WorldWideScience

Sample records for learning reinforcement learning

  1. Algorithms for Reinforcement Learning

    CERN Document Server

    Szepesvari, Csaba

    2010-01-01

    Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms'

  2. Manifold Regularized Reinforcement Learning.

    Science.gov (United States)

    Li, Hongliang; Liu, Derong; Wang, Ding

    2018-04-01

    This paper introduces a novel manifold regularized reinforcement learning scheme for continuous Markov decision processes. Smooth feature representations for value function approximation can be automatically learned using the unsupervised manifold regularization method. The learned features are data-driven, and can be adapted to the geometry of the state space. Furthermore, the scheme provides a direct basis representation extension for novel samples during policy learning and control. The performance of the proposed scheme is evaluated on two benchmark control tasks, i.e., the inverted pendulum and the energy storage problem. Simulation results illustrate the concepts of the proposed scheme and show that it can obtain excellent performance.

  3. The Reinforcement Learning Competition 2014

    OpenAIRE

    Dimitrakakis, Christos; Li, Guangliang; Tziortziotis, Nikoalos

    2014-01-01

    Reinforcement learning is one of the most general problems in artificial intelligence. It has been used to model problems in automated experiment design, control, economics, game playing, scheduling and telecommunications. The aim of the reinforcement learning competition is to encourage the development of very general learning agents for arbitrary reinforcement learning problems and to provide a test-bed for the unbiased evaluation of algorithms.

  4. Deep Reinforcement Learning: An Overview

    OpenAIRE

    Li, Yuxi

    2017-01-01

    We give an overview of recent exciting achievements of deep reinforcement learning (RL). We discuss six core elements, six important mechanisms, and twelve applications. We start with background of machine learning, deep learning and reinforcement learning. Next we discuss core RL elements, including value function, in particular, Deep Q-Network (DQN), policy, reward, model, planning, and exploration. After that, we discuss important mechanisms for RL, including attention and memory, unsuperv...

  5. Evolutionary computation for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Wiering, M.; van Otterlo, M.

    2012-01-01

    Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,

  6. Reinforcement learning in supply chains.

    Science.gov (United States)

    Valluri, Annapurna; North, Michael J; Macal, Charles M

    2009-10-01

    Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice.

  7. Adaptive representations for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.

    2010-01-01

    This book presents new algorithms for reinforcement learning, a form of machine learning in which an autonomous agent seeks a control policy for a sequential decision task. Since current methods typically rely on manually designed solution representations, agents that automatically adapt their own

  8. Reinforcement learning in computer vision

    Science.gov (United States)

    Bernstein, A. V.; Burnaev, E. V.

    2018-04-01

    Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.

  9. Rational and Mechanistic Perspectives on Reinforcement Learning

    Science.gov (United States)

    Chater, Nick

    2009-01-01

    This special issue describes important recent developments in applying reinforcement learning models to capture neural and cognitive function. But reinforcement learning, as a theoretical framework, can apply at two very different levels of description: "mechanistic" and "rational." Reinforcement learning is often viewed in mechanistic terms--as…

  10. Belief reward shaping in reinforcement learning

    CSIR Research Space (South Africa)

    Marom, O

    2018-02-01

    Full Text Available A key challenge in many reinforcement learning problems is delayed rewards, which can significantly slow down learning. Although reward shaping has previously been introduced to accelerate learning by bootstrapping an agent with additional...

  11. Reinforcement learning or active inference?

    Science.gov (United States)

    Friston, Karl J; Daunizeau, Jean; Kiebel, Stefan J

    2009-07-29

    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.

  12. Reinforcement learning or active inference?

    Directory of Open Access Journals (Sweden)

    Karl J Friston

    2009-07-01

    Full Text Available This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain.

  13. Reinforcement Learning State-of-the-Art

    CERN Document Server

    Wiering, Marco

    2012-01-01

    Reinforcement learning encompasses both a science of adaptive behavior of rational beings in uncertain environments and a computational methodology for finding optimal behaviors for challenging problems in control, optimization and adaptive behavior of intelligent agents. As a field, reinforcement learning has progressed tremendously in the past decade. The main goal of this book is to present an up-to-date series of survey articles on the main contemporary sub-fields of reinforcement learning. This includes surveys on partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations. Furthermore, topics such as transfer, evolutionary methods and continuous spaces in reinforcement learning are surveyed. In addition, several chapters review reinforcement learning methods in robotics, in games, and in computational neuroscience. In total seventeen different subfields are presented by mostly young experts in those areas, and together the...

  14. Reinforcement learning improves behaviour from evaluative feedback

    Science.gov (United States)

    Littman, Michael L.

    2015-05-01

    Reinforcement learning is a branch of machine learning concerned with using experience gained through interacting with the world and evaluative feedback to improve a system's ability to make behavioural decisions. It has been called the artificial intelligence problem in a microcosm because learning algorithms must act autonomously to perform well and achieve their goals. Partly driven by the increasing availability of rich data, recent years have seen exciting advances in the theory and practice of reinforcement learning, including developments in fundamental technical areas such as generalization, planning, exploration and empirical methodology, leading to increasing applicability to real-life problems.

  15. Value learning through reinforcement : The basics of dopamine and reinforcement learning

    NARCIS (Netherlands)

    Daw, N.D.; Tobler, P.N.; Glimcher, P.W.; Fehr, E.

    2013-01-01

    This chapter provides an overview of reinforcement learning and temporal difference learning and relates these topics to the firing properties of midbrain dopamine neurons. First, we review the RescorlaWagner learning rule and basic learning phenomena, such as blocking, which the rule explains. Then

  16. Using a board game to reinforce learning.

    Science.gov (United States)

    Yoon, Bona; Rodriguez, Leslie; Faselis, Charles J; Liappis, Angelike P

    2014-03-01

    Experiential gaming strategies offer a variation on traditional learning. A board game was used to present synthesized content of fundamental catheter care concepts and reinforce evidence-based practices relevant to nursing. Board games are innovative educational tools that can enhance active learning. Copyright 2014, SLACK Incorporated.

  17. Embedded Incremental Feature Selection for Reinforcement Learning

    Science.gov (United States)

    2012-05-01

    Prior to this work, feature selection for reinforce- ment learning has focused on linear value function ap- proximation ( Kolter and Ng, 2009; Parr et al...InProceed- ings of the the 23rd International Conference on Ma- chine Learning, pages 449–456. Kolter , J. Z. and Ng, A. Y. (2009). Regularization and feature

  18. Decentralized Reinforcement Learning of robot behaviors

    NARCIS (Netherlands)

    Leottau, David L.; Ruiz-del-Solar, Javier; Babuska, R.

    2018-01-01

    A multi-agent methodology is proposed for Decentralized Reinforcement Learning (DRL) of individual behaviors in problems where multi-dimensional action spaces are involved. When using this methodology, sub-tasks are learned in parallel by individual agents working toward a common goal. In

  19. Online reinforcement learning control for aerospace systems

    NARCIS (Netherlands)

    Zhou, Y.

    2018-01-01

    Reinforcement Learning (RL) methods are relatively new in the field of aerospace guidance, navigation, and control. This dissertation aims to exploit RL methods to improve the autonomy and online learning of aerospace systems with respect to the a priori unknown system and environment, dynamical

  20. Reinforcement Learning in Continuous Action Spaces

    NARCIS (Netherlands)

    Hasselt, H. van; Wiering, M.A.

    2007-01-01

    Quite some research has been done on Reinforcement Learning in continuous environments, but the research on problems where the actions can also be chosen from a continuous space is much more limited. We present a new class of algorithms named Continuous Actor Critic Learning Automaton (CACLA)

  1. Reinforcement Learning in Repeated Portfolio Decisions

    OpenAIRE

    Diao, Linan; Rieskamp, Jörg

    2011-01-01

    How do people make investment decisions when they receive outcome feedback? We examined how well the standard mean-variance model and two reinforcement models predict people's portfolio decisions. The basic reinforcement model predicts a learning process that relies solely on the portfolio's overall return, whereas the proposed extended reinforcement model also takes the risk and covariance of the investments into account. The experimental results illustrate that people reacted sensitively to...

  2. Reinforcement Learning for a New Piano Mover

    Directory of Open Access Journals (Sweden)

    Yuko Ishiwaka

    2005-08-01

    Full Text Available We attempt to achieve corporative behavior of autonomous decentralized agents constructed via Q-Learning, which is a type of reinforcement learning. As such, in the present paper, we examine the piano mover's problem. We propose a multi-agent architecture that has a training agent, learning agents and intermediate agent. Learning agents are heterogeneous and can communicate with each other. The movement of an object with three kinds of agent depends on the composition of the actions of the learning agents. By learning its own shape through the learning agents, avoidance of obstacles by the object is expected. We simulate the proposed method in a two-dimensional continuous world. Results obtained in the present investigation reveal the effectiveness of the proposed method.

  3. Reinforcement learning: Solving two case studies

    Science.gov (United States)

    Duarte, Ana Filipa; Silva, Pedro; dos Santos, Cristina Peixoto

    2012-09-01

    Reinforcement Learning algorithms offer interesting features for the control of autonomous systems, such as the ability to learn from direct interaction with the environment, and the use of a simple reward signalas opposed to the input-outputs pairsused in classic supervised learning. The reward signal indicates the success of failure of the actions executed by the agent in the environment. In this work, are described RL algorithmsapplied to two case studies: the Crawler robot and the widely known inverted pendulum. We explore RL capabilities to autonomously learn a basic locomotion pattern in the Crawler, andapproach the balancing problem of biped locomotion using the inverted pendulum.

  4. Learning to trade via direct reinforcement.

    Science.gov (United States)

    Moody, J; Saffell, M

    2001-01-01

    We present methods for optimizing portfolios, asset allocations, and trading systems based on direct reinforcement (DR). In this approach, investment decision-making is viewed as a stochastic control problem, and strategies are discovered directly. We present an adaptive algorithm called recurrent reinforcement learning (RRL) for discovering investment policies. The need to build forecasting models is eliminated, and better trading performance is obtained. The direct reinforcement approach differs from dynamic programming and reinforcement algorithms such as TD-learning and Q-learning, which attempt to estimate a value function for the control problem. We find that the RRL direct reinforcement framework enables a simpler problem representation, avoids Bellman's curse of dimensionality and offers compelling advantages in efficiency. We demonstrate how direct reinforcement can be used to optimize risk-adjusted investment returns (including the differential Sharpe ratio), while accounting for the effects of transaction costs. In extensive simulation work using real financial data, we find that our approach based on RRL produces better trading strategies than systems utilizing Q-learning (a value function method). Real-world applications include an intra-daily currency trader and a monthly asset allocation system for the S&P 500 Stock Index and T-Bills.

  5. Social Influence as Reinforcement Learning

    Science.gov (United States)

    2016-01-13

    a brain region associated with motivation and reward learning. Further, individuals’ level of striatal activity in response to consensus tracks...experiment. Economics Letters, 2001. 71(3): p. 397-404. 14. Ledyard, J., Public goods: A survey of experimental research. Pub Econ , 1994.

  6. Reinforcement Learning for Ramp Control: An Analysis of Learning Parameters

    Directory of Open Access Journals (Sweden)

    Chao Lu

    2016-08-01

    Full Text Available Reinforcement Learning (RL has been proposed to deal with ramp control problems under dynamic traffic conditions; however, there is a lack of sufficient research on the behaviour and impacts of different learning parameters. This paper describes a ramp control agent based on the RL mechanism and thoroughly analyzed the influence of three learning parameters; namely, learning rate, discount rate and action selection parameter on the algorithm performance. Two indices for the learning speed and convergence stability were used to measure the algorithm performance, based on which a series of simulation-based experiments were designed and conducted by using a macroscopic traffic flow model. Simulation results showed that, compared with the discount rate, the learning rate and action selection parameter made more remarkable impacts on the algorithm performance. Based on the analysis, some suggestionsabout how to select suitable parameter values that can achieve a superior performance were provided.

  7. Autonomous reinforcement learning with experience replay.

    Science.gov (United States)

    Wawrzyński, Paweł; Tanwani, Ajay Kumar

    2013-05-01

    This paper considers the issues of efficiency and autonomy that are required to make reinforcement learning suitable for real-life control tasks. A real-time reinforcement learning algorithm is presented that repeatedly adjusts the control policy with the use of previously collected samples, and autonomously estimates the appropriate step-sizes for the learning updates. The algorithm is based on the actor-critic with experience replay whose step-sizes are determined on-line by an enhanced fixed point algorithm for on-line neural network training. An experimental study with simulated octopus arm and half-cheetah demonstrates the feasibility of the proposed algorithm to solve difficult learning control problems in an autonomous way within reasonably short time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Framework for robot skill learning using reinforcement learning

    Science.gov (United States)

    Wei, Yingzi; Zhao, Mingyang

    2003-09-01

    Robot acquiring skill is a process similar to human skill learning. Reinforcement learning (RL) is an on-line actor critic method for a robot to develop its skill. The reinforcement function has become the critical component for its effect of evaluating the action and guiding the learning process. We present an augmented reward function that provides a new way for RL controller to incorporate prior knowledge and experience into the RL controller. Also, the difference form of augmented reward function is considered carefully. The additional reward beyond conventional reward will provide more heuristic information for RL. In this paper, we present a strategy for the task of complex skill learning. Automatic robot shaping policy is to dissolve the complex skill into a hierarchical learning process. The new form of value function is introduced to attain smooth motion switching swiftly. We present a formal, but practical, framework for robot skill learning and also illustrate with an example the utility of method for learning skilled robot control on line.

  9. Reinforcement Learning and Savings Behavior.

    Science.gov (United States)

    Choi, James J; Laibson, David; Madrian, Brigitte C; Metrick, Andrew

    2009-12-01

    We show that individual investors over-extrapolate from their personal experience when making savings decisions. Investors who experience particularly rewarding outcomes from saving in their 401(k)-a high average and/or low variance return-increase their 401(k) savings rate more than investors who have less rewarding experiences with saving. This finding is not driven by aggregate time-series shocks, income effects, rational learning about investing skill, investor fixed effects, or time-varying investor-level heterogeneity that is correlated with portfolio allocations to stock, bond, and cash asset classes. We discuss implications for the equity premium puzzle and interventions aimed at improving household financial outcomes.

  10. Efficient abstraction selection in reinforcement learning

    NARCIS (Netherlands)

    Seijen, H. van; Whiteson, S.; Kester, L.

    2013-01-01

    This paper introduces a novel approach for abstraction selection in reinforcement learning problems modelled as factored Markov decision processes (MDPs), for which a state is described via a set of state components. In abstraction selection, an agent must choose an abstraction from a set of

  11. Reinforcement Learning Based Artificial Immune Classifier

    Directory of Open Access Journals (Sweden)

    Mehmet Karakose

    2013-01-01

    Full Text Available One of the widely used methods for classification that is a decision-making process is artificial immune systems. Artificial immune systems based on natural immunity system can be successfully applied for classification, optimization, recognition, and learning in real-world problems. In this study, a reinforcement learning based artificial immune classifier is proposed as a new approach. This approach uses reinforcement learning to find better antibody with immune operators. The proposed new approach has many contributions according to other methods in the literature such as effectiveness, less memory cell, high accuracy, speed, and data adaptability. The performance of the proposed approach is demonstrated by simulation and experimental results using real data in Matlab and FPGA. Some benchmark data and remote image data are used for experimental results. The comparative results with supervised/unsupervised based artificial immune system, negative selection classifier, and resource limited artificial immune classifier are given to demonstrate the effectiveness of the proposed new method.

  12. Reinforcement Learning in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Manuela Schuetze

    2017-11-01

    Full Text Available Early behavioral interventions are recognized as integral to standard care in autism spectrum disorder (ASD, and often focus on reinforcing desired behaviors (e.g., eye contact and reducing the presence of atypical behaviors (e.g., echoing others' phrases. However, efficacy of these programs is mixed. Reinforcement learning relies on neurocircuitry that has been reported to be atypical in ASD: prefrontal-sub-cortical circuits, amygdala, brainstem, and cerebellum. Thus, early behavioral interventions rely on neurocircuitry that may function atypically in at least a subset of individuals with ASD. Recent work has investigated physiological, behavioral, and neural responses to reinforcers to uncover differences in motivation and learning in ASD. We will synthesize this work to identify promising avenues for future research that ultimately can be used to enhance the efficacy of early intervention.

  13. Reinforcement Learning and Savings Behavior*

    Science.gov (United States)

    Choi, James J.; Laibson, David; Madrian, Brigitte C.; Metrick, Andrew

    2009-01-01

    We show that individual investors over-extrapolate from their personal experience when making savings decisions. Investors who experience particularly rewarding outcomes from saving in their 401(k)—a high average and/or low variance return—increase their 401(k) savings rate more than investors who have less rewarding experiences with saving. This finding is not driven by aggregate time-series shocks, income effects, rational learning about investing skill, investor fixed effects, or time-varying investor-level heterogeneity that is correlated with portfolio allocations to stock, bond, and cash asset classes. We discuss implications for the equity premium puzzle and interventions aimed at improving household financial outcomes. PMID:20352013

  14. Reinforcement learning for microgrid energy management

    International Nuclear Information System (INIS)

    Kuznetsova, Elizaveta; Li, Yan-Fu; Ruiz, Carlos; Zio, Enrico; Ault, Graham; Bell, Keith

    2013-01-01

    We consider a microgrid for energy distribution, with a local consumer, a renewable generator (wind turbine) and a storage facility (battery), connected to the external grid via a transformer. We propose a 2 steps-ahead reinforcement learning algorithm to plan the battery scheduling, which plays a key role in the achievement of the consumer goals. The underlying framework is one of multi-criteria decision-making by an individual consumer who has the goals of increasing the utilization rate of the battery during high electricity demand (so as to decrease the electricity purchase from the external grid) and increasing the utilization rate of the wind turbine for local use (so as to increase the consumer independence from the external grid). Predictions of available wind power feed the reinforcement learning algorithm for selecting the optimal battery scheduling actions. The embedded learning mechanism allows to enhance the consumer knowledge about the optimal actions for battery scheduling under different time-dependent environmental conditions. The developed framework gives the capability to intelligent consumers to learn the stochastic environment and make use of the experience to select optimal energy management actions. - Highlights: • A consumer exploits a 2 steps-ahead reinforcement learning for battery scheduling. • The Q-learning based mechanism is fed by the predictions of available wind power. • Wind speed state evolutions are modeled with a Markov chain model. • Optimal scheduling actions are learned through the occurrence of similar scenarios. • The consumer manifests a continuous enhance of his knowledge about optimal actions

  15. SCAFFOLDINGAND REINFORCEMENT: USING DIGITAL LOGBOOKS IN LEARNING VOCABULARY

    OpenAIRE

    Khalifa, Salma Hasan Almabrouk; Shabdin, Ahmad Affendi

    2016-01-01

    Reinforcement and scaffolding are tested approaches to enhance learning achievements. Keeping a record of the learning process as well as the new learned words functions as scaffolding to help learners build a comprehensive vocabulary. Similarly, repetitive learning of new words reinforces permanent learning for long-term memory. Paper-based logbooks may prove to be good records of the learning process, but if learners use digital logbooks, the results may be even better. Digital logbooks wit...

  16. Online constrained model-based reinforcement learning

    CSIR Research Space (South Africa)

    Van Niekerk, B

    2017-08-01

    Full Text Available Constrained Model-based Reinforcement Learning Benjamin van Niekerk School of Computer Science University of the Witwatersrand South Africa Andreas Damianou∗ Amazon.com Cambridge, UK Benjamin Rosman Council for Scientific and Industrial Research, and School... MULTIPLE SHOOTING Using direct multiple shooting (Bock and Plitt, 1984), problem (1) can be transformed into a structured non- linear program (NLP). First, the time horizon [t0, t0 + T ] is partitioned into N equal subintervals [tk, tk+1] for k = 0...

  17. Enriching behavioral ecology with reinforcement learning methods.

    Science.gov (United States)

    Frankenhuis, Willem E; Panchanathan, Karthik; Barto, Andrew G

    2018-02-13

    This article focuses on the division of labor between evolution and development in solving sequential, state-dependent decision problems. Currently, behavioral ecologists tend to use dynamic programming methods to study such problems. These methods are successful at predicting animal behavior in a variety of contexts. However, they depend on a distinct set of assumptions. Here, we argue that behavioral ecology will benefit from drawing more than it currently does on a complementary collection of tools, called reinforcement learning methods. These methods allow for the study of behavior in highly complex environments, which conventional dynamic programming methods do not feasibly address. In addition, reinforcement learning methods are well-suited to studying how biological mechanisms solve developmental and learning problems. For instance, we can use them to study simple rules that perform well in complex environments. Or to investigate under what conditions natural selection favors fixed, non-plastic traits (which do not vary across individuals), cue-driven-switch plasticity (innate instructions for adaptive behavioral development based on experience), or developmental selection (the incremental acquisition of adaptive behavior based on experience). If natural selection favors developmental selection, which includes learning from environmental feedback, we can also make predictions about the design of reward systems. Our paper is written in an accessible manner and for a broad audience, though we believe some novel insights can be drawn from our discussion. We hope our paper will help advance the emerging bridge connecting the fields of behavioral ecology and reinforcement learning. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Vicarious reinforcement learning signals when instructing others.

    Science.gov (United States)

    Apps, Matthew A J; Lesage, Elise; Ramnani, Narender

    2015-02-18

    Reinforcement learning (RL) theory posits that learning is driven by discrepancies between the predicted and actual outcomes of actions (prediction errors [PEs]). In social environments, learning is often guided by similar RL mechanisms. For example, teachers monitor the actions of students and provide feedback to them. This feedback evokes PEs in students that guide their learning. We report the first study that investigates the neural mechanisms that underpin RL signals in the brain of a teacher. Neurons in the anterior cingulate cortex (ACC) signal PEs when learning from the outcomes of one's own actions but also signal information when outcomes are received by others. Does a teacher's ACC signal PEs when monitoring a student's learning? Using fMRI, we studied brain activity in human subjects (teachers) as they taught a confederate (student) action-outcome associations by providing positive or negative feedback. We examined activity time-locked to the students' responses, when teachers infer student predictions and know actual outcomes. We fitted a RL-based computational model to the behavior of the student to characterize their learning, and examined whether a teacher's ACC signals when a student's predictions are wrong. In line with our hypothesis, activity in the teacher's ACC covaried with the PE values in the model. Additionally, activity in the teacher's insula and ventromedial prefrontal cortex covaried with the predicted value according to the student. Our findings highlight that the ACC signals PEs vicariously for others' erroneous predictions, when monitoring and instructing their learning. These results suggest that RL mechanisms, processed vicariously, may underpin and facilitate teaching behaviors. Copyright © 2015 Apps et al.

  19. Human demonstrations for fast and safe exploration in reinforcement learning

    NARCIS (Netherlands)

    Schonebaum, G.K.; Junell, J.L.; van Kampen, E.

    2017-01-01

    Reinforcement learning is a promising framework for controlling complex vehicles with a high level of autonomy, since it does not need a dynamic model of the vehicle, and it is able to adapt to changing conditions. When learning from scratch, the performance of a reinforcement learning controller

  20. Ensemble Network Architecture for Deep Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Xi-liang Chen

    2018-01-01

    Full Text Available The popular deep Q learning algorithm is known to be instability because of the Q-value’s shake and overestimation action values under certain conditions. These issues tend to adversely affect their performance. In this paper, we develop the ensemble network architecture for deep reinforcement learning which is based on value function approximation. The temporal ensemble stabilizes the training process by reducing the variance of target approximation error and the ensemble of target values reduces the overestimate and makes better performance by estimating more accurate Q-value. Our results show that this architecture leads to statistically significant better value evaluation and more stable and better performance on several classical control tasks at OpenAI Gym environment.

  1. Optimizing Chemical Reactions with Deep Reinforcement Learning.

    Science.gov (United States)

    Zhou, Zhenpeng; Li, Xiaocheng; Zare, Richard N

    2017-12-27

    Deep reinforcement learning was employed to optimize chemical reactions. Our model iteratively records the results of a chemical reaction and chooses new experimental conditions to improve the reaction outcome. This model outperformed a state-of-the-art blackbox optimization algorithm by using 71% fewer steps on both simulations and real reactions. Furthermore, we introduced an efficient exploration strategy by drawing the reaction conditions from certain probability distributions, which resulted in an improvement on regret from 0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.

  2. Reusable Reinforcement Learning via Shallow Trails.

    Science.gov (United States)

    Yu, Yang; Chen, Shi-Yong; Da, Qing; Zhou, Zhi-Hua

    2018-06-01

    Reinforcement learning has shown great success in helping learning agents accomplish tasks autonomously from environment interactions. Meanwhile in many real-world applications, an agent needs to accomplish not only a fixed task but also a range of tasks. For this goal, an agent can learn a metapolicy over a set of training tasks that are drawn from an underlying distribution. By maximizing the total reward summed over all the training tasks, the metapolicy can then be reused in accomplishing test tasks from the same distribution. However, in practice, we face two major obstacles to train and reuse metapolicies well. First, how to identify tasks that are unrelated or even opposite with each other, in order to avoid their mutual interference in the training. Second, how to characterize task features, according to which a metapolicy can be reused. In this paper, we propose the MetA-Policy LEarning (MAPLE) approach that overcomes the two difficulties by introducing the shallow trail. It probes a task by running a roughly trained policy. Using the rewards of the shallow trail, MAPLE automatically groups similar tasks. Moreover, when the task parameters are unknown, the rewards of the shallow trail also serve as task features. Empirical studies on several controlling tasks verify that MAPLE can train metapolicies well and receives high reward on test tasks.

  3. Reinforcement learning account of network reciprocity.

    Science.gov (United States)

    Ezaki, Takahiro; Masuda, Naoki

    2017-01-01

    Evolutionary game theory predicts that cooperation in social dilemma games is promoted when agents are connected as a network. However, when networks are fixed over time, humans do not necessarily show enhanced mutual cooperation. Here we show that reinforcement learning (specifically, the so-called Bush-Mosteller model) approximately explains the experimentally observed network reciprocity and the lack thereof in a parameter region spanned by the benefit-to-cost ratio and the node's degree. Thus, we significantly extend previously obtained numerical results.

  4. Reinforcement learning account of network reciprocity.

    Directory of Open Access Journals (Sweden)

    Takahiro Ezaki

    Full Text Available Evolutionary game theory predicts that cooperation in social dilemma games is promoted when agents are connected as a network. However, when networks are fixed over time, humans do not necessarily show enhanced mutual cooperation. Here we show that reinforcement learning (specifically, the so-called Bush-Mosteller model approximately explains the experimentally observed network reciprocity and the lack thereof in a parameter region spanned by the benefit-to-cost ratio and the node's degree. Thus, we significantly extend previously obtained numerical results.

  5. Flexible Heuristic Dynamic Programming for Reinforcement Learning in Quadrotors

    NARCIS (Netherlands)

    Helmer, Alexander; de Visser, C.C.; van Kampen, E.

    2018-01-01

    Reinforcement learning is a paradigm for learning decision-making tasks from interaction with the environment. Function approximators solve a part of the curse of dimensionality when learning in high-dimensional state and/or action spaces. It can be a time-consuming process to learn a good policy in

  6. Optimizing microstimulation using a reinforcement learning framework.

    Science.gov (United States)

    Brockmeier, Austin J; Choi, John S; Distasio, Marcello M; Francis, Joseph T; Príncipe, José C

    2011-01-01

    The ability to provide sensory feedback is desired to enhance the functionality of neuroprosthetics. Somatosensory feedback provides closed-loop control to the motor system, which is lacking in feedforward neuroprosthetics. In the case of existing somatosensory function, a template of the natural response can be used as a template of desired response elicited by electrical microstimulation. In the case of no initial training data, microstimulation parameters that produce responses close to the template must be selected in an online manner. We propose using reinforcement learning as a framework to balance the exploration of the parameter space and the continued selection of promising parameters for further stimulation. This approach avoids an explicit model of the neural response from stimulation. We explore a preliminary architecture--treating the task as a k-armed bandit--using offline data recorded for natural touch and thalamic microstimulation, and we examine the methods efficiency in exploring the parameter space while concentrating on promising parameter forms. The best matching stimulation parameters, from k = 68 different forms, are selected by the reinforcement learning algorithm consistently after 334 realizations.

  7. Applications of Deep Learning and Reinforcement Learning to Biological Data.

    Science.gov (United States)

    Mahmud, Mufti; Kaiser, Mohammed Shamim; Hussain, Amir; Vassanelli, Stefano

    2018-06-01

    Rapid advances in hardware-based technologies during the past decades have opened up new possibilities for life scientists to gather multimodal data in various application domains, such as omics, bioimaging, medical imaging, and (brain/body)-machine interfaces. These have generated novel opportunities for development of dedicated data-intensive machine learning techniques. In particular, recent research in deep learning (DL), reinforcement learning (RL), and their combination (deep RL) promise to revolutionize the future of artificial intelligence. The growth in computational power accompanied by faster and increased data storage, and declining computing costs have already allowed scientists in various fields to apply these techniques on data sets that were previously intractable owing to their size and complexity. This paper provides a comprehensive survey on the application of DL, RL, and deep RL techniques in mining biological data. In addition, we compare the performances of DL techniques when applied to different data sets across various application domains. Finally, we outline open issues in this challenging research area and discuss future development perspectives.

  8. Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.

    Science.gov (United States)

    Hu, Yujing; Gao, Yang; An, Bo

    2015-07-01

    An important approach in multiagent reinforcement learning (MARL) is equilibrium-based MARL, which adopts equilibrium solution concepts in game theory and requires agents to play equilibrium strategies at each state. However, most existing equilibrium-based MARL algorithms cannot scale due to a large number of computationally expensive equilibrium computations (e.g., computing Nash equilibria is PPAD-hard) during learning. For the first time, this paper finds that during the learning process of equilibrium-based MARL, the one-shot games corresponding to each state's successive visits often have the same or similar equilibria (for some states more than 90% of games corresponding to successive visits have similar equilibria). Inspired by this observation, this paper proposes to use equilibrium transfer to accelerate equilibrium-based MARL. The key idea of equilibrium transfer is to reuse previously computed equilibria when each agent has a small incentive to deviate. By introducing transfer loss and transfer condition, a novel framework called equilibrium transfer-based MARL is proposed. We prove that although equilibrium transfer brings transfer loss, equilibrium-based MARL algorithms can still converge to an equilibrium policy under certain assumptions. Experimental results in widely used benchmarks (e.g., grid world game, soccer game, and wall game) show that the proposed framework: 1) not only significantly accelerates equilibrium-based MARL (up to 96.7% reduction in learning time), but also achieves higher average rewards than algorithms without equilibrium transfer and 2) scales significantly better than algorithms without equilibrium transfer when the state/action space grows and the number of agents increases.

  9. Punishment Insensitivity and Impaired Reinforcement Learning in Preschoolers

    Science.gov (United States)

    Briggs-Gowan, Margaret J.; Nichols, Sara R.; Voss, Joel; Zobel, Elvira; Carter, Alice S.; McCarthy, Kimberly J.; Pine, Daniel S.; Blair, James; Wakschlag, Lauren S.

    2014-01-01

    Background: Youth and adults with psychopathic traits display disrupted reinforcement learning. Advances in measurement now enable examination of this association in preschoolers. The current study examines relations between reinforcement learning in preschoolers and parent ratings of reduced responsiveness to socialization, conceptualized as a…

  10. Continuous residual reinforcement learning for traffic signal control optimization

    NARCIS (Netherlands)

    Aslani, Mohammad; Seipel, Stefan; Wiering, Marco

    2018-01-01

    Traffic signal control can be naturally regarded as a reinforcement learning problem. Unfortunately, it is one of the most difficult classes of reinforcement learning problems owing to its large state space. A straightforward approach to address this challenge is to control traffic signals based on

  11. Reinforcement learning in continuous state and action spaces

    NARCIS (Netherlands)

    H. P. van Hasselt (Hado); M.A. Wiering; M. van Otterlo

    2012-01-01

    textabstractMany traditional reinforcement-learning algorithms have been designed for problems with small finite state and action spaces. Learning in such discrete problems can been difficult, due to noise and delayed reinforcements. However, many real-world problems have continuous state or action

  12. Reinforcement learning in complementarity game and population dynamics.

    Science.gov (United States)

    Jost, Jürgen; Li, Wei

    2014-02-01

    We systematically test and compare different reinforcement learning schemes in a complementarity game [J. Jost and W. Li, Physica A 345, 245 (2005)] played between members of two populations. More precisely, we study the Roth-Erev, Bush-Mosteller, and SoftMax reinforcement learning schemes. A modified version of Roth-Erev with a power exponent of 1.5, as opposed to 1 in the standard version, performs best. We also compare these reinforcement learning strategies with evolutionary schemes. This gives insight into aspects like the issue of quick adaptation as opposed to systematic exploration or the role of learning rates.

  13. Solution to reinforcement learning problems with artificial potential field

    Institute of Scientific and Technical Information of China (English)

    XIE Li-juan; XIE Guang-rong; CHEN Huan-wen; LI Xiao-li

    2008-01-01

    A novel method was designed to solve reinforcement learning problems with artificial potential field. Firstly a reinforcement learning problem was transferred to a path planning problem by using artificial potential field(APF), which was a very appropriate method to model a reinforcement learning problem. Secondly, a new APF algorithm was proposed to overcome the local minimum problem in the potential field methods with a virtual water-flow concept. The performance of this new method was tested by a gridworld problem named as key and door maze. The experimental results show that within 45 trials, good and deterministic policies are found in almost all simulations. In comparison with WIERING's HQ-learning system which needs 20 000 trials for stable solution, the proposed new method can obtain optimal and stable policy far more quickly than HQ-learning. Therefore, the new method is simple and effective to give an optimal solution to the reinforcement learning problem.

  14. Tank War Using Online Reinforcement Learning

    DEFF Research Database (Denmark)

    Toftgaard Andersen, Kresten; Zeng, Yifeng; Dahl Christensen, Dennis

    2009-01-01

    Real-Time Strategy(RTS) games provide a challenging platform to implement online reinforcement learning(RL) techniques in a real application. Computer as one player monitors opponents'(human or other computers) strategies and then updates its own policy using RL methods. In this paper, we propose...... a multi-layer framework for implementing the online RL in a RTS game. The framework significantly reduces the RL computational complexity by decomposing the state space in a hierarchical manner. We implement the RTS game - Tank General, and perform a thorough test on the proposed framework. The results...... show the effectiveness of our proposed framework and shed light on relevant issues on using the RL in RTS games....

  15. Multi-agent machine learning a reinforcement approach

    CERN Document Server

    Schwartz, H M

    2014-01-01

    The book begins with a chapter on traditional methods of supervised learning, covering recursive least squares learning, mean square error methods, and stochastic approximation. Chapter 2 covers single agent reinforcement learning. Topics include learning value functions, Markov games, and TD learning with eligibility traces. Chapter 3 discusses two player games including two player matrix games with both pure and mixed strategies. Numerous algorithms and examples are presented. Chapter 4 covers learning in multi-player games, stochastic games, and Markov games, focusing on learning multi-pla

  16. A multiplicative reinforcement learning model capturing learning dynamics and interindividual variability in mice

    OpenAIRE

    Bathellier, Brice; Tee, Sui Poh; Hrovat, Christina; Rumpel, Simon

    2013-01-01

    Learning speed can strongly differ across individuals. This is seen in humans and animals. Here, we measured learning speed in mice performing a discrimination task and developed a theoretical model based on the reinforcement learning framework to account for differences between individual mice. We found that, when using a multiplicative learning rule, the starting connectivity values of the model strongly determine the shape of learning curves. This is in contrast to current learning models ...

  17. Exploiting Best-Match Equations for Efficient Reinforcement Learning

    NARCIS (Netherlands)

    van Seijen, Harm; Whiteson, Shimon; van Hasselt, Hado; Wiering, Marco

    This article presents and evaluates best-match learning, a new approach to reinforcement learning that trades off the sample efficiency of model-based methods with the space efficiency of model-free methods. Best-match learning works by approximating the solution to a set of best-match equations,

  18. Switching Reinforcement Learning for Continuous Action Space

    Science.gov (United States)

    Nagayoshi, Masato; Murao, Hajime; Tamaki, Hisashi

    Reinforcement Learning (RL) attracts much attention as a technique of realizing computational intelligence such as adaptive and autonomous decentralized systems. In general, however, it is not easy to put RL into practical use. This difficulty includes a problem of designing a suitable action space of an agent, i.e., satisfying two requirements in trade-off: (i) to keep the characteristics (or structure) of an original search space as much as possible in order to seek strategies that lie close to the optimal, and (ii) to reduce the search space as much as possible in order to expedite the learning process. In order to design a suitable action space adaptively, we propose switching RL model to mimic a process of an infant's motor development in which gross motor skills develop before fine motor skills. Then, a method for switching controllers is constructed by introducing and referring to the “entropy”. Further, through computational experiments by using robot navigation problems with one and two-dimensional continuous action space, the validity of the proposed method has been confirmed.

  19. Tunnel Ventilation Control Using Reinforcement Learning Methodology

    Science.gov (United States)

    Chu, Baeksuk; Kim, Dongnam; Hong, Daehie; Park, Jooyoung; Chung, Jin Taek; Kim, Tae-Hyung

    The main purpose of tunnel ventilation system is to maintain CO pollutant concentration and VI (visibility index) under an adequate level to provide drivers with comfortable and safe driving environment. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement learning (RL) method. RL is a goal-directed learning of a mapping from situations to actions without relying on exemplary supervision or complete models of the environment. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. In the process of constructing the reward of the tunnel ventilation system, two objectives listed above are included, that is, maintaining an adequate level of pollutants and minimizing power consumption. RL algorithm based on actor-critic architecture and gradient-following algorithm is adopted to the tunnel ventilation system. The simulations results performed with real data collected from existing tunnel ventilation system and real experimental verification are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  20. Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening

    OpenAIRE

    He, Frank S.; Liu, Yang; Schwing, Alexander G.; Peng, Jian

    2016-01-01

    We propose a novel training algorithm for reinforcement learning which combines the strength of deep Q-learning with a constrained optimization approach to tighten optimality and encourage faster reward propagation. Our novel technique makes deep reinforcement learning more practical by drastically reducing the training time. We evaluate the performance of our approach on the 49 games of the challenging Arcade Learning Environment, and report significant improvements in both training time and...

  1. Reinforcement Learning in the Game of Othello: Learning Against a Fixed Opponent and Learning from Self-Play

    NARCIS (Netherlands)

    van der Ree, Michiel; Wiering, Marco

    2013-01-01

    This paper compares three strategies in using reinforcement learning algorithms to let an artificial agent learnto play the game of Othello. The three strategies that are compared are: Learning by self-play, learning from playing against a fixed opponent, and learning from playing against a fixed

  2. Adversarial Reinforcement Learning in a Cyber Security Simulation}

    OpenAIRE

    Elderman, Richard; Pater, Leon; Thie, Albert; Drugan, Madalina; Wiering, Marco

    2017-01-01

    This paper focuses on cyber-security simulations in networks modeled as a Markov game with incomplete information and stochastic elements. The resulting game is an adversarial sequential decision making problem played with two agents, the attacker and defender. The two agents pit one reinforcement learning technique, like neural networks, Monte Carlo learning and Q-learning, against each other and examine their effectiveness against learning opponents. The results showed that Monte Carlo lear...

  3. Episodic reinforcement learning control approach for biped walking

    Directory of Open Access Journals (Sweden)

    Katić Duško

    2012-01-01

    Full Text Available This paper presents a hybrid dynamic control approach to the realization of humanoid biped robotic walk, focusing on the policy gradient episodic reinforcement learning with fuzzy evaluative feedback. The proposed structure of controller involves two feedback loops: a conventional computed torque controller and an episodic reinforcement learning controller. The reinforcement learning part includes fuzzy information about Zero-Moment- Point errors. Simulation tests using a medium-size 36-DOF humanoid robot MEXONE were performed to demonstrate the effectiveness of our method.

  4. Lung Nodule Detection via Deep Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Issa Ali

    2018-04-01

    Full Text Available Lung cancer is the most common cause of cancer-related death globally. As a preventive measure, the United States Preventive Services Task Force (USPSTF recommends annual screening of high risk individuals with low-dose computed tomography (CT. The resulting volume of CT scans from millions of people will pose a significant challenge for radiologists to interpret. To fill this gap, computer-aided detection (CAD algorithms may prove to be the most promising solution. A crucial first step in the analysis of lung cancer screening results using CAD is the detection of pulmonary nodules, which may represent early-stage lung cancer. The objective of this work is to develop and validate a reinforcement learning model based on deep artificial neural networks for early detection of lung nodules in thoracic CT images. Inspired by the AlphaGo system, our deep learning algorithm takes a raw CT image as input and views it as a collection of states, and output a classification of whether a nodule is present or not. The dataset used to train our model is the LIDC/IDRI database hosted by the lung nodule analysis (LUNA challenge. In total, there are 888 CT scans with annotations based on agreement from at least three out of four radiologists. As a result, there are 590 individuals having one or more nodules, and 298 having none. Our training results yielded an overall accuracy of 99.1% [sensitivity 99.2%, specificity 99.1%, positive predictive value (PPV 99.1%, negative predictive value (NPV 99.2%]. In our test, the results yielded an overall accuracy of 64.4% (sensitivity 58.9%, specificity 55.3%, PPV 54.2%, and NPV 60.0%. These early results show promise in solving the major issue of false positives in CT screening of lung nodules, and may help to save unnecessary follow-up tests and expenditures.

  5. Neural Basis of Reinforcement Learning and Decision Making

    Science.gov (United States)

    Lee, Daeyeol; Seo, Hyojung; Jung, Min Whan

    2012-01-01

    Reinforcement learning is an adaptive process in which an animal utilizes its previous experience to improve the outcomes of future choices. Computational theories of reinforcement learning play a central role in the newly emerging areas of neuroeconomics and decision neuroscience. In this framework, actions are chosen according to their value functions, which describe how much future reward is expected from each action. Value functions can be adjusted not only through reward and penalty, but also by the animal’s knowledge of its current environment. Studies have revealed that a large proportion of the brain is involved in representing and updating value functions and using them to choose an action. However, how the nature of a behavioral task affects the neural mechanisms of reinforcement learning remains incompletely understood. Future studies should uncover the principles by which different computational elements of reinforcement learning are dynamically coordinated across the entire brain. PMID:22462543

  6. Integrating distributed Bayesian inference and reinforcement learning for sensor management

    NARCIS (Netherlands)

    Grappiolo, C.; Whiteson, S.; Pavlin, G.; Bakker, B.

    2009-01-01

    This paper introduces a sensor management approach that integrates distributed Bayesian inference (DBI) and reinforcement learning (RL). DBI is implemented using distributed perception networks (DPNs), a multiagent approach to performing efficient inference, while RL is used to automatically

  7. applying reinforcement learning to the weapon assignment problem

    African Journals Online (AJOL)

    ismith

    Carlo (MC) control algorithm with exploring starts (MCES), and an off-policy ..... closest to the threat should fire (that weapon also had the highest probability to ... Monte Carlo ..... “Reinforcement learning: Theory, methods and application to.

  8. Effect of reinforcement learning on coordination of multiangent systems

    Science.gov (United States)

    Bukkapatnam, Satish T. S.; Gao, Greg

    2000-12-01

    For effective coordination of distributed environments involving multiagent systems, learning ability of each agent in the environment plays a crucial role. In this paper, we develop a simple group learning method based on reinforcement, and study its effect on coordination through application to a supply chain procurement scenario involving a computer manufacturer. Here, all parties are represented by self-interested, autonomous agents, each capable of performing specific simple tasks. They negotiate with each other to perform complex tasks and thus coordinate supply chain procurement. Reinforcement learning is intended to enable each agent to reach a best negotiable price within a shortest possible time. Our simulations of the application scenario under different learning strategies reveals the positive effects of reinforcement learning on an agent's as well as the system's performance.

  9. Safe Exploration of State and Action Spaces in Reinforcement Learning

    OpenAIRE

    Garcia, Javier; Fernandez, Fernando

    2014-01-01

    In this paper, we consider the important problem of safe exploration in reinforcement learning. While reinforcement learning is well-suited to domains with complex transition dynamics and high-dimensional state-action spaces, an additional challenge is posed by the need for safe and efficient exploration. Traditional exploration techniques are not particularly useful for solving dangerous tasks, where the trial and error process may lead to the selection of actions whose execution in some sta...

  10. The Computational Development of Reinforcement Learning during Adolescence.

    Directory of Open Access Journals (Sweden)

    Stefano Palminteri

    2016-06-01

    Full Text Available Adolescence is a period of life characterised by changes in learning and decision-making. Learning and decision-making do not rely on a unitary system, but instead require the coordination of different cognitive processes that can be mathematically formalised as dissociable computational modules. Here, we aimed to trace the developmental time-course of the computational modules responsible for learning from reward or punishment, and learning from counterfactual feedback. Adolescents and adults carried out a novel reinforcement learning paradigm in which participants learned the association between cues and probabilistic outcomes, where the outcomes differed in valence (reward versus punishment and feedback was either partial or complete (either the outcome of the chosen option only, or the outcomes of both the chosen and unchosen option, were displayed. Computational strategies changed during development: whereas adolescents' behaviour was better explained by a basic reinforcement learning algorithm, adults' behaviour integrated increasingly complex computational features, namely a counterfactual learning module (enabling enhanced performance in the presence of complete feedback and a value contextualisation module (enabling symmetrical reward and punishment learning. Unlike adults, adolescent performance did not benefit from counterfactual (complete feedback. In addition, while adults learned symmetrically from both reward and punishment, adolescents learned from reward but were less likely to learn from punishment. This tendency to rely on rewards and not to consider alternative consequences of actions might contribute to our understanding of decision-making in adolescence.

  11. Social Learning, Reinforcement and Crime: Evidence from Three European Cities

    Science.gov (United States)

    Tittle, Charles R.; Antonaccio, Olena; Botchkovar, Ekaterina

    2012-01-01

    This study reports a cross-cultural test of Social Learning Theory using direct measures of social learning constructs and focusing on the causal structure implied by the theory. Overall, the results strongly confirm the main thrust of the theory. Prior criminal reinforcement and current crime-favorable definitions are highly related in all three…

  12. Systems control with generalized probabilistic fuzzy-reinforcement learning

    NARCIS (Netherlands)

    Hinojosa, J.; Nefti, S.; Kaymak, U.

    2011-01-01

    Reinforcement learning (RL) is a valuable learning method when the systems require a selection of control actions whose consequences emerge over long periods for which input-output data are not available. In most combinations of fuzzy systems and RL, the environment is considered to be

  13. An Analysis of Stochastic Game Theory for Multiagent Reinforcement Learning

    National Research Council Canada - National Science Library

    Bowling, Michael

    2000-01-01

    .... In this paper we contribute a comprehensive presentation of the relevant techniques for solving stochastic games from both the game theory community and reinforcement learning communities. We examine the assumptions and limitations of these algorithms, and identify similarities between these algorithms, single agent reinforcement learners, and basic game theory techniques.

  14. Instructional control of reinforcement learning: a behavioral and neurocomputational investigation.

    Science.gov (United States)

    Doll, Bradley B; Jacobs, W Jake; Sanfey, Alan G; Frank, Michael J

    2009-11-24

    Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is "overridden" at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract "Q-learning" and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a "confirmation bias" in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes.

  15. Social Cognition as Reinforcement Learning: Feedback Modulates Emotion Inference.

    Science.gov (United States)

    Zaki, Jamil; Kallman, Seth; Wimmer, G Elliott; Ochsner, Kevin; Shohamy, Daphna

    2016-09-01

    Neuroscientific studies of social cognition typically employ paradigms in which perceivers draw single-shot inferences about the internal states of strangers. Real-world social inference features much different parameters: People often encounter and learn about particular social targets (e.g., friends) over time and receive feedback about whether their inferences are correct or incorrect. Here, we examined this process and, more broadly, the intersection between social cognition and reinforcement learning. Perceivers were scanned using fMRI while repeatedly encountering three social targets who produced conflicting visual and verbal emotional cues. Perceivers guessed how targets felt and received feedback about whether they had guessed correctly. Visual cues reliably predicted one target's emotion, verbal cues predicted a second target's emotion, and neither reliably predicted the third target's emotion. Perceivers successfully used this information to update their judgments over time. Furthermore, trial-by-trial learning signals-estimated using two reinforcement learning models-tracked activity in ventral striatum and ventromedial pFC, structures associated with reinforcement learning, and regions associated with updating social impressions, including TPJ. These data suggest that learning about others' emotions, like other forms of feedback learning, relies on domain-general reinforcement mechanisms as well as domain-specific social information processing.

