WorldWideScience

Sample records for learning pattern recognition

  1. Pattern recognition & machine learning

    CERN Document Server

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  2. Deep Learning For Sequential Pattern Recognition

    OpenAIRE

    Safari, Pooyan

    2013-01-01

    Projecte realitzat en el marc d’un programa de mobilitat amb la Technische Universität München (TUM) In recent years, deep learning has opened a new research line in pattern recognition tasks. It has been hypothesized that this kind of learning would capture more abstract patterns concealed in data. It is motivated by the new findings both in biological aspects of the brain and hardware developments which have made the parallel processing possible. Deep learning methods come along with ...

  3. Pattern recognition

    CERN Document Server

    Theodoridis, Sergios

    2003-01-01

    Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to ""learn"" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10

  4. Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling.

    Science.gov (United States)

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Differential theory of learning for efficient neural network pattern recognition

    Science.gov (United States)

    Hampshire, John B., II; Vijaya Kumar, Bhagavatula

    1993-09-01

    We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generate well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.

  6. Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Aleš Procházka

    2018-05-01

    Full Text Available Multimodal signal analysis based on sophisticated sensors, efficient communicationsystems and fast parallel processing methods has a rapidly increasing range of multidisciplinaryapplications. The present paper is devoted to pattern recognition, machine learning, and the analysisof sleep stages in the detection of sleep disorders using polysomnography (PSG data, includingelectroencephalography (EEG, breathing (Flow, and electro-oculogram (EOG signals. The proposedmethod is based on the classification of selected features by a neural network system with sigmoidaland softmax transfer functions using Bayesian methods for the evaluation of the probabilities of theseparate classes. The application is devoted to the analysis of the sleep stages of 184 individualswith different diagnoses, using EEG and further PSG signals. Data analysis points to an averageincrease of the length of the Wake stage by 2.7% per 10 years and a decrease of the length of theRapid Eye Movement (REM stages by 0.8% per 10 years. The mean classification accuracy for givensets of records and single EEG and multimodal features is 88.7% ( standard deviation, STD: 2.1 and89.6% (STD:1.9, respectively. The proposed methods enable the use of adaptive learning processesfor the detection and classification of health disorders based on prior specialist experience andman–machine interaction.

  7. Kernel Learning of Histogram of Local Gabor Phase Patterns for Face Recognition

    Directory of Open Access Journals (Sweden)

    Bineng Zhong

    2008-06-01

    Full Text Available This paper proposes a new face recognition method, named kernel learning of histogram of local Gabor phase pattern (K-HLGPP, which is based on Daugman’s method for iris recognition and the local XOR pattern (LXP operator. Unlike traditional Gabor usage exploiting the magnitude part in face recognition, we encode the Gabor phase information for face classification by the quadrant bit coding (QBC method. Two schemes are proposed for face recognition. One is based on the nearest-neighbor classifier with chi-square as the similarity measurement, and the other makes kernel discriminant analysis for HLGPP (K-HLGPP using histogram intersection and Gaussian-weighted chi-square kernels. The comparative experiments show that K-HLGPP achieves a higher recognition rate than other well-known face recognition systems on the large-scale standard FERET, FERET200, and CAS-PEAL-R1 databases.

  8. Hypothetical Pattern Recognition Design Using Multi-Layer Perceptorn Neural Network For Supervised Learning

    Directory of Open Access Journals (Sweden)

    Md. Abdullah-al-mamun

    2015-08-01

    Full Text Available Abstract Humans are capable to identifying diverse shape in the different pattern in the real world as effortless fashion due to their intelligence is grow since born with facing several learning process. Same way we can prepared an machine using human like brain called Artificial Neural Network that can be recognize different pattern from the real world object. Although the various techniques is exists to implementation the pattern recognition but recently the artificial neural network approaches have been giving the significant attention. Because the approached of artificial neural network is like a human brain that is learn from different observation and give a decision the previously learning rule. Over the 50 years research now a days pattern recognition for machine learning using artificial neural network got a significant achievement. For this reason many real world problem can be solve by modeling the pattern recognition process. The objective of this paper is to present the theoretical concept for pattern recognition design using Multi-Layer Perceptorn neural networkin the algorithm of artificial Intelligence as the best possible way of utilizing available resources to make a decision that can be a human like performance.

  9. Cellular-automata-based learning network for pattern recognition

    Science.gov (United States)

    Tzionas, Panagiotis G.; Tsalides, Phillippos G.; Thanailakis, Adonios

    1991-11-01

    Most classification techniques either adopt an approach based directly on the statistical characteristics of the pattern classes involved, or they transform the patterns in a feature space and try to separate the point clusters in this space. An alternative approach based on memory networks has been presented, its novelty being that it can be implemented in parallel and it utilizes direct features of the patterns rather than statistical characteristics. This study presents a new approach for pattern classification using pseudo 2-D binary cellular automata (CA). This approach resembles the memory network classifier in the sense that it is based on an adaptive knowledge based formed during a training phase, and also in the fact that both methods utilize pattern features that are directly available. The main advantage of this approach is that the sensitivity of the pattern classifier can be controlled. The proposed pattern classifier has been designed using 1.5 micrometers design rules for an N-well CMOS process. Layout has been achieved using SOLO 1400. Binary pseudo 2-D hybrid additive CA (HACA) is described in the second section of this paper. The third section describes the operation of the pattern classifier and the fourth section presents some possible applications. The VLSI implementation of the pattern classifier is presented in the fifth section and, finally, the sixth section draws conclusions from the results obtained.

  10. Machine learning and pattern recognition from surface molecular architectures.

    Science.gov (United States)

    Maksov, Artem; Ziatdinov, Maxim; Fujii, Shintaro; Sumpter, Bobby; Kalinin, Sergei

    The ability to utilize molecular assemblies as data storage devices requires capability to identify individual molecular states on a scale of thousands of molecules. We present a novel method of applying machine learning techniques for extraction of positional and rotational information from ultra-high vacuum scanning tunneling microscopy (STM) images and apply it to self-assembled monolayer of π-bowl sumanene molecules on gold. From density functional theory (DFT) simulations, we assume existence of distinct polar and multiple azimuthal rotational states. We use DFT-generated templates in conjunction with Markov Chain Monte Carlo (MCMC) sampler and noise modeling to create synthetic images representative of our model. We extract positional information of each molecule and use nearest neighbor criteria to construct a graph input to Markov Random Field (MRF) model to identify polar rotational states. We train a convolutional Neural Network (cNN) on a synthetic dataset and combine it with MRF model to classify molecules based on their azimuthal rotational state. We demonstrate effectiveness of such approach compared to other methods. Finally, we apply our approach to experimental images and achieve complete rotational class information extraction. This research was sponsored by the Division of Materials Sciences and Engineering, Office of Science, Basic Energy Sciences, US DOE.

  11. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition

    Science.gov (United States)

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-01-01

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824

  12. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Qi Huang

    2017-06-01

    Full Text Available Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC, by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC. We compared PAC performance with incremental support vector classifier (ISVC and non-adapting SVC (NSVC in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05 and ISVC (13.38% ± 2.62%, p = 0.001, and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle.

  13. Extended pattern recognition scheme for self-learning kinetic Monte Carlo simulations

    International Nuclear Information System (INIS)

    Shah, Syed Islamuddin; Nandipati, Giridhar; Kara, Abdelkader; Rahman, Talat S

    2012-01-01

    We report the development of a pattern recognition scheme that takes into account both fcc and hcp adsorption sites in performing self-learning kinetic Monte Carlo (SLKMC-II) simulations on the fcc(111) surface. In this scheme, the local environment of every under-coordinated atom in an island is uniquely identified by grouping fcc sites, hcp sites and top-layer substrate atoms around it into hexagonal rings. As the simulation progresses, all possible processes, including those such as shearing, reptation and concerted gliding, which may involve fcc-fcc, hcp-hcp and fcc-hcp moves are automatically found, and their energetics calculated on the fly. In this article we present the results of applying this new pattern recognition scheme to the self-diffusion of 9-atom islands (M 9 ) on M(111), where M = Cu, Ag or Ni.

  14. ISOLATED SPEECH RECOGNITION SYSTEM FOR TAMIL LANGUAGE USING STATISTICAL PATTERN MATCHING AND MACHINE LEARNING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    VIMALA C.

    2015-05-01

    Full Text Available In recent years, speech technology has become a vital part of our daily lives. Various techniques have been proposed for developing Automatic Speech Recognition (ASR system and have achieved great success in many applications. Among them, Template Matching techniques like Dynamic Time Warping (DTW, Statistical Pattern Matching techniques such as Hidden Markov Model (HMM and Gaussian Mixture Models (GMM, Machine Learning techniques such as Neural Networks (NN, Support Vector Machine (SVM, and Decision Trees (DT are most popular. The main objective of this paper is to design and develop a speaker-independent isolated speech recognition system for Tamil language using the above speech recognition techniques. The background of ASR system, the steps involved in ASR, merits and demerits of the conventional and machine learning algorithms and the observations made based on the experiments are presented in this paper. For the above developed system, highest word recognition accuracy is achieved with HMM technique. It offered 100% accuracy during training process and 97.92% for testing process.

  15. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    Directory of Open Access Journals (Sweden)

    Marc Wieland

    2014-03-01

    Full Text Available In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS and very high resolution (WorldView-2, Quickbird, Ikonos multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognition tasks. Four classification algorithms, Normal Bayes, K Nearest Neighbors, Random Trees and Support Vector Machines, which represent different concepts in machine learning (probabilistic, nearest neighbor, tree-based, function-based, have been selected and implemented on a free and open-source basis. Particular focus is given to assess the generalization ability of machine learning algorithms and the transferability of trained learning machines between different image types and image scenes. Moreover, the influence of the number and choice of training data, the influence of the size and composition of the feature vector and the effect of image segmentation on the classification accuracy is evaluated.

  16. Optical Pattern Recognition

    Science.gov (United States)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  17. Statistical Pattern Recognition

    CERN Document Server

    Webb, Andrew R

    2011-01-01

    Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions.  It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields,

  18. Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition.

    Science.gov (United States)

    Hansen, Mirko; Zahari, Finn; Ziegler, Martin; Kohlstedt, Hermann

    2017-01-01

    The use of interface-based resistive switching devices for neuromorphic computing is investigated. In a combined experimental and numerical study, the important device parameters and their impact on a neuromorphic pattern recognition system are studied. The memristive cells consist of a layer sequence Al/Al 2 O 3 /Nb x O y /Au and are fabricated on a 4-inch wafer. The key functional ingredients of the devices are a 1.3 nm thick Al 2 O 3 tunnel barrier and a 2.5 mm thick Nb x O y memristive layer. Voltage pulse measurements are used to study the electrical conditions for the emulation of synaptic functionality of single cells for later use in a recognition system. The results are evaluated and modeled in the framework of the plasticity model of Ziegler et al. Based on this model, which is matched to experimental data from 84 individual devices, the network performance with regard to yield, reliability, and variability is investigated numerically. As the network model, a computing scheme for pattern recognition and unsupervised learning based on the work of Querlioz et al. (2011), Sheridan et al. (2014), Zahari et al. (2015) is employed. This is a two-layer feedforward network with a crossbar array of memristive devices, leaky integrate-and-fire output neurons including a winner-takes-all strategy, and a stochastic coding scheme for the input pattern. As input pattern, the full data set of digits from the MNIST database is used. The numerical investigation indicates that the experimentally obtained yield, reliability, and variability of the memristive cells are suitable for such a network. Furthermore, evidence is presented that their strong I - V non-linearity might avoid the need for selector devices in crossbar array structures.

  19. Pattern recognition in spectra

    International Nuclear Information System (INIS)

    Gebran, M; Paletou, F

    2017-01-01

    We present a new automated procedure that simultaneously derives the effective temperature T eff , surface gravity log g , metallicity [ Fe/H ], and equatorial projected rotational velocity v e sin i for stars. The procedure is inspired by the well-known PCA-based inversion of spectropolarimetric full-Stokes solar data, which was used both for Zeeman and Hanle effects. The efficiency and accuracy of this procedure have been proven for FGK, A, and late type dwarf stars of K and M spectral types. Learning databases are generated from the Elodie stellar spectra library using observed spectra for which fundamental parameters were already evaluated or with synthetic data. The synthetic spectra are calculated using ATLAS9 model atmospheres. This technique helped us to detect many peculiar stars such as Am, Ap, HgMn, SiEuCr and binaries. This fast and efficient technique could be used every time a pattern recognition is needed. One important application is the understanding of the physical properties of planetary surfaces by comparing aboard instrument data to synthetic ones. (paper)

  20. Kernel learning algorithms for face recognition

    CERN Document Server

    Li, Jun-Bao; Pan, Jeng-Shyang

    2013-01-01

    Kernel Learning Algorithms for Face Recognition covers the framework of kernel based face recognition. This book discusses the advanced kernel learning algorithms and its application on face recognition. This book also focuses on the theoretical deviation, the system framework and experiments involving kernel based face recognition. Included within are algorithms of kernel based face recognition, and also the feasibility of the kernel based face recognition method. This book provides researchers in pattern recognition and machine learning area with advanced face recognition methods and its new

  1. Pattern Recognition Control Design

    Science.gov (United States)

    Gambone, Elisabeth A.

    2018-01-01

    Spacecraft control algorithms must know the expected vehicle response to any command to the available control effectors, such as reaction thrusters or torque devices. Spacecraft control system design approaches have traditionally relied on the estimated vehicle mass properties to determine the desired force and moment, as well as knowledge of the effector performance to efficiently control the spacecraft. A pattern recognition approach was used to investigate the relationship between the control effector commands and spacecraft responses. Instead of supplying the approximated vehicle properties and the thruster performance characteristics, a database of information relating the thruster ring commands and the desired vehicle response was used for closed-loop control. A Monte Carlo simulation data set of the spacecraft dynamic response to effector commands was analyzed to establish the influence a command has on the behavior of the spacecraft. A tool developed at NASA Johnson Space Center to analyze flight dynamics Monte Carlo data sets through pattern recognition methods was used to perform this analysis. Once a comprehensive data set relating spacecraft responses with commands was established, it was used in place of traditional control methods and gains set. This pattern recognition approach was compared with traditional control algorithms to determine the potential benefits and uses.

  2. Unsupervised Learning and Pattern Recognition of Biological Data Structures with Density Functional Theory and Machine Learning.

    Science.gov (United States)

    Chen, Chien-Chang; Juan, Hung-Hui; Tsai, Meng-Yuan; Lu, Henry Horng-Shing

    2018-01-11

    By introducing the methods of machine learning into the density functional theory, we made a detour for the construction of the most probable density function, which can be estimated by learning relevant features from the system of interest. Using the properties of universal functional, the vital core of density functional theory, the most probable cluster numbers and the corresponding cluster boundaries in a studying system can be simultaneously and automatically determined and the plausibility is erected on the Hohenberg-Kohn theorems. For the method validation and pragmatic applications, interdisciplinary problems from physical to biological systems were enumerated. The amalgamation of uncharged atomic clusters validated the unsupervised searching process of the cluster numbers and the corresponding cluster boundaries were exhibited likewise. High accurate clustering results of the Fisher's iris dataset showed the feasibility and the flexibility of the proposed scheme. Brain tumor detections from low-dimensional magnetic resonance imaging datasets and segmentations of high-dimensional neural network imageries in the Brainbow system were also used to inspect the method practicality. The experimental results exhibit the successful connection between the physical theory and the machine learning methods and will benefit the clinical diagnoses.

  3. Pattern activation/recognition theory of mind.

    Science.gov (United States)

    du Castel, Bertrand

    2015-01-01

    In his 2012 book How to Create a Mind, Ray Kurzweil defines a "Pattern Recognition Theory of Mind" that states that the brain uses millions of pattern recognizers, plus modules to check, organize, and augment them. In this article, I further the theory to go beyond pattern recognition and include also pattern activation, thus encompassing both sensory and motor functions. In addition, I treat checking, organizing, and augmentation as patterns of patterns instead of separate modules, therefore handling them the same as patterns in general. Henceforth I put forward a unified theory I call "Pattern Activation/Recognition Theory of Mind." While the original theory was based on hierarchical hidden Markov models, this evolution is based on their precursor: stochastic grammars. I demonstrate that a class of self-describing stochastic grammars allows for unifying pattern activation, recognition, organization, consistency checking, metaphor, and learning, into a single theory that expresses patterns throughout. I have implemented the model as a probabilistic programming language specialized in activation/recognition grammatical and neural operations. I use this prototype to compute and present diagrams for each stochastic grammar and corresponding neural circuit. I then discuss the theory as it relates to artificial network developments, common coding, neural reuse, and unity of mind, concluding by proposing potential paths to validation.

  4. Pattern recognition and string matching

    CERN Document Server

    Cheng, Xiuzhen

    2002-01-01

    The research and development of pattern recognition have proven to be of importance in science, technology, and human activity. Many useful concepts and tools from different disciplines have been employed in pattern recognition. Among them is string matching, which receives much theoretical and practical attention. String matching is also an important topic in combinatorial optimization. This book is devoted to recent advances in pattern recognition and string matching. It consists of twenty eight chapters written by different authors, addressing a broad range of topics such as those from classifica­ tion, matching, mining, feature selection, and applications. Each chapter is self-contained, and presents either novel methodological approaches or applications of existing theories and techniques. The aim, intent, and motivation for publishing this book is to pro­ vide a reference tool for the increasing number of readers who depend upon pattern recognition or string matching in some way. This includes student...

  5. Application of Machine Learning tools to recognition of molecular patterns in STM images

    Science.gov (United States)

    Maksov, Artem; Ziatdinov, Maxim; Fujii, Shintaro; Kiguchi, Manabu; Higashibayashi, Shuhei; Sakurai, Hidehiro; Kalinin, Sergei; Sumpter, Bobby

    The ability to utilize individual molecules and molecular assemblies as data storage elements has motivated scientist for years, concurrent with the continuous effort to shrink a size of data storage devices in microelectronics industry. One of the critical issues in this effort lies in being able to identify individual molecular assembly units (patterns), on a large scale in an automated fashion of complete information extraction. Here we present a novel method of applying machine learning techniques for extraction of positional and rotational information from scanning tunneling microscopy (STM) images of π-bowl sumanene molecules on gold. We use Markov Random Field (MRF) model to decode the polar rotational states for each molecule in a large scale STM image of molecular film. We further develop an algorithm that uses a convolutional Neural Network combined with MRF and input from density functional theory to classify molecules into different azimuthal rotational classes. Our results demonstrate that a molecular film is partitioned into distinctive azimuthal rotational domains consisting typically of 20-30 molecules. In each domain, the ``bowl-down'' molecules are generally surrounded by six nearest neighbor molecules in ``bowl-up'' configuration, and the resultant overall structure form a periodic lattice of rotational and polar states within each domain. Research was supported by the US Department of Energy.

  6. Automated Categorization Scheme for Digital Libraries in Distance Learning: A Pattern Recognition Approach

    Science.gov (United States)

    Gunal, Serkan

    2008-01-01

    Digital libraries play a crucial role in distance learning. Nowadays, they are one of the fundamental information sources for the students enrolled in this learning system. These libraries contain huge amount of instructional data (text, audio and video) offered by the distance learning program. Organization of the digital libraries is…

  7. Dynamic Learning Style Prediction Method Based on a Pattern Recognition Technique

    Science.gov (United States)

    Yang, Juan; Huang, Zhi Xing; Gao, Yue Xiang; Liu, Hong Tao

    2014-01-01

    During the past decade, personalized e-learning systems and adaptive educational hypermedia systems have attracted much attention from researchers in the fields of computer science Aand education. The integration of learning styles into an intelligent system is a possible solution to the problems of "learning deviation" and…

  8. Fuel pattern recognition device

    International Nuclear Information System (INIS)

    Sato, Tomomi.

    1995-01-01

    The device of the present invention monitors normal fuel exchange upon fuel exchanging operation carried out in a reactor of a nuclear power plant. Namely, a fuel exchanger is movably disposed to the upper portion of the reactor and exchanges fuels. An exclusive computer receives operation signals of the fuel exchanger during operation as inputs, and outputs reactor core fuel pattern information signals to a fuel arrangement diagnosis device. An underwater television camera outputs image signals of a fuel pattern in the reactor core to an image processing device. If there is any change in the image signals for the fuel pattern as a result of the fuel exchange operation of the fuel exchanger, the image processing device outputs the change as image signals to the fuel pattern diagnosis device. The fuel pattern diagnosis device compares the pattern information signals from the exclusive computer with the image signals from the image processing device, to diagnose the result of the fuel exchange operation performed by the fuel exchanger and inform the diagnosis by means of an image display. (I.S.)

  9. In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods.

    Science.gov (United States)

    Cheng, Feixiong; Shen, Jie; Yu, Yue; Li, Weihua; Liu, Guixia; Lee, Philip W; Tang, Yun

    2011-03-01

    There is an increasing need for the rapid safety assessment of chemicals by both industries and regulatory agencies throughout the world. In silico techniques are practical alternatives in the environmental hazard assessment. It is especially true to address the persistence, bioaccumulative and toxicity potentials of organic chemicals. Tetrahymena pyriformis toxicity is often used as a toxic endpoint. In this study, 1571 diverse unique chemicals were collected from the literature and composed of the largest diverse data set for T. pyriformis toxicity. Classification predictive models of T. pyriformis toxicity were developed by substructure pattern recognition and different machine learning methods, including support vector machine (SVM), C4.5 decision tree, k-nearest neighbors and random forest. The results of a 5-fold cross-validation showed that the SVM method performed better than other algorithms. The overall predictive accuracies of the SVM classification model with radial basis functions kernel was 92.2% for the 5-fold cross-validation and 92.6% for the external validation set, respectively. Furthermore, several representative substructure patterns for characterizing T. pyriformis toxicity were also identified via the information gain analysis methods. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. PATTER, Pattern Recognition Data Analysis

    International Nuclear Information System (INIS)

    Cox, L.C. Jr.; Bender, C.F.

    1986-01-01

    1 - Description of program or function: PATTER is an interactive program with extensive facilities for modeling analytical processes and solving complex data analysis problems using statistical methods, spectral analysis, and pattern recognition techniques. PATTER addresses the type of problem generally stated as follows: given a set of objects and a list of measurements made on these objects, is it possible to find or predict a property of the objects which is not directly measurable but is known to define some unknown relationship? When employed intelligently, PATTER will act upon a data set in such a way it becomes apparent if useful information, beyond that already discerned, is contained in the data. 2 - Method of solution: In order to solve the general problem, PATTER contains preprocessing techniques to produce new variables that are related to the values of the measurements which may reduce the number of variables and/or reveal useful information about the 'obscure' property; display techniques to represent the variable space in some way that can be easily projected onto a two- or three-dimensional plot for human observation to see if any significant clustering of points occurs; and learning techniques based on both unsupervised and supervised methods, to extract as much information from the data as possible so that the optimum solution can be found

  11. Data complexity in pattern recognition

    CERN Document Server

    Kam Ho Tin

    2006-01-01

    Machines capable of automatic pattern recognition have many fascinating uses. Algorithms for supervised classification, where one infers a decision boundary from a set of training examples, are at the core of this capability. This book looks at data complexity and its role in shaping the theories and techniques in different disciplines

  12. Applications of chaotic neurodynamics in pattern recognition

    Science.gov (United States)

    Baird, Bill; Freeman, Walter J.; Eeckman, Frank H.; Yao, Yong

    1991-08-01

    Network algorithms and architectures for pattern recognition derived from neural models of the olfactory system are reviewed. These span a range from highly abstract to physiologically detailed, and employ the kind of dynamical complexity observed in olfactory cortex, ranging from oscillation to chaos. A simple architecture and algorithm for analytically guaranteed associative memory storage of analog patterns, continuous sequences, and chaotic attractors in the same network is described. A matrix inversion determines network weights, given prototype patterns to be stored. There are N units of capacity in an N node network with 3N2 weights. It costs one unit per static attractor, two per Fourier component of each sequence, and three to four per chaotic attractor. There are no spurious attractors, and for sequences there is a Liapunov function in a special coordinate system which governs the approach of transient states to stored trajectories. Unsupervised or supervised incremental learning algorithms for pattern classification, such as competitive learning or bootstrap Widrow-Hoff can easily be implemented. The architecture can be ''folded'' into a recurrent network with higher order weights that can be used as a model of cortex that stores oscillatory and chaotic attractors by a Hebb rule. Network performance is demonstrated by application to the problem of real-time handwritten digit recognition. An effective system with on-line learning has been written by Eeckman and Baird for the Macintosh. It utilizes static, oscillatory, and/or chaotic attractors of two kinds--Lorenze attractors, or attractors resulting from chaotically interacting oscillatory modes. The successful application to an industrial pattern recognition problem of a network architecture of considerable physiological and dynamical complexity, developed by Freeman and Yao, is described. The data sets of the problem come in three classes of difficulty, and performance of the biological network is

  13. RECOG-ORNL, Pattern Recognition Data Analysis

    International Nuclear Information System (INIS)

    Begovich, C.L.; Larson, N.M.

    2000-01-01

    Description of program or function: RECOG-ORNL, a general-purpose pattern recognition code, is a modification of the RECOG program, written at Lawrence Livermore National Laboratory. RECOG-ORNL contains techniques for preprocessing, analyzing, and displaying data, and for unsupervised and supervised learning. Data preprocessing routines transform the data into useful representations by auto-calling, selecting important variables, and/or adding products or transformations of the variables of the data set. Data analysis routines use correlations to evaluate the data and interrelationships among the data. Display routines plot the multidimensional patterns in two dimensions or plot histograms, patterns, or one variable versus another. Unsupervised learning techniques search for classes contained inherently in the data. Supervised learning techniques use known information about some of the data to generate predicted properties for an unknown set

  14. Data structures, computer graphics, and pattern recognition

    CERN Document Server

    Klinger, A; Kunii, T L

    1977-01-01

    Data Structures, Computer Graphics, and Pattern Recognition focuses on the computer graphics and pattern recognition applications of data structures methodology.This book presents design related principles and research aspects of the computer graphics, system design, data management, and pattern recognition tasks. The topics include the data structure design, concise structuring of geometric data for computer aided design, and data structures for pattern recognition algorithms. The survey of data structures for computer graphics systems, application of relational data structures in computer gr

  15. Similarity-based pattern analysis and recognition

    CERN Document Server

    Pelillo, Marcello

    2013-01-01

    This accessible text/reference presents a coherent overview of the emerging field of non-Euclidean similarity learning. The book presents a broad range of perspectives on similarity-based pattern analysis and recognition methods, from purely theoretical challenges to practical, real-world applications. The coverage includes both supervised and unsupervised learning paradigms, as well as generative and discriminative models. Topics and features: explores the origination and causes of non-Euclidean (dis)similarity measures, and how they influence the performance of traditional classification alg

  16. Granular neural networks, pattern recognition and bioinformatics

    CERN Document Server

    Pal, Sankar K; Ganivada, Avatharam

    2017-01-01

    This book provides a uniform framework describing how fuzzy rough granular neural network technologies can be formulated and used in building efficient pattern recognition and mining models. It also discusses the formation of granules in the notion of both fuzzy and rough sets. Judicious integration in forming fuzzy-rough information granules based on lower approximate regions enables the network to determine the exactness in class shape as well as to handle the uncertainties arising from overlapping regions, resulting in efficient and speedy learning with enhanced performance. Layered network and self-organizing analysis maps, which have a strong potential in big data, are considered as basic modules,. The book is structured according to the major phases of a pattern recognition system (e.g., classification, clustering, and feature selection) with a balanced mixture of theory, algorithm, and application. It covers the latest findings as well as directions for future research, particularly highlighting bioinf...

  17. MEMBRAIN NEURAL NETWORK FOR VISUAL PATTERN RECOGNITION

    Directory of Open Access Journals (Sweden)

    Artur Popko

    2013-06-01

    Full Text Available Recognition of visual patterns is one of significant applications of Artificial Neural Networks, which partially emulate human thinking in the domain of artificial intelligence. In the paper, a simplified neural approach to recognition of visual patterns is portrayed and discussed. This paper is dedicated for investigators in visual patterns recognition, Artificial Neural Networking and related disciplines. The document describes also MemBrain application environment as a powerful and easy to use neural networks’ editor and simulator supporting ANN.

  18. Pattern Recognition of the Multiple Sclerosis Syndrome

    Science.gov (United States)

    Stewart, Renee; Healey, Kathleen M.

    2017-01-01

    During recent decades, the autoimmune disease neuromyelitis optica spectrum disorder (NMOSD), once broadly classified under the umbrella of multiple sclerosis (MS), has been extended to include autoimmune inflammatory conditions of the central nervous system (CNS), which are now diagnosable with serum serological tests. These antibody-mediated inflammatory diseases of the CNS share a clinical presentation to MS. A number of practical learning points emerge in this review, which is geared toward the pattern recognition of optic neuritis, transverse myelitis, brainstem/cerebellar and hemispheric tumefactive demyelinating lesion (TDL)-associated MS, aquaporin-4-antibody and myelin oligodendrocyte glycoprotein (MOG)-antibody NMOSD, overlap syndrome, and some yet-to-be-defined/classified demyelinating disease, all unspecifically labeled under MS syndrome. The goal of this review is to increase clinicians’ awareness of the clinical nuances of the autoimmune conditions for MS and NMSOD, and to highlight highly suggestive patterns of clinical, paraclinical or imaging presentations in order to improve differentiation. With overlay in clinical manifestations between MS and NMOSD, magnetic resonance imaging (MRI) of the brain, orbits and spinal cord, serology, and most importantly, high index of suspicion based on pattern recognition, will help lead to the final diagnosis. PMID:29064441

  19. Pattern recognition methods in air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Tauber, S

    1978-01-01

    The use of pattern recognition methods for predicting air pollution developments is discussed. Computer analysis of historical pollution data allows comparison in graphical form. An example of crisis prediction for carbon monoxide concentrations, using the pattern recognition method of analysis, is presented. Results of the analysis agreed well with actual CO conditions. (6 graphs, 4 references, 1 table)

  20. Patterns recognition of electric brain activity using artificial neural networks

    Science.gov (United States)

    Musatov, V. Yu.; Pchelintseva, S. V.; Runnova, A. E.; Hramov, A. E.

    2017-04-01

    An approach for the recognition of various cognitive processes in the brain activity in the perception of ambiguous images. On the basis of developed theoretical background and the experimental data, we propose a new classification of oscillating patterns in the human EEG by using an artificial neural network approach. After learning of the artificial neural network reliably identified cube recognition processes, for example, left-handed or right-oriented Necker cube with different intensity of their edges, construct an artificial neural network based on Perceptron architecture and demonstrate its effectiveness in the pattern recognition of the EEG in the experimental.

  1. Applications of evolutionary computation in image processing and pattern recognition

    CERN Document Server

    Cuevas, Erik; Perez-Cisneros, Marco

    2016-01-01

    This book presents the use of efficient Evolutionary Computation (EC) algorithms for solving diverse real-world image processing and pattern recognition problems. It provides an overview of the different aspects of evolutionary methods in order to enable the reader in reaching a global understanding of the field and, in conducting studies on specific evolutionary techniques that are related to applications in image processing and pattern recognition. It explains the basic ideas of the proposed applications in a way that can also be understood by readers outside of the field. Image processing and pattern recognition practitioners who are not evolutionary computation researchers will appreciate the discussed techniques beyond simple theoretical tools since they have been adapted to solve significant problems that commonly arise on such areas. On the other hand, members of the evolutionary computation community can learn the way in which image processing and pattern recognition problems can be translated into an...

  2. Instruction of pattern recognition by MATLAB practice 1

    International Nuclear Information System (INIS)

    1999-06-01

    This book describes the pattern recognition by MATLAB practice. It includes possibility and limit of AI, introduction of pattern recognition a vector and matrix, basic status and a probability theory, a random variable and probability distribution, statistical decision theory, data-mining, gaussian mixture model, a nerve cell modeling such as Hebb's learning rule, LMS learning rule, genetic algorithm, dynamic programming and DTW, HMN on Markov model and HMM's three problems and solution, introduction of SVM with KKT condition and margin optimum, kernel trick and MATLAB practice.

  3. Modulations of eye movement patterns by spatial filtering during the learning and testing phases of an old/new face recognition task.

    Science.gov (United States)

    Lemieux, Chantal L; Collin, Charles A; Nelson, Elizabeth A

    2015-02-01

    In two experiments, we examined the effects of varying the spatial frequency (SF) content of face images on eye movements during the learning and testing phases of an old/new recognition task. At both learning and testing, participants were presented with face stimuli band-pass filtered to 11 different SF bands, as well as an unfiltered baseline condition. We found that eye movements varied significantly as a function of SF. Specifically, the frequency of transitions between facial features showed a band-pass pattern, with more transitions for middle-band faces (≈5-20 cycles/face) than for low-band (≈20 cpf) ones. These findings were similar for the learning and testing phases. The distributions of transitions across facial features were similar for the middle-band, high-band, and unfiltered faces, showing a concentration on the eyes and mouth; conversely, low-band faces elicited mostly transitions involving the nose and nasion. The eye movement patterns elicited by low, middle, and high bands are similar to those previous researchers have suggested reflect holistic, configural, and featural processing, respectively. More generally, our results are compatible with the hypotheses that eye movements are functional, and that the visual system makes flexible use of visuospatial information in face processing. Finally, our finding that only middle spatial frequencies yielded the same number and distribution of fixations as unfiltered faces adds more evidence to the idea that these frequencies are especially important for face recognition, and reveals a possible mediator for the superior performance that they elicit.

  4. Improved pattern recognition systems by hybrid methods

    International Nuclear Information System (INIS)

    Duerr, B.; Haettich, W.; Tropf, H.; Winkler, G.; Fraunhofer-Gesellschaft zur Foerderung der Angewandten Forschung e.V., Karlsruhe

    1978-12-01

    This report describes a combination of statistical and syntactical pattern recongition methods. The hierarchically structured recognition system consists of a conventional statistical classifier, a structural classifier analysing the topological composition of the patterns, a stage reducing the number of hypotheses made by the first two stages, and a mixed stage based on a search for maximum similarity between syntactically generated prototypes and patterns. The stages work on different principles to avoid mistakes made in one stage in the other stages. This concept is applied to the recognition of numerals written without constraints. If no samples are rejected, a recognition rate of 99,5% is obtained. (orig.) [de

  5. Pattern recognition and classification an introduction

    CERN Document Server

    Dougherty, Geoff

    2012-01-01

    The use of pattern recognition and classification is fundamental to many of the automated electronic systems in use today. However, despite the existence of a number of notable books in the field, the subject remains very challenging, especially for the beginner. Pattern Recognition and Classification presents a comprehensive introduction to the core concepts involved in automated pattern recognition. It is designed to be accessible to newcomers from varied backgrounds, but it will also be useful to researchers and professionals in image and signal processing and analysis, and in computer visi

  6. Acoustic Pattern Recognition on Android Devices

    DEFF Research Database (Denmark)

    Møller, Maiken Bjerg; Gaarsdal, Jesper; Steen, Kim Arild

    2013-01-01

    an Android application developed for acoustic pattern recognition of bird species. The acoustic data is recorded using a built-in microphone, and pattern recognition is performed on the device, requiring no network connection. The algorithm is implemented in C++ as a native Android module and the Open......CV library is used for signal processing. We conclude that the approach presented here is a viable solution to pattern recognition problems. Since it requires no network connection, it shows promise in fields such as wildlife research....

  7. Subspace methods for pattern recognition in intelligent environment

    CERN Document Server

    Jain, Lakhmi

    2014-01-01

    This research book provides a comprehensive overview of the state-of-the-art subspace learning methods for pattern recognition in intelligent environment. With the fast development of internet and computer technologies, the amount of available data is rapidly increasing in our daily life. How to extract core information or useful features is an important issue. Subspace methods are widely used for dimension reduction and feature extraction in pattern recognition. They transform a high-dimensional data to a lower-dimensional space (subspace), where most information is retained. The book covers a broad spectrum of subspace methods including linear, nonlinear and multilinear subspace learning methods and applications. The applications include face alignment, face recognition, medical image analysis, remote sensing image classification, traffic sign recognition, image clustering, super resolution, edge detection, multi-view facial image synthesis.

  8. Discriminative learning for speech recognition

    CERN Document Server

    He, Xiadong

    2008-01-01

    In this book, we introduce the background and mainstream methods of probabilistic modeling and discriminative parameter optimization for speech recognition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (MMI), minimum classification error, and minimum phone/word error. The unification is presented, with rigorous mathematical analysis, in a common rational-functio

  9. An inverse problem approach to pattern recognition in industry

    Directory of Open Access Journals (Sweden)

    Ali Sever

    2015-01-01

    Full Text Available Many works have shown strong connections between learning and regularization techniques for ill-posed inverse problems. A careful analysis shows that a rigorous connection between learning and regularization for inverse problem is not straightforward. In this study, pattern recognition will be viewed as an ill-posed inverse problem and applications of methods from the theory of inverse problems to pattern recognition are studied. A new learning algorithm derived from a well-known regularization model is generated and applied to the task of reconstruction of an inhomogeneous object as pattern recognition. Particularly, it is demonstrated that pattern recognition can be reformulated in terms of inverse problems defined by a Riesz-type kernel. This reformulation can be employed to design a learning algorithm based on a numerical solution of a system of linear equations. Finally, numerical experiments have been carried out with synthetic experimental data considering a reasonable level of noise. Good recoveries have been achieved with this methodology, and the results of these simulations are compatible with the existing methods. The comparison results show that the Regularization-based learning algorithm (RBA obtains a promising performance on the majority of the test problems. In prospects, this method can be used for the creation of automated systems for diagnostics, testing, and control in various fields of scientific and applied research, as well as in industry.

  10. Degraded character recognition based on gradient pattern

    Science.gov (United States)

    Babu, D. R. Ramesh; Ravishankar, M.; Kumar, Manish; Wadera, Kevin; Raj, Aakash

    2010-02-01

    Degraded character recognition is a challenging problem in the field of Optical Character Recognition (OCR). The performance of an optical character recognition depends upon printed quality of the input documents. Many OCRs have been designed which correctly identifies the fine printed documents. But, very few reported work has been found on the recognition of the degraded documents. The efficiency of the OCRs system decreases if the input image is degraded. In this paper, a novel approach based on gradient pattern for recognizing degraded printed character is proposed. The approach makes use of gradient pattern of an individual character for recognition. Experiments were conducted on character image that is either digitally written or a degraded character extracted from historical documents and the results are found to be satisfactory.

  11. Chopper model of pattern recognition

    NARCIS (Netherlands)

    van Hemmen, J.L.; Enter, A.C.D. van

    A simple model is proposed that allows an efficient storage and retrieval of random patterns. Also correlated patterns can be handled. The data are stored in an Ising-spin system with ferromagnetic interactions between all the spins and the main idea is to "chop" the system along the boundaries

  12. Reactor noise analysis by statistical pattern recognition methods

    International Nuclear Information System (INIS)

    Howington, L.C.; Gonzalez, R.C.

    1976-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis is presented. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, updating, and data compacting capabilities. System design emphasizes control of the false-alarm rate. Its abilities to learn normal patterns, to recognize deviations from these patterns, and to reduce the dimensionality of data with minimum error were evaluated by experiments at the Oak Ridge National Laboratory (ORNL) High-Flux Isotope Reactor. Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the pattern recognition system

  13. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    Science.gov (United States)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  14. Automated pattern recognition system for noise analysis

    International Nuclear Information System (INIS)

    Sides, W.H. Jr.; Piety, K.R.

    1980-01-01

    A pattern recognition system was developed at ORNL for on-line monitoring of noise signals from sensors in a nuclear power plant. The system continuousy measures the power spectral density (PSD) values of the signals and the statistical characteristics of the PSDs in unattended operation. Through statistical comparison of current with past PSDs (pattern recognition), the system detects changes in the noise signals. Because the noise signals contain information about the current operational condition of the plant, a change in these signals could indicate a change, either normal or abnormal, in the operational condition

  15. Optical Pattern Recognition for Missile Guidance.

    Science.gov (United States)

    1982-11-15

    directed to novel pattern recognition algo- rithms (that allow pattern recognition and object classification in the face of various geometrical and...I wats EF5 = 50) p.j/t’ni 2 (for btith image pat tern recognitio itas a preproicessing oiperatiton. Ini devices). TIhe rt’ad light intensity (0.33t mW...electrodes on its large faces . This Priz light modulator and the motivation for its devel- SLM is known as the Prom (Pockels real-time optical opment. In Sec

  16. Pattern recognition in high energy physics

    International Nuclear Information System (INIS)

    Tenner, A.G.

    1980-01-01

    In high energy physics experiments tracks of elementary particles are recorded by different types of equipment. Coordinates of points of these tracks have to be measured for the geometrical reconstruction and the further analysis of the observed events. Pattern recognition methods may facilitate the detection of tracks or whole events and the separation of relevant from non-relevant information. They may also serve for the automation of measurement. Generally, all work is done by digital computation. In a bubble chamber tracks appear as strings of vapour bubbles that can be recorded photographically. Two methods of pattern recognition are discussed. The flying spot digitizer encodes the pattern on the photograph into point coordinates in the memory of a computer. The computer carries out the pattern recognition procedure entirely on the basis of the stored information. Cathode ray instruments scan the photograph by means of a computer steered optical device. Data acquisition from the film is performed in a feedback loop of the computation. In electronic experimental equipment tracks are defined by the spacial distribution of hits of counters (wire counters, scintillation counters, spark chambers). Pattern recognition is generally performed in various stages both by on-line and off-line equipment. Problems in the data handling arise both from the great abundance of data and from the time limits imposed on the on-line computation by high measuring rates. The on-line computation is carried out by hardwired logic, small computers, and to an increasing extent by microprocessors. (Auth.)

  17. Algorithms for adaptive nonlinear pattern recognition

    Science.gov (United States)

    Schmalz, Mark S.; Ritter, Gerhard X.; Hayden, Eric; Key, Gary

    2011-09-01

    In Bayesian pattern recognition research, static classifiers have featured prominently in the literature. A static classifier is essentially based on a static model of input statistics, thereby assuming input ergodicity that is not realistic in practice. Classical Bayesian approaches attempt to circumvent the limitations of static classifiers, which can include brittleness and narrow coverage, by training extensively on a data set that is assumed to cover more than the subtense of expected input. Such assumptions are not realistic for more complex pattern classification tasks, for example, object detection using pattern classification applied to the output of computer vision filters. In contrast, we have developed a two step process, that can render the majority of static classifiers adaptive, such that the tracking of input nonergodicities is supported. Firstly, we developed operations that dynamically insert (or resp. delete) training patterns into (resp. from) the classifier's pattern database, without requiring that the classifier's internal representation of its training database be completely recomputed. Secondly, we developed and applied a pattern replacement algorithm that uses the aforementioned pattern insertion/deletion operations. This algorithm is designed to optimize the pattern database for a given set of performance measures, thereby supporting closed-loop, performance-directed optimization. This paper presents theory and algorithmic approaches for the efficient computation of adaptive linear and nonlinear pattern recognition operators that use our pattern insertion/deletion technology - in particular, tabular nearest-neighbor encoding (TNE) and lattice associative memories (LAMs). Of particular interest is the classification of nonergodic datastreams that have noise corruption with time-varying statistics. The TNE and LAM based classifiers discussed herein have been successfully applied to the computation of object classification in hyperspectral

  18. Two Challenges of Correct Validation in Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Thomas eNowotny

    2014-09-01

    Full Text Available Supervised pattern recognition is the process of mapping patterns to class labelsthat define their meaning. The core methods for pattern recognitionhave been developed by machine learning experts but due to their broadsuccess an increasing number of non-experts are now employing andrefining them. In this perspective I will discuss the challenge ofcorrect validation of supervised pattern recognition systems, in particular whenemployed by non-experts. To illustrate the problem I will give threeexamples of common errors that I have encountered in the lastyear. Much of this challenge can be addressed by strict procedure invalidation but there are remaining problems of correctlyinterpreting comparative work on exemplary data sets, which I willelucidate on the example of the well-used MNIST data set of handwrittendigits.

  19. Pattern Recognition-Based Analysis of COPD in CT

    DEFF Research Database (Denmark)

    Sørensen, Lauge Emil Borch Laurs

    recognition part is used to turn the texture measures, measured in a CT image of the lungs, into a quantitative measure of disease. This is done by applying a classifier that is trained on a training set of data examples with known lung tissue patterns. Different classification systems are considered, and we...... will in particular use the pattern recognition concepts of supervised learning, multiple instance learning, and dissimilarity representation-based classification. The proposed texture-based measures are applied to CT data from two different sources, one comprising low dose CT slices from subjects with manually...... annotated regions of emphysema and healthy tissue, and one comprising volumetric low dose CT images from subjects that are either healthy or suffer from COPD. Several experiments demonstrate that it is clearly beneficial to take the lung tissue texture into account when classifying or quantifying emphysema...

  20. Auditory orientation in crickets: Pattern recognition controls reactive steering

    Science.gov (United States)

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  1. Searching for pulsars using image pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H. [Department of Physics and Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada); Brazier, A. [Astronomy Department, Cornell University, Ithaca, NY 14853 (United States); Lazarus, P. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Lynch, R.; Scholz, P. [Department of Physics, McGill University, Montreal, QC H3A 2T8 (Canada); Stovall, K.; Cohen, S.; Dartez, L. P.; Lunsford, G.; Martinez, J. G.; Mata, A. [Center for Advanced Radio Astronomy, University of Texas at Brownsville, Brownsville, TX 78520 (United States); Ransom, S. M. [NRAO, Charlottesville, VA 22903 (United States); Banaszak, S.; Biwer, C. M.; Flanigan, J.; Rohr, M., E-mail: zhuww@phas.ubc.ca, E-mail: berndsen@phas.ubc.ca [Center for Gravitation, Cosmology and Astrophysics. University of Wisconsin Milwaukee, Milwaukee, WI 53211 (United States); and others

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  2. Searching for pulsars using image pattern recognition

    International Nuclear Information System (INIS)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Cohen, S.; Dartez, L. P.; Lunsford, G.; Martinez, J. G.; Mata, A.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Flanigan, J.; Rohr, M.

    2014-01-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ∼9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  3. Searching for Pulsars Using Image Pattern Recognition

    Science.gov (United States)

    Zhu, W. W.; Berndsen, A.; Madsen, E. C.; Tan, M.; Stairs, I. H.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Ransom, S. M.; Banaszak, S.; Biwer, C. M.; Cohen, S.; Dartez, L. P.; Flanigan, J.; Lunsford, G.; Martinez, J. G.; Mata, A.; Rohr, M.; Walker, A.; Allen, B.; Bhat, N. D. R.; Bogdanov, S.; Camilo, F.; Chatterjee, S.; Cordes, J. M.; Crawford, F.; Deneva, J. S.; Desvignes, G.; Ferdman, R. D.; Freire, P. C. C.; Hessels, J. W. T.; Jenet, F. A.; Kaplan, D. L.; Kaspi, V. M.; Knispel, B.; Lee, K. J.; van Leeuwen, J.; Lyne, A. G.; McLaughlin, M. A.; Siemens, X.; Spitler, L. G.; Venkataraman, A.

    2014-02-01

    In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful data-mining techniques that can be applied to various fields. In this paper, we present a novel artificial intelligence (AI) program that identifies pulsars from recent surveys by using image pattern recognition with deep neural nets—the PICS (Pulsar Image-based Classification System) AI. The AI mimics human experts and distinguishes pulsars from noise and interference by looking for patterns from candidate plots. Different from other pulsar selection programs that search for expected patterns, the PICS AI is taught the salient features of different pulsars from a set of human-labeled candidates through machine learning. The training candidates are collected from the Pulsar Arecibo L-band Feed Array (PALFA) survey. The information from each pulsar candidate is synthesized in four diagnostic plots, which consist of image data with up to thousands of pixels. The AI takes these data from each candidate as its input and uses thousands of such candidates to train its ~9000 neurons. The deep neural networks in this AI system grant it superior ability to recognize various types of pulsars as well as their harmonic signals. The trained AI's performance has been validated with a large set of candidates from a different pulsar survey, the Green Bank North Celestial Cap survey. In this completely independent test, the PICS ranked 264 out of 277 pulsar-related candidates, including all 56 previously known pulsars and 208 of their harmonics, in the top 961 (1%) of 90,008 test candidates, missing only 13 harmonics. The first non-pulsar candidate appears at rank 187, following 45 pulsars and 141 harmonics. In other words, 100% of the pulsars were ranked in the top 1% of all candidates, while 80% were ranked higher than any noise or interference. The

  4. Pattern recognition applied to uranium prospecting

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, P L; Press, F [Massachusetts Inst. of Tech., Cambridge (USA). Dept. of Earth and Planetary Sciences

    1977-07-14

    It is stated that pattern recognition techniques provide one way of combining quantitative and descriptive geological data for mineral prospecting. A quantified decision process using computer-selected patterns of geological data has the potential for selecting areas with undiscovered deposits of uranium or other minerals. When a natural resource is mined more rapidly than it is discovered, its continued production becomes increasingly difficult, and it has been noted that, although a considerable uranium reserve may remain in the U.S.A., the discovery rate for uranium is decreasing exponentially with cumulative exploration footage drilled. Pattern recognition methods of organising geological information for prospecting may provide new predictive power, as well as insight into the occurrence of uranium ore deposits. Often the task of prospecting consists of three stages of information processing: (1) collection of data on known ore deposits; (2) noting any regularities common to the known examples of an ore; (3) selection of new exploration targets based on the results of the second stage. A logical pattern recognition algorithm is here described that implements this geological procedure to demonstrate the possibility of building a quantified uranium prospecting guide from diverse geologic data.

  5. A pattern recognition account of decision making.

    Science.gov (United States)

    Massaro, D W

    1994-09-01

    In the domain of pattern recognition, experiments have shown that perceivers integrate multiple sources of information in an optimal manner. In contrast, other research has been interpreted to mean that decision making is nonoptimal. As an example, Tversky and Kahneman (1983) have shown that subjects commit a conjunction fallacy because they judge it more likely that a fictitious person named Linda is a bank teller and a feminist than just a bank teller. This judgment supposedly violates probability theory, because the probability of two events can never be greater than the probability of either event alone. The present research tests the hypothesis that subjects interpret this judgment task as a pattern recognition task. If this hypothesis is correct, subjects' judgments should be described accurately by the fuzzy logical model of perception (FLMP)--a successful model of pattern recognition. In the first experiment, the Linda task was extended to an expanded factorial design with five vocations and five avocations. The probability ratings were described well by the FLMP and described poorly by a simple probability model. The second experiment included (1) two fictitious people, Linda and Joan, as response alternatives and (2) both ratings and categorization judgments. Although the ratings were accurately described by both the FLMP and an averaging of the sources of information, the categorization judgments were described better by the FLMP. These results reveal important similarities in recognizing patterns and in decision making. Given that the FLMP is an optimal method for combining multiple sources of information, the probability judgments appear to be optimal in the same manner as pattern-recognition judgments.

  6. DNA pattern recognition using canonical correlation algorithm.

    Science.gov (United States)

    Sarkar, B K; Chakraborty, Chiranjib

    2015-10-01

    We performed canonical correlation analysis as an unsupervised statistical tool to describe related views of the same semantic object for identifying patterns. A pattern recognition technique based on canonical correlation analysis (CCA) was proposed for finding required genetic code in the DNA sequence. Two related but different objects were considered: one was a particular pattern, and other was test DNA sequence. CCA found correlations between two observations of the same semantic pattern and test sequence. It is concluded that the relationship possesses maximum value in the position where the pattern exists. As a case study, the potential of CCA was demonstrated on the sequence found from HIV-1 preferred integration sites. The subsequences on the left and right flanking from the integration site were considered as the two views, and statistically significant relationships were established between these two views to elucidate the viral preference as an important factor for the correlation.

  7. Recent progress in invariant pattern recognition

    Science.gov (United States)

    Arsenault, Henri H.; Chang, S.; Gagne, Philippe; Gualdron Gonzalez, Oscar

    1996-12-01

    We present some recent results in invariant pattern recognition, including methods that are invariant under two or more distortions of position, orientation and scale. There are now a few methods that yield good results under changes of both rotation and scale. Some new methods are introduced. These include locally adaptive nonlinear matched filters, scale-adapted wavelet transforms and invariant filters for disjoint noise. Methods using neural networks will also be discussed, including an optical method that allows simultaneous classification of multiple targets.

