WorldWideScience

Sample records for learning model dslm

  1. The Effect of Cooperative Learning with DSLM on Conceptual Understanding and Scientific Reasoning among Form Four Physics Students with Different Motivation Levels

    Directory of Open Access Journals (Sweden)

    M.S. Hamzah

    2010-11-01

    Full Text Available The purpose of this study was to investigate the effect of Cooperative Learning with a Dual Situated Learning Model (CLDSLM and a Dual Situated Learning Model (DSLM on (a conceptual understanding (CU and (b scientific reasoning (SR among Form Four students. The study further investigated the effect of the CLDSLM and DSLM methods on performance in conceptual understanding and scientific reasoning among students with different motivation levels. A quasi-experimental method with the 3 x 2 Factorial Design was applied in the study. The sample consisted of 240 stu¬dents in six (form four classes selected from three different schools, i.e. two classes from each school, with students randomly selected and assigned to the treatment groups. The results showed that students in the CLDSLM group outperformed their counterparts in the DSLM group—who, in turn, significantly outperformed other students in the traditional instructional method (T group in scientific reasoning and conceptual understanding. Also, high-motivation (HM students in the CLDSLM group significantly outperformed their counterparts in the T groups in conceptual understanding and scientific reasoning. Furthermore, HM students in the CLDSLM group significantly outperformed their counterparts in the DSLM group in scientific reasoning but did not significantly outperform their counterparts on conceptual understanding. Also, the DSLM instructional method has significant positive effects on highly motivated students’ (a conceptual understanding and (b scientific reason¬ing. The results also showed that LM students in the CLDSLM group significantly outperformed their counterparts in the DSLM group and (T method group in scientific reasoning and conceptual understanding. However, the low-motivation students taught via the DSLM instructional method significantly performed higher than the low-motivation students taught via the T method in scientific reasoning. Nevertheless, they did not

  2. Notes on Conservation Laws, Equations of Motion of Matter, and Particle Fields in Lorentzian and Teleparallel de Sitter Space-Time Structures

    Directory of Open Access Journals (Sweden)

    Waldyr A. Rodrigues

    2016-01-01

    Full Text Available We discuss the physics of interacting fields and particles living in a de Sitter Lorentzian manifold (dSLM, a submanifold of a 5-dimensional pseudo-Euclidean (5dPE equipped with a metric tensor inherited from the metric of the 5dPE space. The dSLM is naturally oriented and time oriented and is the arena used to study the energy-momentum conservation law and equations of motion for physical systems living there. Two distinct de Sitter space-time structures MdSL and MdSTP are introduced given dSLM, the first equipped with the Levi-Civita connection of its metric field and the second with a metric compatible parallel connection. Both connections are used only as mathematical devices. Thus, for example, MdSL is not supposed to be the model of any gravitational field in the General Relativity Theory (GRT. Misconceptions appearing in the literature concerning the motion of free particles in dSLM are clarified. Komar currents are introduced within Clifford bundle formalism permitting the presentation of Einstein equation as a Maxwell like equation and proving that in GRT there are infinitely many conserved currents. We prove that in GRT even when the appropriate Killing vector fields exist it is not possible to define a conserved energy-momentum covector as in special relativistic theories.

  3. Learning with hierarchical-deep models.

    Science.gov (United States)

    Salakhutdinov, Ruslan; Tenenbaum, Joshua B; Torralba, Antonio

    2013-08-01

    We introduce HD (or “Hierarchical-Deep”) models, a new compositional learning architecture that integrates deep learning models with structured hierarchical Bayesian (HB) models. Specifically, we show how we can learn a hierarchical Dirichlet process (HDP) prior over the activities of the top-level features in a deep Boltzmann machine (DBM). This compound HDP-DBM model learns to learn novel concepts from very few training example by learning low-level generic features, high-level features that capture correlations among low-level features, and a category hierarchy for sharing priors over the high-level features that are typical of different kinds of concepts. We present efficient learning and inference algorithms for the HDP-DBM model and show that it is able to learn new concepts from very few examples on CIFAR-100 object recognition, handwritten character recognition, and human motion capture datasets.

  4. Model-based machine learning.

    Science.gov (United States)

    Bishop, Christopher M

    2013-02-13

    Several decades of research in the field of machine learning have resulted in a multitude of different algorithms for solving a broad range of problems. To tackle a new application, a researcher typically tries to map their problem onto one of these existing methods, often influenced by their familiarity with specific algorithms and by the availability of corresponding software implementations. In this study, we describe an alternative methodology for applying machine learning, in which a bespoke solution is formulated for each new application. The solution is expressed through a compact modelling language, and the corresponding custom machine learning code is then generated automatically. This model-based approach offers several major advantages, including the opportunity to create highly tailored models for specific scenarios, as well as rapid prototyping and comparison of a range of alternative models. Furthermore, newcomers to the field of machine learning do not have to learn about the huge range of traditional methods, but instead can focus their attention on understanding a single modelling environment. In this study, we show how probabilistic graphical models, coupled with efficient inference algorithms, provide a very flexible foundation for model-based machine learning, and we outline a large-scale commercial application of this framework involving tens of millions of users. We also describe the concept of probabilistic programming as a powerful software environment for model-based machine learning, and we discuss a specific probabilistic programming language called Infer.NET, which has been widely used in practical applications.

  5. Learning versus correct models: influence of model type on the learning of a free-weight squat lift.

    Science.gov (United States)

    McCullagh, P; Meyer, K N

    1997-03-01

    It has been assumed that demonstrating the correct movement is the best way to impart task-relevant information. However, empirical verification with simple laboratory skills has shown that using a learning model (showing an individual in the process of acquiring the skill to be learned) may accelerate skill acquisition and increase retention more than using a correct model. The purpose of the present study was to compare the effectiveness of viewing correct versus learning models on the acquisition of a sport skill (free-weight squat lift). Forty female participants were assigned to four learning conditions: physical practice receiving feedback, learning model with model feedback, correct model with model feedback, and learning model without model feedback. Results indicated that viewing either a correct or learning model was equally effective in learning correct form in the squat lift.

  6. Learning to Act: Qualitative Learning of Deterministic Action Models

    DEFF Research Database (Denmark)

    Bolander, Thomas; Gierasimczuk, Nina

    2017-01-01

    In this article we study learnability of fully observable, universally applicable action models of dynamic epistemic logic. We introduce a framework for actions seen as sets of transitions between propositional states and we relate them to their dynamic epistemic logic representations as action...... in the limit (inconclusive convergence to the right action model). We show that deterministic actions are finitely identifiable, while arbitrary (non-deterministic) actions require more learning power—they are identifiable in the limit. We then move on to a particular learning method, i.e. learning via update......, which proceeds via restriction of a space of events within a learning-specific action model. We show how this method can be adapted to learn conditional and unconditional deterministic action models. We propose update learning mechanisms for the afore mentioned classes of actions and analyse...

  7. From Learning Object to Learning Cell: A Resource Organization Model for Ubiquitous Learning

    Science.gov (United States)

    Yu, Shengquan; Yang, Xianmin; Cheng, Gang; Wang, Minjuan

    2015-01-01

    This paper presents a new model for organizing learning resources: Learning Cell. This model is open, evolving, cohesive, social, and context-aware. By introducing a time dimension into the organization of learning resources, Learning Cell supports the dynamic evolution of learning resources while they are being used. In addition, by introducing a…

  8. EFFECT OF INQUIRY LEARNING MODEL AND MOTIVATION ON PHYSICS OUTCOMES LEARNING STUDENTS

    Directory of Open Access Journals (Sweden)

    Dahlia Megawati Pardede

    2016-06-01

    Full Text Available The purposes of the research are: (a to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a there are differences in physical students learning outcomes are taught by Inquiry Training models and conventional models. (b learning outcomes of students who are taught by Inquiry Learning Model Training better than student learning outcomes are taught with conventional model. (c there is a difference in student's learning outcomes that have high motivation and low motivation. (d Student learning outcomes that have a high motivation better than student learning outcomes than have a low motivation. (e there is interaction between learning and motivation to student learning outcomes. Learning outcomes of students who are taught by the model is influenced also by the motivation, while learning outcomes of students who are taught with conventional models are not affected by motivation.

  9. The Game Enhanced Learning Model

    DEFF Research Database (Denmark)

    Reng, Lars; Schoenau-Fog, Henrik

    2016-01-01

    will describe the levels of the model, which is based on our experience in teaching professional game development at university level. Furthermore, we have been using the model to inspire numerous educators to improve their students’ motivation and skills. The model presents various game-based learning...... activities, and depicts their required planning and expected outcome through eight levels. At its lower levels, the model contains the possibilities of using stand-alone analogue and digital games as teachers, utilizing games as a facilitator of learning activities, exploiting gamification and motivating......In this paper, we will introduce the Game Enhanced learning Model (GEM), which describes a range of gameoriented learning activities. The model is intended to give an overview of the possibilities of game-based learning in general and all the way up to purposive game productions. In the paper, we...

  10. Student Modeling and Machine Learning

    OpenAIRE

    Sison , Raymund; Shimura , Masamichi

    1998-01-01

    After identifying essential student modeling issues and machine learning approaches, this paper examines how machine learning techniques have been used to automate the construction of student models as well as the background knowledge necessary for student modeling. In the process, the paper sheds light on the difficulty, suitability and potential of using machine learning for student modeling processes, and, to a lesser extent, the potential of using student modeling techniques in machine le...

  11. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.

    Science.gov (United States)

    Zsuga, Judit; Biro, Klara; Papp, Csaba; Tajti, Gabor; Gesztelyi, Rudolf

    2016-02-01

    Reinforcement learning (RL) is a powerful concept underlying forms of associative learning governed by the use of a scalar reward signal, with learning taking place if expectations are violated. RL may be assessed using model-based and model-free approaches. Model-based reinforcement learning involves the amygdala, the hippocampus, and the orbitofrontal cortex (OFC). The model-free system involves the pedunculopontine-tegmental nucleus (PPTgN), the ventral tegmental area (VTA) and the ventral striatum (VS). Based on the functional connectivity of VS, model-free and model based RL systems center on the VS that by integrating model-free signals (received as reward prediction error) and model-based reward related input computes value. Using the concept of reinforcement learning agent we propose that the VS serves as the value function component of the RL agent. Regarding the model utilized for model-based computations we turned to the proactive brain concept, which offers an ubiquitous function for the default network based on its great functional overlap with contextual associative areas. Hence, by means of the default network the brain continuously organizes its environment into context frames enabling the formulation of analogy-based association that are turned into predictions of what to expect. The OFC integrates reward-related information into context frames upon computing reward expectation by compiling stimulus-reward and context-reward information offered by the amygdala and hippocampus, respectively. Furthermore we suggest that the integration of model-based expectations regarding reward into the value signal is further supported by the efferent of the OFC that reach structures canonical for model-free learning (e.g., the PPTgN, VTA, and VS). (c) 2016 APA, all rights reserved).

  12. Towards a semantic learning model fostering learning object reusability

    OpenAIRE

    Fernandes , Emmanuel; Madhour , Hend; Wentland Forte , Maia; Miniaoui , Sami

    2005-01-01

    We try in this paper to propose a domain model for both author's and learner's needs concerning learning objects reuse. First of all, we present four key criteria for an efficient authoring tool: adaptive level of granularity, flexibility, integration and interoperability. Secondly, we introduce and describe our six-level Semantic Learning Model (SLM) designed to facilitate multi-level reuse of learning materials and search by defining a multi-layer model for metadata. Finally, after mapping ...

