policy change in initial teacher training (ITT) has given schools a major role in the recruitment of trainees and emphasized the schools’ role in their training. Additionally, there continue to be significant challenges to recruit science...

  4. The connection between students' out-of-school experiences and science learning

    Science.gov (United States)

    Tran, Natalie A.

    This study sought to understand the connection between students' out-of-school experiences and their learning in science. This study addresses the following questions: (a) What effects does contextualized information have on student achievement and engagement in science? (b) To what extent do students use their out-of-school activities to construct their knowledge and understanding about science? (c) To what extent do science teachers use students' skills and knowledge acquired in out-of-school settings to inform their instructional practices? This study integrates mixed methods using both quantitative and qualitative approaches to answer the research questions. It involves the use of survey questionnaire and science assessment and features two-level hierarchical analyses of student achievement outcomes nested within classrooms. Hierarchical Linear Model (HLM) analyses were used to account for the cluster effect of students nested within classrooms. Interviews with students and teachers were also conducted to provide information about how learning opportunities that take place in out-of-school settings can be used to facilitate student learning in science classrooms. The results of the study include the following: (a) Controlling for student and classroom factors, students' ability to transfer science learning across contexts is associated with positive learning outcomes such as achievement, interest, career in science, self-efficacy, perseverance, and effort. Second, teacher practice using students' out-of-school experiences is associated with decrease in student achievement in science. However, as teachers make more connection to students' out-of-school experiences, the relationship between student effort and perseverance in science learning and transfer gets weaker, thus closing the gaps on these outcomes between students who have more ability to establish the transfer of learning across contexts and those who have less ability to do so. Third, science teachers

  5. Science That Matters: Exploring Science Learning and Teaching in Primary Schools

    Science.gov (United States)

    Fitzgerald, Angela; Smith, Kathy

    2016-01-01

    To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…

  6. The Effect of an Experiential Learning Program on Middle School Students' Motivation toward Mathematics and Science

    Science.gov (United States)

    Weinberg, Andrea E.; Basile, Carole G.; Albright, Leonard

    2011-01-01

    A mixed methods design was used to evaluate the effects of four experiential learning programs on the interest and motivation of middle school students toward mathematics and science. The Expectancy-Value model provided a theoretical framework for the exploration of 336 middle school student participants. Initially, participants were generally…

  7. Strategic Note-Taking for Middle-School Students with Learning Disabilities in Science Classes

    Science.gov (United States)

    Boyle, Joseph R.

    2010-01-01

    While today's teachers use a variety of teaching methods in middle-school science classes, lectures and note-taking still comprise a major portion of students' class time. To be successful in these classes, middle-school students need effective listening and note-taking skills. Students with learning disabilities (LD) are poor note-takers, which…

  8. The influence of extracurricular activities on middle school students' science learning in China

    Science.gov (United States)

    Zhang, Danhui; Tang, Xing

    2017-07-01

    Informal science learning has been found to have effects on students' science learning. Through the use of secondary data from a national assessment of 7410 middle school students in China, this study explores the relationship among five types of extracurricular science activities, learning interests, academic self-concept, and science achievement. Structural equation modelling was used to investigate the influence of students' self-chosen and school-organised extracurricular activities on science achievement through mediating interests and the academic self-concept. Chi-square tests were used to determine whether there was an opportunity gap in the student's engagement in extracurricular activities. The students' volunteer and school-organised participation in extracurricular science activities had a positive and indirect influence on their science achievement through the mediating variables of their learning interests and academic self-concept. However, there were opportunity gaps between different groups of students in terms of school location, family background, and especially the mother's education level. Students from urban areas with better-educated mothers or higher socioeconomic status are more likely to access diverse science-related extracurricular activities.

  9. Analysis of Primary School Student's Science Learning Anxiety According to Some Variables

    Science.gov (United States)

    Karakaya, Ferhat; Avgin, Sakine Serap; Kumperli, Ethem

    2016-01-01

    On this research, it is analyzed if the science learning anxiety level shows difference according to variables which are gender, grade level, science lesson grade, mother education, father education level. Scanning Design is used for this study. Research working group is consisted of 294 primary school from 6th, 7th and 8th graders on 2015-2016…

  10. Improving the primary school science learning unit about force and motion through lesson study

    Science.gov (United States)

    Phaikhumnam, Wuttichai; Yuenyong, Chokchai

    2018-01-01

    The study aimed to develop primary school science lesson plan based on inquiry cycle (5Es) through lesson study. The study focused on the development of 4 primary school science lesson plans of force and motion for Grade 3 students in KKU Demonstration Primary School (Suksasart), first semester of 2015 academic year. The methodology is mixed method. The Inthaprasitha (2010) lesson study cycle was implemented in group of KKU Demonstration Primary School. Instruments of reflection of lesson plan developing included participant observation, meeting and reflection report, lesson plan and other document. The instruments of examining students' learning include classroom observation and achievement test. Data was categorized from these instruments to find the issues of changing and improving the good lesson plan of Thai primary school science learning. The findings revealed that teachers could develop the lesson plans through lesson study. The issues of changing and improving were disused by considering on engaging students related to societal issues, students' prior knowledge, scientific concepts for primary school students, and what they learned from their changing. It indicated that the Lesson Study allowed primary school science teachers to share ideas and develop ideas to improve the lesson. The study may have implications for Thai science teacher education through Lesson Study.

  11. Project-Based Learning versus Textbook/Lecture Learning in Middle School Science

    Science.gov (United States)

    Main, Sindy

    2015-01-01

    As schools continue to become more diverse, it is important to look at science teaching methods that will meet the needs of all students. In this study, 172 students in a middle school in Northwestern Illinois were taught using two methods of teaching science. Half of the students were taught using project-based science (PBS) and the other half of…

  12. Effects of South Korean High School Students' Motivation to Learn Science and Technology on Their Concern Related to Engineering

    Science.gov (United States)

    Lee, Eunsang

    2017-01-01

    This study investigated the gender difference among South Korean high school students in science learning motivation, technology learning motivation, and concern related engineering, as well as the correlation between these factors. It also verified effects of the sub-factors of science learning motivation and technology learning motivation on…

  13. Gender differences in an elementary school learning environment: A study on how girls learn science in collaborative learning groups

    Science.gov (United States)

    Greenspan, Yvette Frank

    Girls are marked by low self-confidence manifested through gender discrimination during the early years of socialization and culturalization (AAUW, 1998). The nature of gender bias affects all girls in their studies of science and mathematics, particularly in minority groups, during their school years. It has been found that girls generally do not aspire in either mathematical or science-oriented careers because of such issues as overt and subtle stereotyping, inadequate confidence in ability, and discouragement in scientific competence. Grounded on constructivism, a theoretical framework, this inquiry employs fourth generation evaluation, a twelve-step evaluative process (Guba & Lincoln, 1989). The focus is to discover through qualitative research how fifth grade girls learn science in a co-sexual collaborative learning group, as they engage in hands-on, minds-on experiments. The emphasis is centered on one Hispanic girl in an effort to understand her beliefs, attitudes, and behavior as she becomes a stakeholder with other members of her six person collaborative learning group. The intent is to determine if cultural and social factors impact the learning of scientific concepts based on observations from videotapes, interviews, and student opinion questionnaires. QSR NUD*IST 4, a computer software program is utilized to help categorize and index data. Among the findings, there is evidence that clearly indicates girls' attitudes toward science are altered as they interact with other girls and boys in a collaborative learning group. Observations also indicate that cultural and social factors affect girls' performance as they explore and discover scientific concepts with other girls and boys. Based upon what I have uncovered utilizing qualitative research and confirmed according to current literature, there seems to be an appreciable impact on the way girls appear to learn science. Rooted in the data, the results mirror the conclusions of previous studies, which

  14. Learning Science and English: How School Reform Advances Scientific Learning for Limited English Proficient Middle School Students

    OpenAIRE

    Minicucci, Catherine

    1996-01-01

    This article presents findings from the School Reform and Student Diversity Study, a 4-year project to locate and analyze schools offering exemplary science and mathematics programs to middle school students with limited proficiency in English. In contrast to the vast majority of schools, the four schools described in this article give these students access to stimulating science and mathematics curricula by instructing them either in the students' primary language or in English using shelter...

  15. Perceived impact on student engagement when learning middle school science in an outdoor setting

    Science.gov (United States)

    Abbatiello, James

    Human beings have an innate need to spend time outside, but in recent years children are spending less time outdoors. It is possible that this decline in time spent outdoors could have a negative impact on child development. Science teachers can combat the decline in the amount of time children spend outside by taking their science classes outdoors for regular classroom instruction. This study identified the potential impacts that learning in an outdoor setting might have on student engagement when learning middle school science. One sixth-grade middle school class participated in this case study, and students participated in outdoor intervention lessons where the instructional environment was a courtyard on the middle school campus. The outdoor lessons consisted of the same objectives and content as lessons delivered in an indoor setting during a middle school astronomy unit. Multiple sources of data were collected including questionnaires after each lesson, a focus group, student work samples, and researcher observations. The data was triangulated, and a vignette was written about the class' experiences learning in an outdoor setting. This study found that the feeling of autonomy and freedom gained by learning in an outdoor setting, and the novelty of the outdoor environment did increase student engagement for learning middle school science. In addition, as a result of this study, more work is needed to identify how peer to peer relationships are impacted by learning outdoors, how teachers could best utilize the outdoor setting for regular science instruction, and how learning in an outdoor setting might impact a feeling of stewardship for the environment in young adults.

  16. Inquiry-Based Learning in China: Lesson Learned for School Science Practices

    Science.gov (United States)

    Nuangchalerm, Prasart

    2014-01-01

    Inquiry-based learning is widely considered for science education in this era. This study aims to explore inquiry-based learning in teacher preparation program and the findings will help us to understanding what inquiry-based classroom is and how inquiry-based learning are. Data were collected by qualitative methods; classroom observation,…

  17. An Examination of Science High School Students' Motivation towards Learning Biology and Their Attitude towards Biology Lessons

    Science.gov (United States)

    Kisoglu, Mustafa

    2018-01-01

    The purpose of this study is to examine motivation of science high school students towards learning biology and their attitude towards biology lessons. The sample of the study consists of 564 high school students (308 females, 256 males) studying at two science high schools in Aksaray, Turkey. In the study, the relational scanning method, which is…

  18. Promoting of Thematic-Based Integrated Science Learning on the Junior High School

    Science.gov (United States)

    Pursitasari, Indarini Dwi; Nuryanti, Siti; Rede, Amran

    2015-01-01

    This study was conducted to explain the effect of thematic based integrated science learning to the student's critical thinking skills and character. One group pretest-posttest design is involving thirty students in one of the junior high school in the Palu city. A sample was taken using purposive sampling. Data of critical thinking skills…

  19. An Exploratory Analysis of a Middle School Science Curriculum: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Taylor, Gregory S.; Hord, Casey

    2016-01-01

    An exploratory study of a middle school curriculum directly aligned with the Next Generation Science Standards was conducted with a focus on how the curriculum addresses the instructional needs of students with learning disabilities. A descriptive analysis of a lesson on speed and velocity was conducted and implications discussed for students with…

  20. GeoBus: bringing experiential Earth science learning to secondary schools in the UK

    Science.gov (United States)

    Pike, C. J.; Robinson, R. A. J.; Roper, K. A.

    2014-12-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have no or little expertise of teaching Earth science, to share the outcomes of new science research and the experiences of young researchers with school pupils, and to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, GeoBus has visited over 160 different schools across the length and breadth of Scotland. Over 30,000 pupils will have been involved in experiential Earth science learning activities by December 2014, including many in remote and disadvantaged regions. The challenge with secondary school experiential learning as outreach is that activities need to be completed in either 50 or 80 minutes to fit within the school timetables in the UK, and this can limit the amount of hands-on activities that pupils undertake in one session. However, it is possible to dedicate a whole or half day of linked activities to Earth science learning in Scotland and this provides a long enough period to undertake field work, conduct group projects, or complete more complicated experiments. GeoBus has developed a suite of workshops that all involve experiential learning and are targeted for shorter and longer time slots, and the lessons learned in developing and refining these workshops to maximise the learning achieved will be presented. Three potentially unsurprising observations hold true for all the schools that GeoBus visits: young learners like to experiment and use unfamiliar equipment to make measurements, the element of competition stimulates learners to ask questions and maintain focus and enthusiasum

  1. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  2. Science in Schools Project

    Science.gov (United States)

    Waugh, Mike

    As part of a program to increase learning and engagement in science classes 124 Victorian schools are trialing a best practice teaching model. The Science in Schools Research Project is a DEET funded project under the Science in Schools Strategy, developed in response to recent research and policy decisions at national and state levels through which literacy, numeracy and science have been identified as key priorities for learning. This major science research project aims to identify, develop and trial best practice in Science teaching and learning. The Department will then be able to provide clear advice to Victoria's schools that can be adopted and sustained to: * enhance teaching and learning of Science * enhance student learning outcomes in Science at all year levels * increase student access to, and participation in Science learning from Prep through to Year 10, and hence in the VCE as well. The nature of the SiS program will be detailed with specific reference to the innovative programs in solar model cars, robotics and environmental science developed at Forest Hill College in response to this project.

  3. Improving Science Process Skills for Primary School Students Through 5E Instructional Model-Based Learning

    Science.gov (United States)

    Choirunnisa, N. L.; Prabowo, P.; Suryanti, S.

    2018-01-01

    The main objective of this study is to describe the effectiveness of 5E instructional model-based learning to improve primary school students’ science process skills. The science process skills is important for students as it is the foundation for enhancing the mastery of concepts and thinking skills needed in the 21st century. The design of this study was experimental involving one group pre-test and post-test design. The result of this study shows that (1) the implementation of learning in both of classes, IVA and IVB, show that the percentage of learning implementation increased which indicates a better quality of learning and (2) the percentage of students’ science process skills test results on the aspects of observing, formulating hypotheses, determining variable, interpreting data and communicating increased as well.

  4. Examining Middle School Science Student Self-Regulated Learning in a Hypermedia Learning Environment through Microanalysis

    Science.gov (United States)

    Mandell, Brian E.

    The purpose of the present embedded mixed method study was to examine the self-regulatory processes used by high, average, and low achieving seventh grade students as they learned about a complex science topic from a hypermedia learning environment. Thirty participants were sampled. Participants were administered a number of measures to assess their achievement and self-efficacy. In addition, a microanalytic methodology, grounded in Zimmerman's cyclical model of self-regulated learning, was used to assess student self-regulated learning. It was hypothesized that there would be modest positive correlations between Zimmerman's three phases of self-regulated learning, that high achieving science students would deploy more self-regulatory subprocesses than average and low achieving science students, that high achieving science students would have higher self-efficacy beliefs to engage in self-regulated learning than average and low achieving science students, and that low achieving science students would over-estimate their self-efficacy for performance beliefs, average achieving science students would slightly overestimate their self-efficacy for performance beliefs, and high achieving science students would under-estimate their self-efficacy for performance beliefs. All hypotheses were supported except for the high achieving science students who under-estimated their self-efficacy for performance beliefs on the Declarative Knowledge Measure and slightly overestimated their self-efficacy for performance beliefs on the Conceptual Knowledge Measure. Finally, all measures of self-regulated learning were combined and entered into a regression formula to predict the students' scores on the two science tests, and it was revealed that the combined measure predicted 91% of the variance on the Declarative Knowledge Measure and 92% of the variance on the Conceptual Knowledge Measure. This study adds hypermedia learning environments to the contexts that the microanalytic

  5. Science-Based Thematic Cultural Art Learning in Primary School (2013 Curriculum

    Directory of Open Access Journals (Sweden)

    Warih Handayaningrum

    2016-12-01

    Full Text Available This study is aimed at discussing the development result of thematic cultural art subject’s learning material based on science for primary school (2013 curriculum. This study is expected to inspire teacher to develop learning material that may explore artworks exist in our living environment (based on the context of children’s environment. This study applies steps in developmental research collaboration by Borg & Gall (1989 and Puslitjaknov (2008 to create the product. The development stages comprise observation in several primary schools in Surabaya, Gresik, and Sidoarjo that has implemented 2013 curriculum that is followed up by stages of development. Furthermore, prototype of cultural and art thematic learning material development results are verified by learning material experts, material expert, primary school teacher, and revised afterwards. The result of this research development is a set of teacher and student books. Science-based cultural art here means cultural art learning as the main medium to introduce local culture products (music, drawing, dance, and drama by integrating mathematics, sciences, Bahasa Indonesia, and local language subjects. Cultural art products in the form of dance, music, drawing, dramas will help children to understand a simple mathematical concept, such as: two-dimensional figure, geometry, comparing or estimating longer-shorter, smaller-bigger, or more-less.

  6. GeoBus: bringing Earth science learning to secondary schools in the UK

    Science.gov (United States)

    Robinson, Ruth; Roper, Kathryn; Pike, Charlotte

    2015-04-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have no or little expertise of teaching Earth science, to share the outcomes of new science research and the experiences of young researchers with school pupils, and to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, GeoBus has visited over 160 different schools across the length and breadth of Scotland. Almost 35,000 pupils will have been involved in experiential Earth science learning activities by April 2015, including many in remote and disadvantaged regions. The challenge with secondary school experiential learning as outreach is that activities need to be completed in either 50 or 80 minutes to fit within the school timetables in the UK, and this can limit the amount of hands-on activities that pupils undertake in one session. However, it is possible to dedicate a whole or half day of linked activities to Earth science learning within the Scotland Curriculum for Excellence, and this provides a long enough period to undertake field work, conduct group projects, or complete more complicated experiments. GeoBus has developed a suite of workshops that all involve experiential learning and are targeted for shorter and longer time slots, and the lessons learned in developing and refining these workshops to maximise the learning achieved will be presented. A key aim of GeoBus is to incorporate research outcomes directly into workshops, and to involve early career researchers in project development. One example that is currently in progress is a set of hydrology workshops that focus on the water

  7. Grade Level Differences in High School Students' Conceptions of and Motives for Learning Science

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2017-08-01

    Students' conceptions of learning science and their relations with motive for learning may vary as the education level increases. This study aimed to compare the quantitative patterns in students' conceptions of learning science (COLS) and motives for learning science (MLS) across grade levels by adopting two survey instruments. A total of 768 high school students were surveyed in Taiwan, including 204 eighth graders, 262 tenth graders, and 302 12th graders. In the current research, memorizing, testing, and calculating and practicing were categorized as reproductive conceptions of learning science, while increase of knowledge, applying, understanding and seeing-in-a-new-way were regarded as constructivist conceptions. The results of multivariate analyses of variance (MANOVA) revealed that conceptions of learning science are more constructivist as education level increases. Both tenth graders and 12th graders endorsed understanding, seeing-in-a-new-way, and the constructivist COLS composite more strongly than the eighth graders did. In addition, the results of multigroup structural equation modeling (SEM) analysis indicated that the positive relations between testing and reproductive COLS were stronger as the grade level increased, while the negative relations between reproductive COLS and deep motive were tighter with the increase in grade level.

  8. Who Wants to Learn More Science? The Role of Elementary School Science Experiences and Science Self-Perceptions

    Science.gov (United States)

    Aschbacher, Pamela R.; Ing, Marsha

    2017-01-01

    Background/Context: Much science education reform has been directed at middle and high school students; however, earlier experiences in elementary school may well have an important impact on young people's future science literacy and preparation for possible STEM careers. Purpose/Objective/Research Question/Focus of Study: This study explores the…

  9. Variables that impact the implementation of project-based learning in high school science

    Science.gov (United States)

    Cunningham, Kellie

    Wagner and colleagues (2006) state the mediocrity of teaching and instructional leadership is the central problem that must be addressed if we are to improve student achievement. Educational reform efforts have been initiated to improve student performance and to hold teachers and school leaders accountable for student achievement (Wagner et al., 2006). Specifically, in the area of science, goals for improving student learning have led reformers to establish standards for what students should know and be able to do, as well as what instructional methods should be used. Key concepts and principles have been identified for student learning. Additionally, reformers recommend student-centered, inquiry-based practices that promote a deep understanding of how science is embedded in the everyday world. These new approaches to science education emphasize inquiry as an essential element for student learning (Schneider, Krajcik, Marx, & Soloway, 2002). Project-based learning (PBL) is an inquiry-based instructional approach that addresses these recommendations for science education reform. The objective of this research was to study the implementation of project-based learning (PBL) in an urban school undergoing reform efforts and identify the variables that positively or negatively impacted the PBL implementation process and its outcomes. This study responded to the need to change how science is taught by focusing on the implementation of project-based learning as an instructional approach to improve student achievement in science and identify the role of both school leaders and teachers in the creation of a school environment that supports project-based learning. A case study design using a mixed-method approach was used in this study. Data were collected through individual interviews with the school principal, science instructional coach, and PBL facilitator. A survey, classroom observations and interviews involving three high school science teachers teaching grades 9

  10. Learning Environment, Attitudes and Achievement among Middle-School Science Students Using Inquiry-Based Laboratory Activities

    Science.gov (United States)

    Wolf, Stephen J.; Fraser, Barry J.

    2008-01-01

    This study compared inquiry and non-inquiry laboratory teaching in terms of students' perceptions of the classroom learning environment, attitudes toward science, and achievement among middle-school physical science students. Learning environment and attitude scales were found to be valid and related to each other for a sample of 1,434 students in…

  11. Assessing High School Student Learning on Science Outreach Lab Activities

    Science.gov (United States)

    Thomas, Courtney L.

    2012-01-01

    The effect of hands-on laboratory activities on secondary student learning was examined. Assessment was conducted over a two-year period, with 262 students participating the first year and 264 students the second year. Students took a prequiz, performed a laboratory activity (gas chromatography of alcohols, or photosynthesis and respiration), and…

  12. Learning science through talk: A case study of middle school students engaged in collaborative group investigation

    Science.gov (United States)

    Zinicola, Debra Ann

    Reformers call for change in how science is taught in schools by shifting the focus towards conceptual understanding for all students. Constructivist learning is being promoted through the dissemination of National and State Science Standards that recommend group learning practices in science classrooms. This study examined the science learning and interactions, using case study methodology, of one collaborative group of 4 students in an urban middle school. Data on science talk and social interaction were collected over 9 weeks through 12 science problem solving sessions. To determine student learning through peer interaction, varied group structures were implemented, and students reflected on the group learning experience. Data included: field notes, cognitive and reflective journals, audiotapes and videotapes of student talk, and audiotapes of group interviews. Journal data were analyzed quantitatively and all other data was transcribed into The Ethnograph database for qualitative analysis. The data record was organized into social and cognitive domains and coded with respect to interaction patterns to show how group members experienced the social construction of science concepts. The most significant finding was that all students learned as a result of 12 talk sessions as evidenced by pre- and post-conceptual change scores. Interactions that promoted learning involved students connecting their thoughts, rephrasing, and challenging ideas. The role structure was only used by students about 15% of the time, but it started the talk with a science focus, created awareness of scientific methods, and created an awareness of equitable member participation. Students offered more spontaneous, explanatory talk when the role structure was relaxed, but did not engage in as much scientific writing. They said the role structure was important for helping them know what to do in the talk but they no longer needed it after a time. Gender bias, status, and early adolescent

  13. Profiling interest of students in science: Learning in school and beyond

    Science.gov (United States)

    Dierks, Pay O.; Höffler, Tim N.; Parchmann, Ilka

    2014-05-01

    Background:Interest is assumed to be relevant for students' learning processes. Many studies have investigated students' interest in science; most of them however have not offered differentiated insights into the structure and elements of this interest. Purpose:The aim of this study is to obtain a precise image of secondary school students' interest for school and out-of-school learning opportunities, both formal and informal. The study is part of a larger project on measuring the students' Individual Concept about the Natural Sciences (ICoN), including self-efficacy, beliefs and achievements next to interest variables. Sample:Next to regular school students, a specific cohort will be analyzed as well: participants of science competitions who are regarded as having high interest, and perhaps different interest profiles than regular students. In the study described here, participants of the International Junior Science Olympiad (N = 133) and regular students from secondary schools (N = 305), age cohorts 10 to 17 years, participated. Design and methods:We adapted Holland's well-established RIASEC-framework to analyze if and how it can also be used to assess students' interest within science and in-school and out-of-school (leisure-time and enrichment) activities. The resulting questionnaire was piloted according to quality criteria and applied to analyze profiles of different groups (boys - girls, contest participants - non-participants). Results:The RIASEC-adaption to investigate profiles within science works apparently well for school and leisure-time activities. Concerning the interest in fostering measures, different emphases seem to appear. More research in this field needs to be done to adjust measures better to students' interests and other pre-conditions in the future. Contrasting different groups like gender and participation in a junior science contest uncovered specific interest profiles. Conclusions:The instrument seems to offer a promising approach to

  14. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. ... science achievement: inadequate school resources and weak household ..... informal interviews with the science teachers of the.

  15. Effect of Child Centred Methods on Teaching and Learning of Science Activities in Pre-Schools in Kenya

    Science.gov (United States)

    Andiema, Nelly C.

    2016-01-01

    Despite many research studies showing the effectiveness of teacher application of child-centered learning in different educational settings, few studies have focused on teaching and learning activities in Pre-Schools. This research investigates the effect of child centered methods on teaching and learning of science activities in preschools in…

  16. Enhancing Postgraduate Learning and Teaching: Postgraduate Summer School in Dairy Science

    Directory of Open Access Journals (Sweden)

    Pietro Celi

    2014-01-01

    Full Text Available Dairy science is a multidisciplinary area of scientific investigation and Ph.D. students aiming to do research in the field of animal and/or veterinary sciences must be aware of this. Ph.D. students often have vast spectra of research interests, and it is quite challenging to satisfy the expectation of all of them. The aim of this study was to establish an international Ph.D. training program based on research collaboration between the University of Sydney and the University of Padova. The core component of this program was a two-week Postgraduate Summer School in Dairy Science, which was held at the University of Padova, for Ph.D. students of both universities. Therefore, we designed a program that encompassed seminars, workshops, laboratory practical sessions, and farm visits. Participants were surveyed using a written questionnaire. Overall, participants have uniformly praised the Summer School calling it a rewarding and valuable learning experience. The Ph.D. Summer School in Dairy Science provided its participants a positive learning experience, provided them the opportunity to establish an international network, and facilitated the development of transferable skills.

  17. Science in Action: How Middle School Students Are Changing Their World through STEM Service-Learning Projects

    Science.gov (United States)

    Newman, Jane L.; Dantzler, John; Coleman, April N.

    2015-01-01

    The purpose of Science in Action (SIA) was to examine the relationship between implementing quality science, technology, engineering, and math (STEM) service-learning (SL) projects and the effect on students' academic engagement in middle school science, civic responsibility, and resilience to at-risk behaviors. The innovative project funded by…

  18. How do out-of-school activities support science learning in informal settings ?

    DEFF Research Database (Denmark)

    Hyllested, Trine

    2005-01-01

    An analysis of out-of -school learning in a naturecenter, in a secondary school and a public school.The teacher is a key-person in the use of out of school.......An analysis of out-of -school learning in a naturecenter, in a secondary school and a public school.The teacher is a key-person in the use of out of school....

  19. Designing for deeper learning in a blended computer science course for middle school students

    Science.gov (United States)

    Grover, Shuchi; Pea, Roy; Cooper, Stephen

    2015-04-01

    The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course on Stanford's OpenEdX MOOC platform for blended in-class learning. Unique aspects of FACT include balanced pedagogical designs that address the cognitive, interpersonal, and intrapersonal aspects of "deeper learning"; a focus on pedagogical strategies for mediating and assessing for transfer from block-based to text-based programming; curricular materials for remedying misperceptions of computing; and "systems of assessments" (including formative and summative quizzes and tests, directed as well as open-ended programming assignments, and a transfer test) to get a comprehensive picture of students' deeper computational learning. Empirical investigations, accomplished over two iterations of a design-based research effort with students (aged 11-14 years) in a public school, sought to examine student understanding of algorithmic constructs, and how well students transferred this learning from Scratch to text-based languages. Changes in student perceptions of computing as a discipline were measured. Results and mixed-method analyses revealed that students in both studies (1) achieved substantial learning gains in algorithmic thinking skills, (2) were able to transfer their learning from Scratch to a text-based programming context, and (3) achieved significant growth toward a more mature understanding of computing as a discipline. Factor analyses of prior computing experience, multivariate regression analyses, and qualitative analyses of student projects and artifact-based interviews were conducted to better understand the factors affecting learning outcomes. Prior computing experiences (as measured by a pretest) and math ability were

  20. Use of Digital Game Based Learning and Gamification in Secondary School Science: The Effect on Student Engagement, Learning and Gender Difference

    Science.gov (United States)

    Khan, Amna; Ahmad, Farzana Hayat; Malik, Muhammad Muddassir

    2017-01-01

    This study aimed to identify the impact of a game based learning (GBL) application using computer technologies on student engagement in secondary school science classrooms. The literature reveals that conventional Science teaching techniques (teacher-centered lecture and teaching), which foster rote learning among students, are one of the major…

  1. Unintended Learning in Primary School Practical Science Lessons from Polanyi's Perspective of Intellectual Passion

    Science.gov (United States)

    Park, Jisun; Song, Jinwoong; Abrahams, Ian

    2016-03-01

    This study explored, from the perspective of intellectual passion developed by Michael Polanyi, the unintended learning that occurred in primary practical science lessons. We use the term `unintended' learning to distinguish it from `intended' learning that appears in teachers' learning objectives. Data were collected using video and audio recordings of a sample of twenty-four whole class practical science lessons, taught by five teachers, in Korean primary schools with 10- to 12-year-old students. In addition, video and audio recordings were made for each small group of students working together in order to capture their activities and intra-group discourse. Pre-lesson interviews with the teachers were undertaken and audio-recorded to ascertain their intended learning objectives. Selected key vignettes, including unintended learning, were analysed from the perspective of intellectual passion developed by Polanyi. What we found in this study is that unintended learning could occur when students got interested in something in the first place and could maintain their interest. In addition, students could get conceptual knowledge when they tried to connect their experience to their related prior knowledge. It was also found that the processes of intended learning and of unintended learning were different. Intended learning was characterized by having been planned by the teacher who then sought to generate students' interest in it. In contrast, unintended learning originated from students' spontaneous interest and curiosity as a result of unplanned opportunities. Whilst teachers' persuasive passion comes first in the process of intended learning, students' heuristic passion comes first in the process of unintended learning. Based on these findings, we argue that teachers need to be more aware that unintended learning, on the part of individual students, can occur during their lesson and to be able to better use this opportunity so that this unintended learning can be

  2. Attitudes and learning difficulties in middle school science in South Korea

    Science.gov (United States)

    Jung, Eun Sook

    The purpose of this study is to investigate the relationship between cognitive and attitudinal aspects of learning science, concentrating mainly on the influence of cognitive understanding and learning difficulty on attitudes to science. This theme is selected, in particular, because it is reported that Korean students at secondary level do not enjoy studying science and have not enough confidence, although their achievements are high. Johnstone's information processing model (1993) is used to account for cognitive aspects of science education. Learning processes are understood in terms of student's own knowledge construction through the operation of perception filters, processing in working memory space and storing in long term memory. In particular, the overload of student's working memory space is considered as the main factor causing learning difficulty and, in consequence, learning failure. The research took place in one middle school located in Seoul, the capital city in South Korea. 364 students aged 13 and 350 aged 15 participated. In order to try to find relationships between cognitive and affective factors of science learning, individual student's working memory space was measured and a questionnaire designed to gather information about students' attitudes was prepared and given to all students. To determine the working memory space capacity of the students, the Figural Intersection Test (F.I.T), designed by Pascual-Leone, was used. Two kinds of analysis, comparison and correlation, were performed with data from the Figural Intersection Test and the questionnaire applied to students. For the comparison of attitudes between age 13 and 15, the distributions of frequencies of responses were analyzed for each particular statement in a question. The Chi-square (?[2]) test was applied to judge the statistically significant differences in responses of the two groups. The levels of significance used were 0.05, 0.01 and 0.001. In order to see whether there is

  3. Is `Learning' Science Enough? - A Cultural Model of Religious Students of Science in an Australian Government School

    Science.gov (United States)

    Ferguson, Joseph Paul; Kameniar, Barbara

    2014-10-01

    This paper investigates the cognitive experiences of four religious students studying evolutionary biology in an inner city government secondary school in Melbourne, Australia. The participants in the study were identified using the Religious Background and Behaviours questionnaire (Connors, Tonigan, & Miller, 1996). Participants were interviewed and asked to respond to questions about their cognitive experiences of studying evolutionary biology. Students' responses were analysed using cultural analysis of discourse to construct a cultural model of religious students of science. This cultural model suggests that these students employ a human schema and a non-human schema, which assert that humans are fundamentally different from non-humans in terms of origins and that humans have a transcendental purpose in life. For these students, these maxims seem to be challenged by their belief that evolutionary biology is dictated by metaphysical naturalism. The model suggests that because the existential foundation of these students is challenged, they employ a believing schema to classify their religious explanations and a learning schema to classify evolutionary biology. These schemas are then hierarchically arranged with the learning schema being made subordinate to the believing schema. Importantly, these students are thus able to maintain their existential foundation while fulfilling the requirements of school science. However, the quality of this "learning" is questionable.

  4. High School Students' Scientific Epistemological Beliefs, Motivation in Learning Science, and Their Relationships: A Comparative Study within the Chinese Culture

    Science.gov (United States)

    Lin, Tzung-Jin; Deng, Feng; Chai, Ching Sing; Tsai, Chin-Chung

    2013-01-01

    This study explored the differences in high school students' scientific epistemological beliefs (SEBs), motivation in learning science (MLS), and the different relationships between them in Taiwan and China. 310 Taiwanese and 302 Chinese high school students' SEBs and MLS were assessed quantitatively. Taiwanese students generally were more prone…

  5. Influence of Career Motivation on Science Learning in Korean High-School Students

    Science.gov (United States)

    Shin, Sein; Lee, Jun-Ki; Ha, Minsu

    2017-01-01

    Motivation to learn is an essential element in science learning. In this study, the role of career motivation in science learning was examined. In particular, first, a science motivation model that focused on career motivation was tested. Second, the role of career motivation as a predictor of STEM track choice was examined. Third, the effect of…

  6. Investigating the Quality of Project-Based Science and Technology Learning Environments in Elementary School: A Critical Review of Instruments

    Science.gov (United States)

    Thys, Miranda; Verschaffel, Lieven; Van Dooren, Wim; Laevers, Ferre

    2016-01-01

    This paper provides a systematic review of instruments that have the potential to measure the quality of project-based science and technology (S&T) learning environments in elementary school. To this end, a comprehensive literature search was undertaken for the large field of S&T learning environments. We conducted a horizontal bottom-up…

  7. Improving Science Pedagogic Quality in Elementary School Using Process Skill Approach Can Motivate Student to Be Active in Learning

    Science.gov (United States)

    Sukiniarti

    2016-01-01

    On global era todays, as the professional teacher should be improving their pedagogic competency, including to improve their science pedagogy quality. This study is aimed to identify: (1) Process skill approach which has been used by Elementary School Teacher in science learning; (2) Teacher's opinion that process skill can motivate the student to…

  8. The Correlation between Teacher Professional Competence and Natural Science Learning Achievement in Elementary School

    Directory of Open Access Journals (Sweden)

    I Ketut Ngurah Ardiawan

    2017-12-01

    Full Text Available This present study aims at investigating the correlation between teachers’ professional competence and natural science learning achievement in elementary schools in Buleleng regency. The population in this study are all sixth grade teachers, which it is further narrowed down to 30 teachers as the sample. In order to gather the data, the researcher employs questionnaire regarding teacher professional competence and document study toward students’ achievement on national examination in academic year 2016/2017. Further, ex post facto is chosen as the design of the study. Meanwhile, the data are analysed through correlation analysis with assistance of SPSS 16 software. Based on the analysis, it was obtained that the correlation between teacher professional competence and the learning achievement on natural science subject is in the interval of 0.40-0.59 with correlation coefficient at rho=0.506. This means there is a significant correlation between teacher professional competence and students’ learning achievement on natural science in national examination in academic year 2016/2017 (tcount = 3.103 > ttable =2.048 with significance level at α = 0,05 and coefficient of determination at 0.2560 (25.60%

  9. Technology and Communications Coursework: Facilitating the Progression of Students with Learning Disabilities through High School Science and Math Coursework.

    Science.gov (United States)

    Shifrer, Dara; Callahan, Rebecca

    2010-09-01

    Students identified with learning disabilities experience markedly lower levels of science and mathematics achievement than students who are not identified with a learning disability. Seemingly compounding their disadvantage, students with learning disabilities also complete more credits in non-core coursework-traditionally considered non-academic coursework-than students who are not identified with a learning disability. The Education Longitudinal Study of 2002, a large national dataset with both regular and special education high school students, is utilized to determine whether credit accumulation in certain types of non-core coursework, such as Technology and Communications courses, is associated with improved science and math course-taking outcomes for students with learning disabilities. Results show that credit accumulation in Technology and Communications coursework uniquely benefits the science course-taking, and comparably benefits the math course-taking, of students identified with learning disabilities in contrast to students who are not identified with a learning disability.

  10. Attractor States in Teaching and Learning Processes: A Study of Out-of-School Science Education.

    Science.gov (United States)

    Geveke, Carla H; Steenbeek, Henderien W; Doornenbal, Jeannette M; Van Geert, Paul L C

    2017-01-01

    In order for out-of-school science activities that take place during school hours but outside the school context to be successful, instructors must have sufficient pedagogical content knowledge (PCK) to guarantee high-quality teaching and learning. We argue that PCK is a quality of the instructor-pupil system that is constructed in real-time interaction. When PCK is evident in real-time interaction, we define it as Expressed Pedagogical Content Knowledge (EPCK). The aim of this study is to empirically explore whether EPCK shows a systematic pattern of variation, and if so whether the pattern occurs in recurrent and temporary stable attractor states as predicted in the complex dynamic systems theory. This study concerned nine out-of-school activities in which pupils of upper primary school classes participated. A multivariate coding scheme was used to capture EPCK in real time. A principal component analysis of the time series of all the variables reduced the number of components. A cluster revealed general descriptions of the components across all cases. Cluster analyses of individual cases divided the time series into sequences, revealing High-, Low-, and Non-EPCK states. High-EPCK attractor states emerged at particular moments during activities, rather than being present all the time. Such High-EPCK attractor states were only found in a few cases, namely those where the pupils were prepared for the visit and the instructors were trained.

  11. The Level of Utilizing Blended Learning in Teaching Science from the Point of View of Science Teachers in Private Schools of Ajman Educational Zone

    Science.gov (United States)

    Al-Derbashi, Khaled Y.; Abed, Osama H.

    2017-01-01

    This study aims to define the level of utilizing blended learning in teaching science from the point of view of science teachers (85 male and female teachers) who are working in private schools of Ajman Educational Zone. The study also aims to find if there are significant differences according to gender, years of experience, or the fact that…

  12. 3D animation model with augmented reality for natural science learning in elementary school

    Science.gov (United States)

    Hendajani, F.; Hakim, A.; Lusita, M. D.; Saputra, G. E.; Ramadhana, A. P.

    2018-05-01

    Many opinions from primary school students' on Natural Science are a difficult lesson. Many subjects are not easily understood by students, especially on materials that teach some theories about natural processes. Such as rain process, condensation and many other processes. The difficulty that students experience in understanding it is that students cannot imagine the things that have been taught in the material. Although there is material to practice some theories but is actually quite limited. There is also a video or simulation material in the form of 2D animated images. Understanding concepts in natural science lessons are also poorly understood by students. Natural Science learning media uses 3-dimensional animation models (3D) with augmented reality technology, which offers some visualization of science lessons. This application was created to visualize a process in Natural Science subject matter. The hope of making this application is to improve student's concept. This app is made to run on a personal computer that comes with a webcam with augmented reality. The app will display a 3D animation if the camera can recognize the marker.

  13. School of Political Science

    Directory of Open Access Journals (Sweden)

    A. D. Voskresensky

    2014-01-01

    Full Text Available Out of all the departments of political sciences in Russia - the Department at MGIMO-University is probably the oldest one. In fact it is very young. While MGIMO-University is celebrating its 70th anniversary the Department of Political Sciences turns 15. Despite the fact that political analyst is a relatively new profession in Russia, it acquired a legal standing only in the 1990s, the political science school at MGIMO-University is almost as old as the university itself. Unlike many other universities, focused on the training teachers of political science or campaign managers MGIMO-University has developed its own unique political science school of "full cycle", where students grow into political sciences from a zero level up to the highest qualifications as teachers and researchers, and campaign managers, consultants and practitioners. The uniqueness of the school of political science at MGIMO-University allows its institutional incarnation -the Department of Political Science - to offer prospective studentsa training in a wide range of popular specialties and specializations, while ensuring a deep theoretical and practical basis of the training. Studying at MGIMO-University traditionally includes enhanced linguistic component (at least two foreign languages. For students of international relations and political science learning foreign languages is particularly important.It allows not only to communicate, but also to produce expertise and knowledge in foreign languages.

  14. The summer school students’ viewpoints about important factors in learning, Shiraz University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    LEILA BAZRAFCAN

    2014-04-01

    Full Text Available Introduction: The main goal of education is learning and change in behavior which has been revolutionized in the 21st century due to the rapid and widespread changes in science. The traditional approach to education does no longer meet the learners’ needs, necessitating new changes in educational curricula. This study was designed to determine the factors influencing learning in the 21st century and find out the students’ viewpoints on this issue. Methods: This is a descriptive study aiming at determining the students’ views on new approaches to learning in the 21st century. To do so, a researcher-made questionnaire was designed. It contained 30 questions in 3 sections including demographic data, background questions and two open questions about their suggestions and criticisms. The reliability and validity of the questionnaire was pilot-tested and measured, which proved to be describable. 150 students participating in university summer schools in Shiraz University of Medical Sciences were enrolled. The questionnaires were sent to the students in person and through electronic mails. The students were asked to return the completed questionnaires to the given email address. The data were analyzed in SPSS, version 14, using descriptive statistics of frequency, mean, percentage and standard deviation and t-test. P<0. 05 was considered as statistically significant. Results: 150 questionnaires were appropriately filled out and given to the researchers. The results indicated that, according to the students, 6 factors including the use of computer in teaching, enhancement of virtual learning, the use of mobile in relations, enjoyment of electronic learning contexts, the learning focus on attitudes and the facilitating role of the lectures were the most influential factors in learning. On the other hand, the government’s responsibility and responsiveness, creativity and risk taking, increase in the social relationship among the learners, focus on

  15. Active Learning in Language Study and Science: Transforming Teacher Practice in North Sumatra’s Elementary Schools

    Directory of Open Access Journals (Sweden)

    Ely Djulia

    2011-12-01

    Full Text Available AbstractAn action research project to investigate the implementation of active learning strategies to improve the quality of teaching and learning was conducted in three government elementary schools (Sekolah Dasar in North Sumatra that had received training in teaching for active learning under the auspices of the USAID-sponsored project, Decentralized Basic Education 2. Three cycles of data collection utilizing classroom observations, focus group discussions, and participant observation were conducted in each school. Data were analyzed both holistically and categorily to develop a better understanding of teachers’ successes and challenges in teaching for active learning. Finally, an intervention strategy involving modeling of teaching for active learning strategies was designed and implemented by members of the research team in each school. Our results suggest that language and science teachers developed more confidence in utilizing active learning strategies in their classrooms as a result of the intervention. Students also appeared to respond positively to the new active learning teaching strategies employed by their teachers. We conclude that the DBE-2 training provided to these schools can be considered successful; however, more attention needs to be paid to concrete factors that facilitate or impede teaching for active learning in Indonesian elementary schools in order to continue improving the quality of instruction for Indonesian children. Key Words: Islamic Education, Active Learning, Religious Studies, Indonesia

  16. Unintended Learning in Primary School Practical Science Lessons from Polanyi's Perspective of Intellectual Passion

    Science.gov (United States)

    Park, Jisun; Song, Jinwoong; Abrahams, Ian

    2016-01-01

    This study explored, from the perspective of intellectual passion developed by Michael Polanyi, the unintended learning that occurred in primary practical science lessons. We use the term "unintended" learning to distinguish it from "intended" learning that appears in teachers' learning objectives. Data were collected using…

  17. Fostering Self-Reflection and Meaningful Learning: Earth Science Professional Development for Middle School Science Teachers

    Science.gov (United States)

    Monet, Julie A.; Etkina, Eugenia

    2008-10-01

    This paper describes the analysis of teachers’ journal reflections during an inquiry-based professional development program. As a part of their learning experience, participants reflected on what they learned and how they learned. Progress of subject matter and pedagogical content knowledge was assessed though surveys and pre- and posttests. We found that teachers have difficulties reflecting on their learning and posing meaningful questions. The teachers who could describe how they reasoned from evidence to understand a concept had the highest learning gains. In contrast those teachers who seldom or never described learning a concept by reasoning from evidence showed the smallest learning gains. This analysis suggests that learning to reflect on one’s learning should be an integral part of teachers’ professional development experiences.