  8. Sequential pattern recognition by maximum conditional informativity

    Czech Academy of Sciences Publication Activity Database

    Grim, Jiří

    2014-01-01

    Roč. 45, č. 1 (2014), s. 39-45 ISSN 0167-8655 R&D Projects: GA ČR(CZ) GA14-02652S; GA ČR(CZ) GA14-10911S Keywords : Multivariate statistics * Statistical pattern recognition * Sequential decision making * Product mixtures * EM algorithm * Shannon information Subject RIV: IN - Informatics, Computer Sci ence Impact factor: 1.551, year: 2014 http://library.utia.cas.cz/separaty/2014/RO/grim-0428565.pdf

  9. Pattern recognition of neurotransmitters using multimode sensing.

    Science.gov (United States)

    Stefan-van Staden, Raluca-Ioana; Moldoveanu, Iuliana; van Staden, Jacobus Frederick

    2014-05-30

    Pattern recognition is essential in chemical analysis of biological fluids. Reliable and sensitive methods for neurotransmitters analysis are needed. Therefore, we developed for pattern recognition of neurotransmitters: dopamine, epinephrine, norepinephrine a method based on multimode sensing. Multimode sensing was performed using microsensors based on diamond paste modified with 5,10,15,20-tetraphenyl-21H,23H-porphyrine, hemin and protoporphyrin IX in stochastic and differential pulse voltammetry modes. Optimized working conditions: phosphate buffer solution of pH 3.01 and KCl 0.1mol/L (as electrolyte support), were determined using cyclic voltammetry and used in all measurements. The lowest limits of quantification were: 10(-10)mol/L for dopamine and epinephrine, and 10(-11)mol/L for norepinephrine. The multimode microsensors were selective over ascorbic and uric acids and the method facilitated reliable assay of neurotransmitters in urine samples, and therefore, the pattern recognition showed high reliability (RSDneurotransmitters on biological fluids at a lower determination level than chromatographic methods. The sampling of the biological fluids referees only to the buffering (1:1, v/v) with a phosphate buffer pH 3.01, while for chromatographic methods the sampling is laborious. Accordingly with the statistic evaluation of the results at 99.00% confidence level, both modes can be used for pattern recognition and quantification of neurotransmitters with high reliability. The best multimode microsensor was the one based on diamond paste modified with protoporphyrin IX. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Pattern recognition methods for acoustic emission analysis

    International Nuclear Information System (INIS)

    Doctor, P.G.; Harrington, T.P.; Hutton, P.H.

    1979-07-01

    Models have been developed that relate the rate of acoustic emissions to structural integrity. The implementation of these techniques in the field has been hindered by the noisy environment in which the data must be taken. Acoustic emissions from noncritical sources are recorded in addition to those produced by critical sources, such as flaws. A technique is discussed for prescreening acoustic events and filtering out those that are produced by noncritical sources. The methodology that was investigated is pattern recognition. Three different pattern recognition techniques were applied to a data set that consisted of acoustic emissions caused by crack growth and acoustic signals caused by extraneous noise sources. Examination of the acoustic emission data presented has uncovered several features of the data that can provide a reasonable filter. Two of the most valuable features are the frequency of maximum response and the autocorrelation coefficient at Lag 13. When these two features and several others were combined with a least squares decision algorithm, 90% of the acoustic emissions in the data set were correctly classified. It appears possible to design filters that eliminate extraneous noise sources from flaw-growth acoustic emissions using pattern recognition techniques

  11. Fuzzy tree automata and syntactic pattern recognition.

    Science.gov (United States)

    Lee, E T

    1982-04-01

    An approach of representing patterns by trees and processing these trees by fuzzy tree automata is described. Fuzzy tree automata are defined and investigated. The results include that the class of fuzzy root-to-frontier recognizable ¿-trees is closed under intersection, union, and complementation. Thus, the class of fuzzy root-to-frontier recognizable ¿-trees forms a Boolean algebra. Fuzzy tree automata are applied to processing fuzzy tree representation of patterns based on syntactic pattern recognition. The grade of acceptance is defined and investigated. Quantitative measures of ``approximate isosceles triangle,'' ``approximate elongated isosceles triangle,'' ``approximate rectangle,'' and ``approximate cross'' are defined and used in the illustrative examples of this approach. By using these quantitative measures, a house, a house with high roof, and a church are also presented as illustrative examples. In addition, three fuzzy tree automata are constructed which have the capability of processing the fuzzy tree representations of ``fuzzy houses,'' ``houses with high roofs,'' and ``fuzzy churches,'' respectively. The results may have useful applications in pattern recognition, image processing, artificial intelligence, pattern database design and processing, image science, and pictorial information systems.

  12. Multivariate statistical pattern recognition system for reactor noise analysis

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1976-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system

  13. Multivariate statistical pattern recognition system for reactor noise analysis

    International Nuclear Information System (INIS)

    Gonzalez, R.C.; Howington, L.C.; Sides, W.H. Jr.; Kryter, R.C.

    1975-01-01

    A multivariate statistical pattern recognition system for reactor noise analysis was developed. The basis of the system is a transformation for decoupling correlated variables and algorithms for inferring probability density functions. The system is adaptable to a variety of statistical properties of the data, and it has learning, tracking, and updating capabilities. System design emphasizes control of the false-alarm rate. The ability of the system to learn normal patterns of reactor behavior and to recognize deviations from these patterns was evaluated by experiments at the ORNL High-Flux Isotope Reactor (HFIR). Power perturbations of less than 0.1 percent of the mean value in selected frequency ranges were detected by the system. 19 references

  14. Artificial intelligence tools for pattern recognition

    Science.gov (United States)

    Acevedo, Elena; Acevedo, Antonio; Felipe, Federico; Avilés, Pedro

    2017-06-01

    In this work, we present a system for pattern recognition that combines the power of genetic algorithms for solving problems and the efficiency of the morphological associative memories. We use a set of 48 tire prints divided into 8 brands of tires. The images have dimensions of 200 x 200 pixels. We applied Hough transform to obtain lines as main features. The number of lines obtained is 449. The genetic algorithm reduces the number of features to ten suitable lines that give thus the 100% of recognition. Morphological associative memories were used as evaluation function. The selection algorithms were Tournament and Roulette wheel. For reproduction, we applied one-point, two-point and uniform crossover.

  15. Recognition of Prior Learning: The Participants' Perspective

    Science.gov (United States)

    Miguel, Marta C.; Ornelas, José H.; Maroco, João P.

    2016-01-01

    The current narrative on lifelong learning goes beyond formal education and training, including learning at work, in the family and in the community. Recognition of prior learning is a process of evaluation of those skills and knowledge acquired through life experience, allowing them to be formally recognized by the qualification systems. It is a…

  16. Running Improves Pattern Separation during Novel Object Recognition.

    Science.gov (United States)

    Bolz, Leoni; Heigele, Stefanie; Bischofberger, Josef

    2015-10-09

    Running increases adult neurogenesis and improves pattern separation in various memory tasks including context fear conditioning or touch-screen based spatial learning. However, it is unknown whether pattern separation is improved in spontaneous behavior, not emotionally biased by positive or negative reinforcement. Here we investigated the effect of voluntary running on pattern separation during novel object recognition in mice using relatively similar or substantially different objects.We show that running increases hippocampal neurogenesis but does not affect object recognition memory with 1.5 h delay after sample phase. By contrast, at 24 h delay, running significantly improves recognition memory for similar objects, whereas highly different objects can be distinguished by both, running and sedentary mice. These data show that physical exercise improves pattern separation, independent of negative or positive reinforcement. In sedentary mice there is a pronounced temporal gradient for remembering object details. In running mice, however, increased neurogenesis improves hippocampal coding and temporally preserves distinction of novel objects from familiar ones.

  17. Pattern Recognition and Natural Language Processing: State of the Art

    Directory of Open Access Journals (Sweden)

    Mirjana Kocaleva

    2016-05-01

    Full Text Available Development of information technologies is growing steadily. With the latest software technologies development and application of the methods of artificial intelligence and machine learning intelligence embededs in computers, the expectations are that in near future computers will be able to solve problems themselves like people do. Artificial intelligence emulates human behavior on computers. Rather than executing instructions one by one, as theyare programmed, machine learning employs prior experience/data that is used in the process of system’s training. In this state of the art paper, common methods in AI, such as machine learning, pattern recognition and the natural language processing (NLP are discussed. Also are given standard architecture of NLP processing system and the level thatisneeded for understanding NLP. Lastly the statistical NLP processing and multi-word expressions are described.

  18. Description and recognition of patterns in stochastic signals. [Electroencephalograms

    Energy Technology Data Exchange (ETDEWEB)

    Flik, T [Technische Univ. Berlin (F.R. Germany). Informatik-Forschungsgruppe Rechnerorganisation und Schaltwerke

    1975-10-01

    A method is shown for the description and recognition of patterns in stochastic signals such as electroencephalograms. For pattern extraction the signal is segmented at times of minimum amplitudes. The describing features consist of geometric values of the so defined patterns. The classification algorithm is based on the regression analysis, which is well known in the field of character recognition. For an economic classification a method is proposed which reduces the number of features. The quality of this pattern recognition method is demonstrated by the detection of spike wave complexes in electroencephalograms. The pattern description and recognition are provided for processing on a digital computer. (DE)

  19. Pattern recognition for cache management in distributed medical imaging environments.

    Science.gov (United States)

    Viana-Ferreira, Carlos; Ribeiro, Luís; Matos, Sérgio; Costa, Carlos

    2016-02-01

    Traditionally, medical imaging repositories have been supported by indoor infrastructures with huge operational costs. This paradigm is changing thanks to cloud outsourcing which not only brings technological advantages but also facilitates inter-institutional workflows. However, communication latency is one main problem in this kind of approaches, since we are dealing with tremendous volumes of data. To minimize the impact of this issue, cache and prefetching are commonly used. The effectiveness of these mechanisms is highly dependent on their capability of accurately selecting the objects that will be needed soon. This paper describes a pattern recognition system based on artificial neural networks with incremental learning to evaluate, from a set of usage pattern, which one fits the user behavior at a given time. The accuracy of the pattern recognition model in distinct training conditions was also evaluated. The solution was tested with a real-world dataset and a synthesized dataset, showing that incremental learning is advantageous. Even with very immature initial models, trained with just 1 week of data samples, the overall accuracy was very similar to the value obtained when using 75% of the long-term data for training the models. Preliminary results demonstrate an effective reduction in communication latency when using the proposed solution to feed a prefetching mechanism. The proposed approach is very interesting for cache replacement and prefetching policies due to the good results obtained since the first deployment moments.

  20. Rotation-invariant neural pattern recognition system with application to coin recognition.

    Science.gov (United States)

    Fukumi, M; Omatu, S; Takeda, F; Kosaka, T

    1992-01-01

    In pattern recognition, it is often necessary to deal with problems to classify a transformed pattern. A neural pattern recognition system which is insensitive to rotation of input pattern by various degrees is proposed. The system consists of a fixed invariance network with many slabs and a trainable multilayered network. The system was used in a rotation-invariant coin recognition problem to distinguish between a 500 yen coin and a 500 won coin. The results show that the approach works well for variable rotation pattern recognition.

  1. Track recognition with an associative pattern memory

    International Nuclear Information System (INIS)

    Bok, H.W. den; Visschers, J.L.; Borgers, A.J.; Lourens, W.

    1991-01-01

    Using Programmable Gate Arrays (PGAs), a prototype for a fast Associative Pattern Memory module has been realized. The associative memory performs the recognition of tracks within the hadron detector data acquisition system at NIKHEF-K. The memory matches the detector state with a set of 24 predefined tracks to identify the particle tracks that occur during an event. This information enables the trigger hardware to classify and select or discriminate the event. Mounted on a standard size (6U) VME board, several PGAs together form an associative memory. The internal logic architecture of the Gate Array is used in such a way as to minimize signal propagation delay. The memory cells, containing a binary representation of the particle tracks, are dynamically loadable through a VME bus interface, providing a high level of flexibility. The hadron detector and its readout system are briefly described and our track representation method is presented. Results from measurements under experimental conditions are discussed. (orig.)

  2. Pattern recognition with simple oscillating circuits

    International Nuclear Information System (INIS)

    Hoelzel, R W; Krischer, K

    2011-01-01

    Neural network devices that inherently possess parallel computing capabilities are generally difficult to construct because of the large number of neuron-neuron connections. However, there exists a theoretical approach (Hoppensteadt and Izhikevich 1999 Phys. Rev. Lett. 82 2983) that forgoes the individual connections and uses only a global coupling: systems of weakly coupled oscillators with a time-dependent global coupling are capable of performing pattern recognition in an associative manner similar to Hopfield networks. The information is stored in the phase shifts of the individual oscillators. However, to date, even the feasibility of controlling phase shifts with this kind of coupling has not yet been established experimentally. We present an experimental realization of this neural network device. It consists of eight sinusoidal electrical van der Pol oscillators that are globally coupled through a variable resistor with the electric potential as the coupling variable. We estimate an effective value of the phase coupling strength in our experiment. For that, we derive a general approach that allows one to compare different experimental realizations with each other as well as with phase equation models. We demonstrate that individual phase shifts of oscillators can be experimentally controlled by a weak global coupling. Furthermore, supplied with a distorted input image, the oscillating network can indeed recognize the correct image out of a set of predefined patterns. It can therefore be used as the processing unit of an associative memory device.

  3. Pattern recognition with magnonic holographic memory device

    International Nuclear Information System (INIS)

    Kozhevnikov, A.; Dudko, G.; Filimonov, Y.; Gertz, F.; Khitun, A.

    2015-01-01

    In this work, we present experimental data demonstrating the possibility of using magnonic holographic devices for pattern recognition. The prototype eight-terminal device consists of a magnetic matrix with micro-antennas placed on the periphery of the matrix to excite and detect spin waves. The principle of operation is based on the effect of spin wave interference, which is similar to the operation of optical holographic devices. Input information is encoded in the phases of the spin waves generated on the edges of the magnonic matrix, while the output corresponds to the amplitude of the inductive voltage produced by the interfering spin waves on the other side of the matrix. The level of the output voltage depends on the combination of the input phases as well as on the internal structure of the magnonic matrix. Experimental data collected for several magnonic matrixes show the unique output signatures in which maxima and minima correspond to specific input phase patterns. Potentially, magnonic holographic devices may provide a higher storage density compare to optical counterparts due to a shorter wavelength and compatibility with conventional electronic devices. The challenges and shortcoming of the magnonic holographic devices are also discussed

  4. Pattern recognition neural-net by spatial mapping of biology visual field

    Science.gov (United States)

    Lin, Xin; Mori, Masahiko

    2000-05-01

    The method of spatial mapping in biology vision field is applied to artificial neural networks for pattern recognition. By the coordinate transform that is called the complex-logarithm mapping and Fourier transform, the input images are transformed into scale- rotation- and shift- invariant patterns, and then fed into a multilayer neural network for learning and recognition. The results of computer simulation and an optical experimental system are described.

  5. Scene recognition based on integrating active learning with dictionary learning

    Science.gov (United States)

    Wang, Chengxi; Yin, Xueyan; Yang, Lin; Gong, Chengrong; Zheng, Caixia; Yi, Yugen

    2018-04-01

    Scene recognition is a significant topic in the field of computer vision. Most of the existing scene recognition models require a large amount of labeled training samples to achieve a good performance. However, labeling image manually is a time consuming task and often unrealistic in practice. In order to gain satisfying recognition results when labeled samples are insufficient, this paper proposed a scene recognition algorithm named Integrating Active Learning and Dictionary Leaning (IALDL). IALDL adopts projective dictionary pair learning (DPL) as classifier and introduces active learning mechanism into DPL for improving its performance. When constructing sampling criterion in active learning, IALDL considers both the uncertainty and representativeness as the sampling criteria to effectively select the useful unlabeled samples from a given sample set for expanding the training dataset. Experiment results on three standard databases demonstrate the feasibility and validity of the proposed IALDL.

  6. Star pattern recognition algorithm aided by inertial information

    Science.gov (United States)

    Liu, Bao; Wang, Ke-dong; Zhang, Chao

    2011-08-01

    Star pattern recognition is one of the key problems of the celestial navigation. The traditional star pattern recognition approaches, such as the triangle algorithm and the star angular distance algorithm, are a kind of all-sky matching method whose recognition speed is slow and recognition success rate is not high. Therefore, the real time and reliability of CNS (Celestial Navigation System) is reduced to some extent, especially for the maneuvering spacecraft. However, if the direction of the camera optical axis can be estimated by other navigation systems such as INS (Inertial Navigation System), the star pattern recognition can be fulfilled in the vicinity of the estimated direction of the optical axis. The benefits of the INS-aided star pattern recognition algorithm include at least the improved matching speed and the improved success rate. In this paper, the direction of the camera optical axis, the local matching sky, and the projection of stars on the image plane are estimated by the aiding of INS firstly. Then, the local star catalog for the star pattern recognition is established in real time dynamically. The star images extracted in the camera plane are matched in the local sky. Compared to the traditional all-sky star pattern recognition algorithms, the memory of storing the star catalog is reduced significantly. Finally, the INS-aided star pattern recognition algorithm is validated by simulations. The results of simulations show that the algorithm's computation time is reduced sharply and its matching success rate is improved greatly.

  7. Online and Offline Pattern Recognition in PANDA

    Science.gov (United States)

    Boca, Gianluigi

    2016-11-01

    PANDA is one of the four experiments that will run at the new facility FAIR that is being built in Darmstadt, Germany. It is a fixed target experiment: a beam of antiprotons collides on a jet proton target (the maximum center of mass energy is 5.46 GeV). The interaction rate at the startup will be 2MHz with the goal of reaching 20MHz at full luminosity. The beam of antiprotons will be essentially continuous. PANDA will have NO hardware trigger but only a software trigger, to allow for maximum flexibility in the physics program. All those characteristics are severe challenges for the reconstruction code that 1) must be fast, since it has to be validated up to 20MHz interaction rate; 2) must be able to reject fake tracks caused by the remnant hits, belonging to previous or later events in some slow detectors, for example the straw tubes in the central region. The Pattern Recognition (PR) of PANDA will have to run both online to achieve a first fast selection, and offline, at lower rate, for a more refined selection. In PANDA the PR code is continuously evolving; this contribution shows the present status. I will give an overview of three examples of PR following different strategies and/or implemented on different hardware (FPGA, GPUs, CPUs) and, when available, I will report the performances.

  8. Online and Offline Pattern Recognition in PANDA

    Directory of Open Access Journals (Sweden)

    Boca Gianluigi

    2016-01-01

    Full Text Available PANDA is one of the four experiments that will run at the new facility FAIR that is being built in Darmstadt, Germany. It is a fixed target experiment: a beam of antiprotons collides on a jet proton target (the maximum center of mass energy is 5.46 GeV. The interaction rate at the startup will be 2MHz with the goal of reaching 20MHz at full luminosity. The beam of antiprotons will be essentially continuous. PANDA will have NO hardware trigger but only a software trigger, to allow for maximum flexibility in the physics program. All those characteristics are severe challenges for the reconstruction code that 1 must be fast, since it has to be validated up to 20MHz interaction rate; 2 must be able to reject fake tracks caused by the remnant hits, belonging to previous or later events in some slow detectors, for example the straw tubes in the central region. The Pattern Recognition (PR of PANDA will have to run both online to achieve a first fast selection, and offline, at lower rate, for a more refined selection. In PANDA the PR code is continuously evolving; this contribution shows the present status. I will give an overview of three examples of PR following different strategies and/or implemented on different hardware (FPGA, GPUs, CPUs and, when available, I will report the performances.

  9. Pattern Recognition by Humans and Machines

    International Nuclear Information System (INIS)

    Versino, C.; )

    2015-01-01

    Data visualization is centred on new ways of processing and displaying large data sets to support pattern recognition by humans rather than by machines. The motivation for approaches based on data visualization is to encourage data exploration and curiosity by analysts. They should help formulating the right question more than addressing specific predefined issues or expectations. Translated into IAEA's terms, they should help verify the completeness of information declared to the IAEA more than their correctness. Data visualization contrasts with traditional information retrieval where one needs first to formulate a query in order to get to a narrow slice of data. Using traditional information retrieval, no one knows what is missed out. The system may fail to recall relevant data due to the way the query was formulated, or the query itself may not be the most relevant one to be asked in the first place. Examples of data visualizations relevant to safeguards will be illustrated, including new approaches for the review of surveillance images and for trade analysis. Common to these examples is the attempt to enlarge the view of the analyst on a universe of data, where context or detailed data is presented on-demand and by levels of abstraction. The paper will make reference to ongoing research and to enabling information technologies. (author)

  10. CNNs flag recognition preprocessing scheme based on gray scale stretching and local binary pattern

    Science.gov (United States)

    Gong, Qian; Qu, Zhiyi; Hao, Kun

    2017-07-01

    Flag is a rather special recognition target in image recognition because of its non-rigid features with the location, scale and rotation characteristics. The location change can be handled well by the depth learning algorithm Convolutional Neural Networks (CNNs), but the scale and rotation changes are quite a challenge for CNNs. Since it has good rotation and gray scale invariance, the local binary pattern (LBP) is combined with grayscale stretching and CNNs to make LBP and grayscale stretching as CNNs pretreatment, which can not only significantly improve the efficiency of flag recognition, but can also evaluate the recognition effect through ROC, accuracy, MSE and quality factor.

  11. Performance Measurement Of Mel Frequency Ceptral Coefficient (MFCC) Method In Learning System Of Al- Qur’an Based In Nagham Pattern Recognition

    Science.gov (United States)

    Afrillia, Yesy; Mawengkang, Herman; Ramli, Marwan; Fadlisyah; Putra Fhonna, Rizky

    2017-12-01

    Most of research have used signal and speech processing in order to recognize makhraj pattern and tajwid reading in Al-Quran by exploring the mel frequency ceptral coefficient (MFCC). However, to our knowledge so far there is no research has been conducted to recognize the chanting of Al-Quran verse using MFCC. This term is also well-known as nagham Al-Quran. The characteristics of nagham Al-Quran pattern is much more complex then makhraj and tajwid pattern. In nagham the wave of the sound has more variation which implies the level of noice is much higher and has sound duration longer. The data testing in this research was taken term by real-time recording. The evaluation measurement in the system performance of nagham Al-Quran pattern is based on true and false detection parameter with accuracy 80%. To measure this accuracy it is necessary to modify the MFCC or to give more data learning process with more variation.

  12. Cognitive developmental pattern recognition : Learning to learn

    NARCIS (Netherlands)

    van der Zant, Tijn; Schomaker, Lambert; Wiering, M.; Brink, Axel

    2006-01-01

    It can be very difficult to manually create software systems which capture the knowledge of an expert. It is an expensive and laborious process that often results in a suboptimal solution. In this paper we propose a new approach which does not require complete manual knowledge construction. The

  13. Application Of t-Cherry Junction Trees in Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Edith Kovacs

    2010-06-01

    Full Text Available Pattern recognition aims to classify data (patterns based ei-
    ther on a priori knowledge or on statistical information extracted from the data. In this paper we will concentrate on statistical pattern recognition using a new probabilistic approach which makes possible to select the so called 'informative' features. We develop a pattern recognition algorithm which is based on the conditional independence structure underlying the statistical data. Our method was succesfully applied on a real problem of recognizing Parkinson's disease on the basis of voice disorders.

  14. Transfer learning for bimodal biometrics recognition

    Science.gov (United States)

    Dan, Zhiping; Sun, Shuifa; Chen, Yanfei; Gan, Haitao

    2013-10-01

    Biometrics recognition aims to identify and predict new personal identities based on their existing knowledge. As the use of multiple biometric traits of the individual may enables more information to be used for recognition, it has been proved that multi-biometrics can produce higher accuracy than single biometrics. However, a common problem with traditional machine learning is that the training and test data should be in the same feature space, and have the same underlying distribution. If the distributions and features are different between training and future data, the model performance often drops. In this paper, we propose a transfer learning method for face recognition on bimodal biometrics. The training and test samples of bimodal biometric images are composed of the visible light face images and the infrared face images. Our algorithm transfers the knowledge across feature spaces, relaxing the assumption of same feature space as well as same underlying distribution by automatically learning a mapping between two different but somewhat similar face images. According to the experiments in the face images, the results show that the accuracy of face recognition has been greatly improved by the proposed method compared with the other previous methods. It demonstrates the effectiveness and robustness of our method.

  15. The principles of the pattern recognition of skeletal structures

    International Nuclear Information System (INIS)

    Motto, J.A.

    2006-01-01

    Request of the skeletal system form a lage proportion of plain film radiographic examinations. A sound knowledge of normal radiographic appearances is vital if abnormal patterns are to be recognized.The ABCS, SPACED and SASNOES methods of applying pattern recognition to plain radiographers of bones and joints will be presented in an attempt to make pattern recognition and offer an opinion constitutes role extension of radiographers

  16. Inductive class representation and its central role in pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Goldfarb, L. [Univ. of New Brunswick, Fredericton, New Brunswick (Canada)

    1996-12-31

    The definition of inductive learning (IL) based on the new concept of inductive class representation (ICR) is given. The ICR, in addition to the ability to recognize a noise-corrupted object from the class, must also provide the means to generate every element in the resulting approximation of the class, i.e., the emphasis is on the generative capability of the ICR. Thus, the IL problem absorbs the main difficulties associated with a satisfactory formulation of the pattern recognition problem. This formulation of the IL problem appeared gradually as a result of the development of a fundamentally new formal model of IL--evolving transformation system (ETS) model. The model with striking clarity suggests that IL is the basic process which produces all the necessary {open_quotes}structures{close_quotes} for the recognition process, which is built directly on top of it. Based on the training set, the IL process, constructs optimal discriminatory (symbolic) weighted {open_quotes}features{close_quotes} which induce the corresponding optimal (symbolic) distance measure. The distance measure is a generalization of the weighted Levenshtein, or edit, distance defined on strings over a finite alphabet. The ETS model has emerged as a result of an attempt to unify two basic, but inadequate, approaches to pattern recognition: the classical vector space based and the syntactic approaches. ETS also elucidates with remarkable clarity the nature of the interrelationships between the corresponding symbolic and numeric mechanisms, in which the symbolic mechanisms play a more fundamental part. The model, in fact, suggests the first formal definition of the symbolic mathematical structure and also suggests a fundamentally different, more satisfactory, way of introducing the concept of fuzziness. The importance of the ICR concept to semiotics and semantics should become apparent as soon as one fully realizes that it represents the class and specifies the semantics of the class.

  17. Pattern recognition issues on anisotropic smoothed particle hydrodynamics

    Science.gov (United States)

    Pereira Marinho, Eraldo

    2014-03-01

    This is a preliminary theoretical discussion on the computational requirements of the state of the art smoothed particle hydrodynamics (SPH) from the optics of pattern recognition and artificial intelligence. It is pointed out in the present paper that, when including anisotropy detection to improve resolution on shock layer, SPH is a very peculiar case of unsupervised machine learning. On the other hand, the free particle nature of SPH opens an opportunity for artificial intelligence to study particles as agents acting in a collaborative framework in which the timed outcomes of a fluid simulation forms a large knowledge base, which might be very attractive in computational astrophysics phenomenological problems like self-propagating star formation.

  18. Pattern recognition issues on anisotropic smoothed particle hydrodynamics

    International Nuclear Information System (INIS)

    Marinho, Eraldo Pereira

    2014-01-01

    This is a preliminary theoretical discussion on the computational requirements of the state of the art smoothed particle hydrodynamics (SPH) from the optics of pattern recognition and artificial intelligence. It is pointed out in the present paper that, when including anisotropy detection to improve resolution on shock layer, SPH is a very peculiar case of unsupervised machine learning. On the other hand, the free particle nature of SPH opens an opportunity for artificial intelligence to study particles as agents acting in a collaborative framework in which the timed outcomes of a fluid simulation forms a large knowledge base, which might be very attractive in computational astrophysics phenomenological problems like self-propagating star formation

  19. Terahertz Imaging for Biomedical Applications Pattern Recognition and Tomographic Reconstruction

    CERN Document Server

    Yin, Xiaoxia; Abbott, Derek

    2012-01-01

    Terahertz Imaging for Biomedical Applications: Pattern Recognition and Tomographic Reconstruction presents the necessary algorithms needed to assist screening, diagnosis, and treatment, and these algorithms will play a critical role in the accurate detection of abnormalities present in biomedical imaging. Terahertz biomedical imaging has become an area of interest due to its ability to simultaneously acquire both image and spectral information. Terahertz imaging systems are being commercialized with an increasing number of trials performed in a biomedical setting. Terahertz tomographic imaging and detection technology contributes to the ability to identify opaque objects with clear boundaries,and would be useful to both in vivo and ex vivo environments. This book also: Introduces terahertz radiation techniques and provides a number of topical examples of signal and image processing, as well as machine learning Presents the most recent developments in an emerging field, terahertz radiation Utilizes new methods...

  20. Spin Transition in the Lower Mantle: Deep Learning and Pattern Recognition of Superplumes from the Mid-mantle and Mid-mantle Slab Stagnation

    Science.gov (United States)

    Yuen, D. A.; Shahnas, M. H.; De Hoop, M. V.; Pysklywec, R.

    2016-12-01

    The broad, slow seismic anomalies under Africa and Pacific cannot be explained without ambiguity. There is no well-established theory to explain the fast structures prevalent globally in seismic tomographic images that are commonly accepted to be the remnants of fossil slabs at different depths in the mantle. The spin transition from high spin to low spin in iron in ferropericlase and perovskite, two major constituents of the lower mantle can significantly impact their physical properties. We employ high resolution 2D-axisymmetric and 3D-spherical control volume models to reconcile the influence of the spin transition-induced anomalies in density, thermal expansivity, and bulk modulus in ferropericlase and perovskite on mantle dynamics. The model results reveal that the spin transition effects increase the mixing in the lower regions of mantle. Depending on the changes of bulk modulus associated with the spin transition, these effects may also cause both stagnation of slabs and rising plumes at mid-mantle depths ( 1600 km). The stagnation may be followed by downward or upward penetration of cold or hot mantle material, respectively, through an avalanche process. The size of these mid-mantle plumes reaches 1500 km across with a radial velocity reaching 20 cm/yr near the seismic transition zone and plume heads exceeding 2500 km across. We will employ a deep-learning algorithm to formulate this challenge as a classification problem where modelling/computation aids in the learning stage for detecting the particular patterns.The parameters based on which the convection models are developed are poorly constrained. There are uncertainties in initial conditions, heterogeneities and boundary conditions in the simulations, which are nonlinear. Thus it is difficult to reconstruct the past configuration over long time scales. In order to extract information and better understand the parameters in mantle convection, we employ deep learning algorithm to search for different

  1. Macrophage pattern recognition receptors in immunity, homeostasis and self tolerance.

    Science.gov (United States)

    Mukhopadhyay, Subhankar; Plüddemann, Annette; Gordon, Siamon

    2009-01-01

    Macrophages, a major component of innate immune defence, express a large repertoire of different classes of pattern recognition receptors and other surface antigens which determine the immunologic and homeostatic potential of these versatile cells. In the light of present knowledge ofmacrophage surface antigens, we discuss self versus nonself recognition, microbicidal effector functions and self tolerance in the innate immune system.

  2. The Pandora software development kit for pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, J.S.; Thomson, M.A. [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom)

    2015-09-15

    The development of automated solutions to pattern recognition problems is important in many areas of scientific research and human endeavour. This paper describes the implementation of the Pandora software development kit, which aids the process of designing, implementing and running pattern recognition algorithms. The Pandora Application Programming Interfaces ensure simple specification of the building-blocks defining a pattern recognition problem. The logic required to solve the problem is implemented in algorithms. The algorithms request operations to create or modify data structures and the operations are performed by the Pandora framework. This design promotes an approach using many decoupled algorithms, each addressing specific topologies. Details of algorithms addressing two pattern recognition problems in High Energy Physics are presented: reconstruction of events at a high-energy e{sup +}e{sup -} linear collider and reconstruction of cosmic ray or neutrino events in a liquid argon time projection chamber. (orig.)

  3. Data analysis and pattern recognition in multiple databases

    CERN Document Server

    Adhikari, Animesh; Pedrycz, Witold

    2014-01-01

    Pattern recognition in data is a well known classical problem that falls under the ambit of data analysis. As we need to handle different data, the nature of patterns, their recognition and the types of data analyses are bound to change. Since the number of data collection channels increases in the recent time and becomes more diversified, many real-world data mining tasks can easily acquire multiple databases from various sources. In these cases, data mining becomes more challenging for several essential reasons. We may encounter sensitive data originating from different sources - those cannot be amalgamated. Even if we are allowed to place different data together, we are certainly not able to analyse them when local identities of patterns are required to be retained. Thus, pattern recognition in multiple databases gives rise to a suite of new, challenging problems different from those encountered before. Association rule mining, global pattern discovery, and mining patterns of select items provide different...

  4. Hopfield's Model of Patterns Recognition and Laws of Artistic Perception

    Science.gov (United States)

    Yevin, Igor; Koblyakov, Alexander

    The model of patterns recognition or attractor network model of associative memory, offered by J.Hopfield 1982, is the most known model in theoretical neuroscience. This paper aims to show, that such well-known laws of art perception as the Wundt curve, perception of visual ambiguity in art, and also the model perception of musical tonalities are nothing else than special cases of the Hopfield’s model of patterns recognition.

  5. Multi-script handwritten character recognition : Using feature descriptors and machine learning

    NARCIS (Netherlands)

    Surinta, Olarik

    2016-01-01

    Handwritten character recognition plays an important role in transforming raw visual image data obtained from handwritten documents using for example scanners to a format which is understandable by a computer. It is an important application in the field of pattern recognition, machine learning and

  6. Pattern recognition in molecular dynamics. [FORTRAN

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, W H; Schieve, W C [Texas Univ., Austin (USA)

    1977-07-01

    An algorithm for the recognition of the formation of bound molecular states in the computer simulation of a dilute gas is presented. Applications to various related problems in physics and chemistry are pointed out. Data structure and decision processes are described. Performance of the FORTRAN program based on the algorithm in cooperation with the molecular dynamics program is described and the results are presented.

  7. Emotion recognition a pattern analysis approach

    CERN Document Server

    Konar, Amit

    2014-01-01

    Offers both foundations and advances on emotion recognition in a single volumeProvides a thorough and insightful introduction to the subject by utilizing computational tools of diverse domainsInspires young researchers to prepare themselves for their own researchDemonstrates direction of future research through new technologies, such as Microsoft Kinect, EEG systems etc.

  8. Technical Reviews on Pattern Recognition in Process Analytical Technology

    International Nuclear Information System (INIS)

    Kim, Jong Yun; Choi, Yong Suk; Ji, Sun Kyung; Park, Yong Joon; Song, Kyu Seok; Jung, Sung Hee

    2008-12-01

    Pattern recognition is one of the first and the most widely adopted chemometric tools among many active research area in chemometrics such as design of experiment(DoE), pattern recognition, multivariate calibration, signal processing. Pattern recognition has been used to identify the origin of a wine and the time of year that the vine was grown by using chromatography, cause of fire by using GC/MS chromatography, detection of explosives and land mines, cargo and luggage inspection in seaports and airports by using a prompt gamma-ray activation analysis, and source apportionment of environmental pollutant by using a stable isotope ratio mass spectrometry. Recently, pattern recognition has been taken into account as a major chemometric tool in the so-called 'process analytical technology (PAT)', which is a newly-developed concept in the area of process analytics proposed by US Food and Drug Administration (US FDA). For instance, identification of raw material by using a pattern recognition analysis plays an important role for the effective quality control of the production process. Recently, pattern recognition technique has been used to identify the spatial distribution and uniformity of the active ingredients present in the product such as tablet by transforming the chemical data into the visual information

  9. Face recognition system and method using face pattern words and face pattern bytes

    Science.gov (United States)

    Zheng, Yufeng

    2014-12-23

    The present invention provides a novel system and method for identifying individuals and for face recognition utilizing facial features for face identification. The system and method of the invention comprise creating facial features or face patterns called face pattern words and face pattern bytes for face identification. The invention also provides for pattern recognitions for identification other than face recognition. The invention further provides a means for identifying individuals based on visible and/or thermal images of those individuals by utilizing computer software implemented by instructions on a computer or computer system and a computer readable medium containing instructions on a computer system for face recognition and identification.

  10. Type-2 fuzzy graphical models for pattern recognition

    CERN Document Server

    Zeng, Jia

    2015-01-01

    This book discusses how to combine type-2 fuzzy sets and graphical models to solve a range of real-world pattern recognition problems such as speech recognition, handwritten Chinese character recognition, topic modeling as well as human action recognition. It covers these recent developments while also providing a comprehensive introduction to the fields of type-2 fuzzy sets and graphical models. Though primarily intended for graduate students, researchers and practitioners in fuzzy logic and pattern recognition, the book can also serve as a valuable reference work for researchers without any previous knowledge of these fields. Dr. Jia Zeng is a Professor at the School of Computer Science and Technology, Soochow University, China. Dr. Zhi-Qiang Liu is a Professor at the School of Creative Media, City University of Hong Kong, China.

  11. Threats of Password Pattern Leakage Using Smartwatch Motion Recognition Sensors

    Directory of Open Access Journals (Sweden)

    Jihun Kim

    2017-06-01

    Full Text Available Thanks to the development of Internet of Things (IoT technologies, wearable markets have been growing rapidly. Smartwatches can be said to be the most representative product in wearable markets, and involve various hardware technologies in order to overcome the limitations of small hardware. Motion recognition sensors are a representative example of those hardware technologies. However, smartwatches and motion recognition sensors that can be worn by users may pose security threats of password pattern leakage. In the present paper, passwords are inferred through experiments to obtain password patterns inputted by users using motion recognition sensors, and verification of the results and the accuracy of the results is shown.

  12. Supervised Filter Learning for Representation Based Face Recognition.

    Directory of Open Access Journals (Sweden)

    Chao Bi

    Full Text Available Representation based classification methods, such as Sparse Representation Classification (SRC and Linear Regression Classification (LRC have been developed for face recognition problem successfully. However, most of these methods use the original face images without any preprocessing for recognition. Thus, their performances may be affected by some problematic factors (such as illumination and expression variances in the face images. In order to overcome this limitation, a novel supervised filter learning algorithm is proposed for representation based face recognition in this paper. The underlying idea of our algorithm is to learn a filter so that the within-class representation residuals of the faces' Local Binary Pattern (LBP features are minimized and the between-class representation residuals of the faces' LBP features are maximized. Therefore, the LBP features of filtered face images are more discriminative for representation based classifiers. Furthermore, we also extend our algorithm for heterogeneous face recognition problem. Extensive experiments are carried out on five databases and the experimental results verify the efficacy of the proposed algorithm.

  13. IMPROVEMENT OF RECOGNITION QUALITY IN DEEP LEARNING NETWORKS BY SIMULATED ANNEALING METHOD

    Directory of Open Access Journals (Sweden)

    A. S. Potapov

    2014-09-01

    Full Text Available The subject of this research is deep learning methods, in which automatic construction of feature transforms is taken place in tasks of pattern recognition. Multilayer autoencoders have been taken as the considered type of deep learning networks. Autoencoders perform nonlinear feature transform with logistic regression as an upper classification layer. In order to verify the hypothesis of possibility to improve recognition rate by global optimization of parameters for deep learning networks, which are traditionally trained layer-by-layer by gradient descent, a new method has been designed and implemented. The method applies simulated annealing for tuning connection weights of autoencoders while regression layer is simultaneously trained by stochastic gradient descent. Experiments held by means of standard MNIST handwritten digit database have shown the decrease of recognition error rate from 1.1 to 1.5 times in case of the modified method comparing to the traditional method, which is based on local optimization. Thus, overfitting effect doesn’t appear and the possibility to improve learning rate is confirmed in deep learning networks by global optimization methods (in terms of increasing recognition probability. Research results can be applied for improving the probability of pattern recognition in the fields, which require automatic construction of nonlinear feature transforms, in particular, in the image recognition. Keywords: pattern recognition, deep learning, autoencoder, logistic regression, simulated annealing.

  14. Speech pattern recognition for forensic acoustic purposes

    OpenAIRE

    Herrera Martínez, Marcelo; Aldana Blanco, Andrea Lorena; Guzmán Palacios, Ana María

    2014-01-01

    The present paper describes the development of a software for analysis of acoustic voice parameters (APAVOIX), which can be used for forensic acoustic purposes, based on the speaker recognition and identification. This software enables to observe in a clear manner, the parameters which are sufficient and necessary when performing a comparison between two voice signals, the suspicious and the original one. These parameters are used according to the classic method, generally used by state entit...

  15. Quantum pattern recognition with multi-neuron interactions

    Science.gov (United States)

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  16. Behavioral and Physiological Neural Network Analyses: A Common Pathway toward Pattern Recognition and Prediction

    Science.gov (United States)

    Ninness, Chris; Lauter, Judy L.; Coffee, Michael; Clary, Logan; Kelly, Elizabeth; Rumph, Marilyn; Rumph, Robin; Kyle, Betty; Ninness, Sharon K.

    2012-01-01

    Using 3 diversified datasets, we explored the pattern-recognition ability of the Self-Organizing Map (SOM) artificial neural network as applied to diversified nonlinear data distributions in the areas of behavioral and physiological research. Experiment 1 employed a dataset obtained from the UCI Machine Learning Repository. Data for this study…

  17. Autonomous learning in gesture recognition by using lobe component analysis

    Science.gov (United States)

    Lu, Jian; Weng, Juyang

    2007-02-01

    Gesture recognition is a new human-machine interface method implemented by pattern recognition(PR).In order to assure robot safety when gesture is used in robot control, it is required to implement the interface reliably and accurately. Similar with other PR applications, 1) feature selection (or model establishment) and 2) training from samples, affect the performance of gesture recognition largely. For 1), a simple model with 6 feature points at shoulders, elbows, and hands, is established. The gestures to be recognized are restricted to still arm gestures, and the movement of arms is not considered. These restrictions are to reduce the misrecognition, but are not so unreasonable. For 2), a new biological network method, called lobe component analysis(LCA), is used in unsupervised learning. Lobe components, corresponding to high-concentrations in probability of the neuronal input, are orientation selective cells follow Hebbian rule and lateral inhibition. Due to the advantage of LCA method for balanced learning between global and local features, large amount of samples can be used in learning efficiently.

  18. Active Discriminative Dictionary Learning for Weather Recognition

    Directory of Open Access Journals (Sweden)

    Caixia Zheng

    2016-01-01

    Full Text Available Weather recognition based on outdoor images is a brand-new and challenging subject, which is widely required in many fields. This paper presents a novel framework for recognizing different weather conditions. Compared with other algorithms, the proposed method possesses the following advantages. Firstly, our method extracts both visual appearance features of the sky region and physical characteristics features of the nonsky region in images. Thus, the extracted features are more comprehensive than some of the existing methods in which only the features of sky region are considered. Secondly, unlike other methods which used the traditional classifiers (e.g., SVM and K-NN, we use discriminative dictionary learning as the classification model for weather, which could address the limitations of previous works. Moreover, the active learning procedure is introduced into dictionary learning to avoid requiring a large number of labeled samples to train the classification model for achieving good performance of weather recognition. Experiments and comparisons are performed on two datasets to verify the effectiveness of the proposed method.

  19. Grip-pattern recognition: Applied to a smart gun

    NARCIS (Netherlands)

    Shang, X.

    2008-01-01

    In our work the verification performance of a biometric recognition system based on grip patterns, as part of a smart gun for use by the police ocers, has been investigated. The biometric features are extracted from a two-dimensional pattern of the pressure, exerted on the grip of a gun by the hand

  20. Biometric verification based on grip-pattern recognition

    NARCIS (Netherlands)

    Veldhuis, Raymond N.J.; Bazen, A.M.; Kauffman, J.A.; Hartel, Pieter H.; Delp, Edward J.; Wong, Ping W.

    This paper describes the design, implementation and evaluation of a user-verification system for a smart gun, which is based on grip-pattern recognition. An existing pressure sensor consisting of an array of 44 x 44 piezoresistive elements is used to measure the grip pattern. An interface has been

  1. Pattern Recognition as a Human Centered non-Euclidean Problem

    NARCIS (Netherlands)

    Duin, R.P.W.

    2010-01-01

    Regularities in the world are human defined. Patterns in the observed phenomena are there because we define and recognize them as such. Automatic pattern recognition tries to bridge the gap between human judgment and measurements made by artificial sensors. This is done in two steps: representation

  2. A bacterial tyrosine phosphatase inhibits plant pattern recognition receptor activation

    Science.gov (United States)

    Perception of pathogen-associated molecular patterns (PAMPs) by surface-localised pattern-recognition receptors (PRRs) is a key component of plant innate immunity. Most known plant PRRs are receptor kinases and initiation of PAMP-triggered immunity (PTI) signalling requires phosphorylation of the PR...

  3. Biometric verification based on grip-pattern recognition

    NARCIS (Netherlands)

    Veldhuis, Raymond N.J.; Bazen, A.M.; Kauffman, J.A.; Hartel, Pieter H.

    This paper describes the design, implementation and evaluation of a user-verification system for a smart gun, which is based on grip-pattern recognition. An existing pressure sensor consisting of an array of 44 £ 44 piezoresistive elements is used to measure the grip pattern. An interface has been

  4. Rough-fuzzy pattern recognition applications in bioinformatics and medical imaging

    CERN Document Server

    Maji, Pradipta

    2012-01-01

    Learn how to apply rough-fuzzy computing techniques to solve problems in bioinformatics and medical image processing Emphasizing applications in bioinformatics and medical image processing, this text offers a clear framework that enables readers to take advantage of the latest rough-fuzzy computing techniques to build working pattern recognition models. The authors explain step by step how to integrate rough sets with fuzzy sets in order to best manage the uncertainties in mining large data sets. Chapters are logically organized according to the major phases of pattern recognition systems dev

  5. Face Recognition Using Local Quantized Patterns and Gabor Filters

    Science.gov (United States)

    Khryashchev, V.; Priorov, A.; Stepanova, O.; Nikitin, A.

    2015-05-01

    The problem of face recognition in a natural or artificial environment has received a great deal of researchers' attention over the last few years. A lot of methods for accurate face recognition have been proposed. Nevertheless, these methods often fail to accurately recognize the person in difficult scenarios, e.g. low resolution, low contrast, pose variations, etc. We therefore propose an approach for accurate and robust face recognition by using local quantized patterns and Gabor filters. The estimation of the eye centers is used as a preprocessing stage. The evaluation of our algorithm on different samples from a standardized FERET database shows that our method is invariant to the general variations of lighting, expression, occlusion and aging. The proposed approach allows about 20% correct recognition accuracy increase compared with the known face recognition algorithms from the OpenCV library. The additional use of Gabor filters can significantly improve the robustness to changes in lighting conditions.

  6. Deep Learning Improves Antimicrobial Peptide Recognition.

    Science.gov (United States)

    Veltri, Daniel; Kamath, Uday; Shehu, Amarda

    2018-03-24

    Bacterial resistance to antibiotics is a growing concern. Antimicrobial peptides (AMPs), natural components of innate immunity, are popular targets for developing new drugs. Machine learning methods are now commonly adopted by wet-laboratory researchers to screen for promising candidates. In this work we utilize deep learning to recognize antimicrobial activity. We propose a neural network model with convolutional and recurrent layers that leverage primary sequence composition. Results show that the proposed model outperforms state-of-the-art classification models on a comprehensive data set. By utilizing the embedding weights, we also present a reduced-alphabet representation and show that reasonable AMP recognition can be maintained using nine amino-acid types. Models and data sets are made freely available through the Antimicrobial Peptide Scanner vr.2 web server at: www.ampscanner.com. amarda@gmu.edu for general inquiries and dan.veltri@gmail.com for web server information. Supplementary data are available at Bioinformatics online.

  7. Adaptive pattern recognition in real-time video-based soccer analysis

    DEFF Research Database (Denmark)

    Schlipsing, Marc; Salmen, Jan; Tschentscher, Marc

    2017-01-01

    are taken into account. Our contribution is twofold: (1) the deliberate use of machine learning and pattern recognition techniques allows us to achieve high classification accuracy in varying environments. We systematically evaluate combinations of image features and learning machines in the given online......Computer-aided sports analysis is demanded by coaches and the media. Image processing and machine learning techniques that allow for "live" recognition and tracking of players exist. But these methods are far from collecting and analyzing event data fully autonomously. To generate accurate results......, human interaction is required at different stages including system setup, calibration, supervision of classifier training, and resolution of tracking conflicts. Furthermore, the real-time constraints are challenging: in contrast to other object recognition and tracking applications, we cannot treat data...

  8. Pattern recognition of state variables by neural networks

    International Nuclear Information System (INIS)

    Faria, Eduardo Fernandes; Pereira, Claubia

    1996-01-01

    An artificial intelligence system based on artificial neural networks can be used to classify predefined events and emergency procedures. These systems are being used in different areas. In the nuclear reactors safety, the goal is the classification of events whose data can be processed and recognized by neural networks. In this works we present a preliminary simple system, using neural networks in the recognition of patterns the recognition of variables which define a situation. (author)

  9. Deep kernel learning method for SAR image target recognition

    Science.gov (United States)

    Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao

    2017-10-01

    With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.

  10. Pattern recognition in bees : orientation discrimination

    NARCIS (Netherlands)

    Hateren, J.H. van; Srinivasan, M.V.; Wait, P.B.

    1990-01-01

    Honey bees (Apis mellifera, worker) were trained to discriminate between two random gratings oriented perpendicularly to each other. This task was quickly learned with vertical, horizontal, and oblique gratings. After being trained on perpendicularly-oriented random gratings, bees could discriminate

  11. Using Pattern Classification and Recognition Techniques for Diagnostic and Prediction

    Directory of Open Access Journals (Sweden)

    MORARIU, N.

    2007-04-01

    Full Text Available The paper presents some aspects regarding the joint use of classification and recognition techniques for the activity evolution diagnostication and prediction by means of a set of indexes. Starting from the indexes set there is defined a measure on the patterns set, measure representing a scalar value that characterizes the activity analyzed at each time moment. A pattern is defined by the values of the indexes set at a given time. Over the classes set obtained by means of the classification and recognition techniques is defined a relation that allows the representation of the evolution from negative evolution towards positive evolution. For the diagnostication and prediction the following tools are used: pattern recognition and multilayer perceptron. The data set used in experiments describes the pollution due to CO2 emission from the consumption of fuels in Europe. The paper also presents the REFORME software written by the authors and the results of the experiment obtained with this software.

  12. Diagnosis of Equipment Failures by Pattern Recognition

    DEFF Research Database (Denmark)

    Pau, L. F.

    1974-01-01

    The main problems in relation to automatic fault finding and diagnosis in equipments or production systems are discussed: 1) compression of the syndrome and observation spaces for better discrimination between failure modes; 2) simultaneous display of the failure patterns and the failure instants...

  13. Do allopatric male Calopteryx virgo damselflies learn species recognition?

    Science.gov (United States)

    Kuitunen, Katja; Haukilehto, Elina; Raatikainen, Kaisa J; Hakkarainen, Hanne; Miettinen, Minna; Högmander, Harri; Kotiaho, Janne S

    2012-03-01

    There is a growing amount of empirical evidence that premating reproductive isolation of two closely related species can be reinforced by natural selection arising from avoidance of maladaptive hybridization. However, as an alternative for this popular reinforcement theory, it has been suggested that learning to prefer conspecifics or to discriminate heterospecifics could cause a similar pattern of reinforced premating isolation, but this possibility is much less studied. Here, we report results of a field experiment in which we examined (i) whether allopatric Calopteryx virgo damselfly males that have not encountered heterospecific females of the congener C. splendens initially show discrimination, and (ii) whether C. virgo males learn to discriminate heterospecifics or learn to associate with conspecifics during repeated experimental presentation of females. Our experiment revealed that there was a statistically nonsignificant tendency for C. virgo males to show initial discrimination against heterospecific females but because we did not use sexually naïve individuals in our experiment, we were not able to separate the effect of innate or associative learning. More importantly, however, our study revealed that species discrimination might be further strengthened by learning, especially so that C. virgo males increase their association with conspecific females during repeated presentation trials. The role of learning to discriminate C. splendens females was less clear. We conclude that learning might play a role in species recognition also when individuals are not naïve but have already encountered potential conspecific mates.