  13. Learning About Climate and Atmospheric Models Through Machine Learning

    Science.gov (United States)

    Lucas, D. D.

    2017-12-01

    From the analysis of ensemble variability to improving simulation performance, machine learning algorithms can play a powerful role in understanding the behavior of atmospheric and climate models. To learn about model behavior, we create training and testing data sets through ensemble techniques that sample different model configurations and values of input parameters, and then use supervised machine learning to map the relationships between the inputs and outputs. Following this procedure, we have used support vector machines, random forests, gradient boosting and other methods to investigate a variety of atmospheric and climate model phenomena. We have used machine learning to predict simulation crashes, estimate the probability density function of climate sensitivity, optimize simulations of the Madden Julian oscillation, assess the impacts of weather and emissions uncertainty on atmospheric dispersion, and quantify the effects of model resolution changes on precipitation. This presentation highlights recent examples of our applications of machine learning to improve the understanding of climate and atmospheric models. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Learning from erroneous models using SCYDynamics

    NARCIS (Netherlands)

    Mulder, Y.G.; Bollen, Lars; de Jong, Anthonius J.M.

    2014-01-01

    Dynamic phenomena are common in science education. Students can learn about such system dynamic processes through model based learning activities. This paper describes a study on the effects of a learning from erroneous models approach using the learning environment SCYDynamics. The study compared

  15. Visual Perceptual Learning and Models.

    Science.gov (United States)

    Dosher, Barbara; Lu, Zhong-Lin

    2017-09-15

    Visual perceptual learning through practice or training can significantly improve performance on visual tasks. Originally seen as a manifestation of plasticity in the primary visual cortex, perceptual learning is more readily understood as improvements in the function of brain networks that integrate processes, including sensory representations, decision, attention, and reward, and balance plasticity with system stability. This review considers the primary phenomena of perceptual learning, theories of perceptual learning, and perceptual learning's effect on signal and noise in visual processing and decision. Models, especially computational models, play a key role in behavioral and physiological investigations of the mechanisms of perceptual learning and for understanding, predicting, and optimizing human perceptual processes, learning, and performance. Performance improvements resulting from reweighting or readout of sensory inputs to decision provide a strong theoretical framework for interpreting perceptual learning and transfer that may prove useful in optimizing learning in real-world applications.

  16. Individual Learning Accounts and Other Models of Financing Lifelong Learning

    Science.gov (United States)

    Schuetze, Hans G.

    2007-01-01

    To answer the question "Financing what?" this article distinguishes several models of lifelong learning as well as a variety of lifelong learning activities. Several financing methods are briefly reviewed, however the principal focus is on Individual Learning Accounts (ILAs) which were seen by some analysts as a promising model for…

  17. Teaching Economics: A Cooperative Learning Model.

    Science.gov (United States)

    Caropreso, Edward J.; Haggerty, Mark

    2000-01-01

    Describes an alternative approach to introductory economics based on a cooperative learning model, "Learning Together." Discussion of issues in economics education and cooperative learning in higher education leads to explanation of how to adapt the Learning Together Model to lesson planning in economics. A flow chart illustrates the process for a…

  18. What’s about Peer Tutoring Learning Model?

    Science.gov (United States)

    Muthma'innah, M.

    2017-09-01

    Mathematics learning outcomes in Indonesia in general is still far from satisfactory. One effort that could be expected to solve the problem is to apply the model of peer tutoring learning in mathematics. This study aims to determine whether the results of students’ mathematics learning can be enhanced through peer tutoring learning models. This type of research is the study of literature, so that the method used is to summarize and analyze the results of relevant research that has been done. Peer tutoring learning model is a model of learning in which students learn in small groups that are grouped with different ability levels, all group members to work together and help each other to understand the material. By paying attention to the syntax of the learning, then learning will be invaluable peer tutoring for students who served as teachers and students are taught. In mathematics, the implementation of this learning model can make students understand each other mathematical concepts and help students in solving mathematical problems that are poorly understood, due to the interaction between students in learning. Then it will be able to improve learning outcomes in mathematics. The impact, it can be applied in mathematics learning.

  19. Modelling unsupervised online-learning of artificial grammars: linking implicit and statistical learning.

    Science.gov (United States)

    Rohrmeier, Martin A; Cross, Ian

    2014-07-01

    Humans rapidly learn complex structures in various domains. Findings of above-chance performance of some untrained control groups in artificial grammar learning studies raise questions about the extent to which learning can occur in an untrained, unsupervised testing situation with both correct and incorrect structures. The plausibility of unsupervised online-learning effects was modelled with n-gram, chunking and simple recurrent network models. A novel evaluation framework was applied, which alternates forced binary grammaticality judgments and subsequent learning of the same stimulus. Our results indicate a strong online learning effect for n-gram and chunking models and a weaker effect for simple recurrent network models. Such findings suggest that online learning is a plausible effect of statistical chunk learning that is possible when ungrammatical sequences contain a large proportion of grammatical chunks. Such common effects of continuous statistical learning may underlie statistical and implicit learning paradigms and raise implications for study design and testing methodologies. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Inquiry based learning as didactic model in distant learning

    NARCIS (Netherlands)

    Rothkrantz, L.J.M.

    2015-01-01

    Recent years many universities are involved in development of Massive Open Online Courses (MOOCs). Unfortunately an appropriate didactic model for cooperated network learning is lacking. In this paper we introduce inquiry based learning as didactic model. Students are assumed to ask themselves

  1. Model brain based learning (BBL and whole brain teaching (WBT in learning

    Directory of Open Access Journals (Sweden)

    Baiq Sri Handayani

    2017-08-01

    Full Text Available The learning process is a process of change in behavior as a form of the result of learning. The learning model is a crucial component of the success of the learning process. The learning model is growing fastly, and each model has different characteristics. Teachers are required to be able to understand each model to teach the students optimally by matching the materials and the learning model. The best of the learning model is the model that based on the brain system in learning that are the model of Brain Based Learning (BBL and the model of Whole Brain Teaching (WBT. The purposes of this article are to obtain information related to (1 the brain’s natural learning system, (2 analyze the characteristics of the model BBL and WBT based on theory, brain sections that play a role associated with syntax, similarities, and differences, (3 explain the distinctive characteristics of both models in comparison to other models. The results of this study are: (1 the brain’s natural learning system are: (a the nerves in each hemisphere do not work independently, (b doing more activities can connect more brain nerves, (c the right hemisphere controls the left side motoric sensor of the body, and vice versa; (2 the characteristics of BBL and WBT are: (a BBL is based on the brain’s structure and function, while the model WBT is based on the instructional approach, neurolinguistic, and body language, (b the parts of the brain that work in BBL are: cerebellum, cerebral cortex, frontal lobe, limbic system, and prefrontal cortex; whereas the parts that work WBT are: prefrontal cortex, visual cortex, motor cortex, limbic system, and amygdala, (c the similarities between them are that they both rely on the brain’s system and they both promote gesture in learning, whereas the differences are on the view of the purposes of gestures and the learning theory that they rely on. BBL relies on cognitive theory while WBT relies on social theory; (3 the typical

  2. A New Mobile Learning Adaptation Model

    OpenAIRE

    Mohamd Hassan Hassan; Jehad Al-Sadi

    2009-01-01

    This paper introduces a new model for m- Learning context adaptation due to the need of utilizing mobile technology in education. Mobile learning; m-Learning for short; in considered to be one of the hottest topics in the educational community, many researches had been done to conceptualize this new form of learning. We are presenting a promising design for a model to adapt the learning content in mobile learning applications in order to match the learner context, preferences and the educatio...

  3. Effect Of Inquiry Learning Model And Motivation On Physics Outcomes Learning Students

    OpenAIRE

    Pardede, Dahlia Megawati; Manurung, Sondang Rina

    2016-01-01

    The purposes of the research are: (a) to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b) to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c) to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a) there are differences in physical students learning outcomes are taugh...

  4. A CONCEPTUAL MODEL FOR EFFECTIVE DISTANCE LEARNING IN HIGHER A CONCEPTUAL MODEL FOR EFFECTIVE DISTANCE LEARNING IN HIGHER A CONCEPTUAL MODEL FOR EFFECTIVE DISTANCE LEARNING IN HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    Mehran FARAJOLLAHI

    2010-07-01

    Full Text Available The present research aims at presenting a conceptual model for effective distance learning in higher education. Findings of this research shows that an understanding of the technological capabilities and learning theories especially constructive theory and independent learning theory and communicative and interaction theory in Distance learning is an efficient factor in the planning of effective Distance learning in higher education. Considering the theoretical foundations of the present research, in the effective distance learning model, the learner is situated at the center of learning environment. For this purpose, the learner needs to be ready for successful learning and the teacher has to be ready to design the teaching- learning activities when they initially enter the environment. In the present model, group and individual active teaching-learning approach, timely feedback, using IT and eight types of interactions have been designed with respect to theoretical foundations and current university missions. From among the issues emphasized in this model, one can refer to the Initial, Formative and Summative evaluations. In an effective distance learning environment, evaluation should be part of the learning process and the feedback resulting from it should be used to improve learning. For validating the specified features, the opinions of Distance learning experts in Payame Noor, Shiraz, Science and Technology and Amirkabir Universities have been used which verified a high percentage of the statistical sample of the above mentioned features.

  5. Learning classification models with soft-label information.

    Science.gov (United States)

    Nguyen, Quang; Valizadegan, Hamed; Hauskrecht, Milos

    2014-01-01

    Learning of classification models in medicine often relies on data labeled by a human expert. Since labeling of clinical data may be time-consuming, finding ways of alleviating the labeling costs is critical for our ability to automatically learn such models. In this paper we propose a new machine learning approach that is able to learn improved binary classification models more efficiently by refining the binary class information in the training phase with soft labels that reflect how strongly the human expert feels about the original class labels. Two types of methods that can learn improved binary classification models from soft labels are proposed. The first relies on probabilistic/numeric labels, the other on ordinal categorical labels. We study and demonstrate the benefits of these methods for learning an alerting model for heparin induced thrombocytopenia. The experiments are conducted on the data of 377 patient instances labeled by three different human experts. The methods are compared using the area under the receiver operating characteristic curve (AUC) score. Our AUC results show that the new approach is capable of learning classification models more efficiently compared to traditional learning methods. The improvement in AUC is most remarkable when the number of examples we learn from is small. A new classification learning framework that lets us learn from auxiliary soft-label information provided by a human expert is a promising new direction for learning classification models from expert labels, reducing the time and cost needed to label data.

  6. Correlation Between Blended Learning Model With The Perspective Of Learning Effectiveness For Nursing Student

    Directory of Open Access Journals (Sweden)

    Susila Sumartiningsih

    2015-06-01

    Full Text Available ABSTRACT The learning model is one of the enabling factors that influence the achievement of students. That students have a good learning outcomes the lecturer must choose appropriate learning models. But in fact not all lecturers choose the most appropriate learning model with the demands of learning outcomes and student characteristics.The study design was descriptive quantitative correlation. Total population of 785 the number of samples are 202 were taken by purposive sampling. Techniques of data collection is done by cross-sectional and then processed through the Spearman test. The results showed no significant relationship between classroom lecture method in the context of blended learning models to study the effectiveness perspective the p value of 0.001. There is a significant relationship between e-learning methods in the context of blended learning models with perspective of activities study of nursing students the p value of 0.028. There is a significant relationship between learning model of blended learning with the perspective of nursing students learning effectiveness p value 0.167. Researchers recommend to future researchers conduct more research on the comparison between the effectiveness of the learning model based on student learning centers with the e-learning models and its impact on student achievement of learning competencies as well as to the implications for other dimensions of learning outcomes and others.