  18. Unpacking the Paradox of Chinese Science Learners: Insights from Research into Asian Chinese School Students' Attitudes towards Learning Science, Science Learning Strategies, and Scientific Epistemological Views

    Science.gov (United States)

    Cheng, May Hung May; Wan, Zhi Hong

    2016-01-01

    Chinese students' excellent science performance in large-scale international comparisons contradicts the stereotype of the Chinese non-productive classroom learning environment and learners. Most of the existing explanations of this paradox are provided from the perspective of teaching and learning in a general sense, but little work can be found…

  19. Exploring the impact of learning objects in middle school mathematics and science classrooms: A formative analysis

    Directory of Open Access Journals (Sweden)

    Robin H. Kay

    2008-12-01

    Full Text Available The current study offers a formative analysis of the impact of learning objects in middle school mathematics and science classrooms. Five reliable and valid measure of effectiveness were used to examine the impact of learning objects from the perspective of 262 students and 8 teachers (14 classrooms in science or mathematics. The results indicate that teachers typically spend 1-2 hours finding and preparing for learning-object based lesson plans that focus on the review of previous concepts. Both teachers and students are positive about the learning benefits, quality, and engagement value of learning objects, although teachers are more positive than students. Student performance increased significantly, over 40%, when learning objects were used in conjunction with a variety of teaching strategies. It is reasonable to conclude that learning objects have potential as a teaching tool in a middle school environment. L’impacte des objets d’apprentissage dans les classes de mathématique et de sciences à l’école intermédiaire : une analyse formative Résumé : Cette étude présente une analyse formative de l’impacte des objets d’apprentissage dans les classes de mathématique et de sciences à l’école intermédiaire. Cinq mesures de rendement fiables et valides ont été exploitées pour examiner l’effet des objets d’apprentissage selon 262 élèves et 8 enseignants (414 classes en science ou mathématiques. Les résultats indiquent que les enseignants passent typiquement 1-2 heures pour trouver des objets d’apprentissage et préparer les leçons associées qui seraient centrées sur la revue de concepts déjà vus en classe. Quoique les enseignants aient répondu de façon plus positive que les élèves, les deux groupes ont répondu positivement quant aux avantages au niveau de l’apprentissage, à la qualité ainsi qu’à la valeur motivationnelle des objets d’apprentissage. Le rendement des élèves aurait aussi augment

  20. Teaching and Learning Scientific Literacy and Citizenship in Partnership with Schools and Science Museums

    DEFF Research Database (Denmark)

    Dolin, Jens; Evans, Robert Harry; Quistgaard, Nana

    2010-01-01

    The purpose of this paper is to bring together research on learning and teaching in science – especially for scientific literacy and citizenship – with new insights into museum didactics in order to inform innovative ways of creating museum exhibits and visits and develop new ways of linking formal...... and informal learning environments. Knowledge from different domains that have evolved substantially over the past few decades is brought together with the intention of setting up some relatively concrete guidelines for arranging visits to science museums. First we examine new understandings of science...... learning in relation to the questions of why young people should learn science and what kind of science they should learn. We touch upon issues of scientific literacy and citizenship, dialogical processes, the nature of science, and inquiry-based teaching among others. Secondly, we relate our reflections...

  1. Learning Science in the 21st century - a shared experience between schools

    Science.gov (United States)

    Pinto, Tânia; Soares, Rosa; Ruas, Fátima

    2015-04-01

    Problem Based Learning is considered an innovative teaching and learning inquiry methodology that is student centered, focused in the resolution of an authentic problem and in which the teacher acts like a facilitator of the work in small groups. In this process, it is expected that students develop attitudinal, procedural and communication skills, in addition to the cognitive typically valued. PBL implementation also allows the use of multiple educational strategies, like laboratorial experiments, analogue modeling or ICT (video animations, electronic presentations or software simulations, for instance), which can potentiate a more interactive environment in the classroom. In this study, taken in three schools in the north of Portugal, which resulted from the cooperation between three science teachers, with a 75 individuals sample, were examined students' opinions about the main difficulties and strengths concerning the PBL methodology, having as a common denominator the use of a laboratorial experiment followed by an adequate digital software as educational resource to interpret the obtained results and to make predictions (e.g. EarthQuake, Virtual Quake, Stellarium). The data collection methods were based on direct observation and questionnaires. The results globally show that this educational approach motivates students' towards science, helping them to solve problems from daily life and that the use of software was relevant, as well as the collaborative working. The cognitive strand continues to be the most valued by pupils.

  2. Vocational students' meaning-making in school science - negotiating authenticity through multimodal mobile learning :

    OpenAIRE

    Nordby, Mette; Knain, Erik; Jonsdottir, Gudrun

    2017-01-01

    This article presents a qualitative study focusing school science in two vocational classes, upper secondary school, Norway. The fact that many vocational students find little meaning in school science forms the backdrop. The students were introduced to teaching combining an excursion to a district heating plant and classroom lessons, with the use of mobile phones for documentation. Thematic analysis is used to explore the students’ experiences by analysing their behaviour and utterances. A m...

  3. Sex, Grade-Level and Stream Differences in Learning Environment and Attitudes to Science in Singapore Primary Schools

    Science.gov (United States)

    Peer, Jarina; Fraser, Barry J.

    2015-01-01

    Learning environment research provides a well-established approach for describing and understanding what goes on in classrooms and has attracted considerable interest in Singapore. This article reports the first study of science classroom environments in Singapore primary schools. Ten scales from the What Is Happening In this Class?,…

  4. Researching the Effectiveness of a Science Professional Learning Programme Using a Proposed Curriculum Framework for Schools: A Case Study

    Science.gov (United States)

    Paige, Kathryn; Zeegers, Yvonne; Lloyd, David; Roetman, Philip

    2016-01-01

    This paper reports on an action research-based professional learning programme (PLP) in which early career teachers volunteered to identify and then research an aspect of their science teaching practice. The PLP was facilitated by academics from the School of Education and the Barbara Hardy Institute at the University of South Australia. The…

  5. Growth Mindset and Motivation: A Study into Secondary School Science Learning

    Science.gov (United States)

    Bedford, Susannah

    2017-01-01

    Motivation in science in school is a national issue but is often overlooked in educational reform (Usher, A., and N. Kober. 2012. "Student motivation -- An overlooked piece of school reform". Centre on Education Policy, Graduate School of Education and Human Development. The George Washington University). Despite new curriculum content…

  6. READINESS Of ELEMENTARY SCHOOL TEACHERS IN IMPLEMENTING CHARACTERS INTEGRATED LEARNING IN THE SCIENCE SUBJECT

    Directory of Open Access Journals (Sweden)

    N. Hindarto

    2015-01-01

    Full Text Available Many problems that arise in today's society are rooted in the issue of morality as a result of the marginalization of the values of character. To solve this problem, need to be enforced the values of good character on every member of the community, and the proper way is through the educational process, including through education in schools ranging from elementary education to higher education. To find out whether the teachers in elementary schools are ready to take this work, the research conducted to determine the readiness of teachers and the problems associated with its implementation. Through a questionnaire calculated in descriptive percentage on a sample of elementary school teachers who are spread in Semarang, Semarang District and Temanggung, it can be concluded that in teachers’ view it is very important to integrate the learning of characters in the lesson. However, they need guidance /examples to develop learning model with its features, which integrate the values of the characters in the science subject.Banyak persoalan yang timbul di masyarakat dewasa ini berakar pada persoalan moralitas sebagai akibat terpinggirkannya nilai-nilai karakter, Untuk mengatasi persoalan ini, perlu ditegakkan lagi nilai nilai karakter yang baik pada setiap anggota masyarakat, dan cara yang tepat adalah melalui proses pendidikan, di antaranya melalui pendidikan di sekolah mulai dari pendidikan dasar sampai pendidikan tinggi. Untuk mengetahui apakah para guru pada Sekolah Dasar siap mengemban tugas ini, maka diadakan penelitian untuk mengetahui kesiapan para guru dan masalah-masalah yang terkait dengan pelaksanaannya. Melalui angket yang kemudian diolah secara deskriptive persentasi pada sampel guru SD yang tersebar di Kota Semarang, Kabupaten Semarang dan Kabupaten Temanggung, dapat diketahui bahwa para guru menganggap sangat penting untuk mengintegrasikan pembelajaran karakter dalam matapelajaran IPA. Namun demikian mereka membutuhkan bimbingan

  7. Delaware GK-12: Improvement of Science Education in Vocational Technical High Schools Through Collaborative Learning and Coteaching

    Science.gov (United States)

    Madsen, J.; Skalak, K.; Watson, G.; Scantlebury, K.; Allen, D.; Quillen, A.

    2006-12-01

    With funding from the National Science Foundation, the University of Delaware (UD) in partnership with the New Castle County Vocational Technical School District (NCCoVoTech) in Delaware has initiated a GK-12 Program. In each of year this program, nine full time UD graduate students in the sciences, who have completed all or most of their coursework, will be selected to serve as fellows. Participation in the GK-12 program benefits the graduate fellows in many ways. In addition to gaining general insight into current issues of science education, the fellows enhance their experience as scientific researchers by directly improving their ability to effectively communicate complex quantitative and technical knowledge to an audience with multiple and diverse learning needs. In the first year of this project, fellows have been paired with high school science teachers from NCCoVoTech. These pairs, along with the principal investigators (PIs) of this program have formed a learning community that is taking this opportunity to examine and to reflect on current issues in science education while specifically addressing critical needs in teaching science in vocational technical high schools. By participating in summer workshops and follow-up meetings facilitated by the PIs, the fellows have been introduced to a number of innovative teaching strategies including problem-based learning (PBL). Fellow/teacher pairs have begun to develop and teach PBL activities that are in agreement with State of Delaware science standards and that support student learning through inquiry. Fellows also have the opportunity to engage in coteaching with their teacher partner. In this "teaching at the elbow of another", fellows will gain a better understanding of and appreciation for the complexities and nuances of teaching science in vocational technical high schools. While not taught as a stand-alone course in NCCoVoTech high schools, earth science topics are integrated into the science curriculum at

  8. Struggles with learning about scientific models in a middle school science classroom

    Science.gov (United States)

    Loper, Suzanna Jane

    Two important goals in science education are teaching students about the nature of science and teaching students to do scientific inquiry. Learning about scientific models is central to both of these endeavors, but studies have shown that students have very flawed and limited understandings of the nature and purposes of scientific models (Carey & Smith, 1993; Grosslight, Unger, & Jay, 1991; Lederman, 1992). In this dissertation I investigate the processes of teaching and learning about scientific models in an 8th grade classroom in an urban middle school. In order to do so, I examine recordings of student and teacher talk about models across a period of two months in which students completed two independent inquiry projects, using the Inquiry Island software and curriculum (Eslinger, 2004; Shimoda, White, & Frederiksen, 2002; White, Shimoda, & Frederiksen, 2000). My analysis draws on video records of small-group work and whole-class interactions, as well as on students' written work. I find that in this classroom, students struggled to understand the nature and purpose of scientific models. I analyze episodes in the classroom talk in which models appeared to be a source of trouble or confusion, and describe the ways in which the teacher attempted to respond to these troubles. I find that in many cases students appeared to be able to produce scientific models of the proper form, yet still struggled with displaying an understanding of what a model was, or of the functions of models in scientific research. I propose directions for further research and curriculum development in order to build on these findings. In particular, I argue, we need to design ways to help students engage in scientific modeling as a social and communicative practice, and to find ways to build from their everyday reasoning and argumentation practices. My research also reinforces the importance of looking at classroom talk, not just pre- and post-assessments, in order to understand teaching and

  9. A qualitative study of middle school students' perceptions of factors facilitating the learning of science: Grounded theory and existing theory

    Science.gov (United States)

    Spector, Barbara S.; Gibson, Charles W.

    The purpose of this study was to explore middle school students' perceptions of what factors facilitated their learning of science. Florida's Educational Reform Act of 1983 funded programs providing the state's precollege students with summer learning opportunities in science. mathematics, and computers. The programs were intended to encourage the development of creative approaches to the teaching of these disciplines. Under this program, between 50 and 60 high-achieving middle school students were in residence on the University of South Florida campus for 12 consecutive days of study in the World of Water (WOW) program. There were two sessions per summer involving a total of 572 participants. Eighi specially trained teachers were in residence with the students. Between 50 and 70 experts from the university, government. business, and industry interacted with the students each year in an innovative science/technology/society (STS) program. An assignment toward the close of the program asked students to reflect on their experiences in residence at the university and write an essay comparing learning in the WOW program to learning in their schools. Those essays were the base for this study. This was a qualitative study using a discursive approach to emergent design to generate grounded theory. Document review, participant observation, and open-ended interviews were used to gather and triangulate data in five phases. Some of the factors that middle school students perceived as helpful to learning science were (a) experiencing the situations about which they were learning; (b) having live presentations by professional experts; (c) doing hands-on activities: (d) being active learners; (e) using inductive reasoning to generate new knowledge; (f) exploring transdisciplinary approaches to problem solving; (g) having adult mentors; (h) interacting with peers and adults; (i) establishing networks; (j) having close personal friends who shared their interest in learning; (k

  10. High-School Students' Epistemic Knowledge of Science and Its Relation to Learner Factors in Science Learning

    Science.gov (United States)

    Yang, Fang-Ying; Liu, Shiang-Yao; Hsu, Chung-Yuan; Chiou, Guo-Li; Wu, Hsin-Kai; Wu, Ying-Tien; Chen, Sufen; Liang, Jyh-Chong; Tsai, Meng-Jung; Lee, Silvia W.-Y.; Lee, Min-Hsien; Lin, Che-Li; Chu, Regina Juchun; Tsai, Chin-Chung

    2018-01-01

    The purpose of this study was to develop and validate an online contextualized test for assessing students' understanding of epistemic knowledge of science. In addition, how students' understanding of epistemic knowledge of science interacts with learner factors, including time spent on science learning, interest, self-efficacy, and gender, was…

  11. Opportunities to Learn in School and at Home: How can they predict students' understanding of basic science concepts and principles?

    Science.gov (United States)

    Wang, Su; Liu, Xiufeng; Zhao, Yandong

    2012-09-01

    As the breadth and depth of economic reforms increase in China, growing attention is being paid to equalities in opportunities to learn science by students of various backgrounds. In early 2009, the Chinese Ministry of Education and Ministry of Science and Technology jointly sponsored a national survey of urban eighth-grade students' science literacy along with their family and school backgrounds. The present study focused on students' understanding of basic science concepts and principles (BSCP), a subset of science literacy. The sample analyzed included 3,031 students from 109 randomly selected classes/schools. Correlation analysis, one-way analysis of variance, and two-level linear regression were conducted. The results showed that having a refrigerator, internet, more books, parents purchasing books and magazines related to school work, higher father's education level, and parents' higher expectation of the education level of their child significantly predicted higher BSCP scores; having siblings at home, owning an apartment, and frequently contacting teachers about the child significantly predicted lower BSCP scores. At the school level, the results showed that being in the first-tier or key schools, having school libraries, science popularization galleries, computer labs, adequate equipment for teaching, special budget for teacher training, special budget for science equipment, and mutual trust between teachers and students significantly predicated higher BSCP scores; and having science and technology rooms, offering science and technology interest clubs, special budget for science curriculum development, and special budget for science social practice activities significantly predicted lower BSCP scores. The implications of the above findings are discussed.

  12. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Family experiences, the motivation for science learning and science achievement of ... active learning and achievement goals); boys perceived family experiences ... Recommendations were made as to how schools can support families in ...

  13. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-01-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts…

  14. Multimodal Teacher Input and Science Learning in a Middle School Sheltered Classroom

    Science.gov (United States)

    Zhang, Ying

    2016-01-01

    This article reports the results of an ethnographic research about the multimodal science discourse in a sixth-grade sheltered classroom involving English Language Learners (ELLs) only. Drawing from the perspective of multimodality, this study examines how science learning is constructed in science lectures through multiple semiotic resources,…

  15. Using blended learning and out-of-school visits: pedagogies for effective science teaching in the twenty-first century

    Science.gov (United States)

    Coll, Sandhya Devi; Coll, Richard Kevin

    2018-04-01

    Background: Recent research and curriculum reforms have indicated the need for diversifying teaching approaches by drawing upon student interest and engagement in ways which makes learning science meaningful. Purpose: This study examines the integration of informal/free choice learning which occurred during learning experiences outside school (LEOS) with classroom learning using digital technologies. Specifically, the digital technologies comprised a learning management system (LMS), Moodle, which fits well with students' lived experiences and their digital world. Design and Method: This study examines three out-of-school visits to Informal Science Institutes (ISI) using a digitally integrated fieldtrip inventory (DIFI) Model. Research questions were analysed using thematic approach emerging along with semi-structured interviews, before, during and after the visit, and assessing students' learning experiences. Data comprised photographs, field notes, and unobtrusive observations of the classroom, wiki postings, student work books and teacher planning diaries. Results: We argue, that pre- and post-visit planning using the DIFI Model is more likely to engage learners, and the use of a digital learning platform was even more likely to encourage collaborative learning. The conclusion can also be drawn that students' level of motivation for collaborative learning positively correlates with their improvement in academic achievement.

  16. The Acadia Learning Project: Lessons Learned from Engaging High School Teachers and Students in Citizen Science Supporting National Parks

    Science.gov (United States)

    Nelson, S. J.; Zoellick, B.; Davis, Y.; Lindsey, E.

    2009-12-01

    In 2007 the authors initiated a citizen science research project, supported with funding from the Maine Department of Education, designed to extend research at Acadia National Park to a broader geographic area while also providing high school students and teachers with an opportunity to engage in authentic research in cooperation with working scientists. The scientific focus of the work has been on providing information about the mercury burden of organisms at different trophic levels across different geographic and environmental settings. The pedagogical focus has been on providing students with immersion in a substantial, field-based project, including background research, hypothesis formulation, data collection and analysis, and presentation of research findings. Starting work with 6 teachers in two schools the first year, the project expanded to involve more than 20 teachers and 350 students in a dozen schools in its second year. In coming years, with support from NOAA and cooperation from other National Parks in the region, the project will expand to include work in other states along the coast of the Gulf of Maine. In this paper the authors describe evolution in the use of the Internet over the first two years of the project, a sharpened focus on professional development for teachers, survey results regarding student views of the nature of science, the importance of focusing on rigorous, useful data collection from an educational perspective, success in establishing that samples collected by students are useful in research, the disjuncture between scientific and pedagogical outcomes, an assessment of the value of student poster presentations, and lessons learned about preparation and use of curriculum support materials. The authors also describe future directions, which include an increased focus on professional development and student work with graphs, a narrower focus in sample collection, and increased use of the Internet to provide participating teachers

  17. Science, School Science, and School: Looking at Science Learning in Classrooms from the Perspective of Basil Bernstein's Theory of the Structure of Pedagogic Discourse

    Science.gov (United States)

    Campbell, Ralph Ian

    This analytic paper asks one question: How does Basil Bernstein's concept of the structure of pedagogic discourse (SPD) contribute to our understanding of the role of teacher-student interactions in science learning in the classroom? Applying Bernstein's theory of the SPD to an analysis of current research in science education explores the structure of Bernstein's theory as a tool for understanding the challenges and questions related to current concerns about classroom science learning. This analysis applies Bernstein's theory of the SPD as a heuristic through a secondary reading of selected research from the past fifteen years and prompts further consideration of Bernstein's ideas. This leads to a reevaluation of the categories of regulative discourse (RD) and instructional discourse (ID) as structures that frame learning environments and the dynamics of student-teacher interactions, which determine learning outcomes. The SPD becomes a simple but flexible heuristic, offering a useful deconstruction of teaching and learning dynamics in three different classroom environments. Understanding the framing interactions of RD and ID provides perspectives on the balance of agency and expectation, suggesting some causal explanations for the student learning outcomes described by the authors. On one hand, forms of open inquiry and student-driven instruction may lack the structure to ensure the appropriation of desired forms of scientific thinking. On the other hand, well-designed pathways towards the understanding of fundamental concepts in science may lack the forms of more open-ended inquiry that develop transferable understanding. Important ideas emerge about the complex dynamics of learning communities, the materials of learning, and the dynamic role of the teacher as facilitator and expert. Simultaneously, the SPD as a flexible heuristic proves ambiguous, prompting a reevaluation of Bernstein's organization of RD and ID. The hierarchical structure of pedagogic

  18. `Teaching What I Learned': Exploring students' Earth and Space Science learning experiences in secondary school with a particular focus on their comprehension of the concept of `geologic time'

    Science.gov (United States)

    Yoon, Sae Yeol; Peate, David W.

    2015-06-01

    According to the national survey of science education, science educators in the USA currently face many challenges such as lack of qualified secondary Earth and Space Science (ESS) teachers. Less qualified teachers may have difficulty teaching ESS because of a lack of conceptual understanding, which leads to diminished confidence in content knowledge. More importantly, teachers' limited conceptual understanding of the core ideas automatically leads to a lack of pedagogical content knowledge. This mixed methods study aims to explore the ways in which current secondary schooling, especially the small numbers of highly qualified ESS teachers in the USA, might influence students' learning of the discipline. To gain a better understanding of the current conditions of ESS education in secondary schools, in the first phase, we qualitatively examined a sample middle and high school ESS textbook to explore how the big ideas of ESS, particularly geological time, are represented. In the second phase, we quantitatively analyzed the participating college students' conceptual understanding of geological time by comparing those who had said they had had secondary school ESS learning experience with those who did not. Additionally, college students' perceptions on learning and teaching ESS are discussed. Findings from both the qualitative and quantitative phases indicate participating students' ESS learning experience in their secondary schools seemed to have limited or little influence on their conceptual understandings of the discipline. We believe that these results reflect the current ESS education status, connected with the declining numbers of highly qualified ESS teachers in secondary schools.

  19. Enhancing Children's Success in Science Learning: An Experience of Science Teaching in Teacher Primary School Training

    Science.gov (United States)

    Ferreira, Maria Eduarda; Porteiro, Ana Cláudia; Pitarma, Rui

    2015-01-01

    The Environmental Studies curricular area, taught at primary school level in Portugal, is a challenging context for curricular interdisciplinarity and the achievement of small-scale research and creative and innovative experiences, inside and outside the classroom. From that assumption, we present, under the master course of primary teacher…

  20. Students' Motivational Beliefs in Science Learning, School Motivational Contexts, and Science Achievement in Taiwan

    Science.gov (United States)

    Wang, Cheng-Lung; Liou, Pey-Yan

    2017-01-01

    Taiwanese students are featured as having high academic achievement but low motivational beliefs according to the serial results of the Trends in Mathematics and Science Study (TIMSS). Moreover, given that the role of context has become more important in the development of academic motivation theory, this study aimed to examine the relationship…

  1. Key steps for integrating a basic science throughout a medical school curriculum using an e-learning approach.

    Science.gov (United States)

    Dubois, Eline Agnès; Franson, Kari Lanette

    2009-09-01

    Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.

  2. A Cross-grade Comparison to Examine the Context Effect on the Relationships Among Family Resources, School Climate, Learning Participation, Science Attitude, and Science Achievement Based on TIMSS 2003 in Taiwan

    Science.gov (United States)

    Chen, Shin-Feng; Lin, Chien-Yu; Wang, Jing-Ru; Lin, Sheau-Wen; Kao, Huey-Lien

    2012-09-01

    This study aimed to examine whether the relationships among family resources, school climate, learning participation, science attitude, and science achievement are different between primary school students and junior high school students within one educational system. The subjects included 4,181 Grade 4 students and 5,074 Grade 8 students who participated in TIMSS 2003 in Taiwan. Using structural equation modeling, the results showed that family resources had significant positive effects for both groups of learners. Furthermore, a context effect for the structural relationship between school climate, learning participation, and science achievement was revealed. In the primary school context, Grade 4 students who perceived positive school climate participated in school activities more actively, and had better science performance. However, in the secondary school context, learning participation had a negative impact and led to lower science achievement. The implications about this result in relation to the characteristics of the two educational contexts in Taiwan were further discussed.

  3. Professional Learning Communities' Impact on Science Teacher Classroom Practice in a Midwestern Urban School District

    Science.gov (United States)

    Carpenter, Dan

    2012-01-01

    The purpose of this reputation-based, multiple-site case study was to explore professional learning communities' impact on teacher classroom practice. The goal of this research was to describe the administrator and teachers' perceptions with respect to professional learning communities as it related to teacher practice in their school. Educators…

  4. Designing for Deeper Learning in a Blended Computer Science Course for Middle School Students

    Science.gov (United States)

    Grover, Shuchi; Pea, Roy; Cooper, Stephen

    2015-01-01

    The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course…

  5. Improving Science Scores of Middle School Students with Learning Disabilities through Engineering Problem Solving Activities

    Science.gov (United States)

    Starling, A. Leyf Peirce; Lo, Ya-Yu; Rivera, Christopher J.

    2015-01-01

    This study evaluated the differential effects of three different science teaching methods, namely engineering teaching kit (ETK), explicit instruction (EI), and a combination of the two methods (ETK+EI), in two sixth-grade science classrooms. Twelve students with learning disabilities (LD) and/or attention deficit hyperactivity disorder (ADHD)…

  6. Genetic Science Learning Center

    Science.gov (United States)

    Genetic Science Learning Center Making science and health easy for everyone to understand Home News Our Team What We Do ... Collaboration Conferences Current Projects Publications Contact The Genetic Science Learning Center at The University of Utah is a ...

  7. Elementary school science teachers' reflection for nature of science: Workshop of NOS explicit and reflective on force and motion learning activity

    Science.gov (United States)

    Patho, Khanittha; Yuenyong, Chokchai; Chamrat, Suthida

    2018-01-01

    The nature of science has been part of Thailand's science education curriculum since 2008. However, teachers lack of understanding about the nature of science (NOS) and its teaching, particularly element school science teachers. In 2012, the Science Institute of Thailand MOE, started a project of Elementary Science Teacher Professional Development to enhance their thinking about the Nature of Science. The project aimed to enhance teachers' understanding of NOS, science teaching for explicit and reflective NOS, with the aim of extending their understanding of NOS to other teachers. This project selected 366 educational persons. The group was made up of a teacher and a teacher supervisor from 183 educational areas in 74 provinces all Thailand. The project provided a one week workshop and a year's follow up. The week-long workshop consisted of 11 activities of science teaching for explicit reflection on 8 aspects of NOS. Workshop of NOS explicit and reflective on force and motion learning activity is one of eight activities. This activity provided participants to learn force and motion and NOS from the traditional toy "Bang-Poh". The activity tried to enhance participants to explicit NOS for 5 aspects including empirical basis, subjectivity, creativity, observation and inference, and sociocultural embeddedness. The explicit NOS worksheet provided questions to ask participants to reflect their existing ideas about NOS. The paper examines elementary school science teachers' understanding of NOS from the force and motion learning activity which provided explicit reflection on 5 NOS aspects. An interpretive paradigm was used to analyse the teachers' reflections in a NOS worksheet. The findings indicated that majority of them could reflect about the empirical basis of science and creativity but few reflected on observation and inference, or sociocultural embeddedness. The paper will explain the teachers' NOS thinking and discuss the further enhancing of their understanding

  8. Differentiating the Sources of Taiwanese High School Students' Multidimensional Science Learning Self-Efficacy: An Examination of Gender Differences

    Science.gov (United States)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2017-04-01

    The main purpose of this study was to investigate Taiwanese high school students' multi-dimensional self-efficacy and its sources in the domain of science. Two instruments, Sources of Science Learning Self-Efficacy (SSLSE) and Science Learning Self-Efficacy (SLSE), were used. By means of correlation and regression analyses, the relationships between students' science learning self-efficacy and the sources of their science learning self-efficacy were examined. The findings revealed that the four sources of the students' self-efficacy were found to play significant roles in their science learning self-efficacy. By and large, Mastery Experience and Vicarious Experience were found to be the two salient influencing sources. Several gender differences were also revealed. For example, the female students regarded Social Persuasion as the most influential source in the "Science Communication" dimension, while the male students considered Vicarious Experience as the main efficacy source. Physiological and Affective States, in particular, was a crucial antecedent of the female students' various SLSE dimensions, including "Conceptual Understanding," "Higher-Order Cognitive Skills," and "Science Communication." In addition, the variations between male and female students' responses to both instruments were also unraveled. The results suggest that, first, the male students perceived themselves as having more mastery experience, vicarious experience and social persuasion than their female counterparts. Meanwhile, the female students experienced more negative emotional arousal than the male students. Additionally, the male students were more self-efficacious than the females in the five SLSE dimensions of "Conceptual Understanding," "Higher-Order Cognitive Skills," "Practical Work," "Everyday Application," and "Science Communication."

  9. Differentiating the Sources of Taiwanese High School Students' Multidimensional Science Learning Self-Efficacy: An Examination of Gender Differences

    Science.gov (United States)

    Lin, Tzung-Jin; Tsai, Chin-Chung

    2018-06-01

    The main purpose of this study was to investigate Taiwanese high school students' multi-dimensional self-efficacy and its sources in the domain of science. Two instruments, Sources of Science Learning Self-Efficacy (SSLSE) and Science Learning Self-Efficacy (SLSE), were used. By means of correlation and regression analyses, the relationships between students' science learning self-efficacy and the sources of their science learning self-efficacy were examined. The findings revealed that the four sources of the students' self-efficacy were found to play significant roles in their science learning self-efficacy. By and large, Mastery Experience and Vicarious Experience were found to be the two salient influencing sources. Several gender differences were also revealed. For example, the female students regarded Social Persuasion as the most influential source in the "Science Communication" dimension, while the male students considered Vicarious Experience as the main efficacy source. Physiological and Affective States, in particular, was a crucial antecedent of the female students' various SLSE dimensions, including "Conceptual Understanding," "Higher-Order Cognitive Skills," and "Science Communication." In addition, the variations between male and female students' responses to both instruments were also unraveled. The results suggest that, first, the male students perceived themselves as having more mastery experience, vicarious experience and social persuasion than their female counterparts. Meanwhile, the female students experienced more negative emotional arousal than the male students. Additionally, the male students were more self-efficacious than the females in the five SLSE dimensions of "Conceptual Understanding," "Higher-Order Cognitive Skills," "Practical Work," "Everyday Application," and "Science Communication."

  10. Supporting the Development of Science Communication Skills in STEM University Students: Understanding Their Learning Experiences as They Work in Middle and High School Classrooms

    Science.gov (United States)

    Grant, Brooke L.; Liu, Xiufeng; Gardella, Joseph A.

    2015-01-01

    This paper examines the roles that 52 university Science, Technology, Engineering, and Mathematics (STEM) students play in an Interdisciplinary Science and Engineering Partnership that connects several middle schools, high schools, institutions of higher learning, businesses, and community institutions. It also examines the support these students…

  11. Development of contextual teaching and learning based science module for junior high school for increasing creativity of students

    Science.gov (United States)

    Kurniasari, H.; Sukarmin; Sarwanto

    2018-03-01

    The purpose of this research are to analyze the the properness of contextual teaching and learning (CTL)-based science module for Junior High School for increasing students’ creativity and using CTL-based science module to increase students’ learning creativity. Development of CTL-based science module for Junior High School is Research and Development (R&D) using 4D Model consist of 4 steps: define, design, develop, and disseminate. Module is validated by 3 expert validators (Material, media, and language experts), 2 reviewer and 1 peer reviewer. . Based on the results of data analysis, it can be concluded that: the results of the validation, the average score of CTL-based science module is 88.28%, the value exceeded the value of the cut off score of 87.5%, so the media declared eligible for the study. Research shows that the gain creativity class that uses CTL-based science module has a gain of 0.72. Based on the results of the study showed that CTL-based science module effectively promotes creativity of students

  12. Literacy learning in secondary school science classrooms: A cross-case analysis of three qualitative studies

    Science.gov (United States)

    Dillon, Deborah R.; O'Brien, David G.; Moje, Elizabeth B.; Stewart, Roger A.

    The purpose of this cross-case analysis is to illustrate how and why literacy was incorporated into science teaching and learning in three secondary classrooms. Research questions guiding the analysis include: (a) How were literacy events shaped by the teachers' philosophies about teaching science content and teaching students? and (b) How was literacy (reading, writing, and oral language) structured by the teachers and manifested in science lessons? The methodology of ethnography and the theoretical framework of symbolic interactionism were employed in the three studies on which the cross-case analysis was based. The researchers assumed the role of participant observers, collecting data over the period of 1 year in each of the three classrooms. Data, in the form of fieldnotes, interviews, and artifacts, were collected. In each study, data were analyzed using the constant comparative method (Glaser & Strauss, 1967) to determine patterns in the teachers' beliefs about learning and how these influenced their choice of literacy activities. The cross-case analysis was conducted to determine patterns across the three teachers and their classrooms. The findings from this analysis are used to compare how the teachers' philosophies of teaching science and their beliefs about how students learn influenced their use of literacy practices during lessons. Specifically, each teacher's use of literacy activities varied based on his or her beliefs about teaching science concepts. Furthermore, reading, writing, and oral language were important vehicles to learning science concepts within daily classroom activities in the three classrooms.Received: 1 April 1993; Revised: 30 August 1993;

  13. THE INFLUENCE OF SCIENCE LEARNING SET USING SCIENTIFIC APPROACH AND PROBLEM SOLVING MODEL ON LEARNING OUTCOMES OF JUNIOR HIGH SCHOOL STUDENTS IN THE SUBJECT OF HEAT AND TEMPERATURE

    OpenAIRE

    T. Triyuni

    2016-01-01

    This research aims to produce the scientific approach for science learning using a problem solving model on the topic of heat and temperatureon the junior high school learning outcome. The curriculum used during the study was curriculum 2013 (valid, practical and effective). The development of the learning setfollowed the four-D model which was reduced to three-D model (without dissemination). The study was tested in Class VIIA, VIIB, and VIIC in SMP Negeri 5 Academic Year 2015/2016. The data...

  14. Motivating the Learning of Science Topics in Secondary School: A Constructivist Edutainment Setting for Studying Chaos

    Science.gov (United States)

    Bertacchini, Francesca; Bilotta, Eleonora; Pantano, Pietro; Tavernise, Assunta

    2012-01-01

    In this paper, we present an Edutainment (education plus entertainment) secondary school setting based on the construction of artifacts and manipulation of virtual contents (images, sound, and music) connected to Chaos. This interactive learning environment also foresees the use of a virtual theatre, by which students can manipulate 3D contents…

  15. News Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

    Science.gov (United States)

    2011-07-01

    Conference: Serbia hosts teachers' seminar Resources: Teachers TV website closes for business Festival: Science takes to the stage in Denmark Research: How noise affects learning in secondary schools CERN: CERN visit inspires new teaching ideas Education: PLS aims to improve perception of science for school students Conference: Scientix conference discusses challenges in science education

  16. A qualitative study of science education in nursing school: Narratives of Hispanic female nurses' sense of identity and participation in science learning

    Science.gov (United States)

    Gensemer, Patricia S.

    The purpose of this qualitative study was to learn from Hispanic nursing students regarding their experiences as participants in science learning. The participants were four female nursing students of Hispanic origin attending a small, rural community college in a southeastern state. The overarching question of this study was "In what ways does being Hispanic mediate the science-related learning and practices of nursing students?" The following questions more specifically provided focal points for the research: (1) In what ways do students perceive being Hispanic as relevant to their science education experiences? (a) What does it mean to be Hispanic in the participants' home community? (b) What has it meant to be Hispanic in the science classroom? (2) In what ways might students' everyday knowledge (at home) relate to the knowledge or ways of knowing they practice in the nursing school community? The study took place in Alabama, which offered a rural context where Hispanic populations are rapidly increasing. A series of four interviews was conducted with each participant, followed by one focus group interview session. Results of the study were re presented in terms of portrayals of participant's narratives of identity and science learning, and then as a thematic interpretation collectively woven across the individuals' narratives. Portraitures of each participant draw upon the individual experiences of the four nursing students involved in this study in order to provide a beginning point towards exploring "community" as both personal and social aspects of science practices. Themes explored broader interpretations of communities of practice in relation to guiding questions of the study. Three themes emerged through the study, which included the following: Importance of Science to Nurses, Crossing with a Nurturing and Caring Identity, and Different Modes of Participation. Implications were discussed with regard to participation in a community of practice and

  17. Effects of Text Illustration on Children's Learning of a School Science Topic.

    Science.gov (United States)

    Reid, D. J.; Beveridge, M.

    1986-01-01

    This study of 272 13-year-old science students in England focuses on the effect of varied text and picture content on learning. A criterion-referenced objective items test was used to measure the effect of pictures on students of varying abilities and compare the effectiveness of traditional worksheet presentation and microcomputer presentation.…

  18. Students' Perceptions of Vocabulary Knowledge and Learning in a Middle School Science Classroom

    Science.gov (United States)

    Brown, Patrick L.; Concannon, James P.

    2016-01-01

    This study investigated eighth-grade science students' (13-14-year-olds) perceptions of their vocabulary knowledge, learning, and content achievement. Data sources included pre- and posttest of students' perceptions of vocabulary knowledge, students' perceptions of vocabulary and reading strategies surveys, and a content achievement test.…

  19. High school student's motivation to engage in conceptual change-learning in science

    Science.gov (United States)

    Barlia, Lily

    1999-11-01

    This study investigated motivational factors that are related to engaging in conceptual change learning. While previous studies have recognized the resistance of students' scientific conception to change, few have investigated the role that non-cognitive factors might play when students are exposed to conceptual change instruction. Three research questions were examined: (a) What instructional strategies did the teacher use to both promote students' learning for conceptual change and increase their motivation in learning science? (b) What are the patterns of students' motivation to engage in conceptual change learning? And (c) what individual profiles can be constructed from the four motivational factors (i.e., goals, values, self-efficacy, and control beliefs) and how are these profiles linked to engagement (i.e., behavioral and cognitive engagement) in conceptual change learning of science? Eleven twelfth grade students (senior students) and the teacher in which conceptual change approach to teaching was used in daily activities were selected. Data collection for this study included student's self-reported responses to the Motivated Strategies for Learning Questionnaire (MSLQ), classroom observation of students and the teacher, and structured interviews. Analysis of these data resulted in a motivational factor profile for each student and cross case analysis for entire group. Results from this study indicate that each student has different motivation factors that are mostly influenced individual student to learn science. Among these motivation factors, task value and control beliefs were most important for students. The implication of these findings are that teachers need to encourage students to find learning for conceptual change a valuable task, and that students need to find applications for their new conceptions within their everyday lives. In addition, teachers need to encourage students to develop learning strategies for conceptual understanding

  20. Effective use of multimedia presentations to maximize learning within high school science classrooms

    Science.gov (United States)

    Rapp, Eric

    This research used an evidenced-based experimental 2 x 2 factorial design General Linear Model with Repeated Measures Analysis of Covariance (RMANCOVA). For this analysis, time served as the within-subjects factor while treatment group (i.e., static and signaling, dynamic and signaling, static without signaling, and dynamic without signaling) served as the between-subject independent variable. Three dependent variables were used to assess learner outcomes: (a) a 14 multiple-choice pre and post-test to measure knowledge retention, (b) a pre and post-test concept map to measure synthesis and structure of knowledge, and (c) four questions based on a Likert scale asking students to rank the cognitive difficulty of understanding four aspects of the animation they engaged in. A mental rotations test was used in the pretest conditions to establish a control and used as a covariate. The treatment contained a four minute and 53 second animation that served as an introductory multimedia presentation explaining the gravitational effects of the moon and sun on the earth. These interactions occur at predictable times and are responsible for creating the tidal effects experienced on Earth. There were 99 volunteer high school participants enrolled in science classes randomly assigned to one of four treatment conditions. The research was conducted to determine how motion and the principle of signaling, established in The Cognitive Theory of Multimedia Learning affected precollege learners. The experiment controlled for modality, segmenting, temporal contiguity, redundancy, and navigational control. Results of the RMANCOVA indicated statistical significance for the within subjects effect: over time for all participants, with time and knowledge retention measured from the multiple-choice results, and in the category quality of concepts represented in the concept map analysis. However, there were no significant differences in the between groups analysis for knowledge retention based

  1. Beliefs that manifest through newspaper items in relation to peoples’ life challenges and their potential to enhance a sustainable learning environment in school science

    Directory of Open Access Journals (Sweden)

    Thapelo L. Mamiala

    2013-12-01

    Full Text Available The paper documents beliefs that manifest themselves through newspaper items and elaborates on their potential to enhance a sustainable learning environment in a school science lesson. “Learning environment” is depicted from different angles and includes virtual and real learning environments, school environments and classroom environments. Descriptive and item analyses were conducted on sixty-eight newspaper items that were identified. The nature of problems and prescriptions/solutions was categorised for each item and the paper further provides elaboration on the types of problems and recommended solutions. The results show that the “believed” structure contents in their newspaper items to catch the attention of the “believer”. Lessons on the power of belief must be learnt by school science teachers if they are to succeed in creating a sustainable learning environment with improved performance in school science.

  2. Exploring Middle School Students' Representational Competence in Science: Development and Verification of a Framework for Learning with Visual Representations

    Science.gov (United States)

    Tippett, Christine Diane

    Scientific knowledge is constructed and communicated through a range of forms in addition to verbal language. Maps, graphs, charts, diagrams, formulae, models, and drawings are just some of the ways in which science concepts can be represented. Representational competence---an aspect of visual literacy that focuses on the ability to interpret, transform, and produce visual representations---is a key component of science literacy and an essential part of science reading and writing. To date, however, most research has examined learning from representations rather than learning with representations. This dissertation consisted of three distinct projects that were related by a common focus on learning from visual representations as an important aspect of scientific literacy. The first project was the development of an exploratory framework that is proposed for use in investigations of students constructing and interpreting multimedia texts. The exploratory framework, which integrates cognition, metacognition, semiotics, and systemic functional linguistics, could eventually result in a model that might be used to guide classroom practice, leading to improved visual literacy, better comprehension of science concepts, and enhanced science literacy because it emphasizes distinct aspects of learning with representations that can be addressed though explicit instruction. The second project was a metasynthesis of the research that was previously conducted as part of the Explicit Literacy Instruction Embedded in Middle School Science project (Pacific CRYSTAL, http://www.educ.uvic.ca/pacificcrystal). Five overarching themes emerged from this case-to-case synthesis: the engaging and effective nature of multimedia genres, opportunities for differentiated instruction using multimodal strategies, opportunities for assessment, an emphasis on visual representations, and the robustness of some multimodal literacy strategies across content areas. The third project was a mixed

  3. Science curiosity in learning environments: developing an attitudinal scale for research in schools, homes, museums, and the community

    Science.gov (United States)

    Weible, Jennifer L.; Toomey Zimmerman, Heather

    2016-05-01

    Although curiosity is considered an integral aspect of science learning, researchers have debated how to define, measure, and support its development in individuals. Prior measures of curiosity include questionnaire type scales (primarily for adults) and behavioral measures. To address the need to measure scientific curiosity, the Science Curiosity in Learning Environments (SCILE) scale was created and validated as a 12-item scale to measure scientific curiosity in youth. The scale was developed through (a) adapting the language of the Curiosity and Exploration Inventory-II [Kashdan, T. B., Gallagher, M. W., Silvia, P. J., Winterstein, B. P., Breen, W. E., Terhar, D., & Steger, M. F. (2009). The curiosity and exploration inventory-II: Development, factor structure, and psychometrics. Journal of Research in Personality, 43(6), 987-998] for youth and (b) crafting new items based on scientific practices drawn from U.S. science standards documents. We administered a preliminary set of 30 items to 663 youth ages 8-18 in the U.S.A. Exploratory and confirmatory factor analysis resulted in a three-factor model: stretching, embracing, and science practices. The findings indicate that the SCILE scale is a valid measure of youth's scientific curiosity for boys and girls as well as elementary, middle school, and high school learners.

  4. The Effect of Asian Origin, Culture and Learning Beliefs on High School Students' Physical Science Learning Beliefs

    Science.gov (United States)

    Li, Xiaolan

    2013-01-01

    Asian Americans have been recognized as the "model minority" in the United States since the 1960s. Students from Asian countries are winning in international competitions, especially in science and mathematics. Modern Western scholars working within the constructivist learning theory advocate malleable intelligence and effort, which…

  5. Teaching and Learning the Language of Science: A Case Study of Academic Language Acquisition in a Dual Language Middle School

    Science.gov (United States)

    Gose, Robin Margaretha

    English language learners (EL) are the fastest growing sub-group of the student population in California, yet ELs also score the lowest on the science section of the California Standardized Tests. In the area of bilingual education, California has dramatically changed its approach to English learners since the passage of Proposition 227 in 1998, which called for most EL instruction to be conducted in English (Cummins, 2000; Echevarria, Vogt, & Short, 2008). In reality, this means that EL students are often placed in programs that focus on basic language skills rather than rigorous content, meaning that they are not getting access to grade level science content (Lee & Fradd, 1998). As a result, many EL students exit eighth grade without a strong foundation in science, and they continue to score below their English-speaking peers on standardized achievements. While the usefulness of the academic language construct remains controversial (Bailey, 2012), the language used in science instruction is nevertheless often unfamiliar to both EL and English proficient students. The discourse is frequently specialized for discipline-specific interactions and activities (Bailey, 2007; Lemke, 1990). This qualitative case study examined academic language instruction in three middle school science classrooms at a dual language charter school. The goal was to understand how teachers integrate academic language and content for linguistically diverse students. The findings fom this study indicate that targeting language instruction in isolation from science content instruction prohibits students from engaging in the "doing of science" and scientific discourse, or the ability to think, reason, and communicate about science. The recommendations of this study support authentically embedding language development into rigorous science instruction in order to maximize opportunities for learning in both domains.