  14. Qualitative aspects of learning, recall, and recognition in dementia

    Directory of Open Access Journals (Sweden)

    Ranjith Neelima

    2010-01-01

    Full Text Available Objective: To determine whether learning and serial position effect (SPE differs qualitatively and quantitatively among different types of dementia and between dementia patients and controls; we also wished to find out whether interference affects it. Materials and Methods: We administered the Malayalam version of the Rey Auditory Verbal Learning Test (RAVLT to 30 cognitively unimpaired controls and 80 dementia patients [30 with Alzheimer′s disease (AD, 30 with vascular dementia (VaD, and 20 with frontotemporal dementia (FTD] with mild severity on the Clinical Dementia Rating Scale. Results: All groups were comparable on education and age, except the FTD group, who were younger. Qualitatively, the learning pattern and SPE (with primacy and recency being superior to intermediate was retained in the AD, VaD, and control groups. On SPE in free recall, recency was superior to intermediate in the FTD group (P < 0.01 using Bonferroni correction. On recognition, the AD and VaD groups had more misses (P < 0.01, while the FTD group had more false positives (P < 0.01. Conclusion: Quantitative learning is affected by dementia. The pattern of qualitative learning remains unaltered in dementia in the early stages.

  15. Application of pattern recognition techniques to crime analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bender, C.F.; Cox, L.A. Jr.; Chappell, G.A.

    1976-08-15

    The initial goal was to evaluate the capabilities of current pattern recognition techniques when applied to existing computerized crime data. Performance was to be evaluated both in terms of the system's capability to predict crimes and to optimize police manpower allocation. A relation was sought to predict the crime's susceptibility to solution, based on knowledge of the crime type, location, time, etc. The preliminary results of this work are discussed. They indicate that automatic crime analysis involving pattern recognition techniques is feasible, and that efforts to determine optimum variables and techniques are warranted. 47 figures (RWR)

  16. Pattern recognition approach to nondestructive evaluation of materials

    International Nuclear Information System (INIS)

    Chen, C.H.

    1987-01-01

    In this paper, a pattern recognition approach to the ultrasonic nondestructive evaluation of materials is examined. Emphasis is placed on identifying effective features from time and frequency domains, correlation functions and impulse responses to classify aluminum plate specimens into three major defect geometry categories: flat, angular cut and circular hole defects. A multi-stage classification procedure is developed which can further determine the angles and sizes for defect characterization and classification. The research clearly demonstrates that the pattern recognition approach can significantly improve the nondestructive material evaluation capability of the ultrasonic methods without resorting to the solution of highly complex mathematical inverse problems

  17. TECA: Petascale pattern recognition for climate science

    Energy Technology Data Exchange (ETDEWEB)

    Prabhat, . [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Byna, Surendra [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Vishwanath, Venkatram [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wehner, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-26

    Climate Change is one of the most pressing challenges facing humanity in the 21st century. Climate simulations provide us with a unique opportunity to examine effects of anthropogenic emissions. Highresolution climate simulations produce “Big Data”: contemporary climate archives are ≈ 5PB in size and we expect future archives to measure on the order of Exa-Bytes. In this work, we present the successful application of TECA (Toolkit for Extreme Climate Analysis) framework, for extracting extreme weather patterns such as Tropical Cyclones, Atmospheric Rivers and Extra-Tropical Cyclones from TB-sized simulation datasets. TECA has been run at full-scale on Cray XE6 and IBM BG/Q systems, and has reduced the runtime for pattern detection tasks from years to hours. TECA has been utilized to evaluate the performance of various computational models in reproducing the statistics of extreme weather events, and for characterizing the change in frequency of storm systems in the future.

  18. Learning Python design patterns

    CERN Document Server

    Zlobin, Gennadiy

    2013-01-01

    This book takes a tutorial-based and user-friendly approach to covering Python design patterns. Its concise presentation means that in a short space of time, you will get a good introduction to various design patterns.If you are an intermediate level Python user, this book is for you. Prior knowledge of Python programming is essential. Some knowledge of UML is also required to understand the UML diagrams which are used to describe some design patterns.

  19. Spike Pattern Recognition for Automatic Collimation Alignment

    CERN Document Server

    Azzopardi, Gabriella; Salvachua Ferrando, Belen Maria; Mereghetti, Alessio; Redaelli, Stefano; CERN. Geneva. ATS Department

    2017-01-01

    The LHC makes use of a collimation system to protect its sensitive equipment by intercepting potentially dangerous beam halo particles. The appropriate collimator settings to protect the machine against beam losses relies on a very precise alignment of all the collimators with respect to the beam. The beam center at each collimator is then found by touching the beam halo using an alignment procedure. Until now, in order to determine whether a collimator is aligned with the beam or not, a user is required to follow the collimator’s BLM loss data and detect spikes. A machine learning (ML) model was trained in order to automatically recognize spikes when a collimator is aligned. The model was loosely integrated with the alignment implementation to determine the classification performance and reliability, without effecting the alignment process itself. The model was tested on a number of collimators during this MD and the machine learning was able to output the classifications in real-time.

  20. Pattern recognition with parallel associative memory

    Science.gov (United States)

    Toth, Charles K.; Schenk, Toni

    1990-01-01

    An examination is conducted of the feasibility of searching targets in aerial photographs by means of a parallel associative memory (PAM) that is based on the nearest-neighbor algorithm; the Hamming distance is used as a measure of closeness, in order to discriminate patterns. Attention has been given to targets typically used for ground-control points. The method developed sorts out approximate target positions where precise localizations are needed, in the course of the data-acquisition process. The majority of control points in different images were correctly identified.

  1. Incremental Learning for Place Recognition in Dynamic Environments

    OpenAIRE

    Luo, Jie; Pronobis, Andrzej; Caputo, Barbara; Jensfelt, Patric

    2007-01-01

    This paper proposes a discriminative approach to template-based Vision-based place recognition is a desirable feature for an autonomous mobile system. In order to work in realistic scenarios, visual recognition algorithms should be adaptive, i.e. should be able to learn from experience and adapt continuously to changes in the environment. This paper presents a discriminative incremental learning approach to place recognition. We use a recently introduced version of the incremental SVM, which ...

  2. Hypothesis Support Mechanism for Mid-Level Visual Pattern Recognition

    Science.gov (United States)

    Amador, Jose J (Inventor)

    2007-01-01

    A method of mid-level pattern recognition provides for a pose invariant Hough Transform by parametrizing pairs of points in a pattern with respect to at least two reference points, thereby providing a parameter table that is scale- or rotation-invariant. A corresponding inverse transform may be applied to test hypothesized matches in an image and a distance transform utilized to quantify the level of match.

  3. Pattern recognition receptors and the inflammasome in kidney disease

    NARCIS (Netherlands)

    Leemans, Jaklien C.; Kors, Lotte; Anders, Hans-Joachim; Florquin, Sandrine

    2014-01-01

    Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain receptors (NLRs) are families of pattern recognition receptors that, together with inflammasomes, sense and respond to highly conserved pathogen motifs and endogenous molecules released upon cell damage or stress. Evidence

  4. Quantitative EEG Applying the Statistical Recognition Pattern Method

    DEFF Research Database (Denmark)

    Engedal, Knut; Snaedal, Jon; Hoegh, Peter

    2015-01-01

    BACKGROUND/AIM: The aim of this study was to examine the discriminatory power of quantitative EEG (qEEG) applying the statistical pattern recognition (SPR) method to separate Alzheimer's disease (AD) patients from elderly individuals without dementia and from other dementia patients. METHODS...

  5. Introduction of pattern recognition by MATLAB practice 2

    International Nuclear Information System (INIS)

    1999-06-01

    The contents of this book starts introduction and examples of pattern recognition. This book describes a vector and matrix, basic statistics and a probability distribution, statistical decision theory and probability density function, liner shunt, vector quantizing and clustering GMM, PCA and KL conversion, LDA, ID 3, a nerve cell modeling, HMM, SVM and Ada boost. It has direction of MATLAB in the appendix.

  6. Ultrasonic pattern recognition study of feedwater nozzle inner radius indication

    International Nuclear Information System (INIS)

    Yoneyama, H.; Takama, S.; Kishigami, M.; Sasahara, T.; Ando, H.

    1983-01-01

    A study was made to distinguish defects on feed-water nozzle inner radius from noise echo caused by stainless steel cladding by using ultrasonic pattern recognition method with frequency analysis technique. Experiment has been successfully performed on flat clad plates and nozzle mock-up containing fatigue cracks and the following results which shows the high capability of frequency analysis technique are obtained

  7. Pattern recognition approach to quantify the atomic structure of graphene

    DEFF Research Database (Denmark)

    Kling, Jens; Vestergaard, Jacob Schack; Dahl, Anders Bjorholm

    2014-01-01

    We report a pattern recognition approach to detect the atomic structure in high-resolution transmission electron microscopy images of graphene. The approach provides quantitative information such as carbon-carbon bond lengths and bond length variations on a global and local scale alike. © 2014...

  8. Environmental Sound Recognition Using Time-Frequency Intersection Patterns

    Directory of Open Access Journals (Sweden)

    Xuan Guo

    2012-01-01

    Full Text Available Environmental sound recognition is an important function of robots and intelligent computer systems. In this research, we use a multistage perceptron neural network system for environmental sound recognition. The input data is a combination of time-variance pattern of instantaneous powers and frequency-variance pattern with instantaneous spectrum at the power peak, referred to as a time-frequency intersection pattern. Spectra of many environmental sounds change more slowly than those of speech or voice, so the intersectional time-frequency pattern will preserve the major features of environmental sounds but with drastically reduced data requirements. Two experiments were conducted using an original database and an open database created by the RWCP project. The recognition rate for 20 kinds of environmental sounds was 92%. The recognition rate of the new method was about 12% higher than methods using only an instantaneous spectrum. The results are also comparable with HMM-based methods, although those methods need to treat the time variance of an input vector series with more complicated computations.

  9. Statistical pattern recognition for automatic writer identification and verification

    NARCIS (Netherlands)

    Bulacu, Marius Lucian

    2007-01-01

    The thesis addresses the problem of automatic person identification using scanned images of handwriting.Identifying the author of a handwritten sample using automatic image-based methods is an interesting pattern recognition problem with direct applicability in the forensic and historic document

  10. Fringe patterns generated by micro-optical sensors for pattern recognition.

    Science.gov (United States)

    Tamee, Kreangsak; Chaiwong, Khomyuth; Yothapakdee, Kriengsak; Yupapin, Preecha P

    2015-01-01

    We present a new result of pattern recognition generation scheme using a small-scale optical muscle sensing system, which consisted of an optical add-drop filter incorporating two nonlinear optical side ring resonators. When light from laser source enters into the system, the device is stimulated by an external physical parameter that introduces a change in the phase of light propagation within the sensing device, which can be formed by the interference fringe patterns. Results obtained have shown that the fringe patterns can be used to form the relationship between signal patterns and fringe pattern recognitions.

  11. Recognition of Prior Learning as an integral component of ...

    African Journals Online (AJOL)

    This is irrespective of whether that learning has been acquired through unstructured learning, performance development, off-the-job assessment, or skills and knowledge that meet workplace needs but have been gained through various previous learning experiences. The concept Recognition of Prior Learning (RPL) is ...

  12. Artificial immune pattern recognition for damage detection in structural health monitoring sensor networks

    Science.gov (United States)

    Chen, Bo; Zang, Chuanzhi

    2009-03-01

    This paper presents an artificial immune pattern recognition (AIPR) approach for the damage detection and classification in structures. An AIPR-based Structure Damage Classifier (AIPR-SDC) has been developed by mimicking immune recognition and learning mechanisms. The structure damage patterns are represented by feature vectors that are extracted from the structure's dynamic response measurements. The training process is designed based on the clonal selection principle in the immune system. The selective and adaptive features of the clonal selection algorithm allow the classifier to generate recognition feature vectors that are able to match the training data. In addition, the immune learning algorithm can learn and remember various data patterns by generating a set of memory cells that contains representative feature vectors for each class (pattern). The performance of the presented structure damage classifier has been validated using a benchmark structure proposed by the IASC-ASCE (International Association for Structural Control - American Society of Civil Engineers) Structural Health Monitoring Task Group. The validation results show a better classification success rate comparing to some of other classification algorithms.

  13. A new concept of vertically integrated pattern recognition associative memory

    International Nuclear Information System (INIS)

    Liu, Ted; Hoff, Jim; Deptuch, Grzegorz; Yarema, Ray

    2011-01-01

    Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing fast pattern recognition for a track trigger, requiring about three orders of magnitude more associative memory patterns than what was used in the original CDF SVT. Scaling of current technologies is unlikely to satisfy the scientific needs of the future, and investments in transformational new technologies need to be made. In this paper, we will discuss a new concept of using the emerging 3D vertical integration technology to significantly advance the state-of-the-art for fast pattern recognition within and outside HEP. A generic R and D proposal based on this new concept, with a few institutions involved, has recently been submitted to DOE with the goal to design and perform the ASIC engineering necessary to realize a prototype device. The progress of this R and D project will be reported in the future. Here we will only focus on the concept of this new approach.

  14. Towards pattern understanding-new technologies beyond pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, T

    1982-04-01

    The techniques employed in understanding-systems for pattern information are classified roughly under top-down and bottom-up techniques. These are outlined in the paper, and intellectual preparation for communications and information processing is briefly described. 1 ref.

  15. Pattern-recognition software detecting the onset of failures in complex systems

    International Nuclear Information System (INIS)

    Mott, J.; King, R.

    1987-01-01

    A very general mathematical framework for embodying learned data from a complex system and combining it with a current observation to estimate the true current state of the system has been implemented using nearly universal pattern-recognition algorithms and applied to surveillance of the EBR-II power plant. In this application the methodology can provide signal validation and replacement of faulty signals on a near-real-time basis for hundreds of plant parameters. The mathematical framework, the pattern-recognition algorithms, examples of the learning and estimating process, and plant operating decisions made using this methodology are discussed. The entire methodology has been reduced to a set of FORTRAN subroutines which are small, fast, robust and executable on a personal computer with a serial link to the system's data acquisition computer, or on the data acquisition computer itself

  16. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.

    Science.gov (United States)

    Kasabov, Nikola; Dhoble, Kshitij; Nuntalid, Nuttapod; Indiveri, Giacomo

    2013-05-01

    On-line learning and recognition of spatio- and spectro-temporal data (SSTD) is a very challenging task and an important one for the future development of autonomous machine learning systems with broad applications. Models based on spiking neural networks (SNN) have already proved their potential in capturing spatial and temporal data. One class of them, the evolving SNN (eSNN), uses a one-pass rank-order learning mechanism and a strategy to evolve a new spiking neuron and new connections to learn new patterns from incoming data. So far these networks have been mainly used for fast image and speech frame-based recognition. Alternative spike-time learning methods, such as Spike-Timing Dependent Plasticity (STDP) and its variant Spike Driven Synaptic Plasticity (SDSP), can also be used to learn spatio-temporal representations, but they usually require many iterations in an unsupervised or semi-supervised mode of learning. This paper introduces a new class of eSNN, dynamic eSNN, that utilise both rank-order learning and dynamic synapses to learn SSTD in a fast, on-line mode. The paper also introduces a new model called deSNN, that utilises rank-order learning and SDSP spike-time learning in unsupervised, supervised, or semi-supervised modes. The SDSP learning is used to evolve dynamically the network changing connection weights that capture spatio-temporal spike data clusters both during training and during recall. The new deSNN model is first illustrated on simple examples and then applied on two case study applications: (1) moving object recognition using address-event representation (AER) with data collected using a silicon retina device; (2) EEG SSTD recognition for brain-computer interfaces. The deSNN models resulted in a superior performance in terms of accuracy and speed when compared with other SNN models that use either rank-order or STDP learning. The reason is that the deSNN makes use of both the information contained in the order of the first input spikes

  17. Natural Cytotoxicity Receptors: Pattern Recognition and Involvement of Carbohydrates

    Directory of Open Access Journals (Sweden)

    Angel Porgador

    2005-01-01

    Full Text Available Natural cytotoxicity receptors (NCRs, expressed by natural killer (NK cells, trigger NK lysis of tumor and virus-infected cells on interaction with cell-surface ligands of these target cells. We have determined that viral hemagglutinins expressed on the surface of virus-infected cells are involved in the recognition by the NCRs, NKp44 and NKp46. Recognition of tumor cells by the NCRs NKp30 and NKp46 involves heparan sulfate epitopes expressed on the tumor cell membrane. Our studies provide new evidence for the identity of the ligands for NCRs and indicate that a broader definition should be applied to pathological patterns recognized by innate immune receptors. Since nonmicrobial endogenous carbohydrate structures contribute significantly to this recognition, there is an imperative need to develop appropriate tools for the facile sequencing of carbohydrate moieties.

  18. Recognition of Prior Learning, Self-Realisation and Identity within Axel Honneth's Theory of Recognition

    Science.gov (United States)

    Sandberg, Fredrik; Kubiak, Chris

    2013-01-01

    This paper argues for the significance of Axel Honneth's theory of recognition for understanding recognition of prior learning (RPL). Case studies of the experiences of RPL by paraprofessional workers in health and social care in the UK and Sweden are used to explicate this significance. The results maintain that there are varying conditions of…

  19. A new pattern associative memory model for image recognition based on Hebb rules and dot product

    Science.gov (United States)

    Gao, Mingyue; Deng, Limiao; Wang, Yanjiang

    2018-04-01

    A great number of associative memory models have been proposed to realize information storage and retrieval inspired by human brain in the last few years. However, there is still much room for improvement for those models. In this paper, we extend a binary pattern associative memory model to accomplish real-world image recognition. The learning process is based on the fundamental Hebb rules and the retrieval is implemented by a normalized dot product operation. Our proposed model can not only fulfill rapid memory storage and retrieval for visual information but also have the ability on incremental learning without destroying the previous learned information. Experimental results demonstrate that our model outperforms the existing Self-Organizing Incremental Neural Network (SOINN) and Back Propagation Neuron Network (BPNN) on recognition accuracy and time efficiency.

  20. Do pattern recognition skills transfer across sports? A preliminary analysis.

    Science.gov (United States)

    Smeeton, Nicholas J; Ward, Paul; Williams, A Mark

    2004-02-01

    The ability to recognize patterns of play is fundamental to performance in team sports. While typically assumed to be domain-specific, pattern recognition skills may transfer from one sport to another if similarities exist in the perceptual features and their relations and/or the strategies used to encode and retrieve relevant information. A transfer paradigm was employed to compare skilled and less skilled soccer, field hockey and volleyball players' pattern recognition skills. Participants viewed structured and unstructured action sequences from each sport, half of which were randomly represented with clips not previously seen. The task was to identify previously viewed action sequences quickly and accurately. Transfer of pattern recognition skill was dependent on the participant's skill, sport practised, nature of the task and degree of structure. The skilled soccer and hockey players were quicker than the skilled volleyball players at recognizing structured soccer and hockey action sequences. Performance differences were not observed on the structured volleyball trials between the skilled soccer, field hockey and volleyball players. The skilled field hockey and soccer players were able to transfer perceptual information or strategies between their respective sports. The less skilled participants' results were less clear. Implications for domain-specific expertise, transfer and diversity across domains are discussed.

  1. Oscillation-Driven Spike-Timing Dependent Plasticity Allows Multiple Overlapping Pattern Recognition in Inhibitory Interneuron Networks

    DEFF Research Database (Denmark)

    Garrido, Jesús A.; Luque, Niceto R.; Tolu, Silvia

    2016-01-01

    The majority of operations carried out by the brain require learning complex signal patterns for future recognition, retrieval and reuse. Although learning is thought to depend on multiple forms of long-term synaptic plasticity, the way this latter contributes to pattern recognition is still poorly...... and at the inhibitory interneuron-interneuron synapses, the interneurons rapidly learned complex input patterns. Interestingly, induction of plasticity required that the network be entrained into theta-frequency band oscillations, setting the internal phase-reference required to drive STDP. Inhibitory plasticity...... effectively distributed multiple patterns among available interneurons, thus allowing the simultaneous detection of multiple overlapping patterns. The addition of plasticity in intrinsic excitability made the system more robust allowing self-adjustment and rescaling in response to a broad range of input...

  2. Linear Programming and Its Application to Pattern Recognition Problems

    Science.gov (United States)

    Omalley, M. J.

    1973-01-01

    Linear programming and linear programming like techniques as applied to pattern recognition problems are discussed. Three relatively recent research articles on such applications are summarized. The main results of each paper are described, indicating the theoretical tools needed to obtain them. A synopsis of the author's comments is presented with regard to the applicability or non-applicability of his methods to particular problems, including computational results wherever given.

  3. Pattern recognition as a method of data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Caputo, M.

    1978-11-15

    The method of pattern recognition has been used in biological and social sciences and has been recently introduced for the solution of geological and geophysical problems such as oil and ore prospecting and seismological prediction. The method is briefly illustrated by an application to earthquake prediction in Italy in which topographic and geologic maps are used in conjunction with earthquake catalogs. 3 figures, 1 table.

  4. Neurocomputing methods for pattern recognition in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Gyulassy, M.; Dong, D.; Harlander, M. [Lawrence Berkeley Lab., CA (United States)

    1991-12-31

    We review recent progress on the development and applications of novel neurocomputing techniques for pattern recognition problems of relevance to RHIC experiments. The Elastic Tracking algorithm is shown to achieve sub-pad two track resolution without preprocessing. A high pass neural filter is developed for jet analysis and singular deconvolution methods are shown to recover the primordial jet distribution to a surprising high degree of accuracy.

  5. Recognition of building group patterns in topographic maps based on graph partitioning and random forest

    Science.gov (United States)

    He, Xianjin; Zhang, Xinchang; Xin, Qinchuan

    2018-02-01

    Recognition of building group patterns (i.e., the arrangement and form exhibited by a collection of buildings at a given mapping scale) is important to the understanding and modeling of geographic space and is hence essential to a wide range of downstream applications such as map generalization. Most of the existing methods develop rigid rules based on the topographic relationships between building pairs to identify building group patterns and thus their applications are often limited. This study proposes a method to identify a variety of building group patterns that allow for map generalization. The method first identifies building group patterns from potential building clusters based on a machine-learning algorithm and further partitions the building clusters with no recognized patterns based on the graph partitioning method. The proposed method is applied to the datasets of three cities that are representative of the complex urban environment in Southern China. Assessment of the results based on the reference data suggests that the proposed method is able to recognize both regular (e.g., the collinear, curvilinear, and rectangular patterns) and irregular (e.g., the L-shaped, H-shaped, and high-density patterns) building group patterns well, given that the correctness values are consistently nearly 90% and the completeness values are all above 91% for three study areas. The proposed method shows promises in automated recognition of building group patterns that allows for map generalization.

  6. Spatial pattern recognition of seismic events in South West Colombia

    Science.gov (United States)

    Benítez, Hernán D.; Flórez, Juan F.; Duque, Diana P.; Benavides, Alberto; Lucía Baquero, Olga; Quintero, Jiber

    2013-09-01

    Recognition of seismogenic zones in geographical regions supports seismic hazard studies. This recognition is usually based on visual, qualitative and subjective analysis of data. Spatial pattern recognition provides a well founded means to obtain relevant information from large amounts of data. The purpose of this work is to identify and classify spatial patterns in instrumental data of the South West Colombian seismic database. In this research, clustering tendency analysis validates whether seismic database possesses a clustering structure. A non-supervised fuzzy clustering algorithm creates groups of seismic events. Given the sensitivity of fuzzy clustering algorithms to centroid initial positions, we proposed a methodology to initialize centroids that generates stable partitions with respect to centroid initialization. As a result of this work, a public software tool provides the user with the routines developed for clustering methodology. The analysis of the seismogenic zones obtained reveals meaningful spatial patterns in South-West Colombia. The clustering analysis provides a quantitative location and dispersion of seismogenic zones that facilitates seismological interpretations of seismic activities in South West Colombia.

  7. Conditional Random Fields for Pattern Recognition Applied to Structured Data

    Directory of Open Access Journals (Sweden)

    Tom Burr

    2015-07-01

    Full Text Available Pattern recognition uses measurements from an input domain, X, to predict their labels from an output domain, Y. Image analysis is one setting where one might want to infer whether a pixel patch contains an object that is “manmade” (such as a building or “natural” (such as a tree. Suppose the label for a pixel patch is “manmade”; if the label for a nearby pixel patch is then more likely to be “manmade” there is structure in the output domain that can be exploited to improve pattern recognition performance. Modeling P(X is difficult because features between parts of the model are often correlated. Therefore, conditional random fields (CRFs model structured data using the conditional distribution P(Y|X = x, without specifying a model for P(X, and are well suited for applications with dependent features. This paper has two parts. First, we overview CRFs and their application to pattern recognition in structured problems. Our primary examples are image analysis applications in which there is dependence among samples (pixel patches in the output domain. Second, we identify research topics and present numerical examples.

  8. Application of pattern recognition techniques to the detection of the Phenix reactor control rods vibrations

    International Nuclear Information System (INIS)

    Zwingelstein, G.; Deat, M.; Le Guillou, G.

    1979-01-01

    The incipient detection of control rods vibrations is very important for the safety of the operating plants. This detection can be achieved by an analysis of the peaks of the power spectrum density of the neutron noise. Pattern Recognition techniques were applied to detect the rod vibrations which occured at the fast breeder Phenix (250MWe). In the first part we give a description of the basic pattern which is used to characterize the behavior of the plant. The pattern is considered as column vector in n dimensional Euclidian space where the components are the samples of the power spectral density of the neutron noise. In the second part, a recursive learning procedure of the normal patterns which provides the mean and the variance of the estimates is described. In the third part the classification problem has been framed in terms of a partitioning procedure in n dimensional space which encloses regions corresponding to normal operations. This pattern recognition scheme was applied to the detection of rod vibrations with neutron data collected at the Phenix site before and after occurence of the vibrations. The analysis was carried out with a 42-dimensional measurement space. The learned pattern was estimated with 150 measurement vectors which correspond to the period without vibrations. The efficiency of the surveillance scheme is then demonstrated by processing separately 119 measurement vectors recorded during the rod vibration period

  9. Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness?

    Science.gov (United States)

    Ashkenazi, Sarit; Mark-Zigdon, Nitza; Henik, Avishai

    2013-01-01

    The abilities of children diagnosed with developmental dyscalculia (DD) were examined in two types of object enumeration: subitizing, and small estimation (5-9 dots). Subitizing is usually defined as a fast and accurate assessment of a number of small dots (range 1 to 4 dots), and estimation is an imprecise process to assess a large number of items (range 5 dots or more). Based on reaction time (RT) and accuracy analysis, our results indicated a deficit in the subitizing and small estimation range among DD participants in relation to controls. There are indications that subitizing is based on pattern recognition, thus presenting dots in a canonical shape in the estimation range should result in a subitizing-like pattern. In line with this theory, our control group presented a subitizing-like pattern in the small estimation range for canonically arranged dots, whereas the DD participants presented a deficit in the estimation of canonically arranged dots. The present finding indicates that pattern recognition difficulties may play a significant role in both subitizing and subitizing deficits among those with DD. © 2012 Blackwell Publishing Ltd.

  10. Three dimensional pattern recognition using feature-based indexing and rule-based search

    Science.gov (United States)

    Lee, Jae-Kyu

    In flexible automated manufacturing, robots can perform routine operations as well as recover from atypical events, provided that process-relevant information is available to the robot controller. Real time vision is among the most versatile sensing tools, yet the reliability of machine-based scene interpretation can be questionable. The effort described here is focused on the development of machine-based vision methods to support autonomous nuclear fuel manufacturing operations in hot cells. This thesis presents a method to efficiently recognize 3D objects from 2D images based on feature-based indexing. Object recognition is the identification of correspondences between parts of a current scene and stored views of known objects, using chains of segments or indexing vectors. To create indexed object models, characteristic model image features are extracted during preprocessing. Feature vectors representing model object contours are acquired from several points of view around each object and stored. Recognition is the process of matching stored views with features or patterns detected in a test scene. Two sets of algorithms were developed, one for preprocessing and indexed database creation, and one for pattern searching and matching during recognition. At recognition time, those indexing vectors with the highest match probability are retrieved from the model image database, using a nearest neighbor search algorithm. The nearest neighbor search predicts the best possible match candidates. Extended searches are guided by a search strategy that employs knowledge-base (KB) selection criteria. The knowledge-based system simplifies the recognition process and minimizes the number of iterations and memory usage. Novel contributions include the use of a feature-based indexing data structure together with a knowledge base. Both components improve the efficiency of the recognition process by improved structuring of the database of object features and reducing data base size

  11. Automated target recognition and tracking using an optical pattern recognition neural network

    Science.gov (United States)

    Chao, Tien-Hsin

    1991-01-01

    The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.

  12. Rotation, scale, and translation invariant pattern recognition using feature extraction

    Science.gov (United States)

    Prevost, Donald; Doucet, Michel; Bergeron, Alain; Veilleux, Luc; Chevrette, Paul C.; Gingras, Denis J.

    1997-03-01

    A rotation, scale and translation invariant pattern recognition technique is proposed.It is based on Fourier- Mellin Descriptors (FMD). Each FMD is taken as an independent feature of the object, and a set of those features forms a signature. FMDs are naturally rotation invariant. Translation invariance is achieved through pre- processing. A proper normalization of the FMDs gives the scale invariance property. This approach offers the double advantage of providing invariant signatures of the objects, and a dramatic reduction of the amount of data to process. The compressed invariant feature signature is next presented to a multi-layered perceptron neural network. This final step provides some robustness to the classification of the signatures, enabling good recognition behavior under anamorphically scaled distortion. We also present an original feature extraction technique, adapted to optical calculation of the FMDs. A prototype optical set-up was built, and experimental results are presented.

  13. Robust recognition via information theoretic learning

    CERN Document Server

    He, Ran; Yuan, Xiaotong; Wang, Liang

    2014-01-01

    This Springer Brief represents a comprehensive review of information theoretic methods for robust recognition. A variety of information theoretic methods have been proffered in the past decade, in a large variety of computer vision applications; this work brings them together, attempts to impart the theory, optimization and usage of information entropy.The?authors?resort to a new information theoretic concept, correntropy, as a robust measure and apply it to solve robust face recognition and object recognition problems. For computational efficiency,?the brief?introduces the additive and multip

  14. Pattern recognition algorithms for data mining scalability, knowledge discovery and soft granular computing

    CERN Document Server

    Pal, Sankar K

    2004-01-01

    Pattern Recognition Algorithms for Data Mining addresses different pattern recognition (PR) tasks in a unified framework with both theoretical and experimental results. Tasks covered include data condensation, feature selection, case generation, clustering/classification, and rule generation and evaluation. This volume presents various theories, methodologies, and algorithms, using both classical approaches and hybrid paradigms. The authors emphasize large datasets with overlapping, intractable, or nonlinear boundary classes, and datasets that demonstrate granular computing in soft frameworks.Organized into eight chapters, the book begins with an introduction to PR, data mining, and knowledge discovery concepts. The authors analyze the tasks of multi-scale data condensation and dimensionality reduction, then explore the problem of learning with support vector machine (SVM). They conclude by highlighting the significance of granular computing for different mining tasks in a soft paradigm.

  15. Pattern recognition trigger electronics for an imaging atmospheric Cherenkov telescope

    International Nuclear Information System (INIS)

    Bradbury, S.M.; Rose, H.J.

    2002-01-01

    For imaging atmospheric Cherenkov telescopes, which aim to detect electromagnetic air showers with cameras consisting of several hundred photomultiplier pixels, the single pixel trigger rate is dominated by fluctuations in night sky brightness and by ion feedback in the photomultipliers. Pattern recognition trigger electronics may be used to reject night sky background images, thus reducing the data rate to a manageable level. The trigger system described here detects patterns of 2, 3 or 4 adjacent pixel signals within a 331 pixel camera and gives a positive trigger decision in 65 ns. The candidate pixel pattern is compared with the contents of a pre-programmed memory. With the trigger decision timing controlled by a fixed delay the time-jitter inherent in the use of programmable gate arrays is avoided. This system is now in routine operation at the Whipple 10 m Telescope

  16. Supervised and Unsupervised Classification for Pattern Recognition Purposes

    Directory of Open Access Journals (Sweden)

    Catalina COCIANU

    2006-01-01

    Full Text Available A cluster analysis task has to identify the grouping trends of data, to decide on the sound clusters as well as to validate somehow the resulted structure. The identification of the grouping tendency existing in a data collection assumes the selection of a framework stated in terms of a mathematical model allowing to express the similarity degree between couples of particular objects, quasi-metrics expressing the similarity between an object an a cluster and between clusters, respectively. In supervised classification, we are provided with a collection of preclassified patterns, and the problem is to label a newly encountered pattern. Typically, the given training patterns are used to learn the descriptions of classes which in turn are used to label a new pattern. The final section of the paper presents a new methodology for supervised learning based on PCA. The classes are represented in the measurement/feature space by a continuous repartitions

  17. Learned image representations for visual recognition

    DEFF Research Database (Denmark)

    Larsen, Anders Boesen Lindbo

    This thesis addresses the problem of extracting image structures for representing images effectively in order to solve visual recognition tasks. Problems from diverse research areas (medical imaging, material science and food processing) have motivated large parts of the methodological development...

  18. Impact of Sliding Window Length in Indoor Human Motion Modes and Pose Pattern Recognition Based on Smartphone Sensors

    Directory of Open Access Journals (Sweden)

    Gaojing Wang

    2018-06-01

    Full Text Available Human activity recognition (HAR is essential for understanding people’s habits and behaviors, providing an important data source for precise marketing and research in psychology and sociology. Different approaches have been proposed and applied to HAR. Data segmentation using a sliding window is a basic step during the HAR procedure, wherein the window length directly affects recognition performance. However, the window length is generally randomly selected without systematic study. In this study, we examined the impact of window length on smartphone sensor-based human motion and pose pattern recognition. With data collected from smartphone sensors, we tested a range of window lengths on five popular machine-learning methods: decision tree, support vector machine, K-nearest neighbor, Gaussian naïve Bayesian, and adaptive boosting. From the results, we provide recommendations for choosing the appropriate window length. Results corroborate that the influence of window length on the recognition of motion modes is significant but largely limited to pose pattern recognition. For motion mode recognition, a window length between 2.5–3.5 s can provide an optimal tradeoff between recognition performance and speed. Adaptive boosting outperformed the other methods. For pose pattern recognition, 0.5 s was enough to obtain a satisfactory result. In addition, all of the tested methods performed well.

  19. Towards Multimodal Emotion Recognition in E-Learning Environments

    Science.gov (United States)

    Bahreini, Kiavash; Nadolski, Rob; Westera, Wim

    2016-01-01

    This paper presents a framework (FILTWAM (Framework for Improving Learning Through Webcams And Microphones)) for real-time emotion recognition in e-learning by using webcams. FILTWAM offers timely and relevant feedback based upon learner's facial expressions and verbalizations. FILTWAM's facial expression software module has been developed and…

  20. Towards multimodal emotion recognition in E-learning environments

    NARCIS (Netherlands)

    Bahreini, Kiavash; Nadolski, Rob; Westera, Wim

    2014-01-01

    This paper presents a framework (FILTWAM (Framework for Improving Learning Through Webcams And Microphones)) for real-time emotion recognition in e-learning by using webcams. FILTWAM offers timely and relevant feedback based upon learner’s facial expressions and verbalizations. FILTWAM’s facial

  1. The DELPHI Silicon Tracker in the global pattern recognition

    CERN Document Server

    Elsing, M

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI.

  2. 6th International Conference on Pattern Recognition and Machine Intelligence

    CERN Document Server

    Gawrysiak, Piotr; Kryszkiewicz, Marzena; Rybiński, Henryk

    2016-01-01

    This book presents valuable contributions devoted to practical applications of Machine Intelligence and Big Data in various branches of the industry. All the contributions are extended versions of presentations delivered at the Industrial Session the 6th International Conference on Pattern Recognition and Machine Intelligence (PREMI 2015) held in Warsaw, Poland at June 30- July 3, 2015, which passed through a rigorous reviewing process. The contributions address real world problems and show innovative solutions used to solve them. This volume will serve as a bridge between researchers and practitioners, as well as between different industry branches, which can benefit from sharing ideas and results.

  3. Compact holographic memory and its application to optical pattern recognition

    Science.gov (United States)

    Chao, Tien-Hsin; Reyes, George F.; Zhou, Hanying

    2001-03-01

    JPL is developing a high-density, nonvolatile Compact Holographic Data Storage (CHDS) system to enable large- capacity, high-speed, low power consumption, and read/write of data for commercial and space applications. This CHDS system consists of laser diodes, photorefractive crystal, spatial light modulator, photodetector array, and I/O electronic interface. In operation, pages of information would be recorded and retrieved with random access and high- speed. In this paper, recent technology progress in developing this CHDS at JPL will be presented. The recent applications of the CHDS to optical pattern recognition, as a high-density, high transfer rate memory bank will also be discussed.

  4. Infrared target recognition based on improved joint local ternary pattern

    Science.gov (United States)

    Sun, Junding; Wu, Xiaosheng

    2016-05-01

    This paper presents a simple, efficient, yet robust approach, named joint orthogonal combination of local ternary pattern, for automatic forward-looking infrared target recognition. It gives more advantages to describe the macroscopic textures and microscopic textures by fusing variety of scales than the traditional LBP-based methods. In addition, it can effectively reduce the feature dimensionality. Further, the rotation invariant and uniform scheme, the robust LTP, and soft concave-convex partition are introduced to enhance its discriminative power. Experimental results demonstrate that the proposed method can achieve competitive results compared with the state-of-the-art methods.

  5. The DELPHI Silicon Tracker in the global pattern recognition

    International Nuclear Information System (INIS)

    Elsing, M.

    2000-01-01

    ALEPH and DELPHI were the first experiments operating a silicon vertex detector at LEP. During the past 10 years of data taking the DELPHI Silicon Tracker was upgraded three times to follow the different tracking requirements for LEP 1 and LEP 2 as well as to improve the tracking performance. Several steps in the development of the pattern recognition software were done in order to understand and fully exploit the silicon tracker information. This article gives an overview of the final algorithms and concepts of the track reconstruction using the Silicon Tracker in DELPHI

  6. Comparison of eye imaging pattern recognition using neural network

    Science.gov (United States)

    Bukhari, W. M.; Syed A., M.; Nasir, M. N. M.; Sulaima, M. F.; Yahaya, M. S.

    2015-05-01

    The beauty of eye recognition system that it is used in automatic identifying and verifies a human weather from digital images or video source. There are various behaviors of the eye such as the color of the iris, size of pupil and shape of the eye. This study represents the analysis, design and implementation of a system for recognition of eye imaging. All the eye images that had been captured from the webcam in RGB format must through several techniques before it can be input for the pattern and recognition processes. The result shows that the final value of weight and bias after complete training 6 eye images for one subject is memorized by the neural network system and be the reference value of the weight and bias for the testing part. The target classifies to 5 different types for 5 subjects. The eye images can recognize the subject based on the target that had been set earlier during the training process. When the values between new eye image and the eye image in the database are almost equal, it is considered the eye image is matched.

  7. Learning during Processing: Word Learning Doesn't Wait for Word Recognition to Finish

    Science.gov (United States)

    Apfelbaum, Keith S.; McMurray, Bob

    2017-01-01

    Previous research on associative learning has uncovered detailed aspects of the process, including what types of things are learned, how they are learned, and where in the brain such learning occurs. However, perceptual processes, such as stimulus recognition and identification, take time to unfold. Previous studies of learning have not addressed…

  8. Artificial neural network for bubbles pattern recognition on the images

    International Nuclear Information System (INIS)

    Poletaev, I E; Pervunin, K S; Tokarev, M P

    2016-01-01

    Two-phase bubble flows have been used in many technological and energy processes as processing oil, chemical and nuclear reactors. This explains large interest to experimental and numerical studies of such flows last several decades. Exploiting of optical diagnostics for analysis of the bubble flows allows researchers obtaining of instantaneous velocity fields and gaseous phase distribution with the high spatial resolution non-intrusively. Behavior of light rays exhibits an intricate manner when they cross interphase boundaries of gaseous bubbles hence the identification of the bubbles images is a complicated problem. This work presents a method of bubbles images identification based on a modern technology of deep learning called convolutional neural networks (CNN). Neural networks are able to determine overlapping, blurred, and non-spherical bubble images. They can increase accuracy of the bubble image recognition, reduce the number of outliers, lower data processing time, and significantly decrease the number of settings for the identification in comparison with standard recognition methods developed before. In addition, usage of GPUs speeds up the learning process of CNN owning to the modern adaptive subgradient optimization techniques. (paper)

  9. Contemporary deep recurrent learning for recognition

    Science.gov (United States)

    Iftekharuddin, K. M.; Alam, M.; Vidyaratne, L.

    2017-05-01

    Large-scale feed-forward neural networks have seen intense application in many computer vision problems. However, these networks can get hefty and computationally intensive with increasing complexity of the task. Our work, for the first time in literature, introduces a Cellular Simultaneous Recurrent Network (CSRN) based hierarchical neural network for object detection. CSRN has shown to be more effective to solving complex tasks such as maze traversal and image processing when compared to generic feed forward networks. While deep neural networks (DNN) have exhibited excellent performance in object detection and recognition, such hierarchical structure has largely been absent in neural networks with recurrency. Further, our work introduces deep hierarchy in SRN for object recognition. The simultaneous recurrency results in an unfolding effect of the SRN through time, potentially enabling the design of an arbitrarily deep network. This paper shows experiments using face, facial expression and character recognition tasks using novel deep recurrent model and compares recognition performance with that of generic deep feed forward model. Finally, we demonstrate the flexibility of incorporating our proposed deep SRN based recognition framework in a humanoid robotic platform called NAO.

  10. Pattern recognition in menstrual bleeding diaries by statistical cluster analysis

    Directory of Open Access Journals (Sweden)

    Wessel Jens

    2009-07-01

    Full Text Available Abstract Background The aim of this paper is to empirically identify a treatment-independent statistical method to describe clinically relevant bleeding patterns by using bleeding diaries of clinical studies on various sex hormone containing drugs. Methods We used the four cluster analysis methods single, average and complete linkage as well as the method of Ward for the pattern recognition in menstrual bleeding diaries. The optimal number of clusters was determined using the semi-partial R2, the cubic cluster criterion, the pseudo-F- and the pseudo-t2-statistic. Finally, the interpretability of the results from a gynecological point of view was assessed. Results The method of Ward yielded distinct clusters of the bleeding diaries. The other methods successively chained the observations into one cluster. The optimal number of distinctive bleeding patterns was six. We found two desirable and four undesirable bleeding patterns. Cyclic and non cyclic bleeding patterns were well separated. Conclusion Using this cluster analysis with the method of Ward medications and devices having an impact on bleeding can be easily compared and categorized.

  11. Transfer Learning with Convolutional Neural Networks for SAR Ship Recognition

    Science.gov (United States)

    Zhang, Di; Liu, Jia; Heng, Wang; Ren, Kaijun; Song, Junqiang

    2018-03-01

    Ship recognition is the backbone of marine surveillance systems. Recent deep learning methods, e.g. Convolutional Neural Networks (CNNs), have shown high performance for optical images. Learning CNNs, however, requires a number of annotated samples to estimate numerous model parameters, which prevents its application to Synthetic Aperture Radar (SAR) images due to the limited annotated training samples. Transfer learning has been a promising technique for applications with limited data. To this end, a novel SAR ship recognition method based on CNNs with transfer learning has been developed. In this work, we firstly start with a CNNs model that has been trained in advance on Moving and Stationary Target Acquisition and Recognition (MSTAR) database. Next, based on the knowledge gained from this image recognition task, we fine-tune the CNNs on a new task to recognize three types of ships in the OpenSARShip database. The experimental results show that our proposed approach can obviously increase the recognition rate comparing with the result of merely applying CNNs. In addition, compared to existing methods, the proposed method proves to be very competitive and can learn discriminative features directly from training data instead of requiring pre-specification or pre-selection manually.

  12. Sunspot drawings handwritten character recognition method based on deep learning

    Science.gov (United States)

    Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li

    2016-05-01

    High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.

  13. Playing tag with ANN: boosted top identification with pattern recognition

    International Nuclear Information System (INIS)

    Almeida, Leandro G.; Backović, Mihailo; Cliche, Mathieu; Lee, Seung J.; Perelstein, Maxim

    2015-01-01

    Many searches for physics beyond the Standard Model at the Large Hadron Collider (LHC) rely on top tagging algorithms, which discriminate between boosted hadronic top quarks and the much more common jets initiated by light quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively takes a “digital image" of each jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this way, top tagging becomes a canonical pattern recognition problem. With this motivation, we present a novel top tagging algorithm based on an Artificial Neural Network (ANN), one of the most popular approaches to pattern recognition. The ANN is trained on a large sample of boosted tops and light quark/gluon jets, and is then applied to independent test samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study: for example, for jets with p T in the 1100–1200 GeV range, 60% top-tag efficiency can be achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by the ANN tagger as the most important for classification, as well as correlations between the ANN tagger and some of the familiar top-tagging observables and algorithms.

  14. Wavelet-based moment invariants for pattern recognition

    Science.gov (United States)

    Chen, Guangyi; Xie, Wenfang

    2011-07-01

    Moment invariants have received a lot of attention as features for identification and inspection of two-dimensional shapes. In this paper, two sets of novel moments are proposed by using the auto-correlation of wavelet functions and the dual-tree complex wavelet functions. It is well known that the wavelet transform lacks the property of shift invariance. A little shift in the input signal will cause very different output wavelet coefficients. The autocorrelation of wavelet functions and the dual-tree complex wavelet functions, on the other hand, are shift-invariant, which is very important in pattern recognition. Rotation invariance is the major concern in this paper, while translation invariance and scale invariance can be achieved by standard normalization techniques. The Gaussian white noise is added to the noise-free images and the noise levels vary with different signal-to-noise ratios. Experimental results conducted in this paper show that the proposed wavelet-based moments outperform Zernike's moments and the Fourier-wavelet descriptor for pattern recognition under different rotation angles and different noise levels. It can be seen that the proposed wavelet-based moments can do an excellent job even when the noise levels are very high.

  15. Playing tag with ANN: boosted top identification with pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Leandro G. [Institut de Biologie de l’École Normale Supérieure (IBENS), Inserm 1024- CNRS 8197,46 rue d’Ulm, 75005 Paris (France); Backović, Mihailo [Center for Cosmology, Particle Physics and Phenomenology - CP3,Universite Catholique de Louvain,Louvain-la-neuve (Belgium); Cliche, Mathieu [Laboratory for Elementary Particle Physics, Cornell University,Ithaca, NY 14853 (United States); Lee, Seung J. [Department of Physics, Korea Advanced Institute of Science and Technology,335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Perelstein, Maxim [Laboratory for Elementary Particle Physics, Cornell University,Ithaca, NY 14853 (United States)

    2015-07-17

    Many searches for physics beyond the Standard Model at the Large Hadron Collider (LHC) rely on top tagging algorithms, which discriminate between boosted hadronic top quarks and the much more common jets initiated by light quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively takes a “digital image' of each jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this way, top tagging becomes a canonical pattern recognition problem. With this motivation, we present a novel top tagging algorithm based on an Artificial Neural Network (ANN), one of the most popular approaches to pattern recognition. The ANN is trained on a large sample of boosted tops and light quark/gluon jets, and is then applied to independent test samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study: for example, for jets with p{sub T} in the 1100–1200 GeV range, 60% top-tag efficiency can be achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by the ANN tagger as the most important for classification, as well as correlations between the ANN tagger and some of the familiar top-tagging observables and algorithms.

  16. A pattern recognition approach to transistor array parameter variance

    Science.gov (United States)

    da F. Costa, Luciano; Silva, Filipi N.; Comin, Cesar H.

    2018-06-01

    The properties of semiconductor devices, including bipolar junction transistors (BJTs), are known to vary substantially in terms of their parameters. In this work, an experimental approach, including pattern recognition concepts and methods such as principal component analysis (PCA) and linear discriminant analysis (LDA), was used to experimentally investigate the variation among BJTs belonging to integrated circuits known as transistor arrays. It was shown that a good deal of the devices variance can be captured using only two PCA axes. It was also verified that, though substantially small variation of parameters is observed for BJT from the same array, larger variation arises between BJTs from distinct arrays, suggesting the consideration of device characteristics in more critical analog designs. As a consequence of its supervised nature, LDA was able to provide a substantial separation of the BJT into clusters, corresponding to each transistor array. In addition, the LDA mapping into two dimensions revealed a clear relationship between the considered measurements. Interestingly, a specific mapping suggested by the PCA, involving the total harmonic distortion variation expressed in terms of the average voltage gain, yielded an even better separation between the transistor array clusters. All in all, this work yielded interesting results from both semiconductor engineering and pattern recognition perspectives.

  17. Cost-Sensitive Learning for Emotion Robust Speaker Recognition

    Directory of Open Access Journals (Sweden)

    Dongdong Li

    2014-01-01

    Full Text Available In the field of information security, voice is one of the most important parts in biometrics. Especially, with the development of voice communication through the Internet or telephone system, huge voice data resources are accessed. In speaker recognition, voiceprint can be applied as the unique password for the user to prove his/her identity. However, speech with various emotions can cause an unacceptably high error rate and aggravate the performance of speaker recognition system. This paper deals with this problem by introducing a cost-sensitive learning technology to reweight the probability of test affective utterances in the pitch envelop level, which can enhance the robustness in emotion-dependent speaker recognition effectively. Based on that technology, a new architecture of recognition system as well as its components is proposed in this paper. The experiment conducted on the Mandarin Affective Speech Corpus shows that an improvement of 8% identification rate over the traditional speaker recognition is achieved.

  18. Cost-sensitive learning for emotion robust speaker recognition.

    Science.gov (United States)

    Li, Dongdong; Yang, Yingchun; Dai, Weihui

    2014-01-01

    In the field of information security, voice is one of the most important parts in biometrics. Especially, with the development of voice communication through the Internet or telephone system, huge voice data resources are accessed. In speaker recognition, voiceprint can be applied as the unique password for the user to prove his/her identity. However, speech with various emotions can cause an unacceptably high error rate and aggravate the performance of speaker recognition system. This paper deals with this problem by introducing a cost-sensitive learning technology to reweight the probability of test affective utterances in the pitch envelop level, which can enhance the robustness in emotion-dependent speaker recognition effectively. Based on that technology, a new architecture of recognition system as well as its components is proposed in this paper. The experiment conducted on the Mandarin Affective Speech Corpus shows that an improvement of 8% identification rate over the traditional speaker recognition is achieved.

  19. Local Feature Learning for Face Recognition under Varying Poses

    DEFF Research Database (Denmark)

    Duan, Xiaodong; Tan, Zheng-Hua

    2015-01-01

    In this paper, we present a local feature learning method for face recognition to deal with varying poses. As opposed to the commonly used approaches of recovering frontal face images from profile views, the proposed method extracts the subject related part from a local feature by removing the pose...... related part in it on the basis of a pose feature. The method has a closed-form solution, hence being time efficient. For performance evaluation, cross pose face recognition experiments are conducted on two public face recognition databases FERET and FEI. The proposed method shows a significant...... recognition improvement under varying poses over general local feature approaches and outperforms or is comparable with related state-of-the-art pose invariant face recognition approaches. Copyright ©2015 by IEEE....