  16. Can model-free reinforcement learning explain deontological moral judgments?

    Science.gov (United States)

    Ayars, Alisabeth

    2016-05-01

    Dual-systems frameworks propose that moral judgments are derived from both an immediate emotional response, and controlled/rational cognition. Recently Cushman (2013) proposed a new dual-system theory based on model-free and model-based reinforcement learning. Model-free learning attaches values to actions based on their history of reward and punishment, and explains some deontological, non-utilitarian judgments. Model-based learning involves the construction of a causal model of the world and allows for far-sighted planning; this form of learning fits well with utilitarian considerations that seek to maximize certain kinds of outcomes. I present three concerns regarding the use of model-free reinforcement learning to explain deontological moral judgment. First, many actions that humans find aversive from model-free learning are not judged to be morally wrong. Moral judgment must require something in addition to model-free learning. Second, there is a dearth of evidence for central predictions of the reinforcement account-e.g., that people with different reinforcement histories will, all else equal, make different moral judgments. Finally, to account for the effect of intention within the framework requires certain assumptions which lack support. These challenges are reasonable foci for future empirical/theoretical work on the model-free/model-based framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Human-level control through deep reinforcement learning

    Science.gov (United States)

    Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A.; Veness, Joel; Bellemare, Marc G.; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K.; Ostrovski, Georg; Petersen, Stig; Beattie, Charles; Sadik, Amir; Antonoglou, Ioannis; King, Helen; Kumaran, Dharshan; Wierstra, Daan; Legg, Shane; Hassabis, Demis

    2015-02-01

    The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

  18. Human-level control through deep reinforcement learning.

    Science.gov (United States)

    Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A; Veness, Joel; Bellemare, Marc G; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K; Ostrovski, Georg; Petersen, Stig; Beattie, Charles; Sadik, Amir; Antonoglou, Ioannis; King, Helen; Kumaran, Dharshan; Wierstra, Daan; Legg, Shane; Hassabis, Demis

    2015-02-26

    The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

  19. Adaptive Trajectory Tracking Control using Reinforcement Learning for Quadrotor

    Directory of Open Access Journals (Sweden)

    Wenjie Lou

    2016-02-01

    Full Text Available Inaccurate system parameters and unpredicted external disturbances affect the performance of non-linear controllers. In this paper, a new adaptive control algorithm under the reinforcement framework is proposed to stabilize a quadrotor helicopter. Based on a command-filtered non-linear control algorithm, adaptive elements are added and learned by policy-search methods. To predict the inaccurate system parameters, a new kernel-based regression learning method is provided. In addition, Policy learning by Weighting Exploration with the Returns (PoWER and Return Weighted Regression (RWR are utilized to learn the appropriate parameters for adaptive elements in order to cancel the effect of external disturbance. Furthermore, numerical simulations under several conditions are performed, and the ability of adaptive trajectory-tracking control with reinforcement learning are demonstrated.

  20. Reinforcement and Systemic Machine Learning for Decision Making

    CERN Document Server

    Kulkarni, Parag

    2012-01-01

    Reinforcement and Systemic Machine Learning for Decision Making There are always difficulties in making machines that learn from experience. Complete information is not always available-or it becomes available in bits and pieces over a period of time. With respect to systemic learning, there is a need to understand the impact of decisions and actions on a system over that period of time. This book takes a holistic approach to addressing that need and presents a new paradigm-creating new learning applications and, ultimately, more intelligent machines. The first book of its kind in this new an

  1. Characterizing Reinforcement Learning Methods through Parameterized Learning Problems

    Science.gov (United States)

    2011-06-03

    extraneous. The agent could potentially adapt these representational aspects by applying methods from feature selection ( Kolter and Ng, 2009; Petrik et al...611–616. AAAI Press. Kolter , J. Z. and Ng, A. Y. (2009). Regularization and feature selection in least-squares temporal difference learning. In A. P

  2. Human reinforcement learning subdivides structured action spaces by learning effector-specific values

    OpenAIRE

    Gershman, Samuel J.; Pesaran, Bijan; Daw, Nathaniel D.

    2009-01-01

    Humans and animals are endowed with a large number of effectors. Although this enables great behavioral flexibility, it presents an equally formidable reinforcement learning problem of discovering which actions are most valuable, due to the high dimensionality of the action space. An unresolved question is how neural systems for reinforcement learning – such as prediction error signals for action valuation associated with dopamine and the striatum – can cope with this “curse of dimensionality...

  3. Amygdala and ventral striatum make distinct contributions to reinforcement learning

    Science.gov (United States)

    Costa, Vincent D.; Monte, Olga Dal; Lucas, Daniel R.; Murray, Elisabeth A.; Averbeck, Bruno B.

    2016-01-01

    Summary Reinforcement learning (RL) theories posit that dopaminergic signals are integrated within the striatum to associate choices with outcomes. Often overlooked is that the amygdala also receives dopaminergic input and is involved in Pavlovian processes that influence choice behavior. To determine the relative contributions of the ventral striatum (VS) and amygdala to appetitive RL we tested rhesus macaques with VS or amygdala lesions on deterministic and stochastic versions of a two-arm bandit reversal learning task. When learning was characterized with a RL model relative to controls, amygdala lesions caused general decreases in learning from positive feedback and choice consistency. By comparison, VS lesions only affected learning in the stochastic task. Moreover, the VS lesions hastened the monkeys’ choice reaction times, which emphasized a speed-accuracy tradeoff that accounted for errors in deterministic learning. These results update standard accounts of RL by emphasizing distinct contributions of the amygdala and VS to RL. PMID:27720488

  4. Time representation in reinforcement learning models of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Samuel Joseph Gershman

    2014-01-01

    Full Text Available Reinforcement learning models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still no theoretical consensus about what kind of time representation is used by the basal ganglia. We review several theoretical accounts and their supporting evidence. We then discuss the relationship between reinforcement learning models and the timing mechanisms that have been attributed to the basal ganglia. We hypothesize that a single computational system may underlie both reinforcement learning and interval timing—the perception of duration in the range of seconds to hours. This hypothesis, which extends earlier models by incorporating a time-sensitive action selection mechanism, may have important implications for understanding disorders like Parkinson's disease in which both decision making and timing are impaired.

  5. Flow Navigation by Smart Microswimmers via Reinforcement Learning

    Science.gov (United States)

    Colabrese, Simona; Biferale, Luca; Celani, Antonio; Gustavsson, Kristian

    2017-11-01

    We have numerically modeled active particles which are able to acquire some limited knowledge of the fluid environment from simple mechanical cues and exert a control on their preferred steering direction. We show that those swimmers can learn effective strategies just by experience, using a reinforcement learning algorithm. As an example, we focus on smart gravitactic swimmers. These are active particles whose task is to reach the highest altitude within some time horizon, exploiting the underlying flow whenever possible. The reinforcement learning algorithm allows particles to learn effective strategies even in difficult situations when, in the absence of control, they would end up being trapped by flow structures. These strategies are highly nontrivial and cannot be easily guessed in advance. This work paves the way towards the engineering of smart microswimmers that solve difficult navigation problems. ERC AdG NewTURB 339032.

  6. Reinforcement and inference in cross-situational word learning.

    Science.gov (United States)

    Tilles, Paulo F C; Fontanari, José F

    2013-01-01

    Cross-situational word learning is based on the notion that a learner can determine the referent of a word by finding something in common across many observed uses of that word. Here we propose an adaptive learning algorithm that contains a parameter that controls the strength of the reinforcement applied to associations between concurrent words and referents, and a parameter that regulates inference, which includes built-in biases, such as mutual exclusivity, and information of past learning events. By adjusting these parameters so that the model predictions agree with data from representative experiments on cross-situational word learning, we were able to explain the learning strategies adopted by the participants of those experiments in terms of a trade-off between reinforcement and inference. These strategies can vary wildly depending on the conditions of the experiments. For instance, for fast mapping experiments (i.e., the correct referent could, in principle, be inferred in a single observation) inference is prevalent, whereas for segregated contextual diversity experiments (i.e., the referents are separated in groups and are exhibited with members of their groups only) reinforcement is predominant. Other experiments are explained with more balanced doses of reinforcement and inference.

  7. Projective Simulation compared to reinforcement learning

    OpenAIRE

    Bjerland, Øystein Førsund

    2015-01-01

    This thesis explores the model of projective simulation (PS), a novel approach for an artificial intelligence (AI) agent. The model of PS learns by interacting with the environment it is situated in, and allows for simulating actions before real action is taken. The action selection is based on a random walk through the episodic & compositional memory (ECM), which is a network of clips that represent previous experienced percepts. The network takes percepts as inpu...

  8. Reinforcement Learning Applications to Combat Identification

    Science.gov (United States)

    2017-03-01

    ruleset in an effort to mimic simplistic cognitive decision making of a TAO/MC and establishes parameters for the experimentation. Also, there is an...the process knowledge and decision - making abilities of the human decision maker. “[A] cognitive architecture provides the fixed processes and...have bearing on decisions to affect the learning rate in an operational implementation. 3. Cognitive Functions in CID The translation of the

  9. Multiagent Reinforcement Learning with Regret Matching for Robot Soccer

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2013-01-01

    Full Text Available This paper proposes a novel multiagent reinforcement learning (MARL algorithm Nash- learning with regret matching, in which regret matching is used to speed up the well-known MARL algorithm Nash- learning. It is critical that choosing a suitable strategy for action selection to harmonize the relation between exploration and exploitation to enhance the ability of online learning for Nash- learning. In Markov Game the joint action of agents adopting regret matching algorithm can converge to a group of points of no-regret that can be viewed as coarse correlated equilibrium which includes Nash equilibrium in essence. It is can be inferred that regret matching can guide exploration of the state-action space so that the rate of convergence of Nash- learning algorithm can be increased. Simulation results on robot soccer validate that compared to original Nash- learning algorithm, the use of regret matching during the learning phase of Nash- learning has excellent ability of online learning and results in significant performance in terms of scores, average reward and policy convergence.

  10. Optimal and Autonomous Control Using Reinforcement Learning: A Survey.

    Science.gov (United States)

    Kiumarsi, Bahare; Vamvoudakis, Kyriakos G; Modares, Hamidreza; Lewis, Frank L

    2018-06-01

    This paper reviews the current state of the art on reinforcement learning (RL)-based feedback control solutions to optimal regulation and tracking of single and multiagent systems. Existing RL solutions to both optimal and control problems, as well as graphical games, will be reviewed. RL methods learn the solution to optimal control and game problems online and using measured data along the system trajectories. We discuss Q-learning and the integral RL algorithm as core algorithms for discrete-time (DT) and continuous-time (CT) systems, respectively. Moreover, we discuss a new direction of off-policy RL for both CT and DT systems. Finally, we review several applications.

  11. Challenges in the Verification of Reinforcement Learning Algorithms

    Science.gov (United States)

    Van Wesel, Perry; Goodloe, Alwyn E.

    2017-01-01

    Machine learning (ML) is increasingly being applied to a wide array of domains from search engines to autonomous vehicles. These algorithms, however, are notoriously complex and hard to verify. This work looks at the assumptions underlying machine learning algorithms as well as some of the challenges in trying to verify ML algorithms. Furthermore, we focus on the specific challenges of verifying reinforcement learning algorithms. These are highlighted using a specific example. Ultimately, we do not offer a solution to the complex problem of ML verification, but point out possible approaches for verification and interesting research opportunities.

  12. Reinforcement learning agents providing advice in complex video games

    Science.gov (United States)

    Taylor, Matthew E.; Carboni, Nicholas; Fachantidis, Anestis; Vlahavas, Ioannis; Torrey, Lisa

    2014-01-01

    This article introduces a teacher-student framework for reinforcement learning, synthesising and extending material that appeared in conference proceedings [Torrey, L., & Taylor, M. E. (2013)]. Teaching on a budget: Agents advising agents in reinforcement learning. {Proceedings of the international conference on autonomous agents and multiagent systems}] and in a non-archival workshop paper [Carboni, N., &Taylor, M. E. (2013, May)]. Preliminary results for 1 vs. 1 tactics in StarCraft. {Proceedings of the adaptive and learning agents workshop (at AAMAS-13)}]. In this framework, a teacher agent instructs a student agent by suggesting actions the student should take as it learns. However, the teacher may only give such advice a limited number of times. We present several novel algorithms that teachers can use to budget their advice effectively, and we evaluate them in two complex video games: StarCraft and Pac-Man. Our results show that the same amount of advice, given at different moments, can have different effects on student learning, and that teachers can significantly affect student learning even when students use different learning methods and state representations.

  13. Multiagent cooperation and competition with deep reinforcement learning.

    Directory of Open Access Journals (Sweden)

    Ardi Tampuu

    Full Text Available Evolution of cooperation and competition can appear when multiple adaptive agents share a biological, social, or technological niche. In the present work we study how cooperation and competition emerge between autonomous agents that learn by reinforcement while using only their raw visual input as the state representation. In particular, we extend the Deep Q-Learning framework to multiagent environments to investigate the interaction between two learning agents in the well-known video game Pong. By manipulating the classical rewarding scheme of Pong we show how competitive and collaborative behaviors emerge. We also describe the progression from competitive to collaborative behavior when the incentive to cooperate is increased. Finally we show how learning by playing against another adaptive agent, instead of against a hard-wired algorithm, results in more robust strategies. The present work shows that Deep Q-Networks can become a useful tool for studying decentralized learning of multiagent systems coping with high-dimensional environments.

  14. Multiagent cooperation and competition with deep reinforcement learning.

    Science.gov (United States)

    Tampuu, Ardi; Matiisen, Tambet; Kodelja, Dorian; Kuzovkin, Ilya; Korjus, Kristjan; Aru, Juhan; Aru, Jaan; Vicente, Raul

    2017-01-01

    Evolution of cooperation and competition can appear when multiple adaptive agents share a biological, social, or technological niche. In the present work we study how cooperation and competition emerge between autonomous agents that learn by reinforcement while using only their raw visual input as the state representation. In particular, we extend the Deep Q-Learning framework to multiagent environments to investigate the interaction between two learning agents in the well-known video game Pong. By manipulating the classical rewarding scheme of Pong we show how competitive and collaborative behaviors emerge. We also describe the progression from competitive to collaborative behavior when the incentive to cooperate is increased. Finally we show how learning by playing against another adaptive agent, instead of against a hard-wired algorithm, results in more robust strategies. The present work shows that Deep Q-Networks can become a useful tool for studying decentralized learning of multiagent systems coping with high-dimensional environments.

  15. Multiagent cooperation and competition with deep reinforcement learning

    Science.gov (United States)

    Kodelja, Dorian; Kuzovkin, Ilya; Korjus, Kristjan; Aru, Juhan; Aru, Jaan; Vicente, Raul

    2017-01-01

    Evolution of cooperation and competition can appear when multiple adaptive agents share a biological, social, or technological niche. In the present work we study how cooperation and competition emerge between autonomous agents that learn by reinforcement while using only their raw visual input as the state representation. In particular, we extend the Deep Q-Learning framework to multiagent environments to investigate the interaction between two learning agents in the well-known video game Pong. By manipulating the classical rewarding scheme of Pong we show how competitive and collaborative behaviors emerge. We also describe the progression from competitive to collaborative behavior when the incentive to cooperate is increased. Finally we show how learning by playing against another adaptive agent, instead of against a hard-wired algorithm, results in more robust strategies. The present work shows that Deep Q-Networks can become a useful tool for studying decentralized learning of multiagent systems coping with high-dimensional environments. PMID:28380078

  16. Multiagent Reinforcement Learning Dynamic Spectrum Access in Cognitive Radios

    Directory of Open Access Journals (Sweden)

    Wu Chun

    2014-02-01

    Full Text Available A multiuser independent Q-learning method which does not need information interaction is proposed for multiuser dynamic spectrum accessing in cognitive radios. The method adopts self-learning paradigm, in which each CR user performs reinforcement learning only through observing individual performance reward without spending communication resource on information interaction with others. The reward is defined suitably to present channel quality and channel conflict status. The learning strategy of sufficient exploration, preference for good channel, and punishment for channel conflict is designed to implement multiuser dynamic spectrum accessing. In two users two channels scenario, a fast learning algorithm is proposed and the convergence to maximal whole reward is proved. The simulation results show that, with the proposed method, the CR system can obtain convergence of Nash equilibrium with large probability and achieve great performance of whole reward.

  17. Reinforcement Learning for Online Control of Evolutionary Algorithms

    NARCIS (Netherlands)

    Eiben, A.; Horvath, Mark; Kowalczyk, Wojtek; Schut, Martijn

    2007-01-01

    The research reported in this paper is concerned with assessing the usefulness of reinforcment learning (RL) for on-line calibration of parameters in evolutionary algorithms (EA). We are running an RL procedure and the EA simultaneously and the RL is changing the EA parameters on-the-fly. We

  18. Emotion in reinforcement learning agents and robots : A survey

    NARCIS (Netherlands)

    Moerland, T.M.; Broekens, D.J.; Jonker, C.M.

    2018-01-01

    This article provides the first survey of computational models of emotion in reinforcement learning (RL) agents. The survey focuses on agent/robot emotions, and mostly ignores human user emotions. Emotions are recognized as functional in decision-making by influencing motivation and action

  19. Perceptual learning rules based on reinforcers and attention

    NARCIS (Netherlands)

    Roelfsema, Pieter R.; van Ooyen, Arjen; Watanabe, Takeo

    2010-01-01

    How does the brain learn those visual features that are relevant for behavior? In this article, we focus on two factors that guide plasticity of visual representations. First, reinforcers cause the global release of diffusive neuromodulatory signals that gate plasticity. Second, attentional feedback

  20. Traffic light control by multiagent reinforcement learning systems

    NARCIS (Netherlands)

    Bakker, B.; Whiteson, S.; Kester, L.; Groen, F.C.A.; Babuška, R.; Groen, F.C.A.

    2010-01-01

    Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of

  1. Traffic Light Control by Multiagent Reinforcement Learning Systems

    NARCIS (Netherlands)

    Bakker, B.; Whiteson, S.; Kester, L.J.H.M.; Groen, F.C.A.

    2010-01-01

    Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of

  2. Optimal Control via Reinforcement Learning with Symbolic Policy Approximation

    NARCIS (Netherlands)

    Kubalìk, Jiřì; Alibekov, Eduard; Babuska, R.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    2017-01-01

    Model-based reinforcement learning (RL) algorithms can be used to derive optimal control laws for nonlinear dynamic systems. With continuous-valued state and input variables, RL algorithms have to rely on function approximators to represent the value function and policy mappings. This paper

  3. Joy, Distress, Hope, and Fear in Reinforcement Learning (Extended Abstract)

    NARCIS (Netherlands)

    Jacobs, E.J.; Broekens, J.; Jonker, C.M.

    2014-01-01

    In this paper we present a mapping between joy, distress, hope and fear, and Reinforcement Learning primitives. Joy / distress is a signal that is derived from the RL update signal, while hope/fear is derived from the utility of the current state. Agent-based simulation experiments replicate

  4. Reinforcement Learning Explains Conditional Cooperation and Its Moody Cousin.

    Directory of Open Access Journals (Sweden)

    Takahiro Ezaki

    2016-07-01

    Full Text Available Direct reciprocity, or repeated interaction, is a main mechanism to sustain cooperation under social dilemmas involving two individuals. For larger groups and networks, which are probably more relevant to understanding and engineering our society, experiments employing repeated multiplayer social dilemma games have suggested that humans often show conditional cooperation behavior and its moody variant. Mechanisms underlying these behaviors largely remain unclear. Here we provide a proximate account for this behavior by showing that individuals adopting a type of reinforcement learning, called aspiration learning, phenomenologically behave as conditional cooperator. By definition, individuals are satisfied if and only if the obtained payoff is larger than a fixed aspiration level. They reinforce actions that have resulted in satisfactory outcomes and anti-reinforce those yielding unsatisfactory outcomes. The results obtained in the present study are general in that they explain extant experimental results obtained for both so-called moody and non-moody conditional cooperation, prisoner's dilemma and public goods games, and well-mixed groups and networks. Different from the previous theory, individuals are assumed to have no access to information about what other individuals are doing such that they cannot explicitly use conditional cooperation rules. In this sense, myopic aspiration learning in which the unconditional propensity of cooperation is modulated in every discrete time step explains conditional behavior of humans. Aspiration learners showing (moody conditional cooperation obeyed a noisy GRIM-like strategy. This is different from the Pavlov, a reinforcement learning strategy promoting mutual cooperation in two-player situations.

  5. Structure identification in fuzzy inference using reinforcement learning

    Science.gov (United States)

    Berenji, Hamid R.; Khedkar, Pratap

    1993-01-01

    In our previous work on the GARIC architecture, we have shown that the system can start with surface structure of the knowledge base (i.e., the linguistic expression of the rules) and learn the deep structure (i.e., the fuzzy membership functions of the labels used in the rules) by using reinforcement learning. Assuming the surface structure, GARIC refines the fuzzy membership functions used in the consequents of the rules using a gradient descent procedure. This hybrid fuzzy logic and reinforcement learning approach can learn to balance a cart-pole system and to backup a truck to its docking location after a few trials. In this paper, we discuss how to do structure identification using reinforcement learning in fuzzy inference systems. This involves identifying both surface as well as deep structure of the knowledge base. The term set of fuzzy linguistic labels used in describing the values of each control variable must be derived. In this process, splitting a label refers to creating new labels which are more granular than the original label and merging two labels creates a more general label. Splitting and merging of labels directly transform the structure of the action selection network used in GARIC by increasing or decreasing the number of hidden layer nodes.

  6. Distributed Economic Dispatch in Microgrids Based on Cooperative Reinforcement Learning.

    Science.gov (United States)

    Liu, Weirong; Zhuang, Peng; Liang, Hao; Peng, Jun; Huang, Zhiwu; Weirong Liu; Peng Zhuang; Hao Liang; Jun Peng; Zhiwu Huang; Liu, Weirong; Liang, Hao; Peng, Jun; Zhuang, Peng; Huang, Zhiwu

    2018-06-01

    Microgrids incorporated with distributed generation (DG) units and energy storage (ES) devices are expected to play more and more important roles in the future power systems. Yet, achieving efficient distributed economic dispatch in microgrids is a challenging issue due to the randomness and nonlinear characteristics of DG units and loads. This paper proposes a cooperative reinforcement learning algorithm for distributed economic dispatch in microgrids. Utilizing the learning algorithm can avoid the difficulty of stochastic modeling and high computational complexity. In the cooperative reinforcement learning algorithm, the function approximation is leveraged to deal with the large and continuous state spaces. And a diffusion strategy is incorporated to coordinate the actions of DG units and ES devices. Based on the proposed algorithm, each node in microgrids only needs to communicate with its local neighbors, without relying on any centralized controllers. Algorithm convergence is analyzed, and simulations based on real-world meteorological and load data are conducted to validate the performance of the proposed algorithm.

  7. Human reinforcement learning subdivides structured action spaces by learning effector-specific values.

    Science.gov (United States)

    Gershman, Samuel J; Pesaran, Bijan; Daw, Nathaniel D

    2009-10-28

    Humans and animals are endowed with a large number of effectors. Although this enables great behavioral flexibility, it presents an equally formidable reinforcement learning problem of discovering which actions are most valuable because of the high dimensionality of the action space. An unresolved question is how neural systems for reinforcement learning-such as prediction error signals for action valuation associated with dopamine and the striatum-can cope with this "curse of dimensionality." We propose a reinforcement learning framework that allows for learned action valuations to be decomposed into effector-specific components when appropriate to a task, and test it by studying to what extent human behavior and blood oxygen level-dependent (BOLD) activity can exploit such a decomposition in a multieffector choice task. Subjects made simultaneous decisions with their left and right hands and received separate reward feedback for each hand movement. We found that choice behavior was better described by a learning model that decomposed the values of bimanual movements into separate values for each effector, rather than a traditional model that treated the bimanual actions as unitary with a single value. A decomposition of value into effector-specific components was also observed in value-related BOLD signaling, in the form of lateralized biases in striatal correlates of prediction error and anticipatory value correlates in the intraparietal sulcus. These results suggest that the human brain can use decomposed value representations to "divide and conquer" reinforcement learning over high-dimensional action spaces.

  8. Reinforcement active learning in the vibrissae system: optimal object localization.

    Science.gov (United States)

    Gordon, Goren; Dorfman, Nimrod; Ahissar, Ehud

    2013-01-01

    Rats move their whiskers to acquire information about their environment. It has been observed that they palpate novel objects and objects they are required to localize in space. We analyze whisker-based object localization using two complementary paradigms, namely, active learning and intrinsic-reward reinforcement learning. Active learning algorithms select the next training samples according to the hypothesized solution in order to better discriminate between correct and incorrect labels. Intrinsic-reward reinforcement learning uses prediction errors as the reward to an actor-critic design, such that behavior converges to the one that optimizes the learning process. We show that in the context of object localization, the two paradigms result in palpation whisking as their respective optimal solution. These results suggest that rats may employ principles of active learning and/or intrinsic reward in tactile exploration and can guide future research to seek the underlying neuronal mechanisms that implement them. Furthermore, these paradigms are easily transferable to biomimetic whisker-based artificial sensors and can improve the active exploration of their environment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Reinforcement learning for optimal control of low exergy buildings

    International Nuclear Information System (INIS)

    Yang, Lei; Nagy, Zoltan; Goffin, Philippe; Schlueter, Arno

    2015-01-01

    Highlights: • Implementation of reinforcement learning control for LowEx Building systems. • Learning allows adaptation to local environment without prior knowledge. • Presentation of reinforcement learning control for real-life applications. • Discussion of the applicability for real-life situations. - Abstract: Over a third of the anthropogenic greenhouse gas (GHG) emissions stem from cooling and heating buildings, due to their fossil fuel based operation. Low exergy building systems are a promising approach to reduce energy consumption as well as GHG emissions. They consists of renewable energy technologies, such as PV, PV/T and heat pumps. Since careful tuning of parameters is required, a manual setup may result in sub-optimal operation. A model predictive control approach is unnecessarily complex due to the required model identification. Therefore, in this work we present a reinforcement learning control (RLC) approach. The studied building consists of a PV/T array for solar heat and electricity generation, as well as geothermal heat pumps. We present RLC for the PV/T array, and the full building model. Two methods, Tabular Q-learning and Batch Q-learning with Memory Replay, are implemented with real building settings and actual weather conditions in a Matlab/Simulink framework. The performance is evaluated against standard rule-based control (RBC). We investigated different neural network structures and find that some outperformed RBC already during the learning phase. Overall, every RLC strategy for PV/T outperformed RBC by over 10% after the third year. Likewise, for the full building, RLC outperforms RBC in terms of meeting the heating demand, maintaining the optimal operation temperature and compensating more effectively for ground heat. This allows to reduce engineering costs associated with the setup of these systems, as well as decrease the return-of-invest period, both of which are necessary to create a sustainable, zero-emission building

  10. Pleasurable music affects reinforcement learning according to the listener

    Science.gov (United States)

    Gold, Benjamin P.; Frank, Michael J.; Bogert, Brigitte; Brattico, Elvira

    2013-01-01

    Mounting evidence links the enjoyment of music to brain areas implicated in emotion and the dopaminergic reward system. In particular, dopamine release in the ventral striatum seems to play a major role in the rewarding aspect of music listening. Striatal dopamine also influences reinforcement learning, such that subjects with greater dopamine efficacy learn better to approach rewards while those with lesser dopamine efficacy learn better to avoid punishments. In this study, we explored the practical implications of musical pleasure through its ability to facilitate reinforcement learning via non-pharmacological dopamine elicitation. Subjects from a wide variety of musical backgrounds chose a pleasurable and a neutral piece of music from an experimenter-compiled database, and then listened to one or both of these pieces (according to pseudo-random group assignment) as they performed a reinforcement learning task dependent on dopamine transmission. We assessed musical backgrounds as well as typical listening patterns with the new Helsinki Inventory of Music and Affective Behaviors (HIMAB), and separately investigated behavior for the training and test phases of the learning task. Subjects with more musical experience trained better with neutral music and tested better with pleasurable music, while those with less musical experience exhibited the opposite effect. HIMAB results regarding listening behaviors and subjective music ratings indicate that these effects arose from different listening styles: namely, more affective listening in non-musicians and more analytical listening in musicians. In conclusion, musical pleasure was able to influence task performance, and the shape of this effect depended on group and individual factors. These findings have implications in affective neuroscience, neuroaesthetics, learning, and music therapy. PMID:23970875

  11. An Improved Reinforcement Learning System Using Affective Factors

    Directory of Open Access Journals (Sweden)

    Takashi Kuremoto

    2013-07-01

    Full Text Available As a powerful and intelligent machine learning method, reinforcement learning (RL has been widely used in many fields such as game theory, adaptive control, multi-agent system, nonlinear forecasting, and so on. The main contribution of this technique is its exploration and exploitation approaches to find the optimal solution or semi-optimal solution of goal-directed problems. However, when RL is applied to multi-agent systems (MASs, problems such as “curse of dimension”, “perceptual aliasing problem”, and uncertainty of the environment constitute high hurdles to RL. Meanwhile, although RL is inspired by behavioral psychology and reward/punishment from the environment is used, higher mental factors such as affects, emotions, and motivations are rarely adopted in the learning procedure of RL. In this paper, to challenge agents learning in MASs, we propose a computational motivation function, which adopts two principle affective factors “Arousal” and “Pleasure” of Russell’s circumplex model of affects, to improve the learning performance of a conventional RL algorithm named Q-learning (QL. Compared with the conventional QL, computer simulations of pursuit problems with static and dynamic preys were carried out, and the results showed that the proposed method results in agents having a faster and more stable learning performance.

  12. Self-Paced Prioritized Curriculum Learning With Coverage Penalty in Deep Reinforcement Learning.

    Science.gov (United States)

    Ren, Zhipeng; Dong, Daoyi; Li, Huaxiong; Chen, Chunlin; Zhipeng Ren; Daoyi Dong; Huaxiong Li; Chunlin Chen; Dong, Daoyi; Li, Huaxiong; Chen, Chunlin; Ren, Zhipeng

    2018-06-01

    In this paper, a new training paradigm is proposed for deep reinforcement learning using self-paced prioritized curriculum learning with coverage penalty. The proposed deep curriculum reinforcement learning (DCRL) takes the most advantage of experience replay by adaptively selecting appropriate transitions from replay memory based on the complexity of each transition. The criteria of complexity in DCRL consist of self-paced priority as well as coverage penalty. The self-paced priority reflects the relationship between the temporal-difference error and the difficulty of the current curriculum for sample efficiency. The coverage penalty is taken into account for sample diversity. With comparison to deep Q network (DQN) and prioritized experience replay (PER) methods, the DCRL algorithm is evaluated on Atari 2600 games, and the experimental results show that DCRL outperforms DQN and PER on most of these games. More results further show that the proposed curriculum training paradigm of DCRL is also applicable and effective for other memory-based deep reinforcement learning approaches, such as double DQN and dueling network. All the experimental results demonstrate that DCRL can achieve improved training efficiency and robustness for deep reinforcement learning.

  13. Learning User Preferences in Ubiquitous Systems: A User Study and a Reinforcement Learning Approach

    OpenAIRE

    Zaidenberg , Sofia; Reignier , Patrick; Mandran , Nadine

    2010-01-01

    International audience; Our study concerns a virtual assistant, proposing services to the user based on its current perceived activity and situation (ambient intelligence). Instead of asking the user to define his preferences, we acquire them automatically using a reinforcement learning approach. Experiments showed that our system succeeded the learning of user preferences. In order to validate the relevance and usability of such a system, we have first conducted a user study. 26 non-expert s...

  14. Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments

    OpenAIRE

    Kidziński, Łukasz; Mohanty, Sharada Prasanna; Ong, Carmichael; Huang, Zhewei; Zhou, Shuchang; Pechenko, Anton; Stelmaszczyk, Adam; Jarosik, Piotr; Pavlov, Mikhail; Kolesnikov, Sergey; Plis, Sergey; Chen, Zhibo; Zhang, Zhizheng; Chen, Jiale; Shi, Jun

    2018-01-01

    In the NIPS 2017 Learning to Run challenge, participants were tasked with building a controller for a musculoskeletal model to make it run as fast as possible through an obstacle course. Top participants were invited to describe their algorithms. In this work, we present eight solutions that used deep reinforcement learning approaches, based on algorithms such as Deep Deterministic Policy Gradient, Proximal Policy Optimization, and Trust Region Policy Optimization. Many solutions use similar ...

  15. Towards autonomous neuroprosthetic control using Hebbian reinforcement learning.

    Science.gov (United States)

    Mahmoudi, Babak; Pohlmeyer, Eric A; Prins, Noeline W; Geng, Shijia; Sanchez, Justin C

    2013-12-01

    Our goal was to design an adaptive neuroprosthetic controller that could learn the mapping from neural states to prosthetic actions and automatically adjust adaptation using only a binary evaluative feedback as a measure of desirability/undesirability of performance. Hebbian reinforcement learning (HRL) in a connectionist network was used for the design of the adaptive controller. The method combines the efficiency of supervised learning with the generality of reinforcement learning. The convergence properties of this approach were studied using both closed-loop control simulations and open-loop simulations that used primate neural data from robot-assisted reaching tasks. The HRL controller was able to perform classification and regression tasks using its episodic and sequential learning modes, respectively. In our experiments, the HRL controller quickly achieved convergence to an effective control policy, followed by robust performance. The controller also automatically stopped adapting the parameters after converging to a satisfactory control policy. Additionally, when the input neural vector was reorganized, the controller resumed adaptation to maintain performance. By estimating an evaluative feedback directly from the user, the HRL control algorithm may provide an efficient method for autonomous adaptation of neuroprosthetic systems. This method may enable the user to teach the controller the desired behavior using only a simple feedback signal.

  16. Functional Contour-following via Haptic Perception and Reinforcement Learning.

    Science.gov (United States)

    Hellman, Randall B; Tekin, Cem; van der Schaar, Mihaela; Santos, Veronica J

    2018-01-01

    Many tasks involve the fine manipulation of objects despite limited visual feedback. In such scenarios, tactile and proprioceptive feedback can be leveraged for task completion. We present an approach for real-time haptic perception and decision-making for a haptics-driven, functional contour-following task: the closure of a ziplock bag. This task is challenging for robots because the bag is deformable, transparent, and visually occluded by artificial fingertip sensors that are also compliant. A deep neural net classifier was trained to estimate the state of a zipper within a robot's pinch grasp. A Contextual Multi-Armed Bandit (C-MAB) reinforcement learning algorithm was implemented to maximize cumulative rewards by balancing exploration versus exploitation of the state-action space. The C-MAB learner outperformed a benchmark Q-learner by more efficiently exploring the state-action space while learning a hard-to-code task. The learned C-MAB policy was tested with novel ziplock bag scenarios and contours (wire, rope). Importantly, this work contributes to the development of reinforcement learning approaches that account for limited resources such as hardware life and researcher time. As robots are used to perform complex, physically interactive tasks in unstructured or unmodeled environments, it becomes important to develop methods that enable efficient and effective learning with physical testbeds.

  17. How we learn to make decisions: rapid propagation of reinforcement learning prediction errors in humans.

    Science.gov (United States)

    Krigolson, Olav E; Hassall, Cameron D; Handy, Todd C

    2014-03-01

    Our ability to make decisions is predicated upon our knowledge of the outcomes of the actions available to us. Reinforcement learning theory posits that actions followed by a reward or punishment acquire value through the computation of prediction errors-discrepancies between the predicted and the actual reward. A multitude of neuroimaging studies have demonstrated that rewards and punishments evoke neural responses that appear to reflect reinforcement learning prediction errors [e.g., Krigolson, O. E., Pierce, L. J., Holroyd, C. B., & Tanaka, J. W. Learning to become an expert: Reinforcement learning and the acquisition of perceptual expertise. Journal of Cognitive Neuroscience, 21, 1833-1840, 2009; Bayer, H. M., & Glimcher, P. W. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129-141, 2005; O'Doherty, J. P. Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14, 769-776, 2004; Holroyd, C. B., & Coles, M. G. H. The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679-709, 2002]. Here, we used the brain ERP technique to demonstrate that not only do rewards elicit a neural response akin to a prediction error but also that this signal rapidly diminished and propagated to the time of choice presentation with learning. Specifically, in a simple, learnable gambling task, we show that novel rewards elicited a feedback error-related negativity that rapidly decreased in amplitude with learning. Furthermore, we demonstrate the existence of a reward positivity at choice presentation, a previously unreported ERP component that has a similar timing and topography as the feedback error-related negativity that increased in amplitude with learning. The pattern of results we observed mirrored the output of a computational model that we implemented to compute reward

  18. Simulation-based optimization parametric optimization techniques and reinforcement learning

    CERN Document Server

    Gosavi, Abhijit

    2003-01-01

    Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to converg...

  19. Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma.

    Directory of Open Access Journals (Sweden)

    Marc Harper

    Full Text Available We present tournament results and several powerful strategies for the Iterated Prisoner's Dilemma created using reinforcement learning techniques (evolutionary and particle swarm algorithms. These strategies are trained to perform well against a corpus of over 170 distinct opponents, including many well-known and classic strategies. All the trained strategies win standard tournaments against the total collection of other opponents. The trained strategies and one particular human made designed strategy are the top performers in noisy tournaments also.

  20. Intranasal oxytocin enhances socially-reinforced learning in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Lisa A Parr

    2014-09-01

    Full Text Available There are currently no drugs approved for the treatment of social deficits associated with autism spectrum disorders (ASD. One hypothesis for these deficits is that individuals with ASD lack the motivation to attend to social cues because those cues are not implicitly rewarding. Therefore, any drug that could enhance the rewarding quality of social stimuli could have a profound impact on the treatment of ASD, and other social disorders. Oxytocin (OT is a neuropeptide that has been effective in enhancing social cognition and social reward in humans. The present study examined the ability of OT to selectively enhance learning after social compared to nonsocial reward in rhesus monkeys, an important species for modeling the neurobiology of social behavior in humans. Monkeys were required to learn an implicit visual matching task after receiving either intranasal (IN OT or Placebo (saline. Correct trials were rewarded with the presentation of positive and negative social (play faces/threat faces or nonsocial (banana/cage locks stimuli, plus food. Incorrect trials were not rewarded. Results demonstrated a strong effect of socially-reinforced learning, monkeys’ performed significantly better when reinforced with social versus nonsocial stimuli. Additionally, socially-reinforced learning was significantly better and occurred faster after IN-OT compared to placebo treatment. Performance in the IN-OT, but not Placebo, condition was also significantly better when the reinforcement stimuli were emotionally positive compared to negative facial expressions. These data support the hypothesis that OT may function to enhance prosocial behavior in primates by increasing the rewarding quality of emotionally positive, social compared to emotionally negative or nonsocial images. These data also support the use of the rhesus monkey as a model for exploring the neurobiological basis of social behavior and its impairment.

  1. Reinforcement learning produces dominant strategies for the Iterated Prisoner's Dilemma.

    Science.gov (United States)

    Harper, Marc; Knight, Vincent; Jones, Martin; Koutsovoulos, Georgios; Glynatsi, Nikoleta E; Campbell, Owen

    2017-01-01

    We present tournament results and several powerful strategies for the Iterated Prisoner's Dilemma created using reinforcement learning techniques (evolutionary and particle swarm algorithms). These strategies are trained to perform well against a corpus of over 170 distinct opponents, including many well-known and classic strategies. All the trained strategies win standard tournaments against the total collection of other opponents. The trained strategies and one particular human made designed strategy are the top performers in noisy tournaments also.

  2. Emotion in reinforcement learning agents and robots: A survey

    OpenAIRE

    Moerland, T.M.; Broekens, D.J.; Jonker, C.M.

    2018-01-01

    This article provides the first survey of computational models of emotion in reinforcement learning (RL) agents. The survey focuses on agent/robot emotions, and mostly ignores human user emotions. Emotions are recognized as functional in decision-making by influencing motivation and action selection. Therefore, computational emotion models are usually grounded in the agent's decision making architecture, of which RL is an important subclass. Studying emotions in RL-based agents is useful for ...

  3. Stochastic abstract policies: generalizing knowledge to improve reinforcement learning.

    Science.gov (United States)

    Koga, Marcelo L; Freire, Valdinei; Costa, Anna H R

    2015-01-01

    Reinforcement learning (RL) enables an agent to learn behavior by acquiring experience through trial-and-error interactions with a dynamic environment. However, knowledge is usually built from scratch and learning to behave may take a long time. Here, we improve the learning performance by leveraging prior knowledge; that is, the learner shows proper behavior from the beginning of a target task, using the knowledge from a set of known, previously solved, source tasks. In this paper, we argue that building stochastic abstract policies that generalize over past experiences is an effective way to provide such improvement and this generalization outperforms the current practice of using a library of policies. We achieve that contributing with a new algorithm, AbsProb-PI-multiple and a framework for transferring knowledge represented as a stochastic abstract policy in new RL tasks. Stochastic abstract policies offer an effective way to encode knowledge because the abstraction they provide not only generalizes solutions but also facilitates extracting the similarities among tasks. We perform experiments in a robotic navigation environment and analyze the agent's behavior throughout the learning process and also assess the transfer ratio for different amounts of source tasks. We compare our method with the transfer of a library of policies, and experiments show that the use of a generalized policy produces better results by more effectively guiding the agent when learning a target task.

  4. Modeling Avoidance in Mood and Anxiety Disorders Using Reinforcement Learning.

    Science.gov (United States)

    Mkrtchian, Anahit; Aylward, Jessica; Dayan, Peter; Roiser, Jonathan P; Robinson, Oliver J

    2017-10-01

    Serious and debilitating symptoms of anxiety are the most common mental health problem worldwide, accounting for around 5% of all adult years lived with disability in the developed world. Avoidance behavior-avoiding social situations for fear of embarrassment, for instance-is a core feature of such anxiety. However, as for many other psychiatric symptoms the biological mechanisms underlying avoidance remain unclear. Reinforcement learning models provide formal and testable characterizations of the mechanisms of decision making; here, we examine avoidance in these terms. A total of 101 healthy participants and individuals with mood and anxiety disorders completed an approach-avoidance go/no-go task under stress induced by threat of unpredictable shock. We show an increased reliance in the mood and anxiety group on a parameter of our reinforcement learning model that characterizes a prepotent (pavlovian) bias to withhold responding in the face of negative outcomes. This was particularly the case when the mood and anxiety group was under stress. This formal description of avoidance within the reinforcement learning framework provides a new means of linking clinical symptoms with biophysically plausible models of neural circuitry and, as such, takes us closer to a mechanistic understanding of mood and anxiety disorders. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Manufacturing Scheduling Using Colored Petri Nets and Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Maria Drakaki

    2017-02-01

    Full Text Available Agent-based intelligent manufacturing control systems are capable to efficiently respond and adapt to environmental changes. Manufacturing system adaptation and evolution can be addressed with learning mechanisms that increase the intelligence of agents. In this paper a manufacturing scheduling method is presented based on Timed Colored Petri Nets (CTPNs and reinforcement learning (RL. CTPNs model the manufacturing system and implement the scheduling. In the search for an optimal solution a scheduling agent uses RL and in particular the Q-learning algorithm. A warehouse order-picking scheduling is presented as a case study to illustrate the method. The proposed scheduling method is compared to existing methods. Simulation and state space results are used to evaluate performance and identify system properties.

  6. Neurofeedback in Learning Disabled Children: Visual versus Auditory Reinforcement.

    Science.gov (United States)

    Fernández, Thalía; Bosch-Bayard, Jorge; Harmony, Thalía; Caballero, María I; Díaz-Comas, Lourdes; Galán, Lídice; Ricardo-Garcell, Josefina; Aubert, Eduardo; Otero-Ojeda, Gloria

    2016-03-01

    Children with learning disabilities (LD) frequently have an EEG characterized by an excess of theta and a deficit of alpha activities. NFB using an auditory stimulus as reinforcer has proven to be a useful tool to treat LD children by positively reinforcing decreases of the theta/alpha ratio. The aim of the present study was to optimize the NFB procedure by comparing the efficacy of visual (with eyes open) versus auditory (with eyes closed) reinforcers. Twenty LD children with an abnormally high theta/alpha ratio were randomly assigned to the Auditory or the Visual group, where a 500 Hz tone or a visual stimulus (a white square), respectively, was used as a positive reinforcer when the value of the theta/alpha ratio was reduced. Both groups had signs consistent with EEG maturation, but only the Auditory Group showed behavioral/cognitive improvements. In conclusion, the auditory reinforcer was more efficacious in reducing the theta/alpha ratio, and it improved the cognitive abilities more than the visual reinforcer.

  7. A Neuro-Control Design Based on Fuzzy Reinforcement Learning

    DEFF Research Database (Denmark)

    Katebi, S.D.; Blanke, M.

    This paper describes a neuro-control fuzzy critic design procedure based on reinforcement learning. An important component of the proposed intelligent control configuration is the fuzzy credit assignment unit which acts as a critic, and through fuzzy implications provides adjustment mechanisms....... The fuzzy credit assignment unit comprises a fuzzy system with the appropriate fuzzification, knowledge base and defuzzification components. When an external reinforcement signal (a failure signal) is received, sequences of control actions are evaluated and modified by the action applier unit. The desirable...... ones instruct the neuro-control unit to adjust its weights and are simultaneously stored in the memory unit during the training phase. In response to the internal reinforcement signal (set point threshold deviation), the stored information is retrieved by the action applier unit and utilized for re...

  8. Reinforcement Learning Based Novel Adaptive Learning Framework for Smart Grid Prediction

    Directory of Open Access Journals (Sweden)

    Tian Li

    2017-01-01

    Full Text Available Smart grid is a potential infrastructure to supply electricity demand for end users in a safe and reliable manner. With the rapid increase of the share of renewable energy and controllable loads in smart grid, the operation uncertainty of smart grid has increased briskly during recent years. The forecast is responsible for the safety and economic operation of the smart grid. However, most existing forecast methods cannot account for the smart grid due to the disabilities to adapt to the varying operational conditions. In this paper, reinforcement learning is firstly exploited to develop an online learning framework for the smart grid. With the capability of multitime scale resolution, wavelet neural network has been adopted in the online learning framework to yield reinforcement learning and wavelet neural network (RLWNN based adaptive learning scheme. The simulations on two typical prediction problems in smart grid, including wind power prediction and load forecast, validate the effectiveness and the scalability of the proposed RLWNN based learning framework and algorithm.

  9. Reinforcement learning for dpm of embedded visual sensor nodes

    International Nuclear Information System (INIS)

    Khani, U.; Sadhayo, I. H.

    2014-01-01

    This paper proposes a RL (Reinforcement Learning) based DPM (Dynamic Power Management) technique to learn time out policies during a visual sensor node's operation which has multiple power/performance states. As opposed to the widely used static time out policies, our proposed DPM policy which is also referred to as OLTP (Online Learning of Time out Policies), learns to dynamically change the time out decisions in the different node states including the non-operational states. The selection of time out values in different power/performance states of a visual sensing platform is based on the workload estimates derived from a ML-ANN (Multi-Layer Artificial Neural Network) and an objective function given by weighted performance and power parameters. The DPM approach is also able to dynamically adjust the power-performance weights online to satisfy a given constraint of either power consumption or performance. Results show that the proposed learning algorithm explores the power-performance tradeoff with non-stationary workload and outperforms other DPM policies. It also performs the online adjustment of the tradeoff parameters in order to meet a user-specified constraint. (author)

  10. Reinforcement Learning Based on the Bayesian Theorem for Electricity Markets Decision Support

    DEFF Research Database (Denmark)

    Sousa, Tiago; Pinto, Tiago; Praca, Isabel

    2014-01-01

    This paper presents the applicability of a reinforcement learning algorithm based on the application of the Bayesian theorem of probability. The proposed reinforcement learning algorithm is an advantageous and indispensable tool for ALBidS (Adaptive Learning strategic Bidding System), a multi...

  11. Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation.

    Science.gov (United States)

    Kato, Ayaka; Morita, Kenji

    2016-10-01

    It has been suggested that dopamine (DA) represents reward-prediction-error (RPE) defined in reinforcement learning and therefore DA responds to unpredicted but not predicted reward. However, recent studies have found DA response sustained towards predictable reward in tasks involving self-paced behavior, and suggested that this response represents a motivational signal. We have previously shown that RPE can sustain if there is decay/forgetting of learned-values, which can be implemented as decay of synaptic strengths storing learned-values. This account, however, did not explain the suggested link between tonic/sustained DA and motivation. In the present work, we explored the motivational effects of the value-decay in self-paced approach behavior, modeled as a series of 'Go' or 'No-Go' selections towards a goal. Through simulations, we found that the value-decay can enhance motivation, specifically, facilitate fast goal-reaching, albeit counterintuitively. Mathematical analyses revealed that underlying potential mechanisms are twofold: (1) decay-induced sustained RPE creates a gradient of 'Go' values towards a goal, and (2) value-contrasts between 'Go' and 'No-Go' are generated because while chosen values are continually updated, unchosen values simply decay. Our model provides potential explanations for the key experimental findings that suggest DA's roles in motivation: (i) slowdown of behavior by post-training blockade of DA signaling, (ii) observations that DA blockade severely impairs effortful actions to obtain rewards while largely sparing seeking of easily obtainable rewards, and (iii) relationships between the reward amount, the level of motivation reflected in the speed of behavior, and the average level of DA. These results indicate that reinforcement learning with value-decay, or forgetting, provides a parsimonious mechanistic account for the DA's roles in value-learning and motivation. Our results also suggest that when biological systems for value-learning

  12. Forgetting in Reinforcement Learning Links Sustained Dopamine Signals to Motivation.

    Directory of Open Access Journals (Sweden)

    Ayaka Kato

    2016-10-01

    Full Text Available It has been suggested that dopamine (DA represents reward-prediction-error (RPE defined in reinforcement learning and therefore DA responds to unpredicted but not predicted reward. However, recent studies have found DA response sustained towards predictable reward in tasks involving self-paced behavior, and suggested that this response represents a motivational signal. We have previously shown that RPE can sustain if there is decay/forgetting of learned-values, which can be implemented as decay of synaptic strengths storing learned-values. This account, however, did not explain the suggested link between tonic/sustained DA and motivation. In the present work, we explored the motivational effects of the value-decay in self-paced approach behavior, modeled as a series of 'Go' or 'No-Go' selections towards a goal. Through simulations, we found that the value-decay can enhance motivation, specifically, facilitate fast goal-reaching, albeit counterintuitively. Mathematical analyses revealed that underlying potential mechanisms are twofold: (1 decay-induced sustained RPE creates a gradient of 'Go' values towards a goal, and (2 value-contrasts between 'Go' and 'No-Go' are generated because while chosen values are continually updated, unchosen values simply decay. Our model provides potential explanations for the key experimental findings that suggest DA's roles in motivation: (i slowdown of behavior by post-training blockade of DA signaling, (ii observations that DA blockade severely impairs effortful actions to obtain rewards while largely sparing seeking of easily obtainable rewards, and (iii relationships between the reward amount, the level of motivation reflected in the speed of behavior, and the average level of DA. These results indicate that reinforcement learning with value-decay, or forgetting, provides a parsimonious mechanistic account for the DA's roles in value-learning and motivation. Our results also suggest that when biological systems

  13. Optimal control in microgrid using multi-agent reinforcement learning.

    Science.gov (United States)

    Li, Fu-Dong; Wu, Min; He, Yong; Chen, Xin

    2012-11-01

    This paper presents an improved reinforcement learning method to minimize electricity costs on the premise of satisfying the power balance and generation limit of units in a microgrid with grid-connected mode. Firstly, the microgrid control requirements are analyzed and the objective function of optimal control for microgrid is proposed. Then, a state variable "Average Electricity Price Trend" which is used to express the most possible transitions of the system is developed so as to reduce the complexity and randomicity of the microgrid, and a multi-agent architecture including agents, state variables, action variables and reward function is formulated. Furthermore, dynamic hierarchical reinforcement learning, based on change rate of key state variable, is established to carry out optimal policy exploration. The analysis shows that the proposed method is beneficial to handle the problem of "curse of dimensionality" and speed up learning in the unknown large-scale world. Finally, the simulation results under JADE (Java Agent Development Framework) demonstrate the validity of the presented method in optimal control for a microgrid with grid-connected mode. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning

    Directory of Open Access Journals (Sweden)

    Yuntian Feng

    2017-01-01

    Full Text Available We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts. For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the most important information from unstructured texts, which represent the state in the decision process. By designing the reward function per step, our proposed method can pass the information of entity extraction to relation extraction and obtain feedback in order to extract entities and relations simultaneously. Firstly, we use bidirectional LSTM to model the context information, which realizes preliminary entity extraction. On the basis of the extraction results, attention based method can represent the sentences that include target entity pair to generate the initial state in the decision process. Then we use Tree-LSTM to represent relation mentions to generate the transition state in the decision process. Finally, we employ Q-Learning algorithm to get control policy π in the two-step decision process. Experiments on ACE2005 demonstrate that our method attains better performance than the state-of-the-art method and gets a 2.4% increase in recall-score.