  6. What is taking place in science classrooms?: A case study analysis of teaching and learning in seventh-grade science of one Alabama school and its impact on African American student learning

    Science.gov (United States)

    Norman, Lashaunda Renea

    This qualitative case study investigated the teaching strategies that improve science learning of African American students. This research study further sought the extent the identified teaching strategies that are used to improve African American science learning reflect culturally responsive teaching. Best teaching strategies and culturally responsive teaching have been researched, but there has been minimal research on the impact that both have on science learning, with an emphasis on the African American population. Consequently, the Black-White achievement gap in science persists. The findings revealed the following teaching strategies have a positive impact on African American science learning: (a) lecture-discussion, (b) notetaking, (c) reading strategies, (d) graphic organizers, (e) hands-on activities, (f) laboratory experiences, and (g) cooperative learning. Culturally responsive teaching strategies were evident in the seventh-grade science classrooms observed. Seven themes emerged from this research data: (1) The participating teachers based their research-based teaching strategies used in the classroom on all of the students' learning styles, abilities, attitudes towards science, and motivational levels about learning science, with no emphasis on the African American student population; (2) The participating teachers taught the state content standards simultaneously using the same instructional model daily, incorporating other content areas when possible; (3) The participating African American students believed their seventh-grade science teachers used a variety of teaching strategies to ensure science learning took place, that science learning was fun, and that science learning was engaging; (4) The participating African American students genuinely liked their teacher; (5) The participating African American students revealed high self-efficacy; (6) The African American student participants' parents value education and moved to Success Middle School

  7. Training Early Career Scientists in Flight Instrument Design Through Experiential Learning: NASA Goddard's Planetary Science Winter School.

    Science.gov (United States)

    Bleacher, L. V.; Lakew, B.; Bracken, J.; Brown, T.; Rivera, R.

    2017-01-01

    The NASA Goddard Planetary Science Winter School (PSWS) is a Goddard Space Flight Center-sponsored training program, managed by Goddard's Solar System Exploration Division (SSED), for Goddard-based postdoctoral fellows and early career planetary scientists. Currently in its third year, the PSWS is an experiential training program for scientists interested in participating on future planetary science instrument teams. Inspired by the NASA Planetary Science Summer School, Goddard's PSWS is unique in that participants learn the flight instrument lifecycle by designing a planetary flight instrument under actual consideration by Goddard for proposal and development. They work alongside the instrument Principal Investigator (PI) and engineers in Goddard's Instrument Design Laboratory (IDL; idc.nasa.gov), to develop a science traceability matrix and design the instrument, culminating in a conceptual design and presentation to the PI, the IDL team and Goddard management. By shadowing and working alongside IDL discipline engineers, participants experience firsthand the science and cost constraints, trade-offs, and teamwork that are required for optimal instrument design. Each PSWS is collaboratively designed with representatives from SSED, IDL, and the instrument PI, to ensure value added for all stakeholders. The pilot PSWS was held in early 2015, with a second implementation in early 2016. Feedback from past participants was used to design the 2017 PSWS, which is underway as of the writing of this abstract.

  8. Impact of an informal learning science camp on urban, low socioeconomic status middle school students and participating teacher-leaders

    Science.gov (United States)

    Votaw, Nikki L.

    Studies suggest that students have difficulty connecting science to their own lives (Lee & Fradd, 1998; Aikenhead, 1996). This difficulty results in a decline in students' attitudes toward science, leading to low science achievement. These factors result in fewer students interested in careers related to science, specifically for urban, minority students. The purpose of this study was to examine the impact that a ten day informal learning immersion science camp had on the participants, both urban, low-socioeconomic status middle school students and teacher-leaders. The students were incoming seventh grade students involved in a community-based scholar program designed to recruit and support socioeconomically disadvantaged, academically talented students. The teacher-leaders were professional educators working toward an advanced degree. This ten day camp included seven visits to different sites and complementary classroom-based activities. The purpose of the camp was to immerse the students in informal learning environments that affect their daily lives. Students and teacher-leaders visited facilities that provide public utility services (i.e. power plant, sewage treatment facility, and water company), zoo, large commercial cave system, planetarium, university based electrooptics and nanotechnology center, and forest and arboretum. These site visits were supported by activities that were provided by teacher-leaders. A model used as a framework for studying learning in the context of this ten day camp as Falk and Dierking's (2000) Contextual Model for Learning. This model described three basic intersecting elements that contributed to learning within the given context. The three contexts (personal, sociocultural, and physical) intersect affecting the learning that takes place. A mixed methodology design was employed to determine the impact of the camp on students' content knowledge and attitudes toward science. Qualitative data were collected to determine the impact

  9. Science literacy and meaningful learning: status of public high school students from Rio de Janeiro face to molecular biology concepts

    Directory of Open Access Journals (Sweden)

    Daniel Alves Escodino

    2013-12-01

    Full Text Available In this work we aimed to determine the level of Molecular Biology (MB science literacy of students from two Brazilian public schools which do not consider the rogerian theory for class planning and from another institution, Cap UERJ, which favours this theory. We applied semiclosed questionnaires specific to the different groups of science literacy levels. Besides, we have asked them to perform conceptual maps with MB concepts in order to observe if they have experienced meaningful learning. Finally, we prepared MB classes for students of the three schools, considering their conceptual maps and tried to evaluate, through a second map execution, if the use of alternative didactics material, which consider meaningful learning process, would have any effect over the appropriation of new concepts. We observed that most students are placed at Functional literacy level. Nonetheless, several students from CAp were also settled at the higher Conceptual and Procedural levels. We found that most students have not experienced meaningful learning and that the employment of didactic material and implementation of proposals which consider the cognitive structure of the students had a significant effect on the appropriation of several concepts.

  10. Improving Middle School Students’ Critical Thinking Skills Through Reading Infusion-Loaded Discovery Learning Model in the Science Instruction

    Science.gov (United States)

    Nuryakin; Riandi

    2017-02-01

    A study has been conducted to obtain a depiction of middle school students’ critical thinking skills improvement through the implementation of reading infusion-loaded discovery learning model in science instruction. A quasi-experimental study with the pretest-posttest control group design was used to engage 55 eighth-year middle school students in Tasikmalaya, which was divided into the experimental and control group respectively were 28 and 27 students. Critical thinking skills were measured using a critical thinking skills test in multiple-choice with reason format questions that administered before and after a given instruction. The test was 28 items encompassing three essential concepts, vibration, waves and auditory senses. The critical thinking skills improvement was determined by using the normalized gain score and statistically analyzed by using Mann-Whitney U test.. The findings showed that the average of students’ critical thinking skills normalized gain score of both groups were 59 and 43, respectively for experimental and control group in the medium category. There were significant differences between both group’s improvement. Thus, the implementation of reading infusion-loaded discovery learning model could further improve middle school students’ critical thinking skills than conventional learning.

  11. The negotiation of meaning and exercise of power in professional learning communities: An investigation of middle school science teachers

    Science.gov (United States)

    Mclaughlin, Cheryl Althea

    A professional learning community (PLC) typically consists of practitioners who systematically examine and problematize their practice with the intention of development and improvement. The collaborative practices inherent in PLCs mirror the way scientists work together to develop new theories, and are particularly valuable for science teachers who could draw from these experiences to improve the quality of student learning. Gaps in the science education literature support the need for research to determine how interactions within PLCs support science teacher development. Additionally, issues of power that may constrain or encourage meaningful interactions are largely overlooked in PLC studies. This qualitative study examines, from a Foucauldian perspective, interactions within a PLC comprising middle school science teachers preparing to implement reform curriculum. Specifically, the study analyzes interactions within the PLC to determine opportunities created for professional learning and development. Audiotaped transcripts of teacher interactions were analyzed using discourse analysis building tasks designed to identify opportunities for learning and to examine the exercise of power within the PLCs. The discourse analytical tools integrated theories of Gee (2011) and Foucault (1972), and were used to deconstruct and interrogate the data. The events were subsequently reconstructed through the lens of social constructivism and Foucault theories on power. The findings identified several processes emerging from the interactions that contributed to the negotiation of an understanding of the reform curriculum. These include reflection on practice, reorganization of cognitive structures, reinvention of practice, and refinement of instructional strategies. The findings also indicated that the exercise of power by entities both external to, and within the PLCs influenced the process of meaning negotiation among the science teachers. The consensus achieved by the teachers

  12. Learning Activities That Combine Science Magic Activities with the 5E Instructional Model to Influence Secondary-School Students' Attitudes to Science

    Science.gov (United States)

    Lin, Jang-Long; Cheng, Meng-Fei; Chang, Ying-Chi; Li, Hsiao-Wen; Chang, Jih-Yuan; Lin, Deng-Min

    2014-01-01

    The purpose of this study was to investigate how learning materials based on Science Magic activities affect student attitudes to science. A quasi-experimental design was conducted to explore the combination of Science Magic with the 5E Instructional Model to develop learning materials for teaching a science unit about friction. The participants…

  13. Is there a correlation between students' perceptions of their middle school science classroom learning environment and their classroom grades?

    Science.gov (United States)

    Snyder, Wayne

    The purpose of this study was to determine if the marking period grades of middle school science students are correlated with their perception of the classroom learning environment, and if so could such an indicator be used in feedback loops for ongoing classroom learning environment evaluation and evolution. The study examined 24 classrooms in three districts representing several different types of districts and a diverse student population. The independent variable was the students' perceptions of their classroom learning environment (CLE). This variable was represented by their responses on the WIHIC (What Is Happening In This Class) questionnaire. The dependent variable was the students' marking period grades. Background data about the students was included, and for further elaboration and clarification, qualitative data was collected through student and teacher interviews. Middle school science students in this study perceived as most positive those domains over which they have more locus of control. Perceptions showed some variance by gender, ethnicity, teacher/district, and socio-economic status when viewing the absolute values of the domain variables. The patterns of the results show consistency between groups. Direct correlation between questionnaire responses and student grades was not found to be significant except for a small significance with "Task Orientation". This unexpected lack of correlation may be explained by inconsistencies between grading schemes, inadequacies of the indicator instrument, and/or by the one-time administration of the variables. Analysis of the qualitative and quantitative data led to the conclusion that this instrument is picking up information, but that revisions in both the variables and in the process are needed. Grading schemes need to be decomposed, the instrument needs to be revised, and the process needs to be implemented as a series of regular feed-back loops.

  14. Verbal and visual learning of science terminology by high school biology students

    Science.gov (United States)

    Grant, Andrew Morton

    The purpose of this study is to determine whether scientific terms with multiple meanings are more easily learned when taught pictorially or when taught verbally. The question of interference from previously known colloquial meanings is addressed as well. In carrying out this study, an experimental group of 30 students was taught pictorially and a control group of 30 students was taught verbally. Each group was made up of male and female students from the dominant culture (Caucasian) and from alternate cultures (mainly African American and Asian). The age of the participants was between 14 and 17. Students were selected as class groups. There were four class groups in the study. Class groups were assigned to the experimental or control group by random selection. Results were compared by use of a pre-test and post-test procedure. Students were asked to verbally describe 41 terms having scientific and colloquial meanings; they were to give the scientific meaning, if known, the colloquial if not, or leave a question mark if the term was unknown. They were then asked to draw a picture of the meaning of the term, if known. The same instructions were given to both groups. A series of seven hypotheses were identified. These hypotheses considered learning outcomes related to instructional mode as well as outcomes related to gender and cultural differences. An attempt was made to determine the similarity of the experimental and control groups. Student profiles, a learning styles inventory, and an imbedded image test all showed an initial similarity of the two groups. Once the pretest and posttest were given, data were analyzed by the use of the Chi-square of Association, the McNemar Chi-square, and Z scores (at.05 significance level). Results indicated significant differences in outcomes between the experimental group and the control group. The experimental group showed more science vocabulary learning than the control group and experienced more interference from the

  15. Navigating emotions and identity: Learning to teach science in a high needs school

    Science.gov (United States)

    Rose, Karen J.

    As student populations in the United States become more diverse, teacher education programs are challenged to find innovative and effective ways to prepare teachers for the twenty-first century. However, the goal of "science for all" continues to elude many students in urban and high needs settings where science achievement gaps persist, teacher turnover is high, and novice teachers are often hired to fill those vacancies. Researchers have examined teachers' beliefs, attitudes, practices, as well as content and pedagogical knowledge and made progressive strides in illuminating the complexities of urban classrooms and how we can better prepare teachers for these settings. However, only recently have we begun to venture into the affective areas of teaching to investigate how these areas of human nature interact to influence instruction. This research follows three preservice teachers placed in a high needs school during their student teaching semester. In this case, a high need is described as a school with more than 30% of the students who meet the poverty criteria under section 1113(a)(f) of the Elementary and Secondary Education Act of 1965. This case study explored the connections between preservice teachers' emotions, identity and the implementation of student-centered science instruction during the participants' student teaching experience. Data collection included observations, interviews, and physical artifacts. The interviews included the Teachers' Pedagogical Philosophy Interview (Richardson & Simmons, 1994) and the Meta-Emotions Interview (Gottman, Katz & Hooven, 1997) as well as general interview questions that illuminated the participants' views on teaching, their emotions, life history and identity. Multiple naturalistic observations were used to describe the interactions between the preservice teachers and the students during the implementation of student-centered lessons. Physical artifacts included weekly journals and lesson plans. These artifacts

  16. Identifying Information Behavior in Information Search and Retrieval through Learning Activities Using an E-learning Platform Case: Interamerican School of Library and Information Science at the University of Antioquia (Medellin-Colombia)

    Science.gov (United States)

    Tirado, Alejandro Uribe; Munoz, Wilson Castano

    2011-01-01

    This text presents the future of librarian education as exemplified by the Interamerican School of Library and Information Science at the University of Antioquia (Medellin-Colombia), using an online learning platform-LMS (Moodle) and through different personalized and collaborative learning activities and tools that help students identify their…

  17. The Effect of Differentiating Instruction Using Multiple Intelligences on Achievement in and Attitudes towards Science in Middle School Students with Learning Disabilities

    Science.gov (United States)

    Gomaa, Omema Mostafa Kamel

    2014-01-01

    This study investigated the effect of using differentiated instruction using multiple intelligences on achievement in and attitudes towards science in middle school students with learning disabilities. A total of 61 students identified with LD participated. The sample was randomly divided into two groups; experimental (n= 31 boys )and control (n=…

  18. An Innovative Model of Professional Development to Enhance the Teaching and Learning of Primary Science in Irish Schools

    Science.gov (United States)

    Smith, Greg

    2014-01-01

    This study investigates the influence of a two-year professional development programme on primary teachers' attitudes towards primary science, their confidence and competence in teaching science, and pupils' attitudes towards school science. Unlike the traditional "one-size-fits all" model of professional development, the model developed…

  19. Teaching chemistry and other sciences to blind and low-vision students through hands-on learning experiences in high school science laboratories

    Science.gov (United States)

    Supalo, Cary Alan

    2010-11-01

    Students with blindness and low vision (BLV) have traditionally been underrepresented in the sciences as a result of technological and attitudinal barriers to equal access in science laboratory classrooms. The Independent Laboratory Access for the Blind (ILAB) project developed and evaluated a suite of talking and audible hardware/software tools to empower students with BLV to have multisensory, hands-on laboratory learning experiences. This dissertation focuses on the first year of ILAB tool testing in mainstream science laboratory classrooms, and comprises a detailed multi-case study of four students with BLV who were enrolled in high school science classes during 2007--08 alongside sighted students. Participants attended different schools; curricula included chemistry, AP chemistry, and AP physics. The ILAB tools were designed to provide multisensory means for students with BLV to make observations and collect data during standard laboratory lessons on an equivalent basis with their sighted peers. Various qualitative and quantitative data collection instruments were used to determine whether the hands-on experiences facilitated by the ILAB tools had led to increased involvement in laboratory-goal-directed actions, greater peer acceptance in the students' lab groups, improved attitudes toward science, and increased interest in science. Premier among the ILAB tools was the JAWS/Logger Pro software interface, which made audible all information gathered through standard Vernier laboratory probes and visually displayed through Logger Pro. ILAB tools also included a talking balance, a submersible audible light sensor, a scientific talking stopwatch, and a variety of other high-tech and low-tech devices and techniques. While results were mixed, all four participating BLV students seemed to have experienced at least some benefit, with the effect being stronger for some than for others. Not all of the data collection instruments were found to reveal improvements for all

  20. Teacher Learning from Girls' Informal Science Experiences

    Science.gov (United States)

    Birmingham, Daniel J.

    2013-01-01

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP,…

  1. Using Blended Learning and Out-of-School Visits: Pedagogies for Effective Science Teaching in the Twenty-First Century

    Science.gov (United States)

    Coll, Sandhya Devi; Coll, Richard Kevin

    2018-01-01

    Background: Recent research and curriculum reforms have indicated the need for diversifying teaching approaches by drawing upon student interest and engagement in ways which makes learning science meaningful. Purpose: This study examines the integration of informal/free choice learning which occurred during learning experiences outside school…

  2. Students’ Perception of the Availability and Utilization of Information and Communication Technology (ICT in the Teaching and Learning of Science Subjects in Secondary Schools in Ekiti State, Nigeria

    Directory of Open Access Journals (Sweden)

    Jegede Samuel Akingbade

    2013-07-01

    Full Text Available The study investigated students’ perception of the availability and utilization of Information and Communication Technology (ICT in the teaching and learning of science subjects in secondary schools in Ekiti State, Nigeria. The population of the study was made up of all secondary school students in public and private secondary schools in Ekiti State, Nigeria. The sample was 400 students selected from both public and private secondary schools in the state using the multi-stage sampling. The only instrument used in collecting relevant data for the study was a questionnaire consisting of two sections A and B. Section A consisted of personal biodata of the respondents, while section B consisted of 22 items which elicited information on the application of ICT in schools for learning science. Four research questions were raised and two hypotheses tested. Data collected were analysed using frequency counts and percentages as well as inferential statistics of t-test. The results showed that apart from the computer, which is available in most schools, the other identified ICT equipment were not available. The findings also showed that there is no significant difference in the availability of ICT facilities in public and private secondary schools, and that students in private schools are more exposed to ICT than their counterparts in public schools.

  3. Enacting Informal Science Learning: Exploring the Battle for Informal Learning

    Science.gov (United States)

    Clapham, Andrew

    2016-01-01

    Informal Science Learning (ISL) is a policy narrative of interest in the United Kingdom and abroad. This paper explores how a group of English secondary school science teachers, enacted ISL science clubs through employing the Periodic Table of Videos. It examines how these teachers "battled" to enact ISL policy in performative conditions…

  4. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning...... will be addressed. Hereafter an array of different scaffolding activities will be conducted, among these are individual supervision, sharing of materials used in lessons and involving local school leaders in the program. During this 3-year period we will follow the progress of the students involved in the program...

  5. Learning through school meals?

    DEFF Research Database (Denmark)

    Benn, Jette; Carlsson, Monica Susanne

    2014-01-01

    the lelarning potentials of school meals. The corss-case analysis focuses on the involved actors' perceptions of the school meal project and the meals, including Places Places, times and contexts, and the pupils' concepts and competencies in relation to food, meals and Health, as well as their involvement......This article is based on a qualitative multiple case study aimed at ealuating the effects of free school meal intervention on pupils' learning, and on the learning environment i schools. The study was conducted at four schools, each offereing free school meals for 20 weeks. At each school...... individual and focus Group interviws were conducted with students in grade 5-7 and grades 8-9- Furthermor, students were obserede during lunch breaks, and interviews were conducted with the class teacher, headmaster and/or the person responsible for school meals. The pupose of the article is to explore...

  6. Using Cogenerative Dialogs to Improve Science Teaching and Learning: Challenges and Solutions in High School Students' Internships

    Science.gov (United States)

    Hsu, Pei-Ling

    2018-05-01

    Internships in science research settings have received increasing attention as a means of helping students construct appropriate understandings, practices, tools, and language in scientific activities. To advance student-scientist partnerships beyond the status quo, the study aimed to investigate how cogenerative dialogs (cogens) may help high school students and scientists identify and address challenges collectively. The analysis identified nine major challenges discussed during cogens: (1) the quality and progress of scientific practice in laboratories, (2) the quality of scientists'/assistants' instructions in classrooms, (3) the quality of student participation in classrooms and homework, (4) students' absences, including arriving late or leaving early, (5) the quality of administrative support, (6) preparation for scientific presentations, (7) the process of deciding project topics, (8) students' peer interactions and communication, and (9) students' physiological needs. The three most salient challenges were "the quality and progress of scientific practice in laboratories" (39%), "the quality of scientists'/assistants' instructions in classrooms" (20%), and "the quality of student participation in classrooms and homework" (17%). The study shows that cogens allowed students and scientists to agree on teaching modifications that positively influenced teaching and learning processes during the internship, such that issues were reduced from the beginning to the closing stages. Importantly, the challenges and solutions identified by students and scientists in this study provide accounts of first-hand experience as well as insights to aid program directors or coordinators in designing a learning environment that can foster effective practice for internships by avoiding the issues identified in the study.

  7. School Gardens and Learning

    DEFF Research Database (Denmark)

    Tiemensma, Britt Due

    2015-01-01

    This paper outlines the changing discourse on school gardens as a learning object as well as a learning environment in urban and rural schools in Denmark and Norway, two small states in Northern Europe. School and community gardens are to be found all over the world, and in Scandinavian...... they are not only regarded as a source of health and fresh food for the students and their families, but also as an alternative arena for learning to cope with issues like sustainability, innovation and democracy. The success of school gardening was always based on dedicated teachers who saw the added value...... of children learning to plant and care for plants in a school garden....

  8. Science school and culture school: improving the efficiency of high school science teaching in a system of mass science education.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    Educational expansion in western countries has been achieved mainly by adding years to full-time education; however, this process has probably reduced efficiency. Sooner or later, efficiency must improve, with a greater educational attainment per year. Future societies will probably wish more people to study science throughout high school (aged c. 11-19 years) and the first college degree. 'Science' may be defined as any abstract, systematic and research-based discipline: including mathematics, statistics and the natural sciences, economics, music theory, linguistics, and the conceptual or quantitative social sciences. Since formal teaching is usually necessary to learn science, science education should be regarded as the core function of high schools. One standard way to improve efficiency is the 'division of labour', with increased specialization of function. Modern schools are already specialized: teachers are specialized according to age-group taught, subject matter expertise, and administrative responsibilities. School students are stratified by age and academic aptitude. I propose a further institutional division of school function between science education, and cultural education (including education in arts, sports, ethics, social interaction and good citizenship). Existing schools might split into 'science school' and 'culture school', reflected in distinct buildings and zones, separate administrative structures, and the recruitment of differently-specialized teaching personnel. Science school would be distinguished by its focus on education in disciplines which promote abstract systematic cognition. All students would spend some part of each day (how much would depend on their aptitude and motivation) in the 'science school'; experiencing a traditional-style, didactic, disciplined and rigorous academic education. The remainder of the students' time at school would be spent in the cultural division, which would focus on broader aspects, and aim to generate

  9. Science of learning is learning of science: why we need a dialectical approach to science education research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-06-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.

  10. From Droughts to Drones: An After-School Club Uses Drones to Learn about Environmental Science

    Science.gov (United States)

    Gillani, Bijan; Gillani, Roya

    2015-01-01

    An after-school enrichment activity offered to sixth-grade students gave a group of 10 students an opportunity to explore the effects of the California drought in their community using an engaging scientific device: the UAV (unmanned aerial vehicle). Although this activity was specifically designed for a small after-school enrichment group, it…

  11. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods

    Science.gov (United States)

    Hodson, Derek

    2014-01-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…

  12. The Effect of Implementing Instructional Coaching with Digital Learning on High School Math and Science

    Science.gov (United States)

    McKaveney, Edward W.

    2017-01-01

    A number of national directives and successful case studies, focus on the need for change in teaching and learning, particularly emphasizing increasingly rigorous STEM learning tied to the use of ICT and digital tools for technological literacy and future workforce development. This action research study investigated the role of instructional…

  13. Perceived Impact on Student Engagement When Learning Middle School Science in an Outdoor Setting

    Science.gov (United States)

    Abbatiello, James

    2014-01-01

    Human beings have an innate need to spend time outside, but in recent years children are spending less time outdoors. It is possible that this decline in time spent outdoors could have a negative impact on child development. Science teachers can combat the decline in the amount of time children spend outside by taking their science classes…

  14. Higher Order Thinking Skills among Secondary School Students in Science Learning

    Science.gov (United States)

    Saido, Gulistan Mohammed; Siraj, Saedah; Bin Nordin, Abu Bakar; Al Amedy, Omed Saadallah

    2015-01-01

    A central goal of science education is to help students to develop their higher order thinking skills to enable them to face the challenges of daily life. Enhancing students' higher order thinking skills is the main goal of the Kurdish Science Curriculum in the Iraqi-Kurdistan region. This study aimed at assessing 7th grade students' higher order…

  15. EFFECTS OF SCIENTIFIC INQUIRY LEARNING MODEL AND LOGICAL THINKING ABILITY OF HIGH SCHOOL STUDENTS SCIENCE PROCESS SKILLS

    Directory of Open Access Journals (Sweden)

    M. Akhyar Lubis

    2017-09-01

    Full Text Available This study aimed to analyze whether the results of science process skills of students. Who are taught by the teaching model scientific inquiry better than conventional learning, to analyze whether the results of science process skills of students? Who can think logically high is better than the students who have the potential to think logically low, analyze whether there is an interaction between scientific inquiry learning model with logical thinking skills to students' science process skills. This research is a quasi-experimental design with the two-group pretest-posttest design. The study population is all students of class X SMA Negeri 4 Padangsidimpuan semester II academic year 2016/2017. The The research instrument consists of two types: science process skills instrument consists of 10 questions in essay form which has been declared valid and reliable, and the instrument ability to think logically in the form of multiple choice is entirely groundless and complements (combination. The resulting data, analyzed by using two path Anava. The results showed that science process skills of students who are taught by the teaching model scientific inquiry better than conventional learning. Science process skills of students who can think logically high are better than the students who can think logically low, and there is an interaction between learning model scientific inquiry and conventional learning with the ability to think logically to improve students' science process skills.

  16. Science Learning Cycle Method to Enhance the Conceptual Understanding and the Learning Independence on Physics Learning

    Science.gov (United States)

    Sulisworo, Dwi; Sutadi, Novitasari

    2017-01-01

    There have been many studies related to the implementation of cooperative learning. However, there are still many problems in school related to the learning outcomes on science lesson, especially in physics. The aim of this study is to observe the application of science learning cycle (SLC) model on improving scientific literacy for secondary…

  17. The use of e-learning materials for teaching computer science in primary schools

    OpenAIRE

    Benedičič, Andrej

    2015-01-01

    In the last few years the teaching in primary and secondary schools all around the world changed severely. One of the reasons for the change was the development of the information and communications technology (ICT). Nowadays we can hardly imagine teaching without the use of the ICT. Schools are equipped with electronic boards, interactive boards, tablets, voting systems and other electronic devices. The right use of these devices and electronic materials (e-materials) developed for them can ...

  18. Surrounded by Science: Learning Science in Informal Environments

    Science.gov (United States)

    Fenichel, Marilyn; Schweingruber, Heidi A.

    2010-01-01

    Practitioners in informal science settings--museums, after-school programs, science and technology centers, media enterprises, libraries, aquariums, zoos, and botanical gardens--are interested in finding out what learning looks like, how to measure it, and what they can do to ensure that people of all ages, from different backgrounds and cultures,…

  19. Using the Communication in Science Inquiry Project Professional Development Model to Facilitate Learning Middle School Genetics Concepts

    Science.gov (United States)

    Baker, Dale R.; Lewis, Elizabeth B.; Uysal, Sibel; Purzer, Senay; Lang, Michael; Baker, Perry

    2011-01-01

    This study describes the effect of embedding content in the Communication in Inquiry Science Project professional development model for science and language arts teachers. The model uses four components of successful professional development (content focus, active learning, extended duration, participation by teams of teachers from the same school…

  20. Validity of Learning Module Natural Sciences Oriented Constructivism with the Contain of Character Education for Students of Class VIII at Yunior Hight School

    Science.gov (United States)

    Oktarina, K.; Lufri, L.; Chatri, M.

    2018-04-01

    Referring to primary data collected through observation and interview to natural science teachers and some students, it is found that there is no natural science teaching materials in the form of learning modules that can make learners learn independently, build their own knowledge, and construct good character in themselves. In order to address this problem, then it is developed natural science learning module oriented to constructivism with the contain of character education. The purpose of this study is to reconstruct valid module of natural science learning materials. This type of research is a development research using the Plomp model. The development phase of the Plomp model consists of 3 stages, namely 1) preliminary research phase, 2) development or prototyping phase, and 3) assessment phase. The result of the study shows that natural science learning module oriented to constructivism with the contain of character education for students class VIII of Yunior High School 11 Sungai Penuh is valid. In future work, practicality and effectiveness will be investigated.

  1. Increasing Bellevue School District's elementary teachers' capacity for teaching inquiry-based science: Using ideas from contemporary learning theory to inform professional development

    Science.gov (United States)

    Maury, Tracy Anne

    This Capstone project examined how leaders in the Bellevue School District can increase elementary teachers' capacity for teaching inquiry-based science through the use of professional learning activities that are grounded in ideas from human learning theory. A framework for professional development was constructed and from that framework, a set of professional learning activities were developed as a means to support teacher learning while project participants piloted new curriculum called the Isopod Habitat Challenge. Teachers in the project increased their understanding of the learning theory principles of preconceptions and metacognition. Teachers did not increase their understanding of the principle of learning with understanding, although they did articulate the significance of engaging children in student-led inquiry cycles. Data from the curriculum revision and professional development project coupled with ideas from learning theory, cognition and policy implementation, and learning community literatures suggest Bellevue's leaders can encourage peer-to-peer interaction, link professional development to teachers' daily practice, and capitalize on technology as ways to increase elementary teachers' capacity for teaching inquiry-based science. These lessons also have significance for supporting teacher learning and efficacy in other subject areas and at other levels in the system.

  2. Learning the Language of Earth Science: Middle School Students' Explorations of Rocks and Minerals

    Science.gov (United States)

    Reid-Griffin, Angelia

    2016-01-01

    The approaches and interpretations of a class of 6th graders and a class of 8th graders in a U.S. middle school asked to engage in tasks that involved using observations to describe and classify samples is the subject of this paper. Overall 8th graders were better able to perform the tasks, suggesting a developmental advantage aspect. However, the…

  3. Informal Science Learning in the Formal Classroom

    Science.gov (United States)

    Walsh, Lori; Straits, William

    2014-01-01

    In this article the authors share advice from the viewpoints of both a formal and informal educator that will help teachers identify the right Informal Science Institutions (ISIs)--institutions that specialize in learning that occurs outside of the school setting--to maximize their students' learning and use informal education to their…

  4. Putting Making into High School Computer Science Classrooms: Promoting Equity in Teaching and Learning with Electronic Textiles in "Exploring Computer Science"

    Science.gov (United States)

    Fields, Deborah Ann; Kafai, Yasmin; Nakajima, Tomoko; Goode, Joanna; Margolis, Jane

    2018-01-01

    Recent discussions of making have focused on developing out-of-school makerspaces and activities to provide more equitable and enriching learning opportunities for youth. Yet school classrooms present a unique opportunity to help broaden access, diversify representation, and deepen participation in making. In turning to classrooms, we want to…

  5. Blended Teaching and Learning in the School of Science and Technology of UniSIM

    Science.gov (United States)

    Toon, Andrew John; Samir, Attallah; Kheng, Jennifer Huang Mui; Chew, Lim Kin; Vythilingam, Moorthy; Kiat, Stephen Low Wee

    2009-01-01

    Purpose: The purpose of this paper is to investigate the blended learning preferences under which adult students study mathematics, electronics and industry certificate examinations like project management and e-SAP (systems, applications and products). Design/methodology/approach: The study is based on four case studies in mathematics,…

  6. Learning progressions from a sociocultural perspective: response to "co-constructing cultural landscapes for disciplinary learning in and out of school: the next generation science standards and learning progressions in action"

    Science.gov (United States)

    Tytler, Russell

    2016-10-01

    This article discusses a case for a different, socio-cultural way of looking at learning progressions as treated in the next generation science standards (NGSS) as described by Ralph Cordova and Phyllis Balcerzak's paper "Co-constructing cultural landscapes for disciplinary learning in and out of school: the next generation science standards and learning progressions in action". The paper is interesting for a number of reasons, and in this response I will identify different aspects of the paper and link the points made to my own research, and that of colleagues, as complementary perspectives. First, the way that the science curriculum is conceived as an expanding experience that moves from the classroom into the community, across subjects, and across time, links to theoretical positions on disciplinary literacies and notions of learning as apprenticeship into the discursive tools, or `habits of mind' as the authors put it, that underpin disciplinary practice. Second, the formulation of progression through widening communities of practice is a strong feature of the paper, and shows how children take on the role of scientists through this expanding exposure. I will link this approach to some of our own work with school—community science partnerships, drawing on the construct of boundary crossing to tease out relations between school science and professional practice. Third, the demonstration of the expansion of the children's view of what scientists do is well documented in the paper, illustrated by Figure 13 for instance. However I will, in this response, try to draw out and respond to what the paper is saying about the nature of progression; what the progression consists of, over what temporal or spatial dimensions it progresses, and how it can productively frame curriculum processes.

  7. The Changing Roles of Science Specialists during a Capacity Building Program for Primary School Science

    Science.gov (United States)

    Herbert, Sandra; Xu, Lihua; Kelly, Leissa

    2017-01-01

    Science education starts at primary school. Yet, recent research shows primary school teachers lack confidence and competence in teaching science (Prinsley & Johnston, 2015). A Victorian state government science specialist initiative responded to this concern by providing professional learning programs to schools across Victoria. Drawing on…

  8. Connecting university science experiences to middle school science teaching

    Science.gov (United States)

    Johnson, Gordon; Laughran, Laura; Tamppari, Ray; Thomas, Perry

    1991-06-01

    Science teachers naturally rely on their university science experiences as a foundation for teaching middle school science. This foundation consists of knowledge far too complex for the middle level students to comprehend. In order for middle school science teachers to utilize their university science training they must search for ways to adapt their college experiences into appropriate middle school learning experience. The criteria set forth above provide broad-based guidelines for translating university science laboratory experiences into middle school activities. These guidelines are used by preservice teachers in our project as they identify, test, and organize a resource file of hands-on inquiry activities for use in their first year classrooms. It is anticipated that this file will provide a basis for future curriculum development as the teacher becomes more comfortable and more experienced in teaching hands-on science. The presentation of these guidelines is not meant to preclude any other criteria or considerations which a teacher or science department deems important. This is merely one example of how teachers may proceed to utilize their advanced science training as a basis for teaching middle school science.

  9. New Literacy Implementation: The Impact of Professional Development on Middle School Student Science Learning

    Science.gov (United States)

    Hsu, Hui-Yin; Wang, Shaing-Kwei; Coster, Daniel

    2017-01-01

    With advancing technology, "literacy" evolves to include new forms of literacy made possible by digital technologies. "New literacy" refers to using technology to research, locate, evaluate, synthesize and communication information. The purpose of the study is to develop a framework to guide science teachers' new literacy…

  10. Development of Instructional Materials for Electrochemical Module Class XII Science High School Students with Guided Inquiry Learning Approach

    Directory of Open Access Journals (Sweden)

    Lilik Fatmawati

    2014-06-01

    Full Text Available Pengembangan Bahan Ajar Modul Elektrokimia untuk Siswa SMA Kelas XII IPA dengan Pendekatan Pembelajaran Inkuiri Terbimbing Abstract: The aim of this study was to determine the feasibility and effectiveness of the electrochemical module for high school students of class XII results of development. Electrochemical module of the development consists of two learning activities, ie to the material Volta cells and electrolysis cells for the material. Results of the assessment by two chemistry lecturer, State University of Malang and two chemistry teachers XII as an expert content / learning material for eligibility contents was 92.9%, for eligibility and completeness of presentation is 91.1%, and for the eligibility of language is 92.3% , which is classified as very feasible criteria. Overall the average value was 92.1 feasibility. Effectiveness module is indicated by the results of the development of perception and student learning outcomes. Students' perceptions obtained from student assessment results to module development. In the limited field trials obtained average value is 81.8 for all aspects of the maximum value of 100. Obtaining the average value of student learning outcomes for the cognitive aspect is 83.3, for the affective aspect is 82.3, and for the psychomotor aspect is 83.8 out of 100. The maximum value of the overall results of the study showed that the electrochemical module for high school students Class XII Science development results are very decent and very effectively used in the learning process. Key Words: guided inquiry, electrochemical module, model 4-D Abstrak: Tujuan penelitian ini adalah mengetahui kelayakan, dan keefektifan modul elektrokimia untuk siswa SMA kelas XII hasil pengembangan. Modul Elektrokimia hasil pengembangan terdiri dari dua kegiatan belajar, yaitu untuk materi sel Volta dan untuk materi sel elektrolisis. Hasil penilaian oleh dua dosen kimia Universitas Negeri Malang dan dua guru kimia kelas XII sebagai

  11. Learning Science Through Visualization

    Science.gov (United States)

    Chaudhury, S. Raj

    2005-01-01

    In the context of an introductory physical science course for non-science majors, I have been trying to understand how scientific visualizations of natural phenomena can constructively impact student learning. I have also necessarily been concerned with the instructional and assessment approaches that need to be considered when focusing on learning science through visually rich information sources. The overall project can be broken down into three distinct segments : (i) comparing students' abilities to demonstrate proportional reasoning competency on visual and verbal tasks (ii) decoding and deconstructing visualizations of an object falling under gravity (iii) the role of directed instruction to elicit alternate, valid scientific visualizations of the structure of the solar system. Evidence of student learning was collected in multiple forms for this project - quantitative analysis of student performance on written, graded assessments (tests and quizzes); qualitative analysis of videos of student 'think aloud' sessions. The results indicate that there are significant barriers for non-science majors to succeed in mastering the content of science courses, but with informed approaches to instruction and assessment, these barriers can be overcome.

  12. Flipped Science Inquiry@Crescent Girls' School

    Directory of Open Access Journals (Sweden)

    Peishi Goh

    2017-06-01

    Full Text Available This study shares the findings of a school-based Action Research project to explore how inquiry-based science practical lessons designed using the Flipped Science Inquiry@CGS classroom pedagogical model influence the way students learn scientific knowledge and also students' development of 21st century competencies, in particular, in the area of Knowledge Construction. Taking on a broader definition of the flipped classroom pedagogical model, the Flipped Science Inquiry@CGS framework adopts a structure that inverted the traditional science learning experience. Scientific knowledge is constructed through discussions with their peers, making use of their prior knowledge and their experiences while engaging in hands-on activities. Through the study, it is found that with the use of the Flipped Science Inquiry@CGS framework, learning experiences that are better aligned to the epistemology of science while developing 21st century competencies in students are created.

  13. Teaching and learning about food and nutrition through science education in Brazilian schools: an intersection of knowledge

    Directory of Open Access Journals (Sweden)

    Carolina Netto Rangel

    2014-09-01

    Full Text Available Science teachers are the main professionals in schools who address health-related subjects, though food and nutrition education (FNE projects are mainly planned by health professionals, especially nutritionists. The objective of this study is to create a transdisciplinary approximation between scientific research fields and practical fields from the analysis of an integrated case study conducted in Brazilian schools. In 2011, 10 days of observation were programmed in six schools in five cities. Semi-structured interviews were carried out with different social actors and data was analyzed using the complex thinking theory and the bricolage method of educational research. Planting of vegetable gardens or projects to improve table manners during mealtimes were identified in the schools. The results describe educational approaches used by science teachers to include FNE in school activities, even when not described in the official curriculum. Health professionals can identify actions to support health education in schools starting with that already undertaken by science teachers. The successful initiatives also involved professionals with practical knowledge and experience of life.

  14. Teaching and learning about food and nutrition through science education in Brazilian schools: an intersection of knowledge.

    Science.gov (United States)

    Rangel, Carolina Netto; Nunn, Rebecca; Dysarz, Fernanda; Silva, Elizabete; Fonseca, Alexandre Brasil

    2014-09-01

    Science teachers are the main professionals in schools who address health-related subjects, though food and nutrition education (FNE) projects are mainly planned by health professionals, especially nutritionists. The objective of this study is to create a transdisciplinary approximation between scientific research fields and practical fields from the analysis of an integrated case study conducted in Brazilian schools. In 2011, 10 days of observation were programmed in six schools in five cities. Semi-structured interviews were carried out with different social actors and data was analyzed using the complex thinking theory and the bricolage method of educational research. Planting of vegetable gardens or projects to improve table manners during mealtimes were identified in the schools. The results describe educational approaches used by science teachers to include FNE in school activities, even when not described in the official curriculum. Health professionals can identify actions to support health education in schools starting with that already undertaken by science teachers. The successful initiatives also involved professionals with practical knowledge and experience of life.

  15. Development of e-module combining science process skills and dynamics motion material to increasing critical thinking skills and improve student learning motivation senior high school

    Directory of Open Access Journals (Sweden)

    Fengky Adie Perdana

    2017-02-01

    Full Text Available Learning media is one of the most components in the teaching and learning process. This research was conducted to design and develop the electronic modules combining science process skills and dynamics motion content for increasing critical thinking skills and improve student learning motivation for senior high school. The Methods used in this research is Research and Development (R&D. Model research and development using a research 4D Thiagarajan model. Physics module was developed using science process skills approach: observing, formulating the problem, formulating a hypothesis, identify variables, conduct experiments, analyse the data, summarise and communicate. The results showed that: 1 the electronics module has been developed by integrating the science process skills for enhancing critical thinking skills and student motivation. 2 Electronic Module Physics-based science process skills meet the criteria very well, judging from the results of validation content, validation media, validation of peer education and practitioners, with an average value of 3.80 is greater than the minimum eligibility 3.78. 3 effectiveness the modules of science process skills got N-gain value obtained from a large trial in grade samples of 0.67 and 0.59 in the control group were categorised as moderate. 4 Implementation of electronic modules Physics-based science process skills is considered an effective to enhance the students' motivation. Statistical analysis showed a significance value of 0.027 is lower than the significance level α = 0.05, this means that there are significant differences between learning motivation grade sample and the control class. As a result of analysis data obtained from the research, it was seen that the students' motivation that uses Physics module based science process skills better than conventional learning.

  16. Online Learning for Muon Science

    Science.gov (United States)

    Baker, Peter J.; Loe, Tom; Telling, Mark; Cottrell, Stephen P.; Hillier, Adrian D.

    As part of the EU-funded project SINE2020 we are developing an online learning environment to introduce people to muon spectroscopy and how it can be applied in a variety of science areas. Currently there are short interactive courses using cosmic ray muons to teach what muons are and how their decays are measured and a guide to analyzing muon data using the Mantid software package, as well as videos from the lectures at the ISIS Muon Spectroscopy Training School 2016. Here we describe the courses that have been developed and how they have already been used.

  17. SSR: What's in "School Science Review" for "PSR" Readers?

    Science.gov (United States)

    Lakin, Liz

    2004-01-01

    This article summarises ideas and developments in teaching and learning in science of relevance to "Primary Science Review" ("PSR") readers from three recent issues (309, 310, and 311) of "School Science Review" ("SSR"), the ASE journal for science education 11-19. The themes running through these are: ICT, the implications for science education…

  18. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    OpenAIRE

    TOJDE

    2009-01-01

    This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trip...

  19. Drawing-Based Simulation for Primary School Science Education: An Experimental Study of the GearSketch Learning Environment

    NARCIS (Netherlands)

    Leenaars, Frank; van Joolingen, Wouter; Gijlers, Aaltje H.; Bollen, Lars

    2012-01-01

    Touch screen computers are rapidly becoming available to millions of students. These devices make the implementation of drawing-based simulation environments like Gear Sketch possible. This study shows that primary school students who received simulation-based support in a drawing-based learning

  20. A systemic examination of the introduction of an outdoor learning-based science curriculum to students, their teacher, and the school principal

    Science.gov (United States)

    Yunker, Molly Louis

    The outdoor environment has been under-utilized as a legitimate setting for learning within the formal school context, resulting in few examples of curriculum materials that integrate the indoors and outdoors. This systemic problem is explored holistically through investigation of key sets of players in the school system. The overarching research question is "What is the role and value of integrated outdoor learning experiences within the school system?" I developed an eight-week Earth systems science unit grounded in research-based design principles. One teacher enacted the unit with 111 sixth graders, whose learning gains and perspectives of the role and value of integrated outdoor learning experiences were explored using a mixed-methods approach in a pre-post study design, including individual interviews, and instruments regarding students' perspectives of the outdoor component of the curricular enactment. I conducted six interviews with the participating teacher and one interview with the school principal, to explore their perspectives of the role of outdoor learning experiences, and their personal roles in the unit. The main finding from this study was that the outdoor component of the curriculum enhanced coherence---connectedness across science concepts, activities, and learning environments. Higher ability students were more aware of connections than lower ability students. Field experiences were seen as a tool for learning, and all students achieved substantial learning gains. The teacher viewed the role of the outdoor experiences as a way to engage students, and promote connections across the unit through firsthand and relevant experiences. The school principal viewed his role as supporting teachers in their practice and encouraging risk-taking and creativity in instructional approaches. This study is a valuable contribution to the field as it (1) identifies outdoor learning experiences as one way to enhance intraunit coherence, and (2) highlights

  1. Learning Science beyond the Classroom.

    Science.gov (United States)

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  2. The effectiveness of a head-heart-hands model for natural and environmental science learning in urban schools.