  20. Computational intelligence in multi-feature visual pattern recognition hand posture and face recognition using biologically inspired approaches

    CERN Document Server

    Pisharady, Pramod Kumar; Poh, Loh Ai

    2014-01-01

    This book presents a collection of computational intelligence algorithms that addresses issues in visual pattern recognition such as high computational complexity, abundance of pattern features, sensitivity to size and shape variations and poor performance against complex backgrounds. The book has 3 parts. Part 1 describes various research issues in the field with a survey of the related literature. Part 2 presents computational intelligence based algorithms for feature selection and classification. The algorithms are discriminative and fast. The main application area considered is hand posture recognition. The book also discusses utility of these algorithms in other visual as well as non-visual pattern recognition tasks including face recognition, general object recognition and cancer / tumor classification. Part 3 presents biologically inspired algorithms for feature extraction. The visual cortex model based features discussed have invariance with respect to appearance and size of the hand, and provide good...

  1. Learning during processing Word learning doesn’t wait for word recognition to finish

    Science.gov (United States)

    Apfelbaum, Keith S.; McMurray, Bob

    2017-01-01

    Previous research on associative learning has uncovered detailed aspects of the process, including what types of things are learned, how they are learned, and where in the brain such learning occurs. However, perceptual processes, such as stimulus recognition and identification, take time to unfold. Previous studies of learning have not addressed when, during the course of these dynamic recognition processes, learned representations are formed and updated. If learned representations are formed and updated while recognition is ongoing, the result of learning may incorporate spurious, partial information. For example, during word recognition, words take time to be identified, and competing words are often active in parallel. If learning proceeds before this competition resolves, representations may be influenced by the preliminary activations present at the time of learning. In three experiments using word learning as a model domain, we provide evidence that learning reflects the ongoing dynamics of auditory and visual processing during a learning event. These results show that learning can occur before stimulus recognition processes are complete; learning does not wait for ongoing perceptual processing to complete. PMID:27471082

  2. Facial Expression Recognition Through Machine Learning

    Directory of Open Access Journals (Sweden)

    Nazia Perveen

    2015-08-01

    Full Text Available Facial expressions communicate non-verbal cues which play an important role in interpersonal relations. Automatic recognition of facial expressions can be an important element of normal human-machine interfaces it might likewise be utilized as a part of behavioral science and in clinical practice. In spite of the fact that people perceive facial expressions for all intents and purposes immediately solid expression recognition by machine is still a challenge. From the point of view of automatic recognition a facial expression can be considered to comprise of disfigurements of the facial parts and their spatial relations or changes in the faces pigmentation. Research into automatic recognition of the facial expressions addresses the issues encompassing the representation and arrangement of static or dynamic qualities of these distortions or face pigmentation. We get results by utilizing the CVIPtools. We have taken train data set of six facial expressions of three persons and for train data set purpose we have total border mask sample 90 and 30 border mask sample for test data set purpose and we use RST- Invariant features and texture features for feature analysis and then classified them by using k- Nearest Neighbor classification algorithm. The maximum accuracy is 90.

  3. Transfer Learning for Rodent Behavior Recognition

    NARCIS (Netherlands)

    Lorbach, M.T.; Poppe, R.W.; van Dam, Elsbeth; Veltkamp, R.C.; Noldus, Lucas

    2016-01-01

    Many behavior recognition systems are trained and tested on single datasets limiting their application to comparable datasets. While retraining the system with a novel dataset is possible, it involves laborious annotation effort. We propose to minimize the annotation effort by reusing the knowledge

  4. ALBEDO PATTERN RECOGNITION AND TIME-SERIES ANALYSES IN MALAYSIA

    Directory of Open Access Journals (Sweden)

    S. A. Salleh

    2012-07-01

    Full Text Available Pattern recognition and time-series analyses will enable one to evaluate and generate predictions of specific phenomena. The albedo pattern and time-series analyses are very much useful especially in relation to climate condition monitoring. This study is conducted to seek for Malaysia albedo pattern changes. The pattern recognition and changes will be useful for variety of environmental and climate monitoring researches such as carbon budgeting and aerosol mapping. The 10 years (2000–2009 MODIS satellite images were used for the analyses and interpretation. These images were being processed using ERDAS Imagine remote sensing software, ArcGIS 9.3, the 6S code for atmospherical calibration and several MODIS tools (MRT, HDF2GIS, Albedo tools. There are several methods for time-series analyses were explored, this paper demonstrates trends and seasonal time-series analyses using converted HDF format MODIS MCD43A3 albedo land product. The results revealed significance changes of albedo percentages over the past 10 years and the pattern with regards to Malaysia's nebulosity index (NI and aerosol optical depth (AOD. There is noticeable trend can be identified with regards to its maximum and minimum value of the albedo. The rise and fall of the line graph show a similar trend with regards to its daily observation. The different can be identified in term of the value or percentage of rises and falls of albedo. Thus, it can be concludes that the temporal behavior of land surface albedo in Malaysia have a uniform behaviours and effects with regards to the local monsoons. However, although the average albedo shows linear trend with nebulosity index, the pattern changes of albedo with respects to the nebulosity index indicates that there are external factors that implicates the albedo values, as the sky conditions and its diffusion plotted does not have uniform trend over the years, especially when the trend of 5 years interval is examined, 2000 shows high

  5. Object recognition and concept learning with Confucius

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B; Sammut, C

    1982-01-01

    A learning program produces, as its output, a Boolean function which describes a concept. The function returns true if and only if the argument is an object which satisfies the logical expression in the body of the function. The learning program's input is a set of objects which are instances of the concept to be learnt. The paper describes an algorithm devised to learn concept descriptions in this form. 15 references.

  6. Is it worth changing pattern recognition methods for structural health monitoring?

    Science.gov (United States)

    Bull, L. A.; Worden, K.; Cross, E. J.; Dervilis, N.

    2017-05-01

    The key element of this work is to demonstrate alternative strategies for using pattern recognition algorithms whilst investigating structural health monitoring. This paper looks to determine if it makes any difference in choosing from a range of established classification techniques: from decision trees and support vector machines, to Gaussian processes. Classification algorithms are tested on adjustable synthetic data to establish performance metrics, then all techniques are applied to real SHM data. To aid the selection of training data, an informative chain of artificial intelligence tools is used to explore an active learning interaction between meaningful clusters of data.

  7. Scalable Learning for Geostatistics and Speaker Recognition

    Science.gov (United States)

    2011-01-01

    Device Architecture (CUDA)[63], a parallel programming model that leverages the parallel compute engine in NVIDIA GPUs to solve general purpose...validation. 3.1 Geospatial data reconstruction Sensors deployed on satellites are often used to collect enviromental data where a direct measurement is...same decision as training a model on B and testing on A, which is desirable in many recognition engines . We shall address this in the next chapter. The

  8. Nonlinear dynamics of pattern formation and pattern recognition in the rabbit olfactory bulb

    Science.gov (United States)

    Baird, Bill

    1986-10-01

    A mathematical model of the process of pattern recognition in the first olfactory sensory cortex of the rabbit is presented. It explains the formation and alteration of spatial patterns in neural activity observed experimentally during classical Pavlovian conditioning. On each inspiration of the animal, a surge of receptor input enters the olfactory bulb. EEG activity recorded at the surface of the bulb undergoes a transition from a low amplitude background state of temporal disorder to coherent oscillation. There is a distinctive spatial pattern of rms amplitude in this oscillation which changes reliably to a second pattern during each successful recognition by the animal of a conditioned stimulus odor. When a new odor is paired as conditioned stimulus, these patterns are replaced by new patterns that stabilize as the animal adapts to the new environment. I will argue that a unification of the theories of pattern formation and associative memory is required to account for these observations. This is achieved in a model of the bulb as a discrete excitable medium with spatially inhomogeneous coupling expressed by a connection matrix. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of competing unstable oscillatory modes. These may be created in the system by proper coupling and selectively evoked by specific classes of inputs. This allows a view of limit cycle attractors as “stored” fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  9. Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification

    Science.gov (United States)

    Anwer, Rao Muhammad; Khan, Fahad Shahbaz; van de Weijer, Joost; Molinier, Matthieu; Laaksonen, Jorma

    2018-04-01

    Designing discriminative powerful texture features robust to realistic imaging conditions is a challenging computer vision problem with many applications, including material recognition and analysis of satellite or aerial imagery. In the past, most texture description approaches were based on dense orderless statistical distribution of local features. However, most recent approaches to texture recognition and remote sensing scene classification are based on Convolutional Neural Networks (CNNs). The de facto practice when learning these CNN models is to use RGB patches as input with training performed on large amounts of labeled data (ImageNet). In this paper, we show that Local Binary Patterns (LBP) encoded CNN models, codenamed TEX-Nets, trained using mapped coded images with explicit LBP based texture information provide complementary information to the standard RGB deep models. Additionally, two deep architectures, namely early and late fusion, are investigated to combine the texture and color information. To the best of our knowledge, we are the first to investigate Binary Patterns encoded CNNs and different deep network fusion architectures for texture recognition and remote sensing scene classification. We perform comprehensive experiments on four texture recognition datasets and four remote sensing scene classification benchmarks: UC-Merced with 21 scene categories, WHU-RS19 with 19 scene classes, RSSCN7 with 7 categories and the recently introduced large scale aerial image dataset (AID) with 30 aerial scene types. We demonstrate that TEX-Nets provide complementary information to standard RGB deep model of the same network architecture. Our late fusion TEX-Net architecture always improves the overall performance compared to the standard RGB network on both recognition problems. Furthermore, our final combination leads to consistent improvement over the state-of-the-art for remote sensing scene classification.

  10. An Ultrasonic Pattern Recognition Approach to Welding Defect Classification

    International Nuclear Information System (INIS)

    Song, Sung Jin

    1995-01-01

    Classification of flaws in weldments from their ultrasonic scattering signals is very important in quantitative nondestructive evaluation. This problem is ideally suited to a modern ultrasonic pattern recognition technique. Here brief discussion on systematic approach to this methodology is presented including ultrasonic feature extraction, feature selection and classification. A stronger emphasis is placed on probabilistic neural networks as efficient classifiers for many practical classification problems. In an example probabilistic neural networks are applied to classify flaws in weldments into 3 classes such as cracks, porosity and slag inclusions. Probabilistic nets are shown to be able to exhibit high performance of other classifiers without any training time overhead. In addition, forward selection scheme for sensitive features is addressed to enhance network performance

  11. 64 x 64 thresholding photodetector array for optical pattern recognition

    Science.gov (United States)

    Langenbacher, Harry; Chao, Tien-Hsin; Shaw, Timothy; Yu, Jeffrey W.

    1993-10-01

    A high performance 32 X 32 peak detector array is introduced. This detector consists of a 32 X 32 array of thresholding photo-transistor cells, manufactured with a standard MOSIS digital 2-micron CMOS process. A built-in thresholding function that is able to perform 1024 thresholding operations in parallel strongly distinguishes this chip from available CCD detectors. This high speed detector offers responses from one to 10 milliseconds that is much higher than the commercially available CCD detectors operating at a TV frame rate. The parallel multiple peaks thresholding detection capability makes it particularly suitable for optical correlator and optoelectronically implemented neural networks. The principle of operation, circuit design and the performance characteristics are described. Experimental demonstration of correlation peak detection is also provided. Recently, we have also designed and built an advanced version of a 64 X 64 thresholding photodetector array chip. Experimental investigation of using this chip for pattern recognition is ongoing.

  12. Pattern recognition and reconstruction on a FPGA coprocessor board

    CERN Document Server

    Männer, R; Simmler, H

    2000-01-01

    High energy accelerator labs use huge detector systems to track particles. The ATLAS detector at CERN, Geneva (Switzerland), will provide complex three-dimensional images. A trigger system at the detector output is used to reduce the amount of data to a manageable size. Each trigger applies certain filter algorithms to select the very rare physically interesting events. The algorithm presented, processes data from a special detector called TRT, to generate a trigger decision within approximately=10 ms. System supervisors then decide together with other results whether the event will be rejected or passed to the next trigger level. Due to the restricted execution time for calculating the decision, fast pattern recognition algorithms are required. These algorithms require a high I/O bandwidth and high computing power. These reasons and the high degree of parallelism make it best suited for custom computing machines. (3 refs).

  13. Distorted Pattern Recognition and Analysis with the Help of IEf Graph Representation

    Directory of Open Access Journals (Sweden)

    Adam Sedziwy

    2002-01-01

    Full Text Available An algorithm for distorted pattern recognition is presented. lt's generalization of M Flasinski results (Pattern Recognition, 27, 1-16, 1992. A new formalism allows to make both qualitative and quantitive distortion analysis. It also enlarges parser flexibility by extending the set of patterns which may be recognized.

  14. Application of PSO for solving problems of pattern recognition

    Directory of Open Access Journals (Sweden)

    S. N. Chukanov

    2016-01-01

    Full Text Available The problem of estimating the norm of the distance between the two closed smooth curves for pattern recognition is considered. Diffeomorphic transformation curves based on the model of large deformation with the transformation of the starting points of domain in required is formed on the basis of which depends on time-dependent vector field of velocity is considered. The action of the translation, rotation and scaling closed curve, the invariants of the action of these groups are considered. The position of curves is normalized by centering, bringing the principal axes of the image to the axes of the coordinate system and bringing the area of a closed curve corresponding to one. For estimating of the norm of the distance between two closed curves is formed the functional corresponding normalized distance between the two curves, and the equation of evolution diffeomorphic transformations. The equation of evolution allows to move objects along trajectories which correspond to diffeomorphic transformations. The diffeomorphisms do not change the topology along the geodesic trajectories. The problem of inexact comparing the minimized functional contains a term that estimates the exactness of shooting points in the required positions. In the equation of evolution is introduced the variance of conversion error. An algorithm for solving the equation of diffeomorphic transformation is proposed, built on the basis of PSO, which can significantly reduce the number of computing operations, compared with gradient methods for solving. The developed algorithms can be used in bioinformatics and biometrics systems, classification of images and objects, machine vision systems, neuroimaging, for pattern recognition and object tracking systems. Algorithm for estimating the norm of distance between the closed curves by diffeomorphic transformation can spread to spatial objects (curves, surfaces, manifolds.

  15. Proposal for the development of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Gregory; Hoff, Jim; Kwan, Simon; Lipton, Ron; Liu, Ted; Ramberg, Erik; Todri, Aida; Yarema, Ray; /Fermilab; Demarteua, Marcel,; Drake, Gary; Weerts, Harry; /Argonne /Chicago U. /Padua U. /INFN, Padua

    2010-10-01

    Future particle physics experiments looking for rare processes will have no choice but to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare process. The authors propose to develop a 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) chip for HEP applications, to advance the state-of-the-art for pattern recognition and track reconstruction for fast triggering.

  16. Learning-induced pattern classification in a chaotic neural network

    International Nuclear Information System (INIS)

    Li, Yang; Zhu, Ping; Xie, Xiaoping; He, Guoguang; Aihara, Kazuyuki

    2012-01-01

    In this Letter, we propose a Hebbian learning rule with passive forgetting (HLRPF) for use in a chaotic neural network (CNN). We then define the indices based on the Euclidean distance to investigate the evolution of the weights in a simplified way. Numerical simulations demonstrate that, under suitable external stimulations, the CNN with the proposed HLRPF acts as a fuzzy-like pattern classifier that performs much better than an ordinary CNN. The results imply relationship between learning and recognition. -- Highlights: ► Proposing a Hebbian learning rule with passive forgetting (HLRPF). ► Defining indices to investigate the evolution of the weights simply. ► The chaotic neural network with HLRPF acts as a fuzzy-like pattern classifier. ► The pattern classifier ability of the network is improved much.

  17. Image Classification Using Biomimetic Pattern Recognition with Convolutional Neural Networks Features

    Science.gov (United States)

    Huo, Guanying

    2017-01-01

    As a typical deep-learning model, Convolutional Neural Networks (CNNs) can be exploited to automatically extract features from images using the hierarchical structure inspired by mammalian visual system. For image classification tasks, traditional CNN models employ the softmax function for classification. However, owing to the limited capacity of the softmax function, there are some shortcomings of traditional CNN models in image classification. To deal with this problem, a new method combining Biomimetic Pattern Recognition (BPR) with CNNs is proposed for image classification. BPR performs class recognition by a union of geometrical cover sets in a high-dimensional feature space and therefore can overcome some disadvantages of traditional pattern recognition. The proposed method is evaluated on three famous image classification benchmarks, that is, MNIST, AR, and CIFAR-10. The classification accuracies of the proposed method for the three datasets are 99.01%, 98.40%, and 87.11%, respectively, which are much higher in comparison with the other four methods in most cases. PMID:28316614

  18. DCTNet : A Simple Learning-free Approach for Face Recognition

    OpenAIRE

    Ng, Cong Jie; Teoh, Andrew Beng Jin

    2015-01-01

    PCANet was proposed as a lightweight deep learning network that mainly leverages Principal Component Analysis (PCA) to learn multistage filter banks followed by binarization and block-wise histograming. PCANet was shown worked surprisingly well in various image classification tasks. However, PCANet is data-dependence hence inflexible. In this paper, we proposed a data-independence network, dubbed DCTNet for face recognition in which we adopt Discrete Cosine Transform (DCT) as filter banks in ...

  19. Speckle-learning-based object recognition through scattering media.

    Science.gov (United States)

    Ando, Takamasa; Horisaki, Ryoichi; Tanida, Jun

    2015-12-28

    We experimentally demonstrated object recognition through scattering media based on direct machine learning of a number of speckle intensity images. In the experiments, speckle intensity images of amplitude or phase objects on a spatial light modulator between scattering plates were captured by a camera. We used the support vector machine for binary classification of the captured speckle intensity images of face and non-face data. The experimental results showed that speckles are sufficient for machine learning.

  20. Estrogenic involvement in social learning, social recognition and pathogen avoidance.

    Science.gov (United States)

    Choleris, Elena; Clipperton-Allen, Amy E; Phan, Anna; Valsecchi, Paola; Kavaliers, Martin

    2012-04-01

    Sociality comes with specific cognitive skills that allow the proper processing of information about others (social recognition), as well as of information originating from others (social learning). Because sociality and social interactions can also facilitate the spread of infection among individuals the ability to recognize and avoid pathogen threat is also essential. We review here various studies primarily from the rodent literature supporting estrogenic involvement in the regulation of social recognition, social learning (socially acquired food preferences and mate choice copying) and the recognition and avoidance of infected and potentially infected individuals. We consider both genomic and rapid estrogenic effects involving estrogen receptors α and β, and G-protein coupled estrogen receptor 1, along with their interactions with neuropeptide systems in the processing of social stimuli and the regulation and expression of these various socially relevant behaviors. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Evaluating deep learning architectures for Speech Emotion Recognition.

    Science.gov (United States)

    Fayek, Haytham M; Lech, Margaret; Cavedon, Lawrence

    2017-08-01

    Speech Emotion Recognition (SER) can be regarded as a static or dynamic classification problem, which makes SER an excellent test bed for investigating and comparing various deep learning architectures. We describe a frame-based formulation to SER that relies on minimal speech processing and end-to-end deep learning to model intra-utterance dynamics. We use the proposed SER system to empirically explore feed-forward and recurrent neural network architectures and their variants. Experiments conducted illuminate the advantages and limitations of these architectures in paralinguistic speech recognition and emotion recognition in particular. As a result of our exploration, we report state-of-the-art results on the IEMOCAP database for speaker-independent SER and present quantitative and qualitative assessments of the models' performances. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Speech Recognition

    Directory of Open Access Journals (Sweden)

    Adrian Morariu

    2009-01-01

    Full Text Available This paper presents a method of speech recognition by pattern recognition techniques. Learning consists in determining the unique characteristics of a word (cepstral coefficients by eliminating those characteristics that are different from one word to another. For learning and recognition, the system will build a dictionary of words by determining the characteristics of each word to be used in the recognition. Determining the characteristics of an audio signal consists in the following steps: noise removal, sampling it, applying Hamming window, switching to frequency domain through Fourier transform, calculating the magnitude spectrum, filtering data, determining cepstral coefficients.

  3. Improving a Deep Learning based RGB-D Object Recognition Model by Ensemble Learning

    DEFF Research Database (Denmark)

    Aakerberg, Andreas; Nasrollahi, Kamal; Heder, Thomas

    2018-01-01

    Augmenting RGB images with depth information is a well-known method to significantly improve the recognition accuracy of object recognition models. Another method to im- prove the performance of visual recognition models is ensemble learning. However, this method has not been widely explored...... in combination with deep convolutional neural network based RGB-D object recognition models. Hence, in this paper, we form different ensembles of complementary deep convolutional neural network models, and show that this can be used to increase the recognition performance beyond existing limits. Experiments...

  4. Deep Learning based Super-Resolution for Improved Action Recognition

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Guerrero, Sergio Escalera; Rasti, Pejman

    2015-01-01

    with results of a state-of- the-art deep learning-based super-resolution algorithm, through an alpha-blending approach. The experimental results obtained on down-sampled version of a large subset of Hoolywood2 benchmark database show the importance of the proposed system in increasing the recognition rate...

  5. Competitive STDP Learning of Overlapping Spatial Patterns.

    Science.gov (United States)

    Krunglevicius, Dalius

    2015-08-01

    Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet.

  6. Handwritten recognition of Tamil vowels using deep learning

    Science.gov (United States)

    Ram Prashanth, N.; Siddarth, B.; Ganesh, Anirudh; Naveen Kumar, Vaegae

    2017-11-01

    We come across a large volume of handwritten texts in our daily lives and handwritten character recognition has long been an important area of research in pattern recognition. The complexity of the task varies among different languages and it so happens largely due to the similarity between characters, distinct shapes and number of characters which are all language-specific properties. There have been numerous works on character recognition of English alphabets and with laudable success, but regional languages have not been dealt with very frequently and with similar accuracies. In this paper, we explored the performance of Deep Belief Networks in the classification of Handwritten Tamil vowels, and conclusively compared the results obtained. The proposed method has shown satisfactory recognition accuracy in light of difficulties faced with regional languages such as similarity between characters and minute nuances that differentiate them. We can further extend this to all the Tamil characters.

  7. Identification of strong earthquake ground motion by using pattern recognition

    International Nuclear Information System (INIS)

    Suzuki, Kohei; Tozawa, Shoji; Temmyo, Yoshiharu.

    1983-01-01

    The method of grasping adequately the technological features of complex waveform of earthquake ground motion and utilizing them as the input to structural systems has been proposed by many researchers, and the method of making artificial earthquake waves to be used for the aseismatic design of nuclear facilities has not been established in the unified form. In this research, earthquake ground motion was treated as an irregular process with unsteady amplitude and frequency, and the running power spectral density was expressed as a dark and light image on a plane of the orthogonal coordinate system with both time and frequency axes. The method of classifying this image into a number of technologically important categories by pattern recognition was proposed. This method is based on the concept called compound similarity method in the image technology, entirely different from voice diagnosis, and it has the feature that the result of identification can be quantitatively evaluated by the analysis of correlation of spatial images. Next, the standard pattern model of the simulated running power spectral density corresponding to the representative classification categories was proposed. Finally, the method of making unsteady simulated earthquake motion was shown. (Kako, I.)

  8. Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition

    International Nuclear Information System (INIS)

    Lee, Chang Gil; Park, Woong Ki; Park, Seung Hee

    2011-01-01

    In a structure, damage can occur at several scales from micro-cracking to corrosion or loose bolts. This makes the identification of damage difficult with one mode of sensing. Hence, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In the self sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this study, an experimental study on the pipeline system is carried out to verify the effectiveness and the robustness of the proposed structural health monitoring approach. Different types of structural damage are artificially inflicted on the pipeline system. To classify the multiple types of structural damage, a supervised learning-based statistical pattern recognition is implemented by composing a two-dimensional space using the damage indices extracted from the impedance and guided wave features. For more systematic damage classification, several control parameters to determine an optimal decision boundary for the supervised learning-based pattern recognition are optimized. Finally, further research issues will be discussed for real-world implementation of the proposed approach

  9. Improving Tone Recognition with Nucleus Modeling and Sequential Learning

    Science.gov (United States)

    Wang, Siwei

    2010-01-01

    Mandarin Chinese and many other tonal languages use tones that are defined as specific pitch patterns to distinguish syllables otherwise ambiguous. It had been shown that tones carry at least as much information as vowels in Mandarin Chinese [Surendran et al., 2005]. Surprisingly, though, many speech recognition systems for Mandarin Chinese have…

  10. Can superconductivity be predicted with the aid of pattern recognition techniques

    International Nuclear Information System (INIS)

    Pijpers, F.W.

    1982-01-01

    Pattern recognition techniques were employed in order to investigate the possibility to find features of the elements of the periodic system that may be relevant for the description of their behaviour with respect to superconductivity. Learning machines were constructed using those elements of the periodic system whose superconducting properties have been well studied. Relevant features appear to be the electronic work function and the number of valence electrons as given by Miedema, the specific heat, the heat of melting, the heat of sublimation, the melting point and the atomic radius. The learning machines have a predicting capability of the order of 90%. The predictive power of these machines concerning the superconducting behaviour of the alkali and alkaline-earth metals belonging to a given test set, however, appears to be less convincing

  11. Component Pin Recognition Using Algorithms Based on Machine Learning

    Science.gov (United States)

    Xiao, Yang; Hu, Hong; Liu, Ze; Xu, Jiangchang

    2018-04-01

    The purpose of machine vision for a plug-in machine is to improve the machine’s stability and accuracy, and recognition of the component pin is an important part of the vision. This paper focuses on component pin recognition using three different techniques. The first technique involves traditional image processing using the core algorithm for binary large object (BLOB) analysis. The second technique uses the histogram of oriented gradients (HOG), to experimentally compare the effect of the support vector machine (SVM) and the adaptive boosting machine (AdaBoost) learning meta-algorithm classifiers. The third technique is the use of an in-depth learning method known as convolution neural network (CNN), which involves identifying the pin by comparing a sample to its training. The main purpose of the research presented in this paper is to increase the knowledge of learning methods used in the plug-in machine industry in order to achieve better results.

  12. Pattern recognition and data mining software based on artificial neural networks applied to proton transfer in aqueous environments

    International Nuclear Information System (INIS)

    Tahat Amani; Marti Jordi; Khwaldeh Ali; Tahat Kaher

    2014-01-01

    In computational physics proton transfer phenomena could be viewed as pattern classification problems based on a set of input features allowing classification of the proton motion into two categories: transfer ‘occurred’ and transfer ‘not occurred’. The goal of this paper is to evaluate the use of artificial neural networks in the classification of proton transfer events, based on the feed-forward back propagation neural network, used as a classifier to distinguish between the two transfer cases. In this paper, we use a new developed data mining and pattern recognition tool for automating, controlling, and drawing charts of the output data of an Empirical Valence Bond existing code. The study analyzes the need for pattern recognition in aqueous proton transfer processes and how the learning approach in error back propagation (multilayer perceptron algorithms) could be satisfactorily employed in the present case. We present a tool for pattern recognition and validate the code including a real physical case study. The results of applying the artificial neural networks methodology to crowd patterns based upon selected physical properties (e.g., temperature, density) show the abilities of the network to learn proton transfer patterns corresponding to properties of the aqueous environments, which is in turn proved to be fully compatible with previous proton transfer studies. (condensed matter: structural, mechanical, and thermal properties)

  13. Machine Learning: developing an image recognition program : with Python, Scikit Learn and OpenCV

    OpenAIRE

    Nguyen, Minh

    2016-01-01

    Machine Learning is one of the most debated topic in computer world these days, especially after the first Computer Go program has beaten human Go world champion. Among endless application of Machine Learning, image recognition, which problem is processing enormous amount of data from dynamic input. This thesis will present the basic concept of Machine Learning, Machine Learning algorithms, Python programming language and Scikit Learn – a simple and efficient tool for data analysis in P...

  14. Selective attention and recognition: effects of congruency on episodic learning.

    Science.gov (United States)

    Rosner, Tamara M; D'Angelo, Maria C; MacLellan, Ellen; Milliken, Bruce

    2015-05-01

    Recent research on cognitive control has focused on the learning consequences of high selective attention demands in selective attention tasks (e.g., Botvinick, Cognit Affect Behav Neurosci 7(4):356-366, 2007; Verguts and Notebaert, Psychol Rev 115(2):518-525, 2008). The current study extends these ideas by examining the influence of selective attention demands on remembering. In Experiment 1, participants read aloud the red word in a pair of red and green spatially interleaved words. Half of the items were congruent (the interleaved words had the same identity), and the other half were incongruent (the interleaved words had different identities). Following the naming phase, participants completed a surprise recognition memory test. In this test phase, recognition memory was better for incongruent than for congruent items. In Experiment 2, context was only partially reinstated at test, and again recognition memory was better for incongruent than for congruent items. In Experiment 3, all of the items contained two different words, but in one condition the words were presented close together and interleaved, while in the other condition the two words were spatially separated. Recognition memory was better for the interleaved than for the separated items. This result rules out an interpretation of the congruency effects on recognition in Experiments 1 and 2 that hinges on stronger relational encoding for items that have two different words. Together, the results support the view that selective attention demands for incongruent items lead to encoding that improves recognition.

  15. Pattern classification and recognition of invertebrate functional groups using self-organizing neural networks.

    Science.gov (United States)

    Zhang, WenJun

    2007-07-01

    Self-organizing neural networks can be used to mimic non-linear systems. The main objective of this study is to make pattern classification and recognition on sampling information using two self-organizing neural network models. Invertebrate functional groups sampled in the irrigated rice field were classified and recognized using one-dimensional self-organizing map and self-organizing competitive learning neural networks. Comparisons between neural network models, distance (similarity) measures, and number of neurons were conducted. The results showed that self-organizing map and self-organizing competitive learning neural network models were effective in pattern classification and recognition of sampling information. Overall the performance of one-dimensional self-organizing map neural network was better than self-organizing competitive learning neural network. The number of neurons could determine the number of classes in the classification. Different neural network models with various distance (similarity) measures yielded similar classifications. Some differences, dependent upon the specific network structure, would be found. The pattern of an unrecognized functional group was recognized with the self-organizing neural network. A relative consistent classification indicated that the following invertebrate functional groups, terrestrial blood sucker; terrestrial flyer; tourist (nonpredatory species with no known functional role other than as prey in ecosystem); gall former; collector (gather, deposit feeder); predator and parasitoid; leaf miner; idiobiont (acarine ectoparasitoid), were classified into the same group, and the following invertebrate functional groups, external plant feeder; terrestrial crawler, walker, jumper or hunter; neustonic (water surface) swimmer (semi-aquatic), were classified into another group. It was concluded that reliable conclusions could be drawn from comparisons of different neural network models that use different distance

  16. Deep Learning Methods for Underwater Target Feature Extraction and Recognition

    Directory of Open Access Journals (Sweden)

    Gang Hu

    2018-01-01

    Full Text Available The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved.

  17. Facial expression recognition based on improved local ternary pattern and stacked auto-encoder

    Science.gov (United States)

    Wu, Yao; Qiu, Weigen

    2017-08-01

    In order to enhance the robustness of facial expression recognition, we propose a method of facial expression recognition based on improved Local Ternary Pattern (LTP) combined with Stacked Auto-Encoder (SAE). This method uses the improved LTP extraction feature, and then uses the improved depth belief network as the detector and classifier to extract the LTP feature. The combination of LTP and improved deep belief network is realized in facial expression recognition. The recognition rate on CK+ databases has improved significantly.

  18. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    Science.gov (United States)

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  19. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    Directory of Open Access Journals (Sweden)

    Serge Thomas Mickala Bourobou

    2015-05-01

    Full Text Available This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  20. Foreign language learning, hyperlexia, and early word recognition.

    Science.gov (United States)

    Sparks, R L; Artzer, M

    2000-01-01

    Children with hyperlexia read words spontaneously before the age of five, have impaired comprehension on both listening and reading tasks, and have word recognition skill above expectations based on cognitive and linguistic abilities. One student with hyperlexia and another student with higher word recognition than comprehension skills who started to read words at a very early age were followed over several years from the primary grades through high school when both were completing a second-year Spanish course. The purpose of the present study was to examine the foreign language (FL) word recognition, spelling, reading comprehension, writing, speaking, and listening skills of the two students and another high school student without hyperlexia. Results showed that the student without hyperlexia achieved higher scores than the hyperlexic student and the student with above average word recognition skills on most FL proficiency measures. The student with hyperlexia and the student with above average word recognition skills achieved higher scores on the Spanish proficiency tasks that required the exclusive use of phonological (pronunciation) and phonological/orthographic (word recognition, spelling) skills than on Spanish proficiency tasks that required the use of listening comprehension and speaking and writing skills. The findings provide support for the notion that word recognition and spelling in a FL may be modular processes and exist independently of general cognitive and linguistic skills. Results also suggest that students may have stronger FL learning skills in one language component than in other components of language, and that there may be a weak relationship between FL word recognition and oral proficiency in the FL.

  1. Hotspot detection using image pattern recognition based on higher-order local auto-correlation

    Science.gov (United States)

    Maeda, Shimon; Matsunawa, Tetsuaki; Ogawa, Ryuji; Ichikawa, Hirotaka; Takahata, Kazuhiro; Miyairi, Masahiro; Kotani, Toshiya; Nojima, Shigeki; Tanaka, Satoshi; Nakagawa, Kei; Saito, Tamaki; Mimotogi, Shoji; Inoue, Soichi; Nosato, Hirokazu; Sakanashi, Hidenori; Kobayashi, Takumi; Murakawa, Masahiro; Higuchi, Tetsuya; Takahashi, Eiichi; Otsu, Nobuyuki

    2011-04-01

    Below 40nm design node, systematic variation due to lithography must be taken into consideration during the early stage of design. So far, litho-aware design using lithography simulation models has been widely applied to assure that designs are printed on silicon without any error. However, the lithography simulation approach is very time consuming, and under time-to-market pressure, repetitive redesign by this approach may result in the missing of the market window. This paper proposes a fast hotspot detection support method by flexible and intelligent vision system image pattern recognition based on Higher-Order Local Autocorrelation. Our method learns the geometrical properties of the given design data without any defects as normal patterns, and automatically detects the design patterns with hotspots from the test data as abnormal patterns. The Higher-Order Local Autocorrelation method can extract features from the graphic image of design pattern, and computational cost of the extraction is constant regardless of the number of design pattern polygons. This approach can reduce turnaround time (TAT) dramatically only on 1CPU, compared with the conventional simulation-based approach, and by distributed processing, this has proven to deliver linear scalability with each additional CPU.

  2. New Directions in Statistical Physics: Econophysics, Bioinformatics, and Pattern Recognition

    International Nuclear Information System (INIS)

    Grassberger, P

    2004-01-01

    This book contains 18 contributions from different authors. Its subtitle 'Econophysics, Bioinformatics, and Pattern Recognition' says more precisely what it is about: not so much about central problems of conventional statistical physics like equilibrium phase transitions and critical phenomena, but about its interdisciplinary applications. After a long period of specialization, physicists have, over the last few decades, found more and more satisfaction in breaking out of the limitations set by the traditional classification of sciences. Indeed, this classification had never been strict, and physicists in particular had always ventured into other fields. Helmholtz, in the middle of the 19th century, had considered himself a physicist when working on physiology, stressing that the physics of animate nature is as much a legitimate field of activity as the physics of inanimate nature. Later, Max Delbrueck and Francis Crick did for experimental biology what Schroedinger did for its theoretical foundation. And many of the experimental techniques used in chemistry, biology, and medicine were developed by a steady stream of talented physicists who left their proper discipline to venture out into the wider world of science. The development we have witnessed over the last thirty years or so is different. It started with neural networks where methods could be applied which had been developed for spin glasses, but todays list includes vehicular traffic (driven lattice gases), geology (self-organized criticality), economy (fractal stochastic processes and large scale simulations), engineering (dynamical chaos), and many others. By staying in the physics departments, these activities have transformed the physics curriculum and the view physicists have of themselves. In many departments there are now courses on econophysics or on biological physics, and some universities offer degrees in the physics of traffic or in econophysics. In order to document this change of attitude

  3. Ficolins and FIBCD1: Soluble and membrane bound pattern recognition molecules with acetyl group selectivity

    DEFF Research Database (Denmark)

    Thomsen, Theresa; Schlosser, Anders; Holmskov, Uffe

    2011-01-01

    as pattern recognition molecules. Ficolins are soluble oligomeric proteins composed of trimeric collagen-like regions linked to fibrinogen-related domains (FReDs) that have the ability to sense molecular patterns on both pathogens and apoptotic cell surfaces and activate the complement system. The ficolins......D-containing molecules, and discusses structural resemblance but also diversity in recognition of acetylated ligands....

  4. Application of machine learning methods for traffic signs recognition

    Science.gov (United States)

    Filatov, D. V.; Ignatev, K. V.; Deviatkin, A. V.; Serykh, E. V.

    2018-02-01

    This paper focuses on solving a relevant and pressing safety issue on intercity roads. Two approaches were considered for solving the problem of traffic signs recognition; the approaches involved neural networks to analyze images obtained from a camera in the real-time mode. The first approach is based on a sequential image processing. At the initial stage, with the help of color filters and morphological operations (dilatation and erosion), the area containing the traffic sign is located on the image, then the selected and scaled fragment of the image is analyzed using a feedforward neural network to determine the meaning of the found traffic sign. Learning of the neural network in this approach is carried out using a backpropagation method. The second approach involves convolution neural networks at both stages, i.e. when searching and selecting the area of the image containing the traffic sign, and when determining its meaning. Learning of the neural network in the second approach is carried out using the intersection over union function and a loss function. For neural networks to learn and the proposed algorithms to be tested, a series of videos from a dash cam were used that were shot under various weather and illumination conditions. As a result, the proposed approaches for traffic signs recognition were analyzed and compared by key indicators such as recognition rate percentage and the complexity of neural networks’ learning process.

  5. Real-time intelligent pattern recognition algorithm for surface EMG signals

    Directory of Open Access Journals (Sweden)

    Jahed Mehran

    2007-12-01

    Full Text Available Abstract Background Electromyography (EMG is the study of muscle function through the inquiry of electrical signals that the muscles emanate. EMG signals collected from the surface of the skin (Surface Electromyogram: sEMG can be used in different applications such as recognizing musculoskeletal neural based patterns intercepted for hand prosthesis movements. Current systems designed for controlling the prosthetic hands either have limited functions or can only be used to perform simple movements or use excessive amount of electrodes in order to achieve acceptable results. In an attempt to overcome these problems we have proposed an intelligent system to recognize hand movements and have provided a user assessment routine to evaluate the correctness of executed movements. Methods We propose to use an intelligent approach based on adaptive neuro-fuzzy inference system (ANFIS integrated with a real-time learning scheme to identify hand motion commands. For this purpose and to consider the effect of user evaluation on recognizing hand movements, vision feedback is applied to increase the capability of our system. By using this scheme the user may assess the correctness of the performed hand movement. In this work a hybrid method for training fuzzy system, consisting of back-propagation (BP and least mean square (LMS is utilized. Also in order to optimize the number of fuzzy rules, a subtractive clustering algorithm has been developed. To design an effective system, we consider a conventional scheme of EMG pattern recognition system. To design this system we propose to use two different sets of EMG features, namely time domain (TD and time-frequency representation (TFR. Also in order to decrease the undesirable effects of the dimension of these feature sets, principle component analysis (PCA is utilized. Results In this study, the myoelectric signals considered for classification consists of six unique hand movements. Features chosen for EMG signal

  6. Applications of pattern recognition techniques to online fault detection

    International Nuclear Information System (INIS)

    Singer, R.M.; Gross, K.C.; King, R.W.

    1993-01-01

    A common problem to operators of complex industrial systems is the early detection of incipient degradation of sensors and components in order to avoid unplanned outages, to orderly plan for anticipated maintenance activities and to assure continued safe operation. In such systems, there usually are a large number of sensors (upwards of several thousand is not uncommon) serving many functions, ranging from input to control systems, monitoring of safety parameters and component performance limits, system environmental conditions, etc. Although sensors deemed to measure important process conditions are generally alarmed, the alarm set points usually are just high-low limits and the operator's response to such alarms is based on written procedures and his or her experience and training. In many systems this approach has been successful, but in situations where the cost of a forced outage is high an improved method is needed. In such cases it is desirable, if not necessary, to detect disturbances in either sensors or the process prior to any actual failure that could either shut down the process or challenge any safety system that is present. Recent advances in various artificial intelligence techniques have provided the opportunity to perform such functions of early detection and diagnosis. In this paper, the experience gained through the application of several pattern-recognition techniques to the on-line monitoring and incipient disturbance detection of several coolant pumps and numerous sensors at the Experimental Breeder Reactor-II (EBR-II) which is located at the Idaho National Engineering Laboratory is presented

  7. Cerebellar involvement in metabolic disorders: a pattern-recognition approach

    International Nuclear Information System (INIS)

    Steinlin, M.; Boltshauser, E.; Blaser, S.

    1998-01-01

    Inborn errors of metabolism can affect the cerebellum during development, maturation and later during life. We have established criteria for pattern recognition of cerebellar abnormalities in metabolic disorders. The abnormalities can be divided into four major groups: cerebellar hypoplasia (CH), hyperplasia, cerebellar atrophy (CA), cerebellar white matter abnormalities (WMA) or swelling, and involvement of the dentate nuclei (DN) or cerebellar cortex. CH can be an isolated typical finding, as in adenylsuccinase deficiency, but is also occasionally seen in many other disorders. Differentiation from CH and CA is often difficult, as in carbohydrate deficient glycoprotein syndrome or 2-l-hydroxyglutaric acidaemia. In cases of atrophy the relationship of cerebellar to cerebral atrophy is important. WMA may be diffuse or patchy, frequently predominantly around the DN. Severe swelling of white matter is present during metabolic crisis in maple syrup urine disease. The DN can be affected by metabolite deposition, necrosis, calcification or demyelination. Involvement of cerebellar cortex is seen in infantile neuroaxonal dystrophy. Changes in DN and cerebellar cortex are rather typical and therefore most helpful; additional features should be sought as they are useful in narrowing down the differential diagnosis. (orig.)

  8. Session Introduction: Challenges of Pattern Recognition in Biomedical Data.

    Science.gov (United States)

    Verma, Shefali Setia; Verma, Anurag; Basile, Anna Okula; Bishop, Marta-Byrska; Darabos, Christian

    2018-01-01

    The analysis of large biomedical data often presents with various challenges related to not just the size of the data, but also to data quality issues such as heterogeneity, multidimensionality, noisiness, and incompleteness of the data. The data-intensive nature of computational genomics problems in biomedical informatics warrants the development and use of massive computer infrastructure and advanced software tools and platforms, including but not limited to the use of cloud computing. Our session aims to address these challenges in handling big data for designing a study, performing analysis, and interpreting outcomes of these analyses. These challenges have been prevalent in many studies including those which focus on the identification of novel genetic variant-phenotype associations using data from sources like Electronic Health Records (EHRs) or multi-omic data. One of the biggest challenges to focus on is the imperfect nature of the biomedical data where a lot of noise and sparseness is observed. In our session, we will present research articles that can help in identifying innovative ways to recognize and overcome newly arising challenges associated with pattern recognition in biomedical data.

  9. Minimum Information Loss Based Multi-kernel Learning for Flagellar Protein Recognition in Trypanosoma Brucei

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-12-01

    Trypanosma brucei (T. Brucei) is an important pathogen agent of African trypanosomiasis. The flagellum is an essential and multifunctional organelle of T. Brucei, thus it is very important to recognize the flagellar proteins from T. Brucei proteins for the purposes of both biological research and drug design. In this paper, we investigate computationally recognizing flagellar proteins in T. Brucei by pattern recognition methods. It is argued that an optimal decision function can be obtained as the difference of probability functions of flagella protein and the non-flagellar protein for the purpose of flagella protein recognition. We propose to learn a multi-kernel classification function to approximate this optimal decision function, by minimizing the information loss of such approximation which is measured by the Kull back-Leibler (KL) divergence. An iterative multi-kernel classifier learning algorithm is developed to minimize the KL divergence for the problem of T. Brucei flagella protein recognition, experiments show its advantage over other T. Brucei flagellar protein recognition and multi-kernel learning methods. © 2014 IEEE.

  10. Face sketch recognition based on edge enhancement via deep learning

    Science.gov (United States)

    Xie, Zhenzhu; Yang, Fumeng; Zhang, Yuming; Wu, Congzhong

    2017-11-01

    In this paper,we address the face sketch recognition problem. Firstly, we utilize the eigenface algorithm to convert a sketch image into a synthesized sketch face image. Subsequently, considering the low-level vision problem in synthesized face sketch image .Super resolution reconstruction algorithm based on CNN(convolutional neural network) is employed to improve the visual effect. To be specific, we uses a lightweight super-resolution structure to learn a residual mapping instead of directly mapping the feature maps from the low-level space to high-level patch representations, which making the networks are easier to optimize and have lower computational complexity. Finally, we adopt LDA(Linear Discriminant Analysis) algorithm to realize face sketch recognition on synthesized face image before super resolution and after respectively. Extensive experiments on the face sketch database(CUFS) from CUHK demonstrate that the recognition rate of SVM(Support Vector Machine) algorithm improves from 65% to 69% and the recognition rate of LDA(Linear Discriminant Analysis) algorithm improves from 69% to 75%.What'more,the synthesized face image after super resolution can not only better describer image details such as hair ,nose and mouth etc, but also improve the recognition accuracy effectively.

  11. Human Activity Recognition from Body Sensor Data using Deep Learning.

    Science.gov (United States)

    Hassan, Mohammad Mehedi; Huda, Shamsul; Uddin, Md Zia; Almogren, Ahmad; Alrubaian, Majed

    2018-04-16

    In recent years, human activity recognition from body sensor data or wearable sensor data has become a considerable research attention from academia and health industry. This research can be useful for various e-health applications such as monitoring elderly and physical impaired people at Smart home to improve their rehabilitation processes. However, it is not easy to accurately and automatically recognize physical human activity through wearable sensors due to the complexity and variety of body activities. In this paper, we address the human activity recognition problem as a classification problem using wearable body sensor data. In particular, we propose to utilize a Deep Belief Network (DBN) model for successful human activity recognition. First, we extract the important initial features from the raw body sensor data. Then, a kernel principal component analysis (KPCA) and linear discriminant analysis (LDA) are performed to further process the features and make them more robust to be useful for fast activity recognition. Finally, the DBN is trained by these features. Various experiments were performed on a real-world wearable sensor dataset to verify the effectiveness of the deep learning algorithm. The results show that the proposed DBN outperformed other algorithms and achieves satisfactory activity recognition performance.

  12. Surveillance of a nuclear reactor core by use of a pattern recognition method

    International Nuclear Information System (INIS)

    Invernizzi, Michel.

    1982-07-01

    A pattern recognition system is described for the surveillance of a PWR reactor. This report contains four chapters. The first one succinctly deals with statistical pattern recognition principles. In the second chapter we show how a surveillance problem may be treated by pattern recognition and we present methods for surveillances (detection of abnormalities), controls (kind of running recognition) and diagnotics (kind of abnormality recognition). The third chapter shows a surveillance method of a nuclear plant. The signals used are the neutron noise observations made by the ionization chambers inserted in the reactor. Abnormality is defined in opposition with the training set witch is supposed to be an exhaustive summary of normality. In the fourth chapter we propose a scheme for an adaptative recognition and a method based on classes modelisations by hyper-spheres. This method has been tested on simulated training sets in two-dimensional feature spaces. It gives solutions to problems of non-linear separability [fr

  13. Named Entity Recognition for Novel Types by Transfer Learning

    OpenAIRE

    Qu, Lizhen; Ferraro, Gabriela; Zhou, Liyuan; Hou, Weiwei; Baldwin, Timothy

    2016-01-01

    In named entity recognition, we often don't have a large in-domain training corpus or a knowledge base with adequate coverage to train a model directly. In this paper, we propose a method where, given training data in a related domain with similar (but not identical) named entity (NE) types and a small amount of in-domain training data, we use transfer learning to learn a domain-specific NE model. That is, the novelty in the task setup is that we assume not just domain mismatch, but also labe...

  14. Cross-View Action Recognition via Transferable Dictionary Learning.

    Science.gov (United States)

    Zheng, Jingjing; Jiang, Zhuolin; Chellappa, Rama

    2016-05-01

    Discriminative appearance features are effective for recognizing actions in a fixed view, but may not generalize well to a new view. In this paper, we present two effective approaches to learn dictionaries for robust action recognition across views. In the first approach, we learn a set of view-specific dictionaries where each dictionary corresponds to one camera view. These dictionaries are learned simultaneously from the sets of correspondence videos taken at different views with the aim of encouraging each video in the set to have the same sparse representation. In the second approach, we additionally learn a common dictionary shared by different views to model view-shared features. This approach represents the videos in each view using a view-specific dictionary and the common dictionary. More importantly, it encourages the set of videos taken from the different views of the same action to have the similar sparse representations. The learned common dictionary not only has the capability to represent actions from unseen views, but also makes our approach effective in a semi-supervised setting where no correspondence videos exist and only a few labeled videos exist in the target view. The extensive experiments using three public datasets demonstrate that the proposed approach outperforms recently developed approaches for cross-view action recognition.

  15. Visual recognition and inference using dynamic overcomplete sparse learning.

    Science.gov (United States)

    Murray, Joseph F; Kreutz-Delgado, Kenneth

    2007-09-01

    We present a hierarchical architecture and learning algorithm for visual recognition and other visual inference tasks such as imagination, reconstruction of occluded images, and expectation-driven segmentation. Using properties of biological vision for guidance, we posit a stochastic generative world model and from it develop a simplified world model (SWM) based on a tractable variational approximation that is designed to enforce sparse coding. Recent developments in computational methods for learning overcomplete representations (Lewicki & Sejnowski, 2000; Teh, Welling, Osindero, & Hinton, 2003) suggest that overcompleteness can be useful for visual tasks, and we use an overcomplete dictionary learning algorithm (Kreutz-Delgado, et al., 2003) as a preprocessing stage to produce accurate, sparse codings of images. Inference is performed by constructing a dynamic multilayer network with feedforward, feedback, and lateral connections, which is trained to approximate the SWM. Learning is done with a variant of the back-propagation-through-time algorithm, which encourages convergence to desired states within a fixed number of iterations. Vision tasks require large networks, and to make learning efficient, we take advantage of the sparsity of each layer to update only a small subset of elements in a large weight matrix at each iteration. Experiments on a set of rotated objects demonstrate various types of visual inference and show that increasing the degree of overcompleteness improves recognition performance in difficult scenes with occluded objects in clutter.

  16. Weighted Local Active Pixel Pattern (WLAPP for Face Recognition in Parallel Computation Environment

    Directory of Open Access Journals (Sweden)

    Gundavarapu Mallikarjuna Rao

    2013-10-01

    Full Text Available Abstract  - The availability of multi-core technology resulted totally new computational era. Researchers are keen to explore available potential in state of art-machines for breaking the bearer imposed by serial computation. Face Recognition is one of the challenging applications on so ever computational environment. The main difficulty of traditional Face Recognition algorithms is lack of the scalability. In this paper Weighted Local Active Pixel Pattern (WLAPP, a new scalable Face Recognition Algorithm suitable for parallel environment is proposed.  Local Active Pixel Pattern (LAPP is found to be simple and computational inexpensive compare to Local Binary Patterns (LBP. WLAPP is developed based on concept of LAPP. The experimentation is performed on FG-Net Aging Database with deliberately introduced 20% distortion and the results are encouraging. Keywords — Active pixels, Face Recognition, Local Binary Pattern (LBP, Local Active Pixel Pattern (LAPP, Pattern computing, parallel workers, template, weight computation.  

  17. Applications of pattern recognition theory in diagnostics of nuclear power plants

    International Nuclear Information System (INIS)

    Cech, J.

    1982-01-01

    The questions are discussed of the application of the theory of pattern recognition in the diagnostics of nuclear power plants. For the future use of recognition systems in the diagnostics of nuclear power plants it is obvious that like with other complex systems, optimal models will have to be used which will organize the optimal recognition algorithm. The conclusion is presented that for the needs of nuclear power plants special systems will be more suitable for pattern recognition than digital computers which are flexible and adaptible but have a lower decision rate, an insufficient working memory, complicated programs, etc. (Z.M.)