  7. Solar Heating And Cooling Of Buildings (SHACOB): Requirements definition and impact analysis-2. Volume 3: Customer load management systems

    Science.gov (United States)

    Cretcher, C. K.; Rountredd, R. C.

    1980-11-01

    Customer Load Management Systems, using off-peak storage and control at the residences, are analyzed to determine their potential for capacity and energy savings by the electric utility. Areas broadly representative of utilities in the regions around Washington, DC and Albuquerque, NM were of interest. Near optimum tank volumes were determined for both service areas, and charging duration/off-time were identified as having the greatest influence on tank performance. The impacts on utility operations and corresponding utility/customer economics were determined in terms of delta demands used to estimate the utilities' generating capacity differences between the conventional load management, (CLM) direct solar with load management (DSLM), and electric resistive systems. Energy differences are also determined. These capacity and energy deltas are translated into changes in utility costs due to penetration of the CLM or DSLM systems into electric resistive markets in the snapshot years of 1990 and 2000.

  8. THE USE OF BLENDED LEARNING MODELS IN THE PROCESS OF FOREIGN LANGUAGE LEARNING

    Directory of Open Access Journals (Sweden)

    Oleksandra Bezverkha

    2017-09-01

    Full Text Available In the article, the acute problem of implementation of pedagogical innovations and online technologies into the educational process is analyzed. The article explores the advantages of blended learning as a latter-day educational program in comparison with traditional campus learning. Blended learning is regarded worldwide as the combination of classroom face-to-face sessions with interactive learning opportunities created online. The purpose of the article is to identify blended learning transformational potential impacting students and teachers by ensuring a more personalized learning experience. The concept of blended learning, as a means to enhance foreign language teaching and learning in the classroom during the traditional face-to-face interaction between a teacher and a student, combined with computer-mediated activities, is examined. In the article, the main classification of blended learning models is established. There are four main blended learning models which include both face-to-face instruction time and online learning: Rotation Model, Flex Model, A La Carte Model, and Enriched Virtual Model. Once implemented successfully, a blended model can take advantage of both brick-and-mortar and digital worlds, providing significant benefits for the educational establishments and learners. To integrate any of the blended learning models, a teacher can create online activities that enable learners to explore the topic online at home, and then develop face-to-face interactions to dig deeper into the subject matter at the lesson. The use of blended learning models in order to expand educational opportunities for students while the foreign language acquisition, by increasing the availability and flexibility of education, taking into account student individual learning needs, with some element of student control over time, place and pace, is explored. The realization of blended learning models in regards to age and physiological peculiarities of

  9. Students’ mathematical learning in modelling activities

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts i...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....

  10. Integrated Model for E-Learning Acceptance

    Science.gov (United States)

    Ramadiani; Rodziah, A.; Hasan, S. M.; Rusli, A.; Noraini, C.

    2016-01-01

    E-learning is not going to work if the system is not used in accordance with user needs. User Interface is very important to encourage using the application. Many theories had discuss about user interface usability evaluation and technology acceptance separately, actually why we do not make it correlation between interface usability evaluation and user acceptance to enhance e-learning process. Therefore, the evaluation model for e-learning interface acceptance is considered important to investigate. The aim of this study is to propose the integrated e-learning user interface acceptance evaluation model. This model was combined some theories of e-learning interface measurement such as, user learning style, usability evaluation, and the user benefit. We formulated in constructive questionnaires which were shared at 125 English Language School (ELS) students. This research statistics used Structural Equation Model using LISREL v8.80 and MANOVA analysis.

  11. Vicarious learning from human models in monkeys.

    Science.gov (United States)

    Falcone, Rossella; Brunamonti, Emiliano; Genovesio, Aldo

    2012-01-01

    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models.

  12. Toward A Dual-Learning Systems Model of Speech Category Learning

    Directory of Open Access Journals (Sweden)

    Bharath eChandrasekaran

    2014-07-01

    Full Text Available More than two decades of work in vision posits the existence of dual-learning systems of category learning. The reflective system uses working memory to develop and test rules for classifying in an explicit fashion, while the reflexive system operates by implicitly associating perception with actions that lead to reinforcement. Dual-learning systems models hypothesize that in learning natural categories, learners initially use the reflective system and, with practice, transfer control to the reflexive system. The role of reflective and reflexive systems in auditory category learning and more specifically in speech category learning has not been systematically examined. In this article we describe a neurobiologically-constrained dual-learning systems theoretical framework that is currently being developed in speech category learning and review recent applications of this framework. Using behavioral and computational modeling approaches, we provide evidence that speech category learning is predominantly mediated by the reflexive learning system. In one application, we explore the effects of normal aging on non-speech and speech category learning. We find an age related deficit in reflective-optimal but not reflexive-optimal auditory category learning. Prominently, we find a large age-related deficit in speech learning. The computational modeling suggests that older adults are less likely to transition from simple, reflective, uni-dimensional rules to more complex, reflexive, multi-dimensional rules. In a second application we summarize a recent study examining auditory category learning in individuals with elevated depressive symptoms. We find a deficit in reflective-optimal and an enhancement in reflexive-optimal auditory category learning. Interestingly, individuals with elevated depressive symptoms also show an advantage in learning speech categories. We end with a brief summary and description of a number of future directions.

  13. A multiplicative reinforcement learning model capturing learning dynamics and interindividual variability in mice

    OpenAIRE

    Bathellier, Brice; Tee, Sui Poh; Hrovat, Christina; Rumpel, Simon

    2013-01-01

    Learning speed can strongly differ across individuals. This is seen in humans and animals. Here, we measured learning speed in mice performing a discrimination task and developed a theoretical model based on the reinforcement learning framework to account for differences between individual mice. We found that, when using a multiplicative learning rule, the starting connectivity values of the model strongly determine the shape of learning curves. This is in contrast to current learning models ...

  14. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  15. Learning Markov Decision Processes for Model Checking

    DEFF Research Database (Denmark)

    Mao, Hua; Chen, Yingke; Jaeger, Manfred

    2012-01-01

    . The proposed learning algorithm is adapted from algorithms for learning deterministic probabilistic finite automata, and extended to include both probabilistic and nondeterministic transitions. The algorithm is empirically analyzed and evaluated by learning system models of slot machines. The evaluation......Constructing an accurate system model for formal model verification can be both resource demanding and time-consuming. To alleviate this shortcoming, algorithms have been proposed for automatically learning system models based on observed system behaviors. In this paper we extend the algorithm...... on learning probabilistic automata to reactive systems, where the observed system behavior is in the form of alternating sequences of inputs and outputs. We propose an algorithm for automatically learning a deterministic labeled Markov decision process model from the observed behavior of a reactive system...

  16. Peer-to-Peer Learning and the Army Learning Model

    Science.gov (United States)

    2012-06-08

    education will be delivered to the current and future force. This thesis examined the salient areas proposed by the ALM and its impact on P2P learning ...The Army Learning Model is the new educational model that develops adaptive leaders in an era of persistent conflict. Life-long, individual

  17. Model-observer similarity, error modeling and social learning in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Elisabetta Monfardini

    Full Text Available Monkeys readily learn to discriminate between rewarded and unrewarded items or actions by observing their conspecifics. However, they do not systematically learn from humans. Understanding what makes human-to-monkey transmission of knowledge work or fail could help identify mediators and moderators of social learning that operate regardless of language or culture, and transcend inter-species differences. Do monkeys fail to learn when human models show a behavior too dissimilar from the animals' own, or when they show a faultless performance devoid of error? To address this question, six rhesus macaques trained to find which object within a pair concealed a food reward were successively tested with three models: a familiar conspecific, a 'stimulus-enhancing' human actively drawing the animal's attention to one object of the pair without actually performing the task, and a 'monkey-like' human performing the task in the same way as the monkey model did. Reward was manipulated to ensure that all models showed equal proportions of errors and successes. The 'monkey-like' human model improved the animals' subsequent object discrimination learning as much as a conspecific did, whereas the 'stimulus-enhancing' human model tended on the contrary to retard learning. Modeling errors rather than successes optimized learning from the monkey and 'monkey-like' models, while exacerbating the adverse effect of the 'stimulus-enhancing' model. These findings identify error modeling as a moderator of social learning in monkeys that amplifies the models' influence, whether beneficial or detrimental. By contrast, model-observer similarity in behavior emerged as a mediator of social learning, that is, a prerequisite for a model to work in the first place. The latter finding suggests that, as preverbal infants, macaques need to perceive the model as 'like-me' and that, once this condition is fulfilled, any agent can become an effective model.

  18. Vicarious learning from human models in monkeys.

    Directory of Open Access Journals (Sweden)

    Rossella Falcone

    Full Text Available We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was apparent from the first trial of the test phase, confirming the ability of monkeys to learn by vicarious observation of human models.

  19. Learning in AN Oscillatory Cortical Model

    Science.gov (United States)

    Scarpetta, Silvia; Li, Zhaoping; Hertz, John

    We study a model of generalized-Hebbian learning in asymmetric oscillatory neural networks modeling cortical areas such as hippocampus and olfactory cortex. The learning rule is based on the synaptic plasticity observed experimentally, in particular long-term potentiation and long-term depression of the synaptic efficacies depending on the relative timing of the pre- and postsynaptic activities during learning. The learned memory or representational states can be encoded by both the amplitude and the phase patterns of the oscillating neural populations, enabling more efficient and robust information coding than in conventional models of associative memory or input representation. Depending on the class of nonlinearity of the activation function, the model can function as an associative memory for oscillatory patterns (nonlinearity of class II) or can generalize from or interpolate between the learned states, appropriate for the function of input representation (nonlinearity of class I). In the former case, simulations of the model exhibits a first order transition between the "disordered state" and the "ordered" memory state.

  20. EFFECTS OF INQUIRY TRAINING LEARNING MODEL BASED MULTIMEDIA AND MOTIVATION OF PHYSICS STUDENT LEARNING OUTCOMES

    OpenAIRE

    Hayati .; Retno Dwi Suyanti

    2013-01-01

    The objective in this research: (1) Determine a better learning model to improve learning outcomes physics students among learning model Inquiry Training based multimedia and Inquiry Training learning model. (2) Determine the level of motivation to learn in affects physics student learning outcomes. (3) Knowing the interactions between the model of learning and motivation in influencing student learning outcomes. This research is a quasi experimental. The population in this research was all s...

  1. EFFECTS OF INQUIRY TRAINING LEARNING MODEL BASED MULTIMEDIA AND MOTIVATION OF PHYSICS STUDENT LEARNING OUTCOMES

    Directory of Open Access Journals (Sweden)

    Hayati .