    Science.gov (United States)

    Jagannathan, Radha; Camasso, Michael J; Delacalle, Maia

    2018-02-01

    We describe an environmental and natural science program called Nurture thru Nature (NtN) that seeks to improve mathematics and science performance of students in disadvantaged communities, and to increase student interest in Science, Technology, Engineering and Mathematics (STEM) careers. The program draws conceptual guidance from the Head-Heart-Hands model that informs the current educational movement to foster environmental understanding and sustainability. Employing an experimental design and data from seven cohorts of students, we find some promising, albeit preliminary, indications that the program can increase students' science knowledge and grades in mathematics, science and language arts. We discuss the special adaptations that environmental and sustainability education programs need to incorporate if they are to be successful in today's resource depleted urban schools. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Urban High School Teachers' Beliefs Concerning Essential Science Teaching Dispositions

    Science.gov (United States)

    Miranda, Rommel

    2012-01-01

    This qualitative study addresses the link between urban high school science teachers' beliefs about essential teaching dispositions and student learning outcomes. The findings suggest that in order to help students to do well in science in urban school settings, science teachers should possess essential teaching dispositions which include…

  4. Science Curiosity in Learning Environments: Developing an Attitudinal Scale for Research in Schools, Homes, Museums, and the Community

    Science.gov (United States)

    Weible, Jennifer L.; Zimmerman, Heather Toomey

    2016-01-01

    Although curiosity is considered an integral aspect of science learning, researchers have debated how to define, measure, and support its development in individuals. Prior measures of curiosity include questionnaire type scales (primarily for adults) and behavioral measures. To address the need to measure scientific curiosity, the Science…

  5. THE USE OF NUMBERED HEADS TOGETHER (NHT LEARNING MODEL WITH SCIENCE, ENVIRONMENT, TECHNOLOGY, SOCIETY (SETS APPROACH TO IMPROVE STUDENT LEARNING MOTIVATION OF SENIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    B. Sutipnyo

    2018-01-01

    Full Text Available This research was aimed to determine the increasing of students' motivation that has been applied by Numbered Heads Together (NHT learning model with Science, Environment, Technology, Society (SETS approach. The design of this study was quasi experiment with One Group Pretest-Posttest Design. The data of students’ learning motivation obtained through questionnaire administered before and after NHT learning model with SETS approach. In this research, the indicators of learning-motivation were facing tasks diligently, showing interest in variety of problems, prefering to work independently, keeping students’ opinions, and feeling happy to find and solve problems. Increasing of the students’ learning motivation was analyzed by using a gain test. The results showed that applying NHT learning model with SETS approach could increase the students’ learning motivation in medium categories.

  6. Analysis of the ability of junior high school students’ performance in science in STEM project-based learning

    Science.gov (United States)

    Suryana, A.; Sinaga, P.; Suwarma, I. R.

    2018-05-01

    The challenges in 21st century demands the high competitiveness. The way of thinking ability, determine how it work ability and choose instrument be part of the skills will need in the 21st century. The competence it can be supported by learning involving the student performance skills. Based on the preliminary studies at one junior high school in Bandung found that the learning involving of performance skill is low.This is supported by data from respondent in received the opportunity to make devise a sketch in of learning especially based on practices or projects, the results are 75 % students said rarely and 18,75 % students said never. In addition seen also how the student activities in project based learning in class the results stated that 68,75 % of students said less, and 6.25 % of students said never. Therefore, we did a result to uncover profile performance on the design process and the performance process of junior high school student performances to the matter optical by using STEM project based learning. From this result. From the research obtained the average score classes in the activities of the design process is as much as 2,49 or dipersentasikan become 62,41 % are in the good category and the average score classes in the process of the performance of activities receive is 3,13 or 78,28 % are in the good category.

  7. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  8. Portsmouth Atmospheric Science School (PASS) Project

    Science.gov (United States)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  9. Career-Related Learning and Science Education: The Changing Landscape

    Science.gov (United States)

    Hutchinson, Jo

    2012-01-01

    Pupils ask STEM subject teachers about jobs and careers in science, but where else do they learn about work? This article outlines career-related learning within schools in England alongside other factors that influence pupils' career decisions. The effect of the Education Act 2011 will be to change career learning in schools. The impact on…

  10. Foundations for a new science of learning.

    Science.gov (United States)

    Meltzoff, Andrew N; Kuhl, Patricia K; Movellan, Javier; Sejnowski, Terrence J

    2009-07-17

    Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared with those of other species. Homo sapiens is also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior and possess powerful implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning to understand the brain mechanisms underlying learning and how shared brain systems for perception and action support social learning. Machine learning algorithms are being developed that allow robots and computers to learn autonomously. New insights from many different fields are converging to create a new science of learning that may transform educational practices.

  11. Understanding the Science-Learning Environment: A Genetically Sensitive Approach

    Science.gov (United States)

    Haworth, Claire M. A.; Davis, Oliver S. P.; Hanscombe, Ken B.; Kovas, Yulia; Dale, Philip S.; Plomin, Robert

    2013-01-01

    Previous studies have shown that environmental influences on school science performance increase in importance from primary to secondary school. Here we assess for the first time the relationship between the science-learning environment and science performance using a genetically sensitive approach to investigate the aetiology of this link. 3000…

  12. Saudi Elementary School Science Teachers' Beliefs: Teaching Science in the New Millennium

    Science.gov (United States)

    Alghamdi, Amani K. Hamdan; Al-Salouli, Misfer Saud

    2013-01-01

    This study explored Saudi elementary school science teachers' beliefs about the process of teaching and learning science. This involved the exploration of their views about the new Saudi science curriculum, which emphasizes critical thinking and problem solving. Comprehensive interviews were held in 8 schools with 4 male and 6 female--2 of whom…

  13. The networked student: A design-based research case study of student constructed personal learning environments in a middle school science course

    Science.gov (United States)

    Drexler, Wendy

    This design-based research case study applied a networked learning approach to a seventh grade science class at a public school in the southeastern United States. Students adapted emerging Web applications to construct personal learning environments for in-depth scientific inquiry of poisonous and venomous life forms. The personal learning environments constructed used Application Programming Interface (API) widgets to access, organize, and synthesize content from a number of educational Internet resources and social network connections. This study examined the nature of personal learning environments; the processes students go through during construction, and patterns that emerged. The project was documented from both an instructional and student-design perspective. Findings revealed that students applied the processes of: practicing digital responsibility; practicing digital literacy; organizing content; collaborating and socializing; and synthesizing and creating. These processes informed a model of the networked student that will serve as a framework for future instructional designs. A networked learning approach that incorporates these processes into future designs has implications for student learning, teacher roles, professional development, administrative policies, and delivery. This work is significant in that it shifts the focus from technology innovations based on tools to student empowerment based on the processes required to support learning. It affirms the need for greater attention to digital literacy and responsibility in K12 schools as well as consideration for those skills students will need to achieve success in the 21st century. The design-based research case study provides a set of design principles for teachers to follow when facilitating student construction of personal learning environments.

  14. A Cross-Cultural Study of the Effect of a Graph-Oriented Computer-Assisted Project-Based Learning Environment on Middle School Students' Science Knowledge and Argumentation Skills

    Science.gov (United States)

    Hsu, P.-S.; Van Dyke, M.; Chen, Y.; Smith, T. J.

    2016-01-01

    The purpose of this mixed-methods study was to explore how seventh graders in a suburban school in the United States and sixth graders in an urban school in Taiwan developed argumentation skills and science knowledge in a project-based learning environment that incorporated a graph-oriented, computer-assisted application (GOCAA). A total of 42…

  15. Evaluating the Effects of Medical Explorers a Case Study Curriculum on Critical Thinking, Attitude Toward Life Science, and Motivational Learning Strategies in Rural High School Students

    Science.gov (United States)

    Brand, Lance G.

    2011-12-01

    The purpose of this study was three-fold: to measure the ability of the Medical Explorers case-based curriculum to improve higher order thinking skills; to evaluate the impact of the Medical Explorers case-based curriculum to help students be self directed learners; and to investigate the impact of the Medical Explorers case-based curriculum to improve student attitudes of the life sciences. The target population for this study was secondary students enrolled in advanced life science programs. The resulting sample (n = 71) consisted of 36 students in the case-based experimental group and 35 students in the control group. Furthermore, this study employed an experimental, pretest-posttest control group research design. The treatment consisted of two instructional strategies: case-based learning and teacher-guided learning. Analysis of covariance indicated no treatment effect on critical thinking ability or Motivation and Self-regulation of Learning. However, the Medical Explorers case-based curriculum did show a treatment effect on student attitudes toward the life sciences. These results seem to indicate that case-based curriculum has a positive impact on students' perspectives and attitudes about the study of life science as well as their interest in life science based careers. Such outcomes are also a good indicator that students enjoy and perceive the value to use of case studies in science, and because they see value in the work that they do they open up their minds to true learning and integration. Of additional interest was the observationthat on average eleventh graders showed consistently stronger gains in critical thinking, motivation and self-regulation of learning strategies, and attitudes toward the life sciences as compared to twelfth grade students. In fact, twelfth grade students showed a pre to post loss on the Watson-Glaser and the MSLQ scores while eleventh grade students showed positive gains on each of these instruments. This decline in twelfth

  16. Future Scenarios for Mobile Science Learning

    Science.gov (United States)

    Burden, Kevin; Kearney, Matthew

    2016-04-01

    This paper adopts scenario planning as a methodological approach and tool to help science educators reconceptualise their use of mobile technologies across various different futures. These `futures' are set out neither as predictions nor prognoses but rather as stimuli to encourage greater discussion and reflection around the use of mobile technologies in science education. Informed by the literature and our empirical data, we consider four alternative futures for science education in a mobile world, with a particular focus on networked collaboration and student agency. We conclude that `seamless learning', whereby students are empowered to use their mobile technologies to negotiate across physical and virtual boundaries (e.g. between school and out-of-school activities), may be the most significant factor in encouraging educators to rethink their existing pedagogical patterns, thereby realizing some of the promises of contextualised participatory science learning.

  17. Constructing Your Self in School Science

    DEFF Research Database (Denmark)

    Otrel-Cass, Kathrin

    2016-01-01

    of school science. Classrooms together with the new technological tools that are being used are places that fabricate and (re)align how young people see themselves in science and form their subjectivity in relation to society’s core values and rationalities and are embodied in primary science education...... in science classrooms. The findings suggest that digital tools used in classrooms expand not only the means of teaching and learning science but represent spaces for the emergence, negotiation and struggle of different forms of subjectivities.......It has been repeatedly argued that young people need to acquire science knowledge, skills and competencies, so that future economies can maintain social welfare, economic growth and international competitiveness. However, the attainment of understanding in science is not the only importance...

  18. Box Cello Middle School Science Clubs

    Science.gov (United States)

    Vandegrift, Guy

    1998-10-01

    The Box Cello is a middle school science club which is attempting to (1) understand the cello and (2) design a low-cost starter instrument. We can support and justify this research by adding a third goal: (3) to help supply local science classes with equipment. My policy of spending one entire day each week away from the university, out in a local school is essential to this project. This schedule also permits me to conduct lessons on optics and music in the schools. And, it permits circulation of tools and equipment. A simple calculation demonstrates the great economy achieved by combining science clubs with academic year school visits. Consider the cost of letting 10,000 students in 10 middle schools each learn about and play with a pair of "upside-down" glasses for one hour. A visit to each school for three consecutive weeks would easily permit such a circulation if only 30 pairs were constructed. Assume rhetorically, that the construction of 30 pairs of glasses were to consume the entire estimated annual budget of $100,000. The cost per student would be only ten dollars! The visits, guest lectures, and equipment loans permit informal networking (including lunch) with math, science and music teachers in 10 schools. For more information, visit the http://www.utep.edu/boxcello/

  19. STUDENT'S SCIENCE MISCONCEPTIONS CONCERNING THE STATE CHANGES OF WATER AND THEIR REMEDIATION USING THREE DIFFERENT LEARNING MODELS IN ELEMENTARY SCHOOL

    Directory of Open Access Journals (Sweden)

    M. Taufiq

    2012-01-01

    Full Text Available Secara umum, kesalahpahaman yang dialami oleh mahasiswa dapat menyebabkan kesulitan dalam penelitian, sementara anakanakmemiliki kesadaran mereka sendiri. Tingkat kesalahpahaman yang dialami oleh siswa juga tidak sama, dalam kasus inisesuatu mengalami kesalahpahaman pengalaman tingkat tinggi, menengah, dan rendah. Untuk alasan itu, siswa memerlukanmodel pembelajaran yang tepat untuk masing-masing tingkat kesalahpahaman yang dialami untuk membuat studi menjadibermakna. Dalam makalah ini, peneliti mengeksplorasi informasi tentang; (1 tingkat kesalahpahaman ilmu siswa tentangperubahan wujud dari air, dan (2 model pembelajaran yang paling efektif untuk mengatasi kesalahpahaman siswa mengenaiperubahan wujud air. Model pembelajaran tiga dalam penelitian ini adalah: siklus belajar, penyelidikan dipandu, dan model konseppemetaan. Metode yang diterapkan dalam penelitian ini adalah wawancara klinis dan pretest-posttest. Informasi yangdikumpulkan dianalisis secara kuantitatif dengan percobaan uji ANOVA dan keuntungan rata-rata normal dihitung untuk setiapkelompok percobaan. In general, misconceptions experienced by student could cause difficulties in study, meanwhile children have their own sense.Level of misconceptions experienced by student also unequal, in this case something experiences high level misconceptions,medium, and low. For that reason, student requires correct learning model for each level of misconception experienced to make thestudy become meaningful. In this paper, the researcher explored information about; (1 the level of science misconceptions of thestudent concerning the state changes of water, and (2 the most effective learning model to remedy student's misconceptionsconcerning the state changes of water. The three learning models in this research are: learning cycle, guided inquiry, and conceptmapping model. The method applied in this research is the clinical interview and pretest-posttest. The information collected wasanalyzed in

  20. Using ESSEA Modules, Local Event Studies and Personal Learning Experiences in an Earth Systems Science Course for Preservice Middle School Teachers

    Science.gov (United States)

    Slattery, W.; Brown, D.

    2008-12-01

    Most science courses, including courses that provide preparation for pre-service K-12 teachers are only taught from a deductive big picture perspective. This method is fine for most abstract learners, but pre- service classroom educators that are being prepared to teach in middle school classrooms will be faced with the challenge of building science content knowledge in students that are concrete learners. For these K-12 students a better pedagogical practice is to use local real-world familiar places, issues and personal experience to connect student learning with more abstract concepts. To make it more likely that teachers have the requisite skills and pedagogical content knowledge to build K- 12 student science concept knowledge and science process skills we have integrated ESSEA modules that connect worldwide issues such as global climate change with local event studies chosen by learners. Some recent examples include how such local events such as landfill fires and suburban sprawl impact the local area's air, land, water and life. Course participants are able to choose a more personal route to understanding how their habits impact the global environment by participating in a three week learning experience called the Lifestyle Project. This experience asks students to incrementally reduce their use of heating or air-conditioning, the amount of waste going to landfills, to conserve electricity, drive less and eat less energy intensively. Pre-post content assessments indicate that students in this course scored significantly higher on post course content assessments and reported that by engaging in personal experience to global scale learning experiences they have a new appreciation for how personal choices impact the global environment and how to use local artifacts and issues to enhance K-12 student learning.

  1. Improving the teaching and learning of science in a suburban junior high school on Long Island: Achieving parity through cogenerative dialogues

    Science.gov (United States)

    Baker, Eileen Perman

    The research in this dissertation focuses on ways to improve the teaching and learning of science in a suburban junior high school on Long Island, New York. The study is my attempt to find ways to achieve parity in my classroom in terms of success in science. I was specifically looking for ways to encourage Black female students in my classroom and in other classrooms to continue their science education into the upper grades. The participants were the 27 students in the class, a friend of one of the students, and I, as the teacher-researcher. In order to examine the ways in which structure mediates the social and historical contexts of experiences in relation to teacher and student practices in the classroom, I used collaborative research; autobiographical reflection; the sociology of emotions; immigration, racialization, and ethnicity, and cogenerative dialogues (cogens) as tools. Cogenerative dialogues are a way for students and teachers to accept shared responsibility for teaching and learning. This study is of importance because of my school's very diverse student body. The school has a large minority population and therefore shares many of the characteristics of urban schools. In my study I look at why there are so few Black female students in the advanced science courses offered by our district and how this problem can be addressed. I used a variety of qualitative approaches including critical ethnography and micro analysis to study the teaching and learning of science. In addition to the usual observational, methodological, and theoretical field notes, I videotaped and audiotaped lessons and had discussions with students and teachers, one-on-one and in groups. In the first year the cogenerative group consisted of two Black female students. In the second year of the study there were four Black and one White-Hispanic female students in the cogen group. In my research I studied the interactions of the students between lessons and during laboratory activities as

  2. The effects of online science instruction using geographic information systems to foster inquiry learning of teachers and middle school science students

    Science.gov (United States)

    Hagevik, Rita Anne

    This study investigated the effects of using Geographic Information Systems (GIS) to improve middle school students' and their teachers' understanding of environmental content and GIS. Constructivism provided the theoretical framework with Bonnstetter's inquiry evolution and Swartz's problem solving as the conceptual framework for designing these GIS units and interpreting the results. Teachers from nine schools in five counties attended a one-week workshop and follow-up session, where they learned how to teach the online Mapping Our School Site (www.ncsu.edu/scilink/studysite) and CITYgreen GIS inquiry-based problem-solving units. Two years after the workshop, two teachers from the workshop taught the six week Mapping Our School Site (MOSS) unit in the fall and one teacher from a different school taught the MOSS unit in the fall and the CITYgreen GIS unit in the spring. The students in the MOSS experimental group (n = 131) and the CITYgreen GIS comparison group (n = 33) were compared for differences in understanding of environmental content. Other factors were investigated such as students' spatial abilities, experiences, and learning preferences. Teachers and students completed the online Learning Styles Inventory (LSI), Spatial Experience Survey (SES), and the Purdue Spatial Visualization Test: Rotations (PSVT:R). Using qualitative and quantitative analyses, results indicated that the CITYgreen GIS group learned the environmental content better than the MOSS group. The MOSS group better understood how to design experiments and to use GIS to analyze problem questions. Both groups improved in problem identification and problem solving, data accuracy, and hypothesis testing. The spatial reasoning score was compared to learning style as reported on the LSI, and other spatial experiences as reported on the SES. Males scored higher than females on the spatial reasoning test, the more computer games played the higher the score, and the fewer shop classes taken the

  3. Using Assistive Technology to Increase Vocabulary Acquisition and Engagement for Students with Learning Disabilities in the High School Science Classroom

    Science.gov (United States)

    Slemrod, Tal

    There is a growing recognition of the importance and effectiveness of instruction in the STEM subjects, including science. The movement towards increased requirements and expectations in science presents a challenge to both students and teachers as many students with Learning Disabilities (LD) often particularly struggle in their science classes. The purpose of this study was to investigate the use of an assistive technology (AT) intervention targeting the acquisition of science vocabulary for adolescents with LD in a general education secondary biology classroom. Participants for this study included 3 secondary students with LD who were enrolled in a biology class. An alternating treatment design was used to compare the effects of a keyword mnemonic vocabulary intervention via index cards or iPod touch on student, vocabulary acquisition, academic engagement and disruptive behavior. All students' acquired the content vocabulary equally well during both conditions. When using the AT, students' engagement increased compared to baseline conditions. It was clear that the students had a strong interest in using AT to increase their grades and engagement, however the teachers had little access and training on using AT to support their students with disabilities.

  4. How Teaching Science Using Project-Based Learning Strategies Affects the Classroom Learning Environment

    Science.gov (United States)

    Hugerat, Muhamad

    2016-01-01

    This study involved 458 ninth-grade students from two different Arab middle schools in Israel. Half of the students learned science using project-based learning strategies and the other half learned using traditional methods (non-project-based). The classes were heterogeneous regarding their achievements in the sciences. The adapted questionnaire…

  5. Learning Science and the Science of Learning. Science Educators' Essay Collection.

    Science.gov (United States)

    Bybee, Rodger W., Ed.

    This yearbook addresses critical issues in science learning and teaching. Contents are divided into four sections: (1) "How Do Students Learn Science?"; (2) "Designing Curriculum for Student Learning"; (3) "Teaching That Enhances Student Learning"; and (4) "Assessing Student Learning." Papers include: (1) "How Students Learn and How Teachers…

  6. Learning Science: Some Insights from Cognitive Science

    Science.gov (United States)

    Matthews, P. S. C.

    Theories of teaching and learning, including those associated with constructivism, often make no overt reference to an underlying assumption that they make; that is, human cognition depends on domain-free, general-purpose processing by the brain. This assumption is shown to be incompatible with evidence from studies of children's early learning. Rather, cognition is modular in nature, and often domain-specific. Recognition of modularity requires a re-evaluation of some aspects of current accounts of learning science. Especially, children's ideas in science are sometimes triggered rather than learned. It is in the nature of triggered conceptual structures that they are not necessarily expressible in language, and that they may not be susceptible to change by later learning.

  7. Cooperative Learning in Elementary Schools

    Science.gov (United States)

    Slavin, Robert E.

    2015-01-01

    Cooperative learning refers to instructional methods in which students work in small groups to help each other learn. Although cooperative learning methods are used for different age groups, they are particularly popular in elementary (primary) schools. This article discusses methods and theoretical perspectives on cooperative learning for the…

  8. The Concept Mastery in the Perspective of Gender of Junior High School Students on Eclipse Theme in Multiple Intelligences-based of Integrated Earth and Space Science Learning

    Science.gov (United States)

    Liliawati, W.; Utama, J. A.; Mursydah, L. S.

    2017-03-01

    The purpose of this study is to identify gender-based concept mastery differences of junior high school students after the implementation of multiple intelligences-based integrated earth and space science learning. Pretest-posttest group design was employed to two different classes at one of junior high school on eclipse theme in Tasikmalaya West Java: one class for boys (14 students) and one class of girls (18 students). The two-class received same treatment. The instrument of concepts mastery used in this study was open-ended eight essay questions. Reliability test result of this instrument was 0.9 (category: high) while for validity test results were high and very high category. We used instruments of multiple intelligences identification and learning activity observation sheet for our analysis. The results showed that normalized N-gain of concept mastery for boys and girls were improved, respectively 0.39 and 0.65. Concept mastery for both classes differs significantly. The dominant multiple intelligences for boys were in kinesthetic while girls dominated in the rest of multiple intelligences. Therefor we concluded that the concept mastery was influenced by gender and student’s multiple intelligences. Based on this finding we suggested to considering the factor of gender and students’ multiple intelligences given in the learning activity.

  9. School Improvement Model to Foster Student Learning

    Science.gov (United States)

    Rulloda, Rudolfo Barcena

    2011-01-01

    Many classroom teachers are still using the traditional teaching methods. The traditional teaching methods are one-way learning process, where teachers would introduce subject contents such as language arts, English, mathematics, science, and reading separately. However, the school improvement model takes into account that all students have…

  10. Learning effects of active involvement of secondary school students in scientific research within the Sparkling Science project "FlussAu:WOW!"

    Science.gov (United States)

    Poppe, Michaela; Zitek, Andreas; Scheikl, Sigrid; Heidenreich, Andrea; Kurz, Roman; Schrittwieser, Martin; Muhar, Susanne

    2014-05-01

    Due to immense technological and economic developments, human activities producing greenhouse gases, destructing ecosystems, changing landscapes and societies are influencing the world to such a degree, that the environment and human well-being are significantly affected. This results in a need to educate citizens towards a scientific understanding of complex socio-environmental systems. The OECD programme for international student assessment (PISA - http://www.pisa.oecd.org) investigated in detail the science competencies of 15-year-old students in 2006. The report documented that teenagers in OECD countries are mostly well aware of environmental issues but often know little about their causes or options to tackle these challenges in the future. For the integration of science with school learning and involving young people actively into scientific research Sparkling Science projects are funded by the Federal Ministry of Science and Research in Austria. Within the Sparkling Science Project "FlussAu:WOW!" (http://www.sparklingscience.at/de/projekte/574-flussau-wow-/) scientists work together with 15 to 18-year-old students of two Austrian High Schools over two years to assess the functions and processes in near natural and anthropogenically changed river floodplains. Within the first year of collaboration students, teachers and scientists elaborated on abiotic, biotic and spatial indicators for assessing and evaluating the ecological functionality of riverine systems. After a theoretical introduction students formulated research questions, hypotheses and planned and conducted field work in two different floodplain areas in Lower Austria. From the second year on, students are going to develop qualitative models on processes in river floodplain systems by means of the learning software "DynaLearn". The "DynaLearn" software is an engaging, interactive, hierarchically structured learning environment that was developed within the EU-FP7 project "DynaLearn" (http

  11. Science Learning in Rural Australia: Not Necessarily the Poor Cousin

    Science.gov (United States)

    Tytler, Russell; Symington, David

    2015-01-01

    There is considerable evidence suggesting that students in rural schools lag behind their city counterparts in measures of science literacy and attitude to science learning. If we are to address this situation we need to build as full a picture as we can of the key features of what is a complex and varied rural schooling context. In this article…

  12. Brain-Based Learning and Standards-Based Elementary Science.

    Science.gov (United States)

    Konecki, Loretta R.; Schiller, Ellen

    This paper explains how brain-based learning has become an area of interest to elementary school science teachers, focusing on the possible relationships between, and implications of, research on brain-based learning to the teaching of science education standards. After describing research on the brain, the paper looks at three implications from…

  13. Teaching computer science at school: some ideas

    OpenAIRE

    Bodei, Chiara; Grossi, Roberto; Lagan?, Maria Rita; Righi, Marco

    2010-01-01

    As a young discipline, Computer Science does not rely on longly tested didactic procedures. This allows the experimentation of innovative teaching methods at schools, especially in early childhood education. Our approach is based on the idea that abstracts notions should be gained as the final result of a learning path made of concrete and touchable steps. To illustrate our methodology, we present some of the teaching projects we proposed.

  14. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  15. Perspectives on learning, learning to teach and teaching elementary science

    Science.gov (United States)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  16. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    Directory of Open Access Journals (Sweden)

    TOJDE

    2009-04-01

    Full Text Available This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trips, cyberinfrastructure, neurological learning and the neuro-cognitive model. The continued growth in general studies and liberal arts and science programs online has led to a rise in the number of students whose science learning experiences are partially or exclusively online. character and quality of online science instruction.

  17. Original Science-Based Music and Student Learning

    Science.gov (United States)

    Smolinski, Keith

    2010-01-01

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework…

  18. Learning the Rules of the Game: The Nature of Game and Classroom Supports When Using a Concept-Integrated Digital Physics Game in the Middle School Science Classroom

    Science.gov (United States)

    Stewart, Phillip Michael, Jr.

    Games in science education is emerging as a popular topic of scholarly inquiry. The National Research Council recently published a report detailing a research agenda for games and science education entitled Learning Science Through Computer Games and Simulations (2011). The report recommends moving beyond typical proof-of-concept studies into more exploratory and theoretically-based work to determine how best to integrate games into K-12 classrooms for learning , as well as how scaffolds from within the game and from outside the game (from peers and teachers) support the learning of applicable science. This study uses a mixed-methods, quasi-experimental design with an 8th grade class at an independent school in southern Connecticut to answer the following questions: 1. What is the nature of the supports for science content learning provided by the game, the peer, and the teacher, when the game is used in a classroom setting? 2. How do the learning gains in the peer support condition compare to the solo play condition, both qualitatively and quantitatively? The concept-integrated physics game SURGE (Scaffolding Understanding through Redesigning Games for Education) was selected for this study, as it was developed with an ear towards specific learning theories and prior work on student understandings of impulse, force, and vectors. Stimulated recall interviews and video observations served as the primary sources and major patterns emerged through the triangulation of data sources and qualitative analysis in the software QSR NVivo 9. The first pattern which emerged indicated that scaffolding from within the game and outside the game requires a pause in game action to be effective, unless that scaffolding is directly useful to the player in the moment of action. The second major pattern indicated that both amount and type of prior gaming experience has somewhat complex effects on both the uses of supports and learning outcomes. In general, a high correlation was found

  19. Factors Contributing to Lifelong Science Learning: Amateur Astronomers and Birders

    Science.gov (United States)

    Jones, M. Gail; Corin, Elysa Nicole; Andre, Thomas; Childers, Gina M.; Stevens, Vanessa

    2017-01-01

    This research examined lifelong science learning reported by amateur astronomers and birders. One hundred seven adults who reported engaging in an informal (out-of-school) science interest were interviewed as part of an ongoing series of studies of lifelong science learners. The goal of the study was to gain insight into how and why amateur…

  20. Middle School Science Notes.

    Science.gov (United States)

    School Science Review, 1984

    1984-01-01

    Presents (1) suggestions on teaching volume and density in the elementary school; (2) ideas for teaching about floating and sinking; (3) a simple computer program on color addition; and (4) an illustration of Newton's second law of motion. (JN)

  1. Exploring Social Dynamics in School Science Context

    Directory of Open Access Journals (Sweden)

    Mehmet C. Ayar

    2014-09-01

    Full Text Available The purpose of this study was to explore the socio-cultural practices and interactions of learning science in a science classroom within the concept of communities of practice. Our qualitative data were collected through observing, taking field notes, and conducting interviews in a public science classroom during an entire school year. The study occurred in a seventh-grade classroom with a veteran physical science teacher, with more than 10 years teaching experience, and 22 students. For this article, we presented two classroom vignettes that reflect a sample of the participation, practice, and community that was observed in the science classroom on a daily basis. The first vignette illustrated a typical formula of Initiation–Response–Feedback (I-R-F that transfers knowledge to students through a teacher-led discussion with the entire class. The second vignette described a laboratory activity designed to allow students to apply or discover knowledge through practical experience, while taking responsibility for their learning through small-group work. The normative practices and routine behaviors of the science classroom are highlighted through the description of material resources, and different modes of participation accompanied by assigned roles and responsibilities. What we observed was that laboratory activities reproduced the epistemic authority of the I-R-F rather than creating collective cognitive responsibility where students have the independence to explore and create authentic science experiences.

  2. Science Learning outside the Classroom

    Science.gov (United States)

    Robelen, Erik W.; Sparks, Sarah D.; Cavanagh, Sean; Ash, Katie; Deily, Mary-Ellen Phelps; Adams, Caralee

    2011-01-01

    As concern mounts that U.S. students lack sufficient understanding of science and related fields, it has become increasingly clear that schools can't tackle the challenge alone. This special report explores the field often called "informal science education," which is gaining broader recognition for its role in helping young people…

  3. Teaching controversial issues in the secondary school science classroom

    Science.gov (United States)

    van Rooy, Wilhelmina

    1993-12-01

    A sample of fourteen secondary school biology teachers chosen from twelve schools were interviewed. The purpose was to determine their views on how controversial issues in science might be handled in the secondary school science classroom and whether the issues of surrogacy and human embryo experimentation were suitable controversial issues for discussion in schools. In general, teachers indicated that controversial issues deserve a more prominent place in the science curriculum because they have the potential to foster thinking, learning, and interest in science. The issues of surrogacy and human embryo experimentation were seen as appropriate contexts for learning, provided that teachers were well informed and sensitive to both the students and to the school environment.

  4. Exploring the Effects of Active Learning on High School Students' Outcomes and Teachers' Perceptions of Biotechnology and Genetics Instruction

    Science.gov (United States)

    Mueller, Ashley L.; Knobloch, Neil A.; Orvis, Kathryn S.

    2015-01-01

    Active learning can engage high school students to learn science, yet there is limited understanding if active learning can help students learn challenging science concepts such as genetics and biotechnology. This quasi-experimental study explored the effects of active learning compared to passive learning regarding high school students'…

  5. Online Software Applications for Learning: Observations from an Elementary School

    Science.gov (United States)

    Tay, Lee Yong; Lim, Cher Ping; Nair, Shanthi Suraj; Lim, Siew Khiaw

    2014-01-01

    This exploratory case study research describes the integration of Information Communication Technology (ICT) into the teaching and learning of English, mathematics and science in an elementary school in Singapore. The school in this case study research is one of the first primary-level future schools that was set up under the…

  6. From learning science to teaching science: What transfers?

    Science.gov (United States)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways

  7. Middle School Science Notes.

    Science.gov (United States)

    School Science Review, 1981

    1981-01-01

    Presents a variety of laboratory procedures, discussions, and demonstrations including centripedal force apparatus, model ear drum, hot air balloons, air as a real substance, centering a ball, simple test tube rack, demonstration fire extinguisher, pin-hole camera, and guidelines for early primary science education (5-10 years) concepts and lesson…

  8. History of Science as an Instructional Context: Student Learning in Genetics and Nature of Science

    Science.gov (United States)

    Kim, Sun Young; Irving, Karen E.

    2010-01-01

    This study (1) explores the effectiveness of the contextualized history of science on student learning of nature of science (NOS) and genetics content knowledge (GCK), especially interrelationships among various genetics concepts, in high school biology classrooms; (2) provides an exemplar for teachers on how to utilize history of science in…

  9. The Effect of Guided Inquiry Learning with Mind Map to Science Process Skills and Learning Outcomes of Natural Sciences

    OpenAIRE

    Hilman .

    2015-01-01

    Pengaruh Pembelajaran Inkuiri Terbimbing dengan Mind Map terhadap Keterampilan Proses Sains dan Hasil Belajar IPA   Abstract: Science learning in junior high school aims to enable students conducts scientific inquiry, improves knowledge, concepts, and science skills. Organization materials for students supports learning process so that needs to be explored techniques that allows students to enable it. This study aimed to determine the effect of guided inquiry learning with mind map on...

  10. Science Learning Centres Roundup

    Science.gov (United States)

    Baker, Yvonne

    2013-01-01

    A recent YouGov poll indicated that almost half of eight to 18-year-olds aspire to a career in science. The latest Association of Colleges enrolment survey indicates a large increase in uptake of science, technology, engineering and mathematics (STEM) at further education (FE) colleges. These reports, along with other findings that suggest an…

  11. What Teachers Want: Supporting Primary School Teachers in Teaching Science

    Science.gov (United States)

    Fitzgerald, Angela; Schneider, Katrin

    2013-01-01

    Impending change can provide us with the opportunity to rethink and renew the things that we do. The first phase of the Australian Curriculum implementation offers primary school teachers the chance to examine their approaches to science learning and teaching. This paper focuses on the perceptions of three primary school teachers regarding what…

  12. School Colors Enhance Learning Process

    Science.gov (United States)

    Modern Schools, 1976

    1976-01-01

    The dramatic use of bold colors in the interior design of the Greenhill Middle School in Dallas, Texas, is an example of how a learning environment can stimulate student interest and enthusiasm. (Author/MLF)

  13. Measuring Choice to Participate in Optional Science Learning Experiences during Early Adolescence

    Science.gov (United States)

    Sha, Li; Schunn, Christian; Bathgate, Meghan

    2015-01-01

    Cumulatively, participation in optional science learning experiences in school, after school, at home, and in the community may have a large impact on student interest in and knowledge of science. Therefore, interventions can have large long-term effects if they change student choice preferences for such optional science learning experiences. To…

  14. The place of native language in Science teaching and learning in ...

    African Journals Online (AJOL)

    The effect of limited English language proficiency on the learning of science is investigated for some Junior Secondary School (J.S.S.) pupils. Despite serious efforts put up by pupils to learn science, difficulties in speaking and writing English were factors that limited their performance in science. Two types of schools: an ...

  15. Learning environments matter: Identifying influences on the motivation to learn science

    Directory of Open Access Journals (Sweden)

    Salomé Schulze

    2015-05-01

    Full Text Available In the light of the poor academic achievement in science by secondary school students in South Africa, students' motivation for science learning should be enhanced. It is argued that this can only be achieved with insight into which motivational factors to target, with due consideration of the diversity in schools. The study therefore explored the impact of six motivational factors for science learning in a sample of 380 Grade Nine boys and girls from three racial groups, in both public and independent schools. The students completed the Student Motivation for Science Learning questionnaire. Significant differences were identified between different groups and school types. The study is important for identifying the key role of achievement goals, science learning values and science self-efficacies. The main finding emphasises the significant role played by science teachers in motivating students for science in terms of the learning environments that they create. This has important implications for future research, aimed at a better understanding of these environments. Such insights are needed to promote scientific literacy among the school students, and so contribute to the improvement of science achievement in South Africa.

  16. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    Science.gov (United States)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  17. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    Directory of Open Access Journals (Sweden)

    Nadi SUPRAPTO

    2017-10-01

    Full Text Available This study focuses on attitudes toward (teaching science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs from the Open University in Surabaya regional office. Attitudes toward (teaching science’ (ATS instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descriptive analysis and confirmatory factor analysis. The model fit of the attitudes toward (teaching science can be described from seven dimensions: self-efficacy for teaching science, the relevance of teaching science, gender-stereotypical beliefs, anxiety in teaching science, the difficulty of teaching science, perceived dependency on contextual factors, and enjoyment in teaching science. The results of the research also described science learning at the Open University of Indonesia looks like. Implications for primary teacher education are discussed.

  18. Sustaining Student Engagement in Learning Science

    Science.gov (United States)

    Ateh, Comfort M.; Charpentier, Alicia

    2014-01-01

    Many students perceive science to be a difficult subject and are minimally engaged in learning it. This article describes a lesson that embedded an activity to engage students in learning science. It also identifies features of a science lesson that are likely to enhance students' engagement and learning of science and possibly reverse students'…

  19. How Technicians Can Lead Science Improvements in Any School: A Small-Scale Study in England

    Science.gov (United States)

    Jones, Beth; Quinnell, Simon

    2015-01-01

    This article describes how seven schools in England improved their science provision by focusing on the professional development of their science technicians. In September 2013, the Gatsby Charitable Foundation funded the National Science Learning Centre to lead a project connecting secondary schools with experienced senior science technicians…

  20. EIROForum science goes to school

    CERN Multimedia

    CERN Bulletin

    The first EIROForum school was held at CERN last week. In about four days, 35 teachers from 15 countries were able to get a flavour of the science done in four of the seven organizations participating in EIROForum. This was a chance for them to feel part of top-level European scientific research.   The 35 teachers participating in thefirst EIROForum school organized at CERN. Inspiring teachers to motivate students: the formula is well-known at CERN. Here, more than 20 schools for science teachers are organized every year. Some of them are attended by teachers from all over Europe, others are organized for national groups. The successful experience of CERN has served as a model to the other six international organizations that are members of EIROForum (sea box). “The title of this first common school is ‘The evolution of the Universe’”, explains Rolf Landua, head of the CERN Education group and organizer of the school. “The programme of lectures ...

  1. Why Implementing History and Philosophy in School Science Education Is a Challenge: An Analysis of Obstacles

    Science.gov (United States)

    Hottecke, Dietmar; Silva, Cibelle Celestino

    2011-01-01

    Teaching and learning with history and philosophy of science (HPS) has been, and continues to be, supported by science educators. While science education standards documents in many countries also stress the importance of teaching and learning with HPS, the approach still suffers from ineffective implementation in school science teaching. In order…

  2. Analysis of students’ science motivation and nature of science comprehension in middle school

    Directory of Open Access Journals (Sweden)

    Azizul Ghofar Candra Wicaksono

    2018-03-01

    Full Text Available The purpose of this study was to explore the pattern of science motivation and nature of science (NoS and the relationship between science motivation and nature of science in middle school students located in Semarang, Central Java, Indonesia. The design of this study was survey followed by the correlation study to discover the relationship between science motivation level and nature of science comprehension. This research included 113 students as sample. The instrument used for data collection was SMQ and seven essay test from NoS indicator. This study revealed that the students had a median score of science motivation and the low score in nature of science comprehension. There were students’ science motivation and nature of science comprehension urgently need to be improved. It can be done by developing learning process and any support from school or family.

  3. The Science of Learning. 2nd Edition

    Science.gov (United States)

    Pear, Joseph J.

    2016-01-01

    For over a century and a quarter, the science of learning has expanded at an increasing rate and has achieved the status of a mature science. It has developed powerful methodologies and applications. The rise of this science has been so swift that other learning texts often overlook the fact that, like other mature sciences, the science of…

  4. Russian Bilingual Science Learning: Perspectives from Secondary Students.

    Science.gov (United States)

    Lemberger, Nancy; Vinogradova, Olga

    2002-01-01

    Describes one secondary Russian/English bilingual science teacher's practice and her literate students' experiences as they learn science and adapt to a new school. Discusses the notion of whether literacy skills in the native language are transferable to a second language. (Author/VWL)

  5. Learning Science in Informal Environments: People, Places, and Pursuits

    Science.gov (United States)

    Bell, Philip, Ed.; Lewenstein, Bruce, Ed.; Shouse, Andrew W., Ed.; Feder, Michael A., Ed.

    2009-01-01

    Informal science is a burgeoning field that operates across a broad range of venues and envisages learning outcomes for individuals, schools, families, and society. The evidence base that describes informal science, its promise, and effects is informed by a range of disciplines and perspectives, including field-based research, visitor studies, and…

  6. Promising Teacher Practices: Students' Views about Their Science Learning

    Science.gov (United States)

    Moeed, Azra; Easterbrook, Matthew

    2016-01-01

    Internationally, conceptual and procedural understanding, understanding the Nature of Science, and scientific literacy are considered worthy goals of school science education in modern times. The empirical study presented here reports on promising teacher practices that in the students' views afford learning opportunities and support their science…

  7. Scientific Representation and Science Learning

    Science.gov (United States)

    Matta, Corrado

    2014-01-01

    In this article I examine three examples of philosophical theories of scientific representation with the aim of assessing which of these is a good candidate for a philosophical theory of scientific representation in science learning. The three candidate theories are Giere's intentional approach, Suárez's inferential approach and Lynch and…

  8. The Effect of Scientific Inquiry Learning Model Based on Conceptual Change on Physics Cognitive Competence and Science Process Skill (SPS) of Students at Senior High School

    Science.gov (United States)

    Sahhyar; Nst, Febriani Hastini

    2017-01-01

    The purpose of this research was to analyze the physics cognitive competence and science process skill of students using scientific inquiry learning model based on conceptual change better than using conventional learning. The research type was quasi experiment and two group pretest-posttest designs were used in this study. The sample were Class…

  9. A Unique Marine and Environmental Science Program for High School Teachers in Hawai'i: Professional Development, Teacher Confidence, and Lessons Learned

    Science.gov (United States)

    Rivera, Malia Ana J.; Manning, Mackenzie M.; Krupp, David A.

    2013-01-01

    Hawai'i is a unique and special place to conduct environmental science inquiry through place based learning and scientific investigation. Here, we describe and evaluate a unique professional development program for science teachers in Hawai'i that integrates the traditional approach of providing training to improve content knowledge, with the…

  10. Problem-based learning in a health sciences librarianship course.

    Science.gov (United States)

    Dimitroff, A; Ancona, A M; Beman, S B; Dodge, A M; Hutchinson, K L; LaBonte, M J; Mays, T L; Simon, D T

    1998-01-01

    Problem-based learning (PBL) has been adopted by many medical schools in North America. Because problem solving, information seeking, and lifelong learning skills are central to the PBL curriculum, health sciences librarians have been actively involved in the PBL process at these medical schools. The introduction of PBL in a library and information science curriculum may be appropriate to consider at this time. PBL techniques have been incorporated into a health sciences librarianship course at the School of Library and Information Science (LIS) at the University of Wisconsin-Milwaukee to explore the use of this method in an advanced Library and Information Science course. After completion of the course, the use of PBL has been evaluated by the students and the instructor. The modified PBL course design is presented and the perceptions of the students and the instructor are discussed. PMID:9681169

  11. Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area

    Science.gov (United States)

    Chamnanwong, Pornpaka; Thathong, Kongsak

    2018-01-01

    In preparing a science lesson plan, teachers may deal with numerous difficulties. Having a deep understanding of their problems and their demands is extremely essential for the teachers in preparing themselves for the job. Moreover, it is also crucial for the stakeholders in planning suitable and in-need teachers' professional development programs, in school management, and in teaching aid. This study aimed to investigate the primary school science teachers' opinion toward practice of teaching and learning activities in science learning area. Target group was 292 primary science teachers who teach Grade 4 - 6 students in Khon Kaen Province, Thailand in the academic year of 2014. Data were collected using Questionnaire about Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area. The questionnaires were consisted of closed questions scored on Likert scale and open-ended questions that invite a sentence response to cover from LS Process Ideas. Research findings were as follow. The primary science teachers' level of opinion toward teaching and learning science subject ranged from 3.19 - 3.93 (mean = 3.43) as "Moderate" level of practice. The primary school science teachers' needs to participate in a training workshop based on LS ranged from 3.66 - 4.22 (mean = 3.90) as "High" level. The result indicated that they were interested in attending a training course under the guidance of the Lesson Study by training on planning of management of science learning to solve teaching problems in science contents with the highest mean score 4.22. Open-ended questions questionnaire showed the needs of the implementation of the lesson plans to be actual classrooms, and supporting for learning Medias, innovations, and equipment for science experimentation.