  18. Multiresolution pattern recognition of small volcanos in Magellan data

    Science.gov (United States)

    Smyth, P.; Anderson, C. H.; Aubele, J. C.; Crumpler, L. S.

    1992-01-01

    The Magellan data is a treasure-trove for scientific analysis of venusian geology, providing far more detail than was previously available from Pioneer Venus, Venera 15/16, or ground-based radar observations. However, at this point, planetary scientists are being overwhelmed by the sheer quantities of data collected--data analysis technology has not kept pace with our ability to collect and store it. In particular, 'small-shield' volcanos (less than 20 km in diameter) are the most abundant visible geologic feature on the planet. It is estimated, based on extrapolating from previous studies and knowledge of the underlying geologic processes, that there should be on the order of 10(exp 5) to 10(exp 6) of these volcanos visible in the Magellan data. Identifying and studying these volcanos is fundamental to a proper understanding of the geologic evolution of Venus. However, locating and parameterizing them in a manual manner is very time-consuming. Hence, we have undertaken the development of techniques to partially automate this task. The goal is not the unrealistic one of total automation, but rather the development of a useful tool to aid the project scientists. The primary constraints for this particular problem are as follows: (1) the method must be reasonably robust; and (2) the method must be reasonably fast. Unlike most geological features, the small volcanos of Venus can be ascribed to a basic process that produces features with a short list of readily defined characteristics differing significantly from other surface features on Venus. For pattern recognition purposes the relevant criteria include the following: (1) a circular planimetric outline; (2) known diameter frequency distribution from preliminary studies; (3) a limited number of basic morphological shapes; and (4) the common occurrence of a single, circular summit pit at the center of the edifice.

  19. Motor Oil Classification using Color Histograms and Pattern Recognition Techniques.

    Science.gov (United States)

    Ahmadi, Shiva; Mani-Varnosfaderani, Ahmad; Habibi, Biuck

    2018-04-20

    Motor oil classification is important for quality control and the identification of oil adulteration. In thiswork, we propose a simple, rapid, inexpensive and nondestructive approach based on image analysis and pattern recognition techniques for the classification of nine different types of motor oils according to their corresponding color histograms. For this, we applied color histogram in different color spaces such as red green blue (RGB), grayscale, and hue saturation intensity (HSI) in order to extract features that can help with the classification procedure. These color histograms and their combinations were used as input for model development and then were statistically evaluated by using linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), and support vector machine (SVM) techniques. Here, two common solutions for solving a multiclass classification problem were applied: (1) transformation to binary classification problem using a one-against-all (OAA) approach and (2) extension from binary classifiers to a single globally optimized multilabel classification model. In the OAA strategy, LDA, QDA, and SVM reached up to 97% in terms of accuracy, sensitivity, and specificity for both the training and test sets. In extension from binary case, despite good performances by the SVM classification model, QDA and LDA provided better results up to 92% for RGB-grayscale-HSI color histograms and up to 93% for the HSI color map, respectively. In order to reduce the numbers of independent variables for modeling, a principle component analysis algorithm was used. Our results suggest that the proposed method is promising for the identification and classification of different types of motor oils.

  20. Pattern Recognition in Optical Remote Sensing Data Processing

    Science.gov (United States)

    Kozoderov, Vladimir; Kondranin, Timofei; Dmitriev, Egor; Kamentsev, Vladimir

    Computational procedures of the land surface biophysical parameters retrieval imply that modeling techniques are available of the outgoing radiation description together with monitoring techniques of remote sensing data processing using registered radiances between the related optical sensors and the land surface objects called “patterns”. Pattern recognition techniques are a valuable approach to the processing of remote sensing data for images of the land surface - atmosphere system. Many simplified codes of the direct and inverse problems of atmospheric optics are considered applicable for the imagery processing of low and middle spatial resolution. Unless the authors are not interested in the accuracy of the final information products, they utilize these standard procedures. The emerging necessity of processing data of high spectral and spatial resolution given by imaging spectrometers puts forward the newly defined pattern recognition techniques. The proposed tools of using different types of classifiers combined with the parameter retrieval procedures for the forested environment are maintained to have much wider applications as compared with the image features and object shapes extraction, which relates to photometry and geometry in pixel-level reflectance representation of the forested land cover. The pixel fraction and reflectance of “end-members” (sunlit forest canopy, sunlit background and shaded background for a particular view and solar illumination angle) are only a part in the listed techniques. It is assumed that each pixel views collections of the individual forest trees and the pixel-level reflectance can thus be computed as a linear mixture of sunlit tree tops, sunlit background (or understory) and shadows. Instead of these photometry and geometry constraints, the improved models are developed of the functional description of outgoing spectral radiation, in which such parameters of the forest canopy like the vegetation biomass density for

  1. Object Recognition in Clutter: Cortical Responses Depend on the Type of Learning

    Directory of Open Access Journals (Sweden)

    Jay eHegdé

    2012-06-01

    Full Text Available Theoretical studies suggest that the visual system uses prior knowledge of visual objects to recognize them in visual clutter, and posit that the strategies for recognizing objects in clutter may differ depending on whether or not the object was learned in clutter to begin with. We tested this hypothesis using functional magnetic resonance imaging (fMRI of human subjects. We trained subjects to recognize naturalistic, yet novel objects in strong or weak clutter. We then tested subjects’ recognition performance for both sets of objects in strong clutter. We found many brain regions that were differentially responsive to objects during object recognition depending on whether they were learned in strong or weak clutter. In particular, the responses of the left fusiform gyrus reliably reflected, on a trial-to-trial basis, subjects’ object recognition performance for objects learned in the presence of strong clutter. These results indicate that the visual system does not use a single, general-purpose mechanism to cope with clutter. Instead, there are two distinct spatial patterns of activation whose responses are attributable not to the visual context in which the objects were seen, but to the context in which the objects were learned.

  2. Event Recognition Based on Deep Learning in Chinese Texts.

    Directory of Open Access Journals (Sweden)

    Yajun Zhang

    Full Text Available Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM. Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN, then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.

  3. Event Recognition Based on Deep Learning in Chinese Texts.

    Science.gov (United States)

    Zhang, Yajun; Liu, Zongtian; Zhou, Wen

    2016-01-01

    Event recognition is the most fundamental and critical task in event-based natural language processing systems. Existing event recognition methods based on rules and shallow neural networks have certain limitations. For example, extracting features using methods based on rules is difficult; methods based on shallow neural networks converge too quickly to a local minimum, resulting in low recognition precision. To address these problems, we propose the Chinese emergency event recognition model based on deep learning (CEERM). Firstly, we use a word segmentation system to segment sentences. According to event elements labeled in the CEC 2.0 corpus, we classify words into five categories: trigger words, participants, objects, time and location. Each word is vectorized according to the following six feature layers: part of speech, dependency grammar, length, location, distance between trigger word and core word and trigger word frequency. We obtain deep semantic features of words by training a feature vector set using a deep belief network (DBN), then analyze those features in order to identify trigger words by means of a back propagation neural network. Extensive testing shows that the CEERM achieves excellent recognition performance, with a maximum F-measure value of 85.17%. Moreover, we propose the dynamic-supervised DBN, which adds supervised fine-tuning to a restricted Boltzmann machine layer by monitoring its training performance. Test analysis reveals that the new DBN improves recognition performance and effectively controls the training time. Although the F-measure increases to 88.11%, the training time increases by only 25.35%.

  4. Emergent intelligent properties of progressively structured pattern recognition nets

    Energy Technology Data Exchange (ETDEWEB)

    Aleksander, I

    1983-07-01

    The n-tuple recognition net is seen as a building brick of a progression of network structures. The emergent intelligent properties of such systems are discussed. They include the amplification of confidence for the recognition of images that differ in small detail, a short term memory of the last seen image, sequence sensitivity, sequence sensitivity, sequence acceptance and saccadic inspection as an aid in scene analysis. 12 references.

  5. On Assisting a Visual-Facial Affect Recognition System with Keyboard-Stroke Pattern Information

    Science.gov (United States)

    Stathopoulou, I.-O.; Alepis, E.; Tsihrintzis, G. A.; Virvou, M.

    Towards realizing a multimodal affect recognition system, we are considering the advantages of assisting a visual-facial expression recognition system with keyboard-stroke pattern information. Our work is based on the assumption that the visual-facial and keyboard modalities are complementary to each other and that their combination can significantly improve the accuracy in affective user models. Specifically, we present and discuss the development and evaluation process of two corresponding affect recognition subsystems, with emphasis on the recognition of 6 basic emotional states, namely happiness, sadness, surprise, anger and disgust as well as the emotion-less state which we refer to as neutral. We find that emotion recognition by the visual-facial modality can be aided greatly by keyboard-stroke pattern information and the combination of the two modalities can lead to better results towards building a multimodal affect recognition system.

  6. A Space-Based Observational Strategy for Hydrogen Cosmology Using Dynamic Polarimetry and Pattern Recognition

    Science.gov (United States)

    Burns, Jack O.; Nhan, Bang; Bradley, Richard F.; Tauscher, Keith A.; Rapetti, David; Switzer, Eric

    2018-06-01

    The redshifted 21-cm monopole is expected to be a powerful probe of the epoch of the first stars and galaxies (10 polarimetry that separates the polarized foreground from the unpolarized 21-cm signal. Initial results from a ground-based prototype called the Cosmic Twilight Polarimeter will be described which tentatively reveal the presence of the expected polarization signature from the foreground. Dynamic polarimetry, when combined with sophisticated pattern recognition techniques based on training sets, machine learning, and statistical information criteria offer promise for precise extraction of the 21-cm spectrum. We describe a new SmallSat mission concept, the Dark Ages Polarimetry Pathfinder (DAPPer), that will utilize these novel approaches for extending the recent detection of a 78 MHz signal down to lower frequencies where we can uniquely probe evidence for the first stars and dark matter.

  7. Improving Protein Fold Recognition by Deep Learning Networks

    Science.gov (United States)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-12-01

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl’s benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

  8. Improving Protein Fold Recognition by Deep Learning Networks.

    Science.gov (United States)

    Jo, Taeho; Hou, Jie; Eickholt, Jesse; Cheng, Jianlin

    2015-12-04

    For accurate recognition of protein folds, a deep learning network method (DN-Fold) was developed to predict if a given query-template protein pair belongs to the same structural fold. The input used stemmed from the protein sequence and structural features extracted from the protein pair. We evaluated the performance of DN-Fold along with 18 different methods on Lindahl's benchmark dataset and on a large benchmark set extracted from SCOP 1.75 consisting of about one million protein pairs, at three different levels of fold recognition (i.e., protein family, superfamily, and fold) depending on the evolutionary distance between protein sequences. The correct recognition rate of ensembled DN-Fold for Top 1 predictions is 84.5%, 61.5%, and 33.6% and for Top 5 is 91.2%, 76.5%, and 60.7% at family, superfamily, and fold levels, respectively. We also evaluated the performance of single DN-Fold (DN-FoldS), which showed the comparable results at the level of family and superfamily, compared to ensemble DN-Fold. Finally, we extended the binary classification problem of fold recognition to real-value regression task, which also show a promising performance. DN-Fold is freely available through a web server at http://iris.rnet.missouri.edu/dnfold.

  9. Optimal pattern synthesis for speech recognition based on principal component analysis

    Science.gov (United States)

    Korsun, O. N.; Poliyev, A. V.

    2018-02-01

    The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.

  10. Learning Programming Patterns Using Games

    Science.gov (United States)

    de Aquino Leal, Alexis Vinícius; Ferreira, Deller James

    2016-01-01

    There is still no pedagogy to teach programming that stands out significantly from others and no consensus on what is the best way for learning programming. There is still a need to develop new teaching methods for learning in introductory programming courses. This paper presents a pedagogic approach in support of creativity in programming and the…

  11. Cross-sensor iris recognition through kernel learning.

    Science.gov (United States)

    Pillai, Jaishanker K; Puertas, Maria; Chellappa, Rama

    2014-01-01

    Due to the increasing popularity of iris biometrics, new sensors are being developed for acquiring iris images and existing ones are being continuously upgraded. Re-enrolling users every time a new sensor is deployed is expensive and time-consuming, especially in applications with a large number of enrolled users. However, recent studies show that cross-sensor matching, where the test samples are verified using data enrolled with a different sensor, often lead to reduced performance. In this paper, we propose a machine learning technique to mitigate the cross-sensor performance degradation by adapting the iris samples from one sensor to another. We first present a novel optimization framework for learning transformations on iris biometrics. We then utilize this framework for sensor adaptation, by reducing the distance between samples of the same class, and increasing it between samples of different classes, irrespective of the sensors acquiring them. Extensive evaluations on iris data from multiple sensors demonstrate that the proposed method leads to improvement in cross-sensor recognition accuracy. Furthermore, since the proposed technique requires minimal changes to the iris recognition pipeline, it can easily be incorporated into existing iris recognition systems.

  12. Semi-Supervised Multitask Learning for Scene Recognition.

    Science.gov (United States)

    Lu, Xiaoqiang; Li, Xuelong; Mou, Lichao

    2015-09-01

    Scene recognition has been widely studied to understand visual information from the level of objects and their relationships. Toward scene recognition, many methods have been proposed. They, however, encounter difficulty to improve the accuracy, mainly due to two limitations: 1) lack of analysis of intrinsic relationships across different scales, say, the initial input and its down-sampled versions and 2) existence of redundant features. This paper develops a semi-supervised learning mechanism to reduce the above two limitations. To address the first limitation, we propose a multitask model to integrate scene images of different resolutions. For the second limitation, we build a model of sparse feature selection-based manifold regularization (SFSMR) to select the optimal information and preserve the underlying manifold structure of data. SFSMR coordinates the advantages of sparse feature selection and manifold regulation. Finally, we link the multitask model and SFSMR, and propose the semi-supervised learning method to reduce the two limitations. Experimental results report the improvements of the accuracy in scene recognition.

  13. Improving Pattern Recognition and Neural Network Algorithms with Applications to Solar Panel Energy Optimization

    Science.gov (United States)

    Zamora Ramos, Ernesto

    Artificial Intelligence is a big part of automation and with today's technological advances, artificial intelligence has taken great strides towards positioning itself as the technology of the future to control, enhance and perfect automation. Computer vision includes pattern recognition and classification and machine learning. Computer vision is at the core of decision making and it is a vast and fruitful branch of artificial intelligence. In this work, we expose novel algorithms and techniques built upon existing technologies to improve pattern recognition and neural network training, initially motivated by a multidisciplinary effort to build a robot that helps maintain and optimize solar panel energy production. Our contributions detail an improved non-linear pre-processing technique to enhance poorly illuminated images based on modifications to the standard histogram equalization for an image. While the original motivation was to improve nocturnal navigation, the results have applications in surveillance, search and rescue, medical imaging enhancing, and many others. We created a vision system for precise camera distance positioning motivated to correctly locate the robot for capture of solar panel images for classification. The classification algorithm marks solar panels as clean or dirty for later processing. Our algorithm extends past image classification and, based on historical and experimental data, it identifies the optimal moment in which to perform maintenance on marked solar panels as to minimize the energy and profit loss. In order to improve upon the classification algorithm, we delved into feedforward neural networks because of their recent advancements, proven universal approximation and classification capabilities, and excellent recognition rates. We explore state-of-the-art neural network training techniques offering pointers and insights, culminating on the implementation of a complete library with support for modern deep learning architectures

  14. Transductive Pattern Learning for Information Extraction

    National Research Council Canada - National Science Library

    McLernon, Brian; Kushmerick, Nicholas

    2006-01-01

    .... We present TPLEX, a semi-supervised learning algorithm for information extraction that can acquire extraction patterns from a small amount of labelled text in conjunction with a large amount of unlabelled text...

  15. The Role of Binocular Disparity in Rapid Scene and Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Matteo Valsecchi

    2013-04-01

    Full Text Available We investigated the contribution of binocular disparity to the rapid recognition of scenes and simpler spatial patterns using a paradigm combining backward masked stimulus presentation and short-term match-to-sample recognition. First, we showed that binocular disparity did not contribute significantly to the recognition of briefly presented natural and artificial scenes, even when the availability of monocular cues was reduced. Subsequently, using dense random dot stereograms as stimuli, we showed that observers were in principle able to extract spatial patterns defined only by disparity under brief, masked presentations. Comparing our results with the predictions from a cue-summation model, we showed that combining disparity with luminance did not per se disrupt the processing of disparity. Our results suggest that the rapid recognition of scenes is mediated mostly by a monocular comparison of the images, although we can rely on stereo in fast pattern recognition.

  16. Pattern recognition and modelling of earthquake registrations with interactive computer support

    International Nuclear Information System (INIS)

    Manova, Katarina S.

    2004-01-01

    The object of the thesis is Pattern Recognition. Pattern recognition i.e. classification, is applied in many fields: speech recognition, hand printed character recognition, medical analysis, satellite and aerial-photo interpretations, biology, computer vision, information retrieval and so on. In this thesis is studied its applicability in seismology. Signal classification is an area of great importance in a wide variety of applications. This thesis deals with the problem of (automatic) classification of earthquake signals, which are non-stationary signals. Non-stationary signal classification is an area of active research in the signal and image processing community. The goal of the thesis is recognition of earthquake signals according to their epicentral zone. Source classification i.e. recognition is based on transformation of seismograms (earthquake registrations) to images, via time-frequency transformations, and applying image processing and pattern recognition techniques for feature extraction, classification and recognition. The tested data include local earthquakes from seismic regions in Macedonia. By using actual seismic data it is shown that proposed methods provide satisfactory results for classification and recognition.(Author)

  17. Hardware processors for pattern recognition tasks in experiments with wire chambers

    International Nuclear Information System (INIS)

    Verkerk, C.

    1975-01-01

    Hardware processors for pattern recognition tasks in experiments with multiwire proportional chambers or drift chambers are described. They vary from simple ones used for deciding in real time if particle trajectories are straight to complex ones for recognition of curved tracks. Schematics and block-diagrams of different processors are shown

  18. Exploring How User Routine Affects the Recognition Performance of a Lock Pattern

    NARCIS (Netherlands)

    de Wide, Lisa; Spreeuwers, Lieuwe Jan; Veldhuis, Raymond N.J.

    2015-01-01

    To protect an Android smartphone against attackers, a lock pattern can be used. Nevertheless, shoulder-surfing and smudge attacks can be used to get access despite of this protection. To combat these attacks, biometric recognition can be added to the lock pattern, such that the lock-pattern

  19. StreamAR: incremental and active learning with evolving sensory data for activity recognition

    OpenAIRE

    Abdallah, Z.; Gaber, M.; Srinivasan, B.; Krishnaswamy, S.

    2012-01-01

    Activity recognition focuses on inferring current user activities by leveraging sensory data available on today’s sensor rich environment. Supervised learning has been applied pervasively for activity recognition. Typical activity recognition techniques process sensory data based on point-by-point approaches. In this paper, we propose a novel cluster-based classification for activity recognition Systems, termed StreamAR. The system incorporates incremental and active learning for mining user ...

  20. Research on the transfer learning of the vehicle logo recognition

    Science.gov (United States)

    Zhao, Wei

    2017-08-01

    The Convolutional Neural Network of Deep Learning has been a huge success in the field of image intelligent transportation system can effectively solve the traffic safety, congestion, vehicle management and other problems of traffic in the city. Vehicle identification is a vital part of intelligent transportation, and the effective information in vehicles is of great significance to vehicle identification. With the traffic system on the vehicle identification technology requirements are getting higher and higher, the vehicle as an important type of vehicle information, because it should not be removed, difficult to change and other features for vehicle identification provides an important method. The current vehicle identification recognition (VLR) is mostly used to extract the characteristics of the method of classification, which for complex classification of its generalization ability to be some constraints, if the use of depth learning technology, you need a lot of training samples. In this paper, the method of convolution neural network based on transfer learning can solve this problem effectively, and it has important practical application value in the task of vehicle mark recognition.

  1. Structured Kernel Dictionary Learning with Correlation Constraint for Object Recognition.

    Science.gov (United States)

    Wang, Zhengjue; Wang, Yinghua; Liu, Hongwei; Zhang, Hao

    2017-06-21

    In this paper, we propose a new discriminative non-linear dictionary learning approach, called correlation constrained structured kernel KSVD, for object recognition. The objective function for dictionary learning contains a reconstructive term and a discriminative term. In the reconstructive term, signals are implicitly non-linearly mapped into a space, where a structured kernel dictionary, each sub-dictionary of which lies in the span of the mapped signals from the corresponding class, is established. In the discriminative term, by analyzing the classification mechanism, the correlation constraint is proposed in kernel form, constraining the correlations between different discriminative codes, and restricting the coefficient vectors to be transformed into a feature space, where the features are highly correlated inner-class and nearly independent between-classes. The objective function is optimized by the proposed structured kernel KSVD. During the classification stage, the specific form of the discriminative feature is needless to be known, while the inner product of the discriminative feature with kernel matrix embedded is available, and is suitable for a linear SVM classifier. Experimental results demonstrate that the proposed approach outperforms many state-of-the-art dictionary learning approaches for face, scene and synthetic aperture radar (SAR) vehicle target recognition.

  2. Segmentation of turbo generator and reactor coolant pump vibratory patterns: a syntactic pattern recognition approach

    International Nuclear Information System (INIS)

    Tira, Z.

    1993-02-01

    This study was undertaken in the context of turbogenerator and reactor coolant pump vibration surveillance. Vibration meters are used to monitor equipment condition. An anomaly will modify the signal mean. At the present time, the expert system DIVA, developed to automate diagnosis, requests the operator to identify the nature of the pattern change thus indicated. In order to minimize operator intervention, we have to automate on the one hand classification and on the other hand, detection and segmentation of the patterns. The purpose of this study is to develop a new automatic system for the segmentation and classification of signals. The segmentation is based on syntactic pattern recognition. For the classification, a decision tree is used. The signals to process are the rms values of the vibrations measured on rotating machines. These signals are randomly sampled. All processing is automatic and no a priori statistical knowledge on the signals is required. The segmentation performances are assessed by tests on vibratory signals. (author). 31 figs

  3. Probabilistic Neural Networks for Chemical Sensor Array Pattern Recognition: Comparison Studies, Improvements and Automated Outlier Rejection

    National Research Council Canada - National Science Library

    Shaffer, Ronald E

    1998-01-01

    For application to chemical sensor arrays, the ideal pattern recognition is accurate, fast, simple to train, robust to outliers, has low memory requirements, and has the ability to produce a measure...

  4. Utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information

    Science.gov (United States)

    2009-01-01

    This report describes a study conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information. The study gathered data from a large number of pilots who conduct all type...

  5. Peptide Pattern Recognition for high-throughput protein sequence analysis and clustering

    DEFF Research Database (Denmark)

    Busk, Peter Kamp

    2017-01-01

    Large collections of protein sequences with divergent sequences are tedious to analyze for understanding their phylogenetic or structure-function relation. Peptide Pattern Recognition is an algorithm that was developed to facilitate this task but the previous version does only allow a limited...... number of sequences as input. I implemented Peptide Pattern Recognition as a multithread software designed to handle large numbers of sequences and perform analysis in a reasonable time frame. Benchmarking showed that the new implementation of Peptide Pattern Recognition is twenty times faster than...... the previous implementation on a small protein collection with 673 MAP kinase sequences. In addition, the new implementation could analyze a large protein collection with 48,570 Glycosyl Transferase family 20 sequences without reaching its upper limit on a desktop computer. Peptide Pattern Recognition...

  6. Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition

    CERN Document Server

    Melin, Patricia

    2012-01-01

    This book describes hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful pattern recognition systems. Type-2 fuzzy logic is an extension of traditional type-1 fuzzy logic that enables managing higher levels of uncertainty in complex real world problems, which are of particular importance in the area of pattern recognition. The book is organized in three main parts, each containing a group of chapters built around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which are the basis for achieving intelligent pattern recognition. The second part contains chapters with the main theme of using type-2 fuzzy models and modular neural ne...

  7. A system for learning statistical motion patterns.

    Science.gov (United States)

    Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve

    2006-09-01

    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.

  8. Definition of new 3D invariants. Applications to pattern recognition problems with neural networks

    International Nuclear Information System (INIS)

    Proriol, J.

    1996-01-01

    We propose a definition of new 3D invariants. Usual pattern recognition methods use 2D descriptions of 3D objects, we propose a 2D approximation of the defined 3D invariants which can be used with neural networks to solve pattern recognition problems. We describe some methods to use the 2 D approximants. This work is an extension of previous 3D invariants used to solve some high energy physics problems. (author)

  9. Data Mining and Pattern Recognition Models for Identifying Inherited Diseases: Challenges and Implications

    OpenAIRE

    Iddamalgoda, Lahiru; Das, Partha S.; Aponso, Achala; Sundararajan, Vijayaraghava S.; Suravajhala, Prashanth; Valadi, Jayaraman K.

    2016-01-01

    Data mining and pattern recognition methods reveal interesting findings in genetic studies, especially on how the genetic makeup is associated with inherited diseases. Although researchers have proposed various data mining models for biomedical approaches, there remains a challenge in accurately prioritizing the single nucleotide polymorphisms (SNP) associated with the disease. In this commentary, we review the state-of-art data mining and pattern recognition models for identifying inherited ...

  10. A Digital Liquid State Machine With Biologically Inspired Learning and Its Application to Speech Recognition.

    Science.gov (United States)

    Zhang, Yong; Li, Peng; Jin, Yingyezhe; Choe, Yoonsuck

    2015-11-01

    This paper presents a bioinspired digital liquid-state machine (LSM) for low-power very-large-scale-integration (VLSI)-based machine learning applications. To the best of the authors' knowledge, this is the first work that employs a bioinspired spike-based learning algorithm for the LSM. With the proposed online learning, the LSM extracts information from input patterns on the fly without needing intermediate data storage as required in offline learning methods such as ridge regression. The proposed learning rule is local such that each synaptic weight update is based only upon the firing activities of the corresponding presynaptic and postsynaptic neurons without incurring global communications across the neural network. Compared with the backpropagation-based learning, the locality of computation in the proposed approach lends itself to efficient parallel VLSI implementation. We use subsets of the TI46 speech corpus to benchmark the bioinspired digital LSM. To reduce the complexity of the spiking neural network model without performance degradation for speech recognition, we study the impacts of synaptic models on the fading memory of the reservoir and hence the network performance. Moreover, we examine the tradeoffs between synaptic weight resolution, reservoir size, and recognition performance and present techniques to further reduce the overhead of hardware implementation. Our simulation results show that in terms of isolated word recognition evaluated using the TI46 speech corpus, the proposed digital LSM rivals the state-of-the-art hidden Markov-model-based recognizer Sphinx-4 and outperforms all other reported recognizers including the ones that are based upon the LSM or neural networks.

  11. A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning

    DEFF Research Database (Denmark)

    Fraccaro, Marco; Kamronn, Simon Due; Paquet, Ulrich

    2017-01-01

    This paper takes a step towards temporal reasoning in a dynamically changing video, not in the pixel space that constitutes its frames, but in a latent space that describes the non-linear dynamics of the objects in its world. We introduce the Kalman variational auto-encoder, a framework...... for unsupervised learning of sequential data that disentangles two latent representations: an object’s representation, coming from a recognition model, and a latent state describing its dynamics. As a result, the evolution of the world can be imagined and missing data imputed, both without the need to generate...

  12. Gender recognition using local binary pattern and Naive Bayes ...

    African Journals Online (AJOL)

    Automatic gender classification has many important applications, for example, intelligent user interface, surveillance, identity authentication, access control and human-computer interaction amongst others. Gender ... The system can be employed for use in scenarios where real time gender recognition is required.

  13. Pattern Recognition Methods and Features Selection for Speech Emotion Recognition System.

    Science.gov (United States)

    Partila, Pavol; Voznak, Miroslav; Tovarek, Jaromir

    2015-01-01

    The impact of the classification method and features selection for the speech emotion recognition accuracy is discussed in this paper. Selecting the correct parameters in combination with the classifier is an important part of reducing the complexity of system computing. This step is necessary especially for systems that will be deployed in real-time applications. The reason for the development and improvement of speech emotion recognition systems is wide usability in nowadays automatic voice controlled systems. Berlin database of emotional recordings was used in this experiment. Classification accuracy of artificial neural networks, k-nearest neighbours, and Gaussian mixture model is measured considering the selection of prosodic, spectral, and voice quality features. The purpose was to find an optimal combination of methods and group of features for stress detection in human speech. The research contribution lies in the design of the speech emotion recognition system due to its accuracy and efficiency.

  14. Pattern Recognition Methods and Features Selection for Speech Emotion Recognition System

    Directory of Open Access Journals (Sweden)

    Pavol Partila

    2015-01-01

    Full Text Available The impact of the classification method and features selection for the speech emotion recognition accuracy is discussed in this paper. Selecting the correct parameters in combination with the classifier is an important part of reducing the complexity of system computing. This step is necessary especially for systems that will be deployed in real-time applications. The reason for the development and improvement of speech emotion recognition systems is wide usability in nowadays automatic voice controlled systems. Berlin database of emotional recordings was used in this experiment. Classification accuracy of artificial neural networks, k-nearest neighbours, and Gaussian mixture model is measured considering the selection of prosodic, spectral, and voice quality features. The purpose was to find an optimal combination of methods and group of features for stress detection in human speech. The research contribution lies in the design of the speech emotion recognition system due to its accuracy and efficiency.

  15. Learning from correlated patterns by simple perceptrons

    Energy Technology Data Exchange (ETDEWEB)

    Shinzato, Takashi; Kabashima, Yoshiyuki [Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 226-8502 (Japan)], E-mail: shinzato@sp.dis.titech.ac.jp, E-mail: kaba@dis.titech.ac.jp

    2009-01-09

    Learning behavior of simple perceptrons is analyzed for a teacher-student scenario in which output labels are provided by a teacher network for a set of possibly correlated input patterns, and such that the teacher and student networks are of the same type. Our main concern is the effect of statistical correlations among the input patterns on learning performance. For this purpose, we extend to the teacher-student scenario a methodology for analyzing randomly labeled patterns recently developed in Shinzato and Kabashima 2008 J. Phys. A: Math. Theor. 41 324013. This methodology is used for analyzing situations in which orthogonality of the input patterns is enhanced in order to optimize the learning performance.

  16. Learning from correlated patterns by simple perceptrons

    Science.gov (United States)

    Shinzato, Takashi; Kabashima, Yoshiyuki

    2009-01-01

    Learning behavior of simple perceptrons is analyzed for a teacher-student scenario in which output labels are provided by a teacher network for a set of possibly correlated input patterns, and such that the teacher and student networks are of the same type. Our main concern is the effect of statistical correlations among the input patterns on learning performance. For this purpose, we extend to the teacher-student scenario a methodology for analyzing randomly labeled patterns recently developed in Shinzato and Kabashima 2008 J. Phys. A: Math. Theor. 41 324013. This methodology is used for analyzing situations in which orthogonality of the input patterns is enhanced in order to optimize the learning performance.

  17. Learning from correlated patterns by simple perceptrons

    International Nuclear Information System (INIS)

    Shinzato, Takashi; Kabashima, Yoshiyuki

    2009-01-01

    Learning behavior of simple perceptrons is analyzed for a teacher-student scenario in which output labels are provided by a teacher network for a set of possibly correlated input patterns, and such that the teacher and student networks are of the same type. Our main concern is the effect of statistical correlations among the input patterns on learning performance. For this purpose, we extend to the teacher-student scenario a methodology for analyzing randomly labeled patterns recently developed in Shinzato and Kabashima 2008 J. Phys. A: Math. Theor. 41 324013. This methodology is used for analyzing situations in which orthogonality of the input patterns is enhanced in order to optimize the learning performance

  18. Facial Expression Recognition of Various Internal States via Manifold Learning

    Institute of Scientific and Technical Information of China (English)

    Young-Suk Shin

    2009-01-01

    Emotions are becoming increasingly important in human-centered interaction architectures. Recognition of facial expressions, which are central to human-computer interactions, seems natural and desirable. However, facial expressions include mixed emotions, continuous rather than discrete, which vary from moment to moment. This paper represents a novel method of recognizing facial expressions of various internal states via manifold learning, to achieve the aim of humancentered interaction studies. A critical review of widely used emotion models is described, then, facial expression features of various internal states via the locally linear embedding (LLE) are extracted. The recognition of facial expressions is created with the pleasure-displeasure and arousal-sleep dimensions in a two-dimensional model of emotion. The recognition result of various internal state expressions that mapped to the embedding space via the LLE algorithm can effectively represent the structural nature of the two-dimensional model of emotion. Therefore our research has established that the relationship between facial expressions of various internal states can be elaborated in the two-dimensional model of emotion, via the locally linear embedding algorithm.

  19. Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

    Directory of Open Access Journals (Sweden)

    Shouyi Yin

    2015-01-01

    Full Text Available Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation Invariant Binary Pattern based feature in the affine and Gaussian space is proposed to reduce the time of traffic sign detection and achieve robust traffic sign detection in terms of scale, rotation, and illumination. Third, the techniques of ANN (Artificial Neutral Network based feature dimension reduction and classification are designed to reduce the traffic sign recognition time. Compared with the current work, the experimental results in the public datasets show that this work achieves robustness in traffic sign recognition with comparable recognition accuracy and faster processing speed, including training speed and recognition speed.

  20. Gait pattern recognition in cerebral palsy patients using neural network modelling

    International Nuclear Information System (INIS)

    Muhammad, J.; Gibbs, S.; Abboud, R.; Anand, S.

    2015-01-01

    Interpretation of gait data obtained from modern 3D gait analysis is a challenging and time consuming task. The aim of this study was to create neural network models which can recognise the gait patterns from pre- and post-treatment and the normal ones. Neural network is a method which works on the principle of learning from experience and then uses the obtained knowledge to predict the unknown. Methods: Twenty-eight patients with cerebral palsy were recruited as subjects whose gait was analysed in pre- and post-treatment. A group of twenty-six normal subjects also participated in this study as control group. All subjects gait was analysed using Vicon Nexus to obtain the gait parameters and kinetic and kinematic parameters of hip, knee and ankle joints in three planes of both limbs. The gait data was used as input to create neural network models. A total of approximately 300 trials were split into 70% and 30% to train and test the models, respectively. Different models were built using different parameters. The gait was categorised as three patterns, i.e., normal, pre- and post-treatments. Result: The results showed that the models using all parameters or using the joint angles and moments could predict the gait patterns with approximately 95% accuracy. Some of the models e.g., the models using joint power and moments, had lower rate in recognition of gait patterns with approximately 70-90% successful ratio. Conclusion: Neural network model can be used in clinical practice to recognise the gait pattern for cerebral palsy patients. (author)

  1. Using pattern recognition to automatically localize reflection hyperbolas in data from ground penetrating radar

    Science.gov (United States)

    Maas, Christian; Schmalzl, Jörg

    2013-08-01

    Ground Penetrating Radar (GPR) is used for the localization of supply lines, land mines, pipes and many other buried objects. These objects can be recognized in the recorded data as reflection hyperbolas with a typical shape depending on depth and material of the object and the surrounding material. To obtain the parameters, the shape of the hyperbola has to be fitted. In the last years several methods were developed to automate this task during post-processing. In this paper we show another approach for the automated localization of reflection hyperbolas in GPR data by solving a pattern recognition problem in grayscale images. In contrast to other methods our detection program is also able to immediately mark potential objects in real-time. For this task we use a version of the Viola-Jones learning algorithm, which is part of the open source library "OpenCV". This algorithm was initially developed for face recognition, but can be adapted to any other simple shape. In our program it is used to narrow down the location of reflection hyperbolas to certain areas in the GPR data. In order to extract the exact location and the velocity of the hyperbolas we apply a simple Hough Transform for hyperbolas. Because the Viola-Jones Algorithm reduces the input for the computational expensive Hough Transform dramatically the detection system can also be implemented on normal field computers, so on-site application is possible. The developed detection system shows promising results and detection rates in unprocessed radargrams. In order to improve the detection results and apply the program to noisy radar images more data of different GPR systems as input for the learning algorithm is necessary.

  2. Yes/No Versus Forced-Choice Recognition Memory in Mild Cognitive Impairment and Alzheimer’s Disease: Patterns of Impairment and Associations with Dementia Severity

    Science.gov (United States)

    Clark, Lindsay R.; Stricker, Nikki H.; Libon, David J.; Delano-Wood, Lisa; Salmon, David P.; Delis, Dean C.; Bondi, Mark W.

    2012-01-01

    Memory tests are sensitive to early identification of Alzheimer’s disease (AD) but less useful as the disease advances. However, assessing particular types of recognition memory may better characterize dementia severity in later stages of AD. We sought to examine patterns of recognition memory deficits in individuals with AD and mild cognitive impairment (MCI). Memory performance and global cognition data were collected from participants with AD (n=37), MCI (n=37), and cognitively intact older adults (normal controls, NC; n=35). One-way analyses of variance (ANOVAs) examined differences between groups on yes/no and forced-choice recognition measures. Individuals with amnestic MCI performed worse than NC and nonamnestic MCI participants on yes/no recognition, but were comparable on forced-choice recognition. AD patients were more impaired across yes/no and forced-choice recognition tasks. Individuals with mild AD (≥120 Dementia Rating Scale, DRS) performed better than those with moderate-to-severe AD (recognition, but were equally impaired on yes/no recognition. There were differences in the relationships between learning, recall, and recognition performance across groups. Although yes/no recognition testing may be sensitive to MCI, forced-choice procedures may provide utility in assessing severity of anterograde amnesia in later stages of AD. Implications for assessment of insufficient effort and malingering are also discussed. PMID:23030301

  3. Dentate gyrus supports slope recognition memory, shades of grey-context pattern separation and recognition memory, and CA3 supports pattern completion for object memory.

    Science.gov (United States)

    Kesner, Raymond P; Kirk, Ryan A; Yu, Zhenghui; Polansky, Caitlin; Musso, Nick D

    2016-03-01

    In order to examine the role of the dorsal dentate gyrus (dDG) in slope (vertical space) recognition and possible pattern separation, various slope (vertical space) degrees were used in a novel exploratory paradigm to measure novelty detection for changes in slope (vertical space) recognition memory and slope memory pattern separation in Experiment 1. The results of the experiment indicate that control rats displayed a slope recognition memory function with a pattern separation process for slope memory that is dependent upon the magnitude of change in slope between study and test phases. In contrast, the dDG lesioned rats displayed an impairment in slope recognition memory, though because there was no significant interaction between the two groups and slope memory, a reliable pattern separation impairment for slope could not be firmly established in the DG lesioned rats. In Experiment 2, in order to determine whether, the dDG plays a role in shades of grey spatial context recognition and possible pattern separation, shades of grey were used in a novel exploratory paradigm to measure novelty detection for changes in the shades of grey context environment. The results of the experiment indicate that control rats displayed a shades of grey-context pattern separation effect across levels of separation of context (shades of grey). In contrast, the DG lesioned rats displayed a significant interaction between the two groups and levels of shades of grey suggesting impairment in a pattern separation function for levels of shades of grey. In Experiment 3 in order to determine whether the dorsal CA3 (dCA3) plays a role in object pattern completion, a new task requiring less training and using a choice that was based on choosing the correct set of objects on a two-choice discrimination task was used. The results indicated that control rats displayed a pattern completion function based on the availability of one, two, three or four cues. In contrast, the dCA3 lesioned rats

  4. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Wenjia Liu

    2013-01-01

    Full Text Available This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate.

  5. Investigation of Time Series Representations and Similarity Measures for Structural Damage Pattern Recognition

    Science.gov (United States)

    Swartz, R. Andrew

    2013-01-01

    This paper investigates the time series representation methods and similarity measures for sensor data feature extraction and structural damage pattern recognition. Both model-based time series representation and dimensionality reduction methods are studied to compare the effectiveness of feature extraction for damage pattern recognition. The evaluation of feature extraction methods is performed by examining the separation of feature vectors among different damage patterns and the pattern recognition success rate. In addition, the impact of similarity measures on the pattern recognition success rate and the metrics for damage localization are also investigated. The test data used in this study are from the System Identification to Monitor Civil Engineering Structures (SIMCES) Z24 Bridge damage detection tests, a rigorous instrumentation campaign that recorded the dynamic performance of a concrete box-girder bridge under progressively increasing damage scenarios. A number of progressive damage test case datasets and damage test data with different damage modalities are used. The simulation results show that both time series representation methods and similarity measures have significant impact on the pattern recognition success rate. PMID:24191136

  6. Deep generative learning of location-invariant visual word recognition.

    Science.gov (United States)

    Di Bono, Maria Grazia; Zorzi, Marco

    2013-01-01

    It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters) from their eye-centered (i.e., retinal) locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity) was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Word-tuning and location-invariance were found at the level of single neurons, but there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words-which was the model's learning objective

  7. Deep generative learning of location-invariant visual word recognition

    Directory of Open Access Journals (Sweden)

    Maria Grazia eDi Bono

    2013-09-01

    Full Text Available It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters from their eye-centred (i.e., retinal locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Conversely, there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words – which was the model’s learning objective – is largely based on letter-level information.

  8. Deep generative learning of location-invariant visual word recognition

    Science.gov (United States)

    Di Bono, Maria Grazia; Zorzi, Marco

    2013-01-01

    It is widely believed that orthographic processing implies an approximate, flexible coding of letter position, as shown by relative-position and transposition priming effects in visual word recognition. These findings have inspired alternative proposals about the representation of letter position, ranging from noisy coding across the ordinal positions to relative position coding based on open bigrams. This debate can be cast within the broader problem of learning location-invariant representations of written words, that is, a coding scheme abstracting the identity and position of letters (and combinations of letters) from their eye-centered (i.e., retinal) locations. We asked whether location-invariance would emerge from deep unsupervised learning on letter strings and what type of intermediate coding would emerge in the resulting hierarchical generative model. We trained a deep network with three hidden layers on an artificial dataset of letter strings presented at five possible retinal locations. Though word-level information (i.e., word identity) was never provided to the network during training, linear decoding from the activity of the deepest hidden layer yielded near-perfect accuracy in location-invariant word recognition. Conversely, decoding from lower layers yielded a large number of transposition errors. Analyses of emergent internal representations showed that word selectivity and location invariance increased as a function of layer depth. Word-tuning and location-invariance were found at the level of single neurons, but there was no evidence for bigram coding. Finally, the distributed internal representation of words at the deepest layer showed higher similarity to the representation elicited by the two exterior letters than by other combinations of two contiguous letters, in agreement with the hypothesis that word edges have special status. These results reveal that the efficient coding of written words—which was the model's learning objective

  9. Fingerprint Recognition using Fuzzy Logic with Triangular Pattern Template

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar

    2006-01-01

    A fingerprint is a pattern of ridges and valleys that exist on the surface of the finger. The uniqueness of a fingerprint is typically determined by the overall pattern of ridges and valleys as well as the local ridge structures e.g., a ridge bifurcation or a ridge ending, which are called minutiae...

  10. Application of data clustering to railway delay pattern recognition

    DEFF Research Database (Denmark)

    Cerreto, Fabrizio; Nielsen, Bo Friis; Nielsen, Otto Anker

    2018-01-01

    K-means clustering is employed to identify recurrent delay patterns on a high traffic railway line north of Copenhagen, Denmark. The clusters identify behavioral patterns in the very large (“big data”) data sets generated automatically and continuously by the railway signal system. The results re...

  11. A Global Online Handwriting Recognition Approach Based on Frequent Patterns

    Directory of Open Access Journals (Sweden)

    C. Gmati

    2018-06-01

    Full Text Available In this article, the handwriting signals are represented based on geometric and spatio-temporal characteristics to increase the feature vectors relevance of each object. The main goal was to extract features in the form of a numeric vector based on the extraction of frequent patterns. We used two types of frequent motifs (closed frequent patterns and maximal frequent patterns that can represent handwritten characters pertinently. These common features patterns are generated from a raw data transformation method to achieve high relevance. A database of words consisting of two different letters was created. The proposed application gives promising results and highlights the advantages that frequent pattern extraction algorithms can achieve, as well as the central role played by the “minimum threshold” parameter in the overall description of the characters.

  12. Innate pattern recognition and categorization in a jumping spider.

    Directory of Open Access Journals (Sweden)

    Yinnon Dolev

    Full Text Available The East African jumping spider Evarcha culicivora feeds indirectly on vertebrate blood by preferentially preying upon blood-fed Anopheles mosquitoes, the vectors of human malaria1, using the distinct resting posture and engorged abdomen characteristic of these specific prey as key elements for their recognition. To understand perceptual categorization of objects by these spiders, we investigated their predatory behavior toward different digital stimuli--abstract 'stick figure' representations of Anopheles constructed solely by known key identification elements, disarranged versions of these, as well as non-prey items and detailed images of alternative prey. We hypothesized that the abstract images representing Anopheles would be perceived as potential prey, and would be preferred to those of non-preferred prey. Spiders perceived the abstract stick figures of Anopheles specifically as their preferred prey, attacking them significantly more often than non-preferred prey, even when the comprising elements of the Anopheles stick figures were disarranged and disconnected from each other. However, if the relative angles between the elements of the disconnected stick figures of Anopheles were altered, the otherwise identical set of elements was no longer perceived as prey. These data show that E. culicivora is capable of making discriminations based on abstract concepts, such as the hypothetical angle formed by discontinuous elements. It is this inter-element angle rather than resting posture that is important for correct identification of Anopheles. Our results provide a glimpse of the underlying processes of object recognition in animals with minute brains, and suggest that these spiders use a local processing approach for object recognition, rather than a holistic or global approach. This study provides an excellent basis for a comparative analysis on feature extraction and detection by animals as diverse as bees and mammals.

  13. Innate Pattern Recognition and Categorization in a Jumping Spider

    Science.gov (United States)

    Dolev, Yinnon; Nelson, Ximena J.

    2014-01-01

    The East African jumping spider Evarcha culicivora feeds indirectly on vertebrate blood by preferentially preying upon blood-fed Anopheles mosquitoes, the vectors of human malaria1, using the distinct resting posture and engorged abdomen characteristic of these specific prey as key elements for their recognition. To understand perceptual categorization of objects by these spiders, we investigated their predatory behavior toward different digital stimuli - abstract ‘stick figure’ representations of Anopheles constructed solely by known key identification elements, disarranged versions of these, as well as non-prey items and detailed images of alternative prey. We hypothesized that the abstract images representing Anopheles would be perceived as potential prey, and would be preferred to those of non-preferred prey. Spiders perceived the abstract stick figures of Anopheles specifically as their preferred prey, attacking them significantly more often than non-preferred prey, even when the comprising elements of the Anopheles stick figures were disarranged and disconnected from each other. However, if the relative angles between the elements of the disconnected stick figures of Anopheles were altered, the otherwise identical set of elements was no longer perceived as prey. These data show that E. culicivora is capable of making discriminations based on abstract concepts, such as the hypothetical angle formed by discontinuous elements. It is this inter-element angle rather than resting posture that is important for correct identification of Anopheles. Our results provide a glimpse of the underlying processes of object recognition in animals with minute brains, and suggest that these spiders use a local processing approach for object recognition, rather than a holistic or global approach. This study provides an excellent basis for a comparative analysis on feature extraction and detection by animals as diverse as bees and mammals. PMID:24893306

  14. Structural pattern recognition methods based on string comparison for fusion databases

    International Nuclear Information System (INIS)

    Dormido-Canto, S.; Farias, G.; Dormido, R.; Vega, J.; Sanchez, J.; Duro, N.; Vargas, H.; Ratta, G.; Pereira, A.; Portas, A.

    2008-01-01

    Databases for fusion experiments are designed to store several million waveforms. Temporal evolution signals show the same patterns under the same plasma conditions and, therefore, pattern recognition techniques allow the identification of similar plasma behaviours. This article is focused on the comparison of structural pattern recognition methods. A pattern can be composed of simpler sub-patterns, where the most elementary sub-patterns are known as primitives. Selection of primitives is an essential issue in structural pattern recognition methods, because they determine what types of structural components can be constructed. However, it should be noted that there is not a general solution to extract structural features (primitives) from data. So, four different ways to compute the primitives of plasma waveforms are compared: (1) constant length primitives, (2) adaptive length primitives, (3) concavity method and (4) concavity method for noisy signals. Each method defines a code alphabet and, in this way, the pattern recognition problem is carried out via string comparisons. Results of the four methods with the TJ-II stellarator databases will be discussed

  15. Interfamily transfer of a plant pattern-recognition receptor confers broad-spectrum bacterial resistance

    NARCIS (Netherlands)

    Lacombe, S.; Rougon-Cardoso, A.; Sherwood, E.; Peeters, N.; Dahlbeck, D.; Esse, van H.P.; Smoker, M.; Rallapalli, G.; Thomma, B.P.H.J.; Staskawicz, B.; Jones, J.D.G.; Zipfel, C.

    2010-01-01

    Plant diseases cause massive losses in agriculture. Increasing the natural defenses of plants may reduce the impact of phytopathogens on agricultural productivity. Pattern-recognition receptors (PRRs) detect microbes by recognizing conserved pathogen-associated molecular patterns (PAMPs)1, 2, 3.

  16. Structural pattern recognition methods based on string comparison for fusion databases

    Energy Technology Data Exchange (ETDEWEB)

    Dormido-Canto, S. [Dpto. Informatica y Automatica - UNED 28040, Madrid (Spain)], E-mail: sebas@dia.uned.es; Farias, G.; Dormido, R. [Dpto. Informatica y Automatica - UNED 28040, Madrid (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, 28040, Madrid (Spain); Sanchez, J.; Duro, N.; Vargas, H. [Dpto. Informatica y Automatica - UNED 28040, Madrid (Spain); Ratta, G.; Pereira, A.; Portas, A. [Asociacion EURATOM/CIEMAT para Fusion, 28040, Madrid (Spain)

    2008-04-15

    Databases for fusion experiments are designed to store several million waveforms. Temporal evolution signals show the same patterns under the same plasma conditions and, therefore, pattern recognition techniques allow the identification of similar plasma behaviours. This article is focused on the comparison of structural pattern recognition methods. A pattern can be composed of simpler sub-patterns, where the most elementary sub-patterns are known as primitives. Selection of primitives is an essential issue in structural pattern recognition methods, because they determine what types of structural components can be constructed. However, it should be noted that there is not a general solution to extract structural features (primitives) from data. So, four different ways to compute the primitives of plasma waveforms are compared: (1) constant length primitives, (2) adaptive length primitives, (3) concavity method and (4) concavity method for noisy signals. Each method defines a code alphabet and, in this way, the pattern recognition problem is carried out via string comparisons. Results of the four methods with the TJ-II stellarator databases will be discussed.

  17. Neural Network Based Recognition of Signal Patterns in Application to Automatic Testing of Rails

    Directory of Open Access Journals (Sweden)

    Tomasz Ciszewski

    2006-01-01

    Full Text Available The paper describes the application of neural network for recognition of signal patterns in measuring data gathered by the railroad ultrasound testing car. Digital conversion of the measuring signal allows to store and process large quantities of data. The elaboration of smart, effective and automatic procedures recognizing the obtained patterns on the basisof measured signal amplitude has been presented. The test shows only two classes of pattern recognition. In authors’ opinion if we deliver big enough quantity of training data, presented method is applicable to a system that recognizes many classes.

  18. Combining Biometric Fractal Pattern and Particle Swarm Optimization-Based Classifier for Fingerprint Recognition

    Directory of Open Access Journals (Sweden)

    Chia-Hung Lin

    2010-01-01

    Full Text Available This paper proposes combining the biometric fractal pattern and particle swarm optimization (PSO-based classifier for fingerprint recognition. Fingerprints have arch, loop, whorl, and accidental morphologies, and embed singular points, resulting in the establishment of fingerprint individuality. An automatic fingerprint identification system consists of two stages: digital image processing (DIP and pattern recognition. DIP is used to convert to binary images, refine out noise, and locate the reference point. For binary images, Katz's algorithm is employed to estimate the fractal dimension (FD from a two-dimensional (2D image. Biometric features are extracted as fractal patterns using different FDs. Probabilistic neural network (PNN as a classifier performs to compare the fractal patterns among the small-scale database. A PSO algorithm is used to tune the optimal parameters and heighten the accuracy. For 30 subjects in the laboratory, the proposed classifier demonstrates greater efficiency and higher accuracy in fingerprint recognition.