    2013-06-01

    Full Text Available The objective in this research: (1 Determine a better learning model to improve learning outcomes physics students among learning model Inquiry Training based multimedia and Inquiry Training learning model. (2 Determine the level of motivation to learn in affects physics student learning outcomes. (3 Knowing the interactions between the model of learning and motivation in influencing student learning outcomes. This research is a quasi experimental. The population in this research was all students in class XI SMA Negeri 1 T.P Sunggal Semester I 2012/2013. The sample of this research was consisted of two classes with a sample of 70 peoples who are determined by purposive sampling, the IPA XI-2 as a class experiment using a model-based multimedia learning Training Inquiry as many as 35 peoples and XI IPA-3 as a control class using learning model Inquiry Training 35 peoples. Hypotheses were analyzed using the GLM at significant level of 0.05 using SPSS 17.0 for Windows. Based on data analysis and hypothesis testing conducted found that: (1 Training Inquiry-based multimedia learning model in improving student learning outcomes rather than learning model physics Inquiry Training. (2 The results of studying physics students who have high motivation to learn better than students who have a low learning motivation. (3 From this research there was an interaction between learning model inquiry-based multimedia training and motivation to study on learning outcomes of students.

  2. Implications of Multimodal Learning Models for foreign language teaching and learning

    Directory of Open Access Journals (Sweden)

    Miguel Farías

    2011-04-01

    Full Text Available This literature review article approaches the topic of information and communications technologies from the perspective of their impact on the language learning process, with particular emphasis on the most appropriate designs of multimodal texts as informed by models of multimodal learning. The first part contextualizes multimodality within the fields of discourse studies, the psychology of learning and CALL; the second, deals with multimodal conceptions of reading and writing by discussing hypertextuality and literacy. A final section outlines the possible implications of multimodal learning models for foreign language teaching and learning.

  3. PENGGUNAAN MODEL PROBLEM BASED LEARNING BERBANTUAN E-LEARNING TERHADAP KEMANDIRIAN BELAJAR MAHASISWA

    Directory of Open Access Journals (Sweden)

    Jusep Saputra

    2017-11-01

    Full Text Available Self-regulated learning of learners can be achieved, if in the process of learning mathematics provides an open opportunity for students to learn independently. This research is a mixed method type embedded design, which aims to do studies focused on the use of the Problem Based Learning (PBL model assisted e-learning to student self-regulated learning. Sample selection is done on the purposive sampling and was taken 2 class contracting courses of school math III. Class A numbered 50 members, 24 the superior group and 26 the low group, given the treatment with PBL models assisted e-learning and class B numbered 50, 27 the superior group and 23 the low group, with expository. Instruments used in this research is self-regulated learning questionnaire with Likert scale. Based on data analysis we concluded that (1 Self-regulated learning of superior and low student who obtains aided PBL models assisted e-learning is better than self-regulated learning of superior and low superior students who obtain expository.

  4. Vicarious Learning from Human Models in Monkeys

    OpenAIRE

    Falcone, Rossella; Brunamonti, Emiliano; Genovesio, Aldo

    2012-01-01

    We examined whether monkeys can learn by observing a human model, through vicarious learning. Two monkeys observed a human model demonstrating an object-reward association and consuming food found underneath an object. The monkeys observed human models as they solved more than 30 learning problems. For each problem, the human models made a choice between two objects, one of which concealed a piece of apple. In the test phase afterwards, the monkeys made a choice of their own. Learning was app...

  5. The Effect of Cooperative Learning Model and Kolb Learning Styles on Learning Result of the Basics of Politics

    Science.gov (United States)

    Sugiharto

    2015-01-01

    The aims of this research were to determine the effect of cooperative learning model and learning styles on learning result. This quasi-experimental study employed a 2x2 treatment by level, involved independent variables, i.e. cooperative learning model and learning styles, and learning result as the dependent variable. Findings signify that: (1)…

  6. Learning Markov models for stationary system behaviors

    DEFF Research Database (Denmark)

    Chen, Yingke; Mao, Hua; Jaeger, Manfred

    2012-01-01

    to a single long observation sequence, and in these situations existing automatic learning methods cannot be applied. In this paper, we adapt algorithms for learning variable order Markov chains from a single observation sequence of a target system, so that stationary system properties can be verified using......Establishing an accurate model for formal verification of an existing hardware or software system is often a manual process that is both time consuming and resource demanding. In order to ease the model construction phase, methods have recently been proposed for automatically learning accurate...... the learned model. Experiments demonstrate that system properties (formulated as stationary probabilities of LTL formulas) can be reliably identified using the learned model....

  7. [Mathematical models of decision making and learning].

    Science.gov (United States)

    Ito, Makoto; Doya, Kenji

    2008-07-01

    Computational models of reinforcement learning have recently been applied to analysis of brain imaging and neural recording data to identity neural correlates of specific processes of decision making, such as valuation of action candidates and parameters of value learning. However, for such model-based analysis paradigms, selecting an appropriate model is crucial. In this study we analyze the process of choice learning in rats using stochastic rewards. We show that "Q-learning," which is a standard reinforcement learning algorithm, does not adequately reflect the features of choice behaviors. Thus, we propose a generalized reinforcement learning (GRL) algorithm that incorporates the negative reward effect of reward loss and forgetting of values of actions not chosen. Using the Bayesian estimation method for time-varying parameters, we demonstrated that the GRL algorithm can predict an animal's choice behaviors as efficiently as the best Markov model. The results suggest the usefulness of the GRL for the model-based analysis of neural processes involved in decision making.

  8. Active Learning with Statistical Models.

    Science.gov (United States)

    1995-01-01

    Active Learning with Statistical Models ASC-9217041, NSF CDA-9309300 6. AUTHOR(S) David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan 7. PERFORMING...TERMS 15. NUMBER OF PAGES Al, MIT, Artificial Intelligence, active learning , queries, locally weighted 6 regression, LOESS, mixtures of gaussians...COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES A.I. Memo No. 1522 January 9. 1995 C.B.C.L. Paper No. 110 Active Learning with

  9. Personalised learning object based on multi-agent model and learners’ learning styles

    Directory of Open Access Journals (Sweden)

    Noppamas Pukkhem

    2011-09-01

    Full Text Available A multi-agent model is proposed in which learning styles and a word analysis technique to create a learning object recommendation system are used. On the basis of a learning style-based design, a concept map combination model is proposed to filter out unsuitable learning concepts from a given course. Our learner model classifies learners into eight styles and implements compatible computational methods consisting of three recommendations: i non-personalised, ii preferred feature-based, and iii neighbour-based collaborative filtering. The analysis of preference error (PE was performed by comparing the actual preferred learning object with the predicted one. In our experiments, the feature-based recommendation algorithm has the fewest PE.

  10. Modellus: Learning Physics with Mathematical Modelling

    Science.gov (United States)

    Teodoro, Vitor

    Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations

  11. Computational modeling of epiphany learning.

    Science.gov (United States)

    Chen, Wei James; Krajbich, Ian

    2017-05-02

    Models of reinforcement learning (RL) are prevalent in the decision-making literature, but not all behavior seems to conform to the gradual convergence that is a central feature of RL. In some cases learning seems to happen all at once. Limited prior research on these "epiphanies" has shown evidence of sudden changes in behavior, but it remains unclear how such epiphanies occur. We propose a sequential-sampling model of epiphany learning (EL) and test it using an eye-tracking experiment. In the experiment, subjects repeatedly play a strategic game that has an optimal strategy. Subjects can learn over time from feedback but are also allowed to commit to a strategy at any time, eliminating all other options and opportunities to learn. We find that the EL model is consistent with the choices, eye movements, and pupillary responses of subjects who commit to the optimal strategy (correct epiphany) but not always of those who commit to a suboptimal strategy or who do not commit at all. Our findings suggest that EL is driven by a latent evidence accumulation process that can be revealed with eye-tracking data.

  12. Kolb's Experiential Learning Model: Critique from a Modeling Perspective

    Science.gov (United States)

    Bergsteiner, Harald; Avery, Gayle C.; Neumann, Ruth

    2010-01-01

    Kolb's experiential learning theory has been widely influential in adult learning. The theory and associated instruments continue to be criticized, but rarely is the graphical model itself examined. This is significant because models can aid scientific understanding and progress, as well as theory development and research. Applying accepted…

  13. Model United Nations and Deep Learning: Theoretical and Professional Learning

    Science.gov (United States)

    Engel, Susan; Pallas, Josh; Lambert, Sarah

    2017-01-01

    This article demonstrates that the purposeful subject design, incorporating a Model United Nations (MUN), facilitated deep learning and professional skills attainment in the field of International Relations. Deep learning was promoted in subject design by linking learning objectives to Anderson and Krathwohl's (2001) four levels of knowledge or…

  14. Cognitive components underpinning the development of model-based learning.

    Science.gov (United States)

    Potter, Tracey C S; Bryce, Nessa V; Hartley, Catherine A

    2017-06-01

    Reinforcement learning theory distinguishes "model-free" learning, which fosters reflexive repetition of previously rewarded actions, from "model-based" learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9-25, we examined whether the abilities to infer sequential regularities in the environment ("statistical learning"), maintain information in an active state ("working memory") and integrate distant concepts to solve problems ("fluid reasoning") predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Learning strategies: a synthesis and conceptual model

    Science.gov (United States)

    Hattie, John A. C.; Donoghue, Gregory M.

    2016-08-01

    The purpose of this article is to explore a model of learning that proposes that various learning strategies are powerful at certain stages in the learning cycle. The model describes three inputs and outcomes (skill, will and thrill), success criteria, three phases of learning (surface, deep and transfer) and an acquiring and consolidation phase within each of the surface and deep phases. A synthesis of 228 meta-analyses led to the identification of the most effective strategies. The results indicate that there is a subset of strategies that are effective, but this effectiveness depends on the phase of the model in which they are implemented. Further, it is best not to run separate sessions on learning strategies but to embed the various strategies within the content of the subject, to be clearer about developing both surface and deep learning, and promoting their associated optimal strategies and to teach the skills of transfer of learning. The article concludes with a discussion of questions raised by the model that need further research.

  16. Learning Probabilistic Logic Models from Probabilistic Examples.

    Science.gov (United States)

    Chen, Jianzhong; Muggleton, Stephen; Santos, José

    2008-10-01

    We revisit an application developed originally using abductive Inductive Logic Programming (ILP) for modeling inhibition in metabolic networks. The example data was derived from studies of the effects of toxins on rats using Nuclear Magnetic Resonance (NMR) time-trace analysis of their biofluids together with background knowledge representing a subset of the Kyoto Encyclopedia of Genes and Genomes (KEGG). We now apply two Probabilistic ILP (PILP) approaches - abductive Stochastic Logic Programs (SLPs) and PRogramming In Statistical modeling (PRISM) to the application. Both approaches support abductive learning and probability predictions. Abductive SLPs are a PILP framework that provides possible worlds semantics to SLPs through abduction. Instead of learning logic models from non-probabilistic examples as done in ILP, the PILP approach applied in this paper is based on a general technique for introducing probability labels within a standard scientific experimental setting involving control and treated data. Our results demonstrate that the PILP approach provides a way of learning probabilistic logic models from probabilistic examples, and the PILP models learned from probabilistic examples lead to a significant decrease in error accompanied by improved insight from the learned results compared with the PILP models learned from non-probabilistic examples.