  12. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  13. High school students presenting science: An interactional sociolinguistic analysis

    Science.gov (United States)

    Bleicher, Robert

    Presenting science is an authentic activity of practicing scientists. Thus, effective communication of science is an important skill to nurture in high school students who are learning science. This study examines strategies employed by high school students as they make science presentations; it assesses students' conceptual understandings of particular science topics through their presentations and investigates gender differences. Data are derived from science presentation given by eight high school students, three females and five males who attended a summer science program. Data sources included videotaped presentations, ethnographic fieldnotes, interviews with presenters and members of the audience, and presenter notes and overheads. Presentations were transcribed and submitted to discourse analysis from an interactional sociolinguistic perspective. This article focuses on the methodology employed and how it helps inform the above research questions. The author argues that use of this methodology leads to findings that inform important social-communicative issues in the learning of science. Practical advice for teaching students to present science, implications for use of presentations to assess conceptual learning, and indications of some possible gender differences are discussed.Received: 14 April 1993; Revised: 15 February 1994;

  14. Schools and Informal Science Settings: Collaborate, Co-Exist, or Assimilate?

    Science.gov (United States)

    Adams, Jennifer D.; Gupta, Preeti; DeFelice, Amy

    2012-01-01

    In this metalogue we build on the arguments presented by Puvirajah, Verma and Webb to discuss the nature of authentic science learning experiences in context of collaborations between schools and out-of-school time settings. We discuss the role of stakeholders in creating collaborative science learning practices and affordances of out of school…

  15. Lights, camera, action research: The effects of didactic digital movie making on students' twenty-first century learning skills and science content in the middle school classroom

    Science.gov (United States)

    Ochsner, Karl

    Students are moving away from content consumption to content production. Short movies are uploaded onto video social networking sites and shared around the world. Unfortunately they usually contain little to no educational value, lack a narrative and are rarely created in the science classroom. According to new Arizona Technology standards and ISTE NET*S, along with the framework from the Partnership for 21st Century Learning Standards, our society demands students not only to learn curriculum, but to think critically, problem solve effectively, and become adept at communicating and collaborating. Didactic digital movie making in the science classroom may be one way that these twenty-first century learning skills may be implemented. An action research study using a mixed-methods approach to collect data was used to investigate if didactic moviemaking can help eighth grade students learn physical science content while incorporating 21st century learning skills of collaboration, communication, problem solving and critical thinking skills through their group production. Over a five week period, students researched lessons, wrote scripts, acted, video recorded and edited a didactic movie that contained a narrative plot to teach a science strand from the Arizona State Standards in physical science. A pretest/posttest science content test and KWL chart was given before and after the innovation to measure content learned by the students. Students then took a 21st Century Learning Skills Student Survey to measure how much they perceived that communication, collaboration, problem solving and critical thinking were taking place during the production. An open ended survey and a focus group of four students were used for qualitative analysis. Three science teachers used a project evaluation rubric to measure science content and production values from the movies. Triangulating the science content test, KWL chart, open ended questions and the project evaluation rubric, it

  16. The Courts, Social Science, and School Desegregation.

    Science.gov (United States)

    Levin, Betsy, Ed.; Hawley, Willis D., Ed.

    A conference on the courts, social science, and school desegregation attempted to clarify how social science research has been used and possibly misused in school desegregation litigation. The symposium issue addressed in this book is a product of that conference. First, the judicial evolution of the law of school desegregation from Brown V. the…

  17. Learning Lunar Science Through the Selene Videogame

    Science.gov (United States)

    Reese, D. D.; Wood, C. A.

    2010-03-01

    Selene is a videogame to promote and assess learning of lunar science concepts. As players build and modify a Moon, Selene measures learning as it occurs. Selene is a model for 21st century learning and embedded assessment.

  18. Characteristics of High School Students' and Science Teachers' Cognitive Frame about Effective Teaching Method for High School Science Subject

    Science.gov (United States)

    Chung, Duk Ho; Park, Kyeong-Jin; Cho, Kyu Seong

    2016-04-01

    We investigated the cognitive frame of high school students and inservice high school science teachers about effective teaching method, and we also explored how they understood about the teaching methods suggested by the 2009 revised Science Curriculum. Data were collected from 275 high school science teachers and 275 high school students. We analyzed data in terms of the words and the cognitive frame using the Semantic Network Analysis. The results were as follows. First, the teachers perceived that an activity oriented class was the effective science class that helped improve students'' problem-solving abilities and their inquiry skills. The students had the cognitive frame that their teacher had to present relevant and enough teaching materials to students, and that they should also receive assistance from teachers in science class to better prepare for college entrance exam. Second, both students and teachers retained the cognitive frame about the efficient science class that was not reflected 2009 revised Science Curriculum exactly. Especially, neither groups connected the elements of ''convergence'' as well as ''integration'' embedded across science subject areas to their cognitive frame nor cognized the fact that many science learning contents were closed related to one another. Therefore, various professional development opportunities should be offered so that teachers succinctly comprehend the essential features and the intents of the 2009 revised Science Curriculum and thereby implement it in their science lessons effectively. Keywords : semantic network analysis, cognitive frame, teaching method, science lesson

  19. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  20. Teaching and Learning the Language of Science: A Case Study of Academic Language Acquisition in a Dual Language Middle School

    Science.gov (United States)

    Gose, Robin Margaretha

    2013-01-01

    English language learners (EL) are the fastest growing sub-group of the student population in California, yet ELs also score the lowest on the science section of the California Standardized Tests. In the area of bilingual education, California has dramatically changed its approach to English learners since the passage of Proposition 227 in 1998,…

  1. Assessing Motivation to Learn Chemistry: Adaptation and Validation of Science Motivation Questionnaire II with Greek Secondary School Students

    Science.gov (United States)

    Salta, Katerina; Koulougliotis, Dionysios

    2015-01-01

    In educational research, the availability of a validated version of an original instrument in a different language offers the possibility for valid measurements obtained within the specific educational context and in addition it provides the opportunity for valid cross-cultural comparisons. The present study aimed to adapt the Science Motivation…

  2. Open-Ended Science Inquiry in Lower Secondary School: Are Students' Learning Needs Being Met?

    Science.gov (United States)

    Whannell, Robert; Quinn, Fran; Taylor, Subhashni; Harris, Katherine; Cornish, Scott; Sharma, Manjula

    2018-01-01

    Australian science curricula have promoted the use of investigations that allow secondary students to engage deeply with the methods of scientific inquiry, through student-directed, open-ended investigations over an extended duration. This study presents the analysis of data relating to the frequency of completion and attitudes towards long…

  3. Memorization techniques: Using mnemonics to learn fifth grade science terms

    Science.gov (United States)

    Garcia, Juan O.

    The purpose of this study was to determine whether mnemonic instruction could assist students in learning fifth-grade science terminology more effectively than traditional-study methods of recall currently in practice The task was to examine if fifth-grade students were able to learn a mnemonic and then use it to understand science vocabulary; subsequently, to determine if students were able to remember the science terms after a period of time. The problem is that in general, elementary school students are not being successful in science achievement at the fifth grade level. In view of this problem, if science performance is increased at the elementary level, then it is likely that students will be successful when tested at the 8th and 10th grade in science with the Texas Assessment of Knowledge and Skills (TAKS) in the future. Two research questions were posited: (1) Is there a difference in recall achievement when a mnemonic such as method of loci, pegword method, or keyword method is used in learning fifth-grade science vocabulary as compared to the traditional-study method? (2) If using a mnemonic in learning fifth-grade science vocabulary was effective on recall achievement, would this achievement be maintained over a span of time? The need for this study was to assist students in learning science terms and concepts for state accountability purposes. The first assumption was that memorization techniques are not commonly applied in fifth-grade science classes in elementary schools. A second assumption was that mnemonic devices could be used successfully in learning science terms and increase long term retention. The first limitation was that the study was conducted on one campus in one school district in South Texas which limited the generalization of the study. The second limitation was that it included random assigned intact groups as opposed to random student assignment to fifth-grade classroom groups.

  4. "Teaching What I Learned": Exploring Students' Earth and Space Science Learning Experiences in Secondary School with a Particular Focus on Their Comprehension of the Concept of "Geologic Time"

    Science.gov (United States)

    Yoon, Sae Yeol; Peate, David W.

    2015-01-01

    According to the national survey of science education, science educators in the USA currently face many challenges such as lack of qualified secondary Earth and Space Science (ESS) teachers. Less qualified teachers may have difficulty teaching ESS because of a lack of conceptual understanding, which leads to diminished confidence in content…

  5. Teaching the science of learning.

    Science.gov (United States)

    Weinstein, Yana; Madan, Christopher R; Sumeracki, Megan A

    2018-01-01

    The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration, concrete examples, and dual coding. We describe the basic research behind each strategy and relevant applied research, present examples of existing and suggested implementation, and make recommendations for further research that would broaden the reach of these strategies.

  6. The Analysis of High School Students' Conceptions of Learning in Different Domains

    Science.gov (United States)

    Sadi, Özlem

    2015-01-01

    The purpose of this study is to investigate whether or not conceptions of learning diverge in different science domains by identifying high school students' conceptions of learning in physics, chemistry and biology. The Conceptions of Learning Science (COLS) questionnaire was adapted for physics (Conceptions of Learning Physics, COLP), chemistry…

  7. Contextual Teaching and Learning Approach of Mathematics in Primary Schools

    Science.gov (United States)

    Selvianiresa, D.; Prabawanto, S.

    2017-09-01

    The Contextual Teaching and Learning (CTL) approach is an approach involving active students in the learning process to discover the concepts learned through to knowledge and experience of the students. Similar to Piaget’s opinion that learning gives students an actives trying to do new things by relating their experiences and building their own minds. When students to connecting mathematics with real life, then students can looking between a conceptual to be learned with a concept that has been studied. So that, students can developing of mathematical connection ability. This research is quasi experiment with a primary school in the city of Kuningan. The result showed that CTL learning can be successful, when learning used a collaborative interaction with students, a high level of activity in the lesson, a connection to real-world contexts, and an integration of science content with other content and skill areas. Therefore, CTL learning can be applied by techer to mathematics learning in primary schools.

  8. School Libraries and Student Learning: A Guide for School Leaders

    Science.gov (United States)

    Morris, Rebecca J.

    2015-01-01

    Innovative, well-designed school library programs can be critical resources for helping students meet high standards of college and career readiness. In "School Libraries and Student Learning", Rebecca J. Morris shows how school leaders can make the most of their school libraries to support ambitious student learning. She offers…

  9. School Science and the Language Arts

    Science.gov (United States)

    Ediger, Marlow

    2014-01-01

    An integrated science curriculum assists pupils to retain learnings better than to separate academic disciplines. Too frequently, science teachers teach each academic discipline as separate entities. However, there is much correlating of science with language, for example which might well be implemented in teaching and learning situations. Thus,…

  10. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    OpenAIRE

    Nadi SUPRAPTO; Ali MURSID

    2017-01-01

    This study focuses on attitudes toward (teaching) science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs) from the Open University in Surabaya regional office. Attitudes toward (teaching) science’ (ATS) instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descrip...

  11. Investigating the Interrelationships among Conceptions of, Approaches to, and Self-Efficacy in Learning Science

    Science.gov (United States)

    Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar

    2018-01-01

    The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science,…

  12. Nuclear science experiments in high schools

    International Nuclear Information System (INIS)

    Lowenthal, G.C.

    1990-01-01

    This paper comments on the importance of nuclear science experiments and demonstrations to science education in secondary schools. It claims that radiation protection is incompletly realised unless supported by some knowledge about ionizing radiations. The negative influence of the NHMRC Code of Practice on school experiments involving ionizing radiation is also outlined. The authors offer some suggestions for a new edition of the Code with a positive approach to nuclear science experiments in schools. 7 refs., 4 figs

  13. Impact of Interactive Online Units on Learning Science among Students with Learning Disabilities and English Learners

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Gallard M., Alejandro J.; Strycker, Lisa A.; Walden, Emily D.

    2018-01-01

    The purpose of this study was to document the design, classroom implementation, and effectiveness of interactive online units to enhance science learning over 3 years among students with learning disabilities, English learners, and general education students. Results of a randomised controlled trial with 2,303 middle school students and 71…

  14. Building Future Directions for Teacher Learning in Science Education

    Science.gov (United States)

    Smith, Kathy; Lindsay, Simon

    2016-04-01

    In 2013, as part of a process to renew an overall sector vision for science education, Catholic Education Melbourne (CEM) undertook a review of its existing teacher in-service professional development programs in science. This review led to some data analysis being conducted in relation to two of these programs where participant teachers were positioned as active learners undertaking critical reflection in relation to their science teaching practice. The conditions in these programs encouraged teachers to notice critical aspects of their teaching practice. The analysis illustrates that as teachers worked in this way, their understandings about effective science pedagogy began to shift, in particular, teachers recognised how their thinking not only influenced their professional practice but also ultimately shaped the quality of their students' learning. The data from these programs delivers compelling evidence of the learning experience from a teacher perspective. This article explores the impact of this experience on teacher thinking about the relationship between pedagogical choices and quality learning in science. The findings highlight that purposeful, teacher-centred in-service professional learning can significantly contribute to enabling teachers to think differently about science teaching and learning and ultimately become confident pedagogical leaders in science. The future of quality school-based science education therefore relies on a new vision for teacher professional learning, where practice explicitly recognises, values and attends to teachers as professionals and supports them to articulate and share the professional knowledge they have about effective science teaching practice.

  15. Content analysis of science material in junior school-based inquiry and science process skills

    Science.gov (United States)

    Patonah, S.; Nuvitalia, D.; Saptaningrum, E.

    2018-03-01

    The purpose of this research is to obtain the characteristic map of science material content in Junior School which can be optimized using inquiry learning model to tone the science process skill. The research method used in the form of qualitative research on SMP science curriculum document in Indonesia. Documents are reviewed on the basis of the basic competencies of each level as well as their potential to trace the skills of the science process using inquiry learning models. The review was conducted by the research team. The results obtained, science process skills in grade 7 have the potential to be trained using the model of inquiry learning by 74%, 8th grade by 83%, and grade 9 by 75%. For the dominant process skills in each chapter and each level is the observing skill. Follow-up research is used to develop instructional inquiry tools to trace the skills of the science process.

  16. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    Science.gov (United States)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning

  17. Alpbach Summer School - a unique learning experience

    Science.gov (United States)

    Kern, K.; Aulinas, J.; Clifford, D.; Krejci, D.; Topham, R.

    2011-12-01

    The Alpbach Summer School is a ten-day program that provides a unique opportunity for young european science and engineering students, both undergraduate and graduate, to learn how to approach the entire design process of a space mission. The theme of the 2010 Summer School was "New Space Missions to Understand Climate Change", a current, challenging, very broad and complex topic. The program was established more than 35 years ago and is organised in two interrelated parts: a series of lectures held by renowned experts in the field (in the case of this specific year, climate change and space engineering experts) that provides a technical and scientific background for the workshops that follow, the core of the Summer School. For the workshops the students are split into four international, interdisciplinary teams of about 15 students. In 2010 every team had to complete a number of tasks, four in total: (1) identify climate change research gaps and design a space mission that has not yet been flown or proposed, (2) define the science objectives and requirements of the mission, (3) design a spacecraft that meets the mission requirements, which includes spacecraft design and construction, payload definition, orbit calculations, but also the satellite launch, operation and mission costs and (4) write up a short mission proposal and present the results to an expert review panel. Achieving these tasks in only a few days in a multicultural, interdisciplinary team represents a major challenge for all participants and provides an excellent practical learning experience. Over the course of the program, students do not just learn facts about climate change and space engineering, but scientists also learn from engineers and engineers from scientists. The participants have to deepen their knowledge in an often unfamiliar field, develop organisational and team-work skills and work under pressure. Moreover, teams are supported by team and roving tutors and get the opportunity to

  18. Using Science to Take a Stand: Action-Oriented Learning in an Afterschool Science Club

    Science.gov (United States)

    Hagenah, Sara

    This dissertation study investigates what happens when students participate in an afterschool science club designed around action-oriented science instruction, a set of curriculum design principles based on social justice pedagogy. Comprised of three manuscripts written for journal publication, the dissertation includes 1) Negotiating community-based action-oriented science teaching and learning: Articulating curriculum design principles, 2) Middle school girls' socio-scientific participation pathways in an afterschool science club, and 3) Laughing and learning together: Productive science learning spaces for middle school girls. By investigating how action-oriented science design principles get negotiated, female identity development in and with science, and the role of everyday social interactions as students do productive science, this research fills gaps in the understanding of how social justice pedagogy gets enacted and negotiated among multiple stakeholders including students, teachers, and community members along what identity development looks like across social and scientific activity. This study will be of interest to educators thinking about how to enact social justice pedagogy in science learning spaces and those interested in identity development in science.

  19. The Impact of High School Science Teachers' Beliefs, Curricular Enactments and Experience on Student Learning during an Inquiry-Based Urban Ecology Curriculum

    Science.gov (United States)

    McNeill, Katherine L.; Pimentel, Diane Silva; Strauss, Eric G.

    2013-01-01

    Inquiry-based curricula are an essential tool for reforming science education yet the role of the teacher is often overlooked in terms of the impact of the curriculum on student achievement. Our research focuses on 22 teachers' use of a year-long high school urban ecology curriculum and how teachers' self-efficacy, instructional practices,…

  20. Choice--Chance--Control. That's Life. Learning about Insurance through Secondary School Courses. Insurance Basics for Everyone; Social Sciences; Mathematics; Consumer Economics.

    Science.gov (United States)

    Insurance Education Foundation, Indianapolis, IN.

    This guide, which is designed for use with secondary school students, contains four units of activities that teach the fundamentals of insurance within the context of a broad range of subjects, including social sciences, history, civics, government, mathematics, consumer economics, business, economics, life skills, family management, home…

  1. Preparation Model of Student Teacher Candidate in Developing Integrative Science Learning

    Science.gov (United States)

    Wiyanto; Widiyatmoko, Arif

    2016-01-01

    According to 2013 Curriculum in Indonesia, science learning process in Junior High School is integrally held between physics, chemistry, biology, and earth science. To successfully implementing the 2013 Curriculum in school, the education institution which generates science teacher should prepare the student, so that they can develop integrative…

  2. National Science Resources Center Project for Improving Science Teaching in Elementary Schools. Appendix A. School Systems With Exemplary Elementary Science Programs. Appendix B. Elementary Science Network

    Science.gov (United States)

    1988-12-01

    Glass, Lawrence, Deer Park High School Glass, Millard, K-12 Science Supervisor Bloomfield Municipal School District Glassman, Neil, Gleason, Steve...Superientendent Vaughn Municipal Schools Knop, Ronald N., Teacher Grissom Junior High School Knox, Amie, Director of Master Teacher Program W. Wilson...Science Supervisor Pequannock Township Public Schools Mercado , Roberto, Science Coordinator Colegio Radians, Inc. Merchant, Edwin, K-12 Science

  3. How WebQuests Can Enhance Science Learning Principles in the Classroom

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2012-01-01

    This article examines the merits of WebQuests in facilitating students' in-depth understanding of science concepts using the four principles of learning gathered from the National Research Council reports "How People Learn: Brain, Mind, Experience, and School" (1999) and the "How Students Learn: Science in the Classroom" (2005) as an analytic…

  4. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. The findings .... decisions and formulate behavioural goals for their ..... science achievement, making interpretation diffi- cult and ...

  5. Teaching and Learning Science through Song: Exploring the Experiences of Students and Teachers

    Science.gov (United States)

    Governor, Donna; Hall, Jori; Jackson, David

    2013-01-01

    This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and…

  6. Using a Science Centre as a School Lab ? a Case Story

    DEFF Research Database (Denmark)

    Sørensen, Helene

    2004-01-01

    responsibility for their own learning committed themselves to learn the scientific language. The study shows that in school science there has to be scaffolding around a project to insure that all students gain experience with science as a learning process in an environment with self-motivated, self......The study has the overall goal of finding suggestions for improving school visits to Science Centres and similar places. One such centre (Experimentarium) has established a partnership with a nearby school to investigate possibilities for cooperation. This case story tells about a project where...... tenth graders were trained to become museum ?explainers? as part of their science education. The objectives were to investigate if it was possible to obtain a quality out-of?school experience using the Experimentarium as a science lab. The intention of the study was to look at science learning...

  7. Ausubel's Theory of Learning and its Application to Introductory Science Part II--Primary Science: An Ausubelian View.

    Science.gov (United States)

    McClelland, J. A. G.

    1982-01-01

    In part 1 (SE 532 193) an outline of Ausubel's learning theory was given. The application of the theory to elementary school science is addressed in this part, clarifying what elementary science means and indicating how it relates to what may be expected to be already known by elementary school children. (Author/JN)

  8. Accelerated Schools as Professional Learning Communities.

    Science.gov (United States)

    Biddle, Julie K.

    The goal of the Accelerated Schools Project (ASP) is to develop schools in which all children achieve at high levels and all members of the school community engage in developing and fulfilling the school's vision. But to fully implement the ASP model, a school must become a learning community that stresses relationships, shared values, and a…

  9. Secondary School Students' Predictors of Science Attitudes

    Science.gov (United States)

    Tosun, Cemal; Genç, Murat

    2016-01-01

    The purpose of this study is to identify the factors that affect the secondary school students' attitudes in science. This study was conducted using survey method. The sample of the study was 503 students from four different secondary schools in Bartin and Düzce. Data were obtained using the Survey of Factors Affecting Students' Science Attitudes…

  10. Education sciences, schooling, and abjection: recognizing ...

    African Journals Online (AJOL)

    people to that future. The double gestures continue in contemporary school reform and its sciences. ... understand their different cultural theses about cosmopolitan modes of life and the child cast out as different and ... Keywords: educational sciences; history of present; politics of schooling; reform; social inclusion/exclusion

  11. Original science-based music and student learning

    Science.gov (United States)

    Smolinski, Keith

    American middle school student science scores have been stagnating for several years, demonstrating a need for better learning strategies to aid teachers in instruction and students in content learning. It has also been suggested by researchers that music can be used to aid students in their learning and memory. Employing the theoretical framework of brain-based learning, the purpose of this study was to examine the impact of original, science-based music on student content learning and student perceptions of the music and its impact on learning. Students in the treatment group at a public middle school learned songs with lyrics related to the content of a 4-week cells unit in science; whereas an equally sized control group was taught the same material using existing methods. The content retention and learning experiences of the students in this study were examined using a concurrent triangulation, mixed-methods study. Independent sample t test and ANOVA analyses were employed to determine that the science posttest scores of students in the treatment group (N = 93) were significantly higher than the posttest scores of students in the control group (N = 93), and that the relative gains of the boys in the treatment group exceeded those of the girls. The qualitative analysis of 10 individual interviews and 3 focus group interviews followed Patton's method of a priori coding, cross checking, and thematic analysis to examine the perceptions of the treatment group. These results confirmed that the majority of the students thought the music served as an effective learning tool and enhanced recall. This study promoted social change because students and teachers gained insight into how music can be used in science classrooms to aid in the learning of science content. Researchers could also utilize the findings for continued investigation of the interdisciplinary use of music in educational settings.

  12. High school science fair and research integrity

    Science.gov (United States)

    Dalley, Simon; Shepherd, Karen; Reisch, Joan

    2017-01-01

    Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at UT Southwestern Medical Center. Of the post-high school students, 24% had competed in science fair during their high school education. Science fair experience was similar overall for the local cohort of Dallas regional students and the more diverse state/national cohort of post-high school students. Only one student out of 122 reported research misconduct, in his case making up the data. Unexpectedly, post-high school students who did not participate in science fair anticipated that carrying out science fair would be much more difficult than actually was the case, and 22% of the post-high school students anticipated that science fair participants would resort to research misconduct to overcome obstacles. No gender-based differences between students’ science fair experiences or expectations were evident. PMID:28328976

  13. Teaching and Learning in the Mixed-Reality Science Classroom

    Science.gov (United States)

    Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher

    2009-12-01

    As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to combine best practices in traditional science learning with the powerful affordances of audio/visual simulations. This paper introduces the realization of a learning environment called SMALLab, the Situated Multimedia Arts Learning Laboratory. We present a recent teaching experiment for high school chemistry students. A mix of qualitative and quantitative research documents the efficacy of this approach for students and teachers. We conclude that mixed-reality learning is viable in mainstream high school classrooms and that students can achieve significant learning gains when this technology is co-designed with educators.

  14. Senior High School Earth Sciences and Marine Sciences.

    Science.gov (United States)

    Hackenberg, Mary; And Others

    This guide was developed for earth sciences and marine sciences instruction in the senior high schools of Duval County, Jacksonville, Florida. The subjects covered are: (1) Earth Science for 10th, 11th, and 12th graders; (2) Marine Biology I for 10th, 11th, and 12th graders; (3) Marine Biology II, Advanced, for 11th and 12th graders; (4) Marine…

  15. A Space-Based Learning Service for Schools Worldwide

    Science.gov (United States)

    White, Norman A.; Gibson, Alan

    2002-01-01

    This paper outlines a scheme for international collaboration to enrich the use of space in school education, to improve students' learning about science and related subjects and to enhance the continuity of science-related studies after the age of 16. Guidelines are presented for the design of an on-line learning service to provide schools worldwide with:- interactive curriculum-related learning resources for teaching about space and through - access to a purpose-designed education satellite or satellites; - opportunities for hands-on work by students in out-of-school hours; - news about space developments to attract, widen and deepen initial interest among teachers - support services to enable teachers to make effective use of the learning service. The Learning Service is the product of almost twenty years of experience by a significant number of UK schools in experimenting with, and in using, satellites and space to aid learning; and over four years of study and development by the SpaceLink Learning Foundation - a private-sector, not- for-profit UK registered charity, which is dedicated to help in increasing both the supply of scientists and engineers and the public understanding of science. This initiative provides scope for, and could benefit from, the involvement of relevant/interested organisations drawn from different countries. The Foundation would be ready, from its UK base, to be among such a group of initiating organisations.

  16. Designing for expansive science learning and identification across settings

    Science.gov (United States)

    Stromholt, Shelley; Bell, Philip

    2017-10-01

    In this study, we present a case for designing expansive science learning environments in relation to neoliberal instantiations of standards-based implementation projects in education. Using ethnographic and design-based research methods, we examine how the design of coordinated learning across settings can engage youth from non-dominant communities in scientific and engineering practices, resulting in learning experiences that are more relevant to youth and their communities. Analyses highlight: (a) transformative moments of identification for one fifth-grade student across school and non-school settings; (b) the disruption of societal, racial stereotypes on the capabilities of and expectations for marginalized youth; and (c) how youth recognized themselves as members of their community and agents of social change by engaging in personally consequential science investigations and learning.

  17. Promoting Science in Secondary School Education.

    Science.gov (United States)

    Chiovitti, Anthony; Duncan, Jacinta C; Jabbar, Abdul

    2017-06-01

    Engaging secondary school students with science education is crucial for a society that demands a high level of scientific literacy in order to deal with the economic and social challenges of the 21st century. Here we present how parasitology could be used to engage and promote science in secondary school students under the auspice of a 'Specialist Centre' model for science education. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Quantitative Reasoning in Environmental Science: A Learning Progression

    Science.gov (United States)

    Mayes, Robert Lee; Forrester, Jennifer Harris; Christus, Jennifer Schuttlefield; Peterson, Franziska Isabel; Bonilla, Rachel; Yestness, Nissa

    2014-01-01

    The ability of middle and high school students to reason quantitatively within the context of environmental science was investigated. A quantitative reasoning (QR) learning progression was created with three progress variables: quantification act, quantitative interpretation, and quantitative modeling. An iterative research design was used as it…

  19. Mobile Phone Images and Video in Science Teaching and Learning

    Science.gov (United States)

    Ekanayake, Sakunthala Yatigammana; Wishart, Jocelyn

    2014-01-01

    This article reports a study into how mobile phones could be used to enhance teaching and learning in secondary school science. It describes four lessons devised by groups of Sri Lankan teachers all of which centred on the use of the mobile phone cameras rather than their communication functions. A qualitative methodological approach was used to…

  20. Superstitious Beliefs as Constraints in The Learning of Science ...

    African Journals Online (AJOL)

    This paper examines the nature, prevalence and effect of superstitious beliefs as constraints to the appropriate learning of science in our schools. Studies done on identification and analysis of types and degrees of superstitious beliefs have been reported as well as to how these beliefs inhibit the individual learner\\'s ...

  1. Effects of Different Student Response Modes on Science Learning

    Science.gov (United States)

    Kho, Lee Sze; Chen, Chwen Jen

    2017-01-01

    Student response systems (SRSs) are wireless answering devices that enable students to provide simple real-time feedback to instructors. This study aims to evaluate the effects of different SRS interaction modes on elementary school students' science learning. Three interaction modes which include SRS Individual, SRS Collaborative, and Classroom…

  2. Investigating Science Collaboratively: A Case Study of Group Learning

    Science.gov (United States)

    Zinicola, Debra A.

    2009-01-01

    Discussions of one urban middle school group of students who were investigating scientific phenomena were analyzed; this study was conducted to discern if and how peer interaction contributes to learning. Through a social constructivist lens, case study methodology, we examined conceptual change among group members. Data about science talk was…

  3. Learn to Lead: Mapping Workplace Learning of School Leaders

    Science.gov (United States)

    Hulsbos, Frank Arnoud; Evers, Arnoud Theodoor; Kessels, Joseph Willem Marie

    2016-01-01

    In recent years policy makers' interest in the professional development of school leaders has grown considerably. Although we know some aspect of formal educational programs for school leaders, little is known about school leaders' incidental and non-formal learning in the workplace. This study aims to grasp what workplace learning activities…

  4. Uncovering Black/African American and Latina/o students' motivation to learn science: Affordances to science identity development

    Science.gov (United States)

    Mahfood, Denise Marcia

    The following dissertation reports on a qualitative exploration that serves two main goals: (1) to qualitatively define and highlight science motivation development of Black/African American and Latina/o students as they learn science in middle school, high school, and in college and (2) to reveal through personal narratives how successful entry and persistence in science by this particular group is linked to the development of their science identities. The targeted population for this study is undergraduate students of color in science fields at a college or university. The theoretical frameworks for this study are constructivist theory, motivation theory, critical theory, and identity theories. The methodological approach is narrative which includes students' science learning experiences throughout the course of their academic lives. I use The Science Motivation Questionnaire II to obtain baseline data to quantitatively assess for motivation to learn science. Data from semi-structured interviews from selected participants were collected, coded, and configured into a story, and emergent themes reveal the important role of science learning in both informal and formal settings, but especially in informal settings that contribute to better understandings of science and the development of science identities for these undergraduate students of color. The findings have implications for science teaching in schools and teacher professional development in science learning.

  5. Science Lab Restructuring of a Public School Elementary and High School

    Directory of Open Access Journals (Sweden)

    Elisiane da Costa Moro

    2016-02-01

    Full Text Available This paper presents the process of restructuring the science lab of a state school in Caxias do Sul, whose main objective was to create a space where teachers could develop practical and experimental activities with their students. The restructuring of the science lab this school, was only possible through the project "More and Better Students and Teachers in Science, Mathematics, Engineering and Technologies" Initiation Program in Science and Mathematics, Engineering, Creative Technologies and Letters - PICMEL sponsored jointly by the University of Caxias do Sul, the SEDUC-RS, FAPERGS and CAPES. The project was developed at school by a teacher of physics and three high school students. Through the restructuring of the science lab, practical activities were developed and workshops where students had the opportunity to be more active in the process of teaching and learning. With the development of such activities was observed that the students were more willing to learn Science and Mathematics and could relate scientific knowledge to their daily lives, giving greater meaning to their learning.

  6. Values of Catholic science educators: Their impact on attitudes of science teaching and learning

    Science.gov (United States)

    DeMizio, Joanne Greenwald

    This quantitative study examined the associations between the values held by middle school science teachers in Catholic schools and their attitudes towards science teaching. A total of six value types were studied---theoretical, economic, aesthetic, social, political, and religious. Teachers can have negative, positive, or neutral attitudes towards their teaching that are linked to their teaching practices and student learning. These teachers' attitudes may affect their competence and have a subsequent impact on their students' attitudes and dispositions towards science. Of particular interest was the relationship between science teaching attitudes and religious values. A non-experimental research design was used to obtain responses from 54 teachers with two survey instruments, the Science Teaching Attitude Scale II and the Allport-Vernon-Lindzey Study of Values. Stepwise multiple regression analysis showed that political values were negatively associated with attitudes towards science teaching. Data collected were inconsistent with the existence of any measurable association between religious values and attitudes towards science teaching. This study implies that science teacher preparation programs should adopt a more contextual perspective on science that seeks to develop the valuation of science within a cultural context, as well as programs that enable teachers to identify the influence of their beliefs on instructional actions to optimize the impact of learning new teaching practices that may enhance student learning.

  7. Development of Learning to Learn Skills in Primary School

    Science.gov (United States)

    Vainikainen, Mari-Pauliina; Wüstenberg, Sascha; Kupiainen, Sirkku; Hotulainen, Risto; Hautamäki, Jarkko

    2015-01-01

    In Finland, schools' effectiveness in fostering the development of transversal skills is evaluated through large-scale learning to learn (LTL) assessments. This article presents how LTL skills--general cognitive competences and learning-related motivational beliefs--develop during primary school and how they predict pupils' CPS skills at the end…

  8. School Autonomy, Leadership and Learning: A Reconceptualisation

    Science.gov (United States)

    Cheng, Yin Cheong; Ko, James; Lee, Theodore Tai Hoi

    2016-01-01

    Purpose: The purpose of this paper is to develop a framework for reconceptualising research on school autonomy to redress the limitations of traditional research, strengthen the conceptual links between school autonomy and learning outcomes and offer a range of new strategies for studying the interplay of school autonomy, leadership and learning.…

  9. Exhibitions as learning environments: a review of empirical research on students’ science learning at Natural History Museums, Science Museums and Science Centres

    Directory of Open Access Journals (Sweden)

    Nils Petter Hauan

    2014-04-01

    Full Text Available One aim for many natural history museums, science museums and science centres is to contribute to school-related learning in science. In this article we review published empirical studies of this challenging area. The review indicates that the effectiveness of educational activities at different types of science-communication venues (SCV in supporting students’ science learning varies. There is also evidence of interesting differences between activities, depending on how these activities are designed. Firstly, these activities can stimulate interest and conceptual focus through a well-designed combination of structure and openness. Secondly, they can stimulate talks and explorations related to the presented topics. We have identified two possible areas which might prove fruitful in guiding further research: an exploration of the effects of different designs for guided exploratory learning, and an evaluation of the effectiveness of educational activities by studying the presence and quality of the learning processes visitors are engaged in. 

  10. Evaluating Junior Secondary Science Textbook Usage in Australian Schools

    Science.gov (United States)

    McDonald, Christine V.

    2016-08-01

    A large body of research has drawn attention to the importance of providing engaging learning experiences in junior secondary science classes, in an attempt to attract more students into post-compulsory science courses. The reality of time and resource constraints, and the high proportion of non-specialist science teachers teaching science, has resulted in an overreliance on more transmissive pedagogical tools, such as textbooks. This study sought to evaluate the usage of junior secondary science textbooks in Australian schools. Data were collected via surveys from 486 schools teaching junior secondary (years 7-10), representing all Australian states and territories. Results indicated that most Australian schools use a science textbook in the junior secondary years, and textbooks are used in the majority of science lessons. The most highly cited reason influencing choice of textbook was layout/colour/illustrations, and electronic technologies were found to be the dominant curricula material utilised, in addition to textbooks, in junior secondary science classes. Interestingly, the majority of respondents expressed high levels of satisfaction with their textbooks, although many were keen to stress the subsidiary role of textbooks in the classroom, emphasising the textbook was `one' component of their teaching repertoire. Importantly, respondents were also keen to stress the benefits of textbooks in supporting substitute teachers, beginning teachers, and non-specialist science teachers; in addition to facilitating continuity of programming and staff support in schools with high staff turnover. Implications from this study highlight the need for high quality textbooks to support teaching and learning in Australian junior secondary science classes.

  11. The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model

    Science.gov (United States)

    Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma

    2015-01-01

    The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…

  12. Case study of science teaching in an elementary school: Characteristics of an exemplary science teacher

    Science.gov (United States)

    Kao, Huey-Lien

    Improving the quality of science teaching is one of the greatest concerns in recent science education reform efforts. Many science educators suggest that case studies of exemplary science teachers may provide guidance for these reform efforts. For this reason, the characteristics of exemplary science teaching practices have been identified in recent years. However, the literature lacks research exploring exemplary teacher beliefs about the nature of science and science pedagogy, the relationships between their beliefs and practices, or how outstanding teachers overcome difficulties in order to facilitate their students' science learning. In this study, Sam-Yu, an identified exemplary science teacher who teaches in an elementary school in Pintung, Taiwan, was the subject. An interpretative research design (Erickson, 1986) based on principles of naturalistic inquiry (Lincoln & Guba, 1985) was used. Both qualitative and quantitative methods were employed in this case study. The qualitative method involved conducting interviews with the teacher and students, observing classroom activities and analyzing the structure of the learning materials. The quantitative methods involved using the Learning Climate Inventory (LCI) (Lin, 1997) instrument to assess the learning environment of the exemplary science classroom. This study found that Sam-Yu had a blend of views on the nature of science and a varied knowledge about science pedagogy. Personal preferences, past experiences, and the national science curriculum all played important roles in the development and refinement of Sam-Yu's beliefs about science and pedagogy. Regarding his teaching practices, Sam-Yu provided the best learning experiences, as evidenced in both classroom observations and the survey results, for his students by using a variety of strategies. In addition, his classroom behaviors were highly associated with his beliefs about science and pedagogy. However, due to school-based and socio-cultural constraints

  13. Embedding Indigenous Perspectives in Teaching School Science

    Science.gov (United States)

    Appanna, Subhashni Devi

    2011-01-01

    Some Indigenous students are at risk of academic failure and science teachers have a role in salvaging these equally able students. This article firstly elucidates the research entailed in Indigenous science education in Australia and beyond. Secondly, it reviews the cultural and language barriers when learning science, faced by middle and senior…

  14. It's not rocket science : developing pupils’ science talent in out-of-school science education for primary schools

    NARCIS (Netherlands)

    Geveke, Carla

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  15. It's not rocket science : Developing pupils’ science talent in out-of-school science education for Primary Schools

    NARCIS (Netherlands)

    Geveke, Catherina

    2017-01-01

    Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates

  16. The effect of science-technology-society issue instruction on the attitudes of female middle school students toward science

    Science.gov (United States)

    Mullinnix, Debra Lynn

    An assessment of the science education programs of the last thirty years reveals traditional science courses are producing student who have negative attitudes toward science, do not compete successfully in international science and mathematics competitions, are not scientifically literate, and are not interested in pursuing higher-level science courses. When the number of intellectually-capable females that fall into this group is considered, the picture is very disturbing. Berryman (1983) and Kahle (1985) have suggested the importance of attitude both, in terms of achievement in science and intention to pursue high-level science courses. Studies of attitudes toward science reveal that the decline in attitudes during grades four through eight was much more dramatic for females than for males. There exists a need, therefore, to explore alternative methods of teaching science, particularly in the middle school, that would increase scientific literacy, improve attitudes toward science, and encourage participation in higher-level science courses of female students. Yager (1996) has suggested that science-technology-society (STS) issue instruction does make significant changes in students' attitudes toward science, stimulates growth in science process skills, and increases concept mastery. The purpose of this study was to examine the effect STS issue instruction had on the attitudes of female middle school students toward science in comparison to female middle school students who experience traditional science instruction. Another purpose was to examine the effect science-technology-society issue instruction had on the attitudes of female middle school students in comparison to male middle school students. The pretests and the posttests were analyzed to examine differences in ten domains: enjoyment of science class; usefulness of information learned in science class; usefulness of science skills; feelings about science class in general; attitudes about what took place

  17. Preparing perservice teachers to teach elementary school science

    Science.gov (United States)

    Lewis, Amy D.

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.

  18. Learning correlation and regression within authentic sciences

    NARCIS (Netherlands)

    Dierdorp, A.

    2013-01-01

    One of the key challenges in mathematics and science education in secondary schools is to establish coherence between these school subjects. According to this PhD thesis statistical modelling can be a way to let students experience the connections between mathematics and science. The purpose of this

  19. Communicating Science to Impact Learning? A Phenomenological Inquiry into 4th and 5th Graders' Perceptions of Science Information Sources

    Science.gov (United States)

    Gelmez Burakgazi, Sevinc; Yildirim, Ali; Weeth Feinstein, Noah

    2016-04-01

    Rooted in science education and science communication studies, this study examines 4th and 5th grade students' perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered through classroom observations and interviews in four Turkish elementary schools. Focus group interviews with 47 students and individual interviews with 17 teachers and 10 parents were conducted. Participants identified a wide range of SIS, including TV, magazines, newspapers, internet, peers, teachers, families, science centers/museums, science exhibitions, textbooks, science books, and science camps. Students reported using various SIS in school-based and non-school contexts to satisfy their cognitive, affective, personal, and social integrative needs. SIS were used for science courses, homework/project assignments, examination/test preparations, and individual science-related research. Students assessed SIS in terms of the perceived accessibility of the sources, the quality of the content, and the content presentation. In particular, some sources such as teachers, families, TV, science magazines, textbooks, and science centers/museums ("directive sources") predictably led students to other sources such as teachers, families, internet, and science books ("directed sources"). A small number of sources crossed context boundaries, being useful in both school and out. Results shed light on the connection between science education and science communication in terms of promoting science learning.

  20. Innovative Methods of Teaching Science and Engineering in Secondary Schools

    Directory of Open Access Journals (Sweden)

    Nathan BALASUBRAMANIAN

    2006-12-01

    Full Text Available This article describes the design of an interactive learning environment to increase student achievement in middle schools by addressing students' preconceptions, and promoting purposeful social collaboration, distributed cognition, and contextual learning. The paper presents the framework that guided our design efforts to immerse all students in a progression of guided-inquiry hands-on activities. Students find compelling reasons to learn by responding to authentic science-based challenges, both in simulations and hands-on activities, based on specific instructional objectives from the national standards.

  1. Influence of science and technology magnet middle schools on students' motivation and achievement in science

    Science.gov (United States)

    Allen, David

    Some informal discussions among educators regarding motivation of students and academic performance have included the topic of magnet schools. The premise is that a focused theme, such as an aspect of science, positively affects student motivation and academic achievement. However, there is limited research involving magnet schools and their influence on student motivation and academic performance. This study provides empirical data for the discussion about magnet schools influence on motivation and academic ability. This study utilized path analysis in a structural equation modeling framework to simultaneously investigate the relationships between demographic exogenous independent variables, the independent variable of attending a science or technology magnet middle school, and the dependent variables of motivation to learn science and academic achievement in science. Due to the categorical nature of the variables, Bayesian statistical analysis was used to calculate the path coefficients and the standardized effects for each relationship in the model. The coefficients of determination were calculated to determine the amount of variance each path explained. Only five of 21 paths had statistical significance. Only one of the five statistically significant paths (Attended Magnet School to Motivation to Learn Science) explained a noteworthy amount (45.8%) of the variance.

  2. Exploring the Effects of Concreteness Fading across Grades in Elementary School Science Education

    Science.gov (United States)

    Jaakkola, Tomi; Veermans, Koen

    2018-01-01

    The present study investigates the effects that concreteness fading has on learning and transfer across three grade levels (4-6) in elementary school science education in comparison to learning with constantly concrete representations. 127 9- to 12-years-old elementary school students studied electric circuits in a computer-based simulation…

  3. High School Physics: An Interactive Instructional Approach That Meets the Next Generation Science Standards

    Science.gov (United States)

    Huang, Shaobo; Mejia, Joel Alejandro; Becker, Kurt; Neilson, Drew

    2015-01-01

    Improving high school physics teaching and learning is important to the long-term success of science, technology, engineering, and mathematics (STEM) education. Efforts are currently in place to develop an understanding of science among high school students through formal and informal educational experiences in engineering design activities…

  4. GeoBus: sharing science research with schools

    Science.gov (United States)

    Roper, Kathryn; Robinson, Ruth; Moorhouse, Ben

    2016-04-01

    GeoBus (www.geobus.org.uk) is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews, and it is currently sponsored by industry, NERC, The Crown Estate, and the Scottish Government. The aims of GeoBus are to support the teaching of Earth Science in secondary (middle and high) schools by providing teaching support to schools that have little or no experience in teaching this subject. This is, in part, done through the sharing of new science research outcomes and the experiences of young researchers with school pupils to provide a bridge between industry, higher education institutions, research councils and schools. Since its launch, over 40,000 pupils will have been involved in experiential Earth science learning activities in 190 different schools (over 400 separate visits) across the length and breadth of Scotland: many of these schools are in remote and disadvantaged regions. A new GeoBus project is under development within the Department of Earth Sciences at UCL in London. A key aim of GeoBus is to incorporate new research into our workshops with the main challenge being the development of appropriate resources that incorporate the key learning aims and requirements of the science and geography curricula. GeoBus works closely with researchers, teachers and educational practitioners to tailor the research outcomes to the curricula as much as possible. Over the past four years, GeoBus has developed 17 workshops, 5 challenge events and extensive field trips and each of these activities are trialled and evaluated within the university, and adjustments are made before the activities are delivered in schools. Activities are continually reviewed and further developments are made in response to both teacher and pupil feedback. This critical reflection of the project's success and impact is important to insure a positive and significant contribution to the science learning in

  5. Looking in a science classroom: exploring possibilities of creative cultural divergence in science teaching and learning

    Science.gov (United States)

    Baron, Alex; Chen, Hsiao-Lan Sharon

    2012-03-01

    Worldwide proliferation of pedagogical innovations creates expanding potential in the field of science education. While some teachers effectively improve students' scientific learning, others struggle to achieve desirable student outcomes. This study explores a Taiwanese science teacher's ability to effectively enhance her students' science learning. The authors visited a Taipei city primary school class taught by an experienced science teacher during a 4-week unit on astronomy, with a total of eight, 90-minute periods. Research methods employed in this study included video capture of each class as well as reflective interviews with the instructor, eliciting the teacher's reflection upon both her pedagogical choices and the perceived results of these choices. We report that the teacher successfully teaches science by creatively diverging from culturally generated educational expectations. Although the pedagogical techniques and ideas enumerated in the study are relevant specifically to Taiwan, creative cultural divergence might be replicated to improve science teaching worldwide.