  15. Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning.

    Science.gov (United States)

    Feng, Yuntian; Zhang, Hongjun; Hao, Wenning; Chen, Gang

    2017-01-01

    We use both reinforcement learning and deep learning to simultaneously extract entities and relations from unstructured texts. For reinforcement learning, we model the task as a two-step decision process. Deep learning is used to automatically capture the most important information from unstructured texts, which represent the state in the decision process. By designing the reward function per step, our proposed method can pass the information of entity extraction to relation extraction and obtain feedback in order to extract entities and relations simultaneously. Firstly, we use bidirectional LSTM to model the context information, which realizes preliminary entity extraction. On the basis of the extraction results, attention based method can represent the sentences that include target entity pair to generate the initial state in the decision process. Then we use Tree-LSTM to represent relation mentions to generate the transition state in the decision process. Finally, we employ Q -Learning algorithm to get control policy π in the two-step decision process. Experiments on ACE2005 demonstrate that our method attains better performance than the state-of-the-art method and gets a 2.4% increase in recall-score.

  16. Reinforcement Learning in Distributed Domains: Beyond Team Games

    Science.gov (United States)

    Wolpert, David H.; Sill, Joseph; Turner, Kagan

    2000-01-01

    Distributed search algorithms are crucial in dealing with large optimization problems, particularly when a centralized approach is not only impractical but infeasible. Many machine learning concepts have been applied to search algorithms in order to improve their effectiveness. In this article we present an algorithm that blends Reinforcement Learning (RL) and hill climbing directly, by using the RL signal to guide the exploration step of a hill climbing algorithm. We apply this algorithm to the domain of a constellations of communication satellites where the goal is to minimize the loss of importance weighted data. We introduce the concept of 'ghost' traffic, where correctly setting this traffic induces the satellites to act to optimize the world utility. Our results indicated that the bi-utility search introduced in this paper outperforms both traditional hill climbing algorithms and distributed RL approaches such as team games.

  17. Reinforcement Learning for Routing in Cognitive Radio Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Hasan A. A. Al-Rawi

    2014-01-01

    Full Text Available Cognitive radio (CR enables unlicensed users (or secondary users, SUs to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs. Reinforcement learning (RL is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables a source node to search for a least-cost route to its destination node. While there have been increasing efforts to enhance the traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function, exploitation, and exploration, as well as learning rate through simulation. New approaches and recommendations are proposed to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and the new approaches proposed in this paper improves SUs’ network performance without significantly jeopardizing PUs’ network performance, specifically SUs’ interference to PUs.

  18. Grounding the meanings in sensorimotor behavior using reinforcement learning

    Directory of Open Access Journals (Sweden)

    Igor eFarkaš

    2012-02-01

    Full Text Available The recent outburst of interest in cognitive developmental robotics is fueled by the ambition to propose ecologically plausible mechanisms of how, among other things, a learning agent/robot could ground linguistic meanings in its sensorimotor behaviour. Along this stream, we propose a model that allows the simulated iCub robot to learn the meanings of actions (point, touch and push oriented towards objects in robot's peripersonal space. In our experiments, the iCub learns to execute motor actions and comment on them. Architecturally, the model is composed of three neural-network-based modules that are trained in different ways. The first module, a two-layer perceptron, is trained by back-propagation to attend to the target position in the visual scene, given the low-level visual information and the feature-based target information. The second module, having the form of an actor-critic architecture, is the most distinguishing part of our model, and is trained by a continuous version of reinforcement learning to execute actions as sequences, based on a linguistic command. The third module, an echo-state network, is trained to provide the linguistic description of the executed actions. The trained model generalises well in case of novel action-target combinations with randomised initial arm positions. It can also promptly adapt its behavior if the action/target suddenly changes during motor execution.

  19. Tackling Error Propagation through Reinforcement Learning: A Case of Greedy Dependency Parsing

    OpenAIRE

    Le, Minh; Fokkens, Antske

    2017-01-01

    Error propagation is a common problem in NLP. Reinforcement learning explores erroneous states during training and can therefore be more robust when mistakes are made early in a process. In this paper, we apply reinforcement learning to greedy dependency parsing which is known to suffer from error propagation. Reinforcement learning improves accuracy of both labeled and unlabeled dependencies of the Stanford Neural Dependency Parser, a high performance greedy parser, while maintaining its eff...

  20. A Reinforcement-Based Learning Paradigm Increases Anatomical Learning and Retention—A Neuroeducation Study

    Science.gov (United States)

    Anderson, Sarah J.; Hecker, Kent G.; Krigolson, Olave E.; Jamniczky, Heather A.

    2018-01-01

    In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise. PMID:29467638

  1. A Reinforcement-Based Learning Paradigm Increases Anatomical Learning and Retention-A Neuroeducation Study.

    Science.gov (United States)

    Anderson, Sarah J; Hecker, Kent G; Krigolson, Olave E; Jamniczky, Heather A

    2018-01-01

    In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise.

  2. A Reinforcement-Based Learning Paradigm Increases Anatomical Learning and Retention—A Neuroeducation Study

    Directory of Open Access Journals (Sweden)

    Sarah J. Anderson

    2018-02-01

    Full Text Available In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT methods incorporate pre-class exercises (typically online meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise.

  3. Reinforcement Learning Based Web Service Compositions for Mobile Business

    Science.gov (United States)

    Zhou, Juan; Chen, Shouming

    In this paper, we propose a new solution to Reactive Web Service Composition, via molding with Reinforcement Learning, and introducing modified (alterable) QoS variables into the model as elements in the Markov Decision Process tuple. Moreover, we give an example of Reactive-WSC-based mobile banking, to demonstrate the intrinsic capability of the solution in question of obtaining the optimized service composition, characterized by (alterable) target QoS variable sets with optimized values. Consequently, we come to the conclusion that the solution has decent potentials in boosting customer experiences and qualities of services in Web Services, and those in applications in the whole electronic commerce and business sector.

  4. Space Objects Maneuvering Detection and Prediction via Inverse Reinforcement Learning

    Science.gov (United States)

    Linares, R.; Furfaro, R.

    This paper determines the behavior of Space Objects (SOs) using inverse Reinforcement Learning (RL) to estimate the reward function that each SO is using for control. The approach discussed in this work can be used to analyze maneuvering of SOs from observational data. The inverse RL problem is solved using the Feature Matching approach. This approach determines the optimal reward function that a SO is using while maneuvering by assuming that the observed trajectories are optimal with respect to the SO's own reward function. This paper uses estimated orbital elements data to determine the behavior of SOs in a data-driven fashion.

  5. Finding intrinsic rewards by embodied evolution and constrained reinforcement learning.

    Science.gov (United States)

    Uchibe, Eiji; Doya, Kenji

    2008-12-01

    Understanding the design principle of reward functions is a substantial challenge both in artificial intelligence and neuroscience. Successful acquisition of a task usually requires not only rewards for goals, but also for intermediate states to promote effective exploration. This paper proposes a method for designing 'intrinsic' rewards of autonomous agents by combining constrained policy gradient reinforcement learning and embodied evolution. To validate the method, we use Cyber Rodent robots, in which collision avoidance, recharging from battery packs, and 'mating' by software reproduction are three major 'extrinsic' rewards. We show in hardware experiments that the robots can find appropriate 'intrinsic' rewards for the vision of battery packs and other robots to promote approach behaviors.

  6. Explicit and implicit reinforcement learning across the psychosis spectrum.

    Science.gov (United States)

    Barch, Deanna M; Carter, Cameron S; Gold, James M; Johnson, Sheri L; Kring, Ann M; MacDonald, Angus W; Pizzagalli, Diego A; Ragland, J Daniel; Silverstein, Steven M; Strauss, Milton E

    2017-07-01

    Motivational and hedonic impairments are core features of a variety of types of psychopathology. An important aspect of motivational function is reinforcement learning (RL), including implicit (i.e., outside of conscious awareness) and explicit (i.e., including explicit representations about potential reward associations) learning, as well as both positive reinforcement (learning about actions that lead to reward) and punishment (learning to avoid actions that lead to loss). Here we present data from paradigms designed to assess both positive and negative components of both implicit and explicit RL, examine performance on each of these tasks among individuals with schizophrenia, schizoaffective disorder, and bipolar disorder with psychosis, and examine their relative relationships to specific symptom domains transdiagnostically. None of the diagnostic groups differed significantly from controls on the implicit RL tasks in either bias toward a rewarded response or bias away from a punished response. However, on the explicit RL task, both the individuals with schizophrenia and schizoaffective disorder performed significantly worse than controls, but the individuals with bipolar did not. Worse performance on the explicit RL task, but not the implicit RL task, was related to worse motivation and pleasure symptoms across all diagnostic categories. Performance on explicit RL, but not implicit RL, was related to working memory, which accounted for some of the diagnostic group differences. However, working memory did not account for the relationship of explicit RL to motivation and pleasure symptoms. These findings suggest transdiagnostic relationships across the spectrum of psychotic disorders between motivation and pleasure impairments and explicit RL. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Learning alternative movement coordination patterns using reinforcement feedback.

    Science.gov (United States)

    Lin, Tzu-Hsiang; Denomme, Amber; Ranganathan, Rajiv

    2018-05-01

    One of the characteristic features of the human motor system is redundancy-i.e., the ability to achieve a given task outcome using multiple coordination patterns. However, once participants settle on using a specific coordination pattern, the process of learning to use a new alternative coordination pattern to perform the same task is still poorly understood. Here, using two experiments, we examined this process of how participants shift from one coordination pattern to another using different reinforcement schedules. Participants performed a virtual reaching task, where they moved a cursor to different targets positioned on the screen. Our goal was to make participants use a coordination pattern with greater trunk motion, and to this end, we provided reinforcement by making the cursor disappear if the trunk motion during the reach did not cross a specified threshold value. In Experiment 1, we compared two reinforcement schedules in two groups of participants-an abrupt group, where the threshold was introduced immediately at the beginning of practice; and a gradual group, where the threshold was introduced gradually with practice. Results showed that both abrupt and gradual groups were effective in shifting their coordination patterns to involve greater trunk motion, but the abrupt group showed greater retention when the reinforcement was removed. In Experiment 2, we examined the basis of this advantage in the abrupt group using two additional control groups. Results showed that the advantage of the abrupt group was because of a greater number of practice trials with the desired coordination pattern. Overall, these results show that reinforcement can be successfully used to shift coordination patterns, which has potential in the rehabilitation of movement disorders.

  8. "Notice of Violation of IEEE Publication Principles" Multiobjective Reinforcement Learning: A Comprehensive Overview.

    Science.gov (United States)

    Liu, Chunming; Xu, Xin; Hu, Dewen

    2013-04-29

    Reinforcement learning is a powerful mechanism for enabling agents to learn in an unknown environment, and most reinforcement learning algorithms aim to maximize some numerical value, which represents only one long-term objective. However, multiple long-term objectives are exhibited in many real-world decision and control problems; therefore, recently, there has been growing interest in solving multiobjective reinforcement learning (MORL) problems with multiple conflicting objectives. The aim of this paper is to present a comprehensive overview of MORL. In this paper, the basic architecture, research topics, and naive solutions of MORL are introduced at first. Then, several representative MORL approaches and some important directions of recent research are reviewed. The relationships between MORL and other related research are also discussed, which include multiobjective optimization, hierarchical reinforcement learning, and multi-agent reinforcement learning. Finally, research challenges and open problems of MORL techniques are highlighted.

  9. Deep reinforcement learning for automated radiation adaptation in lung cancer.

    Science.gov (United States)

    Tseng, Huan-Hsin; Luo, Yi; Cui, Sunan; Chien, Jen-Tzung; Ten Haken, Randall K; Naqa, Issam El

    2017-12-01

    To investigate deep reinforcement learning (DRL) based on historical treatment plans for developing automated radiation adaptation protocols for nonsmall cell lung cancer (NSCLC) patients that aim to maximize tumor local control at reduced rates of radiation pneumonitis grade 2 (RP2). In a retrospective population of 114 NSCLC patients who received radiotherapy, a three-component neural networks framework was developed for deep reinforcement learning (DRL) of dose fractionation adaptation. Large-scale patient characteristics included clinical, genetic, and imaging radiomics features in addition to tumor and lung dosimetric variables. First, a generative adversarial network (GAN) was employed to learn patient population characteristics necessary for DRL training from a relatively limited sample size. Second, a radiotherapy artificial environment (RAE) was reconstructed by a deep neural network (DNN) utilizing both original and synthetic data (by GAN) to estimate the transition probabilities for adaptation of personalized radiotherapy patients' treatment courses. Third, a deep Q-network (DQN) was applied to the RAE for choosing the optimal dose in a response-adapted treatment setting. This multicomponent reinforcement learning approach was benchmarked against real clinical decisions that were applied in an adaptive dose escalation clinical protocol. In which, 34 patients were treated based on avid PET signal in the tumor and constrained by a 17.2% normal tissue complication probability (NTCP) limit for RP2. The uncomplicated cure probability (P+) was used as a baseline reward function in the DRL. Taking our adaptive dose escalation protocol as a blueprint for the proposed DRL (GAN + RAE + DQN) architecture, we obtained an automated dose adaptation estimate for use at ∼2/3 of the way into the radiotherapy treatment course. By letting the DQN component freely control the estimated adaptive dose per fraction (ranging from 1-5 Gy), the DRL automatically favored dose

  10. Curiosity driven reinforcement learning for motion planning on humanoids

    Science.gov (United States)

    Frank, Mikhail; Leitner, Jürgen; Stollenga, Marijn; Förster, Alexander; Schmidhuber, Jürgen

    2014-01-01

    Most previous work on artificial curiosity (AC) and intrinsic motivation focuses on basic concepts and theory. Experimental results are generally limited to toy scenarios, such as navigation in a simulated maze, or control of a simple mechanical system with one or two degrees of freedom. To study AC in a more realistic setting, we embody a curious agent in the complex iCub humanoid robot. Our novel reinforcement learning (RL) framework consists of a state-of-the-art, low-level, reactive control layer, which controls the iCub while respecting constraints, and a high-level curious agent, which explores the iCub's state-action space through information gain maximization, learning a world model from experience, controlling the actual iCub hardware in real-time. To the best of our knowledge, this is the first ever embodied, curious agent for real-time motion planning on a humanoid. We demonstrate that it can learn compact Markov models to represent large regions of the iCub's configuration space, and that the iCub explores intelligently, showing interest in its physical constraints as well as in objects it finds in its environment. PMID:24432001

  11. EFFICIENT SPECTRUM UTILIZATION IN COGNITIVE RADIO THROUGH REINFORCEMENT LEARNING

    Directory of Open Access Journals (Sweden)

    Dhananjay Kumar

    2013-09-01

    Full Text Available Machine learning schemes can be employed in cognitive radio systems to intelligently locate the spectrum holes with some knowledge about the operating environment. In this paper, we formulate a variation of Actor Critic Learning algorithm known as Continuous Actor Critic Learning Automaton (CACLA and compare this scheme with Actor Critic Learning scheme and existing Q–learning scheme. Simulation results show that our CACLA scheme has lesser execution time and achieves higher throughput compared to other two schemes.

  12. Tackling Error Propagation through Reinforcement Learning: A Case of Greedy Dependency Parsing

    NARCIS (Netherlands)

    Le, M.N.; Fokkens, A.S.

    Error propagation is a common problem in NLP. Reinforcement learning explores erroneous states during training and can therefore be more robust when mistakes are made early in a process. In this paper, we apply reinforcement learning to greedy dependency parsing which is known to suffer from error

  13. GA-based fuzzy reinforcement learning for control of a magnetic bearing system.

    Science.gov (United States)

    Lin, C T; Jou, C P

    2000-01-01

    This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.

  14. Memory Transformation Enhances Reinforcement Learning in Dynamic Environments.

    Science.gov (United States)

    Santoro, Adam; Frankland, Paul W; Richards, Blake A

    2016-11-30

    Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic memories. This switch is sometimes referred to as "memory transformation." Here we demonstrate a previously unappreciated benefit of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural network that is trained to find rewards in a foraging task where reward locations are continuously changing. The network can use memories for specific locations (episodic memories) and statistical patterns of locations (schematic memories) to guide its search. We find that switching from an episodic to a schematic strategy over time leads to enhanced performance due to the tendency for the reward location to be highly correlated with itself in the short-term, but regress to a stable distribution in the long-term. We also show that the statistics of the environment determine the optimal utilization of both types of memory. Our work recasts the theoretical question of why memory transformation occurs, shifting the focus from the avoidance of memory interference toward the enhancement of reinforcement learning across multiple timescales. As time passes, memories transform from a highly detailed state to a more gist-like state, in a process called "memory transformation." Theories of memory transformation speak to its advantages in terms of reducing memory interference, increasing memory robustness, and building models of the environment. However, the role of memory transformation from the perspective of an agent that continuously acts and receives reward in its environment is not well explored. In this work, we demonstrate a view of memory transformation that defines it as a way of optimizing behavior across multiple timescales. Copyright © 2016 the authors 0270-6474/16/3612228-15$15.00/0.

  15. Decision Making in Reinforcement Learning Using a Modified Learning Space Based on the Importance of Sensors

    Directory of Open Access Journals (Sweden)

    Yasutaka Kishima

    2013-01-01

    Full Text Available Many studies have been conducted on the application of reinforcement learning (RL to robots. A robot which is made for general purpose has redundant sensors or actuators because it is difficult to assume an environment that the robot will face and a task that the robot must execute. In this case, -space on RL contains redundancy so that the robot must take much time to learn a given task. In this study, we focus on the importance of sensors with regard to a robot’s performance of a particular task. The sensors that are applicable to a task differ according to the task. By using the importance of the sensors, we try to adjust the state number of the sensors and to reduce the size of -space. In this paper, we define the measure of importance of a sensor for a task with the correlation between the value of each sensor and reward. A robot calculates the importance of the sensors and makes the size of -space smaller. We propose the method which reduces learning space and construct the learning system by putting it in RL. In this paper, we confirm the effectiveness of our proposed system with an experimental robot.

  16. Applying reinforcement learning to the weapon assignment problem in air defence

    CSIR Research Space (South Africa)

    Mouton, H

    2011-12-01

    Full Text Available . The techniques investigated in this article were two methods from the machine-learning subfield of reinforcement learning (RL), namely a Monte Carlo (MC) control algorithm with exploring starts (MCES), and an off-policy temporal-difference (TD) learning...

  17. Reinforcement learning techniques for controlling resources in power networks

    Science.gov (United States)

    Kowli, Anupama Sunil

    As power grids transition towards increased reliance on renewable generation, energy storage and demand response resources, an effective control architecture is required to harness the full functionalities of these resources. There is a critical need for control techniques that recognize the unique characteristics of the different resources and exploit the flexibility afforded by them to provide ancillary services to the grid. The work presented in this dissertation addresses these needs. Specifically, new algorithms are proposed, which allow control synthesis in settings wherein the precise distribution of the uncertainty and its temporal statistics are not known. These algorithms are based on recent developments in Markov decision theory, approximate dynamic programming and reinforcement learning. They impose minimal assumptions on the system model and allow the control to be "learned" based on the actual dynamics of the system. Furthermore, they can accommodate complex constraints such as capacity and ramping limits on generation resources, state-of-charge constraints on storage resources, comfort-related limitations on demand response resources and power flow limits on transmission lines. Numerical studies demonstrating applications of these algorithms to practical control problems in power systems are discussed. Results demonstrate how the proposed control algorithms can be used to improve the performance and reduce the computational complexity of the economic dispatch mechanism in a power network. We argue that the proposed algorithms are eminently suitable to develop operational decision-making tools for large power grids with many resources and many sources of uncertainty.

  18. A Reinforcement Learning Framework for Spiking Networks with Dynamic Synapses

    Directory of Open Access Journals (Sweden)

    Karim El-Laithy

    2011-01-01

    Full Text Available An integration of both the Hebbian-based and reinforcement learning (RL rules is presented for dynamic synapses. The proposed framework permits the Hebbian rule to update the hidden synaptic model parameters regulating the synaptic response rather than the synaptic weights. This is performed using both the value and the sign of the temporal difference in the reward signal after each trial. Applying this framework, a spiking network with spike-timing-dependent synapses is tested to learn the exclusive-OR computation on a temporally coded basis. Reward values are calculated with the distance between the output spike train of the network and a reference target one. Results show that the network is able to capture the required dynamics and that the proposed framework can reveal indeed an integrated version of Hebbian and RL. The proposed framework is tractable and less computationally expensive. The framework is applicable to a wide class of synaptic models and is not restricted to the used neural representation. This generality, along with the reported results, supports adopting the introduced approach to benefit from the biologically plausible synaptic models in a wide range of intuitive signal processing.

  19. A reinforcement learning model of joy, distress, hope and fear

    Science.gov (United States)

    Broekens, Joost; Jacobs, Elmer; Jonker, Catholijn M.

    2015-07-01

    In this paper we computationally study the relation between adaptive behaviour and emotion. Using the reinforcement learning framework, we propose that learned state utility, ?, models fear (negative) and hope (positive) based on the fact that both signals are about anticipation of loss or gain. Further, we propose that joy/distress is a signal similar to the error signal. We present agent-based simulation experiments that show that this model replicates psychological and behavioural dynamics of emotion. This work distinguishes itself by assessing the dynamics of emotion in an adaptive agent framework - coupling it to the literature on habituation, development, extinction and hope theory. Our results support the idea that the function of emotion is to provide a complex feedback signal for an organism to adapt its behaviour. Our work is relevant for understanding the relation between emotion and adaptation in animals, as well as for human-robot interaction, in particular how emotional signals can be used to communicate between adaptive agents and humans.

  20. Active-learning strategies: the use of a game to reinforce learning in nursing education. A case study.

    Science.gov (United States)

    Boctor, Lisa

    2013-03-01

    The majority of nursing students are kinesthetic learners, preferring a hands-on, active approach to education. Research shows that active-learning strategies can increase student learning and satisfaction. This study looks at the use of one active-learning strategy, a Jeopardy-style game, 'Nursopardy', to reinforce Fundamentals of Nursing material, aiding in students' preparation for a standardized final exam. The game was created keeping students varied learning styles and the NCLEX blueprint in mind. The blueprint was used to create 5 categories, with 26 total questions. Student survey results, using a five-point Likert scale showed that they did find this learning method enjoyable and beneficial to learning. More research is recommended regarding learning outcomes, when using active-learning strategies, such as games. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Reinforcement Learning for Predictive Analytics in Smart Cities

    Directory of Open Access Journals (Sweden)

    Kostas Kolomvatsos

    2017-06-01

    Full Text Available The digitization of our lives cause a shift in the data production as well as in the required data management. Numerous nodes are capable of producing huge volumes of data in our everyday activities. Sensors, personal smart devices as well as the Internet of Things (IoT paradigm lead to a vast infrastructure that covers all the aspects of activities in modern societies. In the most of the cases, the critical issue for public authorities (usually, local, like municipalities is the efficient management of data towards the support of novel services. The reason is that analytics provided on top of the collected data could help in the delivery of new applications that will facilitate citizens’ lives. However, the provision of analytics demands intelligent techniques for the underlying data management. The most known technique is the separation of huge volumes of data into a number of parts and their parallel management to limit the required time for the delivery of analytics. Afterwards, analytics requests in the form of queries could be realized and derive the necessary knowledge for supporting intelligent applications. In this paper, we define the concept of a Query Controller ( Q C that receives queries for analytics and assigns each of them to a processor placed in front of each data partition. We discuss an intelligent process for query assignments that adopts Machine Learning (ML. We adopt two learning schemes, i.e., Reinforcement Learning (RL and clustering. We report on the comparison of the two schemes and elaborate on their combination. Our aim is to provide an efficient framework to support the decision making of the QC that should swiftly select the appropriate processor for each query. We provide mathematical formulations for the discussed problem and present simulation results. Through a comprehensive experimental evaluation, we reveal the advantages of the proposed models and describe the outcomes results while comparing them with a

  2. Self-learning fuzzy logic controllers based on reinforcement

    International Nuclear Information System (INIS)

    Wang, Z.; Shao, S.; Ding, J.

    1996-01-01

    This paper proposes a new method for learning and tuning Fuzzy Logic Controllers. The self-learning scheme in this paper is composed of Bucket-Brigade and Genetic Algorithm. The proposed method is tested on the cart-pole system. Simulation results show that our approach has good learning and control performance

  3. Longitudinal investigation on learned helplessness tested under negative and positive reinforcement involving stimulus control.

    Science.gov (United States)

    Oliveira, Emileane C; Hunziker, Maria Helena

    2014-07-01

    In this study, we investigated whether (a) animals demonstrating the learned helplessness effect during an escape contingency also show learning deficits under positive reinforcement contingencies involving stimulus control and (b) the exposure to positive reinforcement contingencies eliminates the learned helplessness effect under an escape contingency. Rats were initially exposed to controllable (C), uncontrollable (U) or no (N) shocks. After 24h, they were exposed to 60 escapable shocks delivered in a shuttlebox. In the following phase, we selected from each group the four subjects that presented the most typical group pattern: no escape learning (learned helplessness effect) in Group U and escape learning in Groups C and N. All subjects were then exposed to two phases, the (1) positive reinforcement for lever pressing under a multiple FR/Extinction schedule and (2) a re-test under negative reinforcement (escape). A fourth group (n=4) was exposed only to the positive reinforcement sessions. All subjects showed discrimination learning under multiple schedule. In the escape re-test, the learned helplessness effect was maintained for three of the animals in Group U. These results suggest that the learned helplessness effect did not extend to discriminative behavior that is positively reinforced and that the learned helplessness effect did not revert for most subjects after exposure to positive reinforcement. We discuss some theoretical implications as related to learned helplessness as an effect restricted to aversive contingencies and to the absence of reversion after positive reinforcement. This article is part of a Special Issue entitled: insert SI title. Copyright © 2014. Published by Elsevier B.V.

  4. Knowledge-Based Reinforcement Learning for Data Mining

    Science.gov (United States)

    Kudenko, Daniel; Grzes, Marek

    Data Mining is the process of extracting patterns from data. Two general avenues of research in the intersecting areas of agents and data mining can be distinguished. The first approach is concerned with mining an agent’s observation data in order to extract patterns, categorize environment states, and/or make predictions of future states. In this setting, data is normally available as a batch, and the agent’s actions and goals are often independent of the data mining task. The data collection is mainly considered as a side effect of the agent’s activities. Machine learning techniques applied in such situations fall into the class of supervised learning. In contrast, the second scenario occurs where an agent is actively performing the data mining, and is responsible for the data collection itself. For example, a mobile network agent is acquiring and processing data (where the acquisition may incur a certain cost), or a mobile sensor agent is moving in a (perhaps hostile) environment, collecting and processing sensor readings. In these settings, the tasks of the agent and the data mining are highly intertwined and interdependent (or even identical). Supervised learning is not a suitable technique for these cases. Reinforcement Learning (RL) enables an agent to learn from experience (in form of reward and punishment for explorative actions) and adapt to new situations, without a teacher. RL is an ideal learning technique for these data mining scenarios, because it fits the agent paradigm of continuous sensing and acting, and the RL agent is able to learn to make decisions on the sampling of the environment which provides the data. Nevertheless, RL still suffers from scalability problems, which have prevented its successful use in many complex real-world domains. The more complex the tasks, the longer it takes a reinforcement learning algorithm to converge to a good solution. For many real-world tasks, human expert knowledge is available. For example, human

  5. Learning

    Directory of Open Access Journals (Sweden)

    Mohsen Laabidi

    2014-01-01

    Full Text Available Nowadays learning technologies transformed educational systems with impressive progress of Information and Communication Technologies (ICT. Furthermore, when these technologies are available, affordable and accessible, they represent more than a transformation for people with disabilities. They represent real opportunities with access to an inclusive education and help to overcome the obstacles they met in classical educational systems. In this paper, we will cover basic concepts of e-accessibility, universal design and assistive technologies, with a special focus on accessible e-learning systems. Then, we will present recent research works conducted in our research Laboratory LaTICE toward the development of an accessible online learning environment for persons with disabilities from the design and specification step to the implementation. We will present, in particular, the accessible version “MoodleAcc+” of the well known e-learning platform Moodle as well as new elaborated generic models and a range of tools for authoring and evaluating accessible educational content.

  6. Safe robot execution in model-based reinforcement learning

    OpenAIRE

    Martínez Martínez, David; Alenyà Ribas, Guillem; Torras, Carme

    2015-01-01

    Task learning in robotics requires repeatedly executing the same actions in different states to learn the model of the task. However, in real-world domains, there are usually sequences of actions that, if executed, may produce unrecoverable errors (e.g. breaking an object). Robots should avoid repeating such errors when learning, and thus explore the state space in a more intelligent way. This requires identifying dangerous action effects to avoid including such actions in the generated plans...

  7. Efficient collective swimming by harnessing vortices through deep reinforcement learning.

    Science.gov (United States)

    Verma, Siddhartha; Novati, Guido; Koumoutsakos, Petros

    2018-06-05

    Fish in schooling formations navigate complex flow fields replete with mechanical energy in the vortex wakes of their companions. Their schooling behavior has been associated with evolutionary advantages including energy savings, yet the underlying physical mechanisms remain unknown. We show that fish can improve their sustained propulsive efficiency by placing themselves in appropriate locations in the wake of other swimmers and intercepting judiciously their shed vortices. This swimming strategy leads to collective energy savings and is revealed through a combination of high-fidelity flow simulations with a deep reinforcement learning (RL) algorithm. The RL algorithm relies on a policy defined by deep, recurrent neural nets, with long-short-term memory cells, that are essential for capturing the unsteadiness of the two-way interactions between the fish and the vortical flow field. Surprisingly, we find that swimming in-line with a leader is not associated with energetic benefits for the follower. Instead, "smart swimmer(s)" place themselves at off-center positions, with respect to the axis of the leader(s) and deform their body to synchronize with the momentum of the oncoming vortices, thus enhancing their swimming efficiency at no cost to the leader(s). The results confirm that fish may harvest energy deposited in vortices and support the conjecture that swimming in formation is energetically advantageous. Moreover, this study demonstrates that deep RL can produce navigation algorithms for complex unsteady and vortical flow fields, with promising implications for energy savings in autonomous robotic swarms.

  8. Off-policy reinforcement learning for H∞ control design.

    Science.gov (United States)

    Luo, Biao; Wu, Huai-Ning; Huang, Tingwen

    2015-01-01

    The H∞ control design problem is considered for nonlinear systems with unknown internal system model. It is known that the nonlinear H∞ control problem can be transformed into solving the so-called Hamilton-Jacobi-Isaacs (HJI) equation, which is a nonlinear partial differential equation that is generally impossible to be solved analytically. Even worse, model-based approaches cannot be used for approximately solving HJI equation, when the accurate system model is unavailable or costly to obtain in practice. To overcome these difficulties, an off-policy reinforcement leaning (RL) method is introduced to learn the solution of HJI equation from real system data instead of mathematical system model, and its convergence is proved. In the off-policy RL method, the system data can be generated with arbitrary policies rather than the evaluating policy, which is extremely important and promising for practical systems. For implementation purpose, a neural network (NN)-based actor-critic structure is employed and a least-square NN weight update algorithm is derived based on the method of weighted residuals. Finally, the developed NN-based off-policy RL method is tested on a linear F16 aircraft plant, and further applied to a rotational/translational actuator system.

  9. Pragmatically Framed Cross-Situational Noun Learning Using Computational Reinforcement Models.

    Science.gov (United States)

    Najnin, Shamima; Banerjee, Bonny

    2018-01-01

    Cross-situational learning and social pragmatic theories are prominent mechanisms for learning word meanings (i.e., word-object pairs). In this paper, the role of reinforcement is investigated for early word-learning by an artificial agent. When exposed to a group of speakers, the agent comes to understand an initial set of vocabulary items belonging to the language used by the group. Both cross-situational learning and social pragmatic theory are taken into account. As social cues, joint attention and prosodic cues in caregiver's speech are considered. During agent-caregiver interaction, the agent selects a word from the caregiver's utterance and learns the relations between that word and the objects in its visual environment. The "novel words to novel objects" language-specific constraint is assumed for computing rewards. The models are learned by maximizing the expected reward using reinforcement learning algorithms [i.e., table-based algorithms: Q-learning, SARSA, SARSA-λ, and neural network-based algorithms: Q-learning for neural network (Q-NN), neural-fitted Q-network (NFQ), and deep Q-network (DQN)]. Neural network-based reinforcement learning models are chosen over table-based models for better generalization and quicker convergence. Simulations are carried out using mother-infant interaction CHILDES dataset for learning word-object pairings. Reinforcement is modeled in two cross-situational learning cases: (1) with joint attention (Attentional models), and (2) with joint attention and prosodic cues (Attentional-prosodic models). Attentional-prosodic models manifest superior performance to Attentional ones for the task of word-learning. The Attentional-prosodic DQN outperforms existing word-learning models for the same task.

  10. Nonparametric bayesian reward segmentation for skill discovery using inverse reinforcement learning

    CSIR Research Space (South Africa)

    Ranchod, P

    2015-10-01

    Full Text Available We present a method for segmenting a set of unstructured demonstration trajectories to discover reusable skills using inverse reinforcement learning (IRL). Each skill is characterised by a latent reward function which the demonstrator is assumed...

  11. Perception-based Co-evolutionary Reinforcement Learning for UAV Sensor Allocation

    National Research Council Canada - National Science Library

    Berenji, Hamid

    2003-01-01

    .... A Perception-based reasoning approach based on co-evolutionary reinforcement learning was developed for jointly addressing sensor allocation on each individual UAV and allocation of a team of UAVs...

  12. A reward optimization method based on action subrewards in hierarchical reinforcement learning.

    Science.gov (United States)

    Fu, Yuchen; Liu, Quan; Ling, Xionghong; Cui, Zhiming

    2014-01-01

    Reinforcement learning (RL) is one kind of interactive learning methods. Its main characteristics are "trial and error" and "related reward." A hierarchical reinforcement learning method based on action subrewards is proposed to solve the problem of "curse of dimensionality," which means that the states space will grow exponentially in the number of features and low convergence speed. The method can reduce state spaces greatly and choose actions with favorable purpose and efficiency so as to optimize reward function and enhance convergence speed. Apply it to the online learning in Tetris game, and the experiment result shows that the convergence speed of this algorithm can be enhanced evidently based on the new method which combines hierarchical reinforcement learning algorithm and action subrewards. The "curse of dimensionality" problem is also solved to a certain extent with hierarchical method. All the performance with different parameters is compared and analyzed as well.

  13. The combination of appetitive and aversive reinforcers and the nature of their interaction during auditory learning.

    Science.gov (United States)

    Ilango, A; Wetzel, W; Scheich, H; Ohl, F W

    2010-03-31

    Learned changes in behavior can be elicited by either appetitive or aversive reinforcers. It is, however, not clear whether the two types of motivation, (approaching appetitive stimuli and avoiding aversive stimuli) drive learning in the same or different ways, nor is their interaction understood in situations where the two types are combined in a single experiment. To investigate this question we have developed a novel learning paradigm for Mongolian gerbils, which not only allows rewards and punishments to be presented in isolation or in combination with each other, but also can use these opposite reinforcers to drive the same learned behavior. Specifically, we studied learning of tone-conditioned hurdle crossing in a shuttle box driven by either an appetitive reinforcer (brain stimulation reward) or an aversive reinforcer (electrical footshock), or by a combination of both. Combination of the two reinforcers potentiated speed of acquisition, led to maximum possible performance, and delayed extinction as compared to either reinforcer alone. Additional experiments, using partial reinforcement protocols and experiments in which one of the reinforcers was omitted after the animals had been previously trained with the combination of both reinforcers, indicated that appetitive and aversive reinforcers operated together but acted in different ways: in this particular experimental context, punishment appeared to be more effective for initial acquisition and reward more effective to maintain a high level of conditioned responses (CRs). The results imply that learning mechanisms in problem solving were maximally effective when the initial punishment of mistakes was combined with the subsequent rewarding of correct performance. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Linking Individual Learning Styles to Approach-Avoidance Motivational Traits and Computational Aspects of Reinforcement Learning.

    Directory of Open Access Journals (Sweden)

    Kristoffer Carl Aberg

    Full Text Available Learning how to gain rewards (approach learning and avoid punishments (avoidance learning is fundamental for everyday life. While individual differences in approach and avoidance learning styles have been related to genetics and aging, the contribution of personality factors, such as traits, remains undetermined. Moreover, little is known about the computational mechanisms mediating differences in learning styles. Here, we used a probabilistic selection task with positive and negative feedbacks, in combination with computational modelling, to show that individuals displaying better approach (vs. avoidance learning scored higher on measures of approach (vs. avoidance trait motivation, but, paradoxically, also displayed reduced learning speed following positive (vs. negative outcomes. These data suggest that learning different types of information depend on associated reward values and internal motivational drives, possibly determined by personality traits.

  15. Linking Individual Learning Styles to Approach-Avoidance Motivational Traits and Computational Aspects of Reinforcement Learning

    Science.gov (United States)

    Carl Aberg, Kristoffer; Doell, Kimberly C.; Schwartz, Sophie

    2016-01-01

    Learning how to gain rewards (approach learning) and avoid punishments (avoidance learning) is fundamental for everyday life. While individual differences in approach and avoidance learning styles have been related to genetics and aging, the contribution of personality factors, such as traits, remains undetermined. Moreover, little is known about the computational mechanisms mediating differences in learning styles. Here, we used a probabilistic selection task with positive and negative feedbacks, in combination with computational modelling, to show that individuals displaying better approach (vs. avoidance) learning scored higher on measures of approach (vs. avoidance) trait motivation, but, paradoxically, also displayed reduced learning speed following positive (vs. negative) outcomes. These data suggest that learning different types of information depend on associated reward values and internal motivational drives, possibly determined by personality traits. PMID:27851807

  16. Dynamic Sensor Tasking for Space Situational Awareness via Reinforcement Learning

    Science.gov (United States)

    Linares, R.; Furfaro, R.

    2016-09-01

    This paper studies the Sensor Management (SM) problem for optical Space Object (SO) tracking. The tasking problem is formulated as a Markov Decision Process (MDP) and solved using Reinforcement Learning (RL). The RL problem is solved using the actor-critic policy gradient approach. The actor provides a policy which is random over actions and given by a parametric probability density function (pdf). The critic evaluates the policy by calculating the estimated total reward or the value function for the problem. The parameters of the policy action pdf are optimized using gradients with respect to the reward function. Both the critic and the actor are modeled using deep neural networks (multi-layer neural networks). The policy neural network takes the current state as input and outputs probabilities for each possible action. This policy is random, and can be evaluated by sampling random actions using the probabilities determined by the policy neural network's outputs. The critic approximates the total reward using a neural network. The estimated total reward is used to approximate the gradient of the policy network with respect to the network parameters. This approach is used to find the non-myopic optimal policy for tasking optical sensors to estimate SO orbits. The reward function is based on reducing the uncertainty for the overall catalog to below a user specified uncertainty threshold. This work uses a 30 km total position error for the uncertainty threshold. This work provides the RL method with a negative reward as long as any SO has a total position error above the uncertainty threshold. This penalizes policies that take longer to achieve the desired accuracy. A positive reward is provided when all SOs are below the catalog uncertainty threshold. An optimal policy is sought that takes actions to achieve the desired catalog uncertainty in minimum time. This work trains the policy in simulation by letting it task a single sensor to "learn" from its performance

  17. Video Demo: Deep Reinforcement Learning for Coordination in Traffic Light Control

    NARCIS (Netherlands)

    van der Pol, E.; Oliehoek, F.A.; Bosse, T.; Bredeweg, B.

    2016-01-01

    This video demonstration contrasts two approaches to coordination in traffic light control using reinforcement learning: earlier work, based on a deconstruction of the state space into a linear combination of vehicle states, and our own approach based on the Deep Q-learning algorithm.

  18. Dopamine-Dependent Reinforcement of Motor Skill Learning: Evidence from Gilles de la Tourette Syndrome

    Science.gov (United States)

    Palminteri, Stefano; Lebreton, Mael; Worbe, Yulia; Hartmann, Andreas; Lehericy, Stephane; Vidailhet, Marie; Grabli, David; Pessiglione, Mathias

    2011-01-01

    Reinforcement learning theory has been extensively used to understand the neural underpinnings of instrumental behaviour. A central assumption surrounds dopamine signalling reward prediction errors, so as to update action values and ensure better choices in the future. However, educators may share the intuitive idea that reinforcements not only…

  19. Identification of animal behavioral strategies by inverse reinforcement learning.

    Directory of Open Access Journals (Sweden)

    Shoichiro Yamaguchi

    2018-05-01

    Full Text Available Animals are able to reach a desired state in an environment by controlling various behavioral patterns. Identification of the behavioral strategy used for this control is important for understanding animals' decision-making and is fundamental to dissect information processing done by the nervous system. However, methods for quantifying such behavioral strategies have not been fully established. In this study, we developed an inverse reinforcement-learning (IRL framework to identify an animal's behavioral strategy from behavioral time-series data. We applied this framework to C. elegans thermotactic behavior; after cultivation at a constant temperature with or without food, fed worms prefer, while starved worms avoid the cultivation temperature on a thermal gradient. Our IRL approach revealed that the fed worms used both the absolute temperature and its temporal derivative and that their behavior involved two strategies: directed migration (DM and isothermal migration (IM. With DM, worms efficiently reached specific temperatures, which explains their thermotactic behavior when fed. With IM, worms moved along a constant temperature, which reflects isothermal tracking, well-observed in previous studies. In contrast to fed animals, starved worms escaped the cultivation temperature using only the absolute, but not the temporal derivative of temperature. We also investigated the neural basis underlying these strategies, by applying our method to thermosensory neuron-deficient worms. Thus, our IRL-based approach is useful in identifying animal strategies from behavioral time-series data and could be applied to a wide range of behavioral studies, including decision-making, in other organisms.

  20. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.

    Science.gov (United States)

    Modares, Hamidreza; Ranatunga, Isura; Lewis, Frank L; Popa, Dan O

    2016-03-01

    An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.

  1. Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing

    Science.gov (United States)

    Lefebvre, Germain; Blakemore, Sarah-Jayne

    2017-01-01

    Previous studies suggest that factual learning, that is, learning from obtained outcomes, is biased, such that participants preferentially take into account positive, as compared to negative, prediction errors. However, whether or not the prediction error valence also affects counterfactual learning, that is, learning from forgone outcomes, is unknown. To address this question, we analysed the performance of two groups of participants on reinforcement learning tasks using a computational model that was adapted to test if prediction error valence influences learning. We carried out two experiments: in the factual learning experiment, participants learned from partial feedback (i.e., the outcome of the chosen option only); in the counterfactual learning experiment, participants learned from complete feedback information (i.e., the outcomes of both the chosen and unchosen option were displayed). In the factual learning experiment, we replicated previous findings of a valence-induced bias, whereby participants learned preferentially from positive, relative to negative, prediction errors. In contrast, for counterfactual learning, we found the opposite valence-induced bias: negative prediction errors were preferentially taken into account, relative to positive ones. When considering valence-induced bias in the context of both factual and counterfactual learning, it appears that people tend to preferentially take into account information that confirms their current choice. PMID:28800597

  2. Confirmation bias in human reinforcement learning: Evidence from counterfactual feedback processing.

    Science.gov (United States)

    Palminteri, Stefano; Lefebvre, Germain; Kilford, Emma J; Blakemore, Sarah-Jayne

    2017-08-01

    Previous studies suggest that factual learning, that is, learning from obtained outcomes, is biased, such that participants preferentially take into account positive, as compared to negative, prediction errors. However, whether or not the prediction error valence also affects counterfactual learning, that is, learning from forgone outcomes, is unknown. To address this question, we analysed the performance of two groups of participants on reinforcement learning tasks using a computational model that was adapted to test if prediction error valence influences learning. We carried out two experiments: in the factual learning experiment, participants learned from partial feedback (i.e., the outcome of the chosen option only); in the counterfactual learning experiment, participants learned from complete feedback information (i.e., the outcomes of both the chosen and unchosen option were displayed). In the factual learning experiment, we replicated previous findings of a valence-induced bias, whereby participants learned preferentially from positive, relative to negative, prediction errors. In contrast, for counterfactual learning, we found the opposite valence-induced bias: negative prediction errors were preferentially taken into account, relative to positive ones. When considering valence-induced bias in the context of both factual and counterfactual learning, it appears that people tend to preferentially take into account information that confirms their current choice.

  3. Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning

    Science.gov (United States)

    Kastner, Lucas; Kube, Jana; Villringer, Arno; Neumann, Jane

    2017-01-01

    Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1) Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2) Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3) Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning. PMID:29163004

  4. Cardiac Concomitants of Feedback and Prediction Error Processing in Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Lucas Kastner

    2017-10-01

    Full Text Available Successful learning hinges on the evaluation of positive and negative feedback. We assessed differential learning from reward and punishment in a monetary reinforcement learning paradigm, together with cardiac concomitants of positive and negative feedback processing. On the behavioral level, learning from reward resulted in more advantageous behavior than learning from punishment, suggesting a differential impact of reward and punishment on successful feedback-based learning. On the autonomic level, learning and feedback processing were closely mirrored by phasic cardiac responses on a trial-by-trial basis: (1 Negative feedback was accompanied by faster and prolonged heart rate deceleration compared to positive feedback. (2 Cardiac responses shifted from feedback presentation at the beginning of learning to stimulus presentation later on. (3 Most importantly, the strength of phasic cardiac responses to the presentation of feedback correlated with the strength of prediction error signals that alert the learner to the necessity for behavioral adaptation. Considering participants' weight status and gender revealed obesity-related deficits in learning to avoid negative consequences and less consistent behavioral adaptation in women compared to men. In sum, our results provide strong new evidence for the notion that during learning phasic cardiac responses reflect an internal value and feedback monitoring system that is sensitive to the violation of performance-based expectations. Moreover, inter-individual differences in weight status and gender may affect both behavioral and autonomic responses in reinforcement-based learning.

  5. Learning Similar Actions by Reinforcement or Sensory-Prediction Errors Rely on Distinct Physiological Mechanisms.

    Science.gov (United States)

    Uehara, Shintaro; Mawase, Firas; Celnik, Pablo

    2017-09-14

    Humans can acquire knowledge of new motor behavior via different forms of learning. The two forms most commonly studied have been the development of internal models based on sensory-prediction errors (error-based learning) and success-based feedback (reinforcement learning). Human behavioral studies suggest these are distinct learning processes, though the neurophysiological mechanisms that are involved have not been characterized. Here, we evaluated physiological markers from the cerebellum and the primary motor cortex (M1) using noninvasive brain stimulations while healthy participants trained finger-reaching tasks. We manipulated the extent to which subjects rely on error-based or reinforcement by providing either vector or binary feedback about task performance. Our results demonstrated a double dissociation where learning the task mainly via error-based mechanisms leads to cerebellar plasticity modifications but not long-term potentiation (LTP)-like plasticity changes in M1; while learning a similar action via reinforcement mechanisms elicited M1 LTP-like plasticity but not cerebellar plasticity changes. Our findings indicate that learning complex motor behavior is mediated by the interplay of different forms of learning, weighing distinct neural mechanisms in M1 and the cerebellum. Our study provides insights for designing effective interventions to enhance human motor learning. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Temporal Memory Reinforcement Learning for the Autonomous Micro-mobile Robot Based-behavior

    Institute of Scientific and Technical Information of China (English)

    Yang Yujun(杨玉君); Cheng Junshi; Chen Jiapin; Li Xiaohai

    2004-01-01

    This paper presents temporal memory reinforcement learning for the autonomous micro-mobile robot based-behavior. Human being has a memory oblivion process, i.e. the earlier to memorize, the earlier to forget, only the repeated thing can be remembered firmly. Enlightening forms this, and the robot need not memorize all the past states, at the same time economizes the EMS memory space, which is not enough in the MPU of our AMRobot. The proposed algorithm is an extension of the Q-learning, which is an incremental reinforcement learning method. The results of simulation have shown that the algorithm is valid.