  17. Active Learning for Player Modeling

    DEFF Research Database (Denmark)

    Shaker, Noor; Abou-Zleikha, Mohamed; Shaker, Mohammad

    2015-01-01

    Learning models of player behavior has been the focus of several studies. This work is motivated by better understanding of player behavior, a knowledge that can ultimately be employed to provide player-adapted or personalized content. In this paper, we propose the use of active learning for player...... experience modeling. We use a dataset from hundreds of players playing Infinite Mario Bros. as a case study and we employ the random forest method to learn mod- els of player experience through the active learning approach. The results obtained suggest that only part of the dataset (up to half the size...... that the method can be used online during the content generation process where the mod- els can improve and better content can be presented as the game is being played....

  18. Multidimensional Learner Model In Intelligent Learning System

    Science.gov (United States)

    Deliyska, B.; Rozeva, A.

    2009-11-01

    The learner model in an intelligent learning system (ILS) has to ensure the personalization (individualization) and the adaptability of e-learning in an online learner-centered environment. ILS is a distributed e-learning system whose modules can be independent and located in different nodes (servers) on the Web. This kind of e-learning is achieved through the resources of the Semantic Web and is designed and developed around a course, group of courses or specialty. An essential part of ILS is learner model database which contains structured data about learner profile and temporal status in the learning process of one or more courses. In the paper a learner model position in ILS is considered and a relational database is designed from learner's domain ontology. Multidimensional modeling agent for the source database is designed and resultant learner data cube is presented. Agent's modules are proposed with corresponding algorithms and procedures. Multidimensional (OLAP) analysis guidelines on the resultant learner module for designing dynamic learning strategy have been highlighted.

  19. Blended learning models for directing the self-learning activity of “Software Engineering” specialty students

    Directory of Open Access Journals (Sweden)

    Vera V. Lyubchenko

    2014-12-01

    Full Text Available The adoption of Law of Ukraine “On Higher Education” (2014 involves the increase in students’ self-learning activity part in the curriculum. Therefore the self-learning activities’ arrangement in a way augmenting the result quality becomes a top priority task. This research objective consists in elaborating the scenario for organization of the students’ qualitative self-study, based on blended learning models. The author analyzes four blended learning models: the rotation model, flex-model, self-blend model and online driver model, and gives examples of their use. It is shown that first two models are the most suitable for full-time students. A general scenario for the use of blended learning models is described. Although the use of blended learning models causes several difficulties, it also essentially contributes into students’ self-study monitoring and control support.

  20. Efficient model learning methods for actor-critic control.

    Science.gov (United States)

    Grondman, Ivo; Vaandrager, Maarten; Buşoniu, Lucian; Babuska, Robert; Schuitema, Erik

    2012-06-01

    We propose two new actor-critic algorithms for reinforcement learning. Both algorithms use local linear regression (LLR) to learn approximations of the functions involved. A crucial feature of the algorithms is that they also learn a process model, and this, in combination with LLR, provides an efficient policy update for faster learning. The first algorithm uses a novel model-based update rule for the actor parameters. The second algorithm does not use an explicit actor but learns a reference model which represents a desired behavior, from which desired control actions can be calculated using the inverse of the learned process model. The two novel methods and a standard actor-critic algorithm are applied to the pendulum swing-up problem, in which the novel methods achieve faster learning than the standard algorithm.

  1. Team learning: building shared mental models

    NARCIS (Netherlands)

    Bossche, van den P.; Gijselaers, W.; Segers, M.; Woltjer, G.B.; Kirschner, P.

    2011-01-01

    To gain insight in the social processes that underlie knowledge sharing in teams, this article questions which team learning behaviors lead to the construction of a shared mental model. Additionally, it explores how the development of shared mental models mediates the relation between team learning

  2. Modeling the behavioral substrates of associate learning and memory - Adaptive neural models

    Science.gov (United States)

    Lee, Chuen-Chien

    1991-01-01

    Three adaptive single-neuron models based on neural analogies of behavior modification episodes are proposed, which attempt to bridge the gap between psychology and neurophysiology. The proposed models capture the predictive nature of Pavlovian conditioning, which is essential to the theory of adaptive/learning systems. The models learn to anticipate the occurrence of a conditioned response before the presence of a reinforcing stimulus when training is complete. Furthermore, each model can find the most nonredundant and earliest predictor of reinforcement. The behavior of the models accounts for several aspects of basic animal learning phenomena in Pavlovian conditioning beyond previous related models. Computer simulations show how well the models fit empirical data from various animal learning paradigms.

  3. Online Learning of Industrial Manipulators' Dynamics Models

    DEFF Research Database (Denmark)

    Polydoros, Athanasios

    2017-01-01

    , it was compared with multiple other state-of-the-art machine learning algorithms. Moreover, the thesis presents the application of the proposed learning method on robot control for achieving trajectory execution while learning the inverse dynamics models  on-the-fly . Also it is presented the application...... of the dynamics models. Those mainly derive from physics-based methods and thus they are based on physical properties which are hard to be calculated.  In this thesis, is presented, a novel online machine learning approach  which is able to model both inverse and forward dynamics models of industrial manipulators....... The proposed method belongs to the class of deep learning and exploits the concepts of self-organization, recurrent neural networks and iterative multivariate Bayesian regression. It has been evaluated on multiple datasets captured from industrial robots while they were performing various tasks. Also...

  4. A Hybrid Teaching and Learning Model

    Science.gov (United States)

    Juhary, Jowati Binti

    This paper aims at analysing the needs for a specific teaching and learning model for the National Defence University of Malaysia (NDUM). The main argument is that whether there are differences between teaching and learning for academic component versus military component at the university. It is further argued that in order to achieve excellence, there should be one teaching and learning culture. Data were collected through interviews with military cadets. It is found that there are variations of teaching and learning strategies for academic courses, in comparison to a dominant teaching and learning style for military courses. Thus, in the interest of delivering quality education and training for students at the university, the paper argues that possibly a hybrid model for teaching and learning is fundamental in order to generate a one culture of academic and military excellence for the NDUM.

  5. Enhanced democratic learning within the Aalborg Model

    DEFF Research Database (Denmark)

    Qvist, Palle

    2010-01-01

    The Aalborg PBL Model [Kjersdam & Enemark, 1997; Kolmos et al., 2004] is an example of a democratic learning system [Qvist, 2008]. Writing one project each semester in teams is an important element in the model. Medicine with Industrial Specialisation - a study at the Faculties of Engineering......, Science and Medicine at Aalborg University - has combined the Aalborg Model with solving cases as used by other models. A questionnaire survey related to democratic learning indicates that the democratic learning has been enhanced. This paper presents the results....

  6. Dopamine selectively remediates 'model-based' reward learning: a computational approach.

    Science.gov (United States)

    Sharp, Madeleine E; Foerde, Karin; Daw, Nathaniel D; Shohamy, Daphna

    2016-02-01

    Patients with loss of dopamine due to Parkinson's disease are impaired at learning from reward. However, it remains unknown precisely which aspect of learning is impaired. In particular, learning from reward, or reinforcement learning, can be driven by two distinct computational processes. One involves habitual stamping-in of stimulus-response associations, hypothesized to arise computationally from 'model-free' learning. The other, 'model-based' learning, involves learning a model of the world that is believed to support goal-directed behaviour. Much work has pointed to a role for dopamine in model-free learning. But recent work suggests model-based learning may also involve dopamine modulation, raising the possibility that model-based learning may contribute to the learning impairment in Parkinson's disease. To directly test this, we used a two-step reward-learning task which dissociates model-free versus model-based learning. We evaluated learning in patients with Parkinson's disease tested ON versus OFF their dopamine replacement medication and in healthy controls. Surprisingly, we found no effect of disease or medication on model-free learning. Instead, we found that patients tested OFF medication showed a marked impairment in model-based learning, and that this impairment was remediated by dopaminergic medication. Moreover, model-based learning was positively correlated with a separate measure of working memory performance, raising the possibility of common neural substrates. Our results suggest that some learning deficits in Parkinson's disease may be related to an inability to pursue reward based on complete representations of the environment. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Variability in Dopamine Genes Dissociates Model-Based and Model-Free Reinforcement Learning.

    Science.gov (United States)

    Doll, Bradley B; Bath, Kevin G; Daw, Nathaniel D; Frank, Michael J

    2016-01-27

    Considerable evidence suggests that multiple learning systems can drive behavior. Choice can proceed reflexively from previous actions and their associated outcomes, as captured by "model-free" learning algorithms, or flexibly from prospective consideration of outcomes that might occur, as captured by "model-based" learning algorithms. However, differential contributions of dopamine to these systems are poorly understood. Dopamine is widely thought to support model-free learning by modulating plasticity in striatum. Model-based learning may also be affected by these striatal effects, or by other dopaminergic effects elsewhere, notably on prefrontal working memory function. Indeed, prominent demonstrations linking striatal dopamine to putatively model-free learning did not rule out model-based effects, whereas other studies have reported dopaminergic modulation of verifiably model-based learning, but without distinguishing a prefrontal versus striatal locus. To clarify the relationships between dopamine, neural systems, and learning strategies, we combine a genetic association approach in humans with two well-studied reinforcement learning tasks: one isolating model-based from model-free behavior and the other sensitive to key aspects of striatal plasticity. Prefrontal function was indexed by a polymorphism in the COMT gene, differences of which reflect dopamine levels in the prefrontal cortex. This polymorphism has been associated with differences in prefrontal activity and working memory. Striatal function was indexed by a gene coding for DARPP-32, which is densely expressed in the striatum where it is necessary for synaptic plasticity. We found evidence for our hypothesis that variations in prefrontal dopamine relate to model-based learning, whereas variations in striatal dopamine function relate to model-free learning. Decisions can stem reflexively from their previously associated outcomes or flexibly from deliberative consideration of potential choice outcomes

  8. Mosaic model for sensorimotor learning and control.

    Science.gov (United States)

    Haruno, M; Wolpert, D M; Kawato, M

    2001-10-01

    Humans demonstrate a remarkable ability to generate accurate and appropriate motor behavior under many different and often uncertain environmental conditions. We previously proposed a new modular architecture, the modular selection and identification for control (MOSAIC) model, for motor learning and control based on multiple pairs of forward (predictor) and inverse (controller) models. The architecture simultaneously learns the multiple inverse models necessary for control as well as how to select the set of inverse models appropriate for a given environment. It combines both feedforward and feedback sensorimotor information so that the controllers can be selected both prior to movement and subsequently during movement. This article extends and evaluates the MOSAIC architecture in the following respects. The learning in the architecture was implemented by both the original gradient-descent method and the expectation-maximization (EM) algorithm. Unlike gradient descent, the newly derived EM algorithm is robust to the initial starting conditions and learning parameters. Second, simulations of an object manipulation task prove that the architecture can learn to manipulate multiple objects and switch between them appropriately. Moreover, after learning, the model shows generalization to novel objects whose dynamics lie within the polyhedra of already learned dynamics. Finally, when each of the dynamics is associated with a particular object shape, the model is able to select the appropriate controller before movement execution. When presented with a novel shape-dynamic pairing, inappropriate activation of modules is observed followed by on-line correction.

  9. A Judgement-Based Model of Workplace Learning

    Science.gov (United States)

    Athanasou, James A.