  6. Time on Text and Science Achievement for High School Biology Students

    Science.gov (United States)

    Wyss, Vanessa L.; Dolenc, Nathan; Kong, Xiaoqing; Tai, Robert H.

    2013-01-01

    The conflict between the amount of material to be addressed in high school science classes, the need to prepare students for standardized tests, and the amount of time available forces science educators to make difficult pedagogical decisions on a daily basis. Hands-on and inquiry-based learning offer students more authentic learning experiences…

  7. Measuring University Students' Perceived Self-Efficacy in Science Communication in Middle and High Schools

    Science.gov (United States)

    Chi, Shaohui; Liu, Xiufeng; Gardella, Joseph A.

    2016-01-01

    Service learning typically involves university students in teaching and learning activities for middle and high school students, however, measurement of university students' self-efficacy in science communication is still lacking. In this study, an instrument to measure university students' perceived self-efficacy in communicating science to…

  8. Engaging Karen refugee students in science learning through a cross-cultural learning community

    Science.gov (United States)

    Harper, Susan G.

    2017-02-01

    This research explored how Karen (first-generation refugees from Burma) elementary students engaged with the Next Generation Science Standards (NGSS) practice of constructing scientific explanations based on evidence within the context of a cross-cultural learning community. In this action research, the researcher and a Karen parent served as co-teachers for fourth- and fifth-grade Karen and non-Karen students in a science and culture after-school programme in a public elementary school in the rural southeastern United States. Photovoice provided a critical platform for students to create their own cultural discourses for the learning community. The theoretical framework of critical pedagogy of place provided a way for the learning community to decolonise and re-inhabit the learning spaces with knowledge they co-constructed. Narrative analysis of video transcripts of the after-school programme, ethnographic interviews, and focus group discussions from Photovoice revealed a pattern of emerging agency by Karen students in the scientific practice of constructing scientific explanations based on evidence and in Karen language lessons. This evidence suggests that science learning embedded within a cross-cultural learning community can empower refugee students to construct their own hybrid cultural knowledge and leverage that knowledge to engage in a meaningful way with the epistemology of science.

  9. High School Science Teachers' Views on Science Process Skills

    Science.gov (United States)

    Gultepe, Nejla

    2016-01-01

    The current research is a descriptive study in which a survey model was used. The research involved chemistry (n = 26), physics (n = 27), and biology (n = 29) teachers working in Science High Schools and Anatolian High Schools in Turkey. An inventory that consisted of seven questions was designed to ascertain what teachers' think about the…

  10. Science Integrating Learning Objectives: A Cooperative Learning Group Process

    Science.gov (United States)

    Spindler, Matt

    2015-01-01

    The integration of agricultural and science curricular content that capitalizes on natural and inherent connections represents a challenge for secondary agricultural educators. The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives…

  11. The survey of the nuclear sciences in the curricula of senior high schools

    International Nuclear Information System (INIS)

    Ujeno, Yowri; Okamura, Seizo; Inaoka, Mariko; Nakase, Yoshiaki.

    1994-01-01

    To know senior high school education and recognition of nuclear science, questionnaire survey was made in a total of 619 university, college or occupational school students who graduated from senior high schools before 1993. Female students accounted for 95% (n=589) because females are believed to more strongly affect the next generation than males. Of these students, 92.7% had graduated from the ordinary course of senior high school. Students who majored in physical science accounted for 38.6%. In the physical science curriculum, nuclear science had been selected in 27.8% of the students. Among the students who majored in physical science, 38.1% did not memorize the learning of basic physical science at all, and only 25% memorized the learning. These results suggest that the learning of physical science is extremely insufficient. However, such an unfamiliar phenomenon of physical science seems to be closely related to the examination system to universities and colleges. The reason why few people give a debate upon atomic power generation is that people have no accurate knowledge because of their insufficient school learning of nuclear science. Only 19.1% had taken lessons of atomic power generation in the curriculum of social science. Serious problems of the senior high school educational system are pointed out. (N.K.)

  12. The use of digital technologies as a didactic resource for the teaching and learning of science for students of the last year of the fundamental education of public schools in Brazil

    Science.gov (United States)

    Paganotti, A.; Paladino, L.; Araujo Júnior, C. F.; Voelzke, M. R.

    2017-07-01

    The technological transformation of the last decades requires that teachers get a new look on how to teach. There is a demand that knowledge should be transformed in order to connect it with the new reality, lived in the everyday life. This work aimed to verify the insertion of digital technologies in the daily life of students of public schools in the state educational network. Four schools participated in the study, of which two were located in Divinópolis, State of Minas Gerais, Brazil, designated as A and B schools, with 68 surveyed students, and other two were located in the outskirts of the City of São Paulo, called C and D schools, with 62 tested students. A research questionnaire was used with six objective and discursive questions. The analysis of the given answers suggest the conclusion that more than 70% of the surveyed students use the smartphone as the main tool associated with technologies. Other options such as the tablet or desktop computer have been rarely mentioned. When students were questioned about the use of digital technologies by the teacher, very diverse responses emerged. At school A, 30 students stated that the science teacher does not use digital technologies in their classrooms. In school B, the result was the opposite, because all of the 36 students affirmed the use of technologies by teachers. At school C, 22 students stated that they did not use technologies in their classrooms while at school D, only 17 made this statement. It is concluded that the students live in a world full of digital technologies in their daily life, but the school representing the teaching action does not follow this technological trend, which contributes to the permanence of the traditional lectures and the predominance of the students' mechanical learning.

  13. Science and Sandy: Lessons Learned

    Science.gov (United States)

    Werner, K.

    2013-12-01

    Following Hurricane Sandy's impact on the mid-Atlantic region, President Obama established a Task Force to '...ensure that the Federal Government continues to provide appropriate resources to support affected State, local, and tribal communities to improve the region's resilience, health, and prosperity by building for the future.' The author was detailed from NOAA to the Task Force between January and June 2013. As the Task Force and others began to take stock of the region's needs and develop plans to address them, many diverse approaches emerged from different areas of expertise including: infrastructure, management and construction, housing, public health, and others. Decision making in this environment was complex with many interests and variables to consider and balance. Although often relevant, science and technical expertise was not always at the forefront of this process. This talk describes the author's experience with the Sandy Task Force focusing on organizing scientific expertise to support the work of the Task Force. This includes a description of federal activity supporting Sandy recovery efforts, the role of the Task Force, and lessons learned from developing a science support function within the Task Force.

  14. Learning about Inheritance in an Out-of-School Setting

    Science.gov (United States)

    Dairianathan, Anne; Subramaniam, R.

    2011-01-01

    The purpose of this study was to investigate primary students' learning through participation in an out-of-school enrichment programme, held in a science centre, which focused on DNA and genes and whether participation in the programme led to an increased understanding of inheritance as well as promoted interest in the topic. The sample consisted…

  15. Learning Science through Computer Games and Simulations

    Science.gov (United States)

    Honey, Margaret A., Ed.; Hilton, Margaret, Ed.

    2011-01-01

    At a time when scientific and technological competence is vital to the nation's future, the weak performance of U.S. students in science reflects the uneven quality of current science education. Although young children come to school with innate curiosity and intuitive ideas about the world around them, science classes rarely tap this potential.…

  16. Towards a pragmatic science in schools

    Science.gov (United States)

    Segal, Gilda

    1997-06-01

    This paper contrasts naive beliefs about the nature of science, with science as it appears from sociological and philosophical study, feminist critique and insights from multicultural education. I draw implications from these informed views to suggest how school science might be modified to project a pragmatic view of science to its students that allows students to know science and its relationships to themselves and society in multi-faceted ways. From these perspectives, pragmatic school science is situated within a values framework that questions how we know. Pragmatic school science also requires that the naive inductivist views that permeate school science inquiry methods at present be modified to recognise that observations and inquiry are guided by prior knowledge and values; that new knowledge is tentative; that some knowledge has high status, as it has been constructed consensually over a long period; but that even high status knowledge can be challenged. For implementation of these reforms, yet still to embrace the need for some students to appropriate understanding of discipline knowledge required for advanced science education, a broad set of aims is required.

  17. Leading Learning: Science Departments and the Chair

    Science.gov (United States)

    Melville, Wayne; Campbell, Todd; Jones, Doug

    2016-01-01

    In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…

  18. Out-of-School Activities Related to Science and Technology

    Directory of Open Access Journals (Sweden)

    Ángel Vázquez Alonso

    2007-05-01

    Full Text Available Artificial and natural environments constitute an extensive educational resource in whose framework the basic experiences that contribute to the development process of human beings occur. These experiences are the source of previous knowledge that students bring to school and that are key for building scientific school learning. This article reports the results of a study that addresses out-of-school experiences related to science and technology, through the application of an inventory list to a sample of students who were in their last year of compulsory education. The results show a relatively low overall frequency of experiences, characterized by some qualitative and quantitative differences according to a few grouping variables such as gender, the choice of an elective science subject, and different scientific topics and disciplines. In spite of its importance for learning, the school curriculum often ignores students’ previous experiences. Finally, we discuss the relevance of these results for developing a more equitable science and technology curriculum, from a perspective of a universal, humanistic science education.

  19. Organizational Learning in Schools under Sanction

    Directory of Open Access Journals (Sweden)

    Kara S. Finnigan

    2012-01-01

    Full Text Available The focus on “school turnaround” has become central to policy and practice in the United States as a result of school accountability, yet little remains known about school improvement under sanction. This study uses theories of organizational learning to understand the processes through which educators search for and adopt reform strategies, as well as the extent to which these schools’ organizational culture and climate are conducive to this type of learning. Our mixed methods study involves document analysis, intensive case studies, and a survey of teachers in schools under sanction in a large urban school district in the USA. We found limited evidence of organizational learning, and instead evidence suggested superficial use of restructuring planning, rare diagnoses of root causes of low performance, and limited engagement in learning processes of school staff. In addition, schools relied on exploitation resulting in the recycling of previous practices. In part, the limited organizational learning in evidence was the result of structures and climates within these low-performing schools that inhibited a more learning-oriented approach to reform. Our study has implications for school improvement under accountability policies as it uncovers important challenges that limit organizational learning and, as a result, school improvement under sanction.

  20. A Problem-Based Learning Scenario That Can Be Used in Science Teacher Education

    Science.gov (United States)

    Sezgin Selçuk, Gamze

    2015-01-01

    The purpose of this study is to introduce a problem-based learning (PBL) scenario that elementary school science teachers in middle school (5th-8th grades) can use in their in-service training. The scenario treats the subjects of heat, temperature and thermal expansion within the scope of the 5th and 6th grade science course syllabi and has been…

  1. The relationship of mentoring on middle school girls' science-related attitudes

    Science.gov (United States)

    Clark, Lynette M.

    This quantitative study examined the science-related attitudes of middle school girls who attended a science-focused mentoring program and those of middle school girls who attended a traditional mentoring program. Theories related to this study include social cognitive theory, cognitive development theory, and possible selves' theory. These theories emphasize social and learning experiences that may impact the science-related attitudes of middle school girls. The research questions examined the science-related attitudes of middle school girls who participate in a science-related mentoring program. The hypotheses suggested that there are significant differences that exist between the attitudes of middle school female participants in a science-related mentoring program and female participants in a traditional mentoring program. The quantitative data were collected through a survey entitled the Test of Science-Related Attitudes (TOSRA) which measures science-related attitudes. The population of interest for this study is 11-15 year old middle school girls of various racial and socio-economic backgrounds. The sample groups for the study were middle school girls participating in either a science-focused mentoring program or a traditional mentoring program. Results of the study indicated that no significant difference existed between the science-related attitudes of middle school girls in a science-related mentoring program and the attitudes of those in a traditional mentoring program. The practical implications for examining the concerns of the study would be further investigations to increase middle school girls' science-related attitudes.

  2. Effects of the Digital Game-Development Approach on Elementary School Students' Learning Motivation, Problem Solving, and Learning Achievement

    Science.gov (United States)

    Chu, Hui-Chun; Hung, Chun-Ming

    2015-01-01

    In this study, the game-based development approach is proposed for improving the learning motivation, problem solving skills, and learning achievement of students. An experiment was conducted on a learning activity of an elementary school science course to evaluate the performance of the proposed approach. A total of 59 sixth graders from two…

  3. A Cross Age Study of Elementary Students' Motivation towards Science Learning

    Science.gov (United States)

    Guvercin, Ozge; Tekkaya, Ceren; Sungur, Semra

    2010-01-01

    The purpose of this study was to investigate the effect of grade level and gender on elementary school students' motivation towards science learning. A total of 2231 sixth and eight grade students participated in the study. Data were collected through Students' Motivation towards Science Learning Questionnaire. Two-way Multivariate Analysis of…

  4. What Types of Instructional Shifts Do Students Experience? Investigating Active Learning in Science, Technology, Engineering, and Math Classes across Key Transition Points from Middle School to the University Level

    Directory of Open Access Journals (Sweden)

    Kenneth Akiha

    2018-01-01

    Full Text Available Despite the need for a strong Science, Technology, Engineering, and Math (STEM workforce, there is a high attrition rate for students who intend to complete undergraduate majors in these disciplines. Students who leave STEM degree programs often cite uninspiring instruction in introductory courses, including traditional lecturing, as a reason. While undergraduate courses play a critical role in STEM retention, little is understood about the instructional transitions students encounter upon moving from secondary to post-secondary STEM courses. This study compares classroom observation data collected using the Classroom Observation Protocol for Undergraduate STEM from over 450 middle school, high school, introductory-level university, and advanced-level university classes across STEM disciplines. We find similarities between middle school and high school classroom instruction, which are characterized by a large proportion of time spent on active-learning instructional strategies, such as small-group activities and peer discussion. By contrast, introductory and advanced university instructors devote more time to instructor-centered teaching strategies, such as lecturing. These instructor-centered teaching strategies are present in classes regardless of class enrollment size, class period length, or whether or not the class includes a separate laboratory section. Middle school, high school, and university instructors were also surveyed about their views of what STEM instructional practices are most common at each educational level and asked to provide an explanation of those perceptions. Instructors from all levels struggled to predict the level of lecturing practices and often expressed uncertainty about what instruction looks like at levels other than their own. These findings suggest that more opportunities need to be created for instructors across multiple levels of the education system to share their active-learning teaching practices and

  5. Enhancing students' science literacy using solar cell learning multimedia containing science and nano technology

    Science.gov (United States)

    Eliyawati, Sunarya, Yayan; Mudzakir, Ahmad

    2017-05-01

    This research attempts to enhance students' science literacy in the aspects of students' science content, application context, process, and students' attitude using solar cell learning multimedia containing science and nano technology. The quasi-experimental method with pre-post test design was used to achieve these objectives. Seventy-two students of class XII at a high school were employed as research's subject. Thirty-six students were in control class and another thirty-six were in experiment class. Variance test (t-test) was performed on the average level of 95% to identify the differences of students' science literacy in both classes. As the result, there were significant different of learning outcomes between experiment class and control class. Almost half of students (41.67%) in experiment class are categorized as high. Therefore, the learning using solar cell learning multimedia can improve students' science literacy, especially in the students' science content, application context, and process aspects with n-gain(%) 59.19 (medium), 63.04 (medium), and 52.98 (medium). This study can be used to develop learning multimedia in other science context.

  6. Supporting School Leaders in Blended Learning with Blended Learning

    Science.gov (United States)

    Acree, Lauren; Gibson, Theresa; Mangum, Nancy; Wolf, Mary Ann; Kellogg, Shaun; Branon, Suzanne

    2017-01-01

    This study provides a mixed-methods case-study design evaluation of the Leadership in Blended Learning (LBL) program. The LBL program uses blended approaches, including face-to-face and online, to prepare school leaders to implement blended learning initiatives in their schools. This evaluation found that the program designers effectively…

  7. Analysing the physics learning environment of visually impaired students in high schools

    Science.gov (United States)

    Toenders, Frank G. C.; de Putter-Smits, Lesley G. A.; Sanders, Wendy T. M.; den Brok, Perry

    2017-07-01

    Although visually impaired students attend regular high school, their enrolment in advanced science classes is dramatically low. In our research we evaluated the physics learning environment of a blind high school student in a regular Dutch high school. For visually impaired students to grasp physics concepts, time and additional materials to support the learning process are key. Time for teachers to develop teaching methods for such students is scarce. Suggestions for changes to the learning environment and of materials used are given.

  8. The Application of Science in Box on Inquiry Based Learning at Junior High School to Increase The Mastery Concept of Statics Fluid

    Directory of Open Access Journals (Sweden)

    Abdurrahman Abdurrahman

    2016-10-01

    Tujuan dari penelitian ini ialah untuk menjelaskan efektifitas keterikatan ilmu sains dengan kegiatan pengajaran dan pembelajaran sains menggunakan konsep Fluida Statis berbasis inkuiri. Metode action research digunakan untuk memecahkan masalah kurangnya pelaksanaan praktik pada siswa sains. Analisis data menggunakan pendekatan kuantitatif yang meliputi statistik deskriptif dan inferensial untuk menguji karakteristik dan efektifitas SBFS yang dikembangkan. Hasil penelitian menunjukkan bahwa ada pengaruh yang signifikan dari pembelajran dan kpengajaran inkuiri menggunakan Science in Box terhadap penguasaan konsep fluida statis siswa. Hasilnya menunjukkan bahwa strategi Pengajaran yang secara aktif melibatkan siswa dalam proses pembelajaran melalui penyelidikan ilmiah menggunakan kerja praktek lebih mungkin untuk meningkatkan penguasaan konseptual siswa dibandingkan strategi yang mengandalkan teknik yang lebih konvensional. Kata kunci: Science in Box, Statics Fluid, Inquiry learning.

  9. Cultures of Learning in Effective High Schools

    Science.gov (United States)

    Tichnor-Wagner, Ariel; Harrison, Christopher; Cohen-Vogel, Lora

    2016-01-01

    Purpose: Research indicates that a culture of learning is a key factor in building high schools that foster academic achievement in all students. Yet less is known about which elements of a culture of learning differentiate schools with higher levels of academic performance. To fill this gap, this comparative case study examined the cultures of…

  10. Regiomontanus or learning how to play with science

    Science.gov (United States)

    Marian, Anca-Catalina

    2016-04-01

    Although at the international school competitions, Romanian students are in the top, but few students decide to learn science in school. The major problem is "how to motivate students to study science?" In cooperation with Meridian Zero Astroclub, Oradea, we provide students non-formal space where non-formal activities can approach them to the work of a researcher. Five days in September, ten to fifteen students are invited in a journey through the science world. • Formation of the Moon's craters • Solar radiation • Solar cycles • Constellations • Solar System • Eratosthenes experiment These topics are examples from our activities. Working with students from 4 years old to 18 years old, all activities are developed in the form of games, combining mathematical skills with physics or astronomy. Older students are put in the position of teachers for younger students. Results: A better understanding of physical processes, a higher interest in science, a better application of mathematical concepts in class.

  11. Science classroom inquiry (SCI simulations: a novel method to scaffold science learning.

    Directory of Open Access Journals (Sweden)

    Melanie E Peffer

    Full Text Available Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  12. Science classroom inquiry (SCI) simulations: a novel method to scaffold science learning.

    Science.gov (United States)

    Peffer, Melanie E; Beckler, Matthew L; Schunn, Christian; Renken, Maggie; Revak, Amanda

    2015-01-01

    Science education is progressively more focused on employing inquiry-based learning methods in the classroom and increasing scientific literacy among students. However, due to time and resource constraints, many classroom science activities and laboratory experiments focus on simple inquiry, with a step-by-step approach to reach predetermined outcomes. The science classroom inquiry (SCI) simulations were designed to give students real life, authentic science experiences within the confines of a typical classroom. The SCI simulations allow students to engage with a science problem in a meaningful, inquiry-based manner. Three discrete SCI simulations were created as website applications for use with middle school and high school students. For each simulation, students were tasked with solving a scientific problem through investigation and hypothesis testing. After completion of the simulation, 67% of students reported a change in how they perceived authentic science practices, specifically related to the complex and dynamic nature of scientific research and how scientists approach problems. Moreover, 80% of the students who did not report a change in how they viewed the practice of science indicated that the simulation confirmed or strengthened their prior understanding. Additionally, we found a statistically significant positive correlation between students' self-reported changes in understanding of authentic science practices and the degree to which each simulation benefitted learning. Since SCI simulations were effective in promoting both student learning and student understanding of authentic science practices with both middle and high school students, we propose that SCI simulations are a valuable and versatile technology that can be used to educate and inspire a wide range of science students on the real-world complexities inherent in scientific study.

  13. School and workplace as learning environments

    DEFF Research Database (Denmark)

    Jørgensen, Christian Helms

    In vocational education and training the school and the workplace are two different learning environments. But how should we conceive of a learning environment, and what characterizes the school and the workplace respectively as learning environments? And how can the two environ-ments be linked......? These questions are treated in this paper. School and workplace are assessed us-ing the same analytical approach. Thereby it is pointed out how different forms of learning are en-couraged in each of them and how different forms of knowledge are valued. On this basis sugges-tions are made about how to understand...

  14. The Effect of Blended Learning and Social Media-Supported Learning on the Students' Attitude and Self-Directed Learning Skills in Science Education

    Science.gov (United States)

    Akgunduz, Devrim; Akinoglu, Orhan

    2016-01-01

    The main purpose of this study is to investigate the effect of blended learning and social media supported learning on the students' attitude and self-directed learning skills in Science Education. This research took place with the 7th grade 74 students attending to a primary school in Kadikoy, Istanbul and carried out "Our Body Systems"…

  15. Inspiring science achievement: a mixed methods examination of the practices and characteristics of successful science programs in diverse high schools

    Science.gov (United States)

    Scogin, Stephen C.; Cavlazoglu, Baki; LeBlanc, Jennifer; Stuessy, Carol L.

    2017-08-01

    While the achievement gap in science exists in the US, research associated with our investigation reveals some high school science programs serving diverse student bodies are successfully closing the gap. Using a mixed methods approach, we identified and investigated ten high schools in a large Southwestern state that fit the definition of "highly successful, highly diverse". By conducting interviews with science liaisons associated with each school and reviewing the literature, we developed a rubric identifying specific characteristics associated with successful science programs. These characteristics and practices included setting high expectations for students, providing extensive teacher support for student learning, and utilizing student-centered pedagogy. We used the rubric to assess the successful high school science programs and compare them to other high school science programs in the state (i.e., less successful and less diverse high school science programs). Highly successful, highly diverse schools were very different in their approach to science education when compared to the other programs. The findings from this study will help schools with diverse students to strengthen hiring practices, enhance teacher support mechanisms, and develop student-focused strategies in the classroom that increase science achievement.

  16. Children's science learning: A core skills approach.

    Science.gov (United States)

    Tolmie, Andrew K; Ghazali, Zayba; Morris, Suzanne

    2016-09-01

    Research has identified the core skills that predict success during primary school in reading and arithmetic, and this knowledge increasingly informs teaching. However, there has been no comparable work that pinpoints the core skills that underlie success in science. The present paper attempts to redress this by examining candidate skills and considering what is known about the way in which they emerge, how they relate to each other and to other abilities, how they change with age, and how their growth may vary between topic areas. There is growing evidence that early-emerging tacit awareness of causal associations is initially separated from language-based causal knowledge, which is acquired in part from everyday conversation and shows inaccuracies not evident in tacit knowledge. Mapping of descriptive and explanatory language onto causal awareness appears therefore to be a key development, which promotes unified conceptual and procedural understanding. This account suggests that the core components of initial science learning are (1) accurate observation, (2) the ability to extract and reason explicitly about causal connections, and (3) knowledge of mechanisms that explain these connections. Observational ability is educationally inaccessible until integrated with verbal description and explanation, for instance, via collaborative group work tasks that require explicit reasoning with respect to joint observations. Descriptive ability and explanatory ability are further promoted by managed exposure to scientific vocabulary and use of scientific language. Scientific reasoning and hypothesis testing are later acquisitions that depend on this integration of systems and improved executive control. © 2016 The British Psychological Society.

  17. High School Physics Students' Personal Epistemologies and School Science Practice

    Science.gov (United States)

    Alpaslan, Muhammet Mustafa; Yalvac, Bugrahan; Loving, Cathleen

    2017-11-01

    This case study explores students' physics-related personal epistemologies in school science practices. The school science practices of nine eleventh grade students in a physics class were audio-taped over 6 weeks. The students were also interviewed to find out their ideas on the nature of scientific knowledge after each activity. Analysis of transcripts yielded several epistemological resources that students activated in their school science practice. The findings show that there is inconsistency between students' definitions of scientific theories and their epistemological judgments. Analysis revealed that students used several epistemological resources to decide on the accuracy of their data including accuracy via following the right procedure and accuracy via what the others find. Traditional, formulation-based, physics instruction might have led students to activate naive epistemological resources that prevent them to participate in the practice of science in ways that are more meaningful. Implications for future studies are presented.

  18. Assessing mathematics within advanced school science qualifications

    OpenAIRE

    McAlinden, Mary; Noyes, Andrew

    2017-01-01

    Following sustained discussion regarding the relationship between advanced mathematics and science learning in England, the government has pursued a reform agenda in which mathematics is embedded in national, high stakes A-level science qualifications and their assessments for 18-year-olds. For example, A-level Chemistry must incorporate the assessment of relevant mathematics for at least 20% of the qualification. Other sciences have different mandated percentages. This embedding policy is ru...

  19. School Vision of Learning: Urban Setting

    Science.gov (United States)

    Guy, Tiffany A.

    2010-01-01

    In this paper, the author develops her school vision of learning. She explains the theories she used to help develop the vision. The author then goes into detail on the methods she will use to make her vision for a school that prepares urban students for a successful life after high school. She takes into account all the stakeholders and how they…

  20. School Libraries Empowering Learning: The Australian Landscape.

    Science.gov (United States)

    Todd, Ross J.

    2003-01-01

    Describes school libraries in Australia. Highlights include the title of teacher librarian and their education; the history of the role of school libraries in Australian education; empowerment; information skills and benchmarks; national standards for school libraries; information literacy; learning outcomes; evidence-based practice; digital…

  1. Supporting learning experiences beyond the school context

    NARCIS (Netherlands)

    Rusman, Ellen

    2015-01-01

    In this workshop you’ll become familiar with two examples of how technology can support learning experiences that go beyond, but still connect to, the school context. The first example, called Elena, is for primary schools. The second example, called weSPOT, is for secondary schools. The Elena

  2. A brief review of augmented reality science learning

    Science.gov (United States)

    Gopalan, Valarmathie; Bakar, Juliana Aida Abu; Zulkifli, Abdul Nasir

    2017-10-01

    This paper reviews several literatures concerning the theories and model that could be applied for science motivation for upper secondary school learners (16-17 years old) in order to make the learning experience more amazing and useful. The embedment of AR in science could bring an awe-inspiring transformation on learners' viewpoint towards the respective subject matters. Augmented Reality is able to present the real and virtual learning experience with the addition of multiple media without replacing the real environment. Due to the unique feature of AR, it attracts the mass attention of researchers to implement AR in science learning. This impressive technology offers learners with the ultimate visualization and provides an astonishing and transparent learning experience by bringing to light the unseen perspective of the learning content. This paper will attract the attention of researchers in the related field as well as academicians in the related discipline. This paper aims to propose several related theoretical guidance that could be applied in science motivation to transform the learning in an effective way.

  3. Elementary girls' science reading at home and school

    Science.gov (United States)

    Ford, Danielle J.; Brickhouse, Nancy W.; Lottero-Perdue, Pamela; Kittleson, Julie

    2006-03-01

    Although reading is a critical part of science and science learning, it is no longer a part of many children's elementary science instruction. This is of concern because girls often develop strong identities as readers, but do not develop scientific identities with ease. In this study, we investigate girls' science reading to know (1) if science books were available to girls in homes and classrooms, (2) if girls were choosing to read them, and (3) what influences their choices. Forty-five third-grade girls, 29 of their families, and three of their teachers were interviewed to ascertain girls' preferences among various book genres, as well as to learn the ways in which families and teachers influence the choices girls make. We found that girls had access to science books at school, and teachers had strategies to encourage reading them. At home, parents encouraged reading, but were generally less directive than teachers as to what the girls read, and underestimated their daughters' science-related interests. The families studied rely largely on major bookstores as their primary source of books. Our findings suggest we need to understand better the way gender influences girls' engagement with science in a variety of contexts, particularly those in which girls exercise choice.

  4. Science Hobbyists: Active Users of the Science-Learning Ecosystem

    Science.gov (United States)

    Corin, Elysa N.; Jones, M. Gail; Andre, Thomas; Childers, Gina M.; Stevens, Vanessa

    2017-01-01

    Science hobbyists engage in self-directed, free-choice science learning and many have considerable expertise in their hobby area. This study focused on astronomy and birding hobbyists and examined how they used organizations to support their hobby engagement. Interviews were conducted with 58 amateur astronomers and 49 birders from the midwestern…

  5. E-learning and school development

    DEFF Research Database (Denmark)

    Skov Hansen, Line; Sunnevåg, Anne-Karin; Kostøl, Anne

    2011-01-01

    for Knowledge-Based Educational Practice (CVIPP), Denmark have designed projects for developing competences and training based on “blended learning” concepts. The didactic designs, in all three projects, are based on problem-oriented e-learning modules that are approached in teams. Through learning in teams......, competences are developed together with colleagues. Through e-learning training and development of competences can take place at each school, within the limits and resources available at the school by using e-learning. E-learning can therefore contribute to improved flexibility in human resource development...

  6. The learning of sciences: a gradual change in the way of learning. The case of vision

    Directory of Open Access Journals (Sweden)

    Bettina M. Bravo

    2009-11-01

    Full Text Available Learning the scientific way of knowledge implies a change in the most implicit principles that guide comprehension, interpretation and explanation of scientific phenomena as well as a change in the type of associated reasoning. With the aim of favouring this type of learning, a teaching programme was developed in relation to vision and implemented with a group of secondary school students. The way of learning of these students was observed at different teaching stages. Findings suggest that during the learning process the way students learn seems to change gradually and that students construct “intermediate” models (right but incomplete that become the basis for the construction of a systemic model proposed by school science.

  7. The Effects of Aesthetic Science Activities on Improving At-Risk Families Children's Anxiety About Learning Science and Positive Thinking

    Science.gov (United States)

    Hong, Zuway-R.; Lin, Huann-shyang; Chen, Hsiang-Ting; Wang, Hsin-Hui; Lin, Chia-Jung

    2014-01-01

    The purpose of this study was to explore the effects of aesthetic science activities on improving elementary school at-risk families' children's positive thinking, attitudes toward science, and decreasing their anxiety about learning science. Thirty-six 4th-grade children from at-risk families volunteered to participate in a 12-week intervention and formed the experimental group; another 97 typical 4th graders were randomly selected to participant in the assessment and were used as the comparison group. The treatment for experimental group children emphasized scaffolding aesthetic science activities and inquiry strategies. The Elementary School Student Questionnaire was administered to assess all children's positive thinking, attitudes toward science, and anxiety about learning science. In addition, nine target children from the experimental group with the lowest scores on either positive thinking, or attitudes toward science, or with the highest scores on anxiety about learning science in the pre-test were recruited to be interviewed at the end of the intervention and observed weekly. Confirmatory factor analyses, analyses of covariance, and content theme analysis assessed the similarities and differences between groups. It was found that the at-risk families' children were motivated by the treatment and made significant progress on positive thinking and attitudes toward science, and also decreased their anxiety about learning science. The findings from interviews and classroom observations also revealed that the intervention made differences in children's affective perceptions of learning science. Implication and research recommendation are discussed.

  8. Indiana secondary students' evolution learning experiences and demarcations of science from non-science

    Science.gov (United States)

    Donnelly, Lisa A.

    2007-12-01

    Previous research has documented students' conceptual difficulties learning evolution and how student learning may be related to students' views of evolution and science. This mixed methods study addressed how 74 high school biology students from six Indiana high schools viewed their evolution learning experiences, the demarcations of science from non-science, and evolution understanding and acceptance. Data collection entailed qualitative and quantitative methods including interviews, classroom observations, surveys, and assessments to address students' views of science and non-science, evolution learning experiences, and understanding and acceptance of evolution. Qualitative coding generated several demarcation and evolution learning experience codes that were subsequently used in quantitative comparisons of evolution understanding and acceptance. The majority of students viewed science as empirical, tentative but ultimately leading to certain truth, compatible with religion, the product of experimental work, and the product of human creativity. None of the students offered the consensus NOS view that scientific theories are substantiated explanations of phenomena while scientific laws state relationships or patterns between phenomena. About half the students indicated that scientific knowledge was subjectively and socio-culturally influenced. The majority of students also indicated that they had positive evolution learning experiences and thought evolution should be taught in secondary school. The quantitative comparisons revealed how students who viewed scientific knowledge as subjectively and socio-culturally influenced had higher understanding than their peers. Furthermore, students who maintained that science and religion were compatible did not differ with respect to understanding but had higher acceptance than their peers who viewed science and religion as conflicting. Furthermore, students who maintained that science must be consistent with their

  9. Boys' and girls' involvement in science learning and their self-efficacy in Taiwan.

    Science.gov (United States)

    Hong, Zuway-R; Lin, Huann-shyang

    2013-01-01

    This cross-sectional study investigated the significant differences in students' self-efficacy and their involvement in learning science. Nine hundred and twenty-two elementary school fifth graders, 499 junior high school eighth graders, and 1455 senior or vocational high school eleventh graders completed the students' questionnaire. Analyses of variance (ANOVAs) and independent t-tests compared the significant similarities and differences across school levels and genders. The initial findings were as follows: A sharp decline in boys' and girls' self-efficacy scores from elementary to secondary school levels; boys have significantly higher self-efficacy scores than girls at vocational and senior high school levels; students with more involvement in science learning presented significantly higher self-efficacy scores than those with less involvement. The significant discrepancies in terms of gender and age in students' self-efficacy and involvement in learning science need to be addressed. Implications and limitations are provided.

  10. The Educational Governance of German School Social Science: The Example of Globalization

    Directory of Open Access Journals (Sweden)

    Andrea Szukala

    2016-10-01

    Full Text Available Purpose: This article challenges the outsiders' views on European school social science adopting genuine cosmopolitan views, when globalisation is treated in social science classrooms. Method: The article is based on the theoretical framework of educational governance analysis and on qualitative corpus analysis of representative German Laenders' social science curricula from 1994-2014 (n=13. Findings: The article highlights tendencies of renationalisation of the global learning agenda and the problematisation of democracy in contexts of globalisation studies at German schools.

  11. Forensic Science Curriculum for High School Students

    Science.gov (United States)

    Burgess, Christiana J.

    Over the last several decades, forensic science---the application of science to civil and criminal legal matters---has become of increasing popularity with the public. The range of disciplines within the field is immense, offering individuals the potential for a unique career, regardless of their specific interests or expertise. In response to this growth, many organizations, both public and private, have recognized the need to create forensic science programs that strive to maintain and enhance the quality of forensic science education. Unfortunately, most of the emphasis placed on developing these materials relates to post-secondary education, and creates a significant lack of forensic science educational materials available in the U.S., especially in Oklahoma. The purpose of this project was to create a high school curriculum that provides the foundation for building a broad, yet comprehensive, overview of the field of forensic science and its associated disciplines. The overall goal was to create and provide course materials to high school teachers in order to increase their knowledge of forensic science such that they are able to teach its disciplines effectively and with accuracy. The Forensic Science Curriculum for High School Students includes sample lesson plans, PowerPoint presentations, and lab activities with step-by-step instructions.

  12. The key factors affecting students' individual interest in school science lessons

    Science.gov (United States)

    Cheung, Derek

    2018-01-01

    Individual interest in school science lessons can be defined as a relatively stable and enduring personal emotion comprising affective and behavioural reactions to events in the regular science lessons at school. Little research has compared the importance of different factors affecting students' individual interest in school science lessons. The present study aimed to address this gap, using a mixed methods design. Qualitative interview data were collected from 60 Hong Kong junior secondary school students, who were asked to describe the nature of their interest in science lessons and the factors to which they attribute this. Teacher interviews, parent interviews, and classroom observations were conducted to triangulate student interview data. Five factors affecting students' individual interest in school science lessons were identified: situational influences in science lessons, individual interest in science, science self-concept, grade level, and gender. Quantitative data were then collected from 591 students using a questionnaire. Structural equation modelling was applied to test a hypothesised model, which provided an acceptable fit to the student data. The strongest factor affecting students' individual interest in school science lessons was science self-concept, followed by individual interest in science and situational influences in science lessons. Grade level and gender were found to be nonsignificant factors. These findings suggest that teachers should pay special attention to the association between academic self-concept and interest if they want to motivate students to learn science at school.

  13. Secondary School Students' Understanding of Science and Their Socioscientific Reasoning

    Science.gov (United States)

    Karahan, Engin; Roehrig, Gillian

    2017-08-01

    Research in socioscientific issue (SSI)-based interventions is relatively new (Sadler in Journal of Research in Science Teaching 41:513-536, 2004; Zeidler et al. in Journal of Research in Science Teaching 46:74-101, 2009), and there is a need for understanding more about the effects of SSI-based learning environments (Sadler in Journal of Research in Science Teaching 41:513-536, 2004). Lee and Witz (International Journal of Science Education 31:931-960, 2009) highlighted the need for detailed case studies that would focus on how students respond to teachers' practices of teaching SSI. This study presents case studies that investigated the development of secondary school students' science understanding and their socioscientific reasoning within SSI-based learning environments. A multiple case study with embedded units of analysis was implemented for this research because of the contextual differences for each case. The findings of the study revealed that students' understanding of science, including scientific method, social and cultural influences on science, and scientific bias, was strongly influenced by their experiences in SSI-based learning environments. Furthermore, multidimensional SSI-based science classes resulted in students having multiple reasoning modes, such as ethical and economic reasoning, compared to data-driven SSI-based science classes. In addition to portraying how participants presented complexity, perspectives, inquiry, and skepticism as aspects of socioscientific reasoning (Sadler et al. in Research in Science Education 37:371-391, 2007), this study proposes the inclusion of three additional aspects for the socioscientific reasoning theoretical construct: (1) identification of social domains affecting the SSI, (2) using cost and benefit analysis for evaluation of claims, and (3) understanding that SSIs and scientific studies around them are context-bound.

  14. Changes in Student Science Interest from Elementary to Middle School

    Science.gov (United States)

    Coutts, Trudi E.

    This study is a transcendental phenomenological study that described the experience of students’ interest in science from elementary school through middle school grades and the identification of the factors that increase or decrease interest in science. Numerous researchers have found that interest in science changes among children and the change in interest seems to modulate student motivation, which ultimately leads to fewer children choosing not only science classes in the future but science careers. Research studies have identified numerous factors that affect student interest in science; however, this study incorporated the lived experience of the child and looked at this interest in science through the lens of the child. The study design was a collective cross-case study that was multi-site based. This study utilized a sample of children in fifth grade classes of three different elementary schools, two distinct seventh grade classes of different middle schools, and ninth grade children from one high school in the State of Illinois. The phenomenon was investigated through student interviews. The use of one-on-one semi-structured interviews limited to 45 minutes in length provided the researcher with data of each child’s description of science interest. All interviews were audio- recorded and transcribed verbatim. The data was collected and analyzed in order to identify themes, and finally checked for validity. The most significant findings of this study, and possible factors contributing to science interest in children as they progress from elementary to high school, were those findings relating to hands-on activities, the degree to which a student was challenged, the offering of new versus previously studied topics in the curriculum, the perceived relevance of the curricular materials to personal life, and the empowerment children felt when they were allowed to make choices related to their learning experiences. This study’s possible implications for

  15. Transformations in Kenyan Science Teachers' Locus of Control: The Influence of Contextualized Science and Emancipated Student Learning

    Science.gov (United States)

    Anderson, D.; Nashon, S.; Namazzi, E.; Okemwa, P.; Ombogo, P.; Ooko, S.; Beru, F.

    2015-01-01

    This study investigated Kenyan science teachers' pedagogical transformations, which manifested as they enacted and experienced a reformed contextualized science curriculum in which students' learning experiences were critical catalysts of teacher change. Twelve high school teachers voluntarily participated in the study and were interviewed about…

  16. Pre-Service Teachers' Attitudes toward Teaching Science and Their Science Learning at Indonesia Open University

    Science.gov (United States)

    Suprapto, Nadi; Mursid, Ali

    2017-01-01

    This study focuses on attitudes toward (teaching) science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs) from the Open University in Surabaya regional office. Attitudes toward…

  17. Science learning based on local potential: Overview of the nature of science (NoS) achieved

    Science.gov (United States)

    Wilujeng, Insih; Zuhdan Kun, P.; Suryadarma, IGP.

    2017-08-01

    The research concerned here examined the effectiveness of science learning conducted with local potential as basis from the point of a review of the NoS (nature of science) achieved. It used the non equivalent control group design and took place in the regions of Magelang and Pati, Province of Central Java, and the regions of Bantul and Sleman, Province of the Special Region of Yogyakarta. The research population consisted of students of the first and second grades at each junior high school chosen with research subjects sampled by means of cluster sampling. The instruments used included: a) an observation sheet, b) a written test, and c) a questionnaire. The learning and research instruments had been declared valid and reliable according to previous developmental research. In conclusion, the science learning based on local potential was effective in terms of all the NoS aspects.

  18. Direction discovery: A science enrichment program for high school students.

    Science.gov (United States)

    Sikes, Suzanne S; Schwartz-Bloom, Rochelle D

    2009-03-01

    Launch into education about pharmacology (LEAP) is an inquiry-based science enrichment program designed to enhance competence in biology and chemistry and foster interest in science careers especially among under-represented minorities. The study of how drugs work, how they enter cells, alter body chemistry, and exit the body engages students to conceptualize fundamental precepts in biology, chemistry, and math. Students complete an intensive three-week course in the fundamentals of pharmacology during the summer followed by a mentored research component during the school year. Following a 5E learning paradigm, the summer course captures student interest by introducing controversial topics in pharmacology and provides a framework that guides them to explore topics in greater detail. The 5E learning cycle is recapitulated as students extend their knowledge to design and to test an original research question in pharmacology. LEAP students demonstrated significant gains in biology and chemistry knowledge and interests in pursuing science. Several students earned honors for the presentation of their research in regional and state science fairs. Success of the LEAP model in its initial 2 years argues that coupling college-level coursework of interest to teens with an authentic research experience enhances high school student success in and enthusiasm for science. Copyright © 2009 International Union of Biochemistry and Molecular Biology, Inc.

  19. Science Lives: School choices and `natural tendencies'

    Science.gov (United States)

    Salehjee, Saima; Watts, Mike

    2015-03-01

    An analysis of 12 semi-structured interviews with university-based scientists and non-scientists illustrates their life journeys towards, or away from, science and the strengths and impact of life occurrences leading them to choose science or non-science professions. We have adopted narrative approaches and used Mezirow's transformative learning theory framework. The areas of discussion from the result have stressed on three main categories that include 'smooth transition', 'incremental wavering transition' and 'transformative transition'. The article concludes by discussing the key influences that shaped initial attitudes and direction in these people through natural inclination, environmental inspirations and perceptions of science.

  20. Impact of interactive online units on learning science among students with learning disabilities and English learners

    Science.gov (United States)

    Terrazas-Arellanes, Fatima E.; Gallard M., Alejandro J.; Strycker, Lisa A.; Walden, Emily D.

    2018-03-01

    The purpose of this study was to document the design, classroom implementation, and effectiveness of interactive online units to enhance science learning over 3 years among students with learning disabilities, English learners, and general education students. Results of a randomised controlled trial with 2,303 middle school students and 71 teachers across 13 schools in two states indicated that online units effectively deepened science knowledge across all three student groups. Comparing all treatment and control students on pretest-to-posttest improvement on standards-based content-specific assessments, there were statistically significant mean differences (17% improvement treatment vs. 6% control; p English learner status, indicating that these two groups performed similarly to their peers; students with learning disabilities had significantly lower assessment scores overall. Teachers and students were moderately satisfied with the units.

  1. Implementing Elementary School Next Generation Science Standards

    Science.gov (United States)

    Kennedy, Katheryn B.

    Implementation of the Next Generation Science Standards requires developing elementary teacher content and pedagogical content knowledge of science and engineering concepts. Teacher preparation for this undertaking appears inadequate with little known about how in-service Mid-Atlantic urban elementary science teachers approach this task. The purpose of this basic qualitative interview study was to explore the research questions related to perceived learning needs of 8 elementary science teachers and 5 of their administrators serving as instructional leaders. Strategies needed for professional growth to support learning and barriers that hamper it at both building and district levels were included. These questions were considered through the lens of Schon's reflective learning and Weick's sensemaking theories. Analysis with provisional and open coding strategies identified informal and formal supports and barriers to teachers' learning. Results indicated that informal supports, primarily internet usage, emerged as most valuable to the teachers' learning. Formal structures, including professional learning communities and grade level meetings, arose as both supportive and restrictive at the building and district levels. Existing formal supports emerged as the least useful because of the dominance of other priorities competing for time and resources. Addressing weaknesses within formal supports through more effective planning in professional development can promote positive change. Improvement to professional development approaches using the internet and increased hands on activities can be integrated into formal supports. Explicit attention to these strategies can strengthen teacher effectiveness bringing positive social change.