  7. Adolescent-specific patterns of behavior and neural activity during social reinforcement learning.

    Science.gov (United States)

    Jones, Rebecca M; Somerville, Leah H; Li, Jian; Ruberry, Erika J; Powers, Alisa; Mehta, Natasha; Dyke, Jonathan; Casey, B J

    2014-06-01

    Humans are sophisticated social beings. Social cues from others are exceptionally salient, particularly during adolescence. Understanding how adolescents interpret and learn from variable social signals can provide insight into the observed shift in social sensitivity during this period. The present study tested 120 participants between the ages of 8 and 25 years on a social reinforcement learning task where the probability of receiving positive social feedback was parametrically manipulated. Seventy-eight of these participants completed the task during fMRI scanning. Modeling trial-by-trial learning, children and adults showed higher positive learning rates than did adolescents, suggesting that adolescents demonstrated less differentiation in their reaction times for peers who provided more positive feedback. Forming expectations about receiving positive social reinforcement correlated with neural activity within the medial prefrontal cortex and ventral striatum across age. Adolescents, unlike children and adults, showed greater insular activity during positive prediction error learning and increased activity in the supplementary motor cortex and the putamen when receiving positive social feedback regardless of the expected outcome, suggesting that peer approval may motivate adolescents toward action. While different amounts of positive social reinforcement enhanced learning in children and adults, all positive social reinforcement equally motivated adolescents. Together, these findings indicate that sensitivity to peer approval during adolescence goes beyond simple reinforcement theory accounts and suggest possible explanations for how peers may motivate adolescent behavior.

  8. Working Memory and Reinforcement Schedule Jointly Determine Reinforcement Learning in Children: Potential Implications for Behavioral Parent Training

    Directory of Open Access Journals (Sweden)

    Elien Segers

    2018-03-01

    Full Text Available Introduction: Behavioral Parent Training (BPT is often provided for childhood psychiatric disorders. These disorders have been shown to be associated with working memory impairments. BPT is based on operant learning principles, yet how operant principles shape behavior (through the partial reinforcement (PRF extinction effect, i.e., greater resistance to extinction that is created when behavior is reinforced partially rather than continuously and the potential role of working memory therein is scarcely studied in children. This study explored the PRF extinction effect and the role of working memory therein using experimental tasks in typically developing children.Methods: Ninety-seven children (age 6–10 completed a working memory task and an operant learning task, in which children acquired a response-sequence rule under either continuous or PRF (120 trials, followed by an extinction phase (80 trials. Data of 88 children were used for analysis.Results: The PRF extinction effect was confirmed: We observed slower acquisition and extinction in the PRF condition as compared to the continuous reinforcement (CRF condition. Working memory was negatively related to acquisition but not extinction performance.Conclusion: Both reinforcement contingencies and working memory relate to acquisition performance. Potential implications for BPT are that decreasing working memory load may enhance the chance of optimally learning through reinforcement.

  9. The drift diffusion model as the choice rule in reinforcement learning.

    Science.gov (United States)

    Pedersen, Mads Lund; Frank, Michael J; Biele, Guido

    2017-08-01

    Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyperactivity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups.

  10. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.

    Science.gov (United States)

    Vasan, Gautham; Pilarski, Patrick M

    2017-07-01

    Prosthetic arms should restore and extend the capabilities of someone with an amputation. They should move naturally and be able to perform elegant, coordinated movements that approximate those of a biological arm. Despite these objectives, the control of modern-day prostheses is often nonintuitive and taxing. Existing devices and control approaches do not yet give users the ability to effect highly synergistic movements during their daily-life control of a prosthetic device. As a step towards improving the control of prosthetic arms and hands, we introduce an intuitive approach to training a prosthetic control system that helps a user achieve hard-to-engineer control behaviours. Specifically, we present an actor-critic reinforcement learning method that for the first time promises to allow someone with an amputation to use their non-amputated arm to teach their prosthetic arm how to move through a wide range of coordinated motions and grasp patterns. We evaluate our method during the myoelectric control of a multi-joint robot arm by non-amputee users, and demonstrate that by using our approach a user can train their arm to perform simultaneous gestures and movements in all three degrees of freedom in the robot's hand and wrist based only on information sampled from the robot and the user's above-elbow myoelectric signals. Our results indicate that this learning-from-demonstration paradigm may be well suited to use by both patients and clinicians with minimal technical knowledge, as it allows a user to personalize the control of his or her prosthesis without having to know the underlying mechanics of the prosthetic limb. These preliminary results also suggest that our approach may extend in a straightforward way to next-generation prostheses with precise finger and wrist control, such that these devices may someday allow users to perform fluid and intuitive movements like playing the piano, catching a ball, and comfortably shaking hands.

  11. Cerebellar and prefrontal cortex contributions to adaptation, strategies, and reinforcement learning.

    Science.gov (United States)

    Taylor, Jordan A; Ivry, Richard B

    2014-01-01

    Traditionally, motor learning has been studied as an implicit learning process, one in which movement errors are used to improve performance in a continuous, gradual manner. The cerebellum figures prominently in this literature given well-established ideas about the role of this system in error-based learning and the production of automatized skills. Recent developments have brought into focus the relevance of multiple learning mechanisms for sensorimotor learning. These include processes involving repetition, reinforcement learning, and strategy utilization. We examine these developments, considering their implications for understanding cerebellar function and how this structure interacts with other neural systems to support motor learning. Converging lines of evidence from behavioral, computational, and neuropsychological studies suggest a fundamental distinction between processes that use error information to improve action execution or action selection. While the cerebellum is clearly linked to the former, its role in the latter remains an open question. © 2014 Elsevier B.V. All rights reserved.

  12. Neural prediction errors reveal a risk-sensitive reinforcement-learning process in the human brain.

    Science.gov (United States)

    Niv, Yael; Edlund, Jeffrey A; Dayan, Peter; O'Doherty, John P

    2012-01-11

    Humans and animals are exquisitely, though idiosyncratically, sensitive to risk or variance in the outcomes of their actions. Economic, psychological, and neural aspects of this are well studied when information about risk is provided explicitly. However, we must normally learn about outcomes from experience, through trial and error. Traditional models of such reinforcement learning focus on learning about the mean reward value of cues and ignore higher order moments such as variance. We used fMRI to test whether the neural correlates of human reinforcement learning are sensitive to experienced risk. Our analysis focused on anatomically delineated regions of a priori interest in the nucleus accumbens, where blood oxygenation level-dependent (BOLD) signals have been suggested as correlating with quantities derived from reinforcement learning. We first provide unbiased evidence that the raw BOLD signal in these regions corresponds closely to a reward prediction error. We then derive from this signal the learned values of cues that predict rewards of equal mean but different variance and show that these values are indeed modulated by experienced risk. Moreover, a close neurometric-psychometric coupling exists between the fluctuations of the experience-based evaluations of risky options that we measured neurally and the fluctuations in behavioral risk aversion. This suggests that risk sensitivity is integral to human learning, illuminating economic models of choice, neuroscientific models of affective learning, and the workings of the underlying neural mechanisms.

  13. Place preference and vocal learning rely on distinct reinforcers in songbirds.

    Science.gov (United States)

    Murdoch, Don; Chen, Ruidong; Goldberg, Jesse H

    2018-04-30

    In reinforcement learning (RL) agents are typically tasked with maximizing a single objective function such as reward. But it remains poorly understood how agents might pursue distinct objectives at once. In machines, multiobjective RL can be achieved by dividing a single agent into multiple sub-agents, each of which is shaped by agent-specific reinforcement, but it remains unknown if animals adopt this strategy. Here we use songbirds to test if navigation and singing, two behaviors with distinct objectives, can be differentially reinforced. We demonstrate that strobe flashes aversively condition place preference but not song syllables. Brief noise bursts aversively condition song syllables but positively reinforce place preference. Thus distinct behavior-generating systems, or agencies, within a single animal can be shaped by correspondingly distinct reinforcement signals. Our findings suggest that spatially segregated vocal circuits can solve a credit assignment problem associated with multiobjective learning.

  14. Investigation of Drive-Reinforcement Learning and Application of Learning to Flight Control

    Science.gov (United States)

    1993-08-01

    WL-TR-93-1153 INVESTIGATION OF DRIVE-REINFORCEMEN% LEARNING AND APPLICATION OF LEARNING TO FLIGHT CONTROL AD-A277 442 WALTER L. BAKER (ED), STEPHEN ...OF LEARNING TO FUIGHT CONTROL PE 62204 ___ ___ ___ ___ __ ___ ___ ___ ___ ___ ___ __ PR 2003 6. AUTHOR(S) TA 05 WALTER L. BAKER (ED), STEPHEN C. ATKINS...34 Computers and Thought, E. A. Freigenbaum and J. Feldman (eds.), Mc- Graw Hill, New York, (1959). [19] Holland, J. H., "Escaping Brittleness: The Possibility

  15. Frontostriatal development and probabilistic reinforcement learning during adolescence.

    Science.gov (United States)

    DePasque, Samantha; Galván, Adriana

    2017-09-01

    Adolescence has traditionally been viewed as a period of vulnerability to increased risk-taking and adverse outcomes, which have been linked to neurobiological maturation of the frontostriatal reward system. However, growing research on the role of developmental changes in the adolescent frontostriatal system in facilitating learning will provide a more nuanced view of adolescence. In this review, we discuss the implications of existing research on this topic for learning during adolescence, and suggest that the very neural changes that render adolescents vulnerable to social pressure and risky decision making may also stand to play a role in scaffolding the ability to learn from rewards and from performance-related feedback. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Reinforcement Learning for Constrained Energy Trading Games With Incomplete Information.

    Science.gov (United States)

    Wang, Huiwei; Huang, Tingwen; Liao, Xiaofeng; Abu-Rub, Haitham; Chen, Guo

    2017-10-01

    This paper considers the problem of designing adaptive learning algorithms to seek the Nash equilibrium (NE) of the constrained energy trading game among individually strategic players with incomplete information. In this game, each player uses the learning automaton scheme to generate the action probability distribution based on his/her private information for maximizing his own averaged utility. It is shown that if one of admissible mixed-strategies converges to the NE with probability one, then the averaged utility and trading quantity almost surely converge to their expected ones, respectively. For the given discontinuous pricing function, the utility function has already been proved to be upper semicontinuous and payoff secure which guarantee the existence of the mixed-strategy NE. By the strict diagonal concavity of the regularized Lagrange function, the uniqueness of NE is also guaranteed. Finally, an adaptive learning algorithm is provided to generate the strategy probability distribution for seeking the mixed-strategy NE.

  17. Instructional control of reinforcement learning: A behavioral and neurocomputational investigation

    NARCIS (Netherlands)

    Doll, B.B.; Jacobs, W.J.; Sanfey, A.G.; Frank, M.J.

    2009-01-01

    Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S (Ed) 1989. Rule-governed behavior:

  18. Stochastic collusion and the power law of learning: a general reinforcement learning model of cooperation

    NARCIS (Netherlands)

    Flache, A.

    2002-01-01

    Concerns about models of cultural adaptation as analogs of genetic selection have led cognitive game theorists to explore learning-theoretic specifications. Two prominent examples, the Bush-Mosteller stochastic learning model and the Roth-Erev payoff-matching model, are aligned and integrated as

  19. Neural correlates of reinforcement learning and social preferences in competitive bidding.

    Science.gov (United States)

    van den Bos, Wouter; Talwar, Arjun; McClure, Samuel M

    2013-01-30

    In competitive social environments, people often deviate from what rational choice theory prescribes, resulting in losses or suboptimal monetary gains. We investigate how competition affects learning and decision-making in a common value auction task. During the experiment, groups of five human participants were simultaneously scanned using MRI while playing the auction task. We first demonstrate that bidding is well characterized by reinforcement learning with biased reward representations dependent on social preferences. Indicative of reinforcement learning, we found that estimated trial-by-trial prediction errors correlated with activity in the striatum and ventromedial prefrontal cortex. Additionally, we found that individual differences in social preferences were related to activity in the temporal-parietal junction and anterior insula. Connectivity analyses suggest that monetary and social value signals are integrated in the ventromedial prefrontal cortex and striatum. Based on these results, we argue for a novel mechanistic account for the integration of reinforcement history and social preferences in competitive decision-making.

  20. A Robust Cooperated Control Method with Reinforcement Learning and Adaptive H∞ Control

    Science.gov (United States)

    Obayashi, Masanao; Uchiyama, Shogo; Kuremoto, Takashi; Kobayashi, Kunikazu

    This study proposes a robust cooperated control method combining reinforcement learning with robust control to control the system. A remarkable characteristic of the reinforcement learning is that it doesn't require model formula, however, it doesn't guarantee the stability of the system. On the other hand, robust control system guarantees stability and robustness, however, it requires model formula. We employ both the actor-critic method which is a kind of reinforcement learning with minimal amount of computation to control continuous valued actions and the traditional robust control, that is, H∞ control. The proposed system was compared method with the conventional control method, that is, the actor-critic only used, through the computer simulation of controlling the angle and the position of a crane system, and the simulation result showed the effectiveness of the proposed method.

  1. Reinforcement function design and bias for efficient learning in mobile robots

    International Nuclear Information System (INIS)

    Touzet, C.; Santos, J.M.

    1998-01-01

    The main paradigm in sub-symbolic learning robot domain is the reinforcement learning method. Various techniques have been developed to deal with the memorization/generalization problem, demonstrating the superior ability of artificial neural network implementations. In this paper, the authors address the issue of designing the reinforcement so as to optimize the exploration part of the learning. They also present and summarize works relative to the use of bias intended to achieve the effective synthesis of the desired behavior. Demonstrative experiments involving a self-organizing map implementation of the Q-learning and real mobile robots (Nomad 200 and Khepera) in a task of obstacle avoidance behavior synthesis are described. 3 figs., 5 tabs

  2. TEXPLORE temporal difference reinforcement learning for robots and time-constrained domains

    CERN Document Server

    Hester, Todd

    2013-01-01

    This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuou...

  3. Experiments with Online Reinforcement Learning in Real-Time Strategy Games

    DEFF Research Database (Denmark)

    Toftgaard Andersen, Kresten; Zeng, Yifeng; Dahl Christensen, Dennis

    2009-01-01

    Real-time strategy (RTS) games provide a challenging platform to implement online reinforcement learning (RL) techniques in a real application. Computer, as one game player, monitors opponents' (human or other computers) strategies and then updates its own policy using RL methods. In this article......, we first examine the suitability of applying the online RL in various computer games. Reinforcement learning application depends on both RL complexity and the game features. We then propose a multi-layer framework for implementing online RL in an RTS game. The framework significantly reduces RL...... the effectiveness of our proposed framework and shed light on relevant issues in using online RL in RTS games....

  4. A Model to Explain the Emergence of Reward Expectancy neurons using Reinforcement Learning and Neural Network

    OpenAIRE

    Shinya, Ishii; Munetaka, Shidara; Katsunari, Shibata

    2006-01-01

    In an experiment of multi-trial task to obtain a reward, reward expectancy neurons,###which responded only in the non-reward trials that are necessary to advance###toward the reward, have been observed in the anterior cingulate cortex of monkeys.###In this paper, to explain the emergence of the reward expectancy neuron in###terms of reinforcement learning theory, a model that consists of a recurrent neural###network trained based on reinforcement learning is proposed. The analysis of the###hi...

  5. Autonomous Inter-Task Transfer in Reinforcement Learning Domains

    Science.gov (United States)

    2008-08-01

    Mountain Car. However, because the source task uses a car with a motor more than twice as powerful as in the 3D task, the tran- sition function learned in...powerful car motor or changing the surface friction of the hill • s: changing the range of the state variables • si: changing where the car starts...Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, methodological variations, and system approaches, 1994. Mazda Ahmadi, Matthew E

  6. Stress Modulates Reinforcement Learning in Younger and Older Adults

    OpenAIRE

    Lighthall, Nichole R.; Gorlick, Marissa A.; Schoeke, Andrej; Frank, Michael J.; Mather, Mara

    2012-01-01

    Animal research and human neuroimaging studies indicate that stress increases dopamine levels in brain regions involved in reward processing and stress also appears to increase the attractiveness of addictive drugs. The current study tested the hypothesis that stress increases reward salience, leading to more effective learning about positive than negative outcomes in a probabilistic selection task. Changes to dopamine pathways with age raise the question of whether stress effects on incentiv...

  7. Energy Management Strategy for a Hybrid Electric Vehicle Based on Deep Reinforcement Learning

    OpenAIRE

    Yue Hu; Weimin Li; Kun Xu; Taimoor Zahid; Feiyan Qin; Chenming Li

    2018-01-01

    An energy management strategy (EMS) is important for hybrid electric vehicles (HEVs) since it plays a decisive role on the performance of the vehicle. However, the variation of future driving conditions deeply influences the effectiveness of the EMS. Most existing EMS methods simply follow predefined rules that are not adaptive to different driving conditions online. Therefore, it is useful that the EMS can learn from the environment or driving cycle. In this paper, a deep reinforcement learn...

  8. Adolescent-specific patterns of behavior and neural activity during social reinforcement learning

    OpenAIRE

    Jones, Rebecca M.; Somerville, Leah H.; Li, Jian; Ruberry, Erika J.; Powers, Alisa; Mehta, Natasha; Dyke, Jonathan; Casey, BJ

    2014-01-01

    Humans are sophisticated social beings. Social cues from others are exceptionally salient, particularly during adolescence. Understanding how adolescents interpret and learn from variable social signals can provide insight into the observed shift in social sensitivity during this period. The current study tested 120 participants between the ages of 8 and 25 years on a social reinforcement learning task where the probability of receiving positive social feedback was parametrically manipulated....

  9. Gaze-contingent reinforcement learning reveals incentive value of social signals in young children and adults.

    Science.gov (United States)

    Vernetti, Angélina; Smith, Tim J; Senju, Atsushi

    2017-03-15

    While numerous studies have demonstrated that infants and adults preferentially orient to social stimuli, it remains unclear as to what drives such preferential orienting. It has been suggested that the learned association between social cues and subsequent reward delivery might shape such social orienting. Using a novel, spontaneous indication of reinforcement learning (with the use of a gaze contingent reward-learning task), we investigated whether children and adults' orienting towards social and non-social visual cues can be elicited by the association between participants' visual attention and a rewarding outcome. Critically, we assessed whether the engaging nature of the social cues influences the process of reinforcement learning. Both children and adults learned to orient more often to the visual cues associated with reward delivery, demonstrating that cue-reward association reinforced visual orienting. More importantly, when the reward-predictive cue was social and engaging, both children and adults learned the cue-reward association faster and more efficiently than when the reward-predictive cue was social but non-engaging. These new findings indicate that social engaging cues have a positive incentive value. This could possibly be because they usually coincide with positive outcomes in real life, which could partly drive the development of social orienting. © 2017 The Authors.

  10. Reinforcement learning on slow features of high-dimensional input streams.

    Directory of Open Access Journals (Sweden)

    Robert Legenstein

    Full Text Available Humans and animals are able to learn complex behaviors based on a massive stream of sensory information from different modalities. Early animal studies have identified learning mechanisms that are based on reward and punishment such that animals tend to avoid actions that lead to punishment whereas rewarded actions are reinforced. However, most algorithms for reward-based learning are only applicable if the dimensionality of the state-space is sufficiently small or its structure is sufficiently simple. Therefore, the question arises how the problem of learning on high-dimensional data is solved in the brain. In this article, we propose a biologically plausible generic two-stage learning system that can directly be applied to raw high-dimensional input streams. The system is composed of a hierarchical slow feature analysis (SFA network for preprocessing and a simple neural network on top that is trained based on rewards. We demonstrate by computer simulations that this generic architecture is able to learn quite demanding reinforcement learning tasks on high-dimensional visual input streams in a time that is comparable to the time needed when an explicit highly informative low-dimensional state-space representation is given instead of the high-dimensional visual input. The learning speed of the proposed architecture in a task similar to the Morris water maze task is comparable to that found in experimental studies with rats. This study thus supports the hypothesis that slowness learning is one important unsupervised learning principle utilized in the brain to form efficient state representations for behavioral learning.

  11. Dissociable neural representations of reinforcement and belief prediction errors underlie strategic learning.

    Science.gov (United States)

    Zhu, Lusha; Mathewson, Kyle E; Hsu, Ming

    2012-01-31

    Decision-making in the presence of other competitive intelligent agents is fundamental for social and economic behavior. Such decisions require agents to behave strategically, where in addition to learning about the rewards and punishments available in the environment, they also need to anticipate and respond to actions of others competing for the same rewards. However, whereas we know much about strategic learning at both theoretical and behavioral levels, we know relatively little about the underlying neural mechanisms. Here, we show using a multi-strategy competitive learning paradigm that strategic choices can be characterized by extending the reinforcement learning (RL) framework to incorporate agents' beliefs about the actions of their opponents. Furthermore, using this characterization to generate putative internal values, we used model-based functional magnetic resonance imaging to investigate neural computations underlying strategic learning. We found that the distinct notions of prediction errors derived from our computational model are processed in a partially overlapping but distinct set of brain regions. Specifically, we found that the RL prediction error was correlated with activity in the ventral striatum. In contrast, activity in the ventral striatum, as well as the rostral anterior cingulate (rACC), was correlated with a previously uncharacterized belief-based prediction error. Furthermore, activity in rACC reflected individual differences in degree of engagement in belief learning. These results suggest a model of strategic behavior where learning arises from interaction of dissociable reinforcement and belief-based inputs.

  12. Critical factors in the empirical performance of temporal difference and evolutionary methods for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Taylor, M.E.; Stone, P.

    2010-01-01

    Temporal difference and evolutionary methods are two of the most common approaches to solving reinforcement learning problems. However, there is little consensus on their relative merits and there have been few empirical studies that directly compare their performance. This article aims to address

  13. IMPLEMENTATION OF MULTIAGENT REINFORCEMENT LEARNING MECHANISM FOR OPTIMAL ISLANDING OPERATION OF DISTRIBUTION NETWORK

    DEFF Research Database (Denmark)

    Saleem, Arshad; Lind, Morten

    2008-01-01

    among electric power utilities to utilize modern information and communication technologies (ICT) in order to improve the automation of the distribution system. In this paper we present our work for the implementation of a dynamic multi-agent based distributed reinforcement learning mechanism...

  14. Bi-directional effect of increasing doses of baclofen on reinforcement learning

    Directory of Open Access Journals (Sweden)

    Jean eTerrier

    2011-07-01

    Full Text Available In rodents as well as in humans, efficient reinforcement learning depends on dopamine (DA released from ventral tegmental area (VTA neurons. It has been shown that in brain slices of mice, GABAB-receptor agonists at low concentrations increase the firing frequency of VTA-DA neurons, while high concentrations reduce the firing frequency. It remains however elusive whether baclofen can modulate reinforcement learning. Here, in a double blind study in 34 healthy human volunteers, we tested the effects of a low and a high concentration of oral baclofen in a gambling task associated with monetary reward. A low (20 mg dose of baclofen increased the efficiency of reward-associated learning but had no effect on the avoidance of monetary loss. A high (50 mg dose of baclofen on the other hand did not affect the learning curve. At the end of the task, subjects who received 20 mg baclofen p.o. were more accurate in choosing the symbol linked to the highest probability of earning money compared to the control group (89.55±1.39% vs 81.07±1.55%, p=0.002. Our results support a model where baclofen, at low concentrations, causes a disinhibition of DA neurons, increases DA levels and thus facilitates reinforcement learning.

  15. Spared internal but impaired external reward prediction error signals in major depressive disorder during reinforcement learning.

    Science.gov (United States)

    Bakic, Jasmina; Pourtois, Gilles; Jepma, Marieke; Duprat, Romain; De Raedt, Rudi; Baeken, Chris

    2017-01-01

    Major depressive disorder (MDD) creates debilitating effects on a wide range of cognitive functions, including reinforcement learning (RL). In this study, we sought to assess whether reward processing as such, or alternatively the complex interplay between motivation and reward might potentially account for the abnormal reward-based learning in MDD. A total of 35 treatment resistant MDD patients and 44 age matched healthy controls (HCs) performed a standard probabilistic learning task. RL was titrated using behavioral, computational modeling and event-related brain potentials (ERPs) data. MDD patients showed comparable learning rate compared to HCs. However, they showed decreased lose-shift responses as well as blunted subjective evaluations of the reinforcers used during the task, relative to HCs. Moreover, MDD patients showed normal internal (at the level of error-related negativity, ERN) but abnormal external (at the level of feedback-related negativity, FRN) reward prediction error (RPE) signals during RL, selectively when additional efforts had to be made to establish learning. Collectively, these results lend support to the assumption that MDD does not impair reward processing per se during RL. Instead, it seems to alter the processing of the emotional value of (external) reinforcers during RL, when additional intrinsic motivational processes have to be engaged. © 2016 Wiley Periodicals, Inc.

  16. DYNAMIC AND INCREMENTAL EXPLORATION STRATEGY IN FUSION ADAPTIVE RESONANCE THEORY FOR ONLINE REINFORCEMENT LEARNING

    Directory of Open Access Journals (Sweden)

    Budhitama Subagdja

    2016-06-01

    Full Text Available One of the fundamental challenges in reinforcement learning is to setup a proper balance between exploration and exploitation to obtain the maximum cummulative reward in the long run. Most protocols for exploration bound the overall values to a convergent level of performance. If new knowledge is inserted or the environment is suddenly changed, the issue becomes more intricate as the exploration must compromise the pre-existing knowledge. This paper presents a type of multi-channel adaptive resonance theory (ART neural network model called fusion ART which serves as a fuzzy approximator for reinforcement learning with inherent features that can regulate the exploration strategy. This intrinsic regulation is driven by the condition of the knowledge learnt so far by the agent. The model offers a stable but incremental reinforcement learning that can involve prior rules as bootstrap knowledge for guiding the agent to select the right action. Experiments in obstacle avoidance and navigation tasks demonstrate that in the configuration of learning wherein the agent learns from scratch, the inherent exploration model in fusion ART model is comparable to the basic E-greedy policy. On the other hand, the model is demonstrated to deal with prior knowledge and strike a balance between exploration and exploitation.

  17. Adaptive Load Balancing of Parallel Applications with Multi-Agent Reinforcement Learning on Heterogeneous Systems

    Directory of Open Access Journals (Sweden)

    Johan Parent

    2004-01-01

    Full Text Available We report on the improvements that can be achieved by applying machine learning techniques, in particular reinforcement learning, for the dynamic load balancing of parallel applications. The applications being considered in this paper are coarse grain data intensive applications. Such applications put high pressure on the interconnect of the hardware. Synchronization and load balancing in complex, heterogeneous networks need fast, flexible, adaptive load balancing algorithms. Viewing a parallel application as a one-state coordination game in the framework of multi-agent reinforcement learning, and by using a recently introduced multi-agent exploration technique, we are able to improve upon the classic job farming approach. The improvements are achieved with limited computation and communication overhead.

  18. What Can Reinforcement Learning Teach Us About Non-Equilibrium Quantum Dynamics

    Science.gov (United States)

    Bukov, Marin; Day, Alexandre; Sels, Dries; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj

    Equilibrium thermodynamics and statistical physics are the building blocks of modern science and technology. Yet, our understanding of thermodynamic processes away from equilibrium is largely missing. In this talk, I will reveal the potential of what artificial intelligence can teach us about the complex behaviour of non-equilibrium systems. Specifically, I will discuss the problem of finding optimal drive protocols to prepare a desired target state in quantum mechanical systems by applying ideas from Reinforcement Learning [one can think of Reinforcement Learning as the study of how an agent (e.g. a robot) can learn and perfect a given policy through interactions with an environment.]. The driving protocols learnt by our agent suggest that the non-equilibrium world features possibilities easily defying intuition based on equilibrium physics.

  19. Online human training of a myoelectric prosthesis controller via actor-critic reinforcement learning.

    Science.gov (United States)

    Pilarski, Patrick M; Dawson, Michael R; Degris, Thomas; Fahimi, Farbod; Carey, Jason P; Sutton, Richard S

    2011-01-01

    As a contribution toward the goal of adaptable, intelligent artificial limbs, this work introduces a continuous actor-critic reinforcement learning method for optimizing the control of multi-function myoelectric devices. Using a simulated upper-arm robotic prosthesis, we demonstrate how it is possible to derive successful limb controllers from myoelectric data using only a sparse human-delivered training signal, without requiring detailed knowledge about the task domain. This reinforcement-based machine learning framework is well suited for use by both patients and clinical staff, and may be easily adapted to different application domains and the needs of individual amputees. To our knowledge, this is the first my-oelectric control approach that facilitates the online learning of new amputee-specific motions based only on a one-dimensional (scalar) feedback signal provided by the user of the prosthesis. © 2011 IEEE

  20. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.

    Science.gov (United States)

    Zsuga, Judit; Biro, Klara; Papp, Csaba; Tajti, Gabor; Gesztelyi, Rudolf

    2016-02-01

    Reinforcement learning (RL) is a powerful concept underlying forms of associative learning governed by the use of a scalar reward signal, with learning taking place if expectations are violated. RL may be assessed using model-based and model-free approaches. Model-based reinforcement learning involves the amygdala, the hippocampus, and the orbitofrontal cortex (OFC). The model-free system involves the pedunculopontine-tegmental nucleus (PPTgN), the ventral tegmental area (VTA) and the ventral striatum (VS). Based on the functional connectivity of VS, model-free and model based RL systems center on the VS that by integrating model-free signals (received as reward prediction error) and model-based reward related input computes value. Using the concept of reinforcement learning agent we propose that the VS serves as the value function component of the RL agent. Regarding the model utilized for model-based computations we turned to the proactive brain concept, which offers an ubiquitous function for the default network based on its great functional overlap with contextual associative areas. Hence, by means of the default network the brain continuously organizes its environment into context frames enabling the formulation of analogy-based association that are turned into predictions of what to expect. The OFC integrates reward-related information into context frames upon computing reward expectation by compiling stimulus-reward and context-reward information offered by the amygdala and hippocampus, respectively. Furthermore we suggest that the integration of model-based expectations regarding reward into the value signal is further supported by the efferent of the OFC that reach structures canonical for model-free learning (e.g., the PPTgN, VTA, and VS). (c) 2016 APA, all rights reserved).

  1. Challenges in adapting imitation and reinforcement learning to compliant robots

    Directory of Open Access Journals (Sweden)

    Calinon Sylvain

    2011-12-01

    Full Text Available There is an exponential increase of the range of tasks that robots are forecasted to accomplish. (Reprogramming these robots becomes a critical issue for their commercialization and for their applications to real-world scenarios in which users without expertise in robotics wish to adapt the robot to their needs. This paper addresses the problem of designing userfriendly human-robot interfaces to transfer skills in a fast and efficient manner. This paper presents recent work conducted at the Learning and Interaction group at ADVR-IIT, ranging from skill acquisition through kinesthetic teaching to self-refinement strategies initiated from demonstrations. Our group started to explore the use of imitation and exploration strategies that can take advantage of the compliant capabilities of recent robot hardware and control architectures.

  2. Multichannel sound reinforcement systems at work in a learning environment

    Science.gov (United States)

    Malek, John; Campbell, Colin

    2003-04-01

    Many people have experienced the entertaining benefits of a surround sound system, either in their own home or in a movie theater, but another application exists for multichannel sound that has for the most part gone unused. This is the application of multichannel sound systems to the learning environment. By incorporating a 7.1 surround processor and a touch panel interface programmable control system, the main lecture hall at the University of Michigan Taubman College of Architecture and Urban Planning has been converted from an ordinary lecture hall to a working audiovisual laboratory. The multichannel sound system is used in a wide variety of experiments, including exposure to sounds to test listeners' aural perception of the tonal characteristics of varying pitch, reverberation, speech transmission index, and sound-pressure level. The touch panel's custom interface allows a variety of user groups to control different parts of the AV system and provides preset capability that allows for numerous system configurations.

  3. Online Pedagogical Tutorial Tactics Optimization Using Genetic-Based Reinforcement Learning.

    Science.gov (United States)

    Lin, Hsuan-Ta; Lee, Po-Ming; Hsiao, Tzu-Chien

    2015-01-01

    Tutorial tactics are policies for an Intelligent Tutoring System (ITS) to decide the next action when there are multiple actions available. Recent research has demonstrated that when the learning contents were controlled so as to be the same, different tutorial tactics would make difference in students' learning gains. However, the Reinforcement Learning (RL) techniques that were used in previous studies to induce tutorial tactics are insufficient when encountering large problems and hence were used in offline manners. Therefore, we introduced a Genetic-Based Reinforcement Learning (GBML) approach to induce tutorial tactics in an online-learning manner without basing on any preexisting dataset. The introduced method can learn a set of rules from the environment in a manner similar to RL. It includes a genetic-based optimizer for rule discovery task by generating new rules from the old ones. This increases the scalability of a RL learner for larger problems. The results support our hypothesis about the capability of the GBML method to induce tutorial tactics. This suggests that the GBML method should be favorable in developing real-world ITS applications in the domain of tutorial tactics induction.

  4. The Study of Reinforcement Learning for Traffic Self-Adaptive Control under Multiagent Markov Game Environment

    Directory of Open Access Journals (Sweden)

    Lun-Hui Xu

    2013-01-01

    Full Text Available Urban traffic self-adaptive control problem is dynamic and uncertain, so the states of traffic environment are hard to be observed. Efficient agent which controls a single intersection can be discovered automatically via multiagent reinforcement learning. However, in the majority of the previous works on this approach, each agent needed perfect observed information when interacting with the environment and learned individually with less efficient coordination. This study casts traffic self-adaptive control as a multiagent Markov game problem. The design employs traffic signal control agent (TSCA for each signalized intersection that coordinates with neighboring TSCAs. A mathematical model for TSCAs’ interaction is built based on nonzero-sum markov game which has been applied to let TSCAs learn how to cooperate. A multiagent Markov game reinforcement learning approach is constructed on the basis of single-agent Q-learning. This method lets each TSCA learn to update its Q-values under the joint actions and imperfect information. The convergence of the proposed algorithm is analyzed theoretically. The simulation results show that the proposed method is convergent and effective in realistic traffic self-adaptive control setting.

  5. Blended learning for reinforcing dental pharmacology in the clinical years: A qualitative analysis.

    Science.gov (United States)

    Eachempati, Prashanti; Kiran Kumar, K S; Sumanth, K N

    2016-10-01

    Blended learning has become the method of choice in educational institutions because of its systematic integration of traditional classroom teaching and online components. This study aims to analyze student's reflection regarding blended learning in dental pharmacology. A cross-sectional study was conducted in Faculty of Dentistry, Melaka-Manipal Medical College among 3 rd and 4 th year BDS students. A total of 145 dental students, who consented, participate in the study. Students were divided into 14 groups. Nine online sessions followed by nine face-to-face discussions were held. Each session addressed topics related to oral lesions and orofacial pain with pharmacological applications. After each week, students were asked to reflect on blended learning. On completion of 9 weeks, reflections were collected and analyzed. Qualitative analysis was done using thematic analysis model suggested by Braun and Clarke. The four main themes were identified, namely, merits of blended learning, skill in writing prescription for oral diseases, dosages of drugs, and identification of strengths and weakness. In general, the participants had a positive feedback regarding blended learning. Students felt more confident in drug selection and prescription writing. They could recollect the doses better after the online and face-to-face sessions. Most interestingly, the students reflected that they are able to identify their strength and weakness after the blended learning sessions. Blended learning module was successfully implemented for reinforcing dental pharmacology. The results obtained in this study enable us to plan future comparative studies to know the effectiveness of blended learning in dental pharmacology.

  6. Examining Organizational Learning in Schools: The Role of Psychological Safety, Experimentation, and Leadership that Reinforces Learning

    Science.gov (United States)

    Higgins, Monica; Ishimaru, Ann; Holcombe, Rebecca; Fowler, Amy

    2012-01-01

    This study draws upon theory and methods from the field of organizational behavior to examine organizational learning (OL) in the context of a large urban US school district. We build upon prior literature on OL from the field of organizational behavior to introduce and validate three subscales that assess key dimensions of organizational learning…

  7. Learning to reach by reinforcement learning using a receptive field based function approximation approach with continuous actions.

    Science.gov (United States)

    Tamosiunaite, Minija; Asfour, Tamim; Wörgötter, Florentin

    2009-03-01

    Reinforcement learning methods can be used in robotics applications especially for specific target-oriented problems, for example the reward-based recalibration of goal directed actions. To this end still relatively large and continuous state-action spaces need to be efficiently handled. The goal of this paper is, thus, to develop a novel, rather simple method which uses reinforcement learning with function approximation in conjunction with different reward-strategies for solving such problems. For the testing of our method, we use a four degree-of-freedom reaching problem in 3D-space simulated by a two-joint robot arm system with two DOF each. Function approximation is based on 4D, overlapping kernels (receptive fields) and the state-action space contains about 10,000 of these. Different types of reward structures are being compared, for example, reward-on- touching-only against reward-on-approach. Furthermore, forbidden joint configurations are punished. A continuous action space is used. In spite of a rather large number of states and the continuous action space these reward/punishment strategies allow the system to find a good solution usually within about 20 trials. The efficiency of our method demonstrated in this test scenario suggests that it might be possible to use it on a real robot for problems where mixed rewards can be defined in situations where other types of learning might be difficult.

  8. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.

    Science.gov (United States)

    Qureshi, Ahmed Hussain; Nakamura, Yutaka; Yoshikawa, Yuichiro; Ishiguro, Hiroshi

    2018-03-26

    For a natural social human-robot interaction, it is essential for a robot to learn the human-like social skills. However, learning such skills is notoriously hard due to the limited availability of direct instructions from people to teach a robot. In this paper, we propose an intrinsically motivated reinforcement learning framework in which an agent gets the intrinsic motivation-based rewards through the action-conditional predictive model. By using the proposed method, the robot learned the social skills from the human-robot interaction experiences gathered in the real uncontrolled environments. The results indicate that the robot not only acquired human-like social skills but also took more human-like decisions, on a test dataset, than a robot which received direct rewards for the task achievement. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.

    Directory of Open Access Journals (Sweden)

    George L Chadderdon

    Full Text Available Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1, no learning (0, or punishment (-1, corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.

  10. Reinforcement learning of targeted movement in a spiking neuronal model of motor cortex.

    Science.gov (United States)

    Chadderdon, George L; Neymotin, Samuel A; Kerr, Cliff C; Lytton, William W

    2012-01-01

    Sensorimotor control has traditionally been considered from a control theory perspective, without relation to neurobiology. In contrast, here we utilized a spiking-neuron model of motor cortex and trained it to perform a simple movement task, which consisted of rotating a single-joint "forearm" to a target. Learning was based on a reinforcement mechanism analogous to that of the dopamine system. This provided a global reward or punishment signal in response to decreasing or increasing distance from hand to target, respectively. Output was partially driven by Poisson motor babbling, creating stochastic movements that could then be shaped by learning. The virtual forearm consisted of a single segment rotated around an elbow joint, controlled by flexor and extensor muscles. The model consisted of 144 excitatory and 64 inhibitory event-based neurons, each with AMPA, NMDA, and GABA synapses. Proprioceptive cell input to this model encoded the 2 muscle lengths. Plasticity was only enabled in feedforward connections between input and output excitatory units, using spike-timing-dependent eligibility traces for synaptic credit or blame assignment. Learning resulted from a global 3-valued signal: reward (+1), no learning (0), or punishment (-1), corresponding to phasic increases, lack of change, or phasic decreases of dopaminergic cell firing, respectively. Successful learning only occurred when both reward and punishment were enabled. In this case, 5 target angles were learned successfully within 180 s of simulation time, with a median error of 8 degrees. Motor babbling allowed exploratory learning, but decreased the stability of the learned behavior, since the hand continued moving after reaching the target. Our model demonstrated that a global reinforcement signal, coupled with eligibility traces for synaptic plasticity, can train a spiking sensorimotor network to perform goal-directed motor behavior.

  11. Neural mechanisms of reinforcement learning in unmedicated patients with major depressive disorder.

    Science.gov (United States)

    Rothkirch, Marcus; Tonn, Jonas; Köhler, Stephan; Sterzer, Philipp

    2017-04-01

    According to current concepts, major depressive disorder is strongly related to dysfunctional neural processing of motivational information, entailing impairments in reinforcement learning. While computational modelling can reveal the precise nature of neural learning signals, it has not been used to study learning-related neural dysfunctions in unmedicated patients with major depressive disorder so far. We thus aimed at comparing the neural coding of reward and punishment prediction errors, representing indicators of neural learning-related processes, between unmedicated patients with major depressive disorder and healthy participants. To this end, a group of unmedicated patients with major depressive disorder (n = 28) and a group of age- and sex-matched healthy control participants (n = 30) completed an instrumental learning task involving monetary gains and losses during functional magnetic resonance imaging. The two groups did not differ in their learning performance. Patients and control participants showed the same level of prediction error-related activity in the ventral striatum and the anterior insula. In contrast, neural coding of reward prediction errors in the medial orbitofrontal cortex was reduced in patients. Moreover, neural reward prediction error signals in the medial orbitofrontal cortex and ventral striatum showed negative correlations with anhedonia severity. Using a standard instrumental learning paradigm we found no evidence for an overall impairment of reinforcement learning in medication-free patients with major depressive disorder. Importantly, however, the attenuated neural coding of reward in the medial orbitofrontal cortex and the relation between anhedonia and reduced reward prediction error-signalling in the medial orbitofrontal cortex and ventral striatum likely reflect an impairment in experiencing pleasure from rewarding events as a key mechanism of anhedonia in major depressive disorder. © The Author (2017). Published by Oxford

  12. Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia

    Science.gov (United States)

    Markou, Athina; Salamone, John D.; Bussey, Timothy; Mar, Adam; Brunner, Daniela; Gilmour, Gary; Balsam, Peter

    2013-01-01

    The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu). A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits. PMID:23994273

  13. Measuring reinforcement learning and motivation constructs in experimental animals: relevance to the negative symptoms of schizophrenia.

    Science.gov (United States)

    Markou, Athina; Salamone, John D; Bussey, Timothy J; Mar, Adam C; Brunner, Daniela; Gilmour, Gary; Balsam, Peter

    2013-11-01

    The present review article summarizes and expands upon the discussions that were initiated during a meeting of the Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia (CNTRICS; http://cntrics.ucdavis.edu) meeting. A major goal of the CNTRICS meeting was to identify experimental procedures and measures that can be used in laboratory animals to assess psychological constructs that are related to the psychopathology of schizophrenia. The issues discussed in this review reflect the deliberations of the Motivation Working Group of the CNTRICS meeting, which included most of the authors of this article as well as additional participants. After receiving task nominations from the general research community, this working group was asked to identify experimental procedures in laboratory animals that can assess aspects of reinforcement learning and motivation that may be relevant for research on the negative symptoms of schizophrenia, as well as other disorders characterized by deficits in reinforcement learning and motivation. The tasks described here that assess reinforcement learning are the Autoshaping Task, Probabilistic Reward Learning Tasks, and the Response Bias Probabilistic Reward Task. The tasks described here that assess motivation are Outcome Devaluation and Contingency Degradation Tasks and Effort-Based Tasks. In addition to describing such methods and procedures, the present article provides a working vocabulary for research and theory in this field, as well as an industry perspective about how such tasks may be used in drug discovery. It is hoped that this review can aid investigators who are conducting research in this complex area, promote translational studies by highlighting shared research goals and fostering a common vocabulary across basic and clinical fields, and facilitate the development of medications for the treatment of symptoms mediated by reinforcement learning and motivational deficits. Copyright © 2013 Elsevier

  14. Adversarial Reinforcement Learning in a Cyber Security Simulation}

    NARCIS (Netherlands)

    Elderman, Richard; Pater, Leon; Thie, Albert; Drugan, Madalina; Wiering, Marco

    2017-01-01

    This paper focuses on cyber-security simulations in networks modeled as a Markov game with incomplete information and stochastic elements. The resulting game is an adversarial sequential decision making problem played with two agents, the attacker and defender. The two agents pit one reinforcement

  15. Fuzzy OLAP association rules mining-based modular reinforcement learning approach for multiagent systems.

    Science.gov (United States)

    Kaya, Mehmet; Alhajj, Reda

    2005-04-01

    Multiagent systems and data mining have recently attracted considerable attention in the field of computing. Reinforcement learning is the most commonly used learning process for multiagent systems. However, it still has some drawbacks, including modeling other learning agents present in the domain as part of the state of the environment, and some states are experienced much less than others, or some state-action pairs are never visited during the learning phase. Further, before completing the learning process, an agent cannot exhibit a certain behavior in some states that may be experienced sufficiently. In this study, we propose a novel multiagent learning approach to handle these problems. Our approach is based on utilizing the mining process for modular cooperative learning systems. It incorporates fuzziness and online analytical processing (OLAP) based mining to effectively process the information reported by agents. First, we describe a fuzzy data cube OLAP architecture which facilitates effective storage and processing of the state information reported by agents. This way, the action of the other agent, not even in the visual environment. of the agent under consideration, can simply be predicted by extracting online association rules, a well-known data mining technique, from the constructed data cube. Second, we present a new action selection model, which is also based on association rules mining. Finally, we generalize not sufficiently experienced states, by mining multilevel association rules from the proposed fuzzy data cube. Experimental results obtained on two different versions of a well-known pursuit domain show the robustness and effectiveness of the proposed fuzzy OLAP mining based modular learning approach. Finally, we tested the scalability of the approach presented in this paper and compared it with our previous work on modular-fuzzy Q-learning and ordinary Q-learning.

  16. Reinforcement learning using a continuous time actor-critic framework with spiking neurons.

    Directory of Open Access Journals (Sweden)

    Nicolas Frémaux

    2013-04-01

    Full Text Available Animals repeat rewarded behaviors, but the physiological basis of reward-based learning has only been partially elucidated. On one hand, experimental evidence shows that the neuromodulator dopamine carries information about rewards and affects synaptic plasticity. On the other hand, the theory of reinforcement learning provides a framework for reward-based learning. Recent models of reward-modulated spike-timing-dependent plasticity have made first steps towards bridging the gap between the two approaches, but faced two problems. First, reinforcement learning is typically formulated in a discrete framework, ill-adapted to the description of natural situations. Second, biologically plausible models of reward-modulated spike-timing-dependent plasticity require precise calculation of the reward prediction error, yet it remains to be shown how this can be computed by neurons. Here we propose a solution to these problems by extending the continuous temporal difference (TD learning of Doya (2000 to the case of spiking neurons in an actor-critic network operating in continuous time, and with continuous state and action representations. In our model, the critic learns to predict expected future rewards in real time. Its activity, together with actual rewards, conditions the delivery of a neuromodulatory TD signal to itself and to the actor, which is responsible for action choice. In simulations, we show that such an architecture can solve a Morris water-maze-like navigation task, in a number of trials consistent with reported animal performance. We also use our model to solve the acrobot and the cartpole problems, two complex motor control tasks. Our model provides a plausible way of computing reward prediction error in the brain. Moreover, the analytically derived learning rule is consistent with experimental evidence for dopamine-modulated spike-timing-dependent plasticity.

  17. A Review of the Relationship between Novelty, Intrinsic Motivation and Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Siddique Nazmul

    2017-11-01

    Full Text Available This paper presents a review on the tri-partite relationship between novelty, intrinsic motivation and reinforcement learning. The paper first presents a literature survey on novelty and the different computational models of novelty detection, with a specific focus on the features of stimuli that trigger a Hedonic value for generating a novelty signal. It then presents an overview of intrinsic motivation and investigations into different models with the aim of exploring deeper co-relationships between specific features of a novelty signal and its effect on intrinsic motivation in producing a reward function. Finally, it presents survey results on reinforcement learning, different models and their functional relationship with intrinsic motivation.

  18. Performance Comparison of Two Reinforcement Learning Algorithms for Small Mobile Robots

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Slušný, Stanislav

    2009-01-01

    Roč. 2, č. 1 (2009), s. 59-68 ISSN 2005-4297 R&D Projects: GA MŠk(CZ) 1M0567 Grant - others:GA UK(CZ) 7637/2007 Institutional research plan: CEZ:AV0Z10300504 Keywords : reinforcement learning * mobile robots * inteligent agents Subject RIV: IN - Informatics, Computer Science http://www.sersc.org/journals/IJCA/vol2_no1/7.pdf

  19. Vision-based Navigation and Reinforcement Learning Path Finding for Social Robots

    OpenAIRE

    Pérez Sala, Xavier

    2010-01-01

    We propose a robust system for automatic Robot Navigation in uncontrolled en- vironments. The system is composed by three main modules: the Arti cial Vision module, the Reinforcement Learning module, and the behavior control module. The aim of the system is to allow a robot to automatically nd a path that arrives to a pre xed goal. Turn and straight movements in uncontrolled environments are automatically estimated and controlled using the proposed modules. The Arti cial Vi...

  20. TensorFlow Agents: Efficient Batched Reinforcement Learning in TensorFlow

    OpenAIRE

    Hafner, Danijar; Davidson, James; Vanhoucke, Vincent

    2017-01-01

    We introduce TensorFlow Agents, an efficient infrastructure paradigm for building parallel reinforcement learning algorithms in TensorFlow. We simulate multiple environments in parallel, and group them to perform the neural network computation on a batch rather than individual observations. This allows the TensorFlow execution engine to parallelize computation, without the need for manual synchronization. Environments are stepped in separate Python processes to progress them in parallel witho...