  19. Finger Vein Recognition Using Local Line Binary Pattern

    Directory of Open Access Journals (Sweden)

    Bakhtiar Affendi Rosdi

    2011-11-01

    Full Text Available In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP.

  20. Finger vein recognition using local line binary pattern.

    Science.gov (United States)

    Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin

    2011-01-01

    In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP).

  1. Finger Vein Recognition Using Local Line Binary Pattern

    Science.gov (United States)

    Rosdi, Bakhtiar Affendi; Shing, Chai Wuh; Suandi, Shahrel Azmin

    2011-01-01

    In this paper, a personal verification method using finger vein is presented. Finger vein can be considered more secured compared to other hands based biometric traits such as fingerprint and palm print because the features are inside the human body. In the proposed method, a new texture descriptor called local line binary pattern (LLBP) is utilized as feature extraction technique. The neighbourhood shape in LLBP is a straight line, unlike in local binary pattern (LBP) which is a square shape. Experimental results show that the proposed method using LLBP has better performance than the previous methods using LBP and local derivative pattern (LDP). PMID:22247670

  2. Recognition of distinctive patterns of gallium-67 distribution in sarcoidosis

    International Nuclear Information System (INIS)

    Sulavik, S.B.; Spencer, R.P.; Weed, D.A.; Shapiro, H.R.; Shiue, S.T.; Castriotta, R.J.

    1990-01-01

    Assessment of gallium-67 ( 67 Ga) uptake in the salivary and lacrimal glands and intrathoracic lymph nodes was made in 605 consecutive patients including 65 with sarcoidosis. A distinctive intrathoracic lymph node 67 Ga uptake pattern, resembling the Greek letter lambda, was observed only in sarcoidosis (72%). Symmetrical lacrimal gland and parotid gland 67 Ga uptake (panda appearance) was noted in 79% of sarcoidosis patients. A simultaneous lambda and panda pattern (62%) or a panda appearance with radiographic bilateral, symmetrical, hilar lymphadenopathy (6%) was present only in sarcoidosis patients. The presence of either of these patterns was particularly prevalent in roentgen Stages I (80%) or II (74%). We conclude that simultaneous (a) lambda and panda images, or (b) a panda image with bilateral symmetrical hilar lymphadenopathy on chest X-ray represent distinctive patterns which are highly specific for sarcoidosis, and may obviate the need for invasive diagnostic procedures

  3. A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory system

    Science.gov (United States)

    Kaplan, Bernhard A.; Lansner, Anders

    2014-01-01

    Olfactory sensory information passes through several processing stages before an odor percept emerges. The question how the olfactory system learns to create odor representations linking those different levels and how it learns to connect and discriminate between them is largely unresolved. We present a large-scale network model with single and multi-compartmental Hodgkin–Huxley type model neurons representing olfactory receptor neurons (ORNs) in the epithelium, periglomerular cells, mitral/tufted cells and granule cells in the olfactory bulb (OB), and three types of cortical cells in the piriform cortex (PC). Odor patterns are calculated based on affinities between ORNs and odor stimuli derived from physico-chemical descriptors of behaviorally relevant real-world odorants. The properties of ORNs were tuned to show saturated response curves with increasing concentration as seen in experiments. On the level of the OB we explored the possibility of using a fuzzy concentration interval code, which was implemented through dendro-dendritic inhibition leading to winner-take-all like dynamics between mitral/tufted cells belonging to the same glomerulus. The connectivity from mitral/tufted cells to PC neurons was self-organized from a mutual information measure and by using a competitive Hebbian–Bayesian learning algorithm based on the response patterns of mitral/tufted cells to different odors yielding a distributed feed-forward projection to the PC. The PC was implemented as a modular attractor network with a recurrent connectivity that was likewise organized through Hebbian–Bayesian learning. We demonstrate the functionality of the model in a one-sniff-learning and recognition task on a set of 50 odorants. Furthermore, we study its robustness against noise on the receptor level and its ability to perform concentration invariant odor recognition. Moreover, we investigate the pattern completion capabilities of the system and rivalry dynamics for odor mixtures. PMID

  4. Sub-pattern based multi-manifold discriminant analysis for face recognition

    Science.gov (United States)

    Dai, Jiangyan; Guo, Changlu; Zhou, Wei; Shi, Yanjiao; Cong, Lin; Yi, Yugen

    2018-04-01

    In this paper, we present a Sub-pattern based Multi-manifold Discriminant Analysis (SpMMDA) algorithm for face recognition. Unlike existing Multi-manifold Discriminant Analysis (MMDA) approach which is based on holistic information of face image for recognition, SpMMDA operates on sub-images partitioned from the original face image and then extracts the discriminative local feature from the sub-images separately. Moreover, the structure information of different sub-images from the same face image is considered in the proposed method with the aim of further improve the recognition performance. Extensive experiments on three standard face databases (Extended YaleB, CMU PIE and AR) demonstrate that the proposed method is effective and outperforms some other sub-pattern based face recognition methods.

  5. Sonographic Diagnosis of Tubal Cancer with IOTA Simple Rules Plus Pattern Recognition

    Science.gov (United States)

    Tongsong, Theera; Wanapirak, Chanane; Tantipalakorn, Charuwan; Tinnangwattana, Dangcheewan

    2017-11-26

    Objective: To evaluate diagnostic performance of IOTA simple rules plus pattern recognition in predicting tubal cancer. Methods: Secondary analysis was performed on prospective database of our IOTA project. The patients recruited in the project were those who were scheduled for pelvic surgery due to adnexal masses. The patients underwent ultrasound examinations within 24 hours before surgery. On ultrasound examination, the masses were evaluated using the well-established IOTA simple rules plus pattern recognition (sausage-shaped appearance, incomplete septum, visible ipsilateral ovaries) to predict tubal cancer. The gold standard diagnosis was based on histological findings or operative findings. Results: A total of 482 patients, including 15 cases of tubal cancer, were evaluated by ultrasound preoperatively. The IOTA simple rules plus pattern recognition gave a sensitivity of 86.7% (13 in 15) and specificity of 97.4%. Sausage-shaped appearance was identified in nearly all cases (14 in 15). Incomplete septa and normal ovaries could be identified in 33.3% and 40%, respectively. Conclusion: IOTA simple rules plus pattern recognition is relatively effective in predicting tubal cancer. Thus, we propose the simple scheme in diagnosis of tubal cancer as follows. First of all, the adnexal masses are evaluated with IOTA simple rules. If the B-rules could be applied, tubal cancer is reliably excluded. If the M-rules could be applied or the result is inconclusive, careful delineation of the mass with pattern recognition should be performed. Creative Commons Attribution License

  6. A New Fuzzy Cognitive Map Learning Algorithm for Speech Emotion Recognition

    OpenAIRE

    Zhang, Wei; Zhang, Xueying; Sun, Ying

    2017-01-01

    Selecting an appropriate recognition method is crucial in speech emotion recognition applications. However, the current methods do not consider the relationship between emotions. Thus, in this study, a speech emotion recognition system based on the fuzzy cognitive map (FCM) approach is constructed. Moreover, a new FCM learning algorithm for speech emotion recognition is proposed. This algorithm includes the use of the pleasure-arousal-dominance emotion scale to calculate the weights between e...

  7. Automatic micropropagation of plants--the vision-system: graph rewriting as pattern recognition

    Science.gov (United States)

    Schwanke, Joerg; Megnet, Roland; Jensch, Peter F.

    1993-03-01

    The automation of plant-micropropagation is necessary to produce high amounts of biomass. Plants have to be dissected on particular cutting-points. A vision-system is needed for the recognition of the cutting-points on the plants. With this background, this contribution is directed to the underlying formalism to determine cutting-points on abstract-plant models. We show the usefulness of pattern recognition by graph-rewriting along with some examples in this context.

  8. Towards Real-Time Speech Emotion Recognition for Affective E-Learning

    Science.gov (United States)

    Bahreini, Kiavash; Nadolski, Rob; Westera, Wim

    2016-01-01

    This paper presents the voice emotion recognition part of the FILTWAM framework for real-time emotion recognition in affective e-learning settings. FILTWAM (Framework for Improving Learning Through Webcams And Microphones) intends to offer timely and appropriate online feedback based upon learner's vocal intonations and facial expressions in order…

  9. Morphing Images: A Potential Tool for Teaching Word Recognition to Children with Severe Learning Difficulties

    Science.gov (United States)

    Sheehy, Kieron

    2005-01-01

    Children with severe learning difficulties who fail to begin word recognition can learn to recognise pictures and symbols relatively easily. However, finding an effective means of using pictures to teach word recognition has proved problematic. This research explores the use of morphing software to support the transition from picture to word…

  10. Evaluation and Effectiveness of Pain Recognition and Management Training for Staff Working in Learning Disability Services

    Science.gov (United States)

    Mackey, Ellen; Dodd, Karen

    2011-01-01

    Following Beacroft & Dodd's (2009) audit of pain recognition and management within learning disability services in Surrey, it was recommended that learning disability services should receive training in pain recognition and management. Two hundred and seventy-five services were invited to participate, of which 197 services in Surrey accepted…

  11. Deep learning architecture for recognition of abnormal activities

    Science.gov (United States)

    Khatrouch, Marwa; Gnouma, Mariem; Ejbali, Ridha; Zaied, Mourad

    2018-04-01

    The video surveillance is one of the key areas in computer vision researches. The scientific challenge in this field involves the implementation of automatic systems to obtain detailed information about individuals and groups behaviors. In particular, the detection of abnormal movements of groups or individuals requires a fine analysis of frames in the video stream. In this article, we propose a new method to detect anomalies in crowded scenes. We try to categorize the video in a supervised mode accompanied by unsupervised learning using the principle of the autoencoder. In order to construct an informative concept for the recognition of these behaviors, we use a technique of representation based on the superposition of human silhouettes. The evaluation of the UMN dataset demonstrates the effectiveness of the proposed approach.

  12. Interactions of the humoral pattern recognition molecule PTX3 with the complement system

    DEFF Research Database (Denmark)

    Doni, Andrea; Garlanda, Cecilia; Bottazzi, Barbara

    2012-01-01

    The innate immune system comprises a cellular and a humoral arm. The long pentraxin PTX3 is a fluid phase pattern recognition molecule, which acts as an essential component of the humoral arm of innate immunity. PTX3 has antibody-like properties including interactions with complement components....... PTX3 interacts with C1q, ficolin-1 and ficolin-2 as well as mannose-binding lectin, recognition molecules in the classical and lectin complement pathways. The formation of these heterocomplexes results in cooperative pathogen recognition and complement activation. Interactions with C4b binding protein...

  13. A self-organized learning strategy for object recognition by an embedded line of attraction

    Science.gov (United States)

    Seow, Ming-Jung; Alex, Ann T.; Asari, Vijayan K.

    2012-04-01

    on this observation we developed a self- organizing line attractor, which is capable of generating new lines in the feature space to learn unrecognized patterns. Experiments performed on UMIST pose database and CMU face expression variant database for face recognition have shown that the proposed nonlinear line attractor is able to successfully identify the individuals and it provided better recognition rate when compared to the state of the art face recognition techniques. Experiments on FRGC version 2 database has also provided excellent recognition rate in images captured in complex lighting environments. Experiments performed on the Japanese female face expression database and Essex Grimace database using the self organizing line attractor have also shown successful expression invariant face recognition. These results show that the proposed model is able to create nonlinear manifolds in a multidimensional feature space to distinguish complex patterns.

  14. Human Walking Pattern Recognition Based on KPCA and SVM with Ground Reflex Pressure Signal

    Directory of Open Access Journals (Sweden)

    Zhaoqin Peng

    2013-01-01

    Full Text Available Algorithms based on the ground reflex pressure (GRF signal obtained from a pair of sensing shoes for human walking pattern recognition were investigated. The dimensionality reduction algorithms based on principal component analysis (PCA and kernel principal component analysis (KPCA for walking pattern data compression were studied in order to obtain higher recognition speed. Classifiers based on support vector machine (SVM, SVM-PCA, and SVM-KPCA were designed, and the classification performances of these three kinds of algorithms were compared using data collected from a person who was wearing the sensing shoes. Experimental results showed that the algorithm fusing SVM and KPCA had better recognition performance than the other two methods. Experimental outcomes also confirmed that the sensing shoes developed in this paper can be employed for automatically recognizing human walking pattern in unlimited environments which demonstrated the potential application in the control of exoskeleton robots.

  15. The Role of Verbal Instruction and Visual Guidance in Training Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Jamie S. North

    2017-09-01

    Full Text Available We used a novel approach to examine whether it is possible to improve the perceptual–cognitive skill of pattern recognition using a video-based training intervention. Moreover, we investigated whether any improvements in pattern recognition transfer to an improved ability to make anticipation judgments. Finally, we compared the relative effectiveness of verbal and visual guidance interventions compared to a group that merely viewed the same sequences without any intervention and a control group that only completed pre- and post-tests. We found a significant effect for time of testing. Participants were more sensitive in their ability to perceive patterns and distinguish between novel and familiar sequences at post- compared to pre-test. However, this improvement was not influenced by the nature of the intervention, despite some trends in the data. An analysis of anticipation accuracy showed no change from pre- to post-test following the pattern recognition training intervention, suggesting that the link between pattern perception and anticipation may not be strong. We present a series of recommendations for scientists and practitioners when employing training methods to improve pattern recognition and anticipation.

  16. Exploring Spatio-temporal Dynamics of Cellular Automata for Pattern Recognition in Networks

    Science.gov (United States)

    Miranda, Gisele Helena Barboni; Machicao, Jeaneth; Bruno, Odemir Martinez

    2016-11-01

    Network science is an interdisciplinary field which provides an integrative approach for the study of complex systems. In recent years, network modeling has been used for the study of emergent phenomena in many real-world applications. Pattern recognition in networks has been drawing attention to the importance of network characterization, which may lead to understanding the topological properties that are related to the network model. In this paper, the Life-Like Network Automata (LLNA) method is introduced, which was designed for pattern recognition in networks. LLNA uses the network topology as a tessellation of Cellular Automata (CA), whose dynamics produces a spatio-temporal pattern used to extract the feature vector for network characterization. The method was evaluated using synthetic and real-world networks. In the latter, three pattern recognition applications were used: (i) identifying organisms from distinct domains of life through their metabolic networks, (ii) identifying online social networks and (iii) classifying stomata distribution patterns varying according to different lighting conditions. LLNA was compared to structural measurements and surpasses them in real-world applications, achieving improvement in the classification rate as high as 23%, 4% and 7% respectively. Therefore, the proposed method is a good choice for pattern recognition applications using networks and demonstrates potential for general applicability.

  17. Landscape metrics for three-dimension urban pattern recognition

    Science.gov (United States)

    Liu, M.; Hu, Y.; Zhang, W.; Li, C.

    2017-12-01

    Understanding how landscape pattern determines population or ecosystem dynamics is crucial for managing our landscapes. Urban areas are becoming increasingly dominant social-ecological systems, so it is important to understand patterns of urbanization. Most studies of urban landscape pattern examine land-use maps in two dimensions because the acquisition of 3-dimensional information is difficult. We used Brista software based on Quickbird images and aerial photos to interpret the height of buildings, thus incorporating a 3-dimensional approach. We estimated the feasibility and accuracy of this approach. A total of 164,345 buildings in the Liaoning central urban agglomeration of China, which included seven cities, were measured. Twelve landscape metrics were proposed or chosen to describe the urban landscape patterns in 2- and 3-dimensional scales. The ecological and social meaning of landscape metrics were analyzed with multiple correlation analysis. The results showed that classification accuracy compared with field surveys was 87.6%, which means this method for interpreting building height was acceptable. The metrics effectively reflected the urban architecture in relation to number of buildings, area, height, 3-D shape and diversity aspects. We were able to describe the urban characteristics of each city with these metrics. The metrics also captured ecological and social meanings. The proposed landscape metrics provided a new method for urban landscape analysis in three dimensions.

  18. Automatic SIMD parallelization of embedded applications based on pattern recognition

    NARCIS (Netherlands)

    Manniesing, R.; Karkowski, I.P.; Corporaal, H.

    2000-01-01

    This paper investigates the potential for automatic mapping of typical embedded applications to architectures with multimedia instruction set extensions. For this purpose a (pattern matching based) code transformation engine is used, which involves a three-step process of matching, condition

  19. Pattern Recognition for Reliability Assessment of Water Distribution Networks

    NARCIS (Netherlands)

    Trifunovi?, N.

    2012-01-01

    The study presented in this manuscript investigates the patterns that describe reliability of water distribution networks focusing to the node connectivity, energy balance, and economics of construction, operation and maintenance. A number of measures to evaluate the network resilience has been

  20. Recognition of periodic behavioral patterns from streaming mobility data

    NARCIS (Netherlands)

    Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J.M.; Stojmenovic, Ivan; Cheng, Zixue; Guo, Song

    2014-01-01

    Ubiquitous location-aware sensing devices have facilitated collection of large volumes of mobility data streams from moving entities such as people and animals, among others. Extraction of various types of periodic behavioral patterns hidden in such large volume of mobility data helps in

  1. Determination of ocular torsion by means of automatic pattern recognition

    NARCIS (Netherlands)

    Groen, E.L.; Bos, J.E.; Nacken, P.F.M.; Graaf, B. de

    1996-01-01

    A new, automatic method for determination of human ocular torsion (OT) was devel-oped based on the tracking of iris patterns in digitized video images. Instead of quanti-fying OT by means of cross-correlation of circular iris samples, a procedure commonly applied, this new method automatically

  2. Determination of ocular torsion by means of automatic pattern recognition

    NARCIS (Netherlands)

    Groen, Eric; Bos, Jelte E.; Nacken, Peter F M; De Graaf, Bernd

    A new, automatic method for determination of human ocular torsion (OT) was developed based on the tracking of iris patterns in digitized video images. Instead of quantifying OT by means of cross-correlation of circular iris samples, a procedure commonly applied, this new method automatically selects

  3. Increased neutrophil expression of pattern recognition receptors during COPD exacerbations

    NARCIS (Netherlands)

    Pouwels, Simon D.; Van Geffen, Wouter H.; Jonker, Marnix R.; Kerstjens, Huib A. M.; Nawijn, Martijn C.; Heijink, Irene H.

    Previously, we observed increased serum levels of damage-associated molecular patterns (DAMPs) during COPD exacerbations. Here, gene expression of DAMP receptors was measured in peripheral blood neutrophils of COPD patients during stable disease and severe acute exacerbation. The expression of

  4. Defect Pattern Recognition Based on Partial Discharge Characteristics of Oil-Pressboard Insulation for UHVDC Converter Transformer

    Directory of Open Access Journals (Sweden)

    Wen Si

    2018-03-01

    Full Text Available The ultra high voltage direct current (UHVDC transmission system has advantages in delivering electrical energy over long distance at high capacity. UHVDC converter transformer is a key apparatus and its insulation state greatly affects the safe operation of the transmission system. Partial discharge (PD characteristics of oil-pressboard insulation under combined AC-DC voltage are the foundation for analyzing the insulation state of UHVDC converter transformers. The defect pattern recognition based on PD characteristics is an important part of the state monitoring of converter transformers. In this paper, PD characteristics are investigated with the established experimental platform of three defect models (needle-plate, surface discharge and air gap under 1:1 combined AC-DC voltage. The different PD behaviors of three defect models are discussed and explained through simulation of electric field strength distribution and discharge mechanism. For the recognition of defect types when multiple types of sources coexist, the Random Forests algorithm is used for recognition. In order to reduce the computational layer and the loss of information caused by the extraction of traditional features, the preprocessed single PD pulses and phase information are chosen to be the features for learning and test. Zero-padding method is discussed for normalizing the features. Based on the experimental data, Random Forests and Least Squares Support Vector Machine are compared in the performance of computing time, recognition accuracy and adaptability. It is proved that Random Forests is more suitable for big data analysis.

  5. Use of Handwriting Recognition Technologies in Tablet-Based Learning Modules for First Grade Education

    Science.gov (United States)

    Yanikoglu, Berrin; Gogus, Aytac; Inal, Emre

    2017-01-01

    Learning through modules on a tablet helps students participate effectively in learning activities in classrooms and provides flexibility in the learning process. This study presents the design and evaluation of an application that is based on handwriting recognition technologies and e-content for the developed learning modules. The application…

  6. Recognition of higher order patterns in proteins: immunologic kernels.

    Directory of Open Access Journals (Sweden)

    Robert D Bremel

    Full Text Available By applying analysis of the principal components of amino acid physical properties we predicted cathepsin cleavage sites, MHC binding affinity, and probability of B-cell epitope binding of peptides in tetanus toxin and in ten diverse additional proteins. Cross-correlation of these metrics, for peptides of all possible amino acid index positions, each evaluated in the context of a ±25 amino acid flanking region, indicated that there is a strongly repetitive pattern of short peptides of approximately thirty amino acids each bounded by cathepsin cleavage sites and each comprising B-cell linear epitopes, MHC-I and MHC-II binding peptides. Such "immunologic kernel" peptides comprise all signals necessary for adaptive immunologic cognition, response and recall. The patterns described indicate a higher order spatial integration that forms a symbolic logic coordinating the adaptive immune system.

  7. Learning weighted sparse representation of encoded facial normal information for expression-robust 3D face recognition

    KAUST Repository

    Li, Huibin

    2011-10-01

    This paper proposes a novel approach for 3D face recognition by learning weighted sparse representation of encoded facial normal information. To comprehensively describe 3D facial surface, three components, in X, Y, and Z-plane respectively, of normal vector are encoded locally to their corresponding normal pattern histograms. They are finally fed to a sparse representation classifier enhanced by learning based spatial weights. Experimental results achieved on the FRGC v2.0 database prove that the proposed encoded normal information is much more discriminative than original normal information. Moreover, the patch based weights learned using the FRGC v1.0 and Bosphorus datasets also demonstrate the importance of each facial physical component for 3D face recognition. © 2011 IEEE.

  8. Learning a Mid-Level Representation for Multiview Action Recognition

    Directory of Open Access Journals (Sweden)

    Cuiwei Liu

    2018-01-01

    Full Text Available Recognizing human actions in videos is an active topic with broad commercial potentials. Most of the existing action recognition methods are supposed to have the same camera view during both training and testing. And thus performances of these single-view approaches may be severely influenced by the camera movement and variation of viewpoints. In this paper, we address the above problem by utilizing videos simultaneously recorded from multiple views. To this end, we propose a learning framework based on multitask random forest to exploit a discriminative mid-level representation for videos from multiple cameras. In the first step, subvolumes of continuous human-centered figures are extracted from original videos. In the next step, spatiotemporal cuboids sampled from these subvolumes are characterized by multiple low-level descriptors. Then a set of multitask random forests are built upon multiview cuboids sampled at adjacent positions and construct an integrated mid-level representation for multiview subvolumes of one action. Finally, a random forest classifier is employed to predict the action category in terms of the learned representation. Experiments conducted on the multiview IXMAS action dataset illustrate that the proposed method can effectively recognize human actions depicted in multiview videos.

  9. Application of the new pattern recognition system in the new e-nose to detecting Chinese spirits

    International Nuclear Information System (INIS)

    Gu Yu; Li Qiang

    2014-01-01

    We present a new pattern recognition system based on moving average and linear discriminant analysis (LDA), which can be used to process the original signal of the new polymer quartz piezoelectric crystal air-sensitive sensor system we designed, called the new e-nose. Using the new e-nose, we obtain the template datum of Chinese spirits via a new pattern recognition system. To verify the effectiveness of the new pattern recognition system, we select three kinds of Chinese spirits to test, our results confirm that the new pattern recognition system can perfectly identify and distinguish between the Chinese spirits. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Off-lattice pattern recognition scheme for kinetic Monte Carlo simulations

    International Nuclear Information System (INIS)

    Nandipati, Giridhar; Kara, Abdelkader; Shah, Syed Islamuddin; Rahman, Talat S.

    2012-01-01

    We report the development of a pattern-recognition scheme for the off-lattice self-learning kinetic Monte Carlo (KMC) method, one that is simple and flexible enough that it can be applied to all types of surfaces. In this scheme, to uniquely identify the local environment and associated processes involving three-dimensional (3D) motion of an atom or atoms, space around a central atom is divided into 3D rectangular boxes. The dimensions and the number of 3D boxes are determined by the accuracy with which a process needs to be identified and a process is described as the central atom moving to a neighboring vacant box accompanied by the motion of any other atom or atoms in its surrounding boxes. As a test of this method to we apply it to examine the decay of 3D Cu islands on the Cu(100) and to the surface diffusion of a Cu monomer and a dimer on Cu(111) and compare the results and computational efficiency to those available in the literature.

  11. Fuzzy logic and neural networks in artificial intelligence and pattern recognition

    Science.gov (United States)

    Sanchez, Elie

    1991-10-01

    With the use of fuzzy logic techniques, neural computing can be integrated in symbolic reasoning to solve complex real world problems. In fact, artificial neural networks, expert systems, and fuzzy logic systems, in the context of approximate reasoning, share common features and techniques. A model of Fuzzy Connectionist Expert System is introduced, in which an artificial neural network is designed to construct the knowledge base of an expert system from, training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the synaptic connections in an AND-OR structure: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through min-max fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feedforward network is described and first illustrated in a biomedical application (medical diagnosis assistance from inflammatory-syndromes/proteins profiles). Then, it is shown how this methodology can be utilized for handwritten pattern recognition (characters play the role of diagnoses): in a fuzzy neuron describing a number for example, the linguistic weights represent fuzzy sets on cross-detecting lines and the numerical weights reflect the importance (or weakness) of connections between cross-detecting lines and characters.

  12. Global Neural Pattern Similarity as a Common Basis for Categorization and Recognition Memory

    Science.gov (United States)

    Xue, Gui; Love, Bradley C.; Preston, Alison R.; Poldrack, Russell A.

    2014-01-01

    Familiarity, or memory strength, is a central construct in models of cognition. In previous categorization and long-term memory research, correlations have been found between psychological measures of memory strength and activation in the medial temporal lobes (MTLs), which suggests a common neural locus for memory strength. However, activation alone is insufficient for determining whether the same mechanisms underlie neural function across domains. Guided by mathematical models of categorization and long-term memory, we develop a theory and a method to test whether memory strength arises from the global similarity among neural representations. In human subjects, we find significant correlations between global similarity among activation patterns in the MTLs and both subsequent memory confidence in a recognition memory task and model-based measures of memory strength in a category learning task. Our work bridges formal cognitive theories and neuroscientific models by illustrating that the same global similarity computations underlie processing in multiple cognitive domains. Moreover, by establishing a link between neural similarity and psychological memory strength, our findings suggest that there may be an isomorphism between psychological and neural representational spaces that can be exploited to test cognitive theories at both the neural and behavioral levels. PMID:24872552

  13. On damage diagnosis for a wind turbine blade using pattern recognition

    Science.gov (United States)

    Dervilis, N.; Choi, M.; Taylor, S. G.; Barthorpe, R. J.; Park, G.; Farrar, C. R.; Worden, K.

    2014-03-01

    With the increased interest in implementation of wind turbine power plants in remote areas, structural health monitoring (SHM) will be one of the key cards in the efficient establishment of wind turbines in the energy arena. Detection of blade damage at an early stage is a critical problem, as blade failure can lead to a catastrophic outcome for the entire wind turbine system. Experimental measurements from vibration analysis were extracted from a 9 m CX-100 blade by researchers at Los Alamos National Laboratory (LANL) throughout a full-scale fatigue test conducted at the National Renewable Energy Laboratory (NREL) and National Wind Technology Center (NWTC). The blade was harmonically excited at its first natural frequency using a Universal Resonant EXcitation (UREX) system. In the current study, machine learning algorithms based on Artificial Neural Networks (ANNs), including an Auto-Associative Neural Network (AANN) based on a standard ANN form and a novel approach to auto-association with Radial Basis Functions (RBFs) networks are used, which are optimised for fast and efficient runs. This paper introduces such pattern recognition methods into the wind energy field and attempts to address the effectiveness of such methods by combining vibration response data with novelty detection techniques.

  14. Oxidation-specific epitopes are danger-associated molecular patterns recognized by pattern recognition receptors of innate immunity

    DEFF Research Database (Denmark)

    Miller, Yury I; Choi, Soo-Ho; Wiesner, Philipp

    2011-01-01

    are a major target of innate immunity, recognized by a variety of "pattern recognition receptors" (PRRs). By analogy with microbial "pathogen-associated molecular patterns" (PAMPs), we postulate that host-derived, oxidation-specific epitopes can be considered to represent "danger (or damage......)-associated molecular patterns" (DAMPs). We also argue that oxidation-specific epitopes present on apoptotic cells and their cellular debris provided the primary evolutionary pressure for the selection of such PRRs. Furthermore, because many PAMPs on microbes share molecular identity and/or mimicry with oxidation...

  15. Page Oriented Holographic Memories And Optical Pattern Recognition

    Science.gov (United States)

    Caulfield, H. J.

    1987-08-01

    In the twenty-two years since VanderLugt's introduction of holographic matched filtering, the intensive research carried out throughout the world has led to no applications in complex environment. This leads one to the suspicion that the VanderLugt filter technique is insufficiently complex to handle truly complex problems. Therefore, it is of great interest to increase the complexity of the VanderLugt filtering operation. We introduce here an approach to the real time filter assembly: use of page oriented holographic memories and optically addressed SLMs to achieve intelligent and fast reprogramming of the filters using a 10 4 to 10 6 stored pattern base.

  16. A modified artificial immune system based pattern recognition approach -- an application to clinic diagnostics

    Science.gov (United States)

    Zhao, Weixiang; Davis, Cristina E.

    2011-01-01

    Objective This paper introduces a modified artificial immune system (AIS)-based pattern recognition method to enhance the recognition ability of the existing conventional AIS-based classification approach and demonstrates the superiority of the proposed new AIS-based method via two case studies of breast cancer diagnosis. Methods and materials Conventionally, the AIS approach is often coupled with the k nearest neighbor (k-NN) algorithm to form a classification method called AIS-kNN. In this paper we discuss the basic principle and possible problems of this conventional approach, and propose a new approach where AIS is integrated with the radial basis function – partial least square regression (AIS-RBFPLS). Additionally, both the two AIS-based approaches are compared with two classical and powerful machine learning methods, back-propagation neural network (BPNN) and orthogonal radial basis function network (Ortho-RBF network). Results The diagnosis results show that: (1) both the AIS-kNN and the AIS-RBFPLS proved to be a good machine leaning method for clinical diagnosis, but the proposed AIS-RBFPLS generated an even lower misclassification ratio, especially in the cases where the conventional AIS-kNN approach generated poor classification results because of possible improper AIS parameters. For example, based upon the AIS memory cells of “replacement threshold = 0.3”, the average misclassification ratios of two approaches for study 1 are 3.36% (AIS-RBFPLS) and 9.07% (AIS-kNN), and the misclassification ratios for study 2 are 19.18% (AIS-RBFPLS) and 28.36% (AIS-kNN); (2) the proposed AIS-RBFPLS presented its robustness in terms of the AIS-created memory cells, showing a smaller standard deviation of the results from the multiple trials than AIS-kNN. For example, using the result from the first set of AIS memory cells as an example, the standard deviations of the misclassification ratios for study 1 are 0.45% (AIS-RBFPLS) and 8.71% (AIS-kNN) and those for

  17. Unsupervised Learning of Digit Recognition Using Spike-Timing-Dependent Plasticity

    Directory of Open Access Journals (Sweden)

    Peter U. Diehl

    2015-08-01

    Full Text Available In order to understand how the mammalian neocortex is performing computations, two things are necessary; we need to have a good understanding of the available neuronal processing units and mechanisms, and we need to gain a better understanding of how those mechanisms are combined to build functioning systems. Therefore, in recent years there is an increasing interest in how spiking neural networks (SNN can be used to perform complex computations or solve pattern recognition tasks. However, it remains a challenging task to design SNNs which use biologically plausible mechanisms (especially for learning new patterns, since most of such SNN architectures rely on training in a rate-based network and subsequent conversion to a SNN. We present a SNN for digit recognition which is based on mechanisms with increased biological plausibility, i.e. conductance-based instead of current-based synapses, spike-timing-dependent plasticity with time-dependent weight change, lateral inhibition, and an adaptive spiking threshold. Unlike most other systems, we do not use a teaching signal and do not present any class labels to the network. Using this unsupervised learning scheme, our architecture achieves 95% accuracy on the MNIST benchmark, which is better than previous SNN implementations without supervision. The fact that we used no domain-specific knowledge points toward the general applicability of our network design. Also, the performance of our network scales well with the number of neurons used and shows similar performance for four different learning rules, indicating robustness of the full combination of mechanisms, which suggests applicability in heterogeneous biological neural networks.

  18. Protein recognition by a pattern-generating fluorescent molecular probe

    Science.gov (United States)

    Pode, Zohar; Peri-Naor, Ronny; Georgeson, Joseph M.; Ilani, Tal; Kiss, Vladimir; Unger, Tamar; Markus, Barak; Barr, Haim M.; Motiei, Leila; Margulies, David

    2017-12-01

    Fluorescent molecular probes have become valuable tools in protein research; however, the current methods for using these probes are less suitable for analysing specific populations of proteins in their native environment. In this study, we address this gap by developing a unimolecular fluorescent probe that combines the properties of small-molecule-based probes and cross-reactive sensor arrays (the so-called chemical 'noses/tongues'). On the one hand, the probe can detect different proteins by generating unique identification (ID) patterns, akin to cross-reactive arrays. On the other hand, its unimolecular scaffold and selective binding enable this ID-generating probe to identify combinations of specific protein families within complex mixtures and to discriminate among isoforms in living cells, where macroscopic arrays cannot access. The ability to recycle the molecular device and use it to track several binding interactions simultaneously further demonstrates how this approach could expand the fluorescent toolbox currently used to detect and image proteins.

  19. Pattern Recognition of Gene Expression with Singular Spectrum Analysis

    Directory of Open Access Journals (Sweden)

    Hossein Hassani

    2014-07-01

    Full Text Available Drosophila segmentation as a model organism is one of the most highly studied. Among many maternal segmentation coordinate genes, bicoid protein pattern plays a significant role during Drosophila embryogenesis, since this gradient determines most aspects of head and thorax development. Despite the fact that several models have been proposed to describe the bicoid gradient, due to its association with considerable error, each can only partially explain bicoid characteristics. In this paper, a modified version of singular spectrum analysis is examined for filtering and extracting the bicoid gene expression signal. The results with strong evidence indicate that the proposed technique is able to remove noise more effectively and can be considered as a promising method for filtering gene expression measurements for other applications.

  20. Recognition of neural brain activity patterns correlated with complex motor activity

    Science.gov (United States)

    Kurkin, Semen; Musatov, Vyacheslav Yu.; Runnova, Anastasia E.; Grubov, Vadim V.; Efremova, Tatyana Yu.; Zhuravlev, Maxim O.

    2018-04-01

    In this paper, based on the apparatus of artificial neural networks, a technique for recognizing and classifying patterns corresponding to imaginary movements on electroencephalograms (EEGs) obtained from a group of untrained subjects was developed. The works on the selection of the optimal type, topology, training algorithms and neural network parameters were carried out from the point of view of the most accurate and fast recognition and classification of patterns on multi-channel EEGs associated with the imagination of movements. The influence of the number and choice of the analyzed channels of a multichannel EEG on the quality of recognition of imaginary movements was also studied, and optimal configurations of electrode arrangements were obtained. The effect of pre-processing of EEG signals is analyzed from the point of view of improving the accuracy of recognition of imaginary movements.

  1. Pattern recognition methodologies and deterministic evaluation of seismic hazard: A strategy to increase earthquake preparedness

    International Nuclear Information System (INIS)

    Peresan, Antonella; Panza, Giuliano F.; Gorshkov, Alexander I.; Aoudia, Abdelkrim

    2001-05-01

    Several algorithms, structured according to a general pattern-recognition scheme, have been developed for the space-time identification of strong events. Currently, two of such algorithms are applied to the Italian territory, one for the recognition of earthquake-prone areas and the other, namely CN algorithm, for earthquake prediction purposes. These procedures can be viewed as independent experts, hence they can be combined to better constrain the alerted seismogenic area. We examine here the possibility to integrate CN intermediate-term medium-range earthquake predictions, pattern recognition of earthquake-prone areas and deterministic hazard maps, in order to associate CN Times of Increased Probability (TIPs) to a set of appropriate scenarios of ground motion. The advantage of this procedure mainly consists in the time information provided by predictions, useful to increase preparedness of safety measures and to indicate a priority for detailed seismic risk studies to be performed at a local scale. (author)

  2. A Dynamic Interval-Valued Intuitionistic Fuzzy Sets Applied to Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Zhenhua Zhang

    2013-01-01

    Full Text Available We present dynamic interval-valued intuitionistic fuzzy sets (DIVIFS, which can improve the recognition accuracy when they are applied to pattern recognition. By analyzing the degree of hesitancy, we propose some DIVIFS models from intuitionistic fuzzy sets (IFS and interval-valued IFS (IVIFS. And then we present a novel ranking condition on the distance of IFS and IVIFS and introduce some distance measures of DIVIFS satisfying the ranking condition. Finally, a pattern recognition example applied to medical diagnosis decision making is given to demonstrate the application of DIVIFS and its distances. The simulation results show that the DIVIFS method is more comprehensive and flexible than the IFS method and the IVIFS method.

  3. Accelerated Brain Aging in Schizophrenia: A Longitudinal Pattern Recognition Study.

    Science.gov (United States)

    Schnack, Hugo G; van Haren, Neeltje E M; Nieuwenhuis, Mireille; Hulshoff Pol, Hilleke E; Cahn, Wiepke; Kahn, René S

    2016-06-01

    Despite the multitude of longitudinal neuroimaging studies that have been published, a basic question on the progressive brain loss in schizophrenia remains unaddressed: Does it reflect accelerated aging of the brain, or is it caused by a fundamentally different process? The authors used support vector regression, a supervised machine learning technique, to address this question. In a longitudinal sample of 341 schizophrenia patients and 386 healthy subjects with one or more structural MRI scans (1,197 in total), machine learning algorithms were used to build models to predict the age of the brain and the presence of schizophrenia ("schizophrenia score"), based on the gray matter density maps. Age at baseline ranged from 16 to 67 years, and follow-up scans were acquired between 1 and 13 years after the baseline scan. Differences between brain age and chronological age ("brain age gap") and between schizophrenia score and healthy reference score ("schizophrenia gap") were calculated. Accelerated brain aging was calculated from changes in brain age gap between two consecutive measurements. The age prediction model was validated in an independent sample. In schizophrenia patients, brain age was significantly greater than chronological age at baseline (+3.36 years) and progressively increased during follow-up (+1.24 years in addition to the baseline gap). The acceleration of brain aging was not constant: it decreased from 2.5 years/year just after illness onset to about the normal rate (1 year/year) approximately 5 years after illness onset. The schizophrenia gap also increased during follow-up, but more pronounced variability in brain abnormalities at follow-up rendered this increase nonsignificant. The progressive brain loss in schizophrenia appears to reflect two different processes: one relatively homogeneous, reflecting accelerated aging of the brain and related to various measures of outcome, and a more variable one, possibly reflecting individual variation and

  4. Foundations for a syntatic pattern recognition system for genomic DNA sequences

    Energy Technology Data Exchange (ETDEWEB)

    Searles, D.B.

    1993-03-01

    The goal of the proposed work is the creation of a software system that will perform sophisticated pattern recognition and related functions at a level of abstraction and with expressive power beyond current general-purpose pattern-matching systems for biological sequences; and with a more uniform language, environment, and graphical user interface, and with greater flexibility, extensibility, embeddability, and ability to incorporate other algorithms, than current special-purpose analytic software.

  5. Supervised Learning for Visual Pattern Classification

    Science.gov (United States)

    Zheng, Nanning; Xue, Jianru

    This chapter presents an overview of the topics and major ideas of supervised learning for visual pattern classification. Two prevalent algorithms, i.e., the support vector machine (SVM) and the boosting algorithm, are briefly introduced. SVMs and boosting algorithms are two hot topics of recent research in supervised learning. SVMs improve the generalization of the learning machine by implementing the rule of structural risk minimization (SRM). It exhibits good generalization even when little training data are available for machine training. The boosting algorithm can boost a weak classifier to a strong classifier by means of the so-called classifier combination. This algorithm provides a general way for producing a classifier with high generalization capability from a great number of weak classifiers.

  6. Self-esteem recognition based on gait pattern using Kinect.

    Science.gov (United States)

    Sun, Bingli; Zhang, Zhan; Liu, Xingyun; Hu, Bin; Zhu, Tingshao

    2017-10-01

    Self-esteem is an important aspect of individual's mental health. When subjects are not able to complete self-report questionnaire, behavioral assessment will be a good supplement. In this paper, we propose to use gait data collected by Kinect as an indicator to recognize self-esteem. 178 graduate students without disabilities participate in our study. Firstly, all participants complete the 10-item Rosenberg Self-Esteem Scale (RSS) to acquire self-esteem score. After completing the RRS, each participant walks for two minutes naturally on a rectangular red carpet, and the gait data are recorded using Kinect sensor. After data preprocessing, we extract a few behavioral features to train predicting model by machine learning. Based on these features, we build predicting models to recognize self-esteem. For self-esteem prediction, the best correlation coefficient between predicted score and self-report score is 0.45 (pself-esteem with a fairly good criterion validity. The gait predicting model can be taken as a good supplementary method to measure self-esteem. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Whose Balance Sheet is this? Neural Networks for Banks' Pattern Recognition

    NARCIS (Netherlands)

    Leon Rincon, Carlos; Moreno, José Fernando; Cely, Jorge

    2017-01-01

    The balance sheet is a snapshot that portraits the financial position of a firm at a specific point of time. Under the reasonable assumption that the financial position of a firm is unique and representative, we use a basic artificial neural network pattern recognition method on Colombian banks’

  8. Binary pattern flavored feature extractors for Facial Expression Recognition: An overview

    DEFF Research Database (Denmark)

    Kristensen, Rasmus Lyngby; Tan, Zheng-Hua; Ma, Zhanyu

    2015-01-01

    This paper conducts a survey of modern binary pattern flavored feature extractors applied to the Facial Expression Recognition (FER) problem. In total, 26 different feature extractors are included, of which six are selected for in depth description. In addition, the paper unifies important FER...

  9. Mechanisms and Neural Basis of Object and Pattern Recognition: A Study with Chess Experts

    Science.gov (United States)

    Bilalic, Merim; Langner, Robert; Erb, Michael; Grodd, Wolfgang

    2010-01-01

    Comparing experts with novices offers unique insights into the functioning of cognition, based on the maximization of individual differences. Here we used this expertise approach to disentangle the mechanisms and neural basis behind two processes that contribute to everyday expertise: object and pattern recognition. We compared chess experts and…

  10. An Application of Discriminant Analysis to Pattern Recognition of Selected Contaminated Soil Features in Thin Sections

    DEFF Research Database (Denmark)

    Ribeiro, Alexandra B.; Nielsen, Allan Aasbjerg

    1997-01-01

    qualitative microprobe results: present elements Al, Si, Cr, Fe, As (associated with others). Selected groups of calibrated images (same light conditions and magnification) submitted to discriminant analysis, in order to find a pattern of recognition in the soil features corresponding to contamination already...

  11. A New Functional Classification of Glucuronoyl Esterases by Peptide Pattern Recognition

    DEFF Research Database (Denmark)

    Wittrup Agger, Jane; Busk, Peter Kamp; Pilgaard, Bo

    2017-01-01

    of characterized enzymes exist and the exact activity is still uncertain. Here peptide pattern recognition is used as a bioinformatic tool to identify and group new CE15 proteins that are likely to have glucuronoyl esterase activity. 1024 CE15-like sequences were drawn from GenBank and grouped into 24 groups...

  12. Identification of a β-glucosidase from the Mucor circinelloides genome by peptide pattern recognition

    DEFF Research Database (Denmark)

    Yuhong, Huang; Busk, Peter Kamp; Grell, Morten Nedergaard

    2014-01-01

    Mucor circinelloides produces plant cell wall degrading enzymes that allow it to grow on complex polysaccharides. Although the genome of M. circinelloides has been sequenced, only few plant cell wall degrading enzymes are annotated in this species. We applied peptide pattern recognition, which...

  13. Pattern recognition in cyclic and discrete skills performance from inertial measurement units

    NARCIS (Netherlands)

    Seifert, Ludovic; L'Hermette, Maxime; Komar, John; Orth, Dominic; Mell, Florian; Merriaux, Pierre; Grenet, Pierre; Caritu, Yanis; Hérault, Romain; Dovgalecs, Vladislavs; Davids, Keith

    2014-01-01

    The aim of this study is to compare and validate an Inertial Measurement Unit (IMU) relative to an optic system, and to propose methods for pattern recognition to capture behavioural dynamics during sport performance. IMU validation was conducted by comparing the motions of the two arms of a

  14. Particle Swarm Optimization with Double Learning Patterns.

    Science.gov (United States)

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants.

  15. Particle Swarm Optimization with Double Learning Patterns

    Science.gov (United States)

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants. PMID:26858747

  16. An adaptive deep Q-learning strategy for handwritten digit recognition.

    Science.gov (United States)

    Qiao, Junfei; Wang, Gongming; Li, Wenjing; Chen, Min

    2018-02-22

    Handwritten digits recognition is a challenging problem in recent years. Although many deep learning-based classification algorithms are studied for handwritten digits recognition, the recognition accuracy and running time still need to be further improved. In this paper, an adaptive deep Q-learning strategy is proposed to improve accuracy and shorten running time for handwritten digit recognition. The adaptive deep Q-learning strategy combines the feature-extracting capability of deep learning and the decision-making of reinforcement learning to form an adaptive Q-learning deep belief network (Q-ADBN). First, Q-ADBN extracts the features of original images using an adaptive deep auto-encoder (ADAE), and the extracted features are considered as the current states of Q-learning algorithm. Second, Q-ADBN receives Q-function (reward signal) during recognition of the current states, and the final handwritten digits recognition is implemented by maximizing the Q-function using Q-learning algorithm. Finally, experimental results from the well-known MNIST dataset show that the proposed Q-ADBN has a superiority to other similar methods in terms of accuracy and running time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control

    Science.gov (United States)

    He, Jiayuan; Zhang, Dingguo; Jiang, Ning; Sheng, Xinjun; Farina, Dario; Zhu, Xiangyang

    2015-08-01

    Objective. Recent studies have reported that the classification performance of electromyographic (EMG) signals degrades over time without proper classification retraining. This problem is relevant for the applications of EMG pattern recognition in the control of active prostheses. Approach. In this study we investigated the changes in EMG classification performance over 11 consecutive days in eight able-bodied subjects and two amputees. Main results. It was observed that, when the classifier was trained on data from one day and tested on data from the following day, the classification error decreased exponentially but plateaued after four days for able-bodied subjects and six to nine days for amputees. The between-day performance became gradually closer to the corresponding within-day performance. Significance. These results indicate that the relative changes in EMG signal features over time become progressively smaller when the number of days during which the subjects perform the pre-defined motions are increased. The performance of the motor tasks is thus more consistent over time, resulting in more repeatable EMG patterns, even if the subjects do not have any external feedback on their performance. The learning curves for both able-bodied subjects and subjects with limb deficiencies could be modeled as an exponential function. These results provide important insights into the user adaptation characteristics during practical long-term myoelectric control applications, with implications for the design of an adaptive pattern recognition system.

  18. Evidence for view-invariant face recognition units in unfamiliar face learning.

    Science.gov (United States)

    Etchells, David B; Brooks, Joseph L; Johnston, Robert A

    2017-05-01

    Many models of face recognition incorporate the idea of a face recognition unit (FRU), an abstracted representation formed from each experience of a face which aids recognition under novel viewing conditions. Some previous studies have failed to find evidence of this FRU representation. Here, we report three experiments which investigated this theoretical construct by modifying the face learning procedure from that in previous work. During learning, one or two views of previously unfamiliar faces were shown to participants in a serial matching task. Later, participants attempted to recognize both seen and novel views of the learned faces (recognition phase). Experiment 1 tested participants' recognition of a novel view, a day after learning. Experiment 2 was identical, but tested participants on the same day as learning. Experiment 3 repeated Experiment 1, but tested participants on a novel view that was outside the rotation of those views learned. Results revealed a significant advantage, across all experiments, for recognizing a novel view when two views had been learned compared to single view learning. The observed view invariance supports the notion that an FRU representation is established during multi-view face learning under particular learning conditions.

  19. Listening for recollection: a multi-voxel pattern analysis of recognition memory retrieval strategies

    Directory of Open Access Journals (Sweden)

    Joel R Quamme

    2010-08-01

    Full Text Available Recent studies of recognition memory indicate that subjects can strategically vary how much they rely on recollection of specific details vs. feelings of familiarity when making recognition judgments. One possible explanation of these results is that subjects can establish an internally-directed attentional state (listening for recollection that enhances retrieval of studied details; fluctuations in this attentional state over time should be associated with fluctuations in subjects' recognition behavior. In this study, we used multi-voxel pattern analysis of fMRI data to identify brain regions that are involved in listening for recollection. Specifically, we looked for brain regions that met the following criteria: 1 Distinct neural patterns should be present when subjects are instructed to rely on recollection vs. familiarity, and 2 fluctuations in these neural patterns should be related to recognition behavior in the manner predicted by dual-process theories of recognition: Specifically, the presence of the recollection pattern during the pre-stimulus interval (indicating that subjects are listening for recollection at that moment should be associated with a selective decrease in false alarms to related lures. We found that pre-stimulus activity in the right supramarginal gyrus met all of these criteria, suggesting that this region proactively establishes an internally-directed attentional state that fosters recollection. We also found other regions (e.g., left middle temporal gyrus where the pattern of neural activity was related to subjects’ responding to related lures after stimulus onset (but not before, suggesting that these regions implement processes that are engaged in a reactive fashion to boost recollection.

  20. Digital and optical shape representation and pattern recognition; Proceedings of the Meeting, Orlando, FL, Apr. 4-6, 1988

    Science.gov (United States)

    Juday, Richard D. (Editor)

    1988-01-01

    The present conference discusses topics in pattern-recognition correlator architectures, digital stereo systems, geometric image transformations and their applications, topics in pattern recognition, filter algorithms, object detection and classification, shape representation techniques, and model-based object recognition methods. Attention is given to edge-enhancement preprocessing using liquid crystal TVs, massively-parallel optical data base management, three-dimensional sensing with polar exponential sensor arrays, the optical processing of imaging spectrometer data, hybrid associative memories and metric data models, the representation of shape primitives in neural networks, and the Monte Carlo estimation of moment invariants for pattern recognition.

  1. Emotional Faces in Context: Age Differences in Recognition Accuracy and Scanning Patterns

    Science.gov (United States)

    Noh, Soo Rim; Isaacowitz, Derek M.

    2014-01-01

    While age-related declines in facial expression recognition are well documented, previous research relied mostly on isolated faces devoid of context. We investigated the effects of context on age differences in recognition of facial emotions and in visual scanning patterns of emotional faces. While their eye movements were monitored, younger and older participants viewed facial expressions (i.e., anger, disgust) in contexts that were emotionally congruent, incongruent, or neutral to the facial expression to be identified. Both age groups had highest recognition rates of facial expressions in the congruent context, followed by the neutral context, and recognition rates in the incongruent context were worst. These context effects were more pronounced for older adults. Compared to younger adults, older adults exhibited a greater benefit from congruent contextual information, regardless of facial expression. Context also influenced the pattern of visual scanning characteristics of emotional faces in a similar manner across age groups. In addition, older adults initially attended more to context overall. Our data highlight the importance of considering the role of context in understanding emotion recognition in adulthood. PMID:23163713

  2. Machine learning techniques for gait biometric recognition using the ground reaction force

    CERN Document Server

    Mason, James Eric; Woungang, Isaac

    2016-01-01

    This book focuses on how machine learning techniques can be used to analyze and make use of one particular category of behavioral biometrics known as the gait biometric. A comprehensive Ground Reaction Force (GRF)-based Gait Biometrics Recognition framework is proposed and validated by experiments. In addition, an in-depth analysis of existing recognition techniques that are best suited for performing footstep GRF-based person recognition is also proposed, as well as a comparison of feature extractors, normalizers, and classifiers configurations that were never directly compared with one another in any previous GRF recognition research. Finally, a detailed theoretical overview of many existing machine learning techniques is presented, leading to a proposal of two novel data processing techniques developed specifically for the purpose of gait biometric recognition using GRF. This book · introduces novel machine-learning-based temporal normalization techniques · bridges research gaps concerning the effect of ...