  2. Experiential learning for education on Earth Sciences

    Science.gov (United States)

    Marsili, Antonella; D'Addezio, Giuliana; Todaro, Riccardo; Scipilliti, Francesca

    2015-04-01

    The Laboratorio Divulgazione Scientifica e Attività Museali of the Istituto Nazionale di Geofisica e Vulcanologia (INGV's Laboratory for Outreach and Museum Activities) in Rome, organizes every year intense educational and outreach activities to convey scientific knowledge and to promote research on Earth Science, focusing on volcanic and seismic hazard. Focusing on kids, we designed and implemented the "greedy laboratory for children curious on science (Laboratorio goloso per bambini curiosi di scienza)", to intrigue children from primary schools and to attract their interest by addressing in a fun and unusual way topics regarding the Earth, seismicity and seismic risk. We performed the "greedy laboratory" using experiential teaching, an innovative method envisaging the use and handling commonly used substances. In particular, in the "greedy laboratory" we proposed the use of everyday life's elements, such as food, to engage, entertain and convey in a simple and interesting communication approach notions concerning Earth processes. We proposed the initiative to public during the "European Researchers Night" in Rome, on September 26, 2014. Children attending the "greedy laboratory", guided by researchers and technicians, had the opportunity to become familiar with scientific concepts, such as the composition of the Earth, the Plate tectonics, the earthquake generation, the propagation of seismic waves and their shaking effects on the anthropogenic environment. During the hand-on laboratory, each child used not harmful substances such as honey, chocolate, flour, barley, boiled eggs and biscuits. At the end, we administered a questionnaire rating the proposed activities, first evaluating the level of general satisfaction of the laboratory and then the various activities in which it was divided. This survey supplied our team with feedbacks, revealing some precious hints on appreciation and margins of improvement. We provided a semi-quantitative assessment with a

  3. The effect of science learning integrated with local potential to improve science process skills

    Science.gov (United States)

    Rahardini, Riris Riezqia Budy; Suryadarma, I. Gusti Putu; Wilujeng, Insih

    2017-08-01

    This research was aimed to know the effectiveness of science learning that integrated with local potential to improve student`s science process skill. The research was quasi experiment using non-equivalent control group design. The research involved all student of Muhammadiyah Imogiri Junior High School on grade VII as a population. The sample in this research was selected through cluster random sampling, namely VII B (experiment group) and VII C (control group). Instrument that used in this research is a nontest instrument (science process skill observation's form) adapted Desak Megawati's research (2016). The aspect of science process skills were making observation and communication. The data were using univariat (ANOVA) analyzed at 0,05 significance level and normalized gain score for science process skill increase's category. The result is science learning that integrated with local potential was effective to improve science process skills of student (Sig. 0,00). This learning can increase science process skill, shown by a normalized gain score value at 0,63 (medium category) in experiment group and 0,29 (low category) in control group.

  4. Strategic Game Moves Mediate Implicit Science Learning

    Science.gov (United States)

    Rowe, Elizabeth; Baker, Ryan S.; Asbell-Clarke, Jodi

    2015-01-01

    Educational games have the potential to be innovative forms of learning assessment, by allowing us to not just study their knowledge but the process that takes students to that knowledge. This paper examines the mediating role of players' moves in digital games on changes in their pre-post classroom measures of implicit science learning. We…

  5. SPORT SCIENCE STUDENTS‟ BELIEFS ABOUT LANGUAGE LEARNING

    Directory of Open Access Journals (Sweden)

    Suvi Akhiriyah

    2017-04-01

    Full Text Available There are many reasons for students of Sport Science to use English. Yet, knowing the importance of learning English is sometimes not enough to encourage them to learn English well. Based on the experience in teaching them, erroneous belief seems to be held by many of them. It arouses curiosity about the beliefs which might be revealed to help the students to be successful in language learning. By investigating sport science students‘ beliefs about language learning, it is expected that types of the beliefs which they hold can be revealed. Understanding students‘ beliefs about language learning is essential because these beliefs can have possible consequences for second language learning and instruction. This study is expected to provide empirical evidence. The subjects of this study were 1st semester students majoring in Sport Science of Sport Science Faculty. There were 4 classes with 38 students in each class. There were approximately 152 students as the population of the study. The sample was taken by using random sampling. All members of the population received the questionnaire. The questionnaire which was later handed back to the researcher is considered as the sample. The instrument in this study is the newest version of Beliefs About Language Learning Inventory (BALLI, version 2.0, developed by Horwitz to asses the beliefs about learning a foreign language.

  6. Psychological Implications of Discovery Learning in Science

    Science.gov (United States)

    Kaufman, Barry A

    1971-01-01

    Describes five aspects of learning as applied to science instruction. Learning readiness, meaningfulness of material, activity and passivity, motivation, and transfer of training are presented in relation to psychological views stated by Ausubel, Bruner, Gagne, Hendrix, Karplus, Piaget, and Suchman. Views given by Gagne and Karplus are considered…

  7. Newly qualified teachers' visions of science learning and teaching

    Science.gov (United States)

    Roberts, Deborah L.

    2011-12-01

    This study investigated newly qualified teachers' visions of science learning and teaching. The study also documented their preparation in an elementary science methods course. The research questions were: What educational and professional experiences influenced the instructor's visions of science learning and teaching? What visions of science learning and teaching were promoted in the participants' science methods course? What visions of science learning and teaching did these newly qualified teachers bring with them as they graduated from their teacher preparation program? How did these visions compare with those advocated by reform documents? Data sources included participants' assignments, weekly reflections, and multi-media portfolio finals. Semi-structured interviews provided the emic voice of participants, after graduation but before they had begun to teach. These data were interpreted via a combination of qualitative methodologies. Vignettes described class activities. Assertions supported by excerpts from participants' writings emerged from repeated review of their assignments. A case study of a typical participant characterized weekly reflections and final multi-media portfolio. Four strands of science proficiency articulated in a national reform document provided a framework for interpreting activities, assignments, and interview responses. Prior experiences that influenced design of the methods course included an inquiry-based undergraduate physics course, participation in a reform-based teacher preparation program, undergraduate and graduate inquiry-based science teaching methods courses, participation in a teacher research group, continued connection to the university as a beginning teacher, teaching in diverse Title 1 schools, service as the county and state elementary science specialist, participation in the Carnegie Academy for the Scholarship of Teaching and Learning, service on a National Research Council committee, and experience teaching a

  8. Analysing the physics learning environment of visually impaired students in high schools

    NARCIS (Netherlands)

    Toenders, F.G.C.; de Putter - Smits, L.G.A.; Sanders, W.T.M.; den Brok, P.J.

    2017-01-01

    Although visually impaired students attend regular high school, their enrolment in advanced science classes is dramatically low. In our research we evaluated the physics learning environment of a blind high school student in a regular Dutch high school. For visually impaired students to grasp

  9. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  10. Recent Research in Science Teaching and Learning

    Science.gov (United States)

    Allen, Deborah

    2012-01-01

    This article features recent research in science teaching and learning. It presents three current articles of interest in life sciences education, as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as "Abstract available," full text may be…

  11. Advancing Research on Undergraduate Science Learning

    Science.gov (United States)

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  12. Implementing e-network-supported inquiry learning in science

    DEFF Research Database (Denmark)

    Williams, John; Cowie, Bronwen; Khoo, Elaine

    2013-01-01

    The successful implementation of electronically networked (e-networked) tools to support an inquiry-learning approach in secondary science classrooms is dependent on a range of factors spread between teachers, schools, and students. The teacher must have a clear understanding of the nature......-construct knowledge using a wide range of resources for meaning making and expression of ideas. These outcomes were, however, contingent on the interplay of teacher understanding of the nature of science inquiry and school provision of an effective technological infrastructure and support for flexible curriculum...... of inquiry, the school must provide effective technological infrastructure and sympathetic curriculum parameters, and the students need to be carefully scaffolded to the point of engaging with the inquiry process. Within this study, e-networks supported students to exercise agency, collaborate, and co...

  13. Exploring Relationships: Teacher Characteristics and Student Learning in Physical Science

    Science.gov (United States)

    Close, Eleanor; Vokos, S.; Seeley, L.

    2006-12-01

    The Department of Physics and the School of Education at Seattle Pacific University, together with FACET Innovations, LLC, are beginning the second year of a five-year NSF TPC grant, Improving the Effectiveness of Teacher Diagnostic Skills and Tools. We are working in partnership with school districts in Washington State to identify and characterize widespread productive and unproductive modes of reasoning employed by both pre-college students and teachers on foundational topics in physical science. In the first year of the grant, base-line preand post-test data were collected from a large number (N 2300) of middle and high school students. We will discuss relationships between preand post-test results, student learning gains, and student and teacher characteristics. * Supported in part by NSF grant #ESI-0455796, The Boeing Corporation, and the SPU Science Initiative.

  14. Towards Primary School Physics Teaching and Learning: Design Research Approach. Research Report 256

    Science.gov (United States)

    Juuti, Kalle

    2005-01-01

    This thesis describes a project to design a primary school physics learning environment which takes into account teachers' needs, design procedures, properties of the learning environment, and pupil learning outcomes. The project's design team has wide experience in research and development work in relation to science education, the use of ICT in…

  15. Note-Taking Skills of Middle School Students with and without Learning Disabilities

    Science.gov (United States)

    Boyle, Joseph R.

    2010-01-01

    For middle school students with learning disabilities (LD), one major component of learning in content area classes, such as science, involves listening to lectures and recording notes. Lecture learning and note-taking are critical skills for students to succeed in these classes. Despite the importance of note-taking skills, no research has been…

  16. Promoting Science Learning and Scientific Identification through Contemporary Scientific Investigations

    Science.gov (United States)

    Van Horne, Katie

    This dissertation investigates the implementation issues and the educational opportunities associated with "taking the practice turn" in science education. This pedagogical shift focuses instructional experiences on engaging students in the epistemic practices of science both to learn the core ideas of the disciplines, as well as to gain an understanding of and personal connection to the scientific enterprise. In Chapter 2, I examine the teacher-researcher co-design collaboration that supported the classroom implementation of a year-long, project-based biology curriculum that was under development. This study explores the dilemmas that arose when teachers implemented a new intervention and how the dilemmas arose and were managed throughout the collaboration of researchers and teachers and between the teachers. In the design-based research of Chapter 3, I demonstrate how students' engagement in epistemic practices in contemporary science investigations supported their conceptual development about genetics. The analysis shows how this involved a complex interaction between the scientific, school and community practices in students' lives and how through varied participation in the practices students come to write about and recognize how contemporary investigations can give them leverage for science-based action outside of the school setting. Finally, Chapter 4 explores the characteristics of learning environments for supporting the development of scientific practice-linked identities. Specific features of the learning environment---access to the intellectual work of the domain, authentic roles and accountability, space to make meaningful contributions in relation to personal interests, and practice-linked identity resources that arose from interactions in the learning setting---supported learners in stabilizing practice-linked science identities through their engagement in contemporary scientific practices. This set of studies shows that providing students with the

  17. The science teacher as the organic link in science learning: Identity, motives, and capital transfer

    Science.gov (United States)

    Alexakos, Konstantinos

    This life history study is based on in-depth interviews of five science teachers and explores themes of science teachers' experiences as science learners and how these experiences frame what I have come to call "the subjective aspects of teaching." These themes seem to imply that through such individual experiences individuals develop a personally unique lens through which they view and interpret science, science meanings, and science teaching and learning. Emerging themes created new questions to pursue and they in turn produced new themes. These were further investigated in an attempt to connect science learning and science teachers to broader issues in society. These themes include that of a dynamic, dialectical learning and understanding of science by the participants, developed and influenced through a combination of their families, their schools, and their professional experiences, and in which morals and passion play major roles. The theme of the "organic link" is also introduced and developed in this research. It includes these individuals' views of science and the scientific enterprise, their path to learning, their morals, passions, and choices, and their way of constructing knowledge and the transmission of such a process. As organic links, they are seen as a direct and necessary social connection between science and the science learner, and they foster educational experiences grounded in the social lives of their students. Not only are they seen as "transmitters" of science knowledge and the process of constructing knowledge, but they are also seen as correcting and adjusting perceived diversions of the students' thinking from that of their own. It is in this context that the concept of capital (human and cultural capital, as well as capital exchange) is also explored. These themes are seen as having immense impact on how these science teachers teach, where they teach, what is communicated to their students, and whether they become or remain science

  18. Edmodo social learning network for elementary school mathematics learning

    Science.gov (United States)

    Ariani, Y.; Helsa, Y.; Ahmad, S.; Prahmana, RCI

    2017-12-01

    A developed instructional media can be as printed media, visual media, audio media, and multimedia. The development of instructional media can also take advantage of technological development by utilizing Edmodo social network. This research aims to develop a digital classroom learning model using Edmodo social learning network for elementary school mathematics learning which is practical, valid and effective in order to improve the quality of learning activities. The result of this research showed that the prototype of mathematics learning device for elementary school students using Edmodo was in good category. There were 72% of students passed the assessment as a result of Edmodo learning. Edmodo has become a promising way to engage students in a collaborative learning process.

  19. The academic and nonacademic characteristics of science and nonscience majors in Yemeni high schools

    Science.gov (United States)

    Anaam, Mahyoub Ali

    The purposes of this study were: (a) to identify the variables associated with selection of majors; (b) to determine the differences between science and nonscience majors in general, and high and low achievers in particular, with respect to attitudes toward science, integrated science process skills, and logical thinking abilities; and (c) to determine if a significant relationship exists between students' majors and their personality types and learning styles. Data were gathered from 188 twelfth grade male and female high school students in Yemen, who enrolled in science (45 males and 47 females) and art and literature (47 males and 49 females) tracks. Data were collected by the following instruments: Past math and science achievement (data source taken from school records), Kolb's Learning Styles Inventory (1985), Integrated Science Process Skills Test, Myers-Briggs Type Indicator, Attitude Toward Science in School Assessment, Group Assessment of Logical Thinking, Yemeni High School Students Questionnaire. The Logistic Regression Model and the Linear Discriminant Analysis identified several variables that are associated with selection of majors. Moreover, some of the characteristics of science and nonscience majors that were revealed by these models include the following: Science majors seem to have higher degrees of curiosity in science, high interest in science at high school level, high tendency to believe that their majors will help them to find a potential job in the future, and have had higher achievement in science subjects, and have rated their math teachers higher than did nonscience majors. In contrast, nonscience majors seem to have higher degrees of curiosity in nonscience subjects, higher interest in science at elementary school, higher anxiety during science lessons than did science majors. In addition, General Linear Models allow that science majors generally demonstrate more positive attitudes towards science than do nonscience majors and they

  20. Assessing a Science Graduate School Recruitment Symposium.

    Science.gov (United States)

    González-Espada, Wilson; Díaz-Muñoz, Greetchen; Feliú-Mójer, Mónica; Flores-Otero, Jacqueline; Fortis-Santiago, Yaihara; Guerrero-Medina, Giovanna; López-Casillas, Marcos; Colón-Ramos, Daniel A; Fernández-Repollet, Emma

    2015-12-01

    Ciencia Puerto Rico, a non-profit organization dedicated to promoting science, research and scientific education among Latinos, organized an educational symposium to provide college science majors the tools, opportunities and advice to pursue graduate degrees and succeed in the STEM disciplines. In this article we share our experiences and lessons learned, for others interested in developing large-scale events to recruit underrepresented minorities to STEM and in evaluating the effectiveness of these efforts.

  1. Secondary Science Teachers' and Students' Involvement in a Primary School Community of Science Practice: How It Changed Their Practices and Interest in Science

    Science.gov (United States)

    Forbes, Anne; Skamp, Keith

    2016-02-01

    MyScience is a primary science education initiative in which being in a community of practice is integral to the learning process. In this initiative, stakeholder groups—primary teachers, primary students and mentors—interact around the `domain' of `investigating scientifically'. This paper builds on three earlier publications and interprets the findings of the views of four secondary science teachers and five year 9 secondary science students who were first-timer participants—as mentors—in MyScience. Perceptions of these mentors' interactions with primary students were analysed using attributes associated with both `communities of practice' and the `nature of science'. Findings reveal that participation in MyScience changed secondary science teachers' views and practices about how to approach the teaching of science in secondary school and fostered primary-secondary links. Year 9 students positively changed their views about secondary school science and confidence in science through participation as mentors. Implications for secondary science teaching and learning through participation in primary school community of science practice settings are discussed.

  2. CLIMANDES climate science e-learning course

    Science.gov (United States)

    Hunziker, Stefan; Giesche, Alena; Jacques-Coper, Martín; Brönnimann, Stefan

    2016-04-01

    Over the past three years, members of the Oeschger Centre for Climate Change Research (OCCR) and the Climatology group at the Institute of Geography at the University of Bern, have developed a new climate science e-learning course as part of the CLIMANDES project. This project is a collaboration between Peruvian and Swiss government, research, and education institutions. The aim of this e-learning material is to strengthen education in climate sciences at the higher education and professional level. The course was recently published in 2015 by Geographica Bernensia, and is hosted online by the Peruvian Servicio Nacional de Meteorología e Hidrología (SENAMHI): http://surmx.com/chamilo/climandes/e-learning/. The course is furthermore available for offline use through USB sticks, and a number of these are currently being distributed to regional training centers around the world by the WMO (World Meteorological Organization). There are eight individual modules of the course that each offer approximately 2 hours of individual learning material, featuring several additional learning activities, such as the online game "The Great Climate Poker" (http://www.climatepoker.unibe.ch/). Overall, over 50 hours of learning material are provided by this course. The modules can be integrated into university lectures, used as single units in workshops, or be combined to serve as a full course. This e-learning course presents a broad spectrum of topics in climate science, including an introduction to climatology, atmospheric and ocean circulation, climate forcings, climate observations and data, working with data products, and climate models. This e-learning course offers a novel approach to teaching climate science to students around the world, particularly through three important features. Firstly, the course is unique in its diverse range of learning strategies, which include individual reading material, video lectures, interactive graphics, responsive quizzes, as well as group

  3. Perceptions versus Realities: Exploring Needs and Science Learning Outcomes In the Mississippi Delta

    Science.gov (United States)

    Fitts, Lacey S.

    The Mississippi Delta (MS Delta) is a high-poverty region in northwestern Mississippi located between the Mississippi and Yazoo rivers. The Delta is home to sixteen rural counties with over seventy failing or underperforming schools. Many of these schools lack the resources necessary to ensure adequate opportunities for all students. Learning outcomes for the state are among the lowest in the nation, and scores in the rural Delta are far below the state average. Graduating seniors take the ACT college entrance exam, with about 10% of Mississippi seniors scoring as "college-ready" in science. The region has a critical shortage of science teachers, and many schools do not offer advanced science courses. This study assessed teachers' needs, identified key characteristics of the secondary science programs in which they teach, and sought to understand conditions affecting science learning outcomes. An inventory of science teachers' needs was administered to teachers in the region. The greatest needs were material resources, high quality training, and strategies for improving poor reading and problem-solving skills of students. Of the factors examined, the percentage of students receiving free lunch had the strongest correlation with science learning outcomes in the school, higher than access to resources, number of science courses offered, and level of self-reported teacher need. A three-tiered approach to improving science learning outcomes has been developed, emphasizing community relationships, targeted professional development, and relevant science curriculum.

  4. The Learning Assistant Model for Science Teacher Recruitment and Preparation

    Science.gov (United States)

    Otero, Valerie

    2006-04-01

    There is a shortage of high quality physical science teachers in the United States. In 2001, less than 50% of teachers who taught physics held a major or minor in physics or physics education (Neuschatz & McFarling, 2003). Studies point to content knowledge as one of the two factors that is positively correlated with teacher quality. However, those directly responsible for the science content preparation of teachers, specifically science research faculty, are rarely involved in focused efforts to improve teacher quality or to create alternative paths for becoming a teacher. What role should science research faculty play in the recruitment and preparation of science teachers? How might teacher recruitment and preparation be conceived so that science research faculty members' participation in these efforts is not at odds with the traditional scientific research foci of science research departments? To address this issue, we have coupled our teacher recruitment and preparation efforts with our efforts for transforming our large-enrollment, undergraduate science courses. This is achieved through the undergraduate Learning Assistant (LA) program, where talented mathematics and science majors are hired to assist in transforming large enrollment courses to student-centered, collaborative environments. These LAs are the target of our teacher recruitment efforts. Science research faculty, in collaboration with faculty from the school of education have established a community that supports LAs in making decisions to explore K12 teaching as a career option. Fifteen percent of the LAs who have participated in this program have entered teaching credential programs and now plan to become K12 teachers. An added effect of this program is that research faculty have developed skills and knowledge regarding inquiry-based and student-centered pedagogy and theories of student learning. The Learning Assistant program has led to increased subject matter knowledge among learning

  5. Connecting Students and Policymakers through Science and Service-Learning

    Science.gov (United States)

    Szymanski, D. W.

    2017-12-01

    Successful collaborations in community science require the participation of non-scientists as advocates for the use of science in addressing complex problems. This is especially true, but particularly difficult, with respect to the wicked problems of sustainability. The complicated, unsolvable, and inherently political nature of challenges like climate change can provoke cynicism and apathy about the use of science. While science education is a critical part of preparing all students to address wicked problems, it is not sufficient. Non-scientists must also learn how to advocate for the role of science in policy solutions. Fortunately, the transdisciplinary nature of sustainability provides a venue for engaging all undergraduates in community science, regardless of major. I describe a model for involving non-science majors in a form of service-learning, where the pursuit of community science becomes a powerful pedagogical tool for civic engagement. Bentley University is one of the few stand-alone business schools in the United States and provides an ideal venue to test this model, given that 95% of Bentley's 4000 undergraduates major in a business discipline. The technology-focused business program is combined with an integrated arts & sciences curriculum and experiential learning opportunities though the nationally recognized Bentley Service-Learning and Civic Engagement Center. In addition to a required general education core that includes the natural sciences, students may opt to complete a second major in liberal studies with thematic concentrations like Earth, Environment, and Global Sustainability. In the course Science in Environmental Policy, students may apply to complete a service-learning project for an additional course credit. The smaller group of students then act as consultants, conducting research for a non-profit organization in the Washington, D.C. area involved in geoscience policy. At the end of the semester, students travel to D.C. and present

  6. The role of differentiation and standards-based grading in the science learning of struggling and advanced learners in a detracked high school honors biology classroom

    Science.gov (United States)

    MacDonald, Michelina Ruth Carter

    and advanced learners. My fourth finding reflects what I learned about heterogeneous grouping: (4) Heterogeneously grouping students for argumentation through engagement in science inquiry serves both to reinforce proficiency of learning goals for struggling learners and simultaneously push all learners towards advanced proficiency. These findings indicate how planning for and implementing a differentiated, standards-based instructional unit can support the learning needs of both struggling and advanced learners in a detracked, honors biology classroom.

  7. Home and school environmental determinants of science ...

    African Journals Online (AJOL)

    Andrea L. Juan

    Determinants of educational achievement extend beyond the school environment to include the home ... generation of relevant knowledge and the productive use of that knowledge to advance growth (World Bank, .... language of teaching and learning when it differs ..... students are likely to be at a disadvantage, because.

  8. Using Technology to Facilitate Differentiated High School Science Instruction

    Science.gov (United States)

    Maeng, Jennifer L.

    2017-10-01

    This qualitative investigation explored the beliefs and practices of one secondary science teacher, Diane, who differentiated instruction and studied how technology facilitated her differentiation. Diane was selected based on the results of a previous study, in which data indicated that Diane understood how to design and implement proactively planned, flexible, engaging instructional activities in response to students' learning needs better than the other study participants. Data for the present study included 3 h of semi-structured interview responses, 37.5 h of observations of science instruction, and other artifacts such as instructional materials. This variety of data allowed for triangulation of the evidence. Data were analyzed using a constant comparative approach. Results indicated that technology played an integral role in Diane's planning and implementation of differentiated science lessons. The technology-enhanced differentiated lessons employed by Diane typically attended to students' different learning profiles or interest through modification of process or product. This study provides practical strategies for science teachers beginning to differentiate instruction, and recommendations for science teacher educators and school and district administrators. Future research should explore student outcomes, supports for effective formative assessment, and technology-enhanced readiness differentiation among secondary science teachers.

  9. Common Core Science Standards: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Scruggs, Thomas E.; Brigham, Frederick J.; Mastropieri, Margo A.

    2013-01-01

    The Common Core Science Standards represent a new effort to increase science learning for all students. These standards include a focus on English and language arts aspects of science learning, and three dimensions of science standards, including practices of science, crosscutting concepts of science, and disciplinary core ideas in the various…

  10. Home and school environmental determinants of science ...

    African Journals Online (AJOL)

    Determinants of educational achievement extend beyond the school environment to include the home environment. Both environments provide tangible and intangible resources to students that can influence science achievement. South Africa provides a context where inequalities in socio-economic status are vast, thus the ...

  11. The Effect of Guided Inquiry Learning with Mind Map to Science Process Skills and Learning Outcomes of Natural Sciences

    Directory of Open Access Journals (Sweden)

    Hilman .

    2015-04-01

    Full Text Available Pengaruh Pembelajaran Inkuiri Terbimbing dengan Mind Map terhadap Keterampilan Proses Sains dan Hasil Belajar IPA   Abstract: Science learning in junior high school aims to enable students conducts scientific inquiry, improves knowledge, concepts, and science skills. Organization materials for students supports learning process so that needs to be explored techniques that allows students to enable it. This study aimed to determine the effect of guided inquiry learning with mind map on science process skills and cognitive learning outcomes. This experimental quasi studey used pretest-posttest control group design and consisted eighth grade students of SMP Negeri 1 Papalang Mamuju of West Sulawesi. The results showed there where significant positive effect of guided inquiry learning with mind map on process science skills and cognitive learning outcomes. Key Words: guided inquiry, mind map, science process skills, cognitive learning outcomes   Abstrak: Pembelajaran Ilmu Pengetahuan Alam (IPA di SMP bertujuan agar siswa dapat melakukan inkuiri ilmiah, meningkatkan pengetahuan, konsep, dan keterampilan IPA. Dalam pembelajaran, organisasi materi berperan penting dalam memudahkan anak belajar sehingga perlu ditelaah teknik yang memudahkan siswa membuat organisasi materi. Penelitian ini bertujuan mengetahui pengaruh pembelajaran inkuiri terbimbing dengan mind map terhadap keterampilan proses sains dan hasil belajar kognitif. Penelitian kuasi eksperimen ini menggunakan rancangan pre test-post test control group design dengan subjek penelitian siswa kelas VIII SMP Negeri 1 Papalang. Hasil penelitian menunjukkan ada pengaruh positif yang signifikan pembelajaran inkuiri terbimbing dengan mind map terhadap kemampuan keterampilan proses sains dan hasil belajar kognitif siswa. Kata kunci:  inkuiri terbimbing, mind map, keterampilan proses sains,  hasil belajar kognitif

  12. Science curriculum effects in high school: A quantitative synthesis

    Science.gov (United States)

    Weinstein, Thomas; Boulanger, F. David; Walberg, Herbert J.

    To assess the impact of the innovative precollege science curricula of the past twenty years on learning, a search was conducted using the computer-assisted Bibliographic Retrieval System (BRS), the ERIC Annual Summaries of Research in Science Education, and Dissertation Abstracts International. A total of 151 effect sizes were obtained from 33 studies representing 19,149 junior and senior high school students in the United States, Great Britain, and Israel. Study-weighted analysis yielded an overall mean effect size of 0.31 significantly favorable to the innovative curricula [t(25) = 2.183, p < 0.05] on all outcomes. Student performance in innovative curricula averaged in the 62nd percentile relative to the control norm. Tabulation of signed comparisons indicated that sixty-four out of eighty-one unweighted outcomes were favorable to the innovative curricula. Separate analyses for test content bias, methodological rigor, type of learning, and student characteristics showed no significant differences across these categories.

  13. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  14. Instructional Management Strategy: A Multi-Sites Study on Science Teaching for Islamic School

    Directory of Open Access Journals (Sweden)

    Abdul Ghofur

    2017-12-01

    Full Text Available This paper describes how management strategies in science learning are done by teachers in Islamic schools. This is motivated by the ranking of Indonesia which 87 percent of the population of Muslims always occupy the lowest position for the ability of science literacy. This research was conducted for four months using descriptive qualitative design with data collection technique of interview, observation and documentation. The subjects of the study were six Islamic schools in Lamongan, East Java. The six Islamic schools were chosen by purposive sampling. The results showed that the learning activities of science more dominated by teachers, students heard more explanation than the practice in verifying the process of science. The majority of teachers use lecture, question and answer methods, and assignments, and occasionally apply discussion and demonstration methods. Science laboratories in schools have not been maximally used, some have limited tools and materials, some of which lack laboratory space and even two schools without a science laboratory. Assessment of student learning progress done through pretest, posttest, daily test, question and answer during lessons, UTS and UAS. Teacher's strategy in managing student learning motivation by using animated video as apperception, integrating science materials with Islamic religious values.

  15. Incorporating Earth Science into Other High School Science Classes

    Science.gov (United States)

    Manning, C. L. B.; Holzer, M.; Colson, M.; Courtier, A. M. B.; Jacobs, B. E.

    2016-12-01

    As states begin to review their standards, some adopt or adapt the NGSS and others write their own, many basing these on the Framework for K-12 Science Education. Both the NGSS and the Frameworks have an increased emphasis on Earth Science but many high school teachers are being asked to teach these standards in traditional Biology, Chemistry and Physics courses. At the Earth Educators Rendezvous, teachers, scientists, and science education researchers worked together to find the interconnections between the sciences using the NGSS and identified ways to reference the role of Earth Sciences in the other sciences during lectures, activities and laboratory assignments. Weaving Earth and Space sciences into the other curricular areas, the teams developed relevant problems for students to solve by focusing on using current issues, media stories, and community issues. These and other lessons and units of study will be presented along with other resources used by teachers to ensure students are gaining exposure and a deeper understanding of Earth and Space Science concepts.

  16. Evaluation of Authentic Science Projects on Climate Change in Secondary Schools: A Focus on Gender Differences

    Science.gov (United States)

    Dijkstra, Elma; Goedhart, Martin

    2011-01-01

    Background and purpose: This study examines secondary-school students' opinions on participating in authentic science projects which are part of an international EU project on climate change research in seven countries. Partnerships between schools and research institutes result in student projects, in which students work with and learn from…

  17. Tri-P-LETS: Changing the Face of High School Computer Science

    Science.gov (United States)

    Sherrell, Linda; Malasri, Kriangsiri; Mills, David; Thomas, Allen; Greer, James

    2012-01-01

    From 2004-2007, the University of Memphis carried out the NSF-funded Tri-P-LETS (Three P Learning Environment for Teachers and Students) project to improve local high-school computer science curricula. The project reached a total of 58 classrooms in eleven high schools emphasizing problem solving skills, programming concepts as opposed to syntax,…

  18. Alternative Learning Environments in the Elementary School.

    Science.gov (United States)

    Davis, Eugene D.

    This paper outlines a program utilized in the Countryside School which offers alternative learning environments in the elementary school. The program includes (1) semi-departmentalization; (2) team teaching; and (3) an open-alternatives program. Each of these areas is outlined and fully discussed in terms of student and parent needs. (YRJ)

  19. High School Students' Views on Blended Learning

    Science.gov (United States)

    Yapici, Ibrahim Umit; Akbayin, Hasan

    2012-01-01

    In this study, it is aimed to determine the high school students' views on blended learning. The study was carried out in biology course for the lesson unit of "Classification of Living Things and Biodiversity" with 47 9[superscript th] grade students attending Nevzat Ayaz Anatolian High School in the second term of the academic year of…

  20. Reforming High School Science for Low-Performing Students Using Inquiry Methods and Communities of Practice

    Science.gov (United States)

    Bolden, Marsha Gail

    Some schools fall short of the high demand to increase science scores on state exams because low-performing students enter high school unprepared for high school science. Low-performing students are not successful in high school for many reasons. However, using inquiry methods have improved students' understanding of science concepts. The purpose of this qualitative research study was to investigate the teachers' lived experiences with using inquiry methods to motivate low-performing high school science students in an inquiry-based program called Xtreem Science. Fifteen teachers were selected from the Xtreem Science program, a program designed to assist teachers in motivating struggling science students. The research questions involved understanding (a) teachers' experiences in using inquiry methods, (b) challenges teachers face in using inquiry methods, and (c) how teachers describe student's response to inquiry methods. Strategy of data collection and analysis included capturing and understanding the teachers' feelings, perceptions, and attitudes in their lived experience of teaching using inquiry method and their experience in motivating struggling students. Analysis of interview responses revealed teachers had some good experiences with inquiry and expressed that inquiry impacted their teaching style and approach to topics, and students felt that using inquiry methods impacted student learning for the better. Inquiry gave low-performing students opportunities to catch up and learn information that moved them to the next level of science courses. Implications for positive social change include providing teachers and school district leaders with information to help improve performance of the low performing science students.

  1. Learning science in informal environments: people, places and pursuits. A review by the US National Science Council

    OpenAIRE

    Paola Rodari

    2009-01-01

    In January this year, the US saw the publication of the preview of an impressive review work on the practices and the studies concerning learning science outside schools and universities, i.e. what is referred to as informal education.The document, promoted by the National Science Council of scientific academies (National Academy of Science, National Academy of Engineering and Institute of Medicine), is the result of the work by a committee comprising 14 specialists who collected, discussed a...

  2. Learning science in informal environments: people, places and pursuits. A review by the US National Science Council (Italian original version)

    OpenAIRE

    Paola Rodari

    2009-01-01

    In January this year, the US saw the publication of the preview of an impressive review work on the practices and the studies concerning learning science outside schools and universities, i.e. what is referred to as informal education.The document, promoted by the National Science Council of scientific academies (National Academy of Science, National Academy of Engineering and Institute of Medicine), is the result of the work by a committee comprising 14 specialists who collected, discussed a...

  3. Catalyst Schools' Implementation of the Learning School Approach. Catalyst Schools Research Study Report

    Science.gov (United States)

    Hammer, Patricia Cahape

    2016-01-01

    "Catalyst schools" were 28 elementary and secondary schools selected to participate in a pilot project begun in July 2014, which explored how best to support teacher professional learning through decentralization of decision making and implementation of the Learning School approach. The pilot project was the first phase in a statewide…

  4. Aspects of science engagement, student background, and school characteristics: Impacts on science achievement of U.S. students

    Science.gov (United States)

    Grabau, Larry J.

    Science achievement of U.S. students has lagged significantly behind other nations; educational reformers have suggested science engagement may enhance this critical measure. The 2006 Program for International Student Assessment (PISA) was science-focused and measured science achievement along with nine aspects of science engagement: science self-efficacy, science self-concept, enjoyment of science, general interest in learning science, instrumental motivation for science, future-oriented science motivation, general value of science, personal value of science, and science-related activities. I used multilevel modeling techniques to address both aspects of science engagement and science achievement as outcome variables in the context of student background and school characteristics. Treating aspects of science engagement as outcome variables provided tests for approaches for their enhancement; meanwhile, treating science achievement as the outcome variable provided tests for the influence of the aspects of science engagement on science achievement under appropriate controls. When aspects of science engagement were treated as outcome variables, gender and father's SES had frequent (significant) influences, as did science teaching strategies which focused on applications or models and hands-on activities over-and-above influences of student background and other school characteristics. When science achievement was treated as the outcome variable, each aspect of science engagement was significant, and eight had medium or large effect sizes (future-oriented science motivation was the exception). The science teaching strategy which involved hands-on activities frequently enhanced science achievement over-and-above influences of student background and other school characteristics. Policy recommendations for U.S. science educators included enhancing eight aspects of science engagement and implementing two specific science teaching strategies (focus on applications or models

  5. Teachers' learning about research for enhancing students' thinking skills in science learning

    Science.gov (United States)

    Nammungkhun, Wisanugorn; Satchukorn, Sureerat; Saenpuk, Nudchanard; Yuenyong, Chokchai; Chantharanuwong, Warawun

    2018-01-01

    This paper aimed to clarify teachers' learning about research for enhancing students' thinking skills in science learning. The study applied the lens of sociocultural view of learning to discuss teachers' learning about research. Participants included teachers who participated in the project of thinking research schools: research for enhancing students' thinking skills. The project of thinking research schools provided participants chance to learn knowledge about research and thinking research, doing research and publication, and participate in the international conference. Methodology regarded ethnographic research. The tools of interpretation included participant observation, interview, and document analysis. The researchers as participants of the research project of thinking research schools tried to clarify what they learned about research from their way of seeing the view of research about enhancing students' thinking skills through participant observation. The findings revealed what and how teachers as apprenticeship learn about research through legitimate peripheral participation in the research project community of practice. The paper clarified teachers' conceptualization about research for enhancing students' thinking through the workshop, doing research, writing up research article with supported by experts, presenting research in the international conference, editing their research article on the way of publishing, and so on.

  6. Teachers' Learning in School-Based Development

    Science.gov (United States)

    Postholm, May Britt; Waege, Kjersti

    2016-01-01

    Background and purpose: Many researchers agree that teachers' learning processes are social and that teachers need to be brought together to learn from each other. Researchers have also stated that intellectual and pedagogical change requires professional development activities that take place over a period of time in school. The purpose of the…

  7. Planning School Grounds for Outdoor Learning

    Science.gov (United States)

    Wagner, Cheryl; Gordon, Douglas

    2010-01-01

    This publication covers the planning and design of school grounds for outdoor learning in new and existing K-12 facilities. Curriculum development as well as athletic field planning and maintenance are not covered although some references on these topics are provided. It discusses the different types of outdoor learning environments that can be…

  8. Expanding educational access and opportunities: The globalization and foreign direct investment of multinational corporations and their influence on STEM, project-based learning and the national science and technology fair in schools in Costa Rica

    Science.gov (United States)

    Valdez, Joaquin G.

    The purpose of this qualitative study was to examine the influence of globalization and the foreign direct investment (FDI) of multinational corporations (MNCs) on the curriculum in schools in Costa Rica. The study focused primarily on Science, Technology, Engineering and Mathematics (STEM), Project-Based Learning (PBL), 21st century skills, and the national science and technology fair. The high influx of MNCs such as Intel has changed the global and educational culture of the country increasing the number of knowledge-based workers in Costa Rica. As a result, policy changes have been instituted in education to mirror the demands of sustaining the country's global economy. This study was supported by the creation of three research questions that would attempt to answer 1) the extent that teachers implementing STEM curriculum trace their practices back to policy, globalization, and multinational corporations as well as the extent to which the economic growth of Costa Rica and STEM education are related, 2) how mandating the national science and technology fair has influenced 21st century skills through project-based learning and the use of technology by teachers and its impact on curriculum and instruction, and 3) how has the national science and technology fair policy changed the value of STEM education for students, teachers, and educational leaders. To further understand the outcome of this study, four theoretical frameworks were applied that included, Spring's theory of world educational culture, Friedman's world flatteners, Wagner's 21st century skills and partnerships for 21st century skills, and Slough and Milam's STEM project-based learning theoretical framework. Each framework was applied to support the changes to the educational system; survival skills necessary to compete in the global job market; application of 21st century skills in the classroom and in the science projects students created. A research team comprised of 14 doctoral students, led by Dr

  9. Access to Science and Literacy through Inquiry and School Yard Habitats

    Science.gov (United States)

    Cox-Petersen, Anne; Spencer, Brenda

    2006-01-01

    In this article, the authors describe an integrated science and literacy instructional model in which students build background knowledge by engaging in free-choice learning options during an investigation of school yard habitats. Students interact with their peers while inquiring, discussing findings, and using print resources to enhance learning.

  10. Design Principles for "Thriving in Our Digital World": A High School Computer Science Course

    Science.gov (United States)

    Veletsianos, George; Beth, Bradley; Lin, Calvin; Russell, Gregory

    2016-01-01

    "Thriving in Our Digital World" is a technology-enhanced dual enrollment course introducing high school students to computer science through project- and problem-based learning. This article describes the evolution of the course and five lessons learned during the design, development, implementation, and iteration of the course from its…

  11. Impact of Texas high school science teacher credentials on student performance in high school science

    Science.gov (United States)

    George, Anna Ray Bayless

    A study was conducted to determine the relationship between the credentials held by science teachers who taught at a school that administered the Science Texas Assessment on Knowledge and Skills (Science TAKS), the state standardized exam in science, at grade 11 and student performance on a state standardized exam in science administered in grade 11. Years of teaching experience, teacher certification type(s), highest degree level held, teacher and school demographic information, and the percentage of students who met the passing standard on the Science TAKS were obtained through a public records request to the Texas Education Agency (TEA) and the State Board for Educator Certification (SBEC). Analysis was performed through the use of canonical correlation analysis and multiple linear regression analysis. The results of the multiple linear regression analysis indicate that a larger percentage of students met the passing standard on the Science TAKS state attended schools in which a large portion of the high school science teachers held post baccalaureate degrees, elementary and physical science certifications, and had 11-20 years of teaching experience.

  12. Lateral Learning for Science Reporters

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cathy Egan

    with social, religious, philosophical, ethical, and political ... they may even feel disconnected from the science carried out in their own ... “networking” is an effective tool in fostering communication for .... less-developed places. And mentors ...

  13. Effects of a science education module on attitudes towards modern biotechnology of secondary school students

    NARCIS (Netherlands)

    Klop, T.; Severiens, S.E.; Knippels, M-C.P.J.; Mill, M.H.W.; ten Dam, G.T.M.

    2010-01-01

    This article evaluated the impact of a four‐lesson science module on the attitudes of secondary school students. This science module (on cancer and modern biotechnology) utilises several design principles, related to a social constructivist perspective on learning. The expectation was that the

  14. Science Teacher Beliefs and Classroom Practice Related to Constructivism in Different School Settings

    Science.gov (United States)

    Savasci, Funda; Berlin, Donna F.

    2012-01-01

    Science teacher beliefs and classroom practice related to constructivism and factors that may influence classroom practice were examined in this cross-case study. Data from four science teachers in two schools included interviews, demographic questionnaire, Classroom Learning Environment Survey (preferred/perceived), and classroom observations and…

  15. Voices of Successful Science Teachers in an Urban Diverse Single Gender Girls' School

    Science.gov (United States)

    Malhan, Jyoti

    2016-01-01

    This research study was conducted as a qualitative case study of four successful science teachers of female students in a diverse, title 1, urban, public girls' school. The study was designed to hear the 'muted' voices of successful science teachers concerning their beliefs and practices when they effectively provide learning opportunities for…

  16. A Case Study of the Introduction of Computer Science in NZ Schools

    Science.gov (United States)

    Bell, Tim; Andreae, Peter; Robins, Anthony

    2014-01-01

    For many years computing in New Zealand schools was focused on teaching students how to use computers, and there was little opportunity for students to learn about programming and computer science as formal subjects. In this article we review a series of initiatives that occurred from 2007 to 2009 that led to programming and computer science being…

  17. Enhancing Middle School Science Lessons with Playground Activities: A Study of the Impact of Playground Physics

    Science.gov (United States)

    Friedman, Lawrence B.; Margolin, Jonathan; Swanlund, Andrew; Dhillon, Sonica; Liu, Feng

    2017-01-01

    Playground Physics is a technology-based application and accompanying curriculum designed by New York Hall of Science (NYSCI) to support middle school students' science engagement and learning of force, energy, and motion. The program includes professional development, the Playground Physics app, and a curriculum aligned with New York State…

  18. Cognitive Correlates of Performance in Algorithms in a Computer Science Course for High School

    Science.gov (United States)

    Avancena, Aimee Theresa; Nishihara, Akinori

    2014-01-01

    Computer science for high school faces many challenging issues. One of these is whether the students possess the appropriate cognitive ability for learning the fundamentals of computer science. Online tests were created based on known cognitive factors and fundamental algorithms and were implemented among the second grade students in the…

  19. News Teaching Support: New schools network launched Competition: Observatory throws open doors to a select few Festival: Granada to host 10th Ciencia en Acción Centenary: Science Museum celebrates 100 years Award: Queen's birthday honour for science communicator Teacher Training: Training goes where it's needed Conference: Physics gets creative in Christchurch Conference: Conference is packed with ideas Poster Campaign: Bus passengers learn about universe Forthcoming events

    Science.gov (United States)

    2009-09-01

    Teaching Support: New schools network launched Competition: Observatory throws open doors to a select few Festival: Granada to host 10th Ciencia en Acción Centenary: Science Museum celebrates 100 years Award: Queen's birthday honour for science communicator Teacher Training: Training goes where it's needed Conference: Physics gets creative in Christchurch Conference: Conference is packed with ideas Poster Campaign: Bus passengers learn about universe Forthcoming events

  20. EFFECTIVENESS OF QUIZ TEAM AND MURDER METHOD ON LEARNING ACTIVITIES AND PROBLEM SOLVING SKILLS IN SOCIAL SCIENCE LEARNING FOR 8th GRADE STUDENTS AT UPI LABORATORY JUNIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Darwanti Darwanti

    2017-06-01

    Full Text Available There are three objectives that shape the study, first, the study is aimed at identifying different problem-solving skills of the students' who were acquainted with quiz team, lecture and MURDER method. Secondly, the study is to point out the difference of students' problem-solving skills when they are exposed to the three methods in a high, moderate, and low intensity. The third objective is to determine interactions among learning methods, learning activities and problem-solving skills. Quasi experiment is used as a method of the study by applying two experiment classes, and one controlled factorial designed class. In analyzing the data, a two-way Anova analysis and variants analysis are implemented to measure the interaction level among the three variables. The results of the study indicate that (1 there are differences in students' problem-solving skills who were exposed to quiz team, lecture and MURDER method; (2 there are also differences in students' problem-solving skills when they were exposed by the mentioned methods in a high, moderate, and low intensity; there are no relevant interactions among learning methods, learning activities and problem-solving skills. The current results are presented such that they can be used as an aid to the methods of social science learning.