    2004-01-01

    The purpose of this paper is to outline a judgement-based model of adult learning. This approach is set out as a Perceptual-Judgemental-Reinforcement approach to social learning under conditions of complexity and where there is no single, clearly identified correct response. The model builds upon the Hager-Halliday thesis of workplace learning and…

  10. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  11. Learning and Model-checking Networks of I/O Automata

    DEFF Research Database (Denmark)

    Mao, Hua; Jaeger, Manfred

    2012-01-01

    We introduce a new statistical relational learning (SRL) approach in which models for structured data, especially network data, are constructed as networks of communicating nite probabilistic automata. Leveraging existing automata learning methods from the area of grammatical inference, we can...... learn generic models for network entities in the form of automata templates. As is characteristic for SRL techniques, the abstraction level aorded by learning generic templates enables one to apply the learned model to new domains. A main benet of learning models based on nite automata lies in the fact...

  12. THE EFFECTS OF COOPERATIVE LEARNING MODEL GROUP INVESTIGATION AND MOTIVATION TOWARD PHYSICS LEARNING RESULTS MAN TANJUNGBALAI

    Directory of Open Access Journals (Sweden)

    Amalia Febri Aristi

    2014-12-01

    Full Text Available This study aimed to determine: (1 Is there a difference in student's learning outcomes with the application of learning models Investigation Group and Direct Instruction teaching model. (2 Is there a difference in students' motivation with the application of learning models Investigation Group and Direct Instruction teaching model, (3 Is there an interaction between learning models Investigation Group and Direct Instruction to improve students' motivation in learning outcomes Physics. This research is a quasi experimental. The study population was a student of class XII Tanjung Balai MAN. Random sample selection is done by randomizing the class. The instrument used consisted of: (1 achievement test (2 students' motivation questionnaire. The tests are used to obtain the data is shaped essay. The data in this study were analyzed using ANOVA analysis of two paths. The results showed that: (1 there were differences in learning outcomes between students who used the physics model of Group Investigation learning compared with students who used the Direct Instruction teaching model. (2 There was a difference in student's learning outcomes that had a low learning motivation and high motivation to learn both in the classroom and in the classroom Investigation Group Direct Instruction. (3 There was interaction between learning models Instruction Direct Group Investigation and motivation to learn in improving learning outcomes Physics.

  13. Model-Agnostic Interpretability of Machine Learning

    OpenAIRE

    Ribeiro, Marco Tulio; Singh, Sameer; Guestrin, Carlos

    2016-01-01

    Understanding why machine learning models behave the way they do empowers both system designers and end-users in many ways: in model selection, feature engineering, in order to trust and act upon the predictions, and in more intuitive user interfaces. Thus, interpretability has become a vital concern in machine learning, and work in the area of interpretable models has found renewed interest. In some applications, such models are as accurate as non-interpretable ones, and thus are preferred f...

  14. A model of positive and negative learning : Learning demands and resources, learning engagement, critical thinking, and fake news detection

    NARCIS (Netherlands)

    Dormann, Christian; Demerouti, Eva; Bakker, Arnold; Zlatkin-Troitschanskaia, O.; Wittum, G.; Dengel, A.

    2018-01-01

    This chapter proposes a model of positive and negative learning (PNL model). We use the term negative learning when stress among students occurs, and when knowledge and abilities are not properly developed. We use the term positive learning if motivation is high and active learning occurs. The PNL

  15. A Conceptual Model of eLearning Adoption

    Directory of Open Access Journals (Sweden)

    Muneer Abbad

    2011-05-01

    Full Text Available Internet-based learning systems are being used in many universities and firms but their adoption requires a solid understanding of the user acceptance processes. The technology acceptance model (TAM has been used to test the acceptance of various technologies and software within an e-learning context. This research aims to discuss the main factors of a successful e-learning adoption by students. A conceptual research framework of e-learning adoption is proposed based on the TAM model.

  16. Modeling learning and memory using verbal learning tests: results from ACTIVE.

    Science.gov (United States)

    Gross, Alden L; Rebok, George W; Brandt, Jason; Tommet, Doug; Marsiske, Michael; Jones, Richard N

    2013-03-01

    To investigate the influence of memory training on initial recall and learning. The Advanced Cognitive Training for Independent and Vital Elderly study of community-dwelling adults older than age 65 (n = 1,401). We decomposed trial-level recall in the Auditory Verbal Learning Test (AVLT) and Hopkins Verbal Learning Test (HVLT) into initial recall and learning across trials using latent growth models. Trial-level increases in words recalled in the AVLT and HVLT at each follow-up visit followed an approximately logarithmic shape. Over the 5-year study period, memory training was associated with slower decline in Trial 1 AVLT recall (Cohen's d = 0.35, p = .03) and steep pre- and posttraining acceleration in learning (d = 1.56, p learning, d = 3.10, p memory-trained group had a higher level of recall than the control group through the end of the 5-year study period despite faster decline in learning. This study contributes to the understanding of the mechanisms by which training benefits memory and expands current knowledge by reporting long-term changes in initial recall and learning, as measured from growth models and by characterization of the impact of memory training on these components. Results reveal that memory training delays the worsening of memory span and boosts learning.

  17. SUSTAIN: a network model of category learning.

    Science.gov (United States)

    Love, Bradley C; Medin, Douglas L; Gureckis, Todd M

    2004-04-01

    SUSTAIN (Supervised and Unsupervised STratified Adaptive Incremental Network) is a model of how humans learn categories from examples. SUSTAIN initially assumes a simple category structure. If simple solutions prove inadequate and SUSTAIN is confronted with a surprising event (e.g., it is told that a bat is a mammal instead of a bird), SUSTAIN recruits an additional cluster to represent the surprising event. Newly recruited clusters are available to explain future events and can themselves evolve into prototypes-attractors-rules. SUSTAIN's discovery of category substructure is affected not only by the structure of the world but by the nature of the learning task and the learner's goals. SUSTAIN successfully extends category learning models to studies of inference learning, unsupervised learning, category construction, and contexts in which identification learning is faster than classification learning.

  18. A Coterminous Collaborative Learning Model: Interconnectivity of Leadership and Learning

    Directory of Open Access Journals (Sweden)

    Ilana Margolin

    2012-05-01

    Full Text Available This qualitative ethnographic study examines a collaborative leadership model focused on learning and socially just practices within a change context of a wide educational partnership. The study analyzes a range of perspectives of novice teachers, mentor teachers, teacher educators and district superintendents on leadership and learning. The findings reveal the emergence of a coalition of leaders crossing borders at all levels of the educational system: local school level, district level and teacher education level who were involved in coterminous collaborative learning. Four categories of learning were identified as critical to leading a change in the educational system: learning in professional communities, learning from practice, learning through theory and research and learning from and with leaders. The implications of the study for policy makers as well as for practitioners are to adopt a holistic approach to the educational environment and plan a collaborative learning continuum from initial pre-service programs through professional development learning at all levels.

  19. Learning topic models by belief propagation.

    Science.gov (United States)

    Zeng, Jia; Cheung, William K; Liu, Jiming

    2013-05-01

    Latent Dirichlet allocation (LDA) is an important hierarchical Bayesian model for probabilistic topic modeling, which attracts worldwide interest and touches on many important applications in text mining, computer vision and computational biology. This paper represents the collapsed LDA as a factor graph, which enables the classic loopy belief propagation (BP) algorithm for approximate inference and parameter estimation. Although two commonly used approximate inference methods, such as variational Bayes (VB) and collapsed Gibbs sampling (GS), have gained great success in learning LDA, the proposed BP is competitive in both speed and accuracy, as validated by encouraging experimental results on four large-scale document datasets. Furthermore, the BP algorithm has the potential to become a generic scheme for learning variants of LDA-based topic models in the collapsed space. To this end, we show how to learn two typical variants of LDA-based topic models, such as author-topic models (ATM) and relational topic models (RTM), using BP based on the factor graph representations.

  20. A pedagogical model for simulation-based learning in healthcare

    Directory of Open Access Journals (Sweden)

    Tuulikki Keskitalo

    2015-11-01

    Full Text Available The aim of this study was to design a pedagogical model for a simulation-based learning environment (SBLE in healthcare. Currently, simulation and virtual reality are a major focus in healthcare education. However, when and how these learning environments should be applied is not well-known. The present study tries to fill that gap. We pose the following research question: What kind of pedagogical model supports and facilitates students’ meaningful learning in SBLEs? The study used design-based research (DBR and case study approaches. We report the results from our second case study and how the pedagogical model was developed based on the lessons learned. The study involved nine facilitators and 25 students. Data were collected and analysed using mixed methods. The main result of this study is the refined pedagogical model. The model is based on the socio-cultural theory of learning and characteristics of meaningful learning as well as previous pedagogical models. The model will provide a more holistic and meaningful approach to teaching and learning in SBLEs. However, the model requires evidence and further development.

  1. Benchmarking Deep Learning Models on Large Healthcare Datasets.

    Science.gov (United States)

    Purushotham, Sanjay; Meng, Chuizheng; Che, Zhengping; Liu, Yan

    2018-06-04

    Deep learning models (aka Deep Neural Networks) have revolutionized many fields including computer vision, natural language processing, speech recognition, and is being increasingly used in clinical healthcare applications. However, few works exist which have benchmarked the performance of the deep learning models with respect to the state-of-the-art machine learning models and prognostic scoring systems on publicly available healthcare datasets. In this paper, we present the benchmarking results for several clinical prediction tasks such as mortality prediction, length of stay prediction, and ICD-9 code group prediction using Deep Learning models, ensemble of machine learning models (Super Learner algorithm), SAPS II and SOFA scores. We used the Medical Information Mart for Intensive Care III (MIMIC-III) (v1.4) publicly available dataset, which includes all patients admitted to an ICU at the Beth Israel Deaconess Medical Center from 2001 to 2012, for the benchmarking tasks. Our results show that deep learning models consistently outperform all the other approaches especially when the 'raw' clinical time series data is used as input features to the models. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Student Modelling in Adaptive E-Learning Systems

    Directory of Open Access Journals (Sweden)

    Clemens Bechter

    2011-09-01

    Full Text Available Most e-Learning systems provide web-based learning so that students can access the same online courses via the Internet without adaptation, based on each student's profile and behavior. In an e-Learning system, one size does not fit all. Therefore, it is a challenge to make e-Learning systems that are suitably “adaptive”. The aim of adaptive e-Learning is to provide the students the appropriate content at the right time, means that the system is able to determine the knowledge level, keep track of usage, and arrange content automatically for each student for the best learning result. This study presents a proposed system which includes major adaptive features based on a student model. The proposed system is able to initialize the student model for determining the knowledge level of a student when the student registers for the course. After a student starts learning the lessons and doing many activities, the system can track information of the student until he/she takes a test. The student’s knowledge level, based on the test scores, is updated into the system for use in the adaptation process, which combines the student model with the domain model in order to deliver suitable course contents to the students. In this study, the proposed adaptive e-Learning system is implemented on an “Introduction to Java Programming Language” course, using LearnSquare software. After the system was tested, the results showed positive feedback towards the proposed system, especially in its adaptive capability.