  1. A Plant Control Technology Using Reinforcement Learning Method with Automatic Reward Adjustment

    Science.gov (United States)

    Eguchi, Toru; Sekiai, Takaaki; Yamada, Akihiro; Shimizu, Satoru; Fukai, Masayuki

    A control technology using Reinforcement Learning (RL) and Radial Basis Function (RBF) Network has been developed to reduce environmental load substances exhausted from power and industrial plants. This technology consists of the statistic model using RBF Network, which estimates characteristics of plants with respect to environmental load substances, and RL agent, which learns the control logic for the plants using the statistic model. In this technology, it is necessary to design an appropriate reward function given to the agent immediately according to operation conditions and control goals to control plants flexibly. Therefore, we propose an automatic reward adjusting method of RL for plant control. This method adjusts the reward function automatically using information of the statistic model obtained in its learning process. In the simulations, it is confirmed that the proposed method can adjust the reward function adaptively for several test functions, and executes robust control toward the thermal power plant considering the change of operation conditions and control goals.

  2. Optimal medication dosing from suboptimal clinical examples: a deep reinforcement learning approach.

    Science.gov (United States)

    Nemati, Shamim; Ghassemi, Mohammad M; Clifford, Gari D

    2016-08-01

    Misdosing medications with sensitive therapeutic windows, such as heparin, can place patients at unnecessary risk, increase length of hospital stay, and lead to wasted hospital resources. In this work, we present a clinician-in-the-loop sequential decision making framework, which provides an individualized dosing policy adapted to each patient's evolving clinical phenotype. We employed retrospective data from the publicly available MIMIC II intensive care unit database, and developed a deep reinforcement learning algorithm that learns an optimal heparin dosing policy from sample dosing trails and their associated outcomes in large electronic medical records. Using separate training and testing datasets, our model was observed to be effective in proposing heparin doses that resulted in better expected outcomes than the clinical guidelines. Our results demonstrate that a sequential modeling approach, learned from retrospective data, could potentially be used at the bedside to derive individualized patient dosing policies.

  3. Bio-robots automatic navigation with graded electric reward stimulation based on Reinforcement Learning.

    Science.gov (United States)

    Zhang, Chen; Sun, Chao; Gao, Liqiang; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2013-01-01

    Bio-robots based on brain computer interface (BCI) suffer from the lack of considering the characteristic of the animals in navigation. This paper proposed a new method for bio-robots' automatic navigation combining the reward generating algorithm base on Reinforcement Learning (RL) with the learning intelligence of animals together. Given the graded electrical reward, the animal e.g. the rat, intends to seek the maximum reward while exploring an unknown environment. Since the rat has excellent spatial recognition, the rat-robot and the RL algorithm can convergent to an optimal route by co-learning. This work has significant inspiration for the practical development of bio-robots' navigation with hybrid intelligence.

  4. Off-policy integral reinforcement learning optimal tracking control for continuous-time chaotic systems

    International Nuclear Information System (INIS)

    Wei Qing-Lai; Song Rui-Zhuo; Xiao Wen-Dong; Sun Qiu-Ye

    2015-01-01

    This paper estimates an off-policy integral reinforcement learning (IRL) algorithm to obtain the optimal tracking control of unknown chaotic systems. Off-policy IRL can learn the solution of the HJB equation from the system data generated by an arbitrary control. Moreover, off-policy IRL can be regarded as a direct learning method, which avoids the identification of system dynamics. In this paper, the performance index function is first given based on the system tracking error and control error. For solving the Hamilton–Jacobi–Bellman (HJB) equation, an off-policy IRL algorithm is proposed. It is proven that the iterative control makes the tracking error system asymptotically stable, and the iterative performance index function is convergent. Simulation study demonstrates the effectiveness of the developed tracking control method. (paper)

  5. High and low temperatures have unequal reinforcing properties in Drosophila spatial learning.

    Science.gov (United States)

    Zars, Melissa; Zars, Troy

    2006-07-01

    Small insects regulate their body temperature solely through behavior. Thus, sensing environmental temperature and implementing an appropriate behavioral strategy can be critical for survival. The fly Drosophila melanogaster prefers 24 degrees C, avoiding higher and lower temperatures when tested on a temperature gradient. Furthermore, temperatures above 24 degrees C have negative reinforcing properties. In contrast, we found that flies have a preference in operant learning experiments for a low-temperature-associated position rather than the 24 degrees C alternative in the heat-box. Two additional differences between high- and low-temperature reinforcement, i.e., temperatures above and below 24 degrees C, were found. Temperatures equally above and below 24 degrees C did not reinforce equally and only high temperatures supported increased memory performance with reversal conditioning. Finally, low- and high-temperature reinforced memories are similarly sensitive to two genetic mutations. Together these results indicate the qualitative meaning of temperatures below 24 degrees C depends on the dynamics of the temperatures encountered and that the reinforcing effects of these temperatures depend on at least some common genetic components. Conceptualizing these results using the Wolf-Heisenberg model of operant conditioning, we propose the maximum difference in experienced temperatures determines the magnitude of the reinforcement input to a conditioning circuit.

  6. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning.

    Science.gov (United States)

    Doll, Bradley B; Bath, Kevin G; Daw, Nathaniel D; Frank, Michael J

    2016-01-27

    Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by "model-free" learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by "model-based" learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential choice outcomes

  7. Learning Agent for a Heat-Pump Thermostat with a Set-Back Strategy Using Model-Free Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Frederik Ruelens

    2015-08-01

    Full Text Available The conventional control paradigm for a heat pump with a less efficient auxiliary heating element is to keep its temperature set point constant during the day. This constant temperature set point ensures that the heat pump operates in its more efficient heat-pump mode and minimizes the risk of activating the less efficient auxiliary heating element. As an alternative to a constant set-point strategy, this paper proposes a learning agent for a thermostat with a set-back strategy. This set-back strategy relaxes the set-point temperature during convenient moments, e.g., when the occupants are not at home. Finding an optimal set-back strategy requires solving a sequential decision-making process under uncertainty, which presents two challenges. The first challenge is that for most residential buildings, a description of the thermal characteristics of the building is unavailable and challenging to obtain. The second challenge is that the relevant information on the state, i.e., the building envelope, cannot be measured by the learning agent. In order to overcome these two challenges, our paper proposes an auto-encoder coupled with a batch reinforcement learning technique. The proposed approach is validated for two building types with different thermal characteristics for heating in the winter and cooling in the summer. The simulation results indicate that the proposed learning agent can reduce the energy consumption by 4%–9% during 100 winter days and by 9%–11% during 80 summer days compared to the conventional constant set-point strategy.

  8. 'Proactive' use of cue-context congruence for building reinforcement learning's reward function.

    Science.gov (United States)

    Zsuga, Judit; Biro, Klara; Tajti, Gabor; Szilasi, Magdolna Emma; Papp, Csaba; Juhasz, Bela; Gesztelyi, Rudolf

    2016-10-28

    Reinforcement learning is a fundamental form of learning that may be formalized using the Bellman equation. Accordingly an agent determines the state value as the sum of immediate reward and of the discounted value of future states. Thus the value of state is determined by agent related attributes (action set, policy, discount factor) and the agent's knowledge of the environment embodied by the reward function and hidden environmental factors given by the transition probability. The central objective of reinforcement learning is to solve these two functions outside the agent's control either using, or not using a model. In the present paper, using the proactive model of reinforcement learning we offer insight on how the brain creates simplified representations of the environment, and how these representations are organized to support the identification of relevant stimuli and action. Furthermore, we identify neurobiological correlates of our model by suggesting that the reward and policy functions, attributes of the Bellman equitation, are built by the orbitofrontal cortex (OFC) and the anterior cingulate cortex (ACC), respectively. Based on this we propose that the OFC assesses cue-context congruence to activate the most context frame. Furthermore given the bidirectional neuroanatomical link between the OFC and model-free structures, we suggest that model-based input is incorporated into the reward prediction error (RPE) signal, and conversely RPE signal may be used to update the reward-related information of context frames and the policy underlying action selection in the OFC and ACC, respectively. Furthermore clinical implications for cognitive behavioral interventions are discussed.

  9. Optimal and Scalable Caching for 5G Using Reinforcement Learning of Space-Time Popularities

    Science.gov (United States)

    Sadeghi, Alireza; Sheikholeslami, Fatemeh; Giannakis, Georgios B.

    2018-02-01

    Small basestations (SBs) equipped with caching units have potential to handle the unprecedented demand growth in heterogeneous networks. Through low-rate, backhaul connections with the backbone, SBs can prefetch popular files during off-peak traffic hours, and service them to the edge at peak periods. To intelligently prefetch, each SB must learn what and when to cache, while taking into account SB memory limitations, the massive number of available contents, the unknown popularity profiles, as well as the space-time popularity dynamics of user file requests. In this work, local and global Markov processes model user requests, and a reinforcement learning (RL) framework is put forth for finding the optimal caching policy when the transition probabilities involved are unknown. Joint consideration of global and local popularity demands along with cache-refreshing costs allow for a simple, yet practical asynchronous caching approach. The novel RL-based caching relies on a Q-learning algorithm to implement the optimal policy in an online fashion, thus enabling the cache control unit at the SB to learn, track, and possibly adapt to the underlying dynamics. To endow the algorithm with scalability, a linear function approximation of the proposed Q-learning scheme is introduced, offering faster convergence as well as reduced complexity and memory requirements. Numerical tests corroborate the merits of the proposed approach in various realistic settings.

  10. Energy Management Strategy for a Hybrid Electric Vehicle Based on Deep Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Yue Hu

    2018-01-01

    Full Text Available An energy management strategy (EMS is important for hybrid electric vehicles (HEVs since it plays a decisive role on the performance of the vehicle. However, the variation of future driving conditions deeply influences the effectiveness of the EMS. Most existing EMS methods simply follow predefined rules that are not adaptive to different driving conditions online. Therefore, it is useful that the EMS can learn from the environment or driving cycle. In this paper, a deep reinforcement learning (DRL-based EMS is designed such that it can learn to select actions directly from the states without any prediction or predefined rules. Furthermore, a DRL-based online learning architecture is presented. It is significant for applying the DRL algorithm in HEV energy management under different driving conditions. Simulation experiments have been conducted using MATLAB and Advanced Vehicle Simulator (ADVISOR co-simulation. Experimental results validate the effectiveness of the DRL-based EMS compared with the rule-based EMS in terms of fuel economy. The online learning architecture is also proved to be effective. The proposed method ensures the optimality, as well as real-time applicability, in HEVs.

  11. A Day-to-Day Route Choice Model Based on Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Fangfang Wei

    2014-01-01

    Full Text Available Day-to-day traffic dynamics are generated by individual traveler’s route choice and route adjustment behaviors, which are appropriate to be researched by using agent-based model and learning theory. In this paper, we propose a day-to-day route choice model based on reinforcement learning and multiagent simulation. Travelers’ memory, learning rate, and experience cognition are taken into account. Then the model is verified and analyzed. Results show that the network flow can converge to user equilibrium (UE if travelers can remember all the travel time they have experienced, but which is not necessarily the case under limited memory; learning rate can strengthen the flow fluctuation, but memory leads to the contrary side; moreover, high learning rate results in the cyclical oscillation during the process of flow evolution. Finally, both the scenarios of link capacity degradation and random link capacity are used to illustrate the model’s applications. Analyses and applications of our model demonstrate the model is reasonable and useful for studying the day-to-day traffic dynamics.

  12. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction.

    Science.gov (United States)

    Kim, Su Kyoung; Kirchner, Elsa Andrea; Stefes, Arne; Kirchner, Frank

    2017-12-14

    Reinforcement learning (RL) enables robots to learn its optimal behavioral strategy in dynamic environments based on feedback. Explicit human feedback during robot RL is advantageous, since an explicit reward function can be easily adapted. However, it is very demanding and tiresome for a human to continuously and explicitly generate feedback. Therefore, the development of implicit approaches is of high relevance. In this paper, we used an error-related potential (ErrP), an event-related activity in the human electroencephalogram (EEG), as an intrinsically generated implicit feedback (rewards) for RL. Initially we validated our approach with seven subjects in a simulated robot learning scenario. ErrPs were detected online in single trial with a balanced accuracy (bACC) of 91%, which was sufficient to learn to recognize gestures and the correct mapping between human gestures and robot actions in parallel. Finally, we validated our approach in a real robot scenario, in which seven subjects freely chose gestures and the real robot correctly learned the mapping between gestures and actions (ErrP detection (90% bACC)). In this paper, we demonstrated that intrinsically generated EEG-based human feedback in RL can successfully be used to implicitly improve gesture-based robot control during human-robot interaction. We call our approach intrinsic interactive RL.

  13. Brain Circuits of Methamphetamine Place Reinforcement Learning: The Role of the Hippocampus-VTA Loop.

    Science.gov (United States)

    Keleta, Yonas B; Martinez, Joe L

    2012-03-01

    The reinforcing effects of addictive drugs including methamphetamine (METH) involve the midbrain ventral tegmental area (VTA). VTA is primary source of dopamine (DA) to the nucleus accumbens (NAc) and the ventral hippocampus (VHC). These three brain regions are functionally connected through the hippocampal-VTA loop that includes two main neural pathways: the bottom-up pathway and the top-down pathway. In this paper, we take the view that addiction is a learning process. Therefore, we tested the involvement of the hippocampus in reinforcement learning by studying conditioned place preference (CPP) learning by sequentially conditioning each of the three nuclei in either the bottom-up order of conditioning; VTA, then VHC, finally NAc, or the top-down order; VHC, then VTA, finally NAc. Following habituation, the rats underwent experimental modules consisting of two conditioning trials each followed by immediate testing (test 1 and test 2) and two additional tests 24 h (test 3) and/or 1 week following conditioning (test 4). The module was repeated three times for each nucleus. The results showed that METH, but not Ringer's, produced positive CPP following conditioning each brain area in the bottom-up order. In the top-down order, METH, but not Ringer's, produced either an aversive CPP or no learning effect following conditioning each nucleus of interest. In addition, METH place aversion was antagonized by coadministration of the N-methyl-d-aspartate (NMDA) receptor antagonist MK801, suggesting that the aversion learning was an NMDA receptor activation-dependent process. We conclude that the hippocampus is a critical structure in the reward circuit and hence suggest that the development of target-specific therapeutics for the control of addiction emphasizes on the hippocampus-VTA top-down connection.

  14. The role of multiple neuromodulators in reinforcement learning that is based on competition between eligibility traces

    Directory of Open Access Journals (Sweden)

    Marco A Huertas

    2016-12-01

    Full Text Available The ability to maximize reward and avoid punishment is essential for animal survival. Reinforcement learning (RL refers to the algorithms used by biological or artificial systems to learn how to maximize reward or avoid negative outcomes based on past experiences. While RL is also important in machine learning, the types of mechanistic constraints encountered by biological machinery might be different than those for artificial systems. Two major problems encountered by RL are how to relate a stimulus with a reinforcing signal that is delayed in time (temporal credit assignment, and how to stop learning once the target behaviors are attained (stopping rule. To address the first problem, synaptic eligibility traces were introduced, bridging the temporal gap between a stimulus and its reward. Although these were mere theoretical constructs, recent experiements have provided evidence of their existence. These experiments also reveal that the presence of specific neuromodulators converts the traces into changes in synaptic efficacy. A mechanistic implementation of the stopping rule usually assumes the inhibition of the reward nucleus; however, recent experimental results have shown that learning terminates at the appropriate network state even in setups where the reward cannot be inhibited. In an effort to describe a learning rule that solves the temporal credit assignment problem and implements a biologically plausible stopping rule, we proposed a model based on two separate synaptic eligibility traces, one for long-term potentiation (LTP and one for long-term depression (LTD, each obeying different dynamics and having different effective magnitudes. The model has been shown to successfully generate stable learning in recurrent networks. Although the model assumes the presence of a single neuromodulator, evidence indicates that there are different neuromodulators for expressing the different traces. What could be the role of different

  15. The Role of Multiple Neuromodulators in Reinforcement Learning That Is Based on Competition between Eligibility Traces.

    Science.gov (United States)

    Huertas, Marco A; Schwettmann, Sarah E; Shouval, Harel Z

    2016-01-01

    The ability to maximize reward and avoid punishment is essential for animal survival. Reinforcement learning (RL) refers to the algorithms used by biological or artificial systems to learn how to maximize reward or avoid negative outcomes based on past experiences. While RL is also important in machine learning, the types of mechanistic constraints encountered by biological machinery might be different than those for artificial systems. Two major problems encountered by RL are how to relate a stimulus with a reinforcing signal that is delayed in time (temporal credit assignment), and how to stop learning once the target behaviors are attained (stopping rule). To address the first problem synaptic eligibility traces were introduced, bridging the temporal gap between a stimulus and its reward. Although, these were mere theoretical constructs, recent experiments have provided evidence of their existence. These experiments also reveal that the presence of specific neuromodulators converts the traces into changes in synaptic efficacy. A mechanistic implementation of the stopping rule usually assumes the inhibition of the reward nucleus; however, recent experimental results have shown that learning terminates at the appropriate network state even in setups where the reward nucleus cannot be inhibited. In an effort to describe a learning rule that solves the temporal credit assignment problem and implements a biologically plausible stopping rule, we proposed a model based on two separate synaptic eligibility traces, one for long-term potentiation (LTP) and one for long-term depression (LTD), each obeying different dynamics and having different effective magnitudes. The model has been shown to successfully generate stable learning in recurrent networks. Although, the model assumes the presence of a single neuromodulator, evidence indicates that there are different neuromodulators for expressing the different traces. What could be the role of different neuromodulators for

  16. Universal effect of dynamical reinforcement learning mechanism in spatial evolutionary games

    International Nuclear Information System (INIS)

    Zhang, Hai-Feng; Wu, Zhi-Xi; Wang, Bing-Hong

    2012-01-01

    One of the prototypical mechanisms in understanding the ubiquitous cooperation in social dilemma situations is the win–stay, lose–shift rule. In this work, a generalized win–stay, lose–shift learning model—a reinforcement learning model with dynamic aspiration level—is proposed to describe how humans adapt their social behaviors based on their social experiences. In the model, the players incorporate the information of the outcomes in previous rounds with time-dependent aspiration payoffs to regulate the probability of choosing cooperation. By investigating such a reinforcement learning rule in the spatial prisoner's dilemma game and public goods game, a most noteworthy viewpoint is that moderate greediness (i.e. moderate aspiration level) favors best the development and organization of collective cooperation. The generality of this observation is tested against different regulation strengths and different types of network of interaction as well. We also make comparisons with two recently proposed models to highlight the importance of the mechanism of adaptive aspiration level in supporting cooperation in structured populations

  17. Reinforcement Learning with Autonomous Small Unmanned Aerial Vehicles in Cluttered Environments

    Science.gov (United States)

    Tran, Loc; Cross, Charles; Montague, Gilbert; Motter, Mark; Neilan, James; Qualls, Garry; Rothhaar, Paul; Trujillo, Anna; Allen, B. Danette

    2015-01-01

    We present ongoing work in the Autonomy Incubator at NASA Langley Research Center (LaRC) exploring the efficacy of a data set aggregation approach to reinforcement learning for small unmanned aerial vehicle (sUAV) flight in dense and cluttered environments with reactive obstacle avoidance. The goal is to learn an autonomous flight model using training experiences from a human piloting a sUAV around static obstacles. The training approach uses video data from a forward-facing camera that records the human pilot's flight. Various computer vision based features are extracted from the video relating to edge and gradient information. The recorded human-controlled inputs are used to train an autonomous control model that correlates the extracted feature vector to a yaw command. As part of the reinforcement learning approach, the autonomous control model is iteratively updated with feedback from a human agent who corrects undesired model output. This data driven approach to autonomous obstacle avoidance is explored for simulated forest environments furthering autonomous flight under the tree canopy research. This enables flight in previously inaccessible environments which are of interest to NASA researchers in Earth and Atmospheric sciences.

  18. Within- and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory.

    Science.gov (United States)

    Collins, Anne G E; Frank, Michael J

    2018-03-06

    Learning from rewards and punishments is essential to survival and facilitates flexible human behavior. It is widely appreciated that multiple cognitive and reinforcement learning systems contribute to decision-making, but the nature of their interactions is elusive. Here, we leverage methods for extracting trial-by-trial indices of reinforcement learning (RL) and working memory (WM) in human electro-encephalography to reveal single-trial computations beyond that afforded by behavior alone. Neural dynamics confirmed that increases in neural expectation were predictive of reduced neural surprise in the following feedback period, supporting central tenets of RL models. Within- and cross-trial dynamics revealed a cooperative interplay between systems for learning, in which WM contributes expectations to guide RL, despite competition between systems during choice. Together, these results provide a deeper understanding of how multiple neural systems interact for learning and decision-making and facilitate analysis of their disruption in clinical populations.

  19. An analysis of intergroup rivalry using Ising model and reinforcement learning

    Science.gov (United States)

    Zhao, Feng-Fei; Qin, Zheng; Shao, Zhuo

    2014-01-01

    Modeling of intergroup rivalry can help us better understand economic competitions, political elections and other similar activities. The result of intergroup rivalry depends on the co-evolution of individual behavior within one group and the impact from the rival group. In this paper, we model the rivalry behavior using Ising model. Different from other simulation studies using Ising model, the evolution rules of each individual in our model are not static, but have the ability to learn from historical experience using reinforcement learning technique, which makes the simulation more close to real human behavior. We studied the phase transition in intergroup rivalry and focused on the impact of the degree of social freedom, the personality of group members and the social experience of individuals. The results of computer simulation show that a society with a low degree of social freedom and highly educated, experienced individuals is more likely to be one-sided in intergroup rivalry.

  20. Pedunculopontine tegmental nucleus lesions impair stimulus--reward learning in autoshaping and conditioned reinforcement paradigms.

    Science.gov (United States)

    Inglis, W L; Olmstead, M C; Robbins, T W

    2000-04-01

    The role of the pedunculopontine tegmental nucleus (PPTg) in stimulus-reward learning was assessed by testing the effects of PPTg lesions on performance in visual autoshaping and conditioned reinforcement (CRf) paradigms. Rats with PPTg lesions were unable to learn an association between a conditioned stimulus (CS) and a primary reward in either paradigm. In the autoshaping experiment, PPTg-lesioned rats approached the CS+ and CS- with equal frequency, and the latencies to respond to the two stimuli did not differ. PPTg lesions also disrupted discriminated approaches to an appetitive CS in the CRf paradigm and completely abolished the acquisition of responding with CRf. These data are discussed in the context of a possible cognitive function of the PPTg, particularly in terms of lesion-induced disruptions of attentional processes that are mediated by the thalamus.

  1. Reinforcement learning solution for HJB equation arising in constrained optimal control problem.

    Science.gov (United States)

    Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong

    2015-11-01

    The constrained optimal control problem depends on the solution of the complicated Hamilton-Jacobi-Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is proposed, which learns the solution of the HJBE and the optimal control policy from real system data. One important feature of the off-policy RL is that its policy evaluation can be realized with data generated by other behavior policies, not necessarily the target policy, which solves the insufficient exploration problem. The convergence of the off-policy RL is proved by demonstrating its equivalence to the successive approximation approach. Its implementation procedure is based on the actor-critic neural networks structure, where the function approximation is conducted with linearly independent basis functions. Subsequently, the convergence of the implementation procedure with function approximation is also proved. Finally, its effectiveness is verified through computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Reinforcement learning for a biped robot based on a CPG-actor-critic method.

    Science.gov (United States)

    Nakamura, Yutaka; Mori, Takeshi; Sato, Masa-aki; Ishii, Shin

    2007-08-01

    Animals' rhythmic movements, such as locomotion, are considered to be controlled by neural circuits called central pattern generators (CPGs), which generate oscillatory signals. Motivated by this biological mechanism, studies have been conducted on the rhythmic movements controlled by CPG. As an autonomous learning framework for a CPG controller, we propose in this article a reinforcement learning method we call the "CPG-actor-critic" method. This method introduces a new architecture to the actor, and its training is roughly based on a stochastic policy gradient algorithm presented recently. We apply this method to an automatic acquisition problem of control for a biped robot. Computer simulations show that training of the CPG can be successfully performed by our method, thus allowing the biped robot to not only walk stably but also adapt to environmental changes.

  3. Fast Conflict Resolution Based on Reinforcement Learning in Multi-agent System

    Institute of Scientific and Technical Information of China (English)

    PIAOSonghao; HONGBingrong; CHUHaitao

    2004-01-01

    In multi-agent system where each agen thas a different goal (even the team of agents has the same goal), agents must be able to resolve conflicts arising in the process of achieving their goal. Many researchers presented methods for conflict resolution, e.g., Reinforcement learning (RL), but the conventional RL requires a large computation cost because every agent must learn, at the same time the overlap of actions selected by each agent results in local conflict. Therefore in this paper, we propose a novel method to solve these problems. In order to deal with the conflict within the multi-agent system, the concept of potential field function based Action selection priority level (ASPL) is brought forward. In this method, all kinds of environment factor that may have influence on the priority are effectively computed with the potential field function. So the priority to access the local resource can be decided rapidly. By avoiding the complex coordination mechanism used in general multi-agent system, the conflict in multi-agent system is settled more efficiently. Our system consists of RL with ASPL module and generalized rules module. Using ASPL, RL module chooses a proper cooperative behavior, and generalized rule module can accelerate the learning process. By applying the proposed method to Robot Soccer, the learning process can be accelerated. The results of simulation and real experiments indicate the effectiveness of the method.

  4. Integral reinforcement learning for continuous-time input-affine nonlinear systems with simultaneous invariant explorations.

    Science.gov (United States)

    Lee, Jae Young; Park, Jin Bae; Choi, Yoon Ho

    2015-05-01

    This paper focuses on a class of reinforcement learning (RL) algorithms, named integral RL (I-RL), that solve continuous-time (CT) nonlinear optimal control problems with input-affine system dynamics. First, we extend the concepts of exploration, integral temporal difference, and invariant admissibility to the target CT nonlinear system that is governed by a control policy plus a probing signal called an exploration. Then, we show input-to-state stability (ISS) and invariant admissibility of the closed-loop systems with the policies generated by integral policy iteration (I-PI) or invariantly admissible PI (IA-PI) method. Based on these, three online I-RL algorithms named explorized I-PI and integral Q -learning I, II are proposed, all of which generate the same convergent sequences as I-PI and IA-PI under the required excitation condition on the exploration. All the proposed methods are partially or completely model free, and can simultaneously explore the state space in a stable manner during the online learning processes. ISS, invariant admissibility, and convergence properties of the proposed methods are also investigated, and related with these, we show the design principles of the exploration for safe learning. Neural-network-based implementation methods for the proposed schemes are also presented in this paper. Finally, several numerical simulations are carried out to verify the effectiveness of the proposed methods.

  5. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data.

    Science.gov (United States)

    Lewis, F L; Vamvoudakis, Kyriakos G

    2011-02-01

    Approximate dynamic programming (ADP) is a class of reinforcement learning methods that have shown their importance in a variety of applications, including feedback control of dynamical systems. ADP generally requires full information about the system internal states, which is usually not available in practical situations. In this paper, we show how to implement ADP methods using only measured input/output data from the system. Linear dynamical systems with deterministic behavior are considered herein, which are systems of great interest in the control system community. In control system theory, these types of methods are referred to as output feedback (OPFB). The stochastic equivalent of the systems dealt with in this paper is a class of partially observable Markov decision processes. We develop both policy iteration and value iteration algorithms that converge to an optimal controller that requires only OPFB. It is shown that, similar to Q -learning, the new methods have the important advantage that knowledge of the system dynamics is not needed for the implementation of these learning algorithms or for the OPFB control. Only the order of the system, as well as an upper bound on its "observability index," must be known. The learned OPFB controller is in the form of a polynomial autoregressive moving-average controller that has equivalent performance with the optimal state variable feedback gain.

  6. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

    Science.gov (United States)

    Yen, John; Wang, Haojin; Daugherity, Walter C.

    1992-01-01

    Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

  7. Dynamic pricing and automated resource allocation for complex information services reinforcement learning and combinatorial auctions

    CERN Document Server

    Schwind, Michael; Fandel, G

    2007-01-01

    Many firms provide their customers with online information products which require limited resources such as server capacity. This book develops allocation mechanisms that aim to ensure an efficient resource allocation in modern IT-services. Recent methods of artificial intelligence, such as neural networks and reinforcement learning, and nature-oriented optimization methods, such as genetic algorithms and simulated annealing, are advanced and applied to allocation processes in distributed IT-infrastructures, e.g. grid systems. The author presents two methods, both of which using the users??? w

  8. Reinforcement learning of self-regulated β-oscillations for motor restoration in chronic stroke

    Directory of Open Access Journals (Sweden)

    Georgios eNaros

    2015-07-01

    Full Text Available Neurofeedback training of motor imagery-related brain-states with brain-machine interfaces (BMI is currently being explored prior to standard physiotherapy to improve the motor outcome of stroke rehabilitation. Pilot studies suggest that such a priming intervention before physiotherapy might increase the responsiveness of the brain to the subsequent physiotherapy, thereby improving the clinical outcome. However, there is little evidence up to now that these BMI-based interventions have achieved operate conditioning of specific brain states that facilitate task-specific functional gains beyond the practice of primed physiotherapy. In this context, we argue that BMI technology needs to aim at physiological features relevant for the targeted behavioral gain. Moreover, this therapeutic intervention has to be informed by concepts of reinforcement learning to develop its full potential. Such a refined neurofeedback approach would need to address the following issues (1 Defining a physiological feedback target specific to the intended behavioral gain, e.g. β-band oscillations for cortico-muscular communication. This targeted brain state could well be different from the brain state optimal for the neurofeedback task (2 Selecting a BMI classification and thresholding approach on the basis of learning principles, i.e. balancing challenge and reward of the neurofeedback task instead of maximizing the classification accuracy of the feedback device (3 Adjusting the feedback in the course of the training period to account for the cognitive load and the learning experience of the participant. The proposed neurofeedback strategy provides evidence for the feasibility of the suggested approach by demonstrating that dynamic threshold adaptation based on reinforcement learning may lead to frequency-specific operant conditioning of β-band oscillations paralleled by task-specific motor improvement; a proposal that requires investigation in a larger cohort of stroke

  9. Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications

    Science.gov (United States)

    Ferreria, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.

    2017-01-01

    Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.

  10. Using Spatial Reinforcement Learning to Build Forest Wildfire Dynamics Models From Satellite Images

    Directory of Open Access Journals (Sweden)

    Sriram Ganapathi Subramanian

    2018-04-01

    Full Text Available Machine learning algorithms have increased tremendously in power in recent years but have yet to be fully utilized in many ecology and sustainable resource management domains such as wildlife reserve design, forest fire management, and invasive species spread. One thing these domains have in common is that they contain dynamics that can be characterized as a spatially spreading process (SSP, which requires many parameters to be set precisely to model the dynamics, spread rates, and directional biases of the elements which are spreading. We present related work in artificial intelligence and machine learning for SSP sustainability domains including forest wildfire prediction. We then introduce a novel approach for learning in SSP domains using reinforcement learning (RL where fire is the agent at any cell in the landscape and the set of actions the fire can take from a location at any point in time includes spreading north, south, east, or west or not spreading. This approach inverts the usual RL setup since the dynamics of the corresponding Markov Decision Process (MDP is a known function for immediate wildfire spread. Meanwhile, we learn an agent policy for a predictive model of the dynamics of a complex spatial process. Rewards are provided for correctly classifying which cells are on fire or not compared with satellite and other related data. We examine the behavior of five RL algorithms on this problem: value iteration, policy iteration, Q-learning, Monte Carlo Tree Search, and Asynchronous Advantage Actor-Critic (A3C. We compare to a Gaussian process-based supervised learning approach and also discuss the relation of our approach to manually constructed, state-of-the-art methods from forest wildfire modeling. We validate our approach with satellite image data of two massive wildfire events in Northern Alberta, Canada; the Fort McMurray fire of 2016 and the Richardson fire of 2011. The results show that we can learn predictive, agent

  11. Multiobjective Reinforcement Learning for Traffic Signal Control Using Vehicular Ad Hoc Network

    Directory of Open Access Journals (Sweden)

    Houli Duan

    2010-01-01

    Full Text Available We propose a new multiobjective control algorithm based on reinforcement learning for urban traffic signal control, named multi-RL. A multiagent structure is used to describe the traffic system. A vehicular ad hoc network is used for the data exchange among agents. A reinforcement learning algorithm is applied to predict the overall value of the optimization objective given vehicles' states. The policy which minimizes the cumulative value of the optimization objective is regarded as the optimal one. In order to make the method adaptive to various traffic conditions, we also introduce a multiobjective control scheme in which the optimization objective is selected adaptively to real-time traffic states. The optimization objectives include the vehicle stops, the average waiting time, and the maximum queue length of the next intersection. In addition, we also accommodate a priority control to the buses and the emergency vehicles through our model. The simulation results indicated that our algorithm could perform more efficiently than traditional traffic light control methods.

  12. FMRQ-A Multiagent Reinforcement Learning Algorithm for Fully Cooperative Tasks.

    Science.gov (United States)

    Zhang, Zhen; Zhao, Dongbin; Gao, Junwei; Wang, Dongqing; Dai, Yujie

    2017-06-01

    In this paper, we propose a multiagent reinforcement learning algorithm dealing with fully cooperative tasks. The algorithm is called frequency of the maximum reward Q-learning (FMRQ). FMRQ aims to achieve one of the optimal Nash equilibria so as to optimize the performance index in multiagent systems. The frequency of obtaining the highest global immediate reward instead of immediate reward is used as the reinforcement signal. With FMRQ each agent does not need the observation of the other agents' actions and only shares its state and reward at each step. We validate FMRQ through case studies of repeated games: four cases of two-player two-action and one case of three-player two-action. It is demonstrated that FMRQ can converge to one of the optimal Nash equilibria in these cases. Moreover, comparison experiments on tasks with multiple states and finite steps are conducted. One is box-pushing and the other one is distributed sensor network problem. Experimental results show that the proposed algorithm outperforms others with higher performance.

  13. Reinforcement Learning Based Data Self-Destruction Scheme for Secured Data Management

    Directory of Open Access Journals (Sweden)

    Young Ki Kim

    2018-04-01

    Full Text Available As technologies and services that leverage cloud computing have evolved, the number of businesses and individuals who use them are increasing rapidly. In the course of using cloud services, as users store and use data that include personal information, research on privacy protection models to protect sensitive information in the cloud environment is becoming more important. As a solution to this problem, a self-destructing scheme has been proposed that prevents the decryption of encrypted user data after a certain period of time using a Distributed Hash Table (DHT network. However, the existing self-destructing scheme does not mention how to set the number of key shares and the threshold value considering the environment of the dynamic DHT network. This paper proposes a method to set the parameters to generate the key shares needed for the self-destructing scheme considering the availability and security of data. The proposed method defines state, action, and reward of the reinforcement learning model based on the similarity of the graph, and applies the self-destructing scheme process by updating the parameter based on the reinforcement learning model. Through the proposed technique, key sharing parameters can be set in consideration of data availability and security in dynamic DHT network environments.

  14. DAT1-Genotype and Menstrual Cycle, but Not Hormonal Contraception, Modulate Reinforcement Learning: Preliminary Evidence.

    Science.gov (United States)

    Jakob, Kristina; Ehrentreich, Hanna; Holtfrerich, Sarah K C; Reimers, Luise; Diekhof, Esther K

    2018-01-01

    Hormone by genotype interactions have been widely ignored by cognitive neuroscience. Yet, the dependence of cognitive performance on both baseline dopamine (DA) and current 17ß-estradiol (E2) level argues for their combined effect also in the context of reinforcement learning. Here, we assessed how the interaction between the natural rise of E2 in the late follicular phase (FP) and the 40 base-pair variable number tandem repeat polymorphism of the dopamine transporter (DAT1) affects reinforcement learning capacity. 30 women with a regular menstrual cycle performed a probabilistic feedback learning task twice during the early and late FP. In addition, 39 women, who took hormonal contraceptives (HC) to suppress natural ovulation, were tested during the "pill break" and the intake phase of HC. The present data show that DAT1-genotype may interact with transient hormonal state, but only in women with a natural menstrual cycle. We found that carriers of the 9-repeat allele (9RP) experienced a significant decrease in the ability to avoid punishment from early to late FP. Neither homozygote subjects of the 10RP allele, nor subjects from the HC group showed a change in behavior between phases. These data are consistent with neurobiological studies that found that rising E2 may reverse DA transporter function and could enhance DA efflux, which would in turn reduce punishment sensitivity particularly in subjects with a higher transporter density to begin with. Taken together, the present results, although based on a small sample, add to the growing understanding of the complex interplay between different physiological modulators of dopaminergic transmission. They may not only point out the necessity to control for hormonal state in behavioral genetic research, but may offer new starting points for studies in clinical settings.

  15. DAT1-Genotype and Menstrual Cycle, but Not Hormonal Contraception, Modulate Reinforcement Learning: Preliminary Evidence

    Directory of Open Access Journals (Sweden)

    Kristina Jakob

    2018-02-01

    Full Text Available Hormone by genotype interactions have been widely ignored by cognitive neuroscience. Yet, the dependence of cognitive performance on both baseline dopamine (DA and current 17ß-estradiol (E2 level argues for their combined effect also in the context of reinforcement learning. Here, we assessed how the interaction between the natural rise of E2 in the late follicular phase (FP and the 40 base-pair variable number tandem repeat polymorphism of the dopamine transporter (DAT1 affects reinforcement learning capacity. 30 women with a regular menstrual cycle performed a probabilistic feedback learning task twice during the early and late FP. In addition, 39 women, who took hormonal contraceptives (HC to suppress natural ovulation, were tested during the “pill break” and the intake phase of HC. The present data show that DAT1-genotype may interact with transient hormonal state, but only in women with a natural menstrual cycle. We found that carriers of the 9-repeat allele (9RP experienced a significant decrease in the ability to avoid punishment from early to late FP. Neither homozygote subjects of the 10RP allele, nor subjects from the HC group showed a change in behavior between phases. These data are consistent with neurobiological studies that found that rising E2 may reverse DA transporter function and could enhance DA efflux, which would in turn reduce punishment sensitivity particularly in subjects with a higher transporter density to begin with. Taken together, the present results, although based on a small sample, add to the growing understanding of the complex interplay between different physiological modulators of dopaminergic transmission. They may not only point out the necessity to control for hormonal state in behavioral genetic research, but may offer new starting points for studies in clinical settings.

  16. Long term effects of aversive reinforcement on colour discrimination learning in free-flying bumblebees.

    Directory of Open Access Journals (Sweden)

    Miguel A Rodríguez-Gironés

    Full Text Available The results of behavioural experiments provide important information about the structure and information-processing abilities of the visual system. Nevertheless, if we want to infer from behavioural data how the visual system operates, it is important to know how different learning protocols affect performance and to devise protocols that minimise noise in the response of experimental subjects. The purpose of this work was to investigate how reinforcement schedule and individual variability affect the learning process in a colour discrimination task. Free-flying bumblebees were trained to discriminate between two perceptually similar colours. The target colour was associated with sucrose solution, and the distractor could be associated with water or quinine solution throughout the experiment, or with one substance during the first half of the experiment and the other during the second half. Both acquisition and final performance of the discrimination task (measured as proportion of correct choices were determined by the choice of reinforcer during the first half of the experiment: regardless of whether bees were trained with water or quinine during the second half of the experiment, bees trained with quinine during the first half learned the task faster and performed better during the whole experiment. Our results confirm that the choice of stimuli used during training affects the rate at which colour discrimination tasks are acquired and show that early contact with a strongly aversive stimulus can be sufficient to maintain high levels of attention during several hours. On the other hand, bees which took more time to decide on which flower to alight were more likely to make correct choices than bees which made fast decisions. This result supports the existence of a trade-off between foraging speed and accuracy, and highlights the importance of measuring choice latencies during behavioural experiments focusing on cognitive abilities.

  17. From free energy to expected energy: Improving energy-based value function approximation in reinforcement learning.

    Science.gov (United States)

    Elfwing, Stefan; Uchibe, Eiji; Doya, Kenji

    2016-12-01

    Free-energy based reinforcement learning (FERL) was proposed for learning in high-dimensional state and action spaces. However, the FERL method does only really work well with binary, or close to binary, state input, where the number of active states is fewer than the number of non-active states. In the FERL method, the value function is approximated by the negative free energy of a restricted Boltzmann machine (RBM). In our earlier study, we demonstrated that the performance and the robustness of the FERL method can be improved by scaling the free energy by a constant that is related to the size of network. In this study, we propose that RBM function approximation can be further improved by approximating the value function by the negative expected energy (EERL), instead of the negative free energy, as well as being able to handle continuous state input. We validate our proposed method by demonstrating that EERL: (1) outperforms FERL, as well as standard neural network and linear function approximation, for three versions of a gridworld task with high-dimensional image state input; (2) achieves new state-of-the-art results in stochastic SZ-Tetris in both model-free and model-based learning settings; and (3) significantly outperforms FERL and standard neural network function approximation for a robot navigation task with raw and noisy RGB images as state input and a large number of actions. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Off-Policy Reinforcement Learning for Synchronization in Multiagent Graphical Games.

    Science.gov (United States)

    Li, Jinna; Modares, Hamidreza; Chai, Tianyou; Lewis, Frank L; Xie, Lihua

    2017-10-01

    This paper develops an off-policy reinforcement learning (RL) algorithm to solve optimal synchronization of multiagent systems. This is accomplished by using the framework of graphical games. In contrast to traditional control protocols, which require complete knowledge of agent dynamics, the proposed off-policy RL algorithm is a model-free approach, in that it solves the optimal synchronization problem without knowing any knowledge of the agent dynamics. A prescribed control policy, called behavior policy, is applied to each agent to generate and collect data for learning. An off-policy Bellman equation is derived for each agent to learn the value function for the policy under evaluation, called target policy, and find an improved policy, simultaneously. Actor and critic neural networks along with least-square approach are employed to approximate target control policies and value functions using the data generated by applying prescribed behavior policies. Finally, an off-policy RL algorithm is presented that is implemented in real time and gives the approximate optimal control policy for each agent using only measured data. It is shown that the optimal distributed policies found by the proposed algorithm satisfy the global Nash equilibrium and synchronize all agents to the leader. Simulation results illustrate the effectiveness of the proposed method.

  19. Reinforcement learning design-based adaptive tracking control with less learning parameters for nonlinear discrete-time MIMO systems.

    Science.gov (United States)

    Liu, Yan-Jun; Tang, Li; Tong, Shaocheng; Chen, C L Philip; Li, Dong-Juan

    2015-01-01

    Based on the neural network (NN) approximator, an online reinforcement learning algorithm is proposed for a class of affine multiple input and multiple output (MIMO) nonlinear discrete-time systems with unknown functions and disturbances. In the design procedure, two networks are provided where one is an action network to generate an optimal control signal and the other is a critic network to approximate the cost function. An optimal control signal and adaptation laws can be generated based on two NNs. In the previous approaches, the weights of critic and action networks are updated based on the gradient descent rule and the estimations of optimal weight vectors are directly adjusted in the design. Consequently, compared with the existing results, the main contributions of this paper are: 1) only two parameters are needed to be adjusted, and thus the number of the adaptation laws is smaller than the previous results and 2) the updating parameters do not depend on the number of the subsystems for MIMO systems and the tuning rules are replaced by adjusting the norms on optimal weight vectors in both action and critic networks. It is proven that the tracking errors, the adaptation laws, and the control inputs are uniformly bounded using Lyapunov analysis method. The simulation examples are employed to illustrate the effectiveness of the proposed algorithm.

  20. Discrete-time online learning control for a class of unknown nonaffine nonlinear systems using reinforcement learning.

    Science.gov (United States)

    Yang, Xiong; Liu, Derong; Wang, Ding; Wei, Qinglai

    2014-07-01

    In this paper, a reinforcement-learning-based direct adaptive control is developed to deliver a desired tracking performance for a class of discrete-time (DT) nonlinear systems with unknown bounded disturbances. We investigate multi-input-multi-output unknown nonaffine nonlinear DT systems and employ two neural networks (NNs). By using Implicit Function Theorem, an action NN is used to generate the control signal and it is also designed to cancel the nonlinearity of unknown DT systems, for purpose of utilizing feedback linearization methods. On the other hand, a critic NN is applied to estimate the cost function, which satisfies the recursive equations derived from heuristic dynamic programming. The weights of both the action NN and the critic NN are directly updated online instead of offline training. By utilizing Lyapunov's direct method, the closed-loop tracking errors and the NN estimated weights are demonstrated to be uniformly ultimately bounded. Two numerical examples are provided to show the effectiveness of the present approach. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.

    Science.gov (United States)

    Wang, Yiwen; Wang, Fang; Xu, Kai; Zhang, Qiaosheng; Zhang, Shaomin; Zheng, Xiaoxiang

    2015-05-01

    Reinforcement learning (RL)-based brain machine interfaces (BMIs) enable the user to learn from the environment through interactions to complete the task without desired signals, which is promising for clinical applications. Previous studies exploited Q-learning techniques to discriminate neural states into simple directional actions providing the trial initial timing. However, the movements in BMI applications can be quite complicated, and the action timing explicitly shows the intention when to move. The rich actions and the corresponding neural states form a large state-action space, imposing generalization difficulty on Q-learning. In this paper, we propose to adopt attention-gated reinforcement learning (AGREL) as a new learning scheme for BMIs to adaptively decode high-dimensional neural activities into seven distinct movements (directional moves, holdings and resting) due to the efficient weight-updating. We apply AGREL on neural data recorded from M1 of a monkey to directly predict a seven-action set in a time sequence to reconstruct the trajectory of a center-out task. Compared to Q-learning techniques, AGREL could improve the target acquisition rate to 90.16% in average with faster convergence and more stability to follow neural activity over multiple days, indicating the potential to achieve better online decoding performance for more complicated BMI tasks.

  2. "Learned Helplessness" or "Learned Incompetence"?

    Science.gov (United States)

    Sergent, Justine; Lambert, Wallace E.

    Studies in the past have shown that reinforcements independent of the subjects actions may induce a feeling of helplessness. Most experiments on learned helplessness have led researchers to believe that uncontrollability (non-contingency of feedback upon response) was the determining feature of learned helplessness, although in most studies…

  3. Brain Research: Implications for Learning.

    Science.gov (United States)

    Soares, Louise M.; Soares, Anthony T.

    Brain research has illuminated several areas of the learning process: (1) learning as association; (2) learning as reinforcement; (3) learning as perception; (4) learning as imitation; (5) learning as organization; (6) learning as individual style; and (7) learning as brain activity. The classic conditioning model developed by Pavlov advanced…

  4. A Reinforcement Learning Approach to Call Admission Control in HAPS Communication System

    Directory of Open Access Journals (Sweden)

    Ni Shu Yan

    2017-01-01

    Full Text Available The large changing of link capacity and number of users caused by the movement of both platform and users in communication system based on high altitude platform station (HAPS will resulting in high dropping rate of handover and reduce resource utilization. In order to solve these problems, this paper proposes an adaptive call admission control strategy based on reinforcement learning approach. The goal of this strategy is to maximize long-term gains of system, with the introduction of cross-layer interaction and the service downgraded. In order to access different traffics adaptively, the access utility of handover traffics and new call traffics is designed in different state of communication system. Numerical simulation result shows that the proposed call admission control strategy can enhance bandwidth resource utilization and the performances of handover traffics.

  5. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis.

    Science.gov (United States)

    Glimcher, Paul W

    2011-09-13

    A number of recent advances have been achieved in the study of midbrain dopaminergic neurons. Understanding these advances and how they relate to one another requires a deep understanding of the computational models that serve as an explanatory framework and guide ongoing experimental inquiry. This intertwining of theory and experiment now suggests very clearly that the phasic activity of the midbrain dopamine neurons provides a global mechanism for synaptic modification. These synaptic modifications, in turn, provide the mechanistic underpinning for a specific class of reinforcement learning mechanisms that now seem to underlie much of human and animal behavior. This review describes both the critical empirical findings that are at the root of this conclusion and the fantastic theoretical advances from which this conclusion is drawn.

  6. Off-Policy Reinforcement Learning: Optimal Operational Control for Two-Time-Scale Industrial Processes.

    Science.gov (United States)

    Li, Jinna; Kiumarsi, Bahare; Chai, Tianyou; Lewis, Frank L; Fan, Jialu

    2017-12-01

    Industrial flow lines are composed of unit processes operating on a fast time scale and performance measurements known as operational indices measured at a slower time scale. This paper presents a model-free optimal solution to a class of two time-scale industrial processes using off-policy reinforcement learning (RL). First, the lower-layer unit process control loop with a fast sampling period and the upper-layer operational index dynamics at a slow time scale are modeled. Second, a general optimal operational control problem is formulated to optimally prescribe the set-points for the unit industrial process. Then, a zero-sum game off-policy RL algorithm is developed to find the optimal set-points by using data measured in real-time. Finally, a simulation experiment is employed for an industrial flotation process to show the effectiveness of the proposed method.

  7. Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints

    Science.gov (United States)

    Yang, Xiong; Liu, Derong; Wang, Ding

    2014-03-01

    In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.

  8. A Reinforcement Learning Approach to Access Management in Wireless Cellular Networks

    Directory of Open Access Journals (Sweden)

    Jihun Moon

    2017-01-01

    Full Text Available In smart city applications, huge numbers of devices need to be connected in an autonomous manner. 3rd Generation Partnership Project (3GPP specifies that Machine Type Communication (MTC should be used to handle data transmission among a large number of devices. However, the data transmission rates are highly variable, and this brings about a congestion problem. To tackle this problem, the use of Access Class Barring (ACB is recommended to restrict the number of access attempts allowed in data transmission by utilizing strategic parameters. In this paper, we model the problem of determining the strategic parameters with a reinforcement learning algorithm. In our model, the system evolves to minimize both the collision rate and the access delay. The experimental results show that our scheme improves system performance in terms of the access success rate, the failure rate, the collision rate, and the access delay.