  3. Transfer Learning for Video Recognition with Scarce Training Data for Deep Convolutional Neural Network

    OpenAIRE

    Su, Yu-Chuan; Chiu, Tzu-Hsuan; Yeh, Chun-Yen; Huang, Hsin-Fu; Hsu, Winston H.

    2014-01-01

    Unconstrained video recognition and Deep Convolution Network (DCN) are two active topics in computer vision recently. In this work, we apply DCNs as frame-based recognizers for video recognition. Our preliminary studies, however, show that video corpora with complete ground truth are usually not large and diverse enough to learn a robust model. The networks trained directly on the video data set suffer from significant overfitting and have poor recognition rate on the test set. The same lack-...

  4. The Affordance of Speech Recognition Technology for EFL Learning in an Elementary School Setting

    Science.gov (United States)

    Liaw, Meei-Ling

    2014-01-01

    This study examined the use of speech recognition (SR) technology to support a group of elementary school children's learning of English as a foreign language (EFL). SR technology has been used in various language learning contexts. Its application to EFL teaching and learning is still relatively recent, but a solid understanding of its…

  5. An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition.

    Science.gov (United States)

    Rasouli, Mahdi; Chen, Yi; Basu, Arindam; Kukreja, Sunil L; Thakor, Nitish V

    2018-04-01

    Despite significant advances in computational algorithms and development of tactile sensors, artificial tactile sensing is strikingly less efficient and capable than the human tactile perception. Inspired by efficiency of biological systems, we aim to develop a neuromorphic system for tactile pattern recognition. We particularly target texture recognition as it is one of the most necessary and challenging tasks for artificial sensory systems. Our system consists of a piezoresistive fabric material as the sensor to emulate skin, an interface that produces spike patterns to mimic neural signals from mechanoreceptors, and an extreme learning machine (ELM) chip to analyze spiking activity. Benefiting from intrinsic advantages of biologically inspired event-driven systems and massively parallel and energy-efficient processing capabilities of the ELM chip, the proposed architecture offers a fast and energy-efficient alternative for processing tactile information. Moreover, it provides the opportunity for the development of low-cost tactile modules for large-area applications by integration of sensors and processing circuits. We demonstrate the recognition capability of our system in a texture discrimination task, where it achieves a classification accuracy of 92% for categorization of ten graded textures. Our results confirm that there exists a tradeoff between response time and classification accuracy (and information transfer rate). A faster decision can be achieved at early time steps or by using a shorter time window. This, however, results in deterioration of the classification accuracy and information transfer rate. We further observe that there exists a tradeoff between the classification accuracy and the input spike rate (and thus energy consumption). Our work substantiates the importance of development of efficient sparse codes for encoding sensory data to improve the energy efficiency. These results have a significance for a wide range of wearable, robotic

  6. Visual Scanning Patterns and Executive Function in Relation to Facial Emotion Recognition in Aging

    Science.gov (United States)

    Circelli, Karishma S.; Clark, Uraina S.; Cronin-Golomb, Alice

    2012-01-01

    Objective The ability to perceive facial emotion varies with age. Relative to younger adults (YA), older adults (OA) are less accurate at identifying fear, anger, and sadness, and more accurate at identifying disgust. Because different emotions are conveyed by different parts of the face, changes in visual scanning patterns may account for age-related variability. We investigated the relation between scanning patterns and recognition of facial emotions. Additionally, as frontal-lobe changes with age may affect scanning patterns and emotion recognition, we examined correlations between scanning parameters and performance on executive function tests. Methods We recorded eye movements from 16 OA (mean age 68.9) and 16 YA (mean age 19.2) while they categorized facial expressions and non-face control images (landscapes), and administered standard tests of executive function. Results OA were less accurate than YA at identifying fear (precognition of sad expressions and with scanning patterns for fearful, sad, and surprised expressions. Conclusion We report significant age-related differences in visual scanning that are specific to faces. The observed relation between scanning patterns and executive function supports the hypothesis that frontal-lobe changes with age may underlie some changes in emotion recognition. PMID:22616800

  7. Performance Study of the First 2D Prototype of Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    Energy Technology Data Exchange (ETDEWEB)

    Deptuch, Gregory [Fermilab; Hoff, James [Fermilab; Jindariani, Sergo [Fermilab; Liu, Tiehui [Fermilab; Olsen, Jamieson [Fermilab; Tran, Nhan [Fermilab; Joshi, Siddhartha [Northwestern U.; Li, Dawei [Northwestern U.; Ogrenci-Memik, Seda [Northwestern U.

    2017-09-24

    Extremely fast pattern recognition capabilities are necessary to find and fit billions of tracks at the hardware trigger level produced every second anticipated at high luminosity LHC (HL-LHC) running conditions. Associative Memory (AM) based approaches for fast pattern recognition have been proposed as a potential solution to the tracking trigger. However, at the HL-LHC, there is much less time available and speed performance must be improved over previous systems while maintaining a comparable number of patterns. The Vertically Integrated Pattern Recognition Associative Memory (VIPRAM) Project aims to achieve the target pattern density and performance goal using 3DIC technology. The first step taken in the VIPRAM work was the development of a 2D prototype (protoVIPRAM00) in which the associative memory building blocks were designed to be compatible with the 3D integration. In this paper, we present the results from extensive performance studies of the protoVIPRAM00 chip in both realistic HL-LHC and extreme conditions. Results indicate that the chip operates at the design frequency of 100 MHz with perfect correctness in realistic conditions and conclude that the building blocks are ready for 3D stacking. We also present performance boundary characterization of the chip under extreme conditions.

  8. A study on the extraction of feature variables for the pattern recognition for welding flaws

    International Nuclear Information System (INIS)

    Kim, J. Y.; Kim, C. H.; Kim, B. H.

    1996-01-01

    In this study, the researches classifying the artificial and natural flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including the user defined function was developed and the total procedure including the digital signal processing, feature extraction, feature selection and classifier selection is treated by bulk. Specially it is composed with and discussed using the statistical classifier such as the linear discriminant function classifier, the empirical Bayesian classifier. Also, the pattern recognition technology is applied to classification problem of natural flaw(i.e multiple classification problem-crack, lack of penetration, lack of fusion, porosity, and slag inclusion, the planar and volumetric flaw classification problem). According to this results, if appropriately teamed the neural network classifier is better than stastical classifier in the classification problem of natural flaw. And it is possible to acquire the recognition rate of 80% above through it is different a little according to domain extracting the feature and the classifier.

  9. The Recognition of Prior Learning and Dutch Higher Education - At cross-purposes?

    NARCIS (Netherlands)

    Cremonini, Leon; Zgaga, Pavel; Teichler, Ulrich; Brennan, John

    2013-01-01

    The chapter ‘The Recognition of Prior Learning and Dutch Higher Education - At cross-purposes?’ by L. Cremonini in The Globalisation Challenge for European Higher Education – Convergence and Diversity, Centres and Peripheries (Zgaga, P., Teichler, U. and Brennan, J (Eds.)) explores the Recognition

  10. On hierarchical models for visual recognition and learning of objects, scenes, and activities

    CERN Document Server

    Spehr, Jens

    2015-01-01

    In many computer vision applications, objects have to be learned and recognized in images or image sequences. This book presents new probabilistic hierarchical models that allow an efficient representation of multiple objects of different categories, scales, rotations, and views. The idea is to exploit similarities between objects and object parts in order to share calculations and avoid redundant information. Furthermore inference approaches for fast and robust detection are presented. These new approaches combine the idea of compositional and similarity hierarchies and overcome limitations of previous methods. Besides classical object recognition the book shows the use for detection of human poses in a project for gait analysis. The use of activity detection is presented for the design of environments for ageing, to identify activities and behavior patterns in smart homes. In a presented project for parking spot detection using an intelligent vehicle, the proposed approaches are used to hierarchically model...

  11. The time course of individual face recognition: A pattern analysis of ERP signals.

    Science.gov (United States)

    Nemrodov, Dan; Niemeier, Matthias; Mok, Jenkin Ngo Yin; Nestor, Adrian

    2016-05-15

    An extensive body of work documents the time course of neural face processing in the human visual cortex. However, the majority of this work has focused on specific temporal landmarks, such as N170 and N250 components, derived through univariate analyses of EEG data. Here, we take on a broader evaluation of ERP signals related to individual face recognition as we attempt to move beyond the leading theoretical and methodological framework through the application of pattern analysis to ERP data. Specifically, we investigate the spatiotemporal profile of identity recognition across variation in emotional expression. To this end, we apply pattern classification to ERP signals both in time, for any single electrode, and in space, across multiple electrodes. Our results confirm the significance of traditional ERP components in face processing. At the same time though, they support the idea that the temporal profile of face recognition is incompletely described by such components. First, we show that signals associated with different facial identities can be discriminated from each other outside the scope of these components, as early as 70ms following stimulus presentation. Next, electrodes associated with traditional ERP components as well as, critically, those not associated with such components are shown to contribute information to stimulus discriminability. And last, the levels of ERP-based pattern discrimination are found to correlate with recognition accuracy across subjects confirming the relevance of these methods for bridging brain and behavior data. Altogether, the current results shed new light on the fine-grained time course of neural face processing and showcase the value of novel methods for pattern analysis to investigating fundamental aspects of visual recognition. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Incremental Learning of Perceptual Categories for Open-Domain Sketch Recognition

    National Research Council Canada - National Science Library

    Lovett, Andrew; Dehghani, Morteza; Forbus, Kenneth

    2007-01-01

    .... This paper describes an incremental learning technique for opendomain recognition. Our system builds generalizations for categories of objects based upon previous sketches of those objects and uses those generalizations to classify new sketches...

  13. Recognition

    DEFF Research Database (Denmark)

    Gimmler, Antje

    2017-01-01

    In this article, I shall examine the cognitive, heuristic and theoretical functions of the concept of recognition. To evaluate both the explanatory power and the limitations of a sociological concept, the theory construction must be analysed and its actual productivity for sociological theory mus...

  14. Sparse representation, modeling and learning in visual recognition theory, algorithms and applications

    CERN Document Server

    Cheng, Hong

    2015-01-01

    This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: provides a thorough introduction to the fundamentals of sparse representation, modeling and learning, and the application of these techniques in visual recognition; describes sparse recovery approaches, robust and efficient sparse represen

  15. A sequence identification measurement model to investigate the implicit learning of metrical temporal patterns.

    Directory of Open Access Journals (Sweden)

    Benjamin G Schultz

    Full Text Available Implicit learning (IL occurs unconsciously and without intention. Perceptual fluency is the ease of processing elicited by previous exposure to a stimulus. It has been assumed that perceptual fluency is associated with IL. However, the role of perceptual fluency following IL has not been investigated in temporal pattern learning. Two experiments by Schultz, Stevens, Keller, and Tillmann demonstrated the IL of auditory temporal patterns using a serial reaction-time task and a generation task based on the process dissociation procedure. The generation task demonstrated that learning was implicit in both experiments via motor fluency, that is, the inability to suppress learned information. With the aim to disentangle conscious and unconscious processes, we analyze unreported recognition data associated with the Schultz et al. experiments using the sequence identification measurement model. The model assumes that perceptual fluency reflects unconscious processes and IL. For Experiment 1, the model indicated that conscious and unconscious processes contributed to recognition of temporal patterns, but that unconscious processes had a greater influence on recognition than conscious processes. In the model implementation of Experiment 2, there was equal contribution of conscious and unconscious processes in the recognition of temporal patterns. As Schultz et al. demonstrated IL in both experiments using a generation task, and the conditions reported here in Experiments 1 and 2 were identical, two explanations are offered for the discrepancy in model and behavioral results based on the two tasks: 1 perceptual fluency may not be necessary to infer IL, or 2 conscious control over implicitly learned information may vary as a function of perceptual fluency and motor fluency.

  16. Deep learning architecture for iris recognition based on optimal Gabor filters and deep belief network

    Science.gov (United States)

    He, Fei; Han, Ye; Wang, Han; Ji, Jinchao; Liu, Yuanning; Ma, Zhiqiang

    2017-03-01

    Gabor filters are widely utilized to detect iris texture information in several state-of-the-art iris recognition systems. However, the proper Gabor kernels and the generative pattern of iris Gabor features need to be predetermined in application. The traditional empirical Gabor filters and shallow iris encoding ways are incapable of dealing with such complex variations in iris imaging including illumination, aging, deformation, and device variations. Thereby, an adaptive Gabor filter selection strategy and deep learning architecture are presented. We first employ particle swarm optimization approach and its binary version to define a set of data-driven Gabor kernels for fitting the most informative filtering bands, and then capture complex pattern from the optimal Gabor filtered coefficients by a trained deep belief network. A succession of comparative experiments validate that our optimal Gabor filters may produce more distinctive Gabor coefficients and our iris deep representations be more robust and stable than traditional iris Gabor codes. Furthermore, the depth and scales of the deep learning architecture are also discussed.

  17. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals.

    Science.gov (United States)

    Zhuang, Ning; Zeng, Ying; Yang, Kai; Zhang, Chi; Tong, Li; Yan, Bin

    2018-03-12

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods.

  18. Investigating Patterns for Self-Induced Emotion Recognition from EEG Signals

    Science.gov (United States)

    Zeng, Ying; Yang, Kai; Tong, Li; Yan, Bin

    2018-01-01

    Most current approaches to emotion recognition are based on neural signals elicited by affective materials such as images, sounds and videos. However, the application of neural patterns in the recognition of self-induced emotions remains uninvestigated. In this study we inferred the patterns and neural signatures of self-induced emotions from electroencephalogram (EEG) signals. The EEG signals of 30 participants were recorded while they watched 18 Chinese movie clips which were intended to elicit six discrete emotions, including joy, neutrality, sadness, disgust, anger and fear. After watching each movie clip the participants were asked to self-induce emotions by recalling a specific scene from each movie. We analyzed the important features, electrode distribution and average neural patterns of different self-induced emotions. Results demonstrated that features related to high-frequency rhythm of EEG signals from electrodes distributed in the bilateral temporal, prefrontal and occipital lobes have outstanding performance in the discrimination of emotions. Moreover, the six discrete categories of self-induced emotion exhibit specific neural patterns and brain topography distributions. We achieved an average accuracy of 87.36% in the discrimination of positive from negative self-induced emotions and 54.52% in the classification of emotions into six discrete categories. Our research will help promote the development of comprehensive endogenous emotion recognition methods. PMID:29534515

  19. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    He-Yuan Lin

    2008-03-01

    Full Text Available A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  20. A Motion-Adaptive Deinterlacer via Hybrid Motion Detection and Edge-Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Li Hsin-Te

    2008-01-01

    Full Text Available Abstract A novel motion-adaptive deinterlacing algorithm with edge-pattern recognition and hybrid motion detection is introduced. The great variety of video contents makes the processing of assorted motion, edges, textures, and the combination of them very difficult with a single algorithm. The edge-pattern recognition algorithm introduced in this paper exhibits the flexibility in processing both textures and edges which need to be separately accomplished by line average and edge-based line average before. Moreover, predicting the neighboring pixels for pattern analysis and interpolation further enhances the adaptability of the edge-pattern recognition unit when motion detection is incorporated. Our hybrid motion detection features accurate detection of fast and slow motion in interlaced video and also the motion with edges. Using only three fields for detection also renders higher temporal correlation for interpolation. The better performance of our deinterlacing algorithm with higher content-adaptability and less memory cost than the state-of-the-art 4-field motion detection algorithms can be seen from the subjective and objective experimental results of the CIF and PAL video sequences.

  1. Deep learning with word embeddings improves biomedical named entity recognition.

    Science.gov (United States)

    Habibi, Maryam; Weber, Leon; Neves, Mariana; Wiegandt, David Luis; Leser, Ulf

    2017-07-15

    Text mining has become an important tool for biomedical research. The most fundamental text-mining task is the recognition of biomedical named entities (NER), such as genes, chemicals and diseases. Current NER methods rely on pre-defined features which try to capture the specific surface properties of entity types, properties of the typical local context, background knowledge, and linguistic information. State-of-the-art tools are entity-specific, as dictionaries and empirically optimal feature sets differ between entity types, which makes their development costly. Furthermore, features are often optimized for a specific gold standard corpus, which makes extrapolation of quality measures difficult. We show that a completely generic method based on deep learning and statistical word embeddings [called long short-term memory network-conditional random field (LSTM-CRF)] outperforms state-of-the-art entity-specific NER tools, and often by a large margin. To this end, we compared the performance of LSTM-CRF on 33 data sets covering five different entity classes with that of best-of-class NER tools and an entity-agnostic CRF implementation. On average, F1-score of LSTM-CRF is 5% above that of the baselines, mostly due to a sharp increase in recall. The source code for LSTM-CRF is available at https://github.com/glample/tagger and the links to the corpora are available at https://corposaurus.github.io/corpora/ . habibima@informatik.hu-berlin.de. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  2. The use of global image characteristics for neural network pattern recognitions

    Science.gov (United States)

    Kulyas, Maksim O.; Kulyas, Oleg L.; Loshkarev, Aleksey S.

    2017-04-01

    The recognition system is observed, where the information is transferred by images of symbols generated by a television camera. For descriptors of objects the coefficients of two-dimensional Fourier transformation generated in a special way. For solution of the task of classification the one-layer neural network trained on reference images is used. Fast learning of a neural network with a single neuron calculation of coefficients is applied.

  3. LOCAL LINE BINARY PATTERN FOR FEATURE EXTRACTION ON PALM VEIN RECOGNITION

    Directory of Open Access Journals (Sweden)

    Jayanti Yusmah Sari

    2015-08-01

    Full Text Available In recent years, palm vein recognition has been studied to overcome problems in conventional systems in biometrics technology (finger print, face, and iris. Those problems in biometrics includes convenience and performance. However, due to the clarity of the palm vein image, the veins could not be segmented properly. To overcome this problem, we propose a palm vein recognition system using Local Line Binary Pattern (LLBP method that can extract robust features from the palm vein images that has unclear veins. LLBP is an advanced method of Local Binary Pattern (LBP, a texture descriptor based on the gray level comparison of a neighborhood of pixels. There are four major steps in this paper, Region of Interest (ROI detection, image preprocessing, features extraction using LLBP method, and matching using Fuzzy k-NN classifier. The proposed method was applied on the CASIA Multi-Spectral Image Database. Experimental results showed that the proposed method using LLBP has a good performance with recognition accuracy of 97.3%. In the future, experiments will be conducted to observe which parameter that could affect processing time and recognition accuracy of LLBP is needed

  4. Stage-specific sampling by pattern recognition receptors during Candida albicans phagocytosis.

    Directory of Open Access Journals (Sweden)

    Sigrid E M Heinsbroek

    2008-11-01

    Full Text Available Candida albicans is a medically important pathogen, and recognition by innate immune cells is critical for its clearance. Although a number of pattern recognition receptors have been shown to be involved in recognition and phagocytosis of this fungus, the relative role of these receptors has not been formally examined. In this paper, we have investigated the contribution of the mannose receptor, Dectin-1, and complement receptor 3; and we have demonstrated that Dectin-1 is the main non-opsonic receptor involved in fungal uptake. However, both Dectin-1 and complement receptor 3 were found to accumulate at the site of uptake, while mannose receptor accumulated on C. albicans phagosomes at later stages. These results suggest a potential role for MR in phagosome sampling; and, accordingly, MR deficiency led to a reduction in TNF-alpha and MCP-1 production in response to C. albicans uptake. Our data suggest that pattern recognition receptors sample the fungal phagosome in a sequential fashion.

  5. Minimum Information Loss Based Multi-kernel Learning for Flagellar Protein Recognition in Trypanosoma Brucei

    KAUST Repository

    Wang, Jim Jing-Yan; Gao, Xin

    2014-01-01

    for the purposes of both biological research and drug design. In this paper, we investigate computationally recognizing flagellar proteins in T. Brucei by pattern recognition methods. It is argued that an optimal decision function can be obtained as the difference

  6. Implementation theory of distortion-invariant pattern recognition for optical and digital signal processing systems

    Science.gov (United States)

    Lhamon, Michael Earl

    A pattern recognition system which uses complex correlation filter banks requires proportionally more computational effort than single-real valued filters. This introduces increased computation burden but also introduces a higher level of parallelism, that common computing platforms fail to identify. As a result, we consider algorithm mapping to both optical and digital processors. For digital implementation, we develop computationally efficient pattern recognition algorithms, referred to as, vector inner product operators that require less computational effort than traditional fast Fourier methods. These algorithms do not need correlation and they map readily onto parallel digital architectures, which imply new architectures for optical processors. These filters exploit circulant-symmetric matrix structures of the training set data representing a variety of distortions. By using the same mathematical basis as with the vector inner product operations, we are able to extend the capabilities of more traditional correlation filtering to what we refer to as "Super Images". These "Super Images" are used to morphologically transform a complicated input scene into a predetermined dot pattern. The orientation of the dot pattern is related to the rotational distortion of the object of interest. The optical implementation of "Super Images" yields feature reduction necessary for using other techniques, such as artificial neural networks. We propose a parallel digital signal processor architecture based on specific pattern recognition algorithms but general enough to be applicable to other similar problems. Such an architecture is classified as a data flow architecture. Instead of mapping an algorithm to an architecture, we propose mapping the DSP architecture to a class of pattern recognition algorithms. Today's optical processing systems have difficulties implementing full complex filter structures. Typically, optical systems (like the 4f correlators) are limited to phase

  7. Compact holographic optical neural network system for real-time pattern recognition

    Science.gov (United States)

    Lu, Taiwei; Mintzer, David T.; Kostrzewski, Andrew A.; Lin, Freddie S.

    1996-08-01

    One of the important characteristics of artificial neural networks is their capability for massive interconnection and parallel processing. Recently, specialized electronic neural network processors and VLSI neural chips have been introduced in the commercial market. The number of parallel channels they can handle is limited because of the limited parallel interconnections that can be implemented with 1D electronic wires. High-resolution pattern recognition problems can require a large number of neurons for parallel processing of an image. This paper describes a holographic optical neural network (HONN) that is based on high- resolution volume holographic materials and is capable of performing massive 3D parallel interconnection of tens of thousands of neurons. A HONN with more than 16,000 neurons packaged in an attache case has been developed. Rotation- shift-scale-invariant pattern recognition operations have been demonstrated with this system. System parameters such as the signal-to-noise ratio, dynamic range, and processing speed are discussed.

  8. An Approach for Pattern Recognition of EEG Applied in Prosthetic Hand Drive

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Zhang

    2011-12-01

    Full Text Available For controlling the prosthetic hand by only electroencephalogram (EEG, it has become the hot spot in robotics research to set up a direct communication and control channel between human brain and prosthetic hand. In this paper, the EEG signal is analyzed based on multi-complicated hand activities. And then, two methods of EEG pattern recognition are investigated, a neural prosthesis hand system driven by BCI is set up, which can complete four kinds of actions (arm’s free state, arm movement, hand crawl, hand open. Through several times of off-line and on-line experiments, the result shows that the neural prosthesis hand system driven by BCI is reasonable and feasible, the C-support vector classifiers-based method is better than BP neural network on the EEG pattern recognition for multi-complicated hand activities.

  9. Authentication and distinction of Shenmai injection with HPLC fingerprint analysis assisted by pattern recognition techniques

    Directory of Open Access Journals (Sweden)

    Xue-Feng Lu

    2012-10-01

    Full Text Available In this paper, the feasibility and advantages of employing high performance liquid chromatographic (HPLC fingerprints combined with pattern recognition techniques for quality control of Shenmai injection were investigated and demonstrated. The Similarity Evaluation System was employed to evaluate the similarities of samples of Shenmai injection, and the HPLC generated chromatographic data were analyzed using hierarchical clustering analysis (HCA and soft independent modeling of class analogy (SIMCA. Consistent results were obtained to show that the authentic samples and the blended samples were successfully classified by SIMCA, which could be applied to accurate discrimination and quality control of Shenmai injection. Furthermore, samples could also be grouped in accordance with manufacturers. Our results revealed that the developed method has potential perspective for the original discrimination and quality control of Shenmai injection. Keywords: Shenmai injection, High performance liquid chromatography, Fingerprint, Pattern recognition

  10. Application of ann-based decision making pattern recognition to fishing operations

    Energy Technology Data Exchange (ETDEWEB)

    Akhlaghinia, M.; Torabi, F.; Wilton, R.R. [University of Regina, Saskatchewan (Canada). Faculty of Engineering. Dept. of Petroleum Engineering], e-mail: Farshid.Torabi@uregina.ca

    2010-10-15

    Decision making is a crucial part of fishing operations. Proper decisions should be made to prevent wasted time and associated costs on unsuccessful operations. This paper presents a novel model to help drilling managers decide when to commence and when to quit a fishing operation. A decision making model based on Artificial Neural Network (ANN) has been developed that utilizes Pattern Recognition based on 181 fishing incidents from one of the most fish-prone fields of the southwest of Iran. All parameters chosen to train the ANN-Based Pattern Recognition Tool are assumed to play a role in the success of the fishing operation and are therefore used to decide whether a fishing operation should be performed or not. If the tool deems the operation suitable for consideration, a cost analysis of the fishing operation can then be performed to justify its overall cost. (author)

  11. Simultaneous pattern recognition and track fitting by the Kalman filtering method

    International Nuclear Information System (INIS)

    Billoir, P.

    1990-01-01

    A progressive pattern recognition algorithm based on the Kalman filtering method has been tested. The algorithm starts from a small track segment or from a fitted track of a neighbouring detector, then extends the candidate tracks by adding measured points one by one. The fitted parameters and weight matrix of the candidate track are updated when adding a point, and give an increasing precision on prediction of the next point. Thus, pattern recognition and track fitting can be accomplished simultaneously. The method has been implemented and tested for track reconstruction for the vertex detector of the ZEUS experiment at DESY. Detailed procedures of the method and its performance are presented. Its flexibility is described as well. (orig.)

  12. EBR-II [Experimental Breeder Reactor-II] system surveillance using pattern recognition software

    International Nuclear Information System (INIS)

    Mott, J.E.; Radtke, W.H.; King, R.W.

    1986-02-01

    The problem of most accurately determining the Experimental Breeder Reactor-II (EBR-II) reactor outlet temperature from currently available plant signals is investigated. Historically, the reactor outlet pipe was originally instrumented with 8 temperature sensors but, during 22 years of operation, all these instruments have failed except for one remaining thermocouple, and its output had recently become suspect. Using pattern recognition methods to compare values of 129 plant signals for similarities over a 7 month period spanning reconfiguration of the core and recalibration of many plant signals, it was determined that the remaining reactor outlet pipe thermocouple is still useful as an indicator of true mixed mean reactor outlet temperature. Application of this methodology to investigate one specific signal has automatically validated the vast majority of the 129 signals used for pattern recognition and also highlighted a few inconsistent signals for further investigation

  13. Data Mining and Pattern Recognition Models for Identifying Inherited Diseases: Challenges and Implications.

    Science.gov (United States)

    Iddamalgoda, Lahiru; Das, Partha S; Aponso, Achala; Sundararajan, Vijayaraghava S; Suravajhala, Prashanth; Valadi, Jayaraman K

    2016-01-01

    Data mining and pattern recognition methods reveal interesting findings in genetic studies, especially on how the genetic makeup is associated with inherited diseases. Although researchers have proposed various data mining models for biomedical approaches, there remains a challenge in accurately prioritizing the single nucleotide polymorphisms (SNP) associated with the disease. In this commentary, we review the state-of-art data mining and pattern recognition models for identifying inherited diseases and deliberate the need of binary classification- and scoring-based prioritization methods in determining causal variants. While we discuss the pros and cons associated with these methods known, we argue that the gene prioritization methods and the protein interaction (PPI) methods in conjunction with the K nearest neighbors' could be used in accurately categorizing the genetic factors in disease causation.

  14. Fault diagnosis and performance monitoring for pumps by means of vibration measurement and pattern recognition

    International Nuclear Information System (INIS)

    Grabner, A.; Weiss, F.P.

    1984-12-01

    In recent years the early detection of malfunctions with noise and vibration analysis techniques has become a more and more important method for increasing availability and safety of various components in technical plants. The possibility of pattern recognition assisted vibration monitoring and its practical realization are demonstrated by failure diagnosis and trend analysis of the condition of large centrifugal pumps in hydraulic circuits. Some problems as, e.g., the finding of dynamic failure models, signal analysis, feature extraction and statistical pattern recognition, which helps automatically to decide whether the pump works normally or not, are discussed in more detail. In the paper it is shown that for various types of machines the chance of success of condition based maintenance can be enhanced by such an automatic vibration monitoring. (author)

  15. A pattern recognition methodology for evaluation of load profiles and typical days of large electricity customers

    International Nuclear Information System (INIS)

    Tsekouras, G.J.; Kotoulas, P.B.; Tsirekis, C.D.; Dialynas, E.N.; Hatziargyriou, N.D.

    2008-01-01

    This paper describes a pattern recognition methodology for the classification of the daily chronological load curves of each large electricity customer, in order to estimate his typical days and his respective representative daily load profiles. It is based on pattern recognition methods, such as k-means, self-organized maps (SOM), fuzzy k-means and hierarchical clustering, which are theoretically described and properly adapted. The parameters of each clustering method are properly selected by an optimization process, which is separately applied for each one of six adequacy measures. The results can be used for the short-term and mid-term load forecasting of each consumer, for the choice of the proper tariffs and the feasibility studies of demand side management programs. This methodology is analytically applied for one medium voltage industrial customer and synoptically for a set of medium voltage customers of the Greek power system. The results of the clustering methods are presented and discussed. (author)

  16. Transformative Learning: Patterns of Psychophysiologic Response and Technology-Enabled Learning and Intervention Systems

    Science.gov (United States)

    2008-09-01

    Psychophysiologic Response and Technology -Enabled Learning and Intervention Systems PRINCIPAL INVESTIGATOR: Leigh W. Jerome, Ph.D...NUMBER Transformative Learning : Patterns of Psychophysiologic Response and Technology - Enabled Learning and Intervention Systems 5b. GRANT NUMBER...project entitled “Transformative Learning : Patterns of Psychophysiologic Response in Technology Enabled Learning and Intervention Systems.” The

  17. Investigation of CoPd alloys by XPS and EPES using the pattern recognition method

    Czech Academy of Sciences Publication Activity Database

    Lesiak, B.; Zemek, Josef; Jiříček, Petr; Jozwik, A.

    2007-01-01

    Roč. 428, - (2007), s. 190-196 ISSN 0925-8388 R&D Projects: GA ČR GA202/06/0459 Institutional research plan: CEZ:AV0Z10100521 Keywords : CoPd alloys * x-ray photoelectron spectroscopy (XPS) * elastic peak electron spectroscopy (EPES) * pattern recognition method * fuzzy k-nearest neighbour rule (fkNN) * quantitative analysis * surface segregation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.455, year: 2007

  18. Development of a Pattern Recognition Methodology for Determining Operationally Optimal Heat Balance Instrumentation Calibration Schedules

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Beran; John Christenson; Dragos Nica; Kenny Gross

    2002-12-15

    The goal of the project is to enable plant operators to detect with high sensitivity and reliability the onset of decalibration drifts in all of the instrumentation used as input to the reactor heat balance calculations. To achieve this objective, the collaborators developed and implemented at DBNPS an extension of the Multivariate State Estimation Technique (MSET) pattern recognition methodology pioneered by ANAL. The extension was implemented during the second phase of the project and fully achieved the project goal.

  19. Application of pattern recognition methods for evaluating the immune status in patients

    International Nuclear Information System (INIS)

    Stavitsky, R.B.; Guslistyj, I.V.; Miroshnichenko, I.V.; Karklinskaya, O.N.; Ryabinina, I.D.; Kosova, I.P.; Stolpnikova, V.N.; Malaeva, N.S.; Latypova, I.I.; Lebedev, L.A.

    2001-01-01

    The effectiveness of mathematical tools for pattern recognition as applied to numerical assessments of the immune status of patients exposed to ecological hazards is evaluated by experimentation. The immune status is estimated according to a two-class scheme (norm/abnormality) based on blood indicators of immunity for the patients examined. The task of categorizing patients by immunological parameters of blood is shown to be resolved with high effectiveness for determining the immune status [ru

  20. Pattern recognition application for surveillance of abnormal conditions in a nuclear reactor

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Dzwinel, W.

    1990-01-01

    The system to monitor abnormal conditions in a nuclear reactor, based on the noise analysis of the reactor basic parameters such as power, temperature and coolant flow rate, has been developed. The pattern recognition techniques such as clustering, cluster analysis, feature selection and clusters visualization methods form the basis of the software. Apart from non-hierarchical clustering procedures applied earlier, the hierarchical one is recommended. The system application for IBR-2 Dubna reactor diagnostics is shown. 10 refs.; 6 figs

  1. Development of pattern recognition algorithms for the central drift chamber of the Belle II detector

    Energy Technology Data Exchange (ETDEWEB)

    Trusov, Viktor

    2016-11-04

    In this thesis, the development of one of the pattern recognition algorithms for the Belle II experiment based on conformal and Legendre transformations is presented. In order to optimize the performance of the algorithm (CPU time and efficiency) specialized processing steps have been introduced. To show achieved results, Monte-Carlo based efficiency measurements of the tracking algorithms in the Central Drift Chamber (CDC) has been done.

  2. New Digital Approach to CNN On-chip Implementation for Pattern Recognition

    OpenAIRE

    Durackova, Daniela

    2008-01-01

    We developed a novel simulator for the CNN using the program tool Visual Basic for Application. Its algorithm is based on the same principle as the planned designed circuit. The network can process the patterns with 400 point recognition. The created universal simulator can change various simulation parameters. We found that the rounding at multiplication is not as important as we previously expected. On the basis of the simulations we designed a novel digital CNN cell implemented on a chip. ...

  3. Optimizing a Workplace Learning Pattern: A Case Study from Aviation

    Science.gov (United States)

    Mavin, Timothy John; Roth, Wolff-Michael

    2015-01-01

    Purpose: This study aims to contribute to current research on team learning patterns. It specifically addresses some negative perceptions of the job performance learning pattern. Design/methodology/approach: Over a period of three years, qualitative and quantitative data were gathered on pilot learning in the workplace. The instructional modes…

  4. Effects of exposure to facial expression variation in face learning and recognition.

    Science.gov (United States)

    Liu, Chang Hong; Chen, Wenfeng; Ward, James

    2015-11-01

    Facial expression is a major source of image variation in face images. Linking numerous expressions to the same face can be a huge challenge for face learning and recognition. It remains largely unknown what level of exposure to this image variation is critical for expression-invariant face recognition. We examined this issue in a recognition memory task, where the number of facial expressions of each face being exposed during a training session was manipulated. Faces were either trained with multiple expressions or a single expression, and they were later tested in either the same or different expressions. We found that recognition performance after learning three emotional expressions had no improvement over learning a single emotional expression (Experiments 1 and 2). However, learning three emotional expressions improved recognition compared to learning a single neutral expression (Experiment 3). These findings reveal both the limitation and the benefit of multiple exposures to variations of emotional expression in achieving expression-invariant face recognition. The transfer of expression training to a new type of expression is likely to depend on a relatively extensive level of training and a certain degree of variation across the types of expressions.

  5. TU-C-17A-03: An Integrated Contour Evaluation Software Tool Using Supervised Pattern Recognition for Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Tan, J; Kavanaugh, J; Dolly, S; Gay, H; Thorstad, W; Anastasio, M; Altman, M; Mutic, S; Li, H [Washington University School of Medicine, Saint Louis, MO (United States)

    2014-06-15

    Purpose: Radiotherapy (RT) contours delineated either manually or semiautomatically require verification before clinical usage. Manual evaluation is very time consuming. A new integrated software tool using supervised pattern contour recognition was thus developed to facilitate this process. Methods: The contouring tool was developed using an object-oriented programming language C# and application programming interfaces, e.g. visualization toolkit (VTK). The C# language served as the tool design basis. The Accord.Net scientific computing libraries were utilized for the required statistical data processing and pattern recognition, while the VTK was used to build and render 3-D mesh models from critical RT structures in real-time and 360° visualization. Principal component analysis (PCA) was used for system self-updating geometry variations of normal structures based on physician-approved RT contours as a training dataset. The inhouse design of supervised PCA-based contour recognition method was used for automatically evaluating contour normality/abnormality. The function for reporting the contour evaluation results was implemented by using C# and Windows Form Designer. Results: The software input was RT simulation images and RT structures from commercial clinical treatment planning systems. Several abilities were demonstrated: automatic assessment of RT contours, file loading/saving of various modality medical images and RT contours, and generation/visualization of 3-D images and anatomical models. Moreover, it supported the 360° rendering of the RT structures in a multi-slice view, which allows physicians to visually check and edit abnormally contoured structures. Conclusion: This new software integrates the supervised learning framework with image processing and graphical visualization modules for RT contour verification. This tool has great potential for facilitating treatment planning with the assistance of an automatic contour evaluation module in avoiding

  6. Recognition of Time Stamps on Full-Disk Hα Images Using Machine Learning Methods

    Science.gov (United States)

    Xu, Y.; Huang, N.; Jing, J.; Liu, C.; Wang, H.; Fu, G.

    2016-12-01

    Observation and understanding of the physics of the 11-year solar activity cycle and 22-year magnetic cycle are among the most important research topics in solar physics. The solar cycle is responsible for magnetic field and particle fluctuation in the near-earth environment that have been found increasingly important in affecting the living of human beings in the modern era. A systematic study of large-scale solar activities, as made possible by our rich data archive, will further help us to understand the global-scale magnetic fields that are closely related to solar cycles. The long-time-span data archive includes both full-disk and high-resolution Hα images. Prior to the widely use of CCD cameras in 1990s, 35-mm films were the major media to store images. The research group at NJIT recently finished the digitization of film data obtained by the National Solar Observatory (NSO) and Big Bear Solar Observatory (BBSO) covering the period of 1953 to 2000. The total volume of data exceeds 60 TB. To make this huge database scientific valuable, some processing and calibration are required. One of the most important steps is to read the time stamps on all of the 14 million images, which is almost impossible to be done manually. We implemented three different methods to recognize the time stamps automatically, including Optical Character Recognition (OCR), Classification Tree and TensorFlow. The latter two are known as machine learning algorithms which are very popular now a day in pattern recognition area. We will present some sample images and the results of clock recognition from all three methods.

  7. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.

    Science.gov (United States)

    Adewuyi, Adenike A; Hargrove, Levi J; Kuiken, Todd A

    2016-04-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.

  8. Knowledge fusion: An approach to time series model selection followed by pattern recognition

    International Nuclear Information System (INIS)

    Bleasdale, S.A.; Burr, T.L.; Scovel, J.C.; Strittmatter, R.B.

    1996-03-01

    This report describes work done during FY 95 that was sponsored by the Department of Energy, Office of Nonproliferation and National Security, Knowledge Fusion Project. The project team selected satellite sensor data to use as the one main example for the application of its analysis algorithms. The specific sensor-fusion problem has many generic features, which make it a worthwhile problem to attempt to solve in a general way. The generic problem is to recognize events of interest from multiple time series that define a possibly noisy background. By implementing a suite of time series modeling and forecasting methods and using well-chosen alarm criteria, we reduce the number of false alarms. We then further reduce the number of false alarms by analyzing all suspicious sections of data, as judged by the alarm criteria, with pattern recognition methods. An accompanying report (Ref 1) describes the implementation and application of this 2-step process for separating events from unusual background and applies a suite of forecasting methods followed by a suite of pattern recognition methods. This report goes into more detail about one of the forecasting methods and one of the pattern recognition methods and is applied to the same kind of satellite-sensor data that is described in Ref. 1

  9. Developement of 3D Vertically Integrated Pattern Recognition Associative Memory (VIPRAM)

    International Nuclear Information System (INIS)

    Deputch, G.; Hoff, J.; Lipton, R.; Liu, T.; Olsen, J.; Ramberg, E.; Wu, Jin-Yuan; Yarema, R.; Shochet, M.; Tang, F.; Demarteau, M.

    2011-01-01

    Many next-generation physics experiments will be characterized by the collection of large quantities of data, taken in rapid succession, from which scientists will have to unravel the underlying physical processes. In most cases, large backgrounds will overwhelm the physics signal. Since the quantity of data that can be stored for later analysis is limited, real-time event selection is imperative to retain the interesting events while rejecting the background. Scaling of current technologies is unlikely to satisfy the scientific needs of future projects, so investments in transformational new technologies need to be made. For example, future particle physics experiments looking for rare processes will have to address the demanding challenges of fast pattern recognition in triggering as detector hit density becomes significantly higher due to the high luminosity required to produce the rare processes. In this proposal, we intend to develop hardware-based technology that significantly advances the state-of-the-art for fast pattern recognition within and outside HEP using the 3D vertical integration technology that has emerged recently in industry. The ultimate physics reach of the LHC experiments will crucially depend on the tracking trigger's ability to help discriminate between interesting rare events and the background. Hardware-based pattern recognition for fast triggering on particle tracks has been successfully used in high-energy physics experiments for some time. The CDF Silicon Vertex Trigger (SVT) at the Fermilab Tevatron is an excellent example. The method used there, developed in the 1990's, is based on algorithms that use a massively parallel associative memory architecture to identify patterns efficiently at high speed. However, due to much higher occupancy and event rates at the LHC, and the fact that the LHC detectors have a much larger number of channels in their tracking detectors, there is an enormous challenge in implementing pattern recognition

  10. Recognition, Accreditation and Validation of Non-Formal and Informal Learning: Prospects for Lifelong Learning in Nepal

    Science.gov (United States)

    Regmi, Kapil Dev

    2009-01-01

    This study was an exploration on the various issues related to recognition, accreditation and validation of non-formal and informal learning to open up avenues for lifelong learning and continuing education in Nepal. The perceptions, experiences, and opinions of Nepalese Development Activists, Educational Administrators, Policy Actors and…

  11. Multidimensional particle swarm optimization for machine learning and pattern recognition

    CERN Document Server

    Kiranyaz, Serkan; Gabbouj, Moncef

    2013-01-01

    For many engineering problems we require optimization processes with dynamic adaptation as we aim to establish the dimension of the search space where the optimum solution resides and develop robust techniques to avoid the local optima usually associated with multimodal problems. This book explores multidimensional particle swarm optimization, a technique developed by the authors that addresses these requirements in a well-defined algorithmic approach.  After an introduction to the key optimization techniques, the authors introduce their unified framework and demonstrate its advantages in chal

  12. Hand Biometric Recognition Based on Fused Hand Geometry and Vascular Patterns

    Science.gov (United States)

    Park, GiTae; Kim, Soowon

    2013-01-01

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%. PMID:23449119

  13. Hand biometric recognition based on fused hand geometry and vascular patterns.

    Science.gov (United States)

    Park, GiTae; Kim, Soowon

    2013-02-28

    A hand biometric authentication method based on measurements of the user's hand geometry and vascular pattern is proposed. To acquire the hand geometry, the thickness of the side view of the hand, the K-curvature with a hand-shaped chain code, the lengths and angles of the finger valleys, and the lengths and profiles of the fingers were used, and for the vascular pattern, the direction-based vascular-pattern extraction method was used, and thus, a new multimodal biometric approach is proposed. The proposed multimodal biometric system uses only one image to extract the feature points. This system can be configured for low-cost devices. Our multimodal biometric-approach hand-geometry (the side view of the hand and the back of hand) and vascular-pattern recognition method performs at the score level. The results of our study showed that the equal error rate of the proposed system was 0.06%.

  14. Achieving Our Potential: An Action Plan for Prior Learning Assessment and Recognition (PLAR) in Canada

    Science.gov (United States)

    Morrissey, Mary; Myers, Douglas; Belanger, Paul; Robitaille, Magali; Davison, Phil; Van Kleef, Joy; Williams, Rick

    2008-01-01

    This comprehensive publication assesses the status of prior learning assessment and recognition (PLAR) across Canada and offers insights and recommendations into the processes necessary for employers, post-secondary institutions and government to recognize and value experiential and informal learning. Acknowledging economic trends in Canada's job…

  15. A Habermasian Analysis of a Process of Recognition of Prior Learning for Health Care Assistants

    Science.gov (United States)

    Sandberg, Fredrik

    2012-01-01

    This article discusses a process of recognition of prior learning for accreditation of prior experiential learning to qualify for course credits used in an adult in-service education program for health care assistants at the upper-secondary level in Sweden. The data are based on interviews and observations drawn from a field study, and Habermas's…

  16. Validity of Assessment and Recognition of Non-Formal and Informal Learning Achievements in Higher Education

    Science.gov (United States)

    Kaminskiene, Lina; Stasiunaitiene, Egle

    2013-01-01

    The article identifies the validity of assessment of non-formal and informal learning achievements (NILA) as one of the key factors for encouraging further development of the process of assessing and recognising non-formal and informal learning achievements in higher education. The authors analyse why the recognition of non-formal and informal…

  17. Spaced Learning Enhances Subsequent Recognition Memory by Reducing Neural Repetition Suppression

    Science.gov (United States)

    Xue, Gui; Mei, Leilei; Chen, Chuansheng; Lu, Zhong-Lin; Poldrack, Russell; Dong, Qi

    2011-01-01

    Spaced learning usually leads to better recognition memory as compared with massed learning, yet the underlying neural mechanisms remain elusive. One open question is whether the spacing effect is achieved by reducing neural repetition suppression. In this fMRI study, participants were scanned while intentionally memorizing 120 novel faces, half…

  18. Test-Enhanced Learning of Natural Concepts: Effects on Recognition Memory, Classification, and Metacognition

    Science.gov (United States)

    Jacoby, Larry L.; Wahlheim, Christopher N.; Coane, Jennifer H.

    2010-01-01

    Three experiments examined testing effects on learning of natural concepts and metacognitive assessments of such learning. Results revealed that testing enhanced recognition memory and classification accuracy for studied and novel exemplars of bird families on immediate and delayed tests. These effects depended on the balance of study and test…

  19. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    Science.gov (United States)

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  20. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    Directory of Open Access Journals (Sweden)

    Qiang Yu

    Full Text Available A new learning rule (Precise-Spike-Driven (PSD Synaptic Plasticity is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  1. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    Science.gov (United States)

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  2. Stress Prediction for Distributed Structural Health Monitoring Using Existing Measurements and Pattern Recognition.

    Science.gov (United States)

    Lu, Wei; Teng, Jun; Zhou, Qiushi; Peng, Qiexin

    2018-02-01

    The stress in structural steel members is the most useful and directly measurable physical quantity to evaluate the structural safety in structural health monitoring, which is also an important index to evaluate the stress distribution and force condition of structures during structural construction and service phases. Thus, it is common to set stress as a measure in steel structural monitoring. Considering the economy and the importance of the structural members, there are only a limited number of sensors that can be placed, which means that it is impossible to obtain the stresses of all members directly using sensors. This study aims to develop a stress response prediction method for locations where there are insufficent sensors, using measurements from a limited number of sensors and pattern recognition. The detailed improved aspects are: (1) a distributed computing process is proposed, where the same pattern is recognized by several subsets of measurements; and (2) the pattern recognition using the subset of measurements is carried out by considering the optimal number of sensors and number of fusion patterns. The validity and feasibility of the proposed method are verified using two examples: the finite-element simulation of a single-layer shell-like steel structure, and the structural health monitoring of the space steel roof of Shenzhen Bay Stadium; for the latter, the anti-noise performance of this method is verified by the stress measurements from a real-world project.

  3. Effect of cataract surgery and pupil dilation on iris pattern recognition for personal authentication.

    Science.gov (United States)

    Dhir, L; Habib, N E; Monro, D M; Rakshit, S

    2010-06-01

    The purpose of this study was to investigate the effect of cataract surgery and pupil dilation on iris pattern recognition for personal authentication. Prospective non-comparative cohort study. Images of 15 subjects were captured before (enrolment), and 5, 10, and 15 min after instillation of mydriatics before routine cataract surgery. After cataract surgery, images were captured 2 weeks thereafter. Enrolled and test images (after pupillary dilation and after cataract surgery) were segmented to extract the iris. This was then unwrapped onto a rectangular format for normalization and a novel method using the Discrete Cosine Transform was applied to encode the image into binary bits. The numerical difference between two iris codes (Hamming distance, HD) was calculated. The HD between identification and enrolment codes was used as a score and was compared with a confidence threshold for specific equipment, giving a match or non-match result. The Correct Recognition Rate (CRR) and Equal Error Rates (EERs) were calculated to analyse overall system performance. After cataract surgery, perfect identification and verification was achieved, with zero false acceptance rate, zero false rejection rate, and zero EER. After pupillary dilation, non-elastic deformation occurs and a CRR of 86.67% and EER of 9.33% were obtained. Conventional circle-based localization methods are inadequate. Matching reliability decreases considerably with increase in pupillary dilation. Cataract surgery has no effect on iris pattern recognition, whereas pupil dilation may be used to defeat an iris-based authentication system.

  4. Expanding the universe of cytokines and pattern recognition receptors: galectins and glycans in innate immunity.

    Science.gov (United States)

    Cerliani, Juan P; Stowell, Sean R; Mascanfroni, Iván D; Arthur, Connie M; Cummings, Richard D; Rabinovich, Gabriel A

    2011-02-01

    Effective immunity relies on the recognition of pathogens and tumors by innate immune cells through diverse pattern recognition receptors (PRRs) that lead to initiation of signaling processes and secretion of pro- and anti-inflammatory cytokines. Galectins, a family of endogenous lectins widely expressed in infected and neoplastic tissues have emerged as part of the portfolio of soluble mediators and pattern recognition receptors responsible for eliciting and controlling innate immunity. These highly conserved glycan-binding proteins can control immune cell processes through binding to specific glycan structures on pathogens and tumors or by acting intracellularly via modulation of selective signaling pathways. Recent findings demonstrate that various galectin family members influence the fate and physiology of different innate immune cells including polymorphonuclear neutrophils, mast cells, macrophages, and dendritic cells. Moreover, several pathogens may actually utilize galectins as a mechanism of host invasion. In this review, we aim to highlight and integrate recent discoveries that have led to our current understanding of the role of galectins in host-pathogen interactions and innate immunity. Challenges for the future will embrace the rational manipulation of galectin-glycan interactions to instruct and shape innate immunity during microbial infections, inflammation, and cancer.

  5. New pattern recognition system in the e-nose for Chinese spirit identification

    International Nuclear Information System (INIS)

    Zeng Hui; Li Qiang; Gu Yu

    2016-01-01

    This paper presents a new pattern recognition system for Chinese spirit identification by using the polymer quartz piezoelectric crystal sensor based e-nose. The sensors are designed based on quartz crystal microbalance (QCM) principle, and they could capture different vibration frequency signal values for Chinese spirit identification. For each sensor in an 8-channel sensor array, seven characteristic values of the original vibration frequency signal values, i.e., average value (A), root-mean-square value (RMS), shape factor value (S f ), crest factor value (C f ), impulse factor value (I f ), clearance factor value (CL f ), kurtosis factor value (K v ) are first extracted. Then the dimension of the characteristic values is reduced by the principle components analysis (PCA) method. Finally the back propagation (BP) neutral network algorithm is used to recognize Chinese spirits. The experimental results show that the recognition rate of six kinds of Chinese spirits is 93.33% and our proposed new pattern recognition system can identify Chinese spirits effectively. (paper)

  6. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    DEFF Research Database (Denmark)

    Torres-Arredondo, M.A.; Tibaduiza, D.-A.; McGugan, Malcolm

    2013-01-01

    and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction...