  3. E-Model for Online Learning Communities.

    Science.gov (United States)

    Rogo, Ellen J; Portillo, Karen M

    2015-10-01

    The purpose of this study was to explore the students' perspectives on the phenomenon of online learning communities while enrolled in a graduate dental hygiene program. A qualitative case study method was designed to investigate the learners' experiences with communities in an online environment. A cross-sectional purposive sampling method was used. Interviews were the data collection method. As the original data were being analyzed, the researchers noted a pattern evolved indicating the phenomenon developed in stages. The data were re-analyzed and validated by 2 member checks. The participants' experiences revealed an e-model consisting of 3 stages of formal learning community development as core courses in the curriculum were completed and 1 stage related to transmuting the community to an informal entity as students experienced the independent coursework in the program. The development of the formal learning communities followed 3 stages: Building a Foundation for the Learning Community, Building a Supportive Network within the Learning Community and Investing in the Community to Enhance Learning. The last stage, Transforming the Learning Community, signaled a transition to an informal network of learners. The e-model was represented by 3 key elements: metamorphosis of relationships, metamorphosis through the affective domain and metamorphosis through the cognitive domain, with the most influential element being the affective development. The e-model describes a 4 stage process through which learners experience a metamorphosis in their affective, relationship and cognitive development. Synergistic learning was possible based on the interaction between synergistic relationships and affective actions. Copyright © 2015 The American Dental Hygienists’ Association.

  4. Hierarchical Bayesian Models of Subtask Learning

    Science.gov (United States)

    Anglim, Jeromy; Wynton, Sarah K. A.

    2015-01-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  5. Car-following Behavior Model Learning Using Timed Automata

    NARCIS (Netherlands)

    Zhang, Yihuan; Lin, Q.; Wang, Jun; Verwer, S.E.; Dochain, D.; Henrion, D.; Peaucelle, D.

    Learning driving behavior is fundamental for autonomous vehicles to “understand” traffic situations. This paper proposes a novel method for learning a behavioral model of car-following using automata learning algorithms. The model is interpretable for car-following behavior analysis. Frequent common

  6. Bio-Inspired Neural Model for Learning Dynamic Models

    Science.gov (United States)

    Duong, Tuan; Duong, Vu; Suri, Ronald

    2009-01-01

    A neural-network mathematical model that, relative to prior such models, places greater emphasis on some of the temporal aspects of real neural physical processes, has been proposed as a basis for massively parallel, distributed algorithms that learn dynamic models of possibly complex external processes by means of learning rules that are local in space and time. The algorithms could be made to perform such functions as recognition and prediction of words in speech and of objects depicted in video images. The approach embodied in this model is said to be "hardware-friendly" in the following sense: The algorithms would be amenable to execution by special-purpose computers implemented as very-large-scale integrated (VLSI) circuits that would operate at relatively high speeds and low power demands.

  7. Learner Open Modeling in Adaptive Mobile Learning System for Supporting Student to Learn English

    Directory of Open Access Journals (Sweden)

    Van Cong Pham

    2011-10-01

    Full Text Available This paper represents a personalized context-aware mobile learning architecture for supporting student to learn English as foreign language in order to prepare for TOEFL test. We consider how to apply open learner modeling techniques to adapt contents for different learners based on context, which includes location, amount of time to learn, the manner as well as learner's knowledge in learning progress. Through negotiation with system, the editable learner model will be updated to support adaptive engine to select adaptive contents meeting learner's demands. Empirical testing results for students who used application prototype indicate that interaction user modeling is helpful in supporting learner to learn adaptive materials.

  8. The Effect of Learning Based on Technology Model and Assessment Technique toward Thermodynamic Learning Achievement

    Science.gov (United States)

    Makahinda, T.

    2018-02-01

    The purpose of this research is to find out the effect of learning model based on technology and assessment technique toward thermodynamic achievement by controlling students intelligence. This research is an experimental research. The sample is taken through cluster random sampling with the total respondent of 80 students. The result of the research shows that the result of learning of thermodynamics of students who taught the learning model of environmental utilization is higher than the learning result of student thermodynamics taught by simulation animation, after controlling student intelligence. There is influence of student interaction, and the subject between models of technology-based learning with assessment technique to student learning result of Thermodynamics, after controlling student intelligence. Based on the finding in the lecture then should be used a thermodynamic model of the learning environment with the use of project assessment technique.

  9. LEARNING CREATIVE WRITING MODEL BASED ON NEUROLINGUISTIC PROGRAMMING

    OpenAIRE

    Rustan, Edhy

    2017-01-01

    The objectives of the study are to determine: (1) condition on learning creative writing at high school students in Makassar, (2) requirement of learning model in creative writing, (3) program planning and design model in ideal creative writing, (4) feasibility of model study based on creative writing in neurolinguistic programming, and (5) the effectiveness of the learning model based on creative writing in neurolinguisticprogramming.The method of this research uses research development of L...

  10. Learning to Model in Engineering

    Science.gov (United States)

    Gainsburg, Julie

    2013-01-01

    Policymakers and education scholars recommend incorporating mathematical modeling into mathematics education. Limited implementation of modeling instruction in schools, however, has constrained research on how students learn to model, leaving unresolved debates about whether modeling should be reified and explicitly taught as a competence, whether…

  11. The Influence Of Learning Model Guided Findings Of Student Learning Outcomes

    Directory of Open Access Journals (Sweden)

    A. SaefulBahri

    2015-03-01

    Full Text Available Abstract This study examines the influence of the learning model guided findings on student learning outcomes in subjects PAI eighth grade students of SMP Plus al Masoem. The research method used in this study is a quantitative method in the form of quasi-experiment Quasi-Experimental Design. The findings of the study are expected to demonstrate 1 the difference significant increase in learning outcomes between the experimental class using guided discovery method that uses the control class discussion of learning models 2 Constraints in the method of guided discovery activities and the limited ability of educators in the experimental class in implements the method of guided discovery and constraints faced by students while digging the information they need so we need special strategies to motivate students in the experimental class in order for them creatively find the right way to gather information that supports learning PAI.

  12. Can model-free reinforcement learning explain deontological moral judgments?

    Science.gov (United States)

    Ayars, Alisabeth

    2016-05-01

    Dual-systems frameworks propose that moral judgments are derived from both an immediate emotional response, and controlled/rational cognition. Recently Cushman (2013) proposed a new dual-system theory based on model-free and model-based reinforcement learning. Model-free learning attaches values to actions based on their history of reward and punishment, and explains some deontological, non-utilitarian judgments. Model-based learning involves the construction of a causal model of the world and allows for far-sighted planning; this form of learning fits well with utilitarian considerations that seek to maximize certain kinds of outcomes. I present three concerns regarding the use of model-free reinforcement learning to explain deontological moral judgment. First, many actions that humans find aversive from model-free learning are not judged to be morally wrong. Moral judgment must require something in addition to model-free learning. Second, there is a dearth of evidence for central predictions of the reinforcement account-e.g., that people with different reinforcement histories will, all else equal, make different moral judgments. Finally, to account for the effect of intention within the framework requires certain assumptions which lack support. These challenges are reasonable foci for future empirical/theoretical work on the model-free/model-based framework. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A Multiobjective Sparse Feature Learning Model for Deep Neural Networks.

    Science.gov (United States)

    Gong, Maoguo; Liu, Jia; Li, Hao; Cai, Qing; Su, Linzhi

    2015-12-01

    Hierarchical deep neural networks are currently popular learning models for imitating the hierarchical architecture of human brain. Single-layer feature extractors are the bricks to build deep networks. Sparse feature learning models are popular models that can learn useful representations. But most of those models need a user-defined constant to control the sparsity of representations. In this paper, we propose a multiobjective sparse feature learning model based on the autoencoder. The parameters of the model are learnt by optimizing two objectives, reconstruction error and the sparsity of hidden units simultaneously to find a reasonable compromise between them automatically. We design a multiobjective induced learning procedure for this model based on a multiobjective evolutionary algorithm. In the experiments, we demonstrate that the learning procedure is effective, and the proposed multiobjective model can learn useful sparse features.

  14. Computer-Mediated Intersensory Learning Model for Students with Learning Disabilities

    Science.gov (United States)

    Seok, Soonhwa; DaCosta, Boaventura; Kinsell, Carolyn; Poggio, John C.; Meyen, Edward L.

    2010-01-01

    This article proposes a computer-mediated intersensory learning model as an alternative to traditional instructional approaches for students with learning disabilities (LDs) in the inclusive classroom. Predominant practices of classroom inclusion today reflect the six principles of zero reject, nondiscriminatory evaluation, appropriate education,…

  15. Learning from video modeling examples: Does gender matter?

    NARCIS (Netherlands)

    Hoogerheide, V.; Loyens, S.M.M.; van Gog, T.

    2016-01-01

    Online learning from video modeling examples, in which a human model demonstrates and explains how to perform a learning task, is an effective instructional method that is increasingly used nowadays. However, model characteristics such as gender tend to differ across videos, and the model-observer

  16. Learning models of activities involving interacting objects

    DEFF Research Database (Denmark)

    Manfredotti, Cristina; Pedersen, Kim Steenstrup; Hamilton, Howard J.

    2013-01-01

    We propose the LEMAIO multi-layer framework, which makes use of hierarchical abstraction to learn models for activities involving multiple interacting objects from time sequences of data concerning the individual objects. Experiments in the sea navigation domain yielded learned models that were t...

  17. Pragmatically Framed Cross-Situational Noun Learning Using Computational Reinforcement Models.

    Science.gov (United States)

    Najnin, Shamima; Banerjee, Bonny

    2018-01-01

    Cross-situational learning and social pragmatic theories are prominent mechanisms for learning word meanings (i.e., word-object pairs). In this paper, the role of reinforcement is investigated for early word-learning by an artificial agent. When exposed to a group of speakers, the agent comes to understand an initial set of vocabulary items belonging to the language used by the group. Both cross-situational learning and social pragmatic theory are taken into account. As social cues, joint attention and prosodic cues in caregiver's speech are considered. During agent-caregiver interaction, the agent selects a word from the caregiver's utterance and learns the relations between that word and the objects in its visual environment. The "novel words to novel objects" language-specific constraint is assumed for computing rewards. The models are learned by maximizing the expected reward using reinforcement learning algorithms [i.e., table-based algorithms: Q-learning, SARSA, SARSA-λ, and neural network-based algorithms: Q-learning for neural network (Q-NN), neural-fitted Q-network (NFQ), and deep Q-network (DQN)]. Neural network-based reinforcement learning models are chosen over table-based models for better generalization and quicker convergence. Simulations are carried out using mother-infant interaction CHILDES dataset for learning word-object pairings. Reinforcement is modeled in two cross-situational learning cases: (1) with joint attention (Attentional models), and (2) with joint attention and prosodic cues (Attentional-prosodic models). Attentional-prosodic models manifest superior performance to Attentional ones for the task of word-learning. The Attentional-prosodic DQN outperforms existing word-learning models for the same task.

  18. The Model of Strategic e-Learning: Understanding and Evaluating Student e-Learning from Metacognitive Perspectives

    Science.gov (United States)

    Tsai, Meng-Jung

    2009-01-01

    This paper presents the Model of Strategic e-Learning to explain and evaluate student e-learning from metacognitive perspectives. An in-depth interview, pilot study and main study are employed to construct the model and develop an instrument--the Online Learning Strategies Scale (OLSS). The model framework is constructed and illustrated by four…

  19. On the Conditioning of Machine-Learning-Assisted Turbulence Modeling

    Science.gov (United States)

    Wu, Jinlong; Sun, Rui; Wang, Qiqi; Xiao, Heng

    2017-11-01

    Recently, several researchers have demonstrated that machine learning techniques can be used to improve the RANS modeled Reynolds stress by training on available database of high fidelity simulations. However, obtaining improved mean velocity field remains an unsolved challenge, restricting the predictive capability of current machine-learning-assisted turbulence modeling approaches. In this work we define a condition number to evaluate the model conditioning of data-driven turbulence modeling approaches, and propose a stability-oriented machine learning framework to model Reynolds stress. Two canonical flows, the flow in a square duct and the flow over periodic hills, are investigated to demonstrate the predictive capability of the proposed framework. The satisfactory prediction performance of mean velocity field for both flows demonstrates the predictive capability of the proposed framework for machine-learning-assisted turbulence modeling. With showing the capability of improving the prediction of mean flow field, the proposed stability-oriented machine learning framework bridges the gap between the existing machine-learning-assisted turbulence modeling approaches and the demand of predictive capability of turbulence models in real applications.