  9. Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward-based decision making.

    Science.gov (United States)

    Schönberg, Tom; Daw, Nathaniel D; Joel, Daphna; O'Doherty, John P

    2007-11-21

    The computational framework of reinforcement learning has been used to forward our understanding of the neural mechanisms underlying reward learning and decision-making behavior. It is known that humans vary widely in their performance in decision-making tasks. Here, we used a simple four-armed bandit task in which subjects are almost evenly split into two groups on the basis of their performance: those who do learn to favor choice of the optimal action and those who do not. Using models of reinforcement learning we sought to determine the neural basis of these intrinsic differences in performance by scanning both groups with functional magnetic resonance imaging. We scanned 29 subjects while they performed the reward-based decision-making task. Our results suggest that these two groups differ markedly in the degree to which reinforcement learning signals in the striatum are engaged during task performance. While the learners showed robust prediction error signals in both the ventral and dorsal striatum during learning, the nonlearner group showed a marked absence of such signals. Moreover, the magnitude of prediction error signals in a region of dorsal striatum correlated significantly with a measure of behavioral performance across all subjects. These findings support a crucial role of prediction error signals, likely originating from dopaminergic midbrain neurons, in enabling learning of action selection preferences on the basis of obtained rewards. Thus, spontaneously observed individual differences in decision making performance demonstrate the suggested dependence of this type of learning on the functional integrity of the dopaminergic striatal system in humans.

  10. Continuous theta-burst stimulation (cTBS) over the lateral prefrontal cortex alters reinforcement learning bias

    NARCIS (Netherlands)

    Ott, D.V.M.; Ullsperger, M.; Jocham, G.; Neumann, J.; Klein, T.A.

    2011-01-01

    The prefrontal cortex is known to play a key role in higher-order cognitive functions. Recently, we showed that this brain region is active in reinforcement learning, during which subjects constantly have to integrate trial outcomes in order to optimize performance. To further elucidate the role of

  11. Medial prefrontal cortex and the adaptive regulation of reinforcement learning parameters.

    Science.gov (United States)

    Khamassi, Mehdi; Enel, Pierre; Dominey, Peter Ford; Procyk, Emmanuel

    2013-01-01

    Converging evidence suggest that the medial prefrontal cortex (MPFC) is involved in feedback categorization, performance monitoring, and task monitoring, and may contribute to the online regulation of reinforcement learning (RL) parameters that would affect decision-making processes in the lateral prefrontal cortex (LPFC). Previous neurophysiological experiments have shown MPFC activities encoding error likelihood, uncertainty, reward volatility, as well as neural responses categorizing different types of feedback, for instance, distinguishing between choice errors and execution errors. Rushworth and colleagues have proposed that the involvement of MPFC in tracking the volatility of the task could contribute to the regulation of one of RL parameters called the learning rate. We extend this hypothesis by proposing that MPFC could contribute to the regulation of other RL parameters such as the exploration rate and default action values in case of task shifts. Here, we analyze the sensitivity to RL parameters of behavioral performance in two monkey decision-making tasks, one with a deterministic reward schedule and the other with a stochastic one. We show that there exist optimal parameter values specific to each of these tasks, that need to be found for optimal performance and that are usually hand-tuned in computational models. In contrast, automatic online regulation of these parameters using some heuristics can help producing a good, although non-optimal, behavioral performance in each task. We finally describe our computational model of MPFC-LPFC interaction used for online regulation of the exploration rate and its application to a human-robot interaction scenario. There, unexpected uncertainties are produced by the human introducing cued task changes or by cheating. The model enables the robot to autonomously learn to reset exploration in response to such uncertain cues and events. The combined results provide concrete evidence specifying how prefrontal

  12. Application of Reinforcement Learning in Cognitive Radio Networks: Models and Algorithms

    Directory of Open Access Journals (Sweden)

    Kok-Lim Alvin Yau

    2014-01-01

    Full Text Available Cognitive radio (CR enables unlicensed users to exploit the underutilized spectrum in licensed spectrum whilst minimizing interference to licensed users. Reinforcement learning (RL, which is an artificial intelligence approach, has been applied to enable each unlicensed user to observe and carry out optimal actions for performance enhancement in a wide range of schemes in CR, such as dynamic channel selection and channel sensing. This paper presents new discussions of RL in the context of CR networks. It provides an extensive review on how most schemes have been approached using the traditional and enhanced RL algorithms through state, action, and reward representations. Examples of the enhancements on RL, which do not appear in the traditional RL approach, are rules and cooperative learning. This paper also reviews performance enhancements brought about by the RL algorithms and open issues. This paper aims to establish a foundation in order to spark new research interests in this area. Our discussion has been presented in a tutorial manner so that it is comprehensive to readers outside the specialty of RL and CR.

  13. Pareto Optimal Solutions for Network Defense Strategy Selection Simulator in Multi-Objective Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2018-01-01

    Full Text Available Using Pareto optimization in Multi-Objective Reinforcement Learning (MORL leads to better learning results for network defense games. This is particularly useful for network security agents, who must often balance several goals when choosing what action to take in defense of a network. If the defender knows his preferred reward distribution, the advantages of Pareto optimization can be retained by using a scalarization algorithm prior to the implementation of the MORL. In this paper, we simulate a network defense scenario by creating a multi-objective zero-sum game and using Pareto optimization and MORL to determine optimal solutions and compare those solutions to different scalarization approaches. We build a Pareto Defense Strategy Selection Simulator (PDSSS system for assisting network administrators on decision-making, specifically, on defense strategy selection, and the experiment results show that the Satisficing Trade-Off Method (STOM scalarization approach performs better than linear scalarization or GUESS method. The results of this paper can aid network security agents attempting to find an optimal defense policy for network security games.

  14. CAPES: Unsupervised Storage Performance Tuning Using Neural Network-Based Deep Reinforcement Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Parameter tuning is an important task of storage performance optimization. Current practice usually involves numerous tweak-benchmark cycles that are slow and costly. To address this issue, we developed CAPES, a model-less deep reinforcement learning-based unsupervised parameter tuning system driven by a deep neural network (DNN). It is designed to nd the optimal values of tunable parameters in computer systems, from a simple client-server system to a large data center, where human tuning can be costly and often cannot achieve optimal performance. CAPES takes periodic measurements of a target computer system’s state, and trains a DNN which uses Q-learning to suggest changes to the system’s current parameter values. CAPES is minimally intrusive, and can be deployed into a production system to collect training data and suggest tuning actions during the system’s daily operation. Evaluation of a prototype on a Lustre system demonstrates an increase in I/O throughput up to 45% at saturation point. About the...

  15. Toward an autonomous brain machine interface: integrating sensorimotor reward modulation and reinforcement learning.

    Science.gov (United States)

    Marsh, Brandi T; Tarigoppula, Venkata S Aditya; Chen, Chen; Francis, Joseph T

    2015-05-13

    For decades, neurophysiologists have worked on elucidating the function of the cortical sensorimotor control system from the standpoint of kinematics or dynamics. Recently, computational neuroscientists have developed models that can emulate changes seen in the primary motor cortex during learning. However, these simulations rely on the existence of a reward-like signal in the primary sensorimotor cortex. Reward modulation of the primary sensorimotor cortex has yet to be characterized at the level of neural units. Here we demonstrate that single units/multiunits and local field potentials in the primary motor (M1) cortex of nonhuman primates (Macaca radiata) are modulated by reward expectation during reaching movements and that this modulation is present even while subjects passively view cursor motions that are predictive of either reward or nonreward. After establishing this reward modulation, we set out to determine whether we could correctly classify rewarding versus nonrewarding trials, on a moment-to-moment basis. This reward information could then be used in collaboration with reinforcement learning principles toward an autonomous brain-machine interface. The autonomous brain-machine interface would use M1 for both decoding movement intention and extraction of reward expectation information as evaluative feedback, which would then update the decoding algorithm as necessary. In the work presented here, we show that this, in theory, is possible. Copyright © 2015 the authors 0270-6474/15/357374-14$15.00/0.

  16. Classification of amyotrophic lateral sclerosis disease based on convolutional neural network and reinforcement sample learning algorithm.

    Science.gov (United States)

    Sengur, Abdulkadir; Akbulut, Yaman; Guo, Yanhui; Bajaj, Varun

    2017-12-01

    Electromyogram (EMG) signals contain useful information of the neuromuscular diseases like amyotrophic lateral sclerosis (ALS). ALS is a well-known brain disease, which can progressively degenerate the motor neurons. In this paper, we propose a deep learning based method for efficient classification of ALS and normal EMG signals. Spectrogram, continuous wavelet transform (CWT), and smoothed pseudo Wigner-Ville distribution (SPWVD) have been employed for time-frequency (T-F) representation of EMG signals. A convolutional neural network is employed to classify these features. In it, Two convolution layers, two pooling layer, a fully connected layer and a lost function layer is considered in CNN architecture. The CNN architecture is trained with the reinforcement sample learning strategy. The efficiency of the proposed implementation is tested on publicly available EMG dataset. The dataset contains 89 ALS and 133 normal EMG signals with 24 kHz sampling frequency. Experimental results show 96.80% accuracy. The obtained results are also compared with other methods, which show the superiority of the proposed method.

  17. Predicting Pilot Behavior in Medium Scale Scenarios Using Game Theory and Reinforcement Learning

    Science.gov (United States)

    Yildiz, Yildiray; Agogino, Adrian; Brat, Guillaume

    2013-01-01

    Effective automation is critical in achieving the capacity and safety goals of the Next Generation Air Traffic System. Unfortunately creating integration and validation tools for such automation is difficult as the interactions between automation and their human counterparts is complex and unpredictable. This validation becomes even more difficult as we integrate wide-reaching technologies that affect the behavior of different decision makers in the system such as pilots, controllers and airlines. While overt short-term behavior changes can be explicitly modeled with traditional agent modeling systems, subtle behavior changes caused by the integration of new technologies may snowball into larger problems and be very hard to detect. To overcome these obstacles, we show how integration of new technologies can be validated by learning behavior models based on goals. In this framework, human participants are not modeled explicitly. Instead, their goals are modeled and through reinforcement learning their actions are predicted. The main advantage to this approach is that modeling is done within the context of the entire system allowing for accurate modeling of all participants as they interact as a whole. In addition such an approach allows for efficient trade studies and feasibility testing on a wide range of automation scenarios. The goal of this paper is to test that such an approach is feasible. To do this we implement this approach using a simple discrete-state learning system on a scenario where 50 aircraft need to self-navigate using Automatic Dependent Surveillance-Broadcast (ADS-B) information. In this scenario, we show how the approach can be used to predict the ability of pilots to adequately balance aircraft separation and fly efficient paths. We present results with several levels of complexity and airspace congestion.

  18. Environmental Impact: Reinforce a Culture of Continuous Learning with These Key Elements

    Science.gov (United States)

    Edwards, Brian; Gammell, Jessica

    2017-01-01

    Fostering a robust professional learning culture in schools is vital for attracting and retaining high-caliber talent. Education leaders are looking for guidance on how to establish and sustain an environment that fosters continuous learning. Based on their experience in helping educators design and implement professional learning systems, the…

  19. Machine-Learning Research

    OpenAIRE

    Dietterich, Thomas G.

    1997-01-01

    Machine-learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (1) the improvement of classification accuracy by learning ensembles of classifiers, (2) methods for scaling up supervised learning algorithms, (3) reinforcement learning, and (4) the learning of complex stochastic models.

  20. Aversive reinforcement improves visual discrimination learning in free-flying honeybees.

    Directory of Open Access Journals (Sweden)

    Aurore Avarguès-Weber

    Full Text Available BACKGROUND: Learning and perception of visual stimuli by free-flying honeybees has been shown to vary dramatically depending on the way insects are trained. Fine color discrimination is achieved when both a target and a distractor are present during training (differential conditioning, whilst if the same target is learnt in isolation (absolute conditioning, discrimination is coarse and limited to perceptually dissimilar alternatives. Another way to potentially enhance discrimination is to increase the penalty associated with the distractor. Here we studied whether coupling the distractor with a highly concentrated quinine solution improves color discrimination of both similar and dissimilar colors by free-flying honeybees. As we assumed that quinine acts as an aversive stimulus, we analyzed whether aversion, if any, is based on an aversive sensory input at the gustatory level or on a post-ingestional malaise following quinine feeding. METHODOLOGY/PRINCIPAL FINDINGS: We show that the presence of a highly concentrated quinine solution (60 mM acts as an aversive reinforcer promoting rejection of the target associated with it, and improving discrimination of perceptually similar stimuli but not of dissimilar stimuli. Free-flying bees did not use remote cues to detect the presence of quinine solution; the aversive effect exerted by this substance was mediated via a gustatory input, i.e. via a distasteful sensory experience, rather than via a post-ingestional malaise. CONCLUSION: The present study supports the hypothesis that aversion conditioning is important for understanding how and what animals perceive and learn. By using this form of conditioning coupled with appetitive conditioning in the framework of a differential conditioning procedure, it is possible to uncover discrimination capabilities that may remain otherwise unsuspected. We show, therefore, that visual discrimination is not an absolute phenomenon but can be modulated by experience.

  1. Corticostriatal circuit mechanisms of value-based action selection: Implementation of reinforcement learning algorithms and beyond.

    Science.gov (United States)

    Morita, Kenji; Jitsev, Jenia; Morrison, Abigail

    2016-09-15

    Value-based action selection has been suggested to be realized in the corticostriatal local circuits through competition among neural populations. In this article, we review theoretical and experimental studies that have constructed and verified this notion, and provide new perspectives on how the local-circuit selection mechanisms implement reinforcement learning (RL) algorithms and computations beyond them. The striatal neurons are mostly inhibitory, and lateral inhibition among them has been classically proposed to realize "Winner-Take-All (WTA)" selection of the maximum-valued action (i.e., 'max' operation). Although this view has been challenged by the revealed weakness, sparseness, and asymmetry of lateral inhibition, which suggest more complex dynamics, WTA-like competition could still occur on short time scales. Unlike the striatal circuit, the cortical circuit contains recurrent excitation, which may enable retention or temporal integration of information and probabilistic "soft-max" selection. The striatal "max" circuit and the cortical "soft-max" circuit might co-implement an RL algorithm called Q-learning; the cortical circuit might also similarly serve for other algorithms such as SARSA. In these implementations, the cortical circuit presumably sustains activity representing the executed action, which negatively impacts dopamine neurons so that they can calculate reward-prediction-error. Regarding the suggested more complex dynamics of striatal, as well as cortical, circuits on long time scales, which could be viewed as a sequence of short WTA fragments, computational roles remain open: such a sequence might represent (1) sequential state-action-state transitions, constituting replay or simulation of the internal model, (2) a single state/action by the whole trajectory, or (3) probabilistic sampling of state/action. Copyright © 2016. Published by Elsevier B.V.

  2. Reinforcement learning modulates the stability of cognitive control settings for object selection

    Directory of Open Access Journals (Sweden)

    Anthony William Sali

    2013-12-01

    Full Text Available Cognitive flexibility reflects both a trait that reliably differs between individuals and a state that can fluctuate moment-to-moment. Whether individuals can undergo persistent changes in cognitive flexibility as a result of reward learning is less understood. Here, we investigated whether reinforcing a periodic shift in an object selection strategy can make an individual more prone to switch strategies in a subsequent unrelated task. Participants completed two different choice tasks in which they selected one of four objects in an attempt to obtain a hidden reward on each trial. During a training phase, objects were defined by color. Participants received either consistent reward contingencies in which one color was more often rewarded, or contingencies in which the color that was more often rewarded changed periodically and without warning. Following the training phase, all participants completed a test phase in which reward contingencies were defined by spatial location and the location that was more often rewarded remained constant across the entire task. Those participants who received inconsistent contingencies during training continued to make more variable selections during the test phase in comparison to those who received the consistent training. Furthermore, a difference in the likelihood to switch selections on a trial-by-trial basis emerged between training groups: participants who received consistent contingencies during training were less likely to switch object selections following an unrewarded trial and more likely to repeat a selection following reward. Our findings provide evidence that the extent to which priority shifting is reinforced modulates the stability of cognitive control settings in a persistent manner, such that individuals become generally more or less prone to shifting priorities in the future.

  3. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation.

    Directory of Open Access Journals (Sweden)

    Zehui Kong

    Full Text Available To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM of power-request is derived. The reinforcement learning (RL is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control.

  4. Implementation of real-time energy management strategy based on reinforcement learning for hybrid electric vehicles and simulation validation.

    Science.gov (United States)

    Kong, Zehui; Zou, Yuan; Liu, Teng

    2017-01-01

    To further improve the fuel economy of series hybrid electric tracked vehicles, a reinforcement learning (RL)-based real-time energy management strategy is developed in this paper. In order to utilize the statistical characteristics of online driving schedule effectively, a recursive algorithm for the transition probability matrix (TPM) of power-request is derived. The reinforcement learning (RL) is applied to calculate and update the control policy at regular time, adapting to the varying driving conditions. A facing-forward powertrain model is built in detail, including the engine-generator model, battery model and vehicle dynamical model. The robustness and adaptability of real-time energy management strategy are validated through the comparison with the stationary control strategy based on initial transition probability matrix (TPM) generated from a long naturalistic driving cycle in the simulation. Results indicate that proposed method has better fuel economy than stationary one and is more effective in real-time control.

  5. Multiagent-Based Simulation of Temporal-Spatial Characteristics of Activity-Travel Patterns Using Interactive Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Min Yang

    2014-01-01

    Full Text Available We propose a multiagent-based reinforcement learning algorithm, in which the interactions between travelers and the environment are considered to simulate temporal-spatial characteristics of activity-travel patterns in a city. Road congestion degree is added to the reinforcement learning algorithm as a medium that passes the influence of one traveler’s decision to others. Meanwhile, the agents used in the algorithm are initialized from typical activity patterns extracted from the travel survey diary data of Shangyu city in China. In the simulation, both macroscopic activity-travel characteristics such as traffic flow spatial-temporal distribution and microscopic characteristics such as activity-travel schedules of each agent are obtained. Comparing the simulation results with the survey data, we find that deviation of the peak-hour traffic flow is less than 5%, while the correlation of the simulated versus survey location choice distribution is over 0.9.

  6. Does temporal discounting explain unhealthy behavior? A systematic review and reinforcement learning perspective

    Science.gov (United States)

    Story, Giles W.; Vlaev, Ivo; Seymour, Ben; Darzi, Ara; Dolan, Raymond J.

    2014-01-01

    The tendency to make unhealthy choices is hypothesized to be related to an individual's temporal discount rate, the theoretical rate at which they devalue delayed rewards. Furthermore, a particular form of temporal discounting, hyperbolic discounting, has been proposed to explain why unhealthy behavior can occur despite healthy intentions. We examine these two hypotheses in turn. We first systematically review studies which investigate whether discount rates can predict unhealthy behavior. These studies reveal that high discount rates for money (and in some instances food or drug rewards) are associated with several unhealthy behaviors and markers of health status, establishing discounting as a promising predictive measure. We secondly examine whether intention-incongruent unhealthy actions are consistent with hyperbolic discounting. We conclude that intention-incongruent actions are often triggered by environmental cues or changes in motivational state, whose effects are not parameterized by hyperbolic discounting. We propose a framework for understanding these state-based effects in terms of the interplay of two distinct reinforcement learning mechanisms: a “model-based” (or goal-directed) system and a “model-free” (or habitual) system. Under this framework, while discounting of delayed health may contribute to the initiation of unhealthy behavior, with repetition, many unhealthy behaviors become habitual; if health goals then change, habitual behavior can still arise in response to environmental cues. We propose that the burgeoning development of computational models of these processes will permit further identification of health decision-making phenotypes. PMID:24659960

  7. Extending the Peak Bandwidth of Parameters for Softmax Selection in Reinforcement Learning.

    Science.gov (United States)

    Iwata, Kazunori

    2016-05-11

    Softmax selection is one of the most popular methods for action selection in reinforcement learning. Although various recently proposed methods may be more effective with full parameter tuning, implementing a complicated method that requires the tuning of many parameters can be difficult. Thus, softmax selection is still worth revisiting, considering the cost savings of its implementation and tuning. In fact, this method works adequately in practice with only one parameter appropriately set for the environment. The aim of this paper is to improve the variable setting of this method to extend the bandwidth of good parameters, thereby reducing the cost of implementation and parameter tuning. To achieve this, we take advantage of the asymptotic equipartition property in a Markov decision process to extend the peak bandwidth of softmax selection. Using a variety of episodic tasks, we show that our setting is effective in extending the bandwidth and that it yields a better policy in terms of stability. The bandwidth is quantitatively assessed in a series of statistical tests.

  8. Distribution majorization of corner points by reinforcement learning for moving object detection

    Science.gov (United States)

    Wu, Hao; Yu, Hao; Zhou, Dongxiang; Cheng, Yongqiang

    2018-04-01

    Corner points play an important role in moving object detection, especially in the case of free-moving camera. Corner points provide more accurate information than other pixels and reduce the computation which is unnecessary. Previous works only use intensity information to locate the corner points, however, the information that former and the last frames provided also can be used. We utilize the information to focus on more valuable area and ignore the invaluable area. The proposed algorithm is based on reinforcement learning, which regards the detection of corner points as a Markov process. In the Markov model, the video to be detected is regarded as environment, the selections of blocks for one corner point are regarded as actions and the performance of detection is regarded as state. Corner points are assigned to be the blocks which are seperated from original whole image. Experimentally, we select a conventional method which uses marching and Random Sample Consensus algorithm to obtain objects as the main framework and utilize our algorithm to improve the result. The comparison between the conventional method and the same one with our algorithm show that our algorithm reduce 70% of the false detection.

  9. Elevator Group Supervisory Control System Using Genetic Network Programming with Macro Nodes and Reinforcement Learning

    Science.gov (United States)

    Zhou, Jin; Yu, Lu; Mabu, Shingo; Hirasawa, Kotaro; Hu, Jinglu; Markon, Sandor

    Elevator Group Supervisory Control System (EGSCS) is a very large scale stochastic dynamic optimization problem. Due to its vast state space, significant uncertainty and numerous resource constraints such as finite car capacities and registered hall/car calls, it is hard to manage EGSCS using conventional control methods. Recently, many solutions for EGSCS using Artificial Intelligence (AI) technologies have been reported. Genetic Network Programming (GNP), which is proposed as a new evolutionary computation method several years ago, is also proved to be efficient when applied to EGSCS problem. In this paper, we propose an extended algorithm for EGSCS by introducing Reinforcement Learning (RL) into GNP framework, and an improvement of the EGSCS' performances is expected since the efficiency of GNP with RL has been clarified in some other studies like tile-world problem. Simulation tests using traffic flows in a typical office building have been made, and the results show an actual improvement of the EGSCS' performances comparing to the algorithms using original GNP and conventional control methods. Furthermore, as a further study, an importance weight optimization algorithm is employed based on GNP with RL and its efficiency is also verified with the better performances.

  10. Distinguishing between learning and motivation in behavioral tests of the reinforcement sensitivity theory of personality.

    Science.gov (United States)

    Smillie, Luke D; Dalgleish, Len I; Jackson, Chris J

    2007-04-01

    According to Gray's (1973) Reinforcement Sensitivity Theory (RST), a Behavioral Inhibition System (BIS) and a Behavioral Activation System (BAS) mediate effects of goal conflict and reward on behavior. BIS functioning has been linked with individual differences in trait anxiety and BAS functioning with individual differences in trait impulsivity. In this article, it is argued that behavioral outputs of the BIS and BAS can be distinguished in terms of learning and motivation processes and that these can be operationalized using the Signal Detection Theory measures of response-sensitivity and response-bias. In Experiment 1, two measures of BIS-reactivity predicted increased response-sensitivity under goal conflict, whereas one measure of BAS-reactivity predicted increased response-sensitivity under reward. In Experiment 2, two measures of BIS-reactivity predicted response-bias under goal conflict, whereas a measure of BAS-reactivity predicted motivation response-bias under reward. In both experiments, impulsivity measures did not predict criteria for BAS-reactivity as traditionally predicted by RST.

  11. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yun Lin

    2016-10-01

    Full Text Available Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.

  12. Trading Rules on Stock Markets Using Genetic Network Programming with Reinforcement Learning and Importance Index

    Science.gov (United States)

    Mabu, Shingo; Hirasawa, Kotaro; Furuzuki, Takayuki

    Genetic Network Programming (GNP) is an evolutionary computation which represents its solutions using graph structures. Since GNP can create quite compact programs and has an implicit memory function, it has been clarified that GNP works well especially in dynamic environments. In addition, a study on creating trading rules on stock markets using GNP with Importance Index (GNP-IMX) has been done. IMX is a new element which is a criterion for decision making. In this paper, we combined GNP-IMX with Actor-Critic (GNP-IMX&AC) and create trading rules on stock markets. Evolution-based methods evolve their programs after enough period of time because they must calculate fitness values, however reinforcement learning can change programs during the period, therefore the trading rules can be created efficiently. In the simulation, the proposed method is trained using the stock prices of 10 brands in 2002 and 2003. Then the generalization ability is tested using the stock prices in 2004. The simulation results show that the proposed method can obtain larger profits than GNP-IMX without AC and Buy&Hold.

  13. Reinforcement learning controller design for affine nonlinear discrete-time systems using online approximators.

    Science.gov (United States)

    Yang, Qinmin; Jagannathan, Sarangapani

    2012-04-01

    In this paper, reinforcement learning state- and output-feedback-based adaptive critic controller designs are proposed by using the online approximators (OLAs) for a general multi-input and multioutput affine unknown nonlinear discretetime systems in the presence of bounded disturbances. The proposed controller design has two entities, an action network that is designed to produce optimal signal and a critic network that evaluates the performance of the action network. The critic estimates the cost-to-go function which is tuned online using recursive equations derived from heuristic dynamic programming. Here, neural networks (NNs) are used both for the action and critic whereas any OLAs, such as radial basis functions, splines, fuzzy logic, etc., can be utilized. For the output-feedback counterpart, an additional NN is designated as the observer to estimate the unavailable system states, and thus, separation principle is not required. The NN weight tuning laws for the controller schemes are also derived while ensuring uniform ultimate boundedness of the closed-loop system using Lyapunov theory. Finally, the effectiveness of the two controllers is tested in simulation on a pendulum balancing system and a two-link robotic arm system.

  14. Insights in reinforcement rearning : formal analysis and empirical evaluation of temporal-difference learning algorithms

    NARCIS (Netherlands)

    van Hasselt, H.P.

    2011-01-01

    A key aspect of artificial intelligence is the ability to learn from experience. If examples of correct solutions exist, supervised learning techniques can be used to predict what the correct solution will be for future observations. However, often such examples are not readily available. The field

  15. Reinforcing Comprehensive Business Learning through an Undergraduate Retailing Course: A Prospectus

    Science.gov (United States)

    Ahmed, Irfan

    2009-01-01

    Undergraduate programs in business are expected to provide a comprehensive learning for their students in order to prepare them to be able to deal with complex business problems in their jobs. Business schools attempt to provide this learning through various curricular design strategies. This paper proposes the use of an undergraduate course in…

  16. Empirical Evidence of Priming, Transfer, Reinforcement, and Learning in the Real and Virtual Trillium Trails

    Science.gov (United States)

    Harrington, M. C. R.

    2011-01-01

    Over the past 20 years, there has been a debate on the effectiveness of virtual reality used for learning with young children, producing many ideas but little empirical proof. This empirical study compared learning activity in situ of a real environment (Real) and a desktop virtual reality (Virtual) environment, built with video game technology,…

  17. Real time reinforcement learning control of dynamic systems applied to an inverted pendulum

    NARCIS (Netherlands)

    van Luenen, W.T.C.; van Luenen, W.T.C.; Stender, J.; Addis, T.

    1990-01-01

    Describes work started in order to investigate the use of neural networks for application in adaptive or learning control systems. Neural networks have learning capabilities and they can be used to realize non-linear mappings. These are attractive features which could make them useful building

  18. Continuous-time on-policy neural reinforcement learning of working memory tasks

    NARCIS (Netherlands)

    D. Zambrano (Davide); P.R. Roelfsema; S.M. Bohte (Sander)

    2015-01-01

    htmlabstractAs living organisms, one of our primary characteristics is the ability to rapidly process and react to unknown and unexpected events. To this end, we are able to recognize an event or a sequence of events and learn to respond properly. Despite advances in machine learning, current

  19. Metacognitive Monkeys or Associative Animals? Simple Reinforcement Learning Explains Uncertainty in Nonhuman Animals

    Science.gov (United States)

    Le Pelley, M. E.

    2012-01-01

    Monkeys will selectively and adaptively learn to avoid the most difficult trials of a perceptual discrimination learning task. Couchman, Coutinho, Beran, and Smith (2010) have recently demonstrated that this pattern of responding does not depend on animals receiving trial-by-trial feedback for their responses; it also obtains if experience of the…

  20. Learning How to Learn

    DEFF Research Database (Denmark)

    Lauridsen, Karen M.; Lauridsen, Ole

    Ole Lauridsen, Aarhus School of Business and Social Sciences, Aarhus University, Denmark Karen M. Lauridsen, Aarhus School of Business and Social Sciences, Aarhus University, Denmark Learning Styles in Higher Education – Learning How to Learn Applying learning styles (LS) in higher education...... by Constructivist learning theory and current basic knowledge of how the brain learns. The LS concept will thus be placed in a broader learning theoretical context as a strong learning and teaching tool. Participants will be offered the opportunity to have their own LS preferences established before...... teaching leads to positive results and enhanced student learning. However, learning styles should not only be considered a didactic matter for the teacher, but also a tool for the individual students to improve their learning capabilities – not least in contexts where information is not necessarily...

  1. Scheduled power tracking control of the wind-storage hybrid system based on the reinforcement learning theory

    Science.gov (United States)

    Li, Ze

    2017-09-01

    In allusion to the intermittency and uncertainty of the wind electricity, energy storage and wind generator are combined into a hybrid system to improve the controllability of the output power. A scheduled power tracking control method is proposed based on the reinforcement learning theory and Q-learning algorithm. In this method, the state space of the environment is formed with two key factors, i.e. the state of charge of the energy storage and the difference value between the actual wind power and scheduled power, the feasible action is the output power of the energy storage, and the corresponding immediate rewarding function is designed to reflect the rationality of the control action. By interacting with the environment and learning from the immediate reward, the optimal control strategy is gradually formed. After that, it could be applied to the scheduled power tracking control of the hybrid system. Finally, the rationality and validity of the method are verified through simulation examples.

  2. Continuous theta-burst stimulation (cTBS) over the lateral prefrontal cortex alters reinforcement learning bias.

    Science.gov (United States)

    Ott, Derek V M; Ullsperger, Markus; Jocham, Gerhard; Neumann, Jane; Klein, Tilmann A

    2011-07-15

    The prefrontal cortex is known to play a key role in higher-order cognitive functions. Recently, we showed that this brain region is active in reinforcement learning, during which subjects constantly have to integrate trial outcomes in order to optimize performance. To further elucidate the role of the dorsolateral prefrontal cortex (DLPFC) in reinforcement learning, we applied continuous theta-burst stimulation (cTBS) either to the left or right DLPFC, or to the vertex as a control region, respectively, prior to the performance of a probabilistic learning task in an fMRI environment. While there was no influence of cTBS on learning performance per se, we observed a stimulation-dependent modulation of reward vs. punishment sensitivity: Left-hemispherical DLPFC stimulation led to a more reward-guided performance, while right-hemispherical cTBS induced a more avoidance-guided behavior. FMRI results showed enhanced prediction error coding in the ventral striatum in subjects stimulated over the left as compared to the right DLPFC. Both behavioral and imaging results are in line with recent findings that left, but not right-hemispherical stimulation can trigger a release of dopamine in the ventral striatum, which has been suggested to increase the relative impact of rewards rather than punishment on behavior. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Oxytocin attenuates trust as a subset of more general reinforcement learning, with altered reward circuit functional connectivity in males.

    Science.gov (United States)

    Ide, Jaime S; Nedic, Sanja; Wong, Kin F; Strey, Shmuel L; Lawson, Elizabeth A; Dickerson, Bradford C; Wald, Lawrence L; La Camera, Giancarlo; Mujica-Parodi, Lilianne R

    2018-07-01

    Oxytocin (OT) is an endogenous neuropeptide that, while originally thought to promote trust, has more recently been found to be context-dependent. Here we extend experimental paradigms previously restricted to de novo decision-to-trust, to a more realistic environment in which social relationships evolve in response to iterative feedback over twenty interactions. In a randomized, double blind, placebo-controlled within-subject/crossover experiment of human adult males, we investigated the effects of a single dose of intranasal OT (40 IU) on Bayesian expectation updating and reinforcement learning within a social context, with associated brain circuit dynamics. Subjects participated in a neuroeconomic task (Iterative Trust Game) designed to probe iterative social learning while their brains were scanned using ultra-high field (7T) fMRI. We modeled each subject's behavior using Bayesian updating of belief-states ("willingness to trust") as well as canonical measures of reinforcement learning (learning rate, inverse temperature). Behavioral trajectories were then used as regressors within fMRI activation and connectivity analyses to identify corresponding brain network functionality affected by OT. Behaviorally, OT reduced feedback learning, without bias with respect to positive versus negative reward. Neurobiologically, reduced learning under OT was associated with muted communication between three key nodes within the reward circuit: the orbitofrontal cortex, amygdala, and lateral (limbic) habenula. Our data suggest that OT, rather than inspiring feelings of generosity, instead attenuates the brain's encoding of prediction error and therefore its ability to modulate pre-existing beliefs. This effect may underlie OT's putative role in promoting what has typically been reported as 'unjustified trust' in the face of information that suggests likely betrayal, while also resolving apparent contradictions with regard to OT's context-dependent behavioral effects. Copyright

  4. Preventing Learned Helplessness.

    Science.gov (United States)

    Hoy, Cheri

    1986-01-01

    To prevent learned helplessness in learning disabled students, teachers can share responsibilities with the students, train students to reinforce themselves for effort and self control, and introduce opportunities for changing counterproductive attitudes. (CL)

  5. Learning to Learn.

    Science.gov (United States)

    Weiss, Helen; Weiss, Martin

    1988-01-01

    The article reviews theories of learning (e.g., stimulus-response, trial and error, operant conditioning, cognitive), considers the role of motivation, and summarizes nine research-supported rules of effective learning. Suggestions are applied to teaching learning strategies to learning-disabled students. (DB)

  6. Stimulating Deep Learning Using Active Learning Techniques

    Science.gov (United States)

    Yew, Tee Meng; Dawood, Fauziah K. P.; a/p S. Narayansany, Kannaki; a/p Palaniappa Manickam, M. Kamala; Jen, Leong Siok; Hoay, Kuan Chin

    2016-01-01

    When students and teachers behave in ways that reinforce learning as a spectator sport, the result can often be a classroom and overall learning environment that is mostly limited to transmission of information and rote learning rather than deep approaches towards meaningful construction and application of knowledge. A group of college instructors…

  7. Lack of effect of Pitressin on the learning ability of Brattleboro rats with diabetes insipidus using positively reinforced operant conditioning.

    Science.gov (United States)

    Laycock, J F; Gartside, I B

    1985-08-01

    Brattleboro rats with hereditary hypothalamic diabetes insipidus (BDI) received daily subcutaneous injections of vasopressin in the form of Pitressin tannate (0.5 IU/24 hr). They were initially deprived of food and then trained to work for food reward in a Skinner box to a fixed ratio of ten presses for each pellet received. Once this schedule had been learned the rats were given a discrimination task daily for seven days. The performances of these BDI rats were compared with those of rats of the parent Long Evans (LE) strain receiving daily subcutaneous injections of vehicle (arachis oil). Comparisons were also made between these two groups of treated animals and untreated BDI and LE rats studied under similar conditions. In the initial learning trial, both control and Pitressin-treated BDI rats performed significantly better, and manifested less fear initially, than the control or vehicle-injected LE rats when first placed in the Skinner box. Once the initial task had been learned there was no marked difference in the discrimination learning between control or treated BDI and LE animals. These results support the view that vasopressin is not directly involved in all types of learning behaviour, particularly those involving positively reinforced operant conditioning.

  8. From Creatures of Habit to Goal-Directed Learners: Tracking the Developmental Emergence of Model-Based Reinforcement Learning.

    Science.gov (United States)

    Decker, Johannes H; Otto, A Ross; Daw, Nathaniel D; Hartley, Catherine A

    2016-06-01

    Theoretical models distinguish two decision-making strategies that have been formalized in reinforcement-learning theory. A model-based strategy leverages a cognitive model of potential actions and their consequences to make goal-directed choices, whereas a model-free strategy evaluates actions based solely on their reward history. Research in adults has begun to elucidate the psychological mechanisms and neural substrates underlying these learning processes and factors that influence their relative recruitment. However, the developmental trajectory of these evaluative strategies has not been well characterized. In this study, children, adolescents, and adults performed a sequential reinforcement-learning task that enabled estimation of model-based and model-free contributions to choice. Whereas a model-free strategy was apparent in choice behavior across all age groups, a model-based strategy was absent in children, became evident in adolescents, and strengthened in adults. These results suggest that recruitment of model-based valuation systems represents a critical cognitive component underlying the gradual maturation of goal-directed behavior. © The Author(s) 2016.

  9. Learning Styles.

    Science.gov (United States)

    Missouri Univ., Columbia. Coll. of Education.

    Information is provided regarding major learning styles and other factors important to student learning. Several typically asked questions are presented regarding different learning styles (visual, auditory, tactile and kinesthetic, and multisensory learning), associated considerations, determining individuals' learning styles, and appropriate…

  10. Reaching control of a full-torso, modelled musculoskeletal robot using muscle synergies emergent under reinforcement learning

    International Nuclear Information System (INIS)

    Diamond, A; Holland, O E

    2014-01-01

    ‘Anthropomimetic’ robots mimic both human morphology and internal structure—skeleton, muscles, compliance and high redundancy—thus presenting a formidable challenge to conventional control. Here we derive a novel controller for this class of robot which learns effective reaching actions through the sustained activation of weighted muscle synergies, an approach which draws upon compelling, recent evidence from animal and human studies, but is almost unexplored to date in the musculoskeletal robot literature. Since the effective synergy patterns for a given robot will be unknown, we derive a reinforcement-learning approach intended to allow their emergence, in particular those patterns aiding linearization of control. Using an extensive physics-based model of the anthropomimetic ECCERobot, we find that effective reaching actions can be learned comprising only two sequential motor co-activation patterns, each controlled by just a single common driving signal. Factor analysis shows the emergent muscle co-activations can be largely reconstructed using weighted combinations of only 13 common fragments. Testing these ‘candidate’ synergies as drivable units, the same controller now learns the reaching task both faster and better. (paper)

  11. Learning Networks, Networked Learning

    NARCIS (Netherlands)

    Sloep, Peter; Berlanga, Adriana

    2010-01-01

    Sloep, P. B., & Berlanga, A. J. (2011). Learning Networks, Networked Learning [Redes de Aprendizaje, Aprendizaje en Red]. Comunicar, XIX(37), 55-63. Retrieved from http://dx.doi.org/10.3916/C37-2011-02-05

  12. Dopaminergic control of motivation and reinforcement learning: a closed-circuit account for reward-oriented behavior.

    Science.gov (United States)

    Morita, Kenji; Morishima, Mieko; Sakai, Katsuyuki; Kawaguchi, Yasuo

    2013-05-15

    Humans and animals take actions quickly when they expect that the actions lead to reward, reflecting their motivation. Injection of dopamine receptor antagonists into the striatum has been shown to slow such reward-seeking behavior, suggesting that dopamine is involved in the control of motivational processes. Meanwhile, neurophysiological studies have revealed that phasic response of dopamine neurons appears to represent reward prediction error, indicating that dopamine plays central roles in reinforcement learning. However, previous attempts to elucidate the mechanisms of these dopaminergic controls have not fully explained how the motivational and learning aspects are related and whether they can be understood by the way the activity of dopamine neurons itself is controlled by their upstream circuitries. To address this issue, we constructed a closed-circuit model of the corticobasal ganglia system based on recent findings regarding intracortical and corticostriatal circuit architectures. Simulations show that the model could reproduce the observed distinct motivational effects of D1- and D2-type dopamine receptor antagonists. Simultaneously, our model successfully explains the dopaminergic representation of reward prediction error as observed in behaving animals during learning tasks and could also explain distinct choice biases induced by optogenetic stimulation of the D1 and D2 receptor-expressing striatal neurons. These results indicate that the suggested roles of dopamine in motivational control and reinforcement learning can be understood in a unified manner through a notion that the indirect pathway of the basal ganglia represents the value of states/actions at a previous time point, an empirically driven key assumption of our model.

  13. Reinforcement Learning of Linking and Tracing Contours in Recurrent Neural Networks

    Science.gov (United States)

    Brosch, Tobias; Neumann, Heiko; Roelfsema, Pieter R.

    2015-01-01

    The processing of a visual stimulus can be subdivided into a number of stages. Upon stimulus presentation there is an early phase of feedforward processing where the visual information is propagated from lower to higher visual areas for the extraction of basic and complex stimulus features. This is followed by a later phase where horizontal connections within areas and feedback connections from higher areas back to lower areas come into play. In this later phase, image elements that are behaviorally relevant are grouped by Gestalt grouping rules and are labeled in the cortex with enhanced neuronal activity (object-based attention in psychology). Recent neurophysiological studies revealed that reward-based learning influences these recurrent grouping processes, but it is not well understood how rewards train recurrent circuits for perceptual organization. This paper examines the mechanisms for reward-based learning of new grouping rules. We derive a learning rule that can explain how rewards influence the information flow through feedforward, horizontal and feedback connections. We illustrate the efficiency with two tasks that have been used to study the neuronal correlates of perceptual organization in early visual cortex. The first task is called contour-integration and demands the integration of collinear contour elements into an elongated curve. We show how reward-based learning causes an enhancement of the representation of the to-be-grouped elements at early levels of a recurrent neural network, just as is observed in the visual cortex of monkeys. The second task is curve-tracing where the aim is to determine the endpoint of an elongated curve composed of connected image elements. If trained with the new learning rule, neural networks learn to propagate enhanced activity over the curve, in accordance with neurophysiological data. We close the paper with a number of model predictions that can be tested in future neurophysiological and computational studies

  14. An Online Social Networking Approach to Reinforce Learning of Rocks and Minerals

    Science.gov (United States)

    Kennelly, Patrick

    2009-01-01

    Numerous and varied methods are used in introductory Earth science and geology classes to help students learn about rocks and minerals, such as classroom lectures, laboratory specimen identification, and field trips. This paper reports on a method using online social networking. The choice of this forum was based on two criteria. First, many…

  15. Best Response Bayesian Reinforcement Learning for Multiagent Systems with State Uncertainty

    NARCIS (Netherlands)

    Oliehoek, F.A.; Amato, C.

    2014-01-01

    It is often assumed that agents in multiagent systems with state uncertainty have full knowledge of the model of dy- namics and sensors, but in many cases this is not feasible. A more realistic assumption is that agents must learn about the environment and other agents while acting. Bayesian methods

  16. Patterns of Learning in Verbal Discrimination as an Interaction of Social Reinforcement and Sex Combinations

    Science.gov (United States)

    Ratliff, Richard G.; And Others

    1976-01-01

    A total of 540 college students were run in two verbal discrimination learning studies (the second, a replication of the first) with one of three verbal reward conditions. In both studies, equal numbers of male and female subjects were run in each reward condition by each male and female experimenter. (MS)

  17. Roles of Approval Motivation and Generalized Expectancy for Reinforcement in Children's Conceptual Discrimination Learning

    Science.gov (United States)

    Nyce, Peggy A.; And Others

    1977-01-01

    Forty-four third graders were given a two-choice conceptual discrimination learning task. The two major factors were (1) four treatment groups varying at the extremes on two personality measures, approval motivation and locus of control and (2) sex. (MS)

  18. Road Artery Traffic Light Optimization with Use of the Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Rok Marsetič

    2014-04-01

    Full Text Available The basic principle of optimal traffic control is the appropriate real-time response to dynamic traffic flow changes. Signal plan efficiency depends on a large number of input parameters. An actuated signal system can adjust very well to traffic conditions, but cannot fully adjust to stochastic traffic volume oscillation. Due to the complexity of the problem analytical methods are not applicable for use in real time, therefore the purpose of this paper is to introduce heuristic method suitable for traffic light optimization in real time. With the evolution of artificial intelligence new possibilities for solving complex problems have been introduced. The goal of this paper is to demonstrate that the use of the Q learning algorithm for traffic lights optimization is suitable. The Q learning algorithm was verified on a road artery with three intersections. For estimation of the effectiveness and efficiency of the proposed algorithm comparison with an actuated signal plan was carried out. The results (average delay per vehicle and the number of vehicles that left road network show that Q learning algorithm outperforms the actuated signal controllers. The proposed algorithm converges to the minimal delay per vehicle regardless of the stochastic nature of traffic. In this research the impact of the model parameters (learning rate, exploration rate, influence of communication between agents and reward type on algorithm effectiveness were analysed as well.

  19. Using Social Media to Reinforce Environmental Learning and Action-Taking for School Students

    Science.gov (United States)

    Warner, Alan; Eames, Chris; Irving, Robyn

    2014-01-01

    Environmental experiences often engage learners and create an intention to act, which is then not followed through once the learner is removed from the environment. This study utilized an exploratory, interpretive framework with younger primary school classes to investigate if transfer of learning from field trip experiences "in" and…

  20. Are You Smarter Than a Teenager? Maybe Not When It Comes to Reinforcement Learning.

    Science.gov (United States)

    DiMenichi, Brynne C; Tricomi, Elizabeth

    2016-10-05

    Adolescence is a time of tumultuous behavior that may result, in part, from brain circuitry that enhances reward seeking. In this issue of Neuron, Davidow et al. (2016) present a convincing argument that adolescent brain functionality can be adaptive in certain contexts, particularly probabilistic learning environments. Copyright © 2016. Published by Elsevier Inc.

  1. Assist-as-needed robotic trainer based on reinforcement learning and its application to dart-throwing.

    Science.gov (United States)

    Obayashi, Chihiro; Tamei, Tomoya; Shibata, Tomohiro

    2014-05-01

    This paper proposes a novel robotic trainer for motor skill learning. It is user-adaptive inspired by the assist-as-needed principle well known in the field of physical therapy. Most previous studies in the field of the robotic assistance of motor skill learning have used predetermined desired trajectories, and it has not been examined intensively whether these trajectories were optimal for each user. Furthermore, the guidance hypothesis states that humans tend to rely too much on external assistive feedback, resulting in interference with the internal feedback necessary for motor skill learning. A few studies have proposed a system that adjusts its assistive strength according to the user's performance in order to prevent the user from relying too much on the robotic assistance. There are, however, problems in these studies, in that a physical model of the user's motor system is required, which is inherently difficult to construct. In this paper, we propose a framework for a robotic trainer that is user-adaptive and that neither requires a specific desired trajectory nor a physical model of the user's motor system, and we achieve this using model-free reinforcement learning. We chose dart-throwing as an example motor-learning task as it is one of the simplest throwing tasks, and its performance can easily be and quantitatively measured. Training experiments with novices, aiming at maximizing the score with the darts and minimizing the physical robotic assistance, demonstrate the feasibility and plausibility of the proposed framework. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Study and Application of Reinforcement Learning in Cooperative Strategy of the Robot Soccer Based on BDI Model

    Directory of Open Access Journals (Sweden)

    Wu Bo-ying

    2009-11-01

    Full Text Available The dynamic cooperation model of multi-Agent is formed by combining reinforcement learning with BDI model. In this model, the concept of the individual optimization loses its meaning, because the repayment of each Agent dose not only depend on itsself but also on the choice of other Agents. All Agents can pursue a common optimum solution and try to realize the united intention as a whole to a maximum limit. The robot moves to its goal, depending on the present positions of the other robots that cooperate with it and the present position of the ball. One of these robots cooperating with it is controlled to move by man with a joystick. In this way, Agent can be ensured to search for each state-action as frequently as possible when it carries on choosing movements, so as to shorten the time of searching for the movement space so that the convergence speed of reinforcement learning can be improved. The validity of the proposed cooperative strategy for the robot soccer has been proved by combining theoretical analysis with simulation robot soccer match (11vs11 .

  3. Deep Learning Policy Quantization

    NARCIS (Netherlands)

    van de Wolfshaar, Jos; Wiering, Marco; Schomaker, Lambertus

    2018-01-01

    We introduce a novel type of actor-critic approach for deep reinforcement learning which is based on learning vector quantization. We replace the softmax operator of the policy with a more general and more flexible operator that is similar to the robust soft learning vector quantization algorithm.