  7. Optical pattern recognition III; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992

    Science.gov (United States)

    Casasent, David P. (Editor); Chao, Tien-Hsin (Editor)

    1992-01-01

    Consideration is given to transitioning of optical processing into systems (TOPS), optical correlator hardware, phase-only optical correlation filters, optical distortion-invariant correlation filters, and optical neural networks. Particular attention is given to a test target for optical correlators, a TOPS electronic warfare channelizer program, a portable video-rate optical correlator, a joint transform correlator employing electron trapping materials, a novelty filtered optical correlator using a photorefractive crystal, a comparison of correlation performance of smart ternary phase-amplitude filters with gray-scale and binary input scenes, real-time distortion-tolerant composite filters for automatic target identification, landscaping the correlation surface, fast designing of a circular harmonic filter using simulated annealing, feature-based correlation filters for distortion invariance, automatic target recognition using a feature-based optical neural network, and a holographic inner-product processor for pattern recognition.

  8. An acidic microenvironment sets the humoral pattern recognition molecule PTX3 in a tissue repair mode

    Science.gov (United States)

    Doni, Andrea; Musso, Tiziana; Morone, Diego; Bastone, Antonio; Zambelli, Vanessa; Sironi, Marina; Castagnoli, Carlotta; Cambieri, Irene; Stravalaci, Matteo; Pasqualini, Fabio; Laface, Ilaria; Valentino, Sonia; Tartari, Silvia; Ponzetta, Andrea; Maina, Virginia; Barbieri, Silvia S.; Tremoli, Elena; Catapano, Alberico L.; Norata, Giuseppe D.; Bottazzi, Barbara; Garlanda, Cecilia

    2015-01-01

    Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule and a key component of the humoral arm of innate immunity. In four different models of tissue damage in mice, PTX3 deficiency was associated with increased fibrin deposition and persistence, and thicker clots, followed by increased collagen deposition, when compared with controls. Ptx3-deficient macrophages showed defective pericellular fibrinolysis in vitro. PTX3-bound fibrinogen/fibrin and plasminogen at acidic pH and increased plasmin-mediated fibrinolysis. The second exon-encoded N-terminal domain of PTX3 recapitulated the activity of the intact molecule. Thus, a prototypic component of humoral innate immunity, PTX3, plays a nonredundant role in the orchestration of tissue repair and remodeling. Tissue acidification resulting from metabolic adaptation during tissue repair sets PTX3 in a tissue remodeling and repair mode, suggesting that matrix and microbial recognition are common, ancestral features of the humoral arm of innate immunity. PMID:25964372

  9. Assay for the pattern recognition molecule collectin liver 1 (CL-L1)

    DEFF Research Database (Denmark)

    Axelgaard, Esben; Jensenius, Jens Christian; Thiel, Steffen

    Collectin liver 1 (also termed collectin 10 and CL-L1) is a C-type lectin that functions as a pattern recognition molecule (PRM) in the innate immune system1. We have produced antibodies against CL-L1 and have developed a sandwich-type time-resolved immuno-fluorometric assay (TRIFMA...... to co-purify with MASPs, possibly rendering it a role in complement. CL-L1 showed binding activity towards mannose-TSK beads in a Ca2+-dependent manner. This binding could be inhibited by mannose and glucose, but not by galactose, indicating that CL-L1 binds via its carbohydrate-recognition domain (CRD)....

  10. Deriving Process-Driven Collaborative Editing Pattern from Collaborative Learning Flow Patterns

    Science.gov (United States)

    Marjanovic, Olivera; Skaf-Molli, Hala; Molli, Pascal; Godart, Claude

    2007-01-01

    Collaborative Learning Flow Patterns (CLFPs) have recently emerged as a new method to formulate best practices in structuring the flow of activities within various collaborative learning scenarios. The term "learning flow" is used to describe coordination and sequencing of learning tasks. This paper adopts the existing concept of CLFP and argues…

  11. Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex.

    Science.gov (United States)

    Rosenthal, Clive R; Andrews, Samantha K; Antoniades, Chrystalina A; Kennard, Christopher; Soto, David

    2016-03-21

    Human primary visual cortex (V1) has long been associated with learning simple low-level visual discriminations [1] and is classically considered outside of neural systems that support high-level cognitive behavior in contexts that differ from the original conditions of learning, such as recognition memory [2, 3]. Here, we used a novel fMRI-based dichoptic masking protocol-designed to induce activity in V1, without modulation from visual awareness-to test whether human V1 is implicated in human observers rapidly learning and then later (15-20 min) recognizing a non-conscious and complex (second-order) visuospatial sequence. Learning was associated with a change in V1 activity, as part of a temporo-occipital and basal ganglia network, which is at variance with the cortico-cerebellar network identified in prior studies of "implicit" sequence learning that involved motor responses and visible stimuli (e.g., [4]). Recognition memory was associated with V1 activity, as part of a temporo-occipital network involving the hippocampus, under conditions that were not imputable to mechanisms associated with conscious retrieval. Notably, the V1 responses during learning and recognition separately predicted non-conscious recognition memory, and functional coupling between V1 and the hippocampus was enhanced for old retrieval cues. The results provide a basis for novel hypotheses about the signals that can drive recognition memory, because these data (1) identify human V1 with a memory network that can code complex associative serial visuospatial information and support later non-conscious recognition memory-guided behavior (cf. [5]) and (2) align with mouse models of experience-dependent V1 plasticity in learning and memory [6]. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Muscle Sensor Model Using Small Scale Optical Device for Pattern Recognitions

    Directory of Open Access Journals (Sweden)

    Kreangsak Tamee

    2013-01-01

    Full Text Available A new sensor system for measuring contraction and relaxation of muscles by using a PANDA ring resonator is proposed. The small scale optical device is designed and configured to perform the coupling effects between the changes in optical device phase shift and human facial muscle movement, which can be used to form the relationship between optical phase shift and muscle movement. By using the Optiwave and MATLAB programs, the results obtained have shown that the measurement of the contraction and relaxation of muscles can be obtained after the muscle movements, in which the unique pattern of individual muscle movement from facial expression can be established. The obtained simulation results, that is, interference signal patterns, can be used to form the various pattern recognitions, which are useful for the human machine interface and the human computer interface application and discussed in detail.

  13. Optimizing pattern recognition-based control for partial-hand prosthesis application.

    Science.gov (United States)

    Earley, Eric J; Adewuyi, Adenike A; Hargrove, Levi J

    2014-01-01

    Partial-hand amputees often retain good residual wrist motion, which is essential for functional activities involving use of the hand. Thus, a crucial design criterion for a myoelectric, partial-hand prosthesis control scheme is that it allows the user to retain residual wrist motion. Pattern recognition (PR) of electromyographic (EMG) signals is a well-studied method of controlling myoelectric prostheses. However, wrist motion degrades a PR system's ability to correctly predict hand-grasp patterns. We studied the effects of (1) window length and number of hand-grasps, (2) static and dynamic wrist motion, and (3) EMG muscle source on the ability of a PR-based control scheme to classify functional hand-grasp patterns. Our results show that training PR classifiers with both extrinsic and intrinsic muscle EMG yields a lower error rate than training with either group by itself (pgrasps available to the classifier significantly decrease classification error (pgrasp.

  14. Study of problems met in muon pattern recognition for a deep inelastic scattering experiment at the S.P.S

    International Nuclear Information System (INIS)

    Besson, C.

    1976-01-01

    The problems of the muon pattern recognition are studied for a muon-proton deep inelastic scattering experiment at the S.P.S. The pattern recognition program is described together with the problems caused by some characteristics of the apparatus of the European muon collaboration. Several reconstruction technics are compared, and a way of handling big drift chamber problems is found. Some results on Monte-Carlo tracks are given [fr

  15. Relevance feature selection of modal frequency-ambient condition pattern recognition in structural health assessment for reinforced concrete buildings

    Directory of Open Access Journals (Sweden)

    He-Qing Mu

    2016-08-01

    Full Text Available Modal frequency is an important indicator for structural health assessment. Previous studies have shown that this indicator is substantially affected by the fluctuation of ambient conditions, such as temperature and humidity. Therefore, recognizing the pattern between modal frequency and ambient conditions is necessary for reliable long-term structural health assessment. In this article, a novel machine-learning algorithm is proposed to automatically select relevance features in modal frequency-ambient condition pattern recognition based on structural dynamic response and ambient condition measurement. In contrast to the traditional feature selection approaches by examining a large number of combinations of extracted features, the proposed algorithm conducts continuous relevance feature selection by introducing a sophisticated hyperparameterization on the weight parameter vector controlling the relevancy of different features in the prediction model. The proposed algorithm is then utilized for structural health assessment for a reinforced concrete building based on 1-year daily measurements. It turns out that the optimal model class including the relevance features for each vibrational mode is capable to capture the pattern between the corresponding modal frequency and the ambient conditions.

  16. Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach.

    Directory of Open Access Journals (Sweden)

    Andre F Marquand

    Full Text Available Progressive supranuclear palsy (PSP, multiple system atrophy (MSA and idiopathic Parkinson's disease (IPD can be clinically indistinguishable, especially in the early stages, despite distinct patterns of molecular pathology. Structural neuroimaging holds promise for providing objective biomarkers for discriminating these diseases at the single subject level but all studies to date have reported incomplete separation of disease groups. In this study, we employed multi-class pattern recognition to assess the value of anatomical patterns derived from a widely available structural neuroimaging sequence for automated classification of these disorders. To achieve this, 17 patients with PSP, 14 with IPD and 19 with MSA were scanned using structural MRI along with 19 healthy controls (HCs. An advanced probabilistic pattern recognition approach was employed to evaluate the diagnostic value of several pre-defined anatomical patterns for discriminating the disorders, including: (i a subcortical motor network; (ii each of its component regions and (iii the whole brain. All disease groups could be discriminated simultaneously with high accuracy using the subcortical motor network. The region providing the most accurate predictions overall was the midbrain/brainstem, which discriminated all disease groups from one another and from HCs. The subcortical network also produced more accurate predictions than the whole brain and all of its constituent regions. PSP was accurately predicted from the midbrain/brainstem, cerebellum and all basal ganglia compartments; MSA from the midbrain/brainstem and cerebellum and IPD from the midbrain/brainstem only. This study demonstrates that automated analysis of structural MRI can accurately predict diagnosis in individual patients with Parkinsonian disorders, and identifies distinct patterns of regional atrophy particularly useful for this process.

  17. NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition

    Directory of Open Access Journals (Sweden)

    Hung Hsieh-Chuan

    2006-12-01

    Full Text Available Abstract Background Biomedical named entity recognition (Bio-NER is a challenging problem because, in general, biomedical named entities of the same category (e.g., proteins and genes do not follow one standard nomenclature. They have many irregularities and sometimes appear in ambiguous contexts. In recent years, machine-learning (ML approaches have become increasingly common and now represent the cutting edge of Bio-NER technology. This paper addresses three problems faced by ML-based Bio-NER systems. First, most ML approaches usually employ singleton features that comprise one linguistic property (e.g., the current word is capitalized and at least one class tag (e.g., B-protein, the beginning of a protein name. However, such features may be insufficient in cases where multiple properties must be considered. Adding conjunction features that contain multiple properties can be beneficial, but it would be infeasible to include all conjunction features in an NER model since memory resources are limited and some features are ineffective. To resolve the problem, we use a sequential forward search algorithm to select an effective set of features. Second, variations in the numerical parts of biomedical terms (e.g., "2" in the biomedical term IL2 cause data sparseness and generate many redundant features. In this case, we apply numerical normalization, which solves the problem by replacing all numerals in a term with one representative numeral to help classify named entities. Third, the assignment of NE tags does not depend solely on the target word's closest neighbors, but may depend on words outside the context window (e.g., a context window of five consists of the current word plus two preceding and two subsequent words. We use global patterns generated by the Smith-Waterman local alignment algorithm to identify such structures and modify the results of our ML-based tagger. This is called pattern-based post-processing. Results To develop our ML

  18. NERBio: using selected word conjunctions, term normalization, and global patterns to improve biomedical named entity recognition.

    Science.gov (United States)

    Tsai, Richard Tzong-Han; Sung, Cheng-Lung; Dai, Hong-Jie; Hung, Hsieh-Chuan; Sung, Ting-Yi; Hsu, Wen-Lian

    2006-12-18

    Biomedical named entity recognition (Bio-NER) is a challenging problem because, in general, biomedical named entities of the same category (e.g., proteins and genes) do not follow one standard nomenclature. They have many irregularities and sometimes appear in ambiguous contexts. In recent years, machine-learning (ML) approaches have become increasingly common and now represent the cutting edge of Bio-NER technology. This paper addresses three problems faced by ML-based Bio-NER systems. First, most ML approaches usually employ singleton features that comprise one linguistic property (e.g., the current word is capitalized) and at least one class tag (e.g., B-protein, the beginning of a protein name). However, such features may be insufficient in cases where multiple properties must be considered. Adding conjunction features that contain multiple properties can be beneficial, but it would be infeasible to include all conjunction features in an NER model since memory resources are limited and some features are ineffective. To resolve the problem, we use a sequential forward search algorithm to select an effective set of features. Second, variations in the numerical parts of biomedical terms (e.g., "2" in the biomedical term IL2) cause data sparseness and generate many redundant features. In this case, we apply numerical normalization, which solves the problem by replacing all numerals in a term with one representative numeral to help classify named entities. Third, the assignment of NE tags does not depend solely on the target word's closest neighbors, but may depend on words outside the context window (e.g., a context window of five consists of the current word plus two preceding and two subsequent words). We use global patterns generated by the Smith-Waterman local alignment algorithm to identify such structures and modify the results of our ML-based tagger. This is called pattern-based post-processing. To develop our ML-based Bio-NER system, we employ conditional

  19. Theoretical Aspects of the Patterns Recognition Statistical Theory Used for Developing the Diagnosis Algorithms for Complicated Technical Systems

    Science.gov (United States)

    Obozov, A. A.; Serpik, I. N.; Mihalchenko, G. S.; Fedyaeva, G. A.

    2017-01-01

    In the article, the problem of application of the pattern recognition (a relatively young area of engineering cybernetics) for analysis of complicated technical systems is examined. It is shown that the application of a statistical approach for hard distinguishable situations could be the most effective. The different recognition algorithms are based on Bayes approach, which estimates posteriori probabilities of a certain event and an assumed error. Application of the statistical approach to pattern recognition is possible for solving the problem of technical diagnosis complicated systems and particularly big powered marine diesel engines.

  20. Mechanisms of Expression and Internalisation of FIBCD1; a novel Pattern Recognition Receptor in the Gut Mucosa

    DEFF Research Database (Denmark)

    Hammond, Mark; Schlosser, Anders; Dubey, Lalit Kumar

    2012-01-01

    is a carbohydrate recognition domain also expressed by the ficolins, which are pattern recognition molecules that activate the complement system via the lectin pathway. Chitin is a highly ace¬tylated homopolymer of β-1,4-N-acetyl-glucosamine carbohydrate found abundantly in nature in organisms such as fungi...... pattern recognition receptor that binds chitin and directs acetylated structures for de¬gradation in the endosome via clathrin-mediated endocytosis. The localisation of FIBCD1 in the intestinal mucosal epithelia points towards a functional role in innate immunity and/or gut homeostasis....

  1. Bifurcation analysis of oscillating network model of pattern recognition in the rabbit olfactory bulb

    Science.gov (United States)

    Baird, Bill

    1986-08-01

    A neural network model describing pattern recognition in the rabbit olfactory bulb is analysed to explain the changes in neural activity observed experimentally during classical Pavlovian conditioning. EEG activity recorded from an 8×8 arry of 64 electrodes directly on the surface on the bulb shows distinct spatial patterns of oscillation that correspond to the animal's recognition of different conditioned odors and change with conditioning to new odors. The model may be considered a variant of Hopfield's model of continuous analog neural dynamics. Excitatory and inhibitory cell types in the bulb and the anatomical architecture of their connection requires a nonsymmetric coupling matrix. As the mean input level rises during each breath of the animal, the system bifurcates from homogenous equilibrium to a spatially patterned oscillation. The theory of multiple Hopf bifurcations is employed to find coupled equations for the amplitudes of these unstable oscillatory modes independent of frequency. This allows a view of stored periodic attractors as fixed points of a gradient vector field and thereby recovers the more familiar dynamical systems picture of associative memory.

  2. Fluid pipeline system leak detection based on neural network and pattern recognition

    International Nuclear Information System (INIS)

    Tang Xiujia

    1998-01-01

    The mechanism of the stress wave propagation along the pipeline system of NPP, caused by turbulent ejection from pipeline leakage, is researched. A series of characteristic index are described in time domain or frequency domain, and compress numerical algorithm is developed for original data compression. A back propagation neural networks (BPNN) with the input matrix composed by stress wave characteristics in time domain or frequency domain is first proposed to classify various situations of the pipeline, in order to detect the leakage in the fluid flow pipelines. The capability of the new method had been demonstrated by experiments and finally used to design a handy instrument for the pipeline leakage detection. Usually a pipeline system has many inner branches and often in adjusting dynamic condition, it is difficult for traditional pipeline diagnosis facilities to identify the difference between inner pipeline operation and pipeline fault. The author first proposed pipeline wave propagation identification by pattern recognition to diagnose pipeline leak. A series of pattern primitives such as peaks, valleys, horizon lines, capstan peaks, dominant relations, slave relations, etc., are used to extract features of the negative pressure wave form. The context-free grammar of symbolic representation of the negative wave form is used, and a negative wave form parsing system with application to structural pattern recognition based on the representation is first proposed to detect and localize leaks of the fluid pipelines

  3. Fast pattern recognition with the ATLAS L1Track trigger for HL-LHC

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00530554; The ATLAS collaboration

    2017-01-01

    A fast hardware based track trigger is being developed in ATLAS for the High Luminosity upgrade of the Large Hadron Collider. The goal is to achieve trigger levels in the high pile-up conditions of the High Luminosity Large Hadron Collider that are similar or better than those achieved at low pile-up conditions by adding tracking information to the ATLAS hardware trigger. A method for fast pattern recognition using the Hough transform is investigated. In this method, detector hits are mapped onto a 2D parameter space with one parameter related to the transverse momentum and one to the initial track direction. The performance of the Hough transform is studied at different pile-up values. It is also compared, using full event simulation of events with average pile-up of 200, with a method based on matching detector hits to pattern banks of simulated tracks stored in a custom made Associative Memory ASICs. The pattern recognition is followed by a track fitting step which calculates the track parameters. The spee...

  4. Fast pattern recognition with the ATLAS L1 track trigger for the HL-LHC

    CERN Document Server

    Martensson, Mikael; The ATLAS collaboration

    2016-01-01

    A fast hardware based track trigger for high luminosity upgrade of the Large Hadron Collider (HL- LHC) is being developed in ATLAS. The goal is to achieve trigger levels in high pileup collisions that are similar or even better than those achieved at low pile-up running of LHC by adding tracking information to the ATLAS hardware trigger which is currently based on information from calorimeters and muon trigger chambers only. Two methods for fast pattern recognition are investigated. The first is based on matching tracker hits to pattern banks of simulated high momentum tracks which are stored in a custom made Associative Memory (AM) ASIC. The second is based on the Hough transform where detector hits are transformed into 2D Hough space with one variable related to track pt and one to track direction. Hits found by pattern recognition will be sent to a track fitting step which calculates the track parameters . The speed and precision of the track fitting depends on the quality of the hits selected by the patte...

  5. BIOCAT: a pattern recognition platform for customizable biological image classification and annotation.

    Science.gov (United States)

    Zhou, Jie; Lamichhane, Santosh; Sterne, Gabriella; Ye, Bing; Peng, Hanchuan

    2013-10-04

    Pattern recognition algorithms are useful in bioimage informatics applications such as quantifying cellular and subcellular objects, annotating gene expressions, and classifying phenotypes. To provide effective and efficient image classification and annotation for the ever-increasing microscopic images, it is desirable to have tools that can combine and compare various algorithms, and build customizable solution for different biological problems. However, current tools often offer a limited solution in generating user-friendly and extensible tools for annotating higher dimensional images that correspond to multiple complicated categories. We develop the BIOimage Classification and Annotation Tool (BIOCAT). It is able to apply pattern recognition algorithms to two- and three-dimensional biological image sets as well as regions of interest (ROIs) in individual images for automatic classification and annotation. We also propose a 3D anisotropic wavelet feature extractor for extracting textural features from 3D images with xy-z resolution disparity. The extractor is one of the about 20 built-in algorithms of feature extractors, selectors and classifiers in BIOCAT. The algorithms are modularized so that they can be "chained" in a customizable way to form adaptive solution for various problems, and the plugin-based extensibility gives the tool an open architecture to incorporate future algorithms. We have applied BIOCAT to classification and annotation of images and ROIs of different properties with applications in cell biology and neuroscience. BIOCAT provides a user-friendly, portable platform for pattern recognition based biological image classification of two- and three- dimensional images and ROIs. We show, via diverse case studies, that different algorithms and their combinations have different suitability for various problems. The customizability of BIOCAT is thus expected to be useful for providing effective and efficient solutions for a variety of biological

  6. Morphological characterization of Mycobacterium tuberculosis in a MODS culture for an automatic diagnostics through pattern recognition.

    Directory of Open Access Journals (Sweden)

    Alicia Alva

    Full Text Available Tuberculosis control efforts are hampered by a mismatch in diagnostic technology: modern optimal diagnostic tests are least available in poor areas where they are needed most. Lack of adequate early diagnostics and MDR detection is a critical problem in control efforts. The Microscopic Observation Drug Susceptibility (MODS assay uses visual recognition of cording patterns from Mycobacterium tuberculosis (MTB to diagnose tuberculosis infection and drug susceptibility directly from a sputum sample in 7-10 days with a low cost. An important limitation that laboratories in the developing world face in MODS implementation is the presence of permanent technical staff with expertise in reading MODS. We developed a pattern recognition algorithm to automatically interpret MODS results from digital images. The algorithm using image processing, feature extraction and pattern recognition determined geometrical and illumination features used in an object-model and a photo-model to classify TB-positive images. 765 MODS digital photos were processed. The single-object model identified MTB (96.9% sensitivity and 96.3% specificity and was able to discriminate non-tuberculous mycobacteria with a high specificity (97.1% M. avium, 99.1% M. chelonae, and 93.8% M. kansasii. The photo model identified TB-positive samples with 99.1% sensitivity and 99.7% specificity. This algorithm is a valuable tool that will enable automatic remote diagnosis using Internet or cellphone telephony. The use of this algorithm and its further implementation in a telediagnostics platform will contribute to both faster TB detection and MDR TB determination leading to an earlier initiation of appropriate treatment.

  7. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

    Science.gov (United States)

    Arubi, Tesi I. M.; Yeung, Hoi

    2012-03-01

    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

  8. A microprocessor-based single board computer for high energy physics event pattern recognition

    International Nuclear Information System (INIS)

    Bernstein, H.; Gould, J.J.; Imossi, R.; Kopp, J.K.; Love, W.A.; Ozaki, S.; Platner, E.D.; Kramer, M.A.

    1981-01-01

    A single board MC 68000 based computer has been assembled and bench marked against the CDC 7600 running portions of the pattern recognition code used at the MPS. This computer has a floating coprocessor to achieve throughputs equivalent to several percent that of the 7600. A major part of this work was the construction of a FORTRAN compiler including assembler, linker and library. The intention of this work is to assemble a large number of these single board computers in a parallel FASTBUS environment to act as an on-line and off-line filter for the raw data from MPS II and ISABELLE experiments. (orig.)

  9. Application of Pattern Recognition Method for Color Assessment of Oriental Tobacco based on HPLC of Polyphenols

    Directory of Open Access Journals (Sweden)

    Dagnon S

    2014-12-01

    Full Text Available The color of Oriental tobaccos was organoleptically assayed, and high performance liquid chromatography (HPLC of polyphenols was performed. The major tobacco polyphenols (chlorogenic acid, its isomers, and rutin, as well as scopoletin and kaempferol-3-rutinoside were quantified. HPLC polyphenol profiles were processed by pattern recognition method (PRM, and the values of indexes of similarity (Is,% between the cultivars studied were determined. It was shown that data from organoleptic color assessment and from PRM based on HPLC profiles of polyphenols of the cultivars studied are largely compatible. Hence, PRM can be suggested as an additional tool for objective color evaluation and classification of Oriental tobacco.

  10. REMOVAL OF SPECTRO-POLARIMETRIC FRINGES BY TWO-DIMENSIONAL PATTERN RECOGNITION

    International Nuclear Information System (INIS)

    Casini, R.; Judge, P. G.; Schad, T. A.

    2012-01-01

    We present a pattern-recognition-based approach to the problem of the removal of polarized fringes from spectro-polarimetric data. We demonstrate that two-dimensional principal component analysis can be trained on a given spectro-polarimetric map in order to identify and isolate fringe structures from the spectra. This allows us, in principle, to reconstruct the data without the fringe component, providing an effective and clean solution to the problem. The results presented in this paper point in the direction of revising the way that science and calibration data should be planned for a typical spectro-polarimetric observing run.

  11. Pattern-recognition system application to EBR-II plant-life extension

    International Nuclear Information System (INIS)

    King, R.W.; Radtke, W.H.; Mott, J.E.

    1988-01-01

    A computer-based pattern-recognition system, the System State Analyzer (SSA), is being used as part of the EBR-II plant-life extension program for detection of degradation and other abnormalities in plant systems. The SSA is used for surveillance of the EBR-II primary system instrumentation, primary sodium pumps, and plant heat balances. Early results of this surveillance indicate that the SSA can detect instrumentation degradation and system performance degradation over varying time intervals, and can provide derived signal values to replace signals from failed critical sensors. These results are being used in planning for extended-life operation of EBR-II

  12. Neutron-gamma discrimination employing pattern recognition of the signal from liquid scintillator

    International Nuclear Information System (INIS)

    Kamada, Kohji; Enokido, Uhji; Ogawa, Seiji

    1999-01-01

    A pattern recognition method was applied to the neutron-gamma discrimination of the pulses from the liquid scintillator, NE-213. The circuit for the discrimination is composed of A/D converter, fast SCA, memory control circuit, two digital delay lines and two buffer memories. All components are packed on a small circuit board and are installed into a personal computer. Experiments using a weak 252 Cf n-γ source were undertaken to test the feasibility of the circuit. The circuit is of very easy adjustment and, at the same time, of very economical price when compared with usual discrimination circuits, such as the TAC system

  13. Neutron-gamma discrimination employing pattern recognition of the signal from liquid scintillator

    CERN Document Server

    Kamada, K; Ogawa, S

    1999-01-01

    A pattern recognition method was applied to the neutron-gamma discrimination of the pulses from the liquid scintillator, NE-213. The circuit for the discrimination is composed of A/D converter, fast SCA, memory control circuit, two digital delay lines and two buffer memories. All components are packed on a small circuit board and are installed into a personal computer. Experiments using a weak sup 2 sup 5 sup 2 Cf n-gamma source were undertaken to test the feasibility of the circuit. The circuit is of very easy adjustment and, at the same time, of very economical price when compared with usual discrimination circuits, such as the TAC system.

  14. [Fuzzing pattern recognition study on Raman spectrum of tumor peripheral tissue].

    Science.gov (United States)

    Luo, Lei; Zhao, Yuan-li; Ge, Xiang-hong; Zhang, Xiao-dong; Hao, Zhi-fang; Lü, Jing

    2006-06-01

    On the basis of some theories about fuzzing pattern recognition, the present article studied the data preprocessing of the Raman spectrum of tumor peripheral tissue, and feature extraction and selection. According to these features the authors improved the leaning towards the bigger membership function of trapezoidal distribution. The authors built the membership function of Raman spectrum of tumor peripheral tissue which belongs to malignant tumor on the basis of 40 specimens, and designed the classifier. The test of other 40 specimens showed that the discrimination of malignant tumor is 82.4%, while that of beginning tumor is 73.9%.

  15. Trends in Correlation-Based Pattern Recognition and Tracking in Forward-Looking Infrared Imagery

    Science.gov (United States)

    Alam, Mohammad S.; Bhuiyan, Sharif M. A.

    2014-01-01

    In this paper, we review the recent trends and advancements on correlation-based pattern recognition and tracking in forward-looking infrared (FLIR) imagery. In particular, we discuss matched filter-based correlation techniques for target detection and tracking which are widely used for various real time applications. We analyze and present test results involving recently reported matched filters such as the maximum average correlation height (MACH) filter and its variants, and distance classifier correlation filter (DCCF) and its variants. Test results are presented for both single/multiple target detection and tracking using various real-life FLIR image sequences. PMID:25061840

  16. Microprocessor-based single board computer for high energy physics event pattern recognition

    International Nuclear Information System (INIS)

    Bernstein, H.; Gould, J.J.; Imossi, R.; Kopp, J.K.; Love, W.A.; Ozaki, S.; Platner, E.D.; Kramer, M.A.

    1981-01-01

    A single board MC 68000 based computer has been assembled and bench marked against the CDC 7600 running portions of the pattern recognition code used at the MPS. This computer has a floating coprocessor to achieve throughputs equivalent to several percent that of the 7600. A major part of this work was the construction of a FORTRAN compiler including assembler, linker and library. The intention of this work is to assemble a large number of these single board computers in a parallel FASTBUS environment to act as an on-line and off-line filter for the raw data from MPS II and ISABELLE experiments

  17. Semantic Network Adaptation Based on QoS Pattern Recognition for Multimedia Streams

    Science.gov (United States)

    Exposito, Ernesto; Gineste, Mathieu; Lamolle, Myriam; Gomez, Jorge

    This article proposes an ontology based pattern recognition methodology to compute and represent common QoS properties of the Application Data Units (ADU) of multimedia streams. The use of this ontology by mechanisms located at different layers of the communication architecture will allow implementing fine per-packet self-optimization of communication services regarding the actual application requirements. A case study showing how this methodology is used by error control mechanisms in the context of wireless networks is presented in order to demonstrate the feasibility and advantages of this approach.

  18. Research Issues in Evaluating Learning Pattern Development in Higher Education

    Science.gov (United States)

    Richardson, John T. E.

    2013-01-01

    This article concludes the special issue of "Studies in Educational Evaluation" concerned with "Evaluating learning pattern development in higher education" by discussing research issues that have emerged from the previous contributions. The article considers in turn: stability versus variability in learning patterns; old versus new analytic…

  19. Fully Exploiting The Potential Of The Periodic Table Through Pattern Recognition.

    Science.gov (United States)

    Schultz, Emeric

    2005-01-01

    An approach to learning chemical facts that starts with the periodic table and depends primarily on recognizing and completing patterns and following a few simple rules is described. This approach exploits the exceptions that arise and uses them as opportunities for further concept development.

  20. Evaluating structural pattern recognition for handwritten math via primitive label graphs

    Science.gov (United States)

    Zanibbi, Richard; Mouchère, Harold; Viard-Gaudin, Christian

    2013-01-01

    Currently, structural pattern recognizer evaluations compare graphs of detected structure to target structures (i.e. ground truth) using recognition rates, recall and precision for object segmentation, classification and relationships. In document recognition, these target objects (e.g. symbols) are frequently comprised of multiple primitives (e.g. connected components, or strokes for online handwritten data), but current metrics do not characterize errors at the primitive level, from which object-level structure is obtained. Primitive label graphs are directed graphs defined over primitives and primitive pairs. We define new metrics obtained by Hamming distances over label graphs, which allow classification, segmentation and parsing errors to be characterized separately, or using a single measure. Recall and precision for detected objects may also be computed directly from label graphs. We illustrate the new metrics by comparing a new primitive-level evaluation to the symbol-level evaluation performed for the CROHME 2012 handwritten math recognition competition. A Python-based set of utilities for evaluating, visualizing and translating label graphs is publicly available.

  1. Reduction of the dimension of neural network models in problems of pattern recognition and forecasting

    Science.gov (United States)

    Nasertdinova, A. D.; Bochkarev, V. V.

    2017-11-01

    Deep neural networks with a large number of parameters are a powerful tool for solving problems of pattern recognition, prediction and classification. Nevertheless, overfitting remains a serious problem in the use of such networks. A method of solving the problem of overfitting is proposed in this article. This method is based on reducing the number of independent parameters of a neural network model using the principal component analysis, and can be implemented using existing libraries of neural computing. The algorithm was tested on the problem of recognition of handwritten symbols from the MNIST database, as well as on the task of predicting time series (rows of the average monthly number of sunspots and series of the Lorentz system were used). It is shown that the application of the principal component analysis enables reducing the number of parameters of the neural network model when the results are good. The average error rate for the recognition of handwritten figures from the MNIST database was 1.12% (which is comparable to the results obtained using the "Deep training" methods), while the number of parameters of the neural network can be reduced to 130 times.

  2. Back-dropout Transfer Learning for Action Recognition

    DEFF Research Database (Denmark)

    Ren, Huamin; Kanhabua, Nattiya; Møgelmose, Andreas

    2018-01-01

    transfer learning being a promising approach, it is still an open question how to adapt the model learned from the source dataset to the target dataset. One big challenge is to prevent the impact of category bias on classification performance. Dataset bias exists when two images from the same category...

  3. Recognition of prior learning (RPL): from principle to practice in ...

    African Journals Online (AJOL)

    Significant developments in RPL are taking place in the formal education and training systems in South Africa alongside other policy and curriculum initiatives towards access, equity, flexibility and lifelong learning. Demands to have learning gained informally from experience recognised will be great. This raises questions ...

  4. Recognition of Prior Learning as an integral component of ...

    African Journals Online (AJOL)

    Erna Kinsey

    In these theories, learning is seen as a lifelong developmental process which is ... According to Gawe (1999:23) many institutions of higher learning all over the ... the vocational sector as well as the education and training sector with different ...

  5. [Advantages and Application Prospects of Deep Learning in Image Recognition and Bone Age Assessment].

    Science.gov (United States)

    Hu, T H; Wan, L; Liu, T A; Wang, M W; Chen, T; Wang, Y H

    2017-12-01

    Deep learning and neural network models have been new research directions and hot issues in the fields of machine learning and artificial intelligence in recent years. Deep learning has made a breakthrough in the applications of image and speech recognitions, and also has been extensively used in the fields of face recognition and information retrieval because of its special superiority. Bone X-ray images express different variations in black-white-gray gradations, which have image features of black and white contrasts and level differences. Based on these advantages of deep learning in image recognition, we combine it with the research of bone age assessment to provide basic datum for constructing a forensic automatic system of bone age assessment. This paper reviews the basic concept and network architectures of deep learning, and describes its recent research progress on image recognition in different research fields at home and abroad, and explores its advantages and application prospects in bone age assessment. Copyright© by the Editorial Department of Journal of Forensic Medicine.

  6. HD-MTL: Hierarchical Deep Multi-Task Learning for Large-Scale Visual Recognition.

    Science.gov (United States)

    Fan, Jianping; Zhao, Tianyi; Kuang, Zhenzhong; Zheng, Yu; Zhang, Ji; Yu, Jun; Peng, Jinye

    2017-02-09

    In this paper, a hierarchical deep multi-task learning (HD-MTL) algorithm is developed to support large-scale visual recognition (e.g., recognizing thousands or even tens of thousands of atomic object classes automatically). First, multiple sets of multi-level deep features are extracted from different layers of deep convolutional neural networks (deep CNNs), and they are used to achieve more effective accomplishment of the coarseto- fine tasks for hierarchical visual recognition. A visual tree is then learned by assigning the visually-similar atomic object classes with similar learning complexities into the same group, which can provide a good environment for determining the interrelated learning tasks automatically. By leveraging the inter-task relatedness (inter-class similarities) to learn more discriminative group-specific deep representations, our deep multi-task learning algorithm can train more discriminative node classifiers for distinguishing the visually-similar atomic object classes effectively. Our hierarchical deep multi-task learning (HD-MTL) algorithm can integrate two discriminative regularization terms to control the inter-level error propagation effectively, and it can provide an end-to-end approach for jointly learning more representative deep CNNs (for image representation) and more discriminative tree classifier (for large-scale visual recognition) and updating them simultaneously. Our incremental deep learning algorithms can effectively adapt both the deep CNNs and the tree classifier to the new training images and the new object classes. Our experimental results have demonstrated that our HD-MTL algorithm can achieve very competitive results on improving the accuracy rates for large-scale visual recognition.

  7. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies.

    Science.gov (United States)

    Benatti, Simone; Milosevic, Bojan; Farella, Elisabetta; Gruppioni, Emanuele; Benini, Luca

    2017-04-15

    Poliarticulated prosthetic hands represent a powerful tool to restore functionality and improve quality of life for upper limb amputees. Such devices offer, on the same wearable node, sensing and actuation capabilities, which are not equally supported by natural interaction and control strategies. The control in state-of-the-art solutions is still performed mainly through complex encoding of gestures in bursts of contractions of the residual forearm muscles, resulting in a non-intuitive Human-Machine Interface (HMI). Recent research efforts explore the use of myoelectric gesture recognition for innovative interaction solutions, however there persists a considerable gap between research evaluation and implementation into successful complete systems. In this paper, we present the design of a wearable prosthetic hand controller, based on intuitive gesture recognition and a custom control strategy. The wearable node directly actuates a poliarticulated hand and wirelessly interacts with a personal gateway (i.e., a smartphone) for the training and personalization of the recognition algorithm. Through the whole system development, we address the challenge of integrating an efficient embedded gesture classifier with a control strategy tailored for an intuitive interaction between the user and the prosthesis. We demonstrate that this combined approach outperforms systems based on mere pattern recognition, since they target the accuracy of a classification algorithm rather than the control of a gesture. The system was fully implemented, tested on healthy and amputee subjects and compared against benchmark repositories. The proposed approach achieves an error rate of 1.6% in the end-to-end real time control of commonly used hand gestures, while complying with the power and performance budget of a low-cost microcontroller.

  8. Online Feature Transformation Learning for Cross-Domain Object Category Recognition.

    Science.gov (United States)

    Zhang, Xuesong; Zhuang, Yan; Wang, Wei; Pedrycz, Witold

    2017-06-09

    In this paper, we introduce a new research problem termed online feature transformation learning in the context of multiclass object category recognition. The learning of a feature transformation is viewed as learning a global similarity metric function in an online manner. We first consider the problem of online learning a feature transformation matrix expressed in the original feature space and propose an online passive aggressive feature transformation algorithm. Then these original features are mapped to kernel space and an online single kernel feature transformation (OSKFT) algorithm is developed to learn a nonlinear feature transformation. Based on the OSKFT and the existing Hedge algorithm, a novel online multiple kernel feature transformation algorithm is also proposed, which can further improve the performance of online feature transformation learning in large-scale application. The classifier is trained with k nearest neighbor algorithm together with the learned similarity metric function. Finally, we experimentally examined the effect of setting different parameter values in the proposed algorithms and evaluate the model performance on several multiclass object recognition data sets. The experimental results demonstrate the validity and good performance of our methods on cross-domain and multiclass object recognition application.

  9. Shape-based hand recognition approach using the morphological pattern spectrum

    Science.gov (United States)

    Ramirez-Cortes, Juan Manuel; Gomez-Gil, Pilar; Sanchez-Perez, Gabriel; Prieto-Castro, Cesar

    2009-01-01

    We propose the use of the morphological pattern spectrum, or pecstrum, as the base of a biometric shape-based hand recognition system. The system receives an image of the right hand of a subject in an unconstrained pose, which is captured with a commercial flatbed scanner. According to pecstrum property of invariance to translation and rotation, the system does not require the use of pegs for a fixed hand position, which simplifies the image acquisition process. This novel feature-extraction method is tested using a Euclidean distance classifier for identification and verification cases, obtaining 97% correct identification, and an equal error rate (EER) of 0.0285 (2.85%) for the verification mode. The obtained results indicate that the pattern spectrum represents a good feature-extraction alternative for low- and medium-level hand-shape-based biometric applications.

  10. Preparation and pattern recognition of metallic Ni ultrafine powders by electroless plating

    International Nuclear Information System (INIS)

    Zhang, H.J.; Zhang, H.T.; Wu, X.W.; Wang, Z.L.; Jia, Q.L.; Jia, X.L.

    2006-01-01

    Using hydrazine hydrate as reductant, metallic Ni ultrafine powders were prepared from NiSO 4 aqueous solution by electroless plating method. The factors including concentration of NiSO 4 , bathing temperature, ratio of hydrazine hydrate to NiSO 4 , the pH of the solution, etc., on influence of the yield and average particle size of metallic Ni ultrafine powders were studied in detail. X-ray powders diffraction patterns show that the nickel powders are cubic crystallite. The average crystalline size of the ultrafine nickel powders is about 30 nm. The dielectric and magnetic loss of ultrafine Ni powders-paraffin wax composites were measured by the rectangle waveguide method in the range 8.2-12.4 GHz. The factors for Ni ultrafine powders preparation are optimized by computer pattern recognition program based on principal component analysis, the optimum factors regions with higher yield of metallic Ni ultrafine powders are indicated by this way

  11. Design of environmental monitoring system of nuclear facility based on a method of pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, N; Kiyose, R; Yamamoto, Y [Tokyo Univ. (Japan). Faculty of Engineering

    1977-10-01

    The problem to optimize the number and locations of environmental radiation monitoring detectors is formulated by taking the specifically defined distance measures as a performance index and solved numerically using heuristic programming such as branch and bound method. An ideal numerical example neglecting noises due to background radiation, shows that the desirable number and locations of detectors are determined mainly by the atmospheric conditions and are not significantly influenced by the variation of the rate and pattern of activity release from the nuclear facility. It is shown also that the appropriate and sufficient number of monitoring detectors to be located around the facility will be from three to six at most, if considered from the viewpoint of pattern recognition.

  12. USE OF FACIAL EMOTION RECOGNITION IN E-LEARNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Uğur Ayvaz

    2017-09-01

    Full Text Available Since the personal computer usage and internet bandwidth are increasing, e-learning systems are also widely spreading. Although e-learning has some advantages in terms of information accessibility, time and place flexibility compared to the formal learning, it does not provide enough face-to-face interactivity between an educator and learners. In this study, we are proposing a hybrid information system, which is combining computer vision and machine learning technologies for visual and interactive e-learning systems. The proposed information system detects emotional states of the learners and gives feedback to an educator about their instant and weighted emotional states based on facial expressions. In this way, the educator will be aware of the general emotional state of the virtual classroom and the system will create a formal learning-like interactive environment. Herein, several classification algorithms were applied to learn instant emotional state and the best accuracy rates were obtained using kNN and SVM algorithms.

  13. Changes in recognition memory over time: an ERP investigation into vocabulary learning.

    Directory of Open Access Journals (Sweden)

    Shekeila D Palmer

    Full Text Available Although it seems intuitive to assume that recognition memory fades over time when information is not reinforced, some aspects of word learning may benefit from a period of consolidation. In the present study, event-related potentials (ERP were used to examine changes in recognition memory responses to familiar and newly learned (novel words over time. Native English speakers were taught novel words associated with English translations, and subsequently performed a Recognition Memory task in which they made old/new decisions in response to both words (trained word vs. untrained word, and novel words (trained novel word vs. untrained novel word. The Recognition task was performed 45 minutes after training (Day 1 and then repeated the following day (Day 2 with no additional training session in between. For familiar words, the late parietal old/new effect distinguished old from new items on both Day 1 and Day 2, although response to trained items was significantly weaker on Day 2. For novel words, the LPC again distinguished old from new items on both days, but the effect became significantly larger on Day 2. These data suggest that while recognition memory for familiar items may fade over time, recognition of novel items, conscious recollection in particular may benefit from a period of consolidation.

  14. A texture based pattern recognition approach to distinguish melanoma from non-melanoma cells in histopathological tissue microarray sections.

    Directory of Open Access Journals (Sweden)

    Elton Rexhepaj

    Full Text Available AIMS: Immunohistochemistry is a routine practice in clinical cancer diagnostics and also an established technology for tissue-based research regarding biomarker discovery efforts. Tedious manual assessment of immunohistochemically stained tissue needs to be fully automated to take full advantage of the potential for high throughput analyses enabled by tissue microarrays and digital pathology. Such automated tools also need to be reproducible for different experimental conditions and biomarker targets. In this study we present a novel supervised melanoma specific pattern recognition approach that is fully automated and quantitative. METHODS AND RESULTS: Melanoma samples were immunostained for the melanocyte specific target, Melan-A. Images representing immunostained melanoma tissue were then digitally processed to segment regions of interest, highlighting Melan-A positive and negative areas. Color deconvolution was applied to each region of interest to separate the channel containing the immunohistochemistry signal from the hematoxylin counterstaining channel. A support vector machine melanoma classification model was learned from a discovery melanoma patient cohort (n = 264 and subsequently validated on an independent cohort of melanoma patient tissue sample images (n = 157. CONCLUSION: Here we propose a novel method that takes advantage of utilizing an immuhistochemical marker highlighting melanocytes to fully automate the learning of a general melanoma cell classification model. The presented method can be applied on any protein of interest and thus provides a tool for quantification of immunohistochemistry-based protein expression in melanoma.

  15. NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review

    International Nuclear Information System (INIS)

    Smolinska, Agnieszka; Blanchet, Lionel; Buydens, Lutgarde M.C.; Wijmenga, Sybren S.

    2012-01-01

    Highlights: ► Procedures for acquisition of different biofluids by NMR. ► Recent developments in metabolic profiling of different biofluids by NMR are presented. ► The crucial steps involved in data preprocessing and multivariate chemometric analysis are reviewed. ► Emphasis is given on recent findings on Multiple Sclerosis via NMR and pattern recognition methods. - Abstract: Metabolomics is the discipline where endogenous and exogenous metabolites are assessed, identified and quantified in different biological samples. Metabolites are crucial components of biological system and highly informative about its functional state, due to their closeness to functional endpoints and to the organism's phenotypes. Nuclear Magnetic Resonance (NMR) spectroscopy, next to Mass Spectrometry (MS), is one of the main metabolomics analytical platforms. The technological developments in the field of NMR spectroscopy have enabled the identification and quantitative measurement of the many metabolites in a single sample of biofluids in a non-targeted and non-destructive manner. Combination of NMR spectra of biofluids and pattern recognition methods has driven forward the application of metabolomics in the field of biomarker discovery. The importance of metabolomics in diagnostics, e.g. in identifying biomarkers or defining pathological status, has been growing exponentially as evidenced by the number of published papers. In this review, we describe the developments in data acquisition and multivariate analysis of NMR-based metabolomics data, with particular emphasis on the metabolomics of Cerebrospinal Fluid (CSF) and biomarker discovery in Multiple Sclerosis (MScl).

  16. Health monitoring of 90° bolted joints using fuzzy pattern recognition of ultrasonic signals

    International Nuclear Information System (INIS)

    Jalalpour, M; El-Osery, A I; Austin, E M; Reda Taha, M M

    2014-01-01

    Bolted joints are important parts for aerospace structures. However, there is a significant risk associated with assembling bolted joints due to potential human error during the assembly process. Such errors are expensive to find and correct if exposed during environmental testing, yet checking the integrity of individual fasteners after assembly would be a time consuming task. Recent advances in structural health monitoring (SHM) can provide techniques to not only automate this process but also make it reliable. This integrity monitoring requires damage features to be related to physical conditions representing the structural integrity of bolted joints. In this paper an SHM technique using ultrasonic signals and fuzzy pattern recognition to monitor the integrity of 90° bolted joints in aerospace structures is described. The proposed technique is based on normalized fast Fourier transform (NFFT) of transmitted signals and fuzzy pattern recognition. Moreover, experimental observations of a case study on an aluminum 90° bolted joint are presented. We demonstrate the ability of the proposed method to efficiently monitor and indicate bolted joint integrity. (paper)

  17. Pattern Recognition via the Toll-Like Receptor System in the Human Female Genital Tract

    Directory of Open Access Journals (Sweden)

    Kaei Nasu

    2010-01-01

    Full Text Available The mucosal surface of the female genital tract is a complex biosystem, which provides a barrier against the outside world and participates in both innate and acquired immune defense systems. This mucosal compartment has adapted to a dynamic, non-sterile environment challenged by a variety of antigenic/inflammatory stimuli associated with sexual intercourse and endogenous vaginal microbiota. Rapid innate immune defenses against microbial infection usually involve the recognition of invading pathogens by specific pattern-recognition receptors recently attributed to the family of Toll-like receptors (TLRs. TLRs recognize conserved pathogen-associated molecular patterns (PAMPs synthesized by microorganisms including bacteria, fungi, parasites, and viruses as well as endogenous ligands associated with cell damage. Members of the TLR family, which includes 10 human TLRs identified to date, recognize distinct PAMPs produced by various bacterial, fungal, and viral pathogens. The available literature regarding the innate immune system of the female genital tract during human reproductive processes was reviewed in order to identify studies specifically related to the expression and function of TLRs under normal as well as pathological conditions. Increased understanding of these molecules may provide insight into site-specific immunoregulatory mechanisms in the female reproductive tract.

  18. Real-Time Control of an Exoskeleton Hand Robot with Myoelectric Pattern Recognition.

    Science.gov (United States)

    Lu, Zhiyuan; Chen, Xiang; Zhang, Xu; Tong, Kay-Yu; Zhou, Ping

    2017-08-01

    Robot-assisted training provides an effective approach to neurological injury rehabilitation. To meet the challenge of hand rehabilitation after neurological injuries, this study presents an advanced myoelectric pattern recognition scheme for real-time intention-driven control of a hand exoskeleton. The developed scheme detects and recognizes user's intention of six different hand motions using four channels of surface electromyography (EMG) signals acquired from the forearm and hand muscles, and then drives the exoskeleton to assist the user accomplish the intended motion. The system was tested with eight neurologically intact subjects and two individuals with spinal cord injury (SCI). The overall control accuracy was [Formula: see text] for the neurologically intact subjects and [Formula: see text] for the SCI subjects. The total lag of the system was approximately 250[Formula: see text]ms including data acquisition, transmission and processing. One SCI subject also participated in training sessions in his second and third visits. Both the control accuracy and efficiency tended to improve. These results show great potential for applying the advanced myoelectric pattern recognition control of the wearable robotic hand system toward improving hand function after neurological injuries.

  19. Differentiation of tea varieties using UV-Vis spectra and pattern recognition techniques

    Science.gov (United States)

    Palacios-Morillo, Ana; Alcázar, Ángela.; de Pablos, Fernando; Jurado, José Marcos

    2013-02-01

    Tea, one of the most consumed beverages all over the world, is of great importance in the economies of a number of countries. Several methods have been developed to classify tea varieties or origins based in pattern recognition techniques applied to chemical data, such as metal profile, amino acids, catechins and volatile compounds. Some of these analytical methods become tedious and expensive to be applied in routine works. The use of UV-Vis spectral data as discriminant variables, highly influenced by the chemical composition, can be an alternative to these methods. UV-Vis spectra of methanol-water extracts of tea have been obtained in the interval 250-800 nm. Absorbances have been used as input variables. Principal component analysis was used to reduce the number of variables and several pattern recognition methods, such as linear discriminant analysis, support vector machines and artificial neural networks, have been applied in order to differentiate the most common tea varieties. A successful classification model was built by combining principal component analysis and multilayer perceptron artificial neural networks, allowing the differentiation between tea varieties. This rapid and simple methodology can be applied to solve classification problems in food industry saving economic resources.

  20. Finger crease pattern recognition using Legendre moments and principal component analysis

    Science.gov (United States)

    Luo, Rongfang; Lin, Tusheng

    2007-03-01

    The finger joint lines defined as finger creases and its distribution can identify a person. In this paper, we propose a new finger crease pattern recognition method based on Legendre moments and principal component analysis (PCA). After obtaining the region of interest (ROI) for each finger image in the pre-processing stage, Legendre moments under Radon transform are applied to construct a moment feature matrix from the ROI, which greatly decreases the dimensionality of ROI and can represent principal components of the finger creases quite well. Then, an approach to finger crease pattern recognition is designed based on Karhunen-Loeve (K-L) transform. The method applies PCA to a moment feature matrix rather than the original image matrix to achieve the feature vector. The proposed method has been tested on a database of 824 images from 103 individuals using the nearest neighbor classifier. The accuracy up to 98.584% has been obtained when using 4 samples per class for training. The experimental results demonstrate that our proposed approach is feasible and effective in biometrics.