  1. Inquiry learning for gender equity using History of Science in Life and Earth Sciences’ learning environments

    Directory of Open Access Journals (Sweden)

    C. Sousa

    2016-03-01

    Full Text Available The main objective of the present work is the selection and integration of objectives and methods of education for gender equity within the Life and Earth Sciences’ learning environments in the current portuguese frameworks of middle and high school. My proposal combines inquiry learning-teaching methods with the aim of promoting gender equity, mainly focusing in relevant 20th century women-scientists with a huge contribute to the History of Science. The hands-on and minds-on activities proposed for high scholl students of Life and Earth Sciences onstitute a learnig environment enriched in features of science by focusing on the work of two scientists: Lynn Margulis (1938-2011  and her endosymbiosis theory of the origin of life on Earth and Inge Leehman (1888-1993 responsible for a breakthrough regarding the internal structure of Earth, by caracterizing a discontinuity within the nucleus, contributing to the current geophysical model. For middle scholl students the learning environment includes Inge Leehman and Mary Tharp (1920-2006 and her first world map of the ocean floor. My strategy includes features of science, such as: theory-laden nature of scientific knowledge, models, values and socio-scientific issues, technology contributes to science and feminism.  In conclusion, I consider that this study may constitute an example to facilitate the implementation, by other teachers, of active inquiry strategies focused on features of science within a framework of social responsibility of science, as well as the basis for future research.

  2. Machine Learning Techniques in Clinical Vision Sciences.

    Science.gov (United States)

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration

  3. Principal Leadership for Technology-enhanced Learning in Science

    Science.gov (United States)

    Gerard, Libby F.; Bowyer, Jane B.; Linn, Marcia C.

    2008-02-01

    Reforms such as technology-enhanced instruction require principal leadership. Yet, many principals report that they need help to guide implementation of science and technology reforms. We identify strategies for helping principals provide this leadership. A two-phase design is employed. In the first phase we elicit principals' varied ideas about the Technology-enhanced Learning in Science (TELS) curriculum materials being implemented by teachers in their schools, and in the second phase we engage principals in a leadership workshop designed based on the ideas they generated. Analysis uses an emergent coding scheme to categorize principals' ideas, and a knowledge integration framework to capture the development of these ideas. The analysis suggests that principals frame their thinking about the implementation of TELS in terms of: principal leadership, curriculum, educational policy, teacher learning, student outcomes and financial resources. They seek to improve their own knowledge to support this reform. The principals organize their ideas around individual school goals and current political issues. Principals prefer professional development activities that engage them in reviewing curricula and student work with other principals. Based on the analysis, this study offers guidelines for creating learning opportunities that enhance principals' leadership abilities in technology and science reform.

  4. Investigate-and-redesign tasks as a context for learning and doing science and technology: A study of naive, novice and expert high school and adult designers doing product comparisons and redesign tasks

    Science.gov (United States)

    Crismond, David Paul

    This thesis studied high school students and adults with varying degrees of design experience doing two technology investigate-and-redesign (I&R) tasks. Each involved subjects investigating products, designing experiments to compare them fairly, and then redesigning the devices. A total of 25 pairs of subjects participated in this investigation and included naive and novice high school designers, as well as naive, novice, and expert adult designers. Subjects of similar age and design experience worked in same-gender teams and met for two 2-hour sessions. The essential research question of this thesis was: "What process skills and concepts do naive, novice and expert designers use and learn when investigating devices, designing experiments, and redesigning the devices?" Three methodologies were used to gather and analyze the data: clinical interviewing (Piaget, 1929/1960), protocol analysis (Ericsson & Simon, 1984) and interaction analysis (Jordan and Henderson, 1995). The thesis provides composite case-studies of 10 of the 50 test sessions, buttressed by descriptions of performance trends for all subjects. Given the small sample sizes involved, the findings are by necessity tentative and not supported by statistical analysis: (1) I&R activities are engaging, less time-intensive complements to design-and-build tasks, which involve simple mechanical devices and carry with them a host of potential "alternative understandings" in science and technology. Much gets learned during these tasks, more involving "device knowledge" and "device inquiry skills" than "big ideas" in science and technology. (2) Redesign tasks scaffold naive and novice designers to improved performance in the multidimensional and context-specific activity of design. The performances of naive and novice designers were more like that of expert designers when redesigning existing devices than when doing start-from-scratch designing. (3) Conceptual redesign involved more analysis- than synthesis

  5. Student explanations of their science teachers' assessments, grading practices and how they learn science

    Science.gov (United States)

    del Carmen Gomez, María

    2018-03-01

    The current paper draws on data generated through group interviews with students who were involved in a larger ethnographic research project performed in three science classrooms. The purpose of the study from which this data was generated, was to understand science teachers' assessment practices in an upper-secondary school in Sweden. During group interviews students were asked about their conceptions of what were the assessment priority of teachers, why the students were silent during lecturing and their experiences regarding peer- and self-assessments. The research design and analysis of the findings derives from what students told us about their assessments and learning sciences experiences. Students related that besides the results of the written test, they do not know what else teachers assessed and used to determine their grades. It was also found that students did not participate in the discussion on science because of peer-pressure and a fear of disappointing their peers. Student silence is also linked with student conceptions of science learning and student experiences with methodologies of teaching and learning sciences.

  6. Inclusive science education: learning from Wizard

    Science.gov (United States)

    Koomen, Michele Hollingsworth

    2016-06-01

    This case study reports on a student with special education needs in an inclusive seventh grade life science classroom using a framework of disability studies in education. Classroom data collected over 13 weeks consisted of qualitative (student and classroom observations, interviews, student work samples and video-taped classroom teaching and learning record using CETP-COP) methods. Three key findings emerged in the analysis and synthesis of the data: (1) The learning experiences in science for Wizard are marked by a dichotomy straddled between autonomy ["Sometimes I do" (get it)] and dependence ["Sometimes I don't (get it)], (2) the process of learning is fragmented for Wizard because it is underscored by an emerging disciplinary literacy, (3) the nature of the inclusion is fragile and functional. Implications for classroom practices that support students with learning disabilities include focusing on student strengths, intentional use of disciplinary literacy strategies, and opportunities for eliciting student voice in decision making.

  7. Collaborative learning in radiologic science education.

    Science.gov (United States)

    Yates, Jennifer L

    2006-01-01

    Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.

  8. THE SCHOOL AS A LEARNING COMMUNITY

    Directory of Open Access Journals (Sweden)

    Cintya Arely Hernández-López

    2015-07-01

    Full Text Available In the present study is to weight the learning communities, starting to know the approach that has a school in the Chihuahua state to become a learning community, expecting describe how the school gathers the elements to operate as such. The method that was in use was the study of case, resting on the technologies of observation, interview and survey, same that complemented each other with the information that came from the survey and from the analysis of the “portafolio”. The case of study though it presents characteristics that demonstrate inside a community of learning as quality, collaborative work however the institution does not possess the opening and the participation of the involved ones, being an obstacle for the consolidation and benefit of the educational community; ith what there meets distant the possibility that this politics to turn to the school in a community of learning could be consolidate.

  9. Impacting the Science Community through Teacher Development: Utilizing Virtual Learning.

    Science.gov (United States)

    Boulay, Rachel; van Raalte, Lisa

    2014-01-01

    Commitment to the STEM (science, technology, engineering, math) pipeline is slowly declining despite the need for professionals in the medical field. Addressing this, the John A. Burns School of Medicine developed a summer teacher-training program with a supplemental technology-learning component to improve science teachers' knowledge and skills of Molecular Biology. Subsequently, students' skills, techniques, and application of molecular biology are impacted. Science teachers require training that will prepare them for educating future professionals and foster interest in the medical field. After participation in the program and full access to the virtual material, twelve high school science teachers completed a final written reflective statement to evaluate their experiences. Using thematic analysis, knowledge and classroom application were investigated in this study. Results were two-fold: teachers identified difference areas of gained knowledge from the teacher-training program and teachers' reporting various benefits in relation to curricula development after participating in the program. It is concluded that participation in the program and access to the virtual material will impact the science community by updating teacher knowledge and positively influencing students' experience with science.

  10. An exploration of middle school science teachers' understandings and teaching practice of science as inquiry

    Science.gov (United States)

    Castle, Margaret Ann

    A number of reports have raised a concern that the U.S. is not meeting the demands of 21st century skill preparation of students, teachers, and practitioners in the areas of science, technology, engineering, and mathematics (STEM). In 2005 and 2006 five reports were released indicating a need for improvement in science and mathematics education in the U.S. The reports were: Keeping America Competitive: Five Strategies To Improve Mathematics and Science Education (Coble & Allen, 2005); National Defense Education and Innovation Initiative: Meeting America's Economic and Security Challenges in the 21st Century (The Association of American Universities, 2006); Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future (National Academies Press, 2007); Tapping America's Potential: The Education for Innovation Initiative (Business Roundtable Taskforce , 2005); and Waiting for Sputnik: Basic Research and Strategic Competition (Lewis, 2005). Consensus of data in these reports indicates that the U.S., as compared to other industrialized nations, does not fare very well in science achievement and STEM degree attainment. For example, on the 2003 Program for International Assessment (PISA), 15-year-old students in the U.S. ranked 28th in math and 24th in science literacy (Kuenzi, Matthews, & Mangon, 2006). Furthermore, the U.S. ranked 20th among all nations in the proportion of 24-year-olds who earned degrees in natural sciences or engineering (Kuenzi, 2008). As a result, if the U.S. is to remain scientifically and technologically competitive in the world, it is necessary to increase our efforts to incorporate scientific practices associated with science, technology, engineering, and mathematics into the science classroom. Middle school is a critical point in students' science education and it is in middle school that they begin to dislike science. Research indicates that when students learn science through inquiry their interest in and

  11. Instructional decision making of high school science teachers

    Science.gov (United States)

    Carver, Jeffrey S.

    The instructional decision-making processes of high school science teachers have not been well established in the literature. Several models for decision-making do exist in other teaching disciplines, business, computer game programming, nursing, and some fields of science. A model that incorporates differences in science teaching that is consistent with constructivist theory as opposed to conventional science teaching is useful in the current climate of standards-based instruction that includes an inquiry-based approach to teaching science. This study focuses on three aspects of the decision-making process. First, it defines what factors, both internal and external, influence high school science teacher decision-making. Second, those factors are analyzed further to determine what instructional decision-making processes are articulated or demonstrated by the participants. Third, by analyzing the types of decisions that are made in the classroom, the classroom learning environments established as a result of those instructional decisions are studied for similarities and differences between conventional and constructivist models. While the decision-making process for each of these teachers was not clearly articulated by the teachers themselves, the patterns that establish the process were clearly exhibited by the teachers. It was also clear that the classroom learning environments that were established were, at least in part, established as a result of the instructional decisions that were made in planning and implementation of instruction. Patterns of instructional decision-making were different for each teacher as a result of primary instructional goals that were different for each teacher. There were similarities between teachers who exhibited more constructivist epistemological tendencies as well as similarities between teachers who exhibited a more conventional epistemology. While the decisions that will result from these two camps may be different, the six step

  12. Does the modality principle for multimedia learning apply to science classrooms?

    NARCIS (Netherlands)

    Harskamp, Egbert G.; Mayer, Richard E.; Suhre, Cor

    2007-01-01

    This study demonstrated that the modality principle applies to multimedia learning of regular science lessons in school settings. In the first field experiment, 27 Dutch secondary school students (age 16-17) received a self-paced, web-based multimedia lesson in biology. Students who received lessons

  13. Race and Ethnicity: Powerful Cultural Forecasters of Science Learning and Performance

    Science.gov (United States)

    Atwater, Mary M.; Lance, Jennifer; Woodard, UrLeaka; Johnson, Natasha Hillsman

    2013-01-01

    This article addresses the impact of race and ethnicity on students' science learning in US schools. Specifically, it discusses (a) the constructs of race, ethnicity, and culture, and the racial and ethnic student composition in US public schools; (b) effective classroom practices for curriculum, instruction, and assessment related to race…

  14. Teachers' Obstacles in Implementing Numbered Head Together in Social Science Learning

    Science.gov (United States)

    Widyaningtyas, Harini; Winarni, Retno; Murwaningsih, Tri

    2018-01-01

    This study is aimed at describing teachers' obstacles in applying Numbered Head Together learning model in social science learning. The type of research is qualitative descriptive. The subject of the research is the third-grade teacher of elementary school in Sukoharjo Sub-district. The findings of the research were analyzed using interactive…

  15. Enhancing Self-Efficacy in Elementary Science Teaching with Professional Learning Communities

    Science.gov (United States)

    Mintzes, Joel J.; Marcum, Bev; Messerschmidt-Yates, Christl; Mark, Andrew

    2013-01-01

    Emerging from Bandura's Social Learning Theory, this study of in-service elementary school teachers examined the effects of sustained Professional Learning Communities (PLCs) on self-efficacy in science teaching. Based on mixed research methods, and a non-equivalent control group experimental design, the investigation explored changes in…

  16. Blended Learning and Student Engagement in an Urban High School

    Science.gov (United States)

    Johnson, Courtney

    2017-01-01

    A metropolitan school district wanted to understand blended learning as it existed in one of their high schools. Blended learning had been school-wide for four years, and district administrators wanted to know how students, teachers, and school administrators perceived blended learning and its impact on student engagement. This was a…

  17. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    Energy Technology Data Exchange (ETDEWEB)

    AISES, None

    2013-09-25

    Engineering Fair (NAISEF) and EXPO at the Albuquerque, NM Convention Center. Albuquerque is also the home of the AISES national office. The AISES staff also recruits volunteers to assist with implementation of the science and math bowl event. In 2011, there were 7 volunteers; in 2012, 15 volunteers, and in 2013, 19 volunteers. Volunteers are recruited from a variety of local sources, including Sandia Laboratories, Southwest Indian Polytechnic Institute students, Department of Defense, as well as family members of AISES staff. For AISES, the goals of the Intertribal Middle School Science and Math Bowl project are to have more Native students learn science, for them to gain confidence in competing, and to reward their effort in order to motivate them to pursue studies in the sciences and engineering. For DOE, the goals of the project are to get more Native students to compete at the National Science Bowl, held in Washington, DC.

  18. Investigating Teachers' Beliefs in the Implementation of Science Inquiry and Science Fair in Three Boston High Schools

    Science.gov (United States)

    De Barros Miller, Anne Marie

    In previous decades, inquiry has been the focus of science education reform in the United States. This study sought to investigate how teachers' beliefs affect their implementation of inquiry science and science fair. It was hypothesized that science teachers' beliefs about inquiry science and science fair are predictive of their implementation of such strategies. A case study approach and semi-structured interviews were employed to collect the data, and an original thematic approach was created to analyze the data. Findings seem to suggest that science teachers who embrace science inquiry and science fair believe these practices enhance students' performance, facilitate their learning experience, and allow them to take ownership of their learning. However, results also suggest that teachers who do not fully embrace inquiry science as a central teaching strategy tend to believe that it is not aligned with standardized tests and requires higher cognitive skills from students. Overall, the study seems to indicate that when inquiry is presented as a prescribed teaching approach, this elicits strong negative feelings/attitudes amongst science teachers, leading them not only to resist inquiry as a teaching tool, but also dissuading them from participating in science fair. Additionally, the findings suggest that such feelings among teachers could place the school at risk of not implementing inquiry science and science fair. In conclusion, the study reveals that science inquiry and science fair should not be prescribed to teachers as a top-down, mandatory approach for teaching science. In addition, the findings suggest that adequate teacher training in content knowledge and pedagogy in science inquiry and science fair should be encouraged, as this could help build a culture of science inquiry and implementation amongst teachers. This should go hand-in-hand with offering mentoring to science teachers new to inquiry and science fair for 2-5 years.

  19. Teacher Learning in Technology Professional Development and Its Impact on Student Achievement in Science

    Science.gov (United States)

    Lee, Hyunju; Longhurst, Max; Campbell, Todd

    2017-01-01

    This research investigated teacher learning and teacher beliefs in a two-year technology professional development (TPD) for teachers and its impact on their student achievement in science in the western part of the United States. Middle-school science teachers participated in TPD focused on information communication technologies (ICTs) and their…

  20. Developing a Community of Teachers through Integrated Science and Literacy Service-Learning Experiences

    Science.gov (United States)

    Cox-Petersen, Anne M.; Spencer, Brenda H.; Crawford, Teresa J.

    2005-01-01

    In this article, the authors present a case study of preservice teachers engaged in service-learning in an after-school program while concurrently enrolled in science and language arts methods courses. Two interdisciplinary education faculty worked collaboratively to connect language arts and science methods content with service-learning…

  1. Enhancing Laos Students' Understanding of Nature of Science in Physics Learning about Atom for Peace

    Science.gov (United States)

    Sengdala, Phoxay; Yuenyong, Chokchai

    2014-01-01

    This paper aimed to study of Grade 12 students' understanding of nature of science in learning about atom for peace through science technology and society (STS) approach. Participants were 51 Grade 12 who study in Thongphong high school Vientiane Capital City Lao PDR, 1st semester of 2012 academic year. This research regarded interpretive…

  2. Place-Based Science Teaching and Learning: 40 Activities for K-8 Classrooms

    Science.gov (United States)

    Buxton, Cory A.; Provenzo, Eugene F., Jr.

    2011-01-01

    Grounded in theory and best-practices research, this practical text provides elementary and middle school teachers with 40 place-based activities that will help them to make science learning relevant to their students. This text provides teachers with both a rationale and a set of strategies and activities for teaching science in a local context…

  3. A Framework for Re-thinking Learning in Science from Recent Cognitive Science Perspectives

    Science.gov (United States)

    Tytler, Russell; Prain, Vaughan

    2010-10-01

    Recent accounts by cognitive scientists of factors affecting cognition imply the need to reconsider current dominant conceptual theories about science learning. These new accounts emphasize the role of context, embodied practices, and narrative-based representation rather than learners' cognitive constructs. In this paper we analyse data from a longitudinal study of primary school children's learning to outline a framework based on these contemporary accounts and to delineate key points of difference from conceptual change perspectives. The findings suggest this framework provides strong theoretical and practical insights into how children learn and the key role of representational negotiation in this learning. We argue that the nature and process of conceptual change can be re-interpreted in terms of the development of students' representational resources.

  4. Middle School Teacher Misconceptions and Anxieties Concerning Space Science Disciplinary Core Ideas in NGSS

    Science.gov (United States)

    Larsen, Kristine

    2017-01-01

    The Disciplinary Core Ideas (DCI) of the Next Generation Science Standards (NGSS) are grouped into the broad disciplinary areas of Physical Sciences, Life Sciences, Earth and Space Sciences, and Engineering, Technology and Application of Science, and feature learning progressions based on endpoint targets for each grade band. Since the Middle School DCIs build on the expected learning achievements to be reached by the end of Fifth Grade, and High School DCI similarly build on the expected learning achievements expected for the end of Eighth Grade, the Middle School grade band is of particular importance as the bridge between the Elementary and High School curriculum. In states where there is not a special Middle School Certification many of these science classes are taught by teachers prepared to teach at the Elementary level (and who may have limited content background). As a result, some pre-service and in-service teachers have expressed reduced self-confidence in both their own science content knowledge and their ability to apply it in the NGSS-based classroom, while decades of research has demonstrated the pervasiveness of science misconceptions among teachers. Thus the adoption of NGSS has the potential to drive talented teachers out of the profession who feel that they are ill-prepared for this sweeping transition. The key is providing rigorous education in both content and pedagogy for pre-service teachers and quality targeted professional development for in-service teachers. This report focuses on the Middle School Space Sciences grade band DCIs and presents research on specific difficulties, misconceptions and uncertainties with the material demonstrated by pre-service education students over the past four years in a required university science content course, as well as two year-long granted workshop series for current Middle School teachers. This information is relevant to the development of both new content courses aligned with NGSS for pre

  5. Elementary and middle school science improvement project

    Science.gov (United States)

    Mcguire, Saundra Y.

    1989-01-01

    The Alabama A and M University Elementary and Middle School Science Improvement Project (Project SIP) was instituted to improve the science knowledge of elementary and middle school teachers using the experimental or hands-on approach. Summer workshops were conducted during the summers of 1986, 1987, and 1988 in the areas of biology, chemistry, physics, and electricity, and magnetism. Additionally, a manual containing 43 lessons which included background information, experiments and activities for classroom and home use was provided to each teacher. During the course of the project activities, the teachers interacted with various university faculty members, scientists, and NASA staff. The administrative aspects of the program, the delivery of the services to participating teachers, and the project outcome are addressed.

  6. Engaging high school students as plasma science outreach ambassadors

    Science.gov (United States)

    Wendt, Amy; Boffard, John

    2017-10-01

    Exposure to plasma science among future scientists and engineers is haphazard. In the U.S., plasma science is rare (or absent) in mainstream high school and introductory college physics curricula. As a result, talented students may be drawn to other careers simply due to a lack of awareness of the stimulating science and wide array of fulfilling career opportunities involving plasmas. In the interest of enabling informed decisions about career options, we have initiated an outreach collaboration with the Madison West High School Rocket Club. Rocket Club members regularly exhibit their activities at public venues, including large-scale expos that draw large audiences of all ages. Building on their historical emphasis on small scale rockets with chemical motors, we worked with the group to add a new feature to their exhibit that highlights plasma-based spacecraft propulsion for interplanetary probes. This new exhibit includes a model satellite with a working (low power) plasma thruster. The participating high school students led the development process, to be described, and enthusiastically learned to articulate concepts related to plasma thruster operation and to compare the relative advantages of chemical vs. plasma/electrical propulsion systems for different scenarios. Supported by NSF Grant PHY-1617602.

  7. Science of Learning Is Learning of Science: Why We Need a Dialectical Approach to Science Education Research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-01-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed…

  8. Collaborative Visualization Project: shared-technology learning environments for science learning

    Science.gov (United States)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  9. Teachers' and Students' Perceptions on the Problems of Effective Teaching and Learning of Science and Technology in Junior Secondary Schools

    Science.gov (United States)

    Gimba, R. W.; Hassan, A. M.; Yaki, A. A; Chado, A. M.

    2018-01-01

    It has been observed that students shy away from the study of Science and Technology even though Science and Technology occupies a central position in the development of the nation. This shows the negative attitude and poor performance of students in Science and Technology. This has prompted the research into teachers and students' perceptions of…

  10. Clinical learning environment at Shiraz Medical School.

    Science.gov (United States)

    Rezaee, Rita; Ebrahimi, Sedigheh

    2013-01-01

    Clinical learning occurs in the context of a dynamic environment. Learning environment found to be one of the most important factors in determining the success of an effective teaching program. To investigate, from the attending and resident's perspective, factors that may affect student leaning in the educational hospital setting at Shiraz University of Medical Sciences (SUMS). This study combined qualitative and quantitative methods to determine factors affecting effective learning in clinical setting. Residents evaluated the perceived effectiveness of the university hospital learning environment. Fifty two faculty members and 132 residents participated in this study. Key determinants that contribute to an effective clinical teaching were autonomy, supervision, social support, workload, role clarity, learning opportunity, work diversity and physical facilities. In a good clinical setting, residents should be appreciated and given appropriate opportunities to study in order to meet their objectives. They require a supportive environment to consolidate their knowledge, skills and judgment. © 2013 Tehran University of Medical Sciences. All rights reserved.

  11. Special ways of knowing in science: expansive learning opportunities with bilingual children with learning disabilities

    Science.gov (United States)

    Martínez-Álvarez, Patricia

    2017-09-01

    The field of bilingual special education is currently plagued with contradictions resulting in a serious underrepresentation of emergent bilinguals with learning disabilities in professional science fields. This underrepresentation is due in large part to the fact that educational systems around the world are inadequately prepared to address the educational needs of these children; this inadequacy is rooted in a lack of understanding of the linguistic and cultural factors impacting learning. Accepting such a premise and assuming that children learn in unexpected ways when instructional practices attend to culture and language, this study documents a place-based learning experience integrating geoscience and literacy in a fourth-grade dual language classroom. Data sources include transcribed audio-taped conversations from learning experience sessions and interviews that took place as six focus children, who had been identified as having specific learning disabilities, read published science texts (i.e. texts unaltered linguistically or conceptually to meet the needs of the readers). My analysis revealed that participants generated responses that were often unexpected if solely analyzed from those Western scientific perspectives traditionally valued in school contexts. However, these responses were also full of purposeful and rich understandings that revealed opportunities for expansive learning. Adopting a cultural historical activity theory perspective, instructional tools such as texts, visuals, and questions were found to act as mediators impacting the learning in both activity systems: (a) teacher- researcher learning from children, and (b) children learning from teachers. I conclude by suggesting that there is a need to understand students' ways of knowing to their full complexity, and to deliberately recognize teachers as learners, researchers, and means to expansive learning patterns that span beyond traditional learning boundaries.

  12. Inquiry learning for gender equity using History of Science in Life and Earth Sciences’ learning environments

    OpenAIRE

    C. Sousa

    2016-01-01

    [EN] The main objective of the present work is the selection and integration of objectives and methods of education for gender equity within the Life and Earth Sciences’ learning environments in the current portuguese frameworks of middle and high school. My proposal combines inquiry learning-teaching methods with the aim of promoting gender equity, mainly focusing in relevant 20th century women-scientists with a huge contribute to the History of Science.The hands-on and minds-on activities p...

  13. The Learning Sciences and Liberal Education

    Science.gov (United States)

    Budwig, Nancy

    2013-01-01

    This article makes the case for a new framing of liberal education based on several decades of research emerging from the learning and developmental sciences. This work suggests that general knowledge stems from acquiring both the habits of mind and repertoires of practice that develop from participation in knowledge-building communities. Such…

  14. Science + Writing = Super Learning. Writing Workshop.

    Science.gov (United States)

    Bower, Paula Rogovin

    1993-01-01

    Article presents suggestions for motivating elementary students to learn by combining science and writing. The strategies include planning the right environment; teaching the scientific method; establishing a link to literature; and making time for students to observe, experiment, and write. (SM)

  15. Schools and Social Emotional Learning

    Science.gov (United States)

    Usakli, Hakan; Ekici, Kubra

    2018-01-01

    In classrooms, the students spend lots of time by interacting each other. This paper debates the role of importance of the schools for rising students' social relations. Interaction between students is inevitable. That is because, they are together in projects, class discussion and peer working groups. Multicultural diverse school climates demand…

  16. Science Engagement at the Museum School: Teacher Perspectives on the Contribution of Museum Pedagogy to Science Teaching

    Science.gov (United States)

    Watermeyer, Richard

    2015-01-01

    This paper explores the accounts of science teachers working within the UK's only "museum school" and what they perceive as the benefits and shortcomings of "museum pedagogy" as a process of object-based teaching (and learning). Museum pedagogy is in this context considered for its potential in harmonising informal and formal…

  17. Space: the final frontier in the learning of science?

    Science.gov (United States)

    Milne, Catherine

    2014-03-01

    In Space, relations, and the learning of science, Wolff-Michael Roth and Pei-Ling Hsu use ethnomethodology to explore high school interns learning shopwork and shoptalk in a research lab that is located in a world class facility for water quality analysis. Using interaction analysis they identify how spaces, like a research laboratory, can be structured as smart spaces to create a workflow (learning flow) so that shoptalk and shopwork can projectively organize the actions of interns even in new and unfamiliar settings. Using these findings they explore implications for the design of curriculum and learning spaces more broadly. The Forum papers of Erica Blatt and Cassie Quigley complement this analysis. Blatt expands the discussion on space as an active component of learning with an examination of teaching settings, beyond laboratory spaces, as active participants of education. Quigley examines smart spaces as authentic learning spaces while acknowledging how internship experiences all empirical elements of authentic learning including open-ended inquiry and empowerment. In this paper I synthesize these ideas and propose that a narrative structure might better support workflow, student agency and democratic decision making.

  18. Learning with Web Tools, Simulations, and Other Technologies in Science Classrooms

    Science.gov (United States)

    Campbell, Todd; Wang, Shaing Kwei; Hsu, Hui-Yin; Duffy, Aaron M.; Wolf, Paul G.

    2010-10-01

    This position paper proposes the enhancement of teacher and student learning in science classrooms by tapping the enormous potential of information communication and technologies (ICTs) as cognitive tools for engaging students in scientific inquiry. This paper serves to challenge teacher-held assumptions about students learning science `from technology' with a framework and examples of students learning science `with technology'. Whereas a high percentage of students are finding their way in using ICTs outside of school, for the most part they currently are not doing so inside of school in ways that they find meaningful and relevant to their lives. Instead, the pedagogical approaches that are most often experienced are out-of-step with how students use ICTs outside of schools and are not supportive of learning framed by constructivism. Here we describe a theoretical and pedagogical foundation for better connecting the two worlds of students' lives: life in school and life outside of school. This position paper is in response to the changing landscape of students' lives. The position is transformative in nature because it proposes the use of cyber-enabled resources for cultivating and leveraging students new literacy skills by learning `with technology' to enhance science learning.

  19. School mathematical discourse in a learning landscape

    DEFF Research Database (Denmark)

    Valero, Paola; Meaney, Tamsin; Alrø, Helle

    By bringing our research work together, we are able to discuss the potential of combining the notions of the learning landscape and school mathematical discourse. We do so in a search for concepts and methodological tools to challenge the simplification of issues in regard to mathematics learning...... in multicultural settings, when adopting restricted perspectives on issues of bilingualism. In the paper we discuss the relationship between the learning landscape and school mathematical discourse. We then use these notions to analyse two case studies in Danish and New Zealand schools. Our conclusion raises...... possibilities about how these notions can be used when researching mathematics education in multicultural settings....

  20. A Well Designed School Environment Facilitates Brain Learning.

    Science.gov (United States)

    Chan, Tak Cheung; Petrie, Garth

    2000-01-01

    Examines how school design facilitates learning by complementing how the brain learns. How the brain learns is discussed and how an artistic environment, spaciousness in the learning areas, color and lighting, and optimal thermal and acoustical environments aid student learning. School design suggestions conclude the article. (GR)

  1. Bringing science education in and out of school closer together - (Symposium) SBBq Brazil

    OpenAIRE

    Dillon, J.; King’s College London, United Kingdom

    2013-01-01

    Throughout the world, and for many decades, science-rich cultural institutions, such as zoos, aquaria, museums, and others, have collaborated with schools to provide students, teachers and families with opportunities  to expand their experiences and understanding of science. Programmes include supplementary classroom experiences; integrated core academic curricula; student science learning communities located in afterschool, summer, and weekend programmes; teacher professional development opp...

  2. The Learning Science through Theatre Initiative in the Context of Responsible Research and Innovation

    Directory of Open Access Journals (Sweden)

    Zacharoula Smyrnaiou

    2017-10-01

    Full Text Available Fostering Responsible Research and Innovation (RRI is the next big step in the methodological teaching of Science. This is the solution towards an open classroom and innovation system of learning. The school science teaching needs to become more engaging. Science education should be an essential component of a learning continuum not only in classroom, but also for all, from pre- school to active engaged citizenship. "The Learning Science Through Theatre" Initiative creates a network of knowledge and collaboration between different communities by learning about science through other disciplines and learning about other disciplines through science. Forty Three (43 theatrical performances during the school years 2014-2016 were organized by secondary school students (2000 subjects which embed both scientific concepts and cultural/ social elements which are expressed by embodied, verbal interaction and analogies. The methodology constitutes a merging of qualitative, quantitative and grounded theory analysis. The data were classified into categories and they were cross- checked by registrations forms, filled by the teachers. Results show that the acquisition of knowledge is successful with the co- existence of multiple semiotic systems and the theatrical performances are compatible with the principles of RRI.

  3. Improving together: collaborative learning in science communication

    Science.gov (United States)

    Stiller-Reeve, Mathew

    2015-04-01

    Most scientists today recognise that science communication is an important part of the scientific process. Despite this recognition, science writing and communication are generally taught outside the normal academic schedule. If universities offer such courses, they are generally short-term and intensive. On the positive side, such courses rarely fail to motivate. At no fault of their own, the problem with such courses lies in their ephemeral nature. The participants rarely complete a science communication course with an immediate and pressing need to apply these skills. And so the skills fade. We believe that this stalls real progress in the improvement of science communication across the board. Continuity is one of the keys to success! Whilst we wait for the academic system to truly integrate science communication, we can test and develop other approaches. We suggest a new approach that aims to motivate scientists to continue nurturing their communication skills. This approach adopts a collaborative learning framework where scientists form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online. In this way, the participants learn and cement basic writing skills. These skills are transferrable, and can be applied to scientific articles as well as other science communication media. In this presentation we reflect on an ongoing project, which applies a collaborative learning framework to help young and early career scientists improve their writing skills. We see that this type of project could be extended to other media such as podcasts, or video shorts.

  4. Students' learning processes during school-based learning and workplace learning in vocational education : a review

    NARCIS (Netherlands)

    Dr. Harmen Schaap; Dr. Liesbeth Baartman; Prof.Dr. Elly de Bruijn

    2012-01-01

    This article reviews 24 articles in order to get a structured view on student's learning processes when dealing with a combination of school-based learning and workplace learning in vocational education. It focuses on six main themes: students' expertise development, students' learning styles,

  5. E-Learning Readiness in Public Secondary Schools in Kenya

    Science.gov (United States)

    Ouma, Gordon O.; Awuor, Fredrick M.; Kyambo, Benjamin

    2013-01-01

    As e-learning becomes useful to learning institutions worldwide, an assessment of e-learning readiness is essential for the successful implementation of e-learning as a platform for learning. Success in e-learning can be achieved by understanding the level of readiness of e-learning environments. To facilitate schools in Kenya to implement…

  6. Exploring science teachers' perceptions of experimentation: implications for restructuring school practical work

    Science.gov (United States)

    Wei, Bing; Li, Xiaoxiao

    2017-09-01

    It is commonly recognised that practical work has a distinctive and central role in science teaching and learning. Although a large number of studies have addressed the definitions, typologies, and purposes of practical work, few have consulted practicing science teachers. This study explored science teachers' perceptions of experimentation for the purpose of restructuring school practical work in view of science practice. Qualitative interviews were conducted with 87 science teachers at the secondary school level. In the interviews, science teachers were asked to make a comparison between students' experiments and scientific experiments. Eight dimensions of experimentation were generated from the qualitative data analysis, and the distributions of these eight dimensions between the two types of experiments were compared and analysed. An ideal model of practical work was suggested for restructuring practical work at the secondary school level, and some issues related to the effective enactment of practical work were discussed.

  7. Understanding understanding in secondary school science: An interpretive study

    Science.gov (United States)

    O'Neill, Maureen Gail

    This study investigated the teaching of secondary school science with an emphasis on promoting student understanding. In particular, I focused on two research questions: What are the possible meanings of teaching for understanding? And, how might one teach secondary school science for understanding? After semi-structured interviews were conducted with 13 secondary school science teachers, grounded theory methodology was used to interpret the data. As a result of the selective coding process, I was able to identify 14 connected components of teaching for understanding (TfU). The process of TfU involves: puzzle-solving, a specific pedagogy and a conscious decision. The teacher must be a reflective practitioner who has some knowledge of the facets of understanding. The teacher comes to a critical incident or crisis in his or her pedagogy and adopts a mindset which highlights TfU as a personal problematic. Teachers operate with student-centred rather than teacher-centred metaphors. TfU requires a firm belief in and passion for the process, a positive attitude and excellent pedagogical content knowledge. It hinges on a performance view of understanding and demands risk-taking in the science classroom. Abstracting these ideas to a theory led me to the notion of Purposive Teaching . In their purposive-driven role as pedagogues, these teachers have placed TfU at the core of their daily practice. Constraints and challenges facing TfU as well as implications of the findings are discussed. Keywords. science teaching, teaching for understanding, purposive teaching, constructivism, understanding, pedagogy, pedagogical content knowledge, memorization, meaningful learning, reflective practice.

  8. Transformative Multicultural Science curriculum: A case study of middle school robotics

    Science.gov (United States)

    Grimes, Mary Katheryn

    Multicultural Science has been a topic of research and discourse over the past several years. However, most of the literature concerning this topic (or paradigm) has centered on programs in tribal or Indigenous schools. Under the framework of instructional congruence, this case study explored how elementary and middle school students in a culturally diverse charter school responded to a Multicultural Science program. Furthermore, this research sought to better understand the dynamics of teaching and learning strategies used within the paradigm of Multicultural Science. The school's Robotics class, a class typically stereotyped as fitting within the misconceptions associated with the Western Modern Science paradigm, was the center of this case study. A triangulation of data consisted of class observations throughout two semesters; pre and post student science attitude surveys; and interviews with individual students, Robotic student teams, the Robotics class instructor, and school administration. Three themes emerged from the data that conceptualized the influence of a Multicultural Science curriculum with ethnically diverse students in a charter school's Robotics class. Results included the students' perceptions of a connection between science (i.e., Robotics) and their personal lives, a positive growth in the students' attitude toward science (and engineering), and a sense of personal empowerment toward being successful in science. However, also evident in the findings were the students' stereotypical attitudes toward science (and scientists) and their lack of understanding of the Nature of Science. Implications from this study include suggestions toward the development of Multicultural Science curricula in public schools. Modifications in university science methods courses to include the Multicultural Science paradigm are also suggested.

  9. Dancing through the School Day: How Dance Catapults Learning in Elementary Education

    Science.gov (United States)

    Becker, Kelly Mancini

    2013-01-01

    The necessity for engaging the body in learning, the need for students to move throughout the school day, and the positive effects that dance has on students' development are all good reasons for dance to be included in the elementary curriculum. There are many ways for teachers to integrate movement into the school day, using math, science,…

  10. Middle School Teachers' Expectations of Organizational Behaviors of Students with Learning Disabilities

    Science.gov (United States)

    McMullen, Rebecca C.; Shippen, Margaret E.; Dangel, Harry L.

    2007-01-01

    The purpose of this pilot study was to investigate the specific classroom organizational behaviors that middle school inclusive teachers report as expectations for students with learning disabilities. Practicing middle school science and social studies teachers (n = 12) responded to a survey about organization behaviors of students with learning…

  11. Rochester Castle MMORPG: Instructional Gaming and Collaborative Learning at a Western Australian School

    Science.gov (United States)

    Lee, Mark J. W.; Eustace, Ken; Fellows, Geoff; Bytheway, Allan; Irving, Leah

    2005-01-01

    This paper reports on the first stage of a project to develop and test the use of massively multiplayer online role playing games (MMORPGs) for promoting computer supported collaborative learning through instructional gaming in the high school classroom. Teachers and students of English and Science at Swan View Senior High School, Western…

  12. The Hope for American School Reform: The Cold War Pursuit of Inquiry Learning in Social Studies

    Science.gov (United States)

    Evans, Ronald W.

    2010-01-01

    As the issue of school reform grows ever more intense, it is imperative that we learn what we can from previous efforts. The new social studies was a 1960's attempt to transform the teaching of history and the social sciences in schools. With origins in the Cold War, the movement sought to develop critical thinkers through "inquiry" and…

  13. Model Debate for the Yellow Book Learning in Islamic Boarding School

    Science.gov (United States)

    Apdoludin; Saidek, Abdul Rahim; Islami, Raisul

    2016-01-01

    This study aimed to determine the effect model of debate in the yellow book learning in schools to improve students' critical thinking skills so they can find a new science. This study was an experimental study with a control group. The study was conducted in classes XI Islamic Boarding School Al-Hidayah Jambi. This study uses two parallel…

  14. The Costa Rica GLOBE (Global Learning and Observations to Benefit the Environment) Project as a Learning Science Environment

    Science.gov (United States)

    Castro Rojas, María Dolores; Zuñiga, Ana Lourdes Acuña; Ugalde, Emmanuel Fonseca

    2015-12-01

    GLOBE is a global educational program for elementary and high school levels, and its main purpose in Costa Rica is to develop scientific thinking and interest for science in high school students through hydrology research projects that allow them to relate science with environmental issues in their communities. Youth between 12 and 17 years old from public schools participate in science clubs outside of their regular school schedule. A comparison study was performed between different groups, in order to assess GLOBE's applicability as a learning science atmosphere and the motivation and interest it generates in students toward science. Internationally applied scales were used as tools for measuring such indicators, adapted to the Costa Rican context. The results provide evidence statistically significant that the students perceive the GLOBE atmosphere as an enriched environment for science learning in comparison with the traditional science class. Moreover, students feel more confident, motivated and interested in science than their peers who do not participate in the project. However, the results were not statistically significant in this last respect.

  15. Participation in Informal Science Learning Experiences: The Rich Get Richer?

    Science.gov (United States)

    DeWitt, Jennifer; Archer, Louise

    2017-01-01

    Informal science learning (ISL) experiences have been found to provide valuable opportunities to engage with and learn about science and, as such, form a key part of the STEM learning ecosystem. However, concerns remain around issues of equity and access. The Enterprising Science study builds upon previous research in this area and uses the…

  16. Portable Tablets in Science Museum Learning

    DEFF Research Database (Denmark)

    Gronemann, Sigurd Trolle

    2016-01-01

    Despite the increasing use of portable tablets in learning, their impact has received little attention in research. In five different projects, this media-ethnographic and design-based analysis of the use of portable tablets as a learning resource in science museums investigates how young people...... is identified. It is argued that, paradoxically, museums’ decisions to innovate by introducing new technologies, such as portable tablets, and new pedagogies to support them conflict with many young people’s traditional ideas of museums and learning. The assessment of the implications of museums’ integration...... of portable tablets indicates that in making pedagogical transformations to accommodate new technologies, museums risk opposing didactic intention if pedagogies do not sufficiently attend to young learners’ systemic expectations to learning and to their expectations to the digital experience influenced...

  17. Personalised learning spaces and federated online labs for STEM Education at School

    NARCIS (Netherlands)

    Gillet, Dennis; de Jong, Anthonius J.M.; Sotirou, Sofoklis; Salzmann, Christophe

    2013-01-01

    The European Commission is funding a large-scale research project on federated online laboratories (Labs) for education in Science, Technology, Engineering, and Mathematics (STEM) at School. The main educational focus is on inquiry learning and the main technological one is on personalized learning

  18. Designing Computer-Supported Complex Systems Curricula for the Next Generation Science Standards in High School Science Classrooms

    Directory of Open Access Journals (Sweden)

    Susan A. Yoon

    2016-12-01

    Full Text Available We present a curriculum and instruction framework for computer-supported teaching and learning about complex systems in high school science classrooms. This work responds to a need in K-12 science education research and practice for the articulation of design features for classroom instruction that can address the Next Generation Science Standards (NGSS recently launched in the USA. We outline the features of the framework, including curricular relevance, cognitively rich pedagogies, computational tools for teaching and learning, and the development of content expertise, and provide examples of how the framework is translated into practice. We follow this up with evidence from a preliminary study conducted with 10 teachers and 361 students, aimed at understanding the extent to which students learned from the activities. Results demonstrated gains in students’ complex systems understanding and biology content knowledge. In interviews, students identified influences of various aspects of the curriculum and instruction framework on their learning.

  19. HIGH SCHOOL STUDENTS’ VIEWS ON BLENDED LEARNING

    Directory of Open Access Journals (Sweden)

    Ibrahim Umit YAPICI,

    2012-08-01

    Full Text Available In this study, it is aimed to determine the high school students’ views on blended learning. The study was carried out in biology course for the lesson unit of “Classification of Living Things and Biodiversity” with 47 9th grade students attending Nevzat Ayaz Anatolian High School in the second term of the academic year of 2009-2010. The lessons were taught in a way appropriate to the blended learning model both via the Internet and on face-to-face basis. As the online dimension of the blended learning model, Moodle, a Learning Management System (LMS, was used. The application lasted 10 weeks. The scale of learners’ views on blended learning was applied and interviews were held to determine the views. As a result of the analysis of the scale, it was seen that their views were “highly” positive. The interviews held with the students revealed that the blended learning model provided students with various opportunities such as getting prepared for the lessons, reviewing the lessons as many times as wanted, reaching the subject-related materials without being dependent on time and place, testing oneself and communicating with the teacher and other students out of the school. The interviews also revealed that there were various problems though such as lack of Internet connection at home and problems experienced while playing the videos.

  20. Science is Cool with NASA's "Space School Musical"

    Science.gov (United States)

    Asplund, S.

    2011-12-01

    To help young learners understand basic solar system science concepts and retain what they learn, NASA's Discovery Program collaborated with KidTribe to create "Space School Musical," an innovative approach to teaching about the solar system that combines science content with music, fun lyrics, and choreography. It's an educational "hip-hopera" that moves and grooves its way into the minds and memories of students and educators alike. Kids can watch the videos, learn the songs, do the cross-curricular activities, and perform the show themselves. "Space School Musical" captures students attention as it brings the solar system to life, introducing the planets, moons, asteroids and more. The musical uses many different learning styles, helping to assure retention. Offering students an engaging, creative, and interdisciplinary learning opportunity helps them remember the content and may lead them to wonder about the universe around them and even inspire children to want to learn more, to dare to consider they can be the scientists, technologists, engineers or mathematicians of tomorrow. The unique Activity Guide created that accompanies "Space School Musical" includes 36 academic, fitness, art, and life skills lessons, all based on the content in the songs. The activities are designed to be highly engaging while helping students interact with the information. Whether students absorb information best with their eyes, ears, or body, each lesson allows for their learning preferences and encourages them to interact with both the content and each other. A guide on How to Perform the Play helps instructors lead students in performing their own version of the musical. The guide has suggestions to help with casting, auditions, rehearsing, creating the set and costumes, and performing. The musical is totally flexible - the entire play can be performed or just a few selected numbers; students can sing to the karaoke versions or lip-sync to the original cast. After learning about