  4. Feedback for reinforcement learning based brain-machine interfaces using confidence metrics

    Science.gov (United States)

    Prins, Noeline W.; Sanchez, Justin C.; Prasad, Abhishek

    2017-06-01

    Objective. For brain-machine interfaces (BMI) to be used in activities of daily living by paralyzed individuals, the BMI should be as autonomous as possible. One of the challenges is how the feedback is extracted and utilized in the BMI. Our long-term goal is to create autonomous BMIs that can utilize an evaluative feedback from the brain to update the decoding algorithm and use it intelligently in order to adapt the decoder. In this study, we show how to extract the necessary evaluative feedback from a biologically realistic (synthetic) source, use both the quantity and the quality of the feedback, and how that feedback information can be incorporated into a reinforcement learning (RL) controller architecture to maximize its performance. Approach. Motivated by the perception-action-reward cycle (PARC) in the brain which links reward for cognitive decision making and goal-directed behavior, we used a reward-based RL architecture named Actor-Critic RL as the model. Instead of using an error signal towards building an autonomous BMI, we envision to use a reward signal from the nucleus accumbens (NAcc) which plays a key role in the linking of reward to motor behaviors. To deal with the complexity and non-stationarity of biological reward signals, we used a confidence metric which was used to indicate the degree of feedback accuracy. This confidence was added to the Actor’s weight update equation in the RL controller architecture. If the confidence was high (>0.2), the BMI decoder used this feedback to update its parameters. However, when the confidence was low, the BMI decoder ignored the feedback and did not update its parameters. The range between high confidence and low confidence was termed as the ‘ambiguous’ region. When the feedback was within this region, the BMI decoder updated its weight at a lower rate than when fully confident, which was decided by the confidence. We used two biologically realistic models to generate synthetic data for MI (Izhikevich

  5. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-08-13

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

  6. RLAM: A Dynamic and Efficient Reinforcement Learning-Based Adaptive Mapping Scheme in Mobile WiMAX Networks

    Directory of Open Access Journals (Sweden)

    M. Louta

    2014-01-01

    Full Text Available WiMAX (Worldwide Interoperability for Microwave Access constitutes a candidate networking technology towards the 4G vision realization. By adopting the Orthogonal Frequency Division Multiple Access (OFDMA technique, the latest IEEE 802.16x amendments manage to provide QoS-aware access services with full mobility support. A number of interesting scheduling and mapping schemes have been proposed in research literature. However, they neglect a considerable asset of the OFDMA-based wireless systems: the dynamic adjustment of the downlink-to-uplink width ratio. In order to fully exploit the supported mobile WiMAX features, we design, develop, and evaluate a rigorous adaptive model, which inherits its main aspects from the reinforcement learning field. The model proposed endeavours to efficiently determine the downlink-to-uplinkwidth ratio, on a frame-by-frame basis, taking into account both the downlink and uplink traffic in the Base Station (BS. Extensive evaluation results indicate that the model proposed succeeds in providing quite accurate estimations, keeping the average error rate below 15% with respect to the optimal sub-frame configurations. Additionally, it presents improved performance compared to other learning methods (e.g., learning automata and notable improvements compared to static schemes that maintain a fixed predefined ratio in terms of service ratio and resource utilization.

  7. A new computational account of cognitive control over reinforcement-based decision-making: Modeling of a probabilistic learning task.

    Science.gov (United States)

    Zendehrouh, Sareh

    2015-11-01

    Recent work on decision-making field offers an account of dual-system theory for decision-making process. This theory holds that this process is conducted by two main controllers: a goal-directed system and a habitual system. In the reinforcement learning (RL) domain, the habitual behaviors are connected with model-free methods, in which appropriate actions are learned through trial-and-error experiences. However, goal-directed behaviors are associated with model-based methods of RL, in which actions are selected using a model of the environment. Studies on cognitive control also suggest that during processes like decision-making, some cortical and subcortical structures work in concert to monitor the consequences of decisions and to adjust control according to current task demands. Here a computational model is presented based on dual system theory and cognitive control perspective of decision-making. The proposed model is used to simulate human performance on a variant of probabilistic learning task. The basic proposal is that the brain implements a dual controller, while an accompanying monitoring system detects some kinds of conflict including a hypothetical cost-conflict one. The simulation results address existing theories about two event-related potentials, namely error related negativity (ERN) and feedback related negativity (FRN), and explore the best account of them. Based on the results, some testable predictions are also presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Computational Properties of the Hippocampus Increase the Efficiency of Goal-Directed Foraging through Hierarchical Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Eric Chalmers

    2016-12-01

    Full Text Available The mammalian brain is thought to use a version of Model-based Reinforcement Learning (MBRL to guide goal-directed behavior, wherein animals consider goals and make plans to acquire desired outcomes. However, conventional MBRL algorithms do not fully explain animals’ ability to rapidly adapt to environmental changes, or learn multiple complex tasks. They also require extensive computation, suggesting that goal-directed behavior is cognitively expensive. We propose here that key features of processing in the hippocampus support a flexible MBRL mechanism for spatial navigation that is computationally efficient and can adapt quickly to change. We investigate this idea by implementing a computational MBRL framework that incorporates features inspired by computational properties of the hippocampus: a hierarchical representation of space, forward sweeps through future spatial trajectories, and context-driven remapping of place cells. We find that a hierarchical abstraction of space greatly reduces the computational load (mental effort required for adaptation to changing environmental conditions, and allows efficient scaling to large problems. It also allows abstract knowledge gained at high levels to guide adaptation to new obstacles. Moreover, a context-driven remapping mechanism allows learning and memory of multiple tasks. Simulating dorsal or ventral hippocampal lesions in our computational framework qualitatively reproduces behavioral deficits observed in rodents with analogous lesions. The framework may thus embody key features of how the brain organizes model-based RL to efficiently solve navigation and other difficult tasks.

  9. Event-Triggered Distributed Control of Nonlinear Interconnected Systems Using Online Reinforcement Learning With Exploration.

    Science.gov (United States)

    Narayanan, Vignesh; Jagannathan, Sarangapani

    2017-09-07

    In this paper, a distributed control scheme for an interconnected system composed of uncertain input affine nonlinear subsystems with event triggered state feedback is presented by using a novel hybrid learning scheme-based approximate dynamic programming with online exploration. First, an approximate solution to the Hamilton-Jacobi-Bellman equation is generated with event sampled neural network (NN) approximation and subsequently, a near optimal control policy for each subsystem is derived. Artificial NNs are utilized as function approximators to develop a suite of identifiers and learn the dynamics of each subsystem. The NN weight tuning rules for the identifier and event-triggering condition are derived using Lyapunov stability theory. Taking into account, the effects of NN approximation of system dynamics and boot-strapping, a novel NN weight update is presented to approximate the optimal value function. Finally, a novel strategy to incorporate exploration in online control framework, using identifiers, is introduced to reduce the overall cost at the expense of additional computations during the initial online learning phase. System states and the NN weight estimation errors are regulated and local uniformly ultimately bounded results are achieved. The analytical results are substantiated using simulation studies.

  10. An Active Learning Activity to Reinforce the Design Components of the Corticosteroids.

    Science.gov (United States)

    Slauson, Stephen R; Mandela, Prashant

    2018-02-05

    Despite the popularity of active learning applications over the past few decades, few activities have been reported for the field of medicinal chemistry. The purpose of this study is to report a new active learning activity, describe participant contributions, and examine participant performance on the assessment questions mapped to the objective covered by the activity. In this particular activity, students are asked to design two novel corticosteroids as a group (6-8 students per group) based on the design characteristics of marketed corticosteroids covered in lecture coupled with their pharmaceutics knowledge from the previous semester and then defend their design to the class through an interactive presentation model. Although class performance on the objective mapped to this material on the assessment did not reach statistical significance, use of this activity has allowed fruitful discussion of misunderstood concepts and facilitated multiple changes to the lecture presentation. As pharmacy schools continue to emphasize alternative learning pedagogies, publication of previously implemented activities demonstrating their use will help others apply similar methodologies.

  11. Learning Problems

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Learning Problems KidsHealth / For Kids / Learning Problems What's in ... for how to make it better. What Are Learning Disabilities? Learning disabilities aren't contagious, but they ...

  12. Rats bred for helplessness exhibit positive reinforcement learning deficits which are not alleviated by an antidepressant dose of the MAO-B inhibitor deprenyl.

    Science.gov (United States)

    Schulz, Daniela; Henn, Fritz A; Petri, David; Huston, Joseph P

    2016-08-04

    Principles of negative reinforcement learning may play a critical role in the etiology and treatment of depression. We examined the integrity of positive reinforcement learning in congenitally helpless (cH) rats, an animal model of depression, using a random ratio schedule and a devaluation-extinction procedure. Furthermore, we tested whether an antidepressant dose of the monoamine oxidase (MAO)-B inhibitor deprenyl would reverse any deficits in positive reinforcement learning. We found that cH rats (n=9) were impaired in the acquisition of even simple operant contingencies, such as a fixed interval (FI) 20 schedule. cH rats exhibited no apparent deficits in appetite or reward sensitivity. They reacted to the devaluation of food in a manner consistent with a dose-response relationship. Reinforcer motivation as assessed by lever pressing across sessions with progressively decreasing reward probabilities was highest in congenitally non-helpless (cNH, n=10) rats as long as the reward probabilities remained relatively high. cNH compared to wild-type (n=10) rats were also more resistant to extinction across sessions. Compared to saline (n=5), deprenyl (n=5) reduced the duration of immobility of cH rats in the forced swimming test, indicative of antidepressant effects, but did not restore any deficits in the acquisition of a FI 20 schedule. We conclude that positive reinforcement learning was impaired in rats bred for helplessness, possibly due to motivational impairments but not deficits in reward sensitivity, and that deprenyl exerted antidepressant effects but did not reverse the deficits in positive reinforcement learning. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Learning about Learning

    Science.gov (United States)

    Siegler, Robert S.

    2004-01-01

    The field of children's learning was thriving when the Merrill-Palmer Quarterly was launched; the field later went into eclipse and now is in the midst of a resurgence. This commentary examines reasons for these trends, and describes the emerging field of children's learning. In particular, the new field is seen as differing from the old in its…

  14. Learning to Learn Differently

    Science.gov (United States)

    Olsen, Trude Høgvold; Glad, Tone; Filstad, Cathrine

    2018-01-01

    Purpose: This paper aims to investigate whether the formal and informal learning patterns of community health-care nurses changed in the wake of a reform that altered their work by introducing new patient groups, and to explore whether conditions in the new workplaces facilitated or impeded shifts in learning patterns. Design/methodology/approach:…

  15. Application Of Reinforcement Learning In Heading Control Of A Fixed Wing UAV Using X-Plane Platform

    Directory of Open Access Journals (Sweden)

    Kimathi

    2017-02-01

    Full Text Available Heading control of an Unmanned Aerial Vehicle UAV is a vital operation of an autopilot system. It is executed by employing a design of control algorithms that control its direction and navigation. Most commonly available autopilots exploit Proportional-Integral-Derivative PID based heading controllers. In this paper we propose an online adaptive reinforcement learning heading controller. The autopilot heading controller will be designed in MatlabSimulink for controlling a UAV in X-Plane test platform. Through this platform the performance of the controller is shown using real time simulations. The performance of this controller is compared to that of a PID controller. The results show that the proposed method performs better than a well tuned PID controller.

  16. Fun While Learning and Earning. A Look Into Chattanooga Public Schools' Token Reinforcement Program.

    Science.gov (United States)

    Smith, William F.; Sanders, Frank J.

    A token reinforcement program was used by the Piney Woods Research and Demonstration Center in Chattanooga, Tennessee. Children who were from economically deprived homes received tokens for positive behavior. The tokens were redeemable for recess privileges, ice cream, candy, and other such reinforcers. All tokens were spent on the day earned so…

  17. Heads for learning, tails for memory: Reward, reinforcement and a role of dopamine in determining behavioural relevance across multiple timescales

    Directory of Open Access Journals (Sweden)

    Mathieu eBaudonnat

    2013-10-01

    Full Text Available Dopamine has long been tightly associated with aspects of reinforcement learning and motivation in simple situations where there are a limited number of stimuli to guide behaviour and constrained range of outcomes. In naturalistic situations, however, there are many potential cues and foraging strategies that could be adopted, and it is critical that animals determine what might be behaviourally relevant in such complex environments. This requires not only detecting discrepancies with what they have recently experienced, but also identifying similarities with past experiences stored in memory. Here, we review what role dopamine might play in determining how and when to learn about the world, and how to develop choice policies appropriate to the situation faced. We discuss evidence that dopamine is shaped by motivation and memory and in turn shapes reward-based memory formation. In particular, we suggest that hippocampal-striatal-dopamine networks may interact to determine how surprising the world is and to either inhibit or promote actions at time of behavioural uncertainty.

  18. AN EXTENDED REINFORCEMENT LEARNING MODEL OF BASAL GANGLIA TO UNDERSTAND THE CONTRIBUTIONS OF SEROTONIN AND DOPAMINE IN RISK-BASED DECISION MAKING, REWARD PREDICTION, AND PUNISHMENT LEARNING

    Directory of Open Access Journals (Sweden)

    Pragathi Priyadharsini Balasubramani

    2014-04-01

    Full Text Available Although empirical and neural studies show that serotonin (5HT plays many functional roles in the brain, prior computational models mostly focus on its role in behavioral inhibition. In this study, we present a model of risk based decision making in a modified Reinforcement Learning (RL-framework. The model depicts the roles of dopamine (DA and serotonin (5HT in Basal Ganglia (BG. In this model, the DA signal is represented by the temporal difference error (δ, while the 5HT signal is represented by a parameter (α that controls risk prediction error. This formulation that accommodates both 5HT and DA reconciles some of the diverse roles of 5HT particularly in connection with the BG system. We apply the model to different experimental paradigms used to study the role of 5HT: 1 Risk-sensitive decision making, where 5HT controls risk assessment, 2 Temporal reward prediction, where 5HT controls time-scale of reward prediction, and 3 Reward/Punishment sensitivity, in which the punishment prediction error depends on 5HT levels. Thus the proposed integrated RL model reconciles several existing theories of 5HT and DA in the BG.

  19. A Reinforcement Learning Model Equipped with Sensors for Generating Perception Patterns: Implementation of a Simulated Air Navigation System Using ADS-B (Automatic Dependent Surveillance-Broadcast) Technology.

    Science.gov (United States)

    Álvarez de Toledo, Santiago; Anguera, Aurea; Barreiro, José M; Lara, Juan A; Lizcano, David

    2017-01-19

    Over the last few decades, a number of reinforcement learning techniques have emerged, and different reinforcement learning-based applications have proliferated. However, such techniques tend to specialize in a particular field. This is an obstacle to their generalization and extrapolation to other areas. Besides, neither the reward-punishment (r-p) learning process nor the convergence of results is fast and efficient enough. To address these obstacles, this research proposes a general reinforcement learning model. This model is independent of input and output types and based on general bioinspired principles that help to speed up the learning process. The model is composed of a perception module based on sensors whose specific perceptions are mapped as perception patterns. In this manner, similar perceptions (even if perceived at different positions in the environment) are accounted for by the same perception pattern. Additionally, the model includes a procedure that statistically associates perception-action pattern pairs depending on the positive or negative results output by executing the respective action in response to a particular perception during the learning process. To do this, the model is fitted with a mechanism that reacts positively or negatively to particular sensory stimuli in order to rate results. The model is supplemented by an action module that can be configured depending on the maneuverability of each specific agent. The model has been applied in the air navigation domain, a field with strong safety restrictions, which led us to implement a simulated system equipped with the proposed model. Accordingly, the perception sensors were based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology, which is described in this paper. The results were quite satisfactory, and it outperformed traditional methods existing in the literature with respect to learning reliability and efficiency.

  20. Distance Learning

    National Research Council Canada - National Science Library

    Braddock, Joseph

    1997-01-01

    A study reviewing the existing Army Distance Learning Plan (ADLP) and current Distance Learning practices, with a focus on the Army's training and educational challenges and the benefits of applying Distance Learning techniques...

  1. Study on state grouping and opportunity evaluation for reinforcement learning methods; Kyoka gakushuho no tame no jotai grouping to opportunity hyoka ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yu, W.; Yokoi, H.; Kakazu, Y. [Hokkaido University, Sapporo (Japan)

    1997-08-20

    In this paper, we propose the State Grouping scheme for coping with the problem of scaling up the Reinforcement Learning Algorithm to real, large size application. The grouping scheme is based on geographical and trial-error information, and is made up with state generating, state combining, state splitting, state forgetting procedures, with corresponding action selecting module and learning module. Also, we discuss the Labeling Based Evaluation scheme which can evaluate the opportunity of the state-action pair, therefore, use better experience to guide the exploration of the state-space effectively. Incorporating the Labeling Based Evaluation and State Grouping scheme into the Reinforcement Learning Algorithm, we get the approach that can generate organized state space for Reinforcement Learning, and do problem solving as well. We argue that the approach with this kind of ability is necessary for autonomous agent, namely, autonomous agent can not act depending on any pre-defined map, instead, it should search the environment as well as find the optimal problem solution autonomously and simultaneously. By solving the large state-size 3-DOF and 4-link manipulator problem, we show the efficiency of the proposed approach, i.e., the agent can achieve the optimal or sub-optimal path with less memory and less time. 14 refs., 11 figs., 3 tabs.

  2. Quantum-enhanced reinforcement learning for finite-episode games with discrete state spaces

    Science.gov (United States)

    Neukart, Florian; Von Dollen, David; Seidel, Christian; Compostella, Gabriele

    2017-12-01

    Quantum annealing algorithms belong to the class of metaheuristic tools, applicable for solving binary optimization problems. Hardware implementations of quantum annealing, such as the quantum annealing machines produced by D-Wave Systems, have been subject to multiple analyses in research, with the aim of characterizing the technology's usefulness for optimization and sampling tasks. Here, we present a way to partially embed both Monte Carlo policy iteration for finding an optimal policy on random observations, as well as how to embed n sub-optimal state-value functions for approximating an improved state-value function given a policy for finite horizon games with discrete state spaces on a D-Wave 2000Q quantum processing unit (QPU). We explain how both problems can be expressed as a quadratic unconstrained binary optimization (QUBO) problem, and show that quantum-enhanced Monte Carlo policy evaluation allows for finding equivalent or better state-value functions for a given policy with the same number episodes compared to a purely classical Monte Carlo algorithm. Additionally, we describe a quantum-classical policy learning algorithm. Our first and foremost aim is to explain how to represent and solve parts of these problems with the help of the QPU, and not to prove supremacy over every existing classical policy evaluation algorithm.

  3. The Uses and Limits of Social Reinforcement and Industriousness for Learning to Read. Technical Report #60.

    Science.gov (United States)

    Tharp, Roland G.; Gallimore, Ronald

    This report describes a study of the use of social reinforcement to increase the industriousness, and subsequently the reading competence, of children in the kindergarten through third grade classes of the Kamehameha Early Education Program (KEEP) demonstration school. Teacher behaviors, pupil industriousness, and pupil reading performance were…

  4. Learning Theory and the Typewriter Teacher

    Science.gov (United States)

    Wakin, B. Bertha

    1974-01-01

    Eight basic principles of learning are described and discussed in terms of practical learning strategies for typewriting. Described are goal setting, preassessment, active participation, individual differences, reinforcement, practice, transfer of learning, and evaluation. (SC)

  5. Learning in Mental Retardation: A Comprehensive Bibliography.

    Science.gov (United States)

    Gardner, James M.; And Others

    The bibliography on learning in mentally handicapped persons is divided into the following topic categories: applied behavior change, classical conditioning, discrimination, generalization, motor learning, reinforcement, verbal learning, and miscellaneous. An author index is included. (KW)

  6. The Patient Educator Presentation in Dental Education: Reinforcing the Importance of Learning About Rare Conditions.

    Science.gov (United States)

    Edwards, Paul C; Graham, Jasmine; Oling, Rebecca; Frantz, Kate E

    2016-05-01

    The aim of this study was to determine whether a patient educator presentation (PEP) on pemphigus vulgaris would increase second-year dental students' awareness of the importance of learning about rare conditions and improve their retention of rare disease knowledge. The study involved students' subjective assessments of a PEP experience at two U.S. dental schools. In this mixed methods study, cross-sectional data were obtained by surveys and in-depth interviews. Questions focused on students' assessment of the messages acquired from the PEP and its likely impact on their future clinical care. At University 1, students completed paper surveys with open-ended questions and participated in a focus group. At University 2, students completed an online survey consisting of rating scale and open-ended questions. Responses to open-ended questions were categorized into themes. At University 1, 79 students (out of a possible 102; response rate 77.5%) completed the survey, and an additional ten students participated in a focus group. At University 2, 30 students (out of a possible 104; response rate 28.8%) completed the survey. At Universities 1 and 2, 88% and 100%, respectively, of respondents stated the PEP would influence their future clinical decision making. The vast majority of respondents (94% and 100% at University 1 and University 2, respectively) were of the opinion that the personal testimonial from a patient would help them recall information about pemphigus vulgaris in five years' time. Respondents from both universities commented that the PEP emphasized the importance of not dismissing a patient's concerns. These results suggest that a presentation by a patient with a rare condition can be an effective educational tool for preclinical dental students.

  7. Blended learning

    DEFF Research Database (Denmark)

    Dau, Susanne

    2016-01-01

    Blended Learning has been implemented, evaluated and researched for the last decades within different educational areas and levels. Blended learning has been coupled with different epistemological understandings and learning theories, but the fundamental character and dimensions of learning...... in blended learning are still insufficient. Moreover, blended learning is a misleading concept described as learning, despite the fact that it fundamentally is an instructional and didactic approach (Oliver & Trigwell, 2005) addressing the learning environment (Inglis, Palipoana, Trenhom & Ward, 2011......) instead of the learning processes behind. Much of the existing research within the field seems to miss this perspective. The consequence is a lack of acknowledgement of the driven forces behind the context and the instructional design limiting the knowledge foundation of learning in blended learning. Thus...

  8. Flexible learning intinerary vs. linear learning itinerary

    OpenAIRE

    Martín San José, Juan Fernando; Juan Lizandra, María Carmen; Gil Gómez, Jose Antonio; Rando, Noemí

    2014-01-01

    The latest video game and entertainment technology and other technologies are facilitating the development of new and powerful e-Learning systems. In this paper, we present a computer-based game for learning about five historical ages. The objective of the game is to reinforce the events that mark the transition from one historical age to another and the order of the historical ages. Our game incorporates natural human-computer interaction based on video game technology, Frontal Projection, a...

  9. Development of Reinforcement Learning Algorithm for Automation of Slide Gate Check Structure in Canals

    Directory of Open Access Journals (Sweden)

    K. Shahverdi

    2016-02-01

    Full Text Available Introduction: Nowadays considering water shortage and weak management in agricultural water sector and for optimal uses of water, irrigation networks performance need to be improveed. Recently, intelligent management of water conveyance and delivery, and better control technologies have been considered for improving the performance of irrigation networks and their operation. For this affair, providing of mathematical model of automatic control system and related structures, which connected with hydrodynamic models, is necessary. The main objective of this research, is development of mathematical model of RL upstream control algorithm inside ICSS hydrodynamic model as a subroutine. Materials and Methods: In the learning systems, a set of state-action rules called classifiers compete to control the system based on the system's receipt from the environment. One could be identified five main elements of the RL: an agent, an environment, a policy, a reward function, and a simulator. The learner (decision-maker is called the agent. The thing it interacts with, comprising everything outside the agent, is called the environment. The agent selects an action based on existing state in the environment. When the agent takes an action and performs on environment, the environment goes new state and reward is assigned based on it. The agent and the environment continually interact to maximize the reward. The policy is a set of state-action pair, which have higher rewards. It defines the agent's behavior and says which action must be taken in which state. The reward function defines the goal in a RL problem. The reward function defines what the good and bad events are for the agent. The higher the reward, the better the action. The simulator provides environment information. In irrigation canals, the agent is the check structures. The action and state are the check structures adjustment and the water depth, respectively. The environment comprises the hydraulic

  10. Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation.

    Science.gov (United States)

    Bauer, Robert; Fels, Meike; Royter, Vladislav; Raco, Valerio; Gharabaghi, Alireza

    2016-09-01

    Considering self-rated mental effort during neurofeedback may improve training of brain self-regulation. Twenty-one healthy, right-handed subjects performed kinesthetic motor imagery of opening their left hand, while threshold-based classification of beta-band desynchronization resulted in proprioceptive robotic feedback. The experiment consisted of two blocks in a cross-over design. The participants rated their perceived mental effort nine times per block. In the adaptive block, the threshold was adjusted on the basis of these ratings whereas adjustments were carried out at random in the other block. Electroencephalography was used to examine the cortical activation patterns during the training sessions. The perceived mental effort was correlated with the difficulty threshold of neurofeedback training. Adaptive threshold-setting reduced mental effort and increased the classification accuracy and positive predictive value. This was paralleled by an inter-hemispheric cortical activation pattern in low frequency bands connecting the right frontal and left parietal areas. Optimal balance of mental effort was achieved at thresholds significantly higher than maximum classification accuracy. Rating of mental effort is a feasible approach for effective threshold-adaptation during neurofeedback training. Closed-loop adaptation of the neurofeedback difficulty level facilitates reinforcement learning of brain self-regulation. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  11. Reinforcement-Learning-Based Robust Controller Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints.

    Science.gov (United States)

    Liu, Derong; Yang, Xiong; Wang, Ding; Wei, Qinglai

    2015-07-01

    The design of stabilizing controller for uncertain nonlinear systems with control constraints is a challenging problem. The constrained-input coupled with the inability to identify accurately the uncertainties motivates the design of stabilizing controller based on reinforcement-learning (RL) methods. In this paper, a novel RL-based robust adaptive control algorithm is developed for a class of continuous-time uncertain nonlinear systems subject to input constraints. The robust control problem is converted to the constrained optimal control problem with appropriately selecting value functions for the nominal system. Distinct from typical action-critic dual networks employed in RL, only one critic neural network (NN) is constructed to derive the approximate optimal control. Meanwhile, unlike initial stabilizing control often indispensable in RL, there is no special requirement imposed on the initial control. By utilizing Lyapunov's direct method, the closed-loop optimal control system and the estimated weights of the critic NN are proved to be uniformly ultimately bounded. In addition, the derived approximate optimal control is verified to guarantee the uncertain nonlinear system to be stable in the sense of uniform ultimate boundedness. Two simulation examples are provided to illustrate the effectiveness and applicability of the present approach.

  12. The role of multisensor data fusion in neuromuscular control of a sagittal arm with a pair of muscles using actor-critic reinforcement learning method.

    Science.gov (United States)

    Golkhou, V; Parnianpour, M; Lucas, C

    2004-01-01

    In this study, we consider the role of multisensor data fusion in neuromuscular control using an actor-critic reinforcement learning method. The model we use is a single link system actuated by a pair of muscles that are excited with alpha and gamma signals. Various physiological sensor information such as proprioception, spindle sensors, and Golgi tendon organs have been integrated to achieve an oscillatory movement with variable amplitude and frequency, while achieving a stable movement with minimum metabolic cost and coactivation. The system is highly nonlinear in all its physical and physiological attributes. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops. This paper proposes a reinforcement learning method with an Actor-Critic architecture instead of middle and low level of central nervous system (CNS). The Actor in this structure is a two layer feedforward neural network and the Critic is a model of the cerebellum. The Critic is trained by the State-Action-Reward-State-Action (SARSA) method. The Critic will train the Actor by supervisory learning based on previous experiences. The reinforcement signal in SARSA is evaluated based on available alternatives concerning the concept of multisensor data fusion. The effectiveness and the biological plausibility of the present model are demonstrated by several simulations. The system showed excellent tracking capability when we integrated the available sensor information. Addition of a penalty for activation of muscles resulted in much lower muscle coactivation while keeping the movement stable.

  13. Will Increasing Academic Recognition of Workplace Learning in the UK Reinforce Existing Gender Divisions in the Labour Market?

    Science.gov (United States)

    Walsh, Anita

    2006-01-01

    In the United Kingdom there has been a considerable increase in the academic recognition of workplace learning, and a number of new awards drawing on workplace learning have been introduced. These include apprenticeships and Advanced Apprenticeships, both of which contain National Vocational Qualifications, and the Foundation Degree. In addition,…

  14. Learn, how to learn

    Science.gov (United States)

    Narayanan, M.

    2002-12-01

    Ernest L. Boyer, in his 1990 book, "Scholarship Reconsidered: Priorities of the Professorate" cites some ground breaking studies and offers a new paradigm that identifies the need to recognize the growing conversation about teaching, scholarship and research in the Universities. The use of `ACORN' model suggested by Hawkins and Winter to conquer and mastering change, may offer some helpful hints for the novice professor, whose primary objective might be to teach students to `learn how to learn'. Action : It is possible to effectively change things only when a teaching professor actually tries out a new idea. Communication : Changes are successful only when the new ideas effectively communicated and implemented. Ownership : Support for change is extremely important and is critical. Only strong commitment for accepting changes demonstrates genuine leadership. Reflection : Feedback helps towards thoughtful evaluation of the changes implemented. Only reflection can provide a tool for continuous improvement. Nurture : Implemented changes deliver results only when nurtured and promoted with necessary support systems, documentation and infrastructures. Inspired by the ACORN model, the author experimented on implementing certain principles of `Total Quality Management' in the classroom. The author believes that observing the following twenty principles would indeed help the student learners how to learn, on their own towards achieving the goal of `Lifelong Learning'. The author uses an acronym : QUOTES : Quality Underscored On Teaching Excellence Strategy, to describe his methods for improving classroom teacher-learner participation. 1. Break down all barriers. 2. Create consistency of purpose with a plan. 3. Adopt the new philosophy of quality. 4. Establish high Standards. 5. Establish Targets / Goals. 6. Reduce dependence on Lectures. 7. Employ Modern Methods. 8. Control the Process. 9. Organize to reach goals. 10. Prevention vs. Correction. 11. Periodic Improvements. 12

  15. Intentional Learning Vs Incidental Learning

    OpenAIRE

    Shahbaz Ahmed

    2017-01-01

    This study is conducted to demonstrate the knowledge of intentional learning and incidental learning. Hypothesis of this experiment is intentional learning is better than incidental learning, participants were demonstrated and were asked to learn the 10 non sense syllables in a specific sequence from the colored cards in the end they were asked to recall the background color of each card instead of non-sense syllables. Independent variables of the experiment are the colored cards containing n...

  16. Posthuman learning

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    This book shall explore the concept of learning from the new perspective of the posthuman. The vast majority of cognitive, behavioral and part of the constructionist learning theories operate with an autonomous individual who learn in a world of separate objects. Technology is (if mentioned at all......) understood as separate from the individual learner and perceived as tools. Learning theory has in general not been acknowledging materiality in their theorizing about what learning is. A new posthuman learning theory is needed to keep up with the transformations of human learning resulting from new...... technological experiences. One definition of learning is that it is a relatively permanent change in behavior as the result of experience. During the first half of the twentieth century, two theoretical approaches dominated the domain of learning theory: the schools of thought commonly known as behaviorism...

  17. Machine learning methods for planning

    CERN Document Server

    Minton, Steven

    1993-01-01

    Machine Learning Methods for Planning provides information pertinent to learning methods for planning and scheduling. This book covers a wide variety of learning methods and learning architectures, including analogical, case-based, decision-tree, explanation-based, and reinforcement learning.Organized into 15 chapters, this book begins with an overview of planning and scheduling and describes some representative learning systems that have been developed for these tasks. This text then describes a learning apprentice for calendar management. Other chapters consider the problem of temporal credi

  18. Learning e-Learning

    Directory of Open Access Journals (Sweden)

    Gabriel ZAMFIR

    2009-01-01

    Full Text Available What You Understand Is What Your Cognitive Integrates. Scientific research develops, as a native environment, knowledge. This environment consists of two interdependent divisions: theory and technology. First division occurs as a recursive research, while the second one becomes an application of the research activity. Over time, theories integrate methodologies and technology extends as infrastructure. The engine of this environment is learning, as the human activity of knowledge work. The threshold term of this model is the concepts map; it is based on Bloom’ taxonomy for the cognitive domain and highlights the notion of software scaffolding which is grounded in Vygotsky’s Social Development Theory with its major theme, Zone of Proximal Development. This article is designed as a conceptual paper, which analyzes specific structures of this type of educational research: the model reflects a foundation for a theory and finally, the theory evolves as groundwork for a system. The outcomes of this kind of approach are the examples, which are, theoretically, learning outcomes, and practically exist as educational objects, so-called e-learning.

  19. Transfer Learning beyond Text Classification

    Science.gov (United States)

    Yang, Qiang

    Transfer learning is a new machine learning and data mining framework that allows the training and test data to come from different distributions or feature spaces. We can find many novel applications of machine learning and data mining where transfer learning is necessary. While much has been done in transfer learning in text classification and reinforcement learning, there has been a lack of documented success stories of novel applications of transfer learning in other areas. In this invited article, I will argue that transfer learning is in fact quite ubiquitous in many real world applications. In this article, I will illustrate this point through an overview of a broad spectrum of applications of transfer learning that range from collaborative filtering to sensor based location estimation and logical action model learning for AI planning. I will also discuss some potential future directions of transfer learning.

  20. Punishment and psychopathy: a case-control functional MRI investigation of reinforcement learning in violent antisocial personality disordered men.

    Science.gov (United States)

    Gregory, Sarah; Blair, R James; Ffytche, Dominic; Simmons, Andrew; Kumari, Veena; Hodgins, Sheilagh; Blackwood, Nigel

    2015-02-01

    Men with antisocial personality disorder show lifelong abnormalities in adaptive decision making guided by the weighing up of reward and punishment information. Among men with antisocial personality disorder, modification of the behaviour of those with additional diagnoses of psychopathy seems particularly resistant to punishment. We did a case-control functional MRI (fMRI) study in 50 men, of whom 12 were violent offenders with antisocial personality disorder and psychopathy, 20 were violent offenders with antisocial personality disorder but not psychopathy, and 18 were healthy non-offenders. We used fMRI to measure brain activation associated with the representation of punishment or reward information during an event-related probabilistic response-reversal task, assessed with standard general linear-model-based analysis. Offenders with antisocial personality disorder and psychopathy displayed discrete regions of increased activation in the posterior cingulate cortex and anterior insula in response to punished errors during the task reversal phase, and decreased activation to all correct rewarded responses in the superior temporal cortex. This finding was in contrast to results for offenders without psychopathy and healthy non-offenders. Punishment prediction error signalling in offenders with antisocial personality disorder and psychopathy was highly atypical. This finding challenges the widely held view that such men are simply characterised by diminished neural sensitivity to punishment. Instead, this finding indicates altered organisation of the information-processing system responsible for reinforcement learning and appropriate decision making. This difference between violent offenders with antisocial personality disorder with and without psychopathy has implications for the causes of these disorders and for treatment approaches. National Forensic Mental Health Research and Development Programme, UK Ministry of Justice, Psychiatry Research Trust, NIHR

  1. A confidence metric for using neurobiological feedback in actor-critic reinforcement learning based brain-machine interfaces

    Directory of Open Access Journals (Sweden)

    Noeline Wilhelmina Prins

    2014-05-01

    Full Text Available Brain-Machine Interfaces (BMIs can be used to restore function in people living with paralysis. Current BMIs require extensive calibration that increase the set-up times and external inputs for decoder training that may be difficult to produce in paralyzed individuals. Both these factors have presented challenges in transitioning the technology from research environments to activities of daily living (ADL. For BMIs to be seamlessly used in ADL, these issues should be handled with minimal external input thus reducing the need for a technician/caregiver to calibrate the system. Reinforcement Learning (RL based BMIs are a good tool to be used when there is no external training signal and can provide an adaptive modality to train BMI decoders. However, RL based BMIs are sensitive to the feedback provided to adapt the BMI. In actor-critic BMIs, this feedback is provided by the critic and the overall system performance is limited by the critic accuracy. In this work, we developed an adaptive BMI that could handle inaccuracies in the critic feedback in an effort to produce more accurate RL based BMIs. We developed a confidence measure, which indicated how appropriate the feedback is for updating the decoding parameters of the actor. The results show that with the new update formulation, the critic accuracy is no longer a limiting factor for the overall performance. We tested and validated the system on three different data sets: synthetic data generated by an Izhikevich neural spiking model, synthetic data with a Gaussian noise distribution, and data collected from a non-human primate engaged in a reaching task. All results indicated that the system with the critic confidence built in always outperformed the system without the critic confidence. Results of this study suggest the potential application of the technique in developing an autonomous BMI that does not need an external signal for training or extensive calibration.

  2. Scale-free memory model for multiagent reinforcement learning. Mean field approximation and rock-paper-scissors dynamics

    Science.gov (United States)

    Lubashevsky, I.; Kanemoto, S.

    2010-07-01

    A continuous time model for multiagent systems governed by reinforcement learning with scale-free memory is developed. The agents are assumed to act independently of one another in optimizing their choice of possible actions via trial-and-error search. To gain awareness about the action value the agents accumulate in their memory the rewards obtained from taking a specific action at each moment of time. The contribution of the rewards in the past to the agent current perception of action value is described by an integral operator with a power-law kernel. Finally a fractional differential equation governing the system dynamics is obtained. The agents are considered to interact with one another implicitly via the reward of one agent depending on the choice of the other agents. The pairwise interaction model is adopted to describe this effect. As a specific example of systems with non-transitive interactions, a two agent and three agent systems of the rock-paper-scissors type are analyzed in detail, including the stability analysis and numerical simulation. Scale-free memory is demonstrated to cause complex dynamics of the systems at hand. In particular, it is shown that there can be simultaneously two modes of the system instability undergoing subcritical and supercritical bifurcation, with the latter one exhibiting anomalous oscillations with the amplitude and period growing with time. Besides, the instability onset via this supercritical mode may be regarded as “altruism self-organization”. For the three agent system the instability dynamics is found to be rather irregular and can be composed of alternate fragments of oscillations different in their properties.

  3. Blended Learning

    NARCIS (Netherlands)

    Van der Baaren, John

    2009-01-01

    Van der Baaren, J. (2009). Blended Learning. Presentation given at the Mini symposium 'Blended Learning the way to go?'. November, 5, 2009, The Hague, The Netherlands: Netherlands Defence Academy (NDLA).

  4. Interface learning

    DEFF Research Database (Denmark)

    Thorhauge, Sally

    2014-01-01

    "Interface learning - New goals for museum and upper secondary school collaboration" investigates and analyzes the learning that takes place when museums and upper secondary schools in Denmark work together in local partnerships to develop and carry out school-related, museum-based coursework...... for students. The research focuses on the learning that the students experience in the interface of the two learning environments: The formal learning environment of the upper secondary school and the informal learning environment of the museum. Focus is also on the learning that the teachers and museum...... professionals experience as a result of their collaboration. The dissertation demonstrates how a given partnership’s collaboration affects the students’ learning experiences when they are doing the coursework. The dissertation presents findings that museum-school partnerships can use in order to develop...

  5. Learning Disabilities

    Science.gov (United States)

    ... books. While his friends were meeting for pickup soccer games after school, he was back home in ... sometimes thought to contribute to learning disabilities. Poor nutrition early in life also may lead to learning ...

  6. Workplace learning

    DEFF Research Database (Denmark)

    Warring, Niels

    2005-01-01

    In November 2004 the Research Consortium on workplace learning under Learning Lab Denmark arranged the international conference “Workplace Learning – from the learner’s perspective”. The conference’s aim was to bring together researchers from different countries and institutions to explore...... and discuss recent developments in our understanding of workplace and work-related learning. The conference had nearly 100 participants with 59 papers presented, and among these five have been selected for presentation is this Special Issue....

  7. Children's Learning

    Science.gov (United States)

    Siegler, Robert S.

    2005-01-01

    A new field of children's learning is emerging. This new field differs from the old in recognizing that children's learning includes active as well as passive mechanisms and qualitative as well as quantitative changes. Children's learning involves substantial variability of representations and strategies within individual children as well as…

  8. Blended Learning

    Science.gov (United States)

    Imbriale, Ryan

    2013-01-01

    Teachers always have been and always will be the essential element in the classroom. They can create magic inside four walls, but they have never been able to create learning environments outside the classroom like they can today, thanks to blended learning. Blended learning allows students and teachers to break free of the isolation of the…

  9. Transformative Learning

    Science.gov (United States)

    Wang, Victor C. X.; Cranton, Patricia

    2011-01-01

    The theory of transformative learning has been explored by different theorists and scholars. However, few scholars have made an attempt to make a comparison between transformative learning and Confucianism or between transformative learning and andragogy. The authors of this article address these comparisons to develop new and different insights…

  10. Blended Learning

    OpenAIRE

    Bauerová, Andrea

    2013-01-01

    This thesis is focused on a new approach of education called blended learning. The history and developement of Blended Learning is described in the first part. Then the methods and tools of Blended Learning are evaluated and compared to the traditional methods of education. At the final part an efficient developement of the educational programs is emphasized.

  11. Just Learning

    Science.gov (United States)

    Larsen-Freeman, Diane

    2017-01-01

    In this "First Person Singular" essay, the author describes her education, teaching experience, and interest in understanding the learning of language. Anyone reading this essay will not be surprised to learn that the author's questions about language learning and optimal teaching methods were only met with further questions, and no…

  12. Dynamic Resource Allocation with Integrated Reinforcement Learning for a D2D-Enabled LTE-A Network with Access to Unlicensed Band

    Directory of Open Access Journals (Sweden)

    Alia Asheralieva

    2016-01-01

    Full Text Available We propose a dynamic resource allocation algorithm for device-to-device (D2D communication underlying a Long Term Evolution Advanced (LTE-A network with reinforcement learning (RL applied for unlicensed channel allocation. In a considered system, the inband and outband resources are assigned by the LTE evolved NodeB (eNB to different device pairs to maximize the network utility subject to the target signal-to-interference-and-noise ratio (SINR constraints. Because of the absence of an established control link between the unlicensed and cellular radio interfaces, the eNB cannot acquire any information about the quality and availability of unlicensed channels. As a result, a considered problem becomes a stochastic optimization problem that can be dealt with by deploying a learning theory (to estimate the random unlicensed channel environment. Consequently, we formulate the outband D2D access as a dynamic single-player game in which the player (eNB estimates its possible strategy and expected utility for all of its actions based only on its own local observations using a joint utility and strategy estimation based reinforcement learning (JUSTE-RL with regret algorithm. A proposed approach for resource allocation demonstrates near-optimal performance after a small number of RL iterations and surpasses the other comparable methods in terms of energy efficiency and throughput maximization.

  13. Learning Networks for Lifelong Learning

    OpenAIRE

    Sloep, Peter

    2009-01-01

    Presentation in a seminar organized by Christopher Hoadley at Penn State University, October 2004.Contains general introduction into the Learning Network Programme and a demonstration of the Netlogo Simulation of a Learning Network.

  14. Learning organisations

    Directory of Open Access Journals (Sweden)

    Sabina Jelenc Krašovec

    2000-12-01

    Full Text Available A vast array of economical, social, political, cultural and other factors influences the transformed role of learning and education in the society, as well as the functioning of local community and its social and communication patterns. The influences which are manifested as global problems can only be successfully solved on the level of local community. Analogously with the society in general, there is a great need of transforming a local community into a learning, flexible and interconnected environment which takes into account different interests, wishes and needs regarding learning and being active. The fundamental answer to changes is the strategy of lifelong learning and education which requires reorganisation of all walks of life (work, free time, family, mass media, culture, sport, education and transforming of organisations into learning organisations. With learning society based on networks of knowledge individuals are turning into learning individuals, and organisations into learning organisations; people who learn take the responsibility of their progress, learning denotes partnership among learning people, teachers, parents, employers and local community, so that they work together to achieve better results.

  15. Learning Opportunities for Group Learning

    Science.gov (United States)

    Gil, Alfonso J.; Mataveli, Mara

    2017-01-01

    Purpose: This paper aims to analyse the impact of organizational learning culture and learning facilitators in group learning. Design/methodology/approach: This study was conducted using a survey method applied to a statistically representative sample of employees from Rioja wine companies in Spain. A model was tested using a structural equation…

  16. Mimetic Learning

    Directory of Open Access Journals (Sweden)

    Christoph Wulf

    2008-03-01

    Full Text Available Mimetic learning, learning by imitation, constitutes one of the most important forms of learning. Mimetic learning does not, however, just denote mere imitation or copying: Rather, it is a process by which the act of relating to other persons and worlds in a mimetic way leads to an en-hancement of one’s own world view, action, and behaviour. Mimetic learning is productive; it is related to the body, and it establishes a connection between the individual and the world as well as other persons; it creates practical knowledge, which is what makes it constitutive of social, artistic, and practical action. Mimetic learning is cultural learning, and as such it is crucial to teaching and education (Wulf, 2004; 2005.

  17. Deep learning

    CERN Document Server

    Goodfellow, Ian; Courville, Aaron

    2016-01-01

    Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language proces...

  18. Believer-Skeptic Meets Actor-Critic: Rethinking the Role of Basal Ganglia Pathways during Decision-Making and Reinforcement Learning

    Science.gov (United States)

    Dunovan, Kyle; Verstynen, Timothy

    2016-01-01

    The flexibility of behavioral control is a testament to the brain's capacity for dynamically resolving uncertainty during goal-directed actions. This ability to select actions and learn from immediate feedback is driven by the dynamics of basal ganglia (BG) pathways. A growing body of empirical evidence conflicts with the traditional view that these pathways act as independent levers for facilitating (i.e., direct pathway) or suppressing (i.e., indirect pathway) motor output, suggesting instead that they engage in a dynamic competition during action decisions that computationally captures action uncertainty. Here we discuss the utility of encoding action uncertainty as a dynamic competition between opposing control pathways and provide evidence that this simple mechanism may have powerful implications for bridging neurocomputational theories of decision making and reinforcement learning. PMID:27047328

  19. Self-Play and Using an Expert to Learn to Play Backgammon with Temporal Difference Learning

    NARCIS (Netherlands)

    Wiering, Marco A.

    2010-01-01

    A promising approach to learn to play board games is to use reinforcement learning algorithms that can learn a game position evaluation function. In this paper we examine and compare three different methods for generating training games: 1) Learning by self-play, 2) Learning by playing against an

  20. Learning Disabilities and ADHD

    Science.gov (United States)

    ... of illnesses and disabilities Learning disabilities and ADHD Learning disabilities and ADHD Learning disabilities affect how you ... ADHD. Learning disabilities Attention deficit hyperactivity disorder (ADHD) Learning disabilities top Having a learning disability does not ...

  1. Informal learning.

    Science.gov (United States)

    Callanan, Maureen; Cervantes, Christi; Loomis, Molly

    2011-11-01

    We consider research and theory relevant to the notion of informal learning. Beginning with historical and definitional issues, we argue that learning happens not just in schools or in school-aged children. Many theorists have contrasted informal learning with formal learning. Moving beyond this dichotomy, and away from a focus on where learning occurs, we discuss five dimensions of informal learning that are drawn from the literature: (1) non-didactive, (2) highly socially collaborative, (3) embedded in meaningful activity, (4) initiated by learner's interest or choice, and (5) removed from external assessment. We consider these dimensions in the context of four sample domains: learning a first language, learning about the mind and emotions within families and communities, learning about science in family conversations and museum settings, and workplace learning. Finally, we conclude by considering convergences and divergences across the different literatures and suggesting areas for future research. WIREs Cogni Sci 2011 2 646-655 DOI: 10.1002/wcs.143 For further resources related to this article, please visit the WIREs website. Copyright © 2011 John Wiley & Sons, Ltd.

  2. New Educational Environments Aimed at Developing Intercultural Understanding While Reinforcing the Use of English in Experience-Based Learning

    Directory of Open Access Journals (Sweden)

    Leonard R. Bruguier

    2012-07-01

    Full Text Available New learning environments with communication and information tools are increasingly accessible with technology playing a crucial role in expanding and reconceptualizing student learning experiences. This paper reviews the outcome of an innovative course offered by four universities in three countries: Canada, the United States, and Mexico. Course objectives focused on broadening the understanding of indigenous and non-indigenous peoples primarily in relation to identity as it encouraged students to reflect on their own identity while improving their English skills in an interactive and experiential manner and thus enhancing their intercultural competence.

  3. Machine Learning

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Machine learning, which builds on ideas in computer science, statistics, and optimization, focuses on developing algorithms to identify patterns and regularities in data, and using these learned patterns to make predictions on new observations. Boosted by its industrial and commercial applications, the field of machine learning is quickly evolving and expanding. Recent advances have seen great success in the realms of computer vision, natural language processing, and broadly in data science. Many of these techniques have already been applied in particle physics, for instance for particle identification, detector monitoring, and the optimization of computer resources. Modern machine learning approaches, such as deep learning, are only just beginning to be applied to the analysis of High Energy Physics data to approach more and more complex problems. These classes will review the framework behind machine learning and discuss recent developments in the field.

  4. Doing learning

    DEFF Research Database (Denmark)

    Mathiasen, John Bang; Koch, Christian

    2014-01-01

    Purpose: To investigate how learning occurs in a systems development project, using a company developing wind turbine control systems in collaboration with customers as case. Design/methodology/approach: Dewey’s approach to learning is used, emphasising reciprocity between the individual...... learning processes and that the interchanges between materiality and systems developers block the learning processes due to a customer with imprecise demands and unclear system specifications. In the four cases discussed, learning does occur however. Research limitations/implications: A qualitative study...... focusing on individual systems developers gives limited insight into whether the learning processes found would occur in other systems development processes. Practical implications: Managers should ensure that constitutive means, such as specifications, are available, and that they are sufficiently...

  5. Varieties of perceptual learning.

    Science.gov (United States)

    Mackintosh, N J

    2009-05-01

    Although most studies of perceptual learning in human participants have concentrated on the changes in perception assumed to be occurring, studies of nonhuman animals necessarily measure discrimination learning and generalization and remain agnostic on the question of whether changes in behavior reflect changes in perception. On the other hand, animal studies do make it easier to draw a distinction between supervised and unsupervised learning. Differential reinforcement will surely teach animals to attend to some features of a stimulus array rather than to others. But it is an open question as to whether such changes in attention underlie the enhanced discrimination seen after unreinforced exposure to such an array. I argue that most instances of unsupervised perceptual learning observed in animals (and at least some in human animals) are better explained by appeal to well-established principles and phenomena of associative learning theory: excitatory and inhibitory associations between stimulus elements, latent inhibition, and habituation.

  6. [Anaesthetists learn--do institutions also learn? Importance of institutional learning and corporate culture in clinics].

    Science.gov (United States)

    Schüpfer, G; Gfrörer, R; Schleppers, A

    2007-10-01

    In only a few contexts is the need for substantial learning more pronounced than in health care. For a health care provider, the ability to learn is essential in a changing environment. Although individual humans are programmed to learn naturally, organisations are not. Learning that is limited to individual professions and traditional approaches to continuing medical education is not sufficient to bring about substantial changes in the learning capacity of an institution. Also, organisational learning is an important issue for anaesthesia departments. Future success of an organisation often depends on new capabilities and competencies. Organisational learning is the capacity or processes within an organisation to maintain or improve performance based on experience. Learning is seen as a system-level phenomenon as it stays in the organisation regardless of the players involved. Experience from other industries shows that learning strategies tend to focus on single loop learning, with relatively little double loop learning and virtually no meta-learning or non-learning. The emphasis on team delivery of health care reinforces the need for team learning. Learning organisations make learning an intrinsic part of their organisations and are a place where people continually learn how to learn together. Organisational learning practice can help to improve existing skills and competencies and to change outdated assumptions, procedures and structures. So far, learning theory has been ignored in medicine, due to a wide variety of complex political, economic, social, organisational culture and medical factors that prevent innovation and resist change. The organisational culture is central to every stage of the learning process. Learning organisations move beyond simple employee training into organisational problem solving, innovation and learning. Therefore, teamwork and leadership are necessary. Successful organisations change the competencies of individuals, the systems

  7. Learning: from association to cognition.

    Science.gov (United States)

    Shanks, David R

    2010-01-01

    Since the very earliest experimental investigations of learning, tension has existed between association-based and cognitive theories. Associationism accounts for the phenomena of both conditioning and "higher" forms of learning via concepts such as excitation, inhibition, and reinforcement, whereas cognitive theories assume that learning depends on hypothesis testing, cognitive models, and propositional reasoning. Cognitive theories have received considerable impetus in regard to both human and animal learning from recent research suggesting that the key illustration of cue selection in learning, blocking, often arises from inferential reasoning. At the same time, a dichotomous view that separates noncognitive, unconscious (implicit) learning from cognitive, conscious (explicit) learning has gained favor. This review selectively describes key findings from this research, evaluates evidence for and against associative and cognitive explanatory constructs, and critically examines both the dichotomous view of learning as well as the claim that learning can occur unconsciously.

  8. Metric learning

    CERN Document Server

    Bellet, Aurelien; Sebban, Marc

    2015-01-01

    Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learnin

  9. Discrimination Learning in Children

    Science.gov (United States)

    Ochocki, Thomas E.; And Others

    1975-01-01

    Examined the learning performance of 192 fourth-, fifth-, and sixth-grade children on either a two or four choice simultaneous color discrimination task. Compared the use of verbal reinforcement and/or punishment, under conditions of either complete or incomplete instructions. (Author/SDH)

  10. Beginning to Learn.

    Science.gov (United States)

    Atkinson, Christine

    1982-01-01

    Discusses theories on the acquisition of early learning. The author suggests that an infant's innate physiological reflexes cause him or her to respond to adults in a way that stimulates the adults to model and reinforce socially acceptable behavior and communication patterns. (AM)

  11. Learning to learn in MOOCs

    DEFF Research Database (Denmark)

    Milligan, Sandra; Ringtved, Ulla Lunde

    This paper outlines one way of understanding what it is about learning in MOOCs that is so distinctive, and explores the implications for the design of MOOCs. It draws on an ongoing research study into the nature of learning in MOOCs at the University of Melbourne.......This paper outlines one way of understanding what it is about learning in MOOCs that is so distinctive, and explores the implications for the design of MOOCs. It draws on an ongoing research study into the nature of learning in MOOCs at the University of Melbourne....

  12. Learning Cultures

    DEFF Research Database (Denmark)

    Rasmussen, Lauge Baungaard

    1998-01-01

    the article present different concepts and modelsof learning. It discuss some strutural tendenciesof developing environmental management systemsand point out alternatives to increasing formalization of rules.......the article present different concepts and modelsof learning. It discuss some strutural tendenciesof developing environmental management systemsand point out alternatives to increasing formalization of rules....

  13. Blended learning

    DEFF Research Database (Denmark)

    Staugaard, Hans Jørgen

    2012-01-01

    Forsøg på at indkredse begrebet blended learning i forbindelse med forberedelsen af projekt FlexVid.......Forsøg på at indkredse begrebet blended learning i forbindelse med forberedelsen af projekt FlexVid....

  14. Reflective Learning

    African Journals Online (AJOL)

    dell

    The main intent of this study was to identify the impact of using learning log as a learning strategy on the academic performance of university students. Second year psychology students were included as subjects of this study. In the beginning of the study, the students were divided into two: experimental group (N = 60) and ...

  15. Perceptual learning.

    Science.gov (United States)

    Seitz, Aaron R

    2017-07-10

    Perceptual learning refers to how experience can change the way we perceive sights, sounds, smells, tastes, and touch. Examples abound: music training improves our ability to discern tones; experience with food and wines can refine our pallet (and unfortunately more quickly empty our wallet), and with years of training radiologists learn to save lives by discerning subtle details of images that escape the notice of untrained viewers. We often take perceptual learning for granted, but it has a profound impact on how we perceive the world. In this Primer, I will explain how perceptual learning is transformative in guiding our perceptual processes, how research into perceptual learning provides insight into fundamental mechanisms of learning and brain processes, and how knowledge of perceptual learning can be used to develop more effective training approaches for those requiring expert perceptual skills or those in need of perceptual rehabilitation (such as individuals with poor vision). I will make a case that perceptual learning is ubiquitous, scientifically interesting, and has substantial practical utility to us all. Copyright © 2017. Published by Elsevier Ltd.

  16. Pervasive Learning

    DEFF Research Database (Denmark)

    Helms, Niels Henrik; Larsen, Lasse Juel

    2009-01-01

    , it is not a specific place where you can access scarce information. Pervasive or ubiquitous communication opens up for taking the organizing and design of learning landscapes a step further. Furthermore it calls for theoretical developments, which can open up for a deeper understanding of the relationship between...... emerging contexts, design of contexts and learning....

  17. Flipped Learning

    DEFF Research Database (Denmark)

    Holmboe, Peter; Hachmann, Roland

    I FLIPPED LEARNING – FLIP MED VIDEO kan du læse om, hvordan du som underviser kommer godt i gang med at implementere video i undervisning, der har afsæt i tankerne omkring flipped learning. Bogen indeholder fire dele: I Del 1 fokuserer vi på det metarefleksive i at tænke video ind i undervisningen...

  18. Flipped Learning

    DEFF Research Database (Denmark)

    Hachmann, Roland; Holmboe, Peter

    arbejde med faglige problemstillinger gennem problembaserede og undersøgende didaktiske designs. Flipped Learning er dermed andet og mere end at distribuere digitale materialer til eleverne forud for undervisning. Flipped Learning er i lige så høj grad et syn på, hvordan undervisning med digitale medier...

  19. Situating learning

    DEFF Research Database (Denmark)

    Ribeiro, Gustavo; Georg, Susse; Finchman, Rob

    2004-01-01

    This paper looks at learning experiences in South Africa and Thailand by highlighting the role of context and culture in the learning process. The authors are based at Danish and South African higher education institutions and have contributed to DUCED's TFS programme in the positions of overall...

  20. Embodied Learning

    Science.gov (United States)

    Stolz, Steven A.

    2015-01-01

    This article argues that psychological discourse fails miserably to provide an account of learning that can explain how humans come to understand, particularly understanding that has been grasped meaningfully. Part of the problem with psychological approaches to learning is that they are disconnected from the integral role embodiment plays in how…

  1. Distance learning

    Directory of Open Access Journals (Sweden)

    Katarina Pucelj

    2006-12-01

    Full Text Available I would like to underline the role and importance of knowledge, which is acquired by individuals as a result of a learning process and experience. I have established that a form of learning, such as distance learning definitely contributes to a higher learning quality and leads to innovative, dynamic and knowledgebased society. Knowledge and skills enable individuals to cope with and manage changes, solve problems and also create new knowledge. Traditional learning practices face new circumstances, new and modern technologies appear, which enable quick and quality-oriented knowledge implementation. The centre of learning process at distance learning is to increase the quality of life of citizens, their competitiveness on the workforce market and ensure higher economic growth. Intellectual capital is the one, which represents the biggest capital of each society and knowledge is the key factor for succes of everybody, who are fully aware of this. Flexibility, openness and willingness of people to follow new IT solutions form suitable environment for developing and deciding to take up distance learning.

  2. Legitimate Learning.

    Science.gov (United States)

    Stevenson, John

    1997-01-01

    What is considered legitimate learning is culturally and contextually specific, depending on what values are involved. Different values are engaged depending on whether legitimate learning is considered transformation of the individual in relation to self, in relation to society, or in relation to the workplace. (SK)

  3. Machine Learning.

    Science.gov (United States)

    Kirrane, Diane E.

    1990-01-01

    As scientists seek to develop machines that can "learn," that is, solve problems by imitating the human brain, a gold mine of information on the processes of human learning is being discovered, expert systems are being improved, and human-machine interactions are being enhanced. (SK)

  4. Parts of the Whole: Learn More, Learn Better

    Directory of Open Access Journals (Sweden)

    Dorothy Wallace

    2012-01-01

    Full Text Available Building on previous columns in Numeracy, this column analyzes various teaching techniques in terms of their ability to build cognitive schema, extend existing schema, reinforce learning, move mean understanding of a group of students, and reduce variance in understanding of a group. We offer a pedagogical cycle as an example of how to address multiple learning goals using common teaching methods.

  5. Distributed scheduling for autonomous vehicles by reinforcement learning; Kyoka gakushu ni yoru mujin hansosha no bunsangata scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Unoki, T.; Suetake, N. [Oki Electric Industry Co. Ltd., Tokyo (Japan)

    1997-08-20

    In this paper, we propose an autonomous vehicle scheduling schema in large physical distribution terminals publicly used as the next generation wide area physical distribution bases. This schema uses Learning Automaton for vehicles scheduling based on Contract Net Protocol, in order to obtain useful emergent behaviors of agents in the system based on the local decision-making of each agent. The state of the automaton is updated at each instant on the basis of new information that includes the arrival estimation time of vehicles. Each agent estimates the arrival time of vehicles by using Bayesian learning process. Using traffic simulation, we evaluate the schema in various simulated environments. The result shows the advantage of the schema over when each agent provides the same criteria from the top down, and each agent voluntarily generates criteria via interactions with the environment, playing an individual role in tie system. 22 refs., 5 figs., 2 tabs.

  6. Effectiveness of an educational video as an instrument to refresh and reinforce the learning of a nursing technique: a randomized controlled trial.

    Science.gov (United States)

    Salina, Loris; Ruffinengo, Carlo; Garrino, Lorenza; Massariello, Patrizia; Charrier, Lorena; Martin, Barbara; Favale, Maria Santina; Dimonte, Valerio

    2012-05-01

    The Undergraduate Nursing Course has been using videos for the past year or so. Videos are used for many different purposes such as during lessons, nurse refresher courses, reinforcement, and sharing and comparison of knowledge with the professional and scientific community. The purpose of this study was to estimate the efficacy of the video (moving an uncooperative patient from the supine to the lateral position) as an instrument to refresh and reinforce nursing techniques. A two-arm randomized controlled trial (RCT) design was chosen: both groups attended lessons in the classroom as well as in the laboratory; a month later while one group received written information as a refresher, the other group watched the video. Both groups were evaluated in a blinded fashion. A total of 223 students agreed to take part in the study. The difference observed between those who had seen the video and those who had read up on the technique turned out to be an average of 6.19 points in favour of the first (P video were better able to apply the technique, resulting in a better performance. The video, therefore, represents an important tool to refresh and reinforce previous learning.

  7. Blended Learning as Transformational Institutional Learning

    Science.gov (United States)

    VanDerLinden, Kim

    2014-01-01

    This chapter reviews institutional approaches to blended learning and the ways in which institutions support faculty in the intentional redesign of courses to produce optimal learning. The chapter positions blended learning as a strategic opportunity to engage in organizational learning.

  8. Unravelling learning within multinational corporations

    NARCIS (Netherlands)

    Saka-Helmhout, Ayse

    This article explores the impact of institutional variation on the extent to which subsidiary firms learn from multinational corporations. Learning is conceptualized here as consisting of two aspects: knowledge flow and reinforcement of or change in routines to incorporate the behaviourist

  9. Learning Theory and Prosocial Behavior

    Science.gov (United States)

    Rosenhan, D. L.

    1972-01-01

    Although theories of learning which stress the role of reinforcement can help us understand altruistic behaviors, it seems clear that a more complete comprehension calls for an expansion of our notions of learning, such that they incorporate affect and cognition. (Author/JM)

  10. Immediate and Long-Term Memory for Reinforcement Context: The Development of Learned Expectancies in Early Infancy.

    Science.gov (United States)

    Mast, Vicki K.; And Others

    1980-01-01

    Tested the persistence over 24 hours of reward-expectation habits in infants. A comparison was made between the responses of two groups of infants (infants with a history of reinforcement with large, complex mobiles, and infants with no prior history of reinforcement with mobiles) on a task reinforced by a small mobile. (Author/SS)

  11. Teacher learning as workplace learning

    NARCIS (Netherlands)

    Imants, J.; Van Veen, K.

    2010-01-01

    Against the background of increasing attention in teacher professional development programs for situating teacher learning in the workplace, an overview is given of what is known in general and in educational workplace learning literature on the characteristics and conditions of the workplace.

  12. Learning, Learning Organisations and the Global Enterprise

    Science.gov (United States)

    Manikutty, Sankaran

    2009-01-01

    The steadily increasing degree of globalisation of enterprises implies development of many skills, among which the skills to learn are among the most important. Learning takes place at the individual level, but collective learning and organisational learning are also important. Learning styles of individuals are different and learning styles are…

  13. Can machine learning explain human learning?

    NARCIS (Netherlands)

    Vahdat, M.; Oneto, L.; Anguita, D.; Funk, M.; Rauterberg, G.W.M.

    2016-01-01

    Learning Analytics (LA) has a major interest in exploring and understanding the learning process of humans and, for this purpose, benefits from both Cognitive Science, which studies how humans learn, and Machine Learning, which studies how algorithms learn from data. Usually, Machine Learning is

  14. Evaluation of learning materials

    DEFF Research Database (Denmark)

    Bundsgaard, Jeppe; Hansen, Thomas Illum

    2011-01-01

    This paper presents a holistic framework for evaluating learning materials and designs for learning. A holistic evaluation comprises investigations of the potential learning potential, the actualized learning potential, and the actual learning. Each aspect is explained and exemplified through...

  15. Learning Spaces

    CERN Document Server

    Falmagne, Jean-Claude

    2011-01-01

    Learning spaces offer a rigorous mathematical foundation for practical systems of educational technology. Learning spaces generalize partially ordered sets and are special cases of knowledge spaces. The various structures are investigated from the standpoints of combinatorial properties and stochastic processes. Leaning spaces have become the essential structures to be used in assessing students' competence of various topics. A practical example is offered by ALEKS, a Web-based, artificially intelligent assessment and learning system in mathematics and other scholarly fields. At the heart of A

  16. Supportive Learning: Linear Learning and Collaborative Learning

    Science.gov (United States)

    Lee, Bih Ni; Abdullah, Sopiah; Kiu, Su Na

    2016-01-01

    This is a conceptual paper which is trying to look at the educational technology is not limited to high technology. However, electronic educational technology, also known as e-learning, has become an important part of today's society, which consists of a wide variety of approaches to digitization, components and methods of delivery. In the…

  17. Learning to learn: self-managed learning

    Directory of Open Access Journals (Sweden)

    Jesús Miranda Izquierdo

    2006-09-01

    Full Text Available Thi is article analyzes the potentialities and weaknesses that non directive Pedagogy presents, an example of the so called self managed pedagogy, whose postulates are good to analyze for the contributions that this position can make to the search of new ways of learning.

  18. Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chikkagoudar, Satish; Chatterjee, Samrat; Thomas, Dennis G.; Carroll, Thomas E.; Muller, George

    2017-04-21

    The absence of a robust and unified theory of cyber dynamics presents challenges and opportunities for using machine learning based data-driven approaches to further the understanding of the behavior of such complex systems. Analysts can also use machine learning approaches to gain operational insights. In order to be operationally beneficial, cybersecurity machine learning based models need to have the ability to: (1) represent a real-world system, (2) infer system properties, and (3) learn and adapt based on expert knowledge and observations. Probabilistic models and Probabilistic graphical models provide these necessary properties and are further explored in this chapter. Bayesian Networks and Hidden Markov Models are introduced as an example of a widely used data driven classification/modeling strategy.

  19. Learning Leadership

    DEFF Research Database (Denmark)

    Hertel, Frederik; Fast, Alf Michael

    2018-01-01

    Is leadership a result of inheritance or is it something one learns during formal learning in e.g. business schools? This is the essential question addressed in this article. The article is based on a case study involving a new leader in charge of a group of profession practitioners. The leader...... promotes his leadership as a profession comparable to the professions of practitioners. This promotion implies that leadership is something one can and probably must learn during formal learning. The practitioners on the other hand reject this comprehension of leadership and long for a fellow practitioner...... to lead the organization. While asked they are unable to describe how, where and when they think a practitioner develops leadership skills necessary for leading fellows. In the following we will start analysing the case in order to comprehend and discuss both the professional leaders and the practitioners...

  20. Group learning

    DEFF Research Database (Denmark)

    Pimentel, Ricardo; Noguira, Eloy Eros da Silva; Elkjær, Bente

    The article presents a study that aims at the apprehension of the group learning in a top management team composed by teachers in a Brazilian Waldorf school whose management is collective. After deciding to extend the school, they had problems recruiting teachers who were already trained based...... on the Steiner´s ideas, which created practical problems for conducting management activities. The research seeks to understand how that group of teachers collectively manage the school, facing the lack of resources, a significant heterogeneity in the relationships, and the conflicts and contradictions......, and they are interrelated to the group learning as the construction, maintenance and reconstruction of the intelligibility of practices. From this perspective, it can be said that learning is a practice and not an exceptional phenomenon. Building, maintaining and rebuilding the intelligibility is the group learning...

  1. Learning Disabilities

    Science.gov (United States)

    ... NICHD) See all related organizations Publications Problemas de aprendizaje Order NINDS Publications Patient Organizations CHADD - Children and ... NICHD) See all related organizations Publications Problemas de aprendizaje Order NINDS Publications Definition Learning disabilities are disorders ...

  2. Reflective Learning

    African Journals Online (AJOL)

    dell

    The experimental group students used learning log on a weekly basis while the control group did not. ... The term “memory” in psychology usually denotes an interest in the retention ... activities that contribute to information being remembered.

  3. Overcoming Learned Helplessness in Community College Students.

    Science.gov (United States)

    Roueche, John E.; Mink, Oscar G.

    1982-01-01

    Reviews research on the effects of repeated experiences of helplessness and on locus of control. Identifies conditions necessary for overcoming learned helplessness; i.e., the potential for learning to occur; consistent reinforcement; relevant, valued reinforcers; and favorable psychological situation. Recommends eight ways for teachers to…

  4. Switching dynamics of multi-agent learning

    NARCIS (Netherlands)

    Vrancx, P.; Tuyls, K.P.; Westra, R.

    2008-01-01

    This paper presents the dynamics of multi-agent reinforcement learning in multiple state problems. We extend previous work that formally modelled the relation between reinforcement learning agents and replicator dynamics in stateless multi-agent games. More precisely, in this work we use a

  5. Infant Contingency Learning in Different Cultural Contexts

    Science.gov (United States)

    Graf, Frauke; Lamm, Bettina; Goertz, Claudia; Kolling, Thorsten; Freitag, Claudia; Spangler, Sibylle; Fassbender, Ina; Teubert, Manuel; Vierhaus, Marc; Keller, Heidi; Lohaus, Arnold; Schwarzer, Gudrun; Knopf, Monika

    2012-01-01

    Three-month-old Cameroonian Nso farmer and German middle-class infants were compared regarding learning and retention in a computerized mobile task. Infants achieving a preset learning criterion during reinforcement were tested for immediate and long-term retention measured in terms of an increased response rate after reinforcement and after a…

  6. The Curriculum-Faculty-Reinforcement Alignment and Its Effect on Learning Retention of Core Marketing Concepts of Marketing Capstone Students

    Science.gov (United States)

    Raska, David; Keller, Eileen Weisenbach; Shaw, Doris

    2014-01-01

    Curriculum-Faculty-Reinforcement (CFR) alignment is an alignment between fundamental marketing concepts that are integral to the mastery of knowledge expected of our marketing graduates, their perceived importance by the faculty, and their level of reinforcement throughout core marketing courses required to obtain a marketing degree. This research…

  7. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.

    Science.gov (United States)

    Golkhou, Vahid; Parnianpour, Mohamad; Lucas, Caro

    2005-04-01

    In this study, we have used a single link system with a pair of muscles that are excited with alpha and gamma signals to achieve both point to point and oscillatory movements with variable amplitude and frequency.The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear muscle-like-actuators for control purposes, existence of nonlinear spindle-like sensors and Golgi tendon organ-like sensor, actions of gravity and external loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops.A reinforcement learning method with an actor-critic (AC) architecture instead of middle and low level of central nervous system (CNS), is used to track a desired trajectory. The actor in this structure is a two layer feedforward neural network and the critic is a model of the cerebellum. The critic is trained by state-action-reward-state-action (SARSA) method. The critic will train the actor by supervisory learning based on the prior experiences. Simulation studies of oscillatory movements based on the proposed algorithm demonstrate excellent tracking capability and after 280 epochs the RMS error for position and velocity profiles were 0.02, 0.04 rad and rad/s, respectively.

  8. Interorganizational learning systems

    DEFF Research Database (Denmark)

    Hjalager, Anne-Mette

    1999-01-01

    The occurrence of organizational and interorganizational learning processes is not only the result of management endeavors. Industry structures and market related issues have substantial spill-over effects. The article reviews literature, and it establishes a learning model in which elements from...... organizational environments are included into a systematic conceptual framework. The model allows four types of learning to be identified: P-learning (professional/craft systems learning), T-learning (technology embedded learning), D-learning (dualistic learning systems, where part of the labor force is exclude...... from learning), and S-learning (learning in social networks or clans). The situation related to service industries illustrates the typology....

  9. Collective Learning in Games through Social Networks

    NARCIS (Netherlands)

    Kosterman, S.; Gierasimczuk, N.; Armentano, M.G.; Monteserin, A.; Tang, J.; Yannibelli, V.

    2015-01-01

    This paper argues that combining social networks communication and games can positively influence the learning behavior of players. We propose a computational model that combines features of social network learning (communication) and game-based learning (strategy reinforcement). The focus is on

  10. Learning-based diagnosis and repair

    NARCIS (Netherlands)

    Roos, Nico

    2017-01-01

    This paper proposes a new form of diagnosis and repair based on reinforcement learning. Self-interested agents learn locally which agents may provide a low quality of service for a task. The correctness of learned assessments of other agents is proved under conditions on exploration versus

  11. Lifelong Learning

    DEFF Research Database (Denmark)

    Krogh, Lone; Jensen, Annie Aarup

    2010-01-01

    Master education for adults has become a strategy for Lifelong Learning among many well-educated people in Denmark. This type of master education is part of the ‘parallel education system' in Denmark. As one of the first Danish universities who offered this type of Master education, Aalborg...... the intended as well as the unintended effects (personal and professional) of the master education. The data have been gathered among graduates from a specific master education, Master in Learning Processes, and the paper will draw on results from a quantitative survey based on a questionnaire answered by 120...

  12. Learning SPARQL

    CERN Document Server

    DuCharme, Bob

    2011-01-01

    Get hands-on experience with SPARQL, the RDF query language that's become a key component of the semantic web. With this concise book, you will learn how to use the latest version of this W3C standard to retrieve and manipulate the increasing amount of public and private data available via SPARQL endpoints. Several open source and commercial tools already support SPARQL, and this introduction gets you started right away. Begin with how to write and run simple SPARQL 1.1 queries, then dive into the language's powerful features and capabilities for manipulating the data you retrieve. Learn wha

  13. Deep Learning in Open Source Learning Streams

    DEFF Research Database (Denmark)

    Kjærgaard, Thomas

    2016-01-01

    This chapter presents research on deep learning in a digital learning environment and raises the question if digital instructional designs can catalyze deeper learning than traditional classroom teaching. As a theoretical point of departure the notion of ‘situated learning’ is utilized...... and contrasted to the notion of functionalistic learning in a digital context. The mechanism that enables deep learning in this context is ‘The Open Source Learning Stream’. ‘The Open Source Learning Stream’ is the notion of sharing ‘learning instances’ in a digital space (discussion board, Facebook group......, unistructural, multistructural or relational learning. The research concludes that ‘The Open Source Learning Stream’ can catalyze deep learning and that there are four types of ‘Open Source Learning streams’; individual/ asynchronous, individual/synchronous, shared/asynchronous and shared...

  14. Mastering machine learning with scikit-learn

    CERN Document Server

    Hackeling, Gavin

    2014-01-01

    If you are a software developer who wants to learn how machine learning models work and how to apply them effectively, this book is for you. Familiarity with machine learning fundamentals and Python will be helpful, but is not essential.

  15. Transforming learning?

    Science.gov (United States)

    1999-09-01

    A new Learning and Skills Council for post-16 learning is the latest proposal from the UK Government in its attempt to ensure a highly skilled workforce for the next century. Other aims will be to reduce the variability in standards of the existing post-16 system, coordination and coherence between further education and training, and a reduction in the duplication and layers in contracting and funding. The proposals include: a national Learning and Skills Council, with 40-50 local Learning and Skills Councils to develop local plans; a strengthened strategic role for business in education and training, influencing a budget of #5bn a radical new youth programme entitled `Connexions', with dedicated personal advisors for young people; greater cooperation between sixth forms and colleges; and the establishment of an independent inspectorate covering all work-related learning and training, to include a new role for Ofsted in inspecting the provision for 16-19 year-olds in schools and colleges. It is hoped that this programme will build on the successes of the previous systems and that savings of at least #50m can be achieved through streamlining and the reduction in bureaucracy. The intentions are set out in a White Paper, Learning to Succeed, which is available from the Stationery Office and bookshops, as well as on the website www.dfee.gov.uk/post16. Published in addition to the White Paper was `School Sixth form funding: a consultation paper' (available from DfEE publications, Prolog, PO Box 5050, Sherwood Park, Annesley, Nottingham NG15 0DJ) and `Transition plan for the post-16 education and training and for local delivery of support for small firms' (available from Trevor Tucknutt, TECSOP Division, Level 3, Department for Education and Employment, Moorfoot, Sheffield S1 4PQ). The deadline for comments on both the sixth form consultation document and the White Paper is 15 October 1999. Almost simultaneously with the announcement of the above proposals came the

  16. Deepening Learning through Learning-by-Inventing

    OpenAIRE

    Apiola, Mikko; Tedre, Matti

    2013-01-01

    It has been shown that deep approaches to learning, intrinsic motivation, and self-regulated learning have strong positive effects on learning. How those pedagogical theories can be integrated in computing curricula is, however, still lacking empirically grounded analyses. This study integrated, in a robotics-based programming class, a method of learning-by-inventing, and studied its qualitative effects on students’ learning through 144 interviews. Five findings were related with learning the...

  17. Learning and Behavior

    Science.gov (United States)

    ... List About PPMD Events News Login By Area Learning & Behavior Attention, Listening & Learning Autism Spectrum Disorder (ASD) ... Care Guidelines ❯ By Area ❯ Learning & Behavior Share Print Learning & Behavior Facts to Remember People with Duchenne may ...

  18. Learning via Query Synthesis

    KAUST Repository

    Alabdulmohsin, Ibrahim

    2017-01-01

    Active learning is a subfield of machine learning that has been successfully used in many applications. One of the main branches of active learning is query synthe- sis, where the learning agent constructs artificial queries from scratch in order

  19. Managing Learning for Performance.

    Science.gov (United States)

    Kuchinke, K. Peter

    1995-01-01

    Presents findings of organizational learning literature that could substantiate claims of learning organization proponents. Examines four learning processes and their contribution to performance-based learning management: knowledge acquisition, information distribution, information interpretation, and organizational memory. (SK)

  20. Learning Object Repositories

    Science.gov (United States)

    Lehman, Rosemary

    2007-01-01

    This chapter looks at the development and nature of learning objects, meta-tagging standards and taxonomies, learning object repositories, learning object repository characteristics, and types of learning object repositories, with type examples. (Contains 1 table.)

  1. Blocking in Category Learning

    OpenAIRE

    Bott, Lewis; Hoffman, Aaron B.; Murphy, Gregory L.

    2007-01-01

    Many theories of category learning assume that learning is driven by a need to minimize classification error. When there is no classification error, therefore, learning of individual features should be negligible. We tested this hypothesis by conducting three category learning experiments adapted from an associative learning blocking paradigm. Contrary to an error-driven account of learning, participants learned a wide range of information when they learned about categories, and blocking effe...

  2. Learned Helplessness

    Science.gov (United States)

    Hooker, Carol E.

    1976-01-01

    Learned helplessness--the belief that a person's actions have no influence on the outcome of an event--is similar in many respects to the crisis state and depression. The author shows how this impaired social and psychological functioning occurs and identifies techniques that the social worker can use to prevent it. (Author)

  3. Learning Disabilities.

    Science.gov (United States)

    Neuwirth, Sharyn

    This booklet uses hypothetical case examples to illustrate the definition, causal theories, and specific types of learning disabilities (LD). The cognitive and language performance of students with LD is compared to standard developmental milestones, and common approaches to the identification and education of children with LD are outlined.…

  4. Learning Together

    Science.gov (United States)

    Kaufman, Sherry

    2014-01-01

    In spring 2012, Sherry Kaufman, a consultant at Francis W. Parker School in Chicago, was asked to support kindergarten teachers in deepening their practice of constructivism and exploring the Reggio Emilia approach to early childhood education. Central to such an approach is the belief that all learning is socially constructed through interaction…

  5. Learning Mongoid

    CERN Document Server

    Rege, Gautam

    2013-01-01

    A step-by-step tutorial with focused examples that will help you build scalable, high performance Rails web applications with Mongoid.If you are an application developer who wants to learn how to use Mongoid in a Rails application, this book will be great for you. You are expected to be familiar with MongoDB and Ruby.

  6. Learning Lichens

    Science.gov (United States)

    Thorne, Sarah

    2017-01-01

    The lichen is an ideal subject for student study because it is omnipresent in school yards, easily collected and observed year-round, a pioneer of evolution on land, and a bioindicator of air pollution. After doing fieldwork on this unusual composite organism as an apprentice with a team of lichenologists, Sarah Thorne developed Learning Lichens.…

  7. Learning Ionic

    CERN Document Server

    Ravulavaru, Arvind

    2015-01-01

    This book is intended for those who want to learn how to build hybrid mobile applications using Ionic. It is also ideal for people who want to explore theming for Ionic apps. Prior knowledge of AngularJS is essential to complete this book successfully.

  8. Supervised Learning

    Science.gov (United States)

    Rokach, Lior; Maimon, Oded

    This chapter summarizes the fundamental aspects of supervised methods. The chapter provides an overview of concepts from various interrelated fields used in subsequent chapters. It presents basic definitions and arguments from the supervised machine learning literature and considers various issues, such as performance evaluation techniques and challenges for data mining tasks.

  9. Learning Analytics

    Directory of Open Access Journals (Sweden)

    Erik Duval

    2012-06-01

    Full Text Available This paper provides a brief introduction to the domain of ‘learning analytics’. We first explain the background and idea behind the concept. Then we give a brief overview of current research issues. We briefly list some more controversial issues before concluding.

  10. Learning Ansible

    CERN Document Server

    Mohaan, Madhurranjan

    2014-01-01

    If you want to learn how to use Ansible to automate an infrastructure, either from scratch or to augment your current tooling with Ansible, then this is the book for you. It has plenty of practical examples to help you get to grips with Ansible.

  11. Learning Physics

    International Nuclear Information System (INIS)

    Cohen, E.

    2005-01-01

    Full Text:The issue of Teaching physics vs Learning physics in our institutions of higher learning will be discussed. Physics is taught mainly by frontal lectures an old (and proven) method. The great advancements of the Information Age are introduced by exposing the students to vast amounts of computerized information and directing them to numerical problem solving by interacting with the computer. These modern methods have several drawbacks: 1. Students get the impression of easy material acquisition while in fact it becomes superficial. 2. There is little integration of topics that are taught in different courses. 3. Insufficient interest is built among undergraduate students to pursue studies that involve deeper thinking and independent research (namely, studies towards a doctoral degree). Learning physics is a formative process in the education of physicists, natural scientists and engineers. It must be based on discussions and exchange of ideas among the students, since understanding the studied material means being able to explain it to a colleague. Some universities in the US initiated programs of learning physics by creating an environment in which small groups of students are engaged in discussing material, jointly solving problems and jointly conducting simulated experiments. This is done under the supervision of a mentor. Suggestions for implementing this method in Israel will be discussed

  12. Influences of Formal Learning, Personal Learning Orientation, and Supportive Learning Environment on Informal Learning

    Science.gov (United States)

    Choi, Woojae; Jacobs, Ronald L.

    2011-01-01

    While workplace learning includes formal and informal learning, the relationship between the two has been overlooked, because they have been viewed as separate entities. This study investigated the effects of formal learning, personal learning orientation, and supportive learning environment on informal learning among 203 middle managers in Korean…

  13. From learning objects to learning activities

    DEFF Research Database (Denmark)

    Dalsgaard, Christian

    2005-01-01

    This paper discusses and questions the current metadata standards for learning objects from a pedagogical point of view. From a social constructivist approach, the paper discusses how learning objects can support problem based, self-governed learning activities. In order to support this approach......, it is argued that it is necessary to focus on learning activities rather than on learning objects. Further, it is argued that descriptions of learning objectives and learning activities should be separated from learning objects. The paper presents a new conception of learning objects which supports problem...... based, self-governed activities. Further, a new way of thinking pedagogy into learning objects is introduced. It is argued that a lack of pedagogical thinking in learning objects is not solved through pedagogical metadata. Instead, the paper suggests the concept of references as an alternative...

  14. How we learn

    DEFF Research Database (Denmark)

    Illeris, Knud

    How We Learn, deals with the fundamental issues of the processes of learning, critically assessing different types of learning and obstacles to learning. It also considers a broad range of other important questions in relation to learning such as: modern research into learning and brain functions......, self-perception, motivation and competence development, teaching, intelligence and learning style, learning in relation to gender and life age. The book provides a comprehensive introduction to both traditional learning theory and the newest international research into learning processes, while...... at the same time being an innovative contribution to a new and more holistic understanding of learning including discussion on school-based learning, net-based learning, workplace learning and educational politics. How We Learn examines all the key factors that help to create a holistic understanding of what...

  15. Using Learning Games to Meet Learning Objectives

    DEFF Research Database (Denmark)

    Henriksen, Thomas Duus

    2013-01-01

    This paper addresses the question on how learning games can be used to meet with the different levels in Bloom’s and the SOLO taxonomy, which are commonly used for evaluating the learning outcome of educational activities. The paper discusses the quality of game-based learning outcomes based on a...... on a case study of the learning game 6Styles....

  16. Still to Learn from Vicarious Learning

    Science.gov (United States)

    Mayes, J. T.

    2015-01-01

    The term "vicarious learning" was introduced in the 1960s by Bandura, who demonstrated how learning can occur through observing the behaviour of others. Such social learning is effective without the need for the observer to experience feedback directly. More than twenty years later a series of studies on vicarious learning was undertaken…

  17. Learning Effectiveness of a Strategic Learning Course

    Science.gov (United States)

    Burchard, Melinda S.; Swerdzewski, Peter

    2009-01-01

    The effectiveness of a postsecondary strategic learning course for improving metacognitive awareness and regulation was evaluated through systematic program assessment. The course emphasized students' awareness of personal learning through the study of learning theory and through practical application of specific learning strategies. Students…

  18. Social Media and Seamless Learning: Lessons Learned

    Science.gov (United States)

    Panke, Stefanie; Kohls, Christian; Gaiser, Birgit

    2017-01-01

    The paper discusses best practice approaches and metrics for evaluation that support seamless learning with social media. We draw upon the theoretical frameworks of social learning theory, transfer learning (bricolage), and educational design patterns to elaborate upon different ideas for ways in which social media can support seamless learning.…

  19. Deep Learning

    DEFF Research Database (Denmark)

    Jensen, Morten Bornø; Bahnsen, Chris Holmberg; Nasrollahi, Kamal

    2018-01-01

    I løbet af de sidste 10 år er kunstige neurale netværk gået fra at være en støvet, udstødt tekno-logi til at spille en hovedrolle i udviklingen af kunstig intelligens. Dette fænomen kaldes deep learning og er inspireret af hjernens opbygning.......I løbet af de sidste 10 år er kunstige neurale netværk gået fra at være en støvet, udstødt tekno-logi til at spille en hovedrolle i udviklingen af kunstig intelligens. Dette fænomen kaldes deep learning og er inspireret af hjernens opbygning....

  20. Learning Java

    CERN Document Server

    Niemeyer, Patrick

    2005-01-01

    Version 5.0 of the Java 2 Standard Edition SDK is the most important upgrade since Java first appeared a decade ago. With Java 5.0, you'll not only find substantial changes in the platform, but to the language itself-something that developers of Java took five years to complete. The main goal of Java 5.0 is to make it easier for you to develop safe, powerful code, but none of these improvements makes Java any easier to learn, even if you've programmed with Java for years. And that means our bestselling hands-on tutorial takes on even greater significance. Learning Java is the most widely sou

  1. Learning Raspbian

    CERN Document Server

    Harrington, William

    2015-01-01

    This book is intended for developers who have worked with the Raspberry Pi and who want to learn how to make the most of the Raspbian operating system and their Raspberry Pi. Whether you are a beginner to the Raspberry Pi or a seasoned expert, this book will make you familiar with the Raspbian operating system and teach you how to get your Raspberry Pi up and running.

  2. Guided discovery learning in geometry learning

    Science.gov (United States)

    Khasanah, V. N.; Usodo, B.; Subanti, S.

    2018-03-01

    Geometry is a part of the mathematics that must be learned in school. The purpose of this research was to determine the effect of Guided Discovery Learning (GDL) toward geometry learning achievement. This research had conducted at junior high school in Sukoharjo on academic years 2016/2017. Data collection was done based on student’s work test and documentation. Hypothesis testing used two ways analysis of variance (ANOVA) with unequal cells. The results of this research that GDL gave positive effect towards mathematics learning achievement. GDL gave better mathematics learning achievement than direct learning. There was no difference of mathematics learning achievement between male and female. There was no an interaction between sex differences and learning models toward student’s mathematics learning achievement. GDL can be used to improve students’ mathematics learning achievement in geometry.

  3. The Effects of Sensor Performance as Modeled by Signal Detection Theory on the Performance of Reinforcement Learning in a Target Acquisition Task

    Science.gov (United States)

    Quirion, Nate

    Unmanned Aerial Systems (UASs) today are fulfilling more roles than ever before. There is a general push to have these systems feature more advanced autonomous capabilities in the near future. To achieve autonomous behavior requires some unique approaches to control and decision making. More advanced versions of these approaches are able to adapt their own behavior and examine their past experiences to increase their future mission performance. To achieve adaptive behavior and decision making capabilities this study used Reinforcement Learning algorithms. In this research the effects of sensor performance, as modeled through Signal Detection Theory (SDT), on the ability of RL algorithms to accomplish a target localization task are examined. Three levels of sensor sensitivity are simulated and compared to the results of the same system using a perfect sensor. To accomplish the target localization task, a hierarchical architecture used two distinct agents. A simulated human operator is assumed to be a perfect decision maker, and is used in the system feedback. An evaluation of the system is performed using multiple metrics, including episodic reward curves and the time taken to locate all targets. Statistical analyses are employed to detect significant differences in the comparison of steady-state behavior of different systems.

  4. Computer Assisted Language Learning. Routledge Studies in Computer Assisted Language Learning

    Science.gov (United States)

    Pennington, Martha

    2011-01-01

    Computer-assisted language learning (CALL) is an approach to language teaching and learning in which computer technology is used as an aid to the presentation, reinforcement and assessment of material to be learned, usually including a substantial interactive element. This books provides an up-to date and comprehensive overview of…

  5. Learning to Learn Together with CSCL Tools

    Science.gov (United States)

    Schwarz, Baruch B.; de Groot, Reuma; Mavrikis, Manolis; Dragon, Toby

    2015-01-01

    In this paper, we identify "Learning to Learn Together" (L2L2) as a new and important educational goal. Our view of L2L2 is a substantial extension of "Learning to Learn" (L2L): L2L2 consists of learning to collaborate to successfully face L2L challenges. It is inseparable from L2L, as it emerges when individuals face problems…

  6. Machine Learning an algorithmic perspective

    CERN Document Server

    Marsland, Stephen

    2009-01-01

    Traditional books on machine learning can be divided into two groups - those aimed at advanced undergraduates or early postgraduates with reasonable mathematical knowledge and those that are primers on how to code algorithms. The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement le

  7. Operant learning and differential-reinforcement-of-low-rate 36-s responding in 5-HT1A and 5-HT1B receptor knockout mice.

    NARCIS (Netherlands)

    Pattij, T.; Broersen, L.M.; Linde, J. van der; Groenink, L.; Gugten, J. van der; Maes, R.A.A.; Olivier, B.

    2003-01-01

    Previous studies with mice lacking 5-HT(1A) (1AKO) and 5-HT(1B) (1BKO) receptors in hippocampus-dependent learning and memory paradigms, suggest that these receptors play an important role in learning and memory, although their precise role is unclear. In the present study, 1AKO and 1BKO mice were

  8. Technology, Learning, and Individual Differences

    Science.gov (United States)

    Bear, Anne A. Ghost

    2012-01-01

    The learning needs for adults that result from the constant increase in technology are rooted in the adult learning concepts of (a) andragogy, (b) self-directed learning, (c) learning-how-to-learn, (d) real-life learning, and (e) learning strategies. This study described the learning strategies that adults use in learning to engage in an online…

  9. ALTEC Learning Games: Successful Integration of Learning and Gaming

    Science.gov (United States)

    Bacon, Melanie A.; Ault, Marilyn M.

    2009-01-01

    Of the 53 million K-12 students in the United States, 93%, or 51 million, of them play video games (Etuk, 2008). ALTEC Learning Games utilize the excitement of video games to engage students and provide teachers authentic online resources that reinforce skills in math and language arts. Our recent work was partially supported by a partnership with…

  10. Technology enhanced peer learning and peer assessment

    DEFF Research Database (Denmark)

    Henriksen, Christian Bugge; Bregnhøj, Henrik; Rosthøj, Susanne

    2016-01-01

    This paper explores the application of learning designs featuring formalised and structured technology enhanced peer learning. These include student produced learning elements, peer review discussions and peer assessment in the BSc/MSc level summer course Restoration of European Ecosystems and Fr...... be a huge benefit from developing learning design patterns that facilitate informal peer learning and reinforce knowledge sharing practices.......This paper explores the application of learning designs featuring formalised and structured technology enhanced peer learning. These include student produced learning elements, peer review discussions and peer assessment in the BSc/MSc level summer course Restoration of European Ecosystems...... and Freshwaters (REEF), the Master thesis preparation seminars for the Master of Public Health (MPH) and the MOOC course Global Environmental Management (GEM). The application of student produced learning elements and peer review discussions is investigated by analyzing quotes from course evaluations...

  11. Learning to Rank for Information Retrieval from User Interactions

    NARCIS (Netherlands)

    Hofmann, K.; Whiteson, S.; Schuth, A.; de Rijke, M.

    2014-01-01

    In this article we give an overview of our recent work on online learning to rank for information retrieval (IR). This work addresses IR from a reinforcement learning (RL) point of view, with the aim to enable systems that can learn directly from interactions with their users. Learning directly from

  12. Concurrent Learning of Control in Multi agent Sequential Decision Tasks

    Science.gov (United States)

    2018-04-17

    Concurrent Learning of Control in Multi-agent Sequential Decision Tasks The overall objective of this project was to develop multi-agent reinforcement... learning (MARL) approaches for intelligent agents to autonomously learn distributed control policies in decentral- ized partially observable... learning of policies in Dec-POMDPs, established performance bounds, evaluated these algorithms both theoretically and empirically, The views

  13. Human Machine Learning Symbiosis

    Science.gov (United States)

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  14. Targeted Learning

    CERN Document Server

    van der Laan, Mark J

    2011-01-01

    The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the targe

  15. Learning Vaadin

    CERN Document Server

    Frankel, Nicolas

    2011-01-01

    This book begins with a tutorial on Vaadin 7, followed by a process of planning, analyzing, building, and deploying a fully functional RIA while covering troubleshooting details along the way, making it an invaluable resource for answers to all your Vaadin questions. If you are a Java developer with some experience in Java web development and want to enter the world of Rich Internet Applications this technology and book are ideal for you. Learning Vaadin will be perfect as your next step towards building eye-candy dynamic web applications on a Java-based platform.

  16. Learning Cypher

    CERN Document Server

    Panzarino, Onofrio

    2014-01-01

    An easy-to-follow guide full of tips and examples of real-world applications. In each chapter, a thorough example will show you the concepts in action, followed by a detailed explanation.This book is intended for those who want to learn how to create, query, and maintain a graph database, or who want to migrate to a graph database from SQL. It would be helpful to have some familiarity with Java and/or SQL, but no prior experience is required.

  17. Learning Perl

    CERN Document Server

    Schwartz, Randal; Phoenix, Tom

    2011-01-01

    If you're just getting started with Perl, this is the book you want-whether you're a programmer, system administrator, or web hacker. Nicknamed "the Llama" by two generations of users, this bestseller closely follows the popular introductory Perl course taught by the authors since 1991. This 6th edition covers recent changes to the language up to version 5.14. Perl is suitable for almost any task on almost any platform, from short fixes to complete web applications. Learning Perl teaches you the basics and shows you how to write programs up to 128 lines long-roughly the size of 90% of the Pe

  18. Learning scikit-learn machine learning in Python

    CERN Document Server

    Garreta, Raúl

    2013-01-01

    The book adopts a tutorial-based approach to introduce the user to Scikit-learn.If you are a programmer who wants to explore machine learning and data-based methods to build intelligent applications and enhance your programming skills, this the book for you. No previous experience with machine-learning algorithms is required.

  19. Reinforcement Learning Multi-Agent Modeling of Decision-Making Agents for the Study of Transboundary Surface Water Conflicts with Application to the Syr Darya River Basin

    Science.gov (United States)

    Riegels, N.; Siegfried, T.; Pereira Cardenal, S. J.; Jensen, R. A.; Bauer-Gottwein, P.

    2008-12-01

    In most economics--driven approaches to optimizing water use at the river basin scale, the system is modelled deterministically with the goal of maximizing overall benefits. However, actual operation and allocation decisions must be made under hydrologic and economic uncertainty. In addition, river basins often cross political boundaries, and different states may not be motivated to cooperate so as to maximize basin- scale benefits. Even within states, competing agents such as irrigation districts, municipal water agencies, and large industrial users may not have incentives to cooperate to realize efficiency gains identified in basin- level studies. More traditional simulation--optimization approaches assume pre-commitment by individual agents and stakeholders and unconditional compliance on each side. While this can help determine attainable gains and tradeoffs from efficient management, such hardwired policies do not account for dynamic feedback between agents themselves or between agents and their environments (e.g. due to climate change etc.). In reality however, we are dealing with an out-of-equilibrium multi-agent system, where there is neither global knowledge nor global control, but rather continuous strategic interaction between decision making agents. Based on the theory of stochastic games, we present a computational framework that allows for studying the dynamic feedback between decision--making agents themselves and an inherently uncertain environment in a spatially and temporally distributed manner. Agents with decision-making control over water allocation such as countries, irrigation districts, and municipalities are represented by reinforcement learning agents and coupled to a detailed hydrologic--economic model. This approach emphasizes learning by agents from their continuous interaction with other agents and the environment. It provides a convenient framework for the solution of the problem of dynamic decision-making in a mixed cooperative / non

  20. Reinforcement learning models of risky choice and the promotion of risk-taking by losses disguised as wins in rats.

    Science.gov (United States)

    Marshall, Andrew T; Kirkpatrick, Kimberly

    2017-07-01

    Risky decisions are inherently characterized by the potential to receive gains or incur losses, and these outcomes have distinct effects on subsequent decision-making. One important factor is that individuals engage in loss-chasing, in which the reception of a loss is followed by relatively increased risk-taking. Unfortunately, the mechanisms of loss-chasing are poorly understood, despite the potential importance for understanding pathological choice behavior. The goal of the present experiment was to illuminate the mechanisms governing individual differences in loss-chasing and risky-choice behaviors. Rats chose between a low-uncertainty outcome that always delivered a variable amount of reward and a high-uncertainty outcome that probabilistically delivered reward. Loss-processing and loss-chasing were assessed in the context of losses disguised as wins (LDWs), which are loss outcomes that are presented along with gain-related stimuli. LDWs have been suggested to interfere with adaptive decision-making in humans and thus potentially increase loss-making. Here, the rats presented with LDWs were riskier, in that they made more choices for the high-uncertainty outcome. A series of nonlinear models were fit to individual rats' data to elucidate the possible psychological mechanisms that best account for individual differences in high-uncertainty choices and loss-chasing behaviors. The models suggested that the rats presented with LDWs were more prone to showing a stay bias following high-uncertainty outcomes compared to rats not presented with LDWs. These results collectively suggest that LDWs acquire conditioned reinforcement properties that encourage continued risk-taking and increase loss-chasing following previous high-risk decisions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).