  20. DEVELOPMENT MODEL OF PATISSERIE PROJECT-BASED LEARNING

    OpenAIRE

    Ana Ana; Lutfhiyah Nurlaela

    2013-01-01

    The study aims to find a model of patisserie project-based learning with production approach that can improve effectiveness of patisserie learning. Delphi Technique, Cohen's Kappa and percentages of agreements were used to assess model of patisserie project based learning. Data collection techniques employed in the study were questionnaire, check list worksheet, observation, and interview sheets. Subjects were 13 lectures of expertise food and nutrition and 91 students of Food and Nutrition ...

  1. Validating a Technology Enhanced Student-Centered Learning Model

    Science.gov (United States)

    Kang, Myunghee; Hahn, Jungsun; Chung, Warren

    2015-01-01

    The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…

  2. Competition-Based Learning: A Model for the Integration of Competitions with Project-Based Learning Using Open Source LMS

    Science.gov (United States)

    Issa, Ghassan; Hussain, Shakir M.; Al-Bahadili, Hussein

    2014-01-01

    In an effort to enhance the learning process in higher education, a new model for Competition-Based Learning (CBL) is presented. The new model utilizes two well-known learning models, namely, the Project-Based Learning (PBL) and competitions. The new model is also applied in a networked environment with emphasis on collective learning as well as…

  3. The Implementation of Discovery Learning Model with Scientific Learning Approach to Improve Students’ Critical Thinking in Learning History

    Directory of Open Access Journals (Sweden)

    Edi Nurcahyo

    2018-03-01

    Full Text Available Historical learning has not reached optimal in the learning process. It is caused by the history teachers’ learning model has not used the innovative learning models. Furthermore, it supported by the perception of students to the history subject because it does not become final exam (UN subject so it makes less improvement and builds less critical thinking in students’ daily learning. This is due to the lack of awareness of historical events and the availability of history books for students and teachers in the library are still lacking. Discovery learning with scientific approach encourages students to solve problems actively and able to improve students' critical thinking skills with scientific approach so student can build scientific thinking include observing, asking, reasoning, trying, and networking   Keywords: discovery learning, scientific, critical thinking

  4. Learning situation models in a smart home.

    Science.gov (United States)

    Brdiczka, Oliver; Crowley, James L; Reignier, Patrick

    2009-02-01

    This paper addresses the problem of learning situation models for providing context-aware services. Context for modeling human behavior in a smart environment is represented by a situation model describing environment, users, and their activities. A framework for acquiring and evolving different layers of a situation model in a smart environment is proposed. Different learning methods are presented as part of this framework: role detection per entity, unsupervised extraction of situations from multimodal data, supervised learning of situation representations, and evolution of a predefined situation model with feedback. The situation model serves as frame and support for the different methods, permitting to stay in an intuitive declarative framework. The proposed methods have been integrated into a whole system for smart home environment. The implementation is detailed, and two evaluations are conducted in the smart home environment. The obtained results validate the proposed approach.

  5. Modelling and Optimizing Mathematics Learning in Children

    Science.gov (United States)

    Käser, Tanja; Busetto, Alberto Giovanni; Solenthaler, Barbara; Baschera, Gian-Marco; Kohn, Juliane; Kucian, Karin; von Aster, Michael; Gross, Markus

    2013-01-01

    This study introduces a student model and control algorithm, optimizing mathematics learning in children. The adaptive system is integrated into a computer-based training system for enhancing numerical cognition aimed at children with developmental dyscalculia or difficulties in learning mathematics. The student model consists of a dynamic…

  6. A Technology Enhanced Learning Model for Quality Education

    Science.gov (United States)

    Sherly, Elizabeth; Uddin, Md. Meraj

    Technology Enhanced Learning and Teaching (TELT) Model provides learning through collaborations and interactions with a framework for content development and collaborative knowledge sharing system as a supplementary for learning to improve the quality of education system. TELT deals with a unique pedagogy model for Technology Enhanced Learning System which includes course management system, digital library, multimedia enriched contents and video lectures, open content management system and collaboration and knowledge sharing systems. Open sources like Moodle and Wiki for content development, video on demand solution with a low cost mid range system, an exhaustive digital library are provided in a portal system. The paper depicts a case study of e-learning initiatives with TELT model at IIITM-K and how effectively implemented.

  7. Critical-Inquiry-Based-Learning: Model of Learning to Promote Critical Thinking Ability of Pre-service Teachers

    Science.gov (United States)

    Prayogi, S.; Yuanita, L.; Wasis

    2018-01-01

    This study aimed to develop Critical-Inquiry-Based-Learning (CIBL) learning model to promote critical thinking (CT) ability of preservice teachers. The CIBL learning model was developed by meeting the criteria of validity, practicality, and effectiveness. Validation of the model involves 4 expert validators through the mechanism of the focus group discussion (FGD). CIBL learning model declared valid to promote CT ability, with the validity level (Va) of 4.20 and reliability (r) of 90,1% (very reliable). The practicality of the model was evaluated when it was implemented that involving 17 of preservice teachers. The CIBL learning model had been declared practice, its measuring from learning feasibility (LF) with very good criteria (LF-score = 4.75). The effectiveness of the model was evaluated from the improvement CT ability after the implementation of the model. CT ability were evaluated using the scoring technique adapted from Ennis-Weir Critical Thinking Essay Test. The average score of CT ability on pretest is - 1.53 (uncritical criteria), whereas on posttest is 8.76 (critical criteria), with N-gain score of 0.76 (high criteria). Based on the results of this study, it can be concluded that developed CIBL learning model is feasible to promote CT ability of preservice teachers.

  8. Learning from Video Modeling Examples: Does Gender Matter?

    Science.gov (United States)

    Hoogerheide, Vincent; Loyens, Sofie M. M.; van Gog, Tamara

    2016-01-01

    Online learning from video modeling examples, in which a human model demonstrates and explains how to perform a learning task, is an effective instructional method that is increasingly used nowadays. However, model characteristics such as gender tend to differ across videos, and the model-observer similarity hypothesis suggests that such…

  9. Structural Equation Modeling towards Online Learning Readiness, Academic Motivations, and Perceived Learning

    Science.gov (United States)

    Horzum, Mehmet Baris; Kaymak, Zeliha Demir; Gungoren, Ozlem Canan

    2015-01-01

    The relationship between online learning readiness, academic motivations, and perceived learning was investigated via structural equation modeling in the research. The population of the research consisted of 750 students who studied using the online learning programs of Sakarya University. 420 of the students who volunteered for the research and…

  10. Two Undergraduate Process Modeling Courses Taught Using Inductive Learning Methods

    Science.gov (United States)

    Soroush, Masoud; Weinberger, Charles B.

    2010-01-01

    This manuscript presents a successful application of inductive learning in process modeling. It describes two process modeling courses that use inductive learning methods such as inquiry learning and problem-based learning, among others. The courses include a novel collection of multi-disciplinary complementary process modeling examples. They were…

  11. The behavioural motivation model in open distance learning

    DEFF Research Database (Denmark)

    Zaikin, Oleg; Malinowska, Magdalena; Kofoed, Lise B.

    2014-01-01

    The article contains the concept of developing a motivation model aimed at supporting activity of both students and teachers in the process of implementing and using an open and distance learning system. Proposed motivation model is focused on the task of filling the knowledge repository with high...... quality didactic material. Open and distance learning system assures a computer space for the teaching/learning process in open environment. The structure of the motivation model and formal assumptions are described. Additionally, there is presented a structure of the linguistic database, helping...... the teacher to assess the student's motivation and the basic simulation model to analysis the teaching/learning process constrains. The proposed approach is based on the games theory and simulation approach....

  12. Learning from video modeling examples : Effects of seeing the human model's face

    NARCIS (Netherlands)

    Van Gog, Tamara; Verveer, Ilse; Verveer, Lise

    2014-01-01

    Video modeling examples in which a human(-like) model shows learners how to perform a task are increasingly used in education, as they have become very easy to create and distribute in e-learning environments. However, little is known about design guidelines to optimize learning from video modeling

  13. Group-Based Active Learning of Classification Models.

    Science.gov (United States)

    Luo, Zhipeng; Hauskrecht, Milos

    2017-05-01

    Learning of classification models from real-world data often requires additional human expert effort to annotate the data. However, this process can be rather costly and finding ways of reducing the human annotation effort is critical for this task. The objective of this paper is to develop and study new ways of providing human feedback for efficient learning of classification models by labeling groups of examples. Briefly, unlike traditional active learning methods that seek feedback on individual examples, we develop a new group-based active learning framework that solicits label information on groups of multiple examples. In order to describe groups in a user-friendly way, conjunctive patterns are used to compactly represent groups. Our empirical study on 12 UCI data sets demonstrates the advantages and superiority of our approach over both classic instance-based active learning work, as well as existing group-based active-learning methods.

  14. Study on modeling of operator's learning mechanism

    International Nuclear Information System (INIS)

    Yoshimura, Seichi; Hasegawa, Naoko

    1998-01-01

    One effective method to analyze the causes of human errors is to model the behavior of human and to simulate it. The Central Research Institute of Electric Power Industry (CRIEPI) has developed an operator team behavior simulation system called SYBORG (Simulation System for the Behavior of an Operating Group) to analyze the human errors and to establish the countermeasures for them. As an operator behavior model which composes SYBORG has no learning mechanism and the knowledge of a plant is fixed, it cannot take suitable actions when unknown situations occur nor learn anything from the experience. However, considering actual operators, learning is an essential human factor to enhance their abilities to diagnose plant anomalies. In this paper, Q learning with 1/f fluctuation was proposed as a learning mechanism of an operator and simulation using the mechanism was conducted. The results showed the effectiveness of the learning mechanism. (author)

  15. Concept Model For Designing Engaging And Motivating Games For Learning - The Smiley-Model

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke; Ørngreen, Rikke

    2012-01-01

    The desire to use learning games in education is increasing, but the development of games for learning is still a growing field. Research shows that it remains difficult to develop learning games that are both instructive and engaging, although it is precisely the presence of these two elements...... that is believed to be an advantage when using learning games in education. In this paper the Smiley-model is presented (figure 1). The model describes which parameters and elements are important when designing a learning game. The present research is a result of a case-based action research study for designing...... a music learning game that teaches children to play piano using sheet music, and at the same time is fun and engaging. Although the model was originally developed for and through music, it has a more generic nature, and may be relevant for other fields as well. The Smiley-model is a condensed version...

  16. Learning from video modeling examples: does gender matter?

    NARCIS (Netherlands)

    V. Hoogerheide (Vincent); S.M.M. Loyens (Sofie); T.A.J.M. van Gog (Tamara)

    2016-01-01

    textabstractOnline learning from video modeling examples, in which a human model demonstrates and explains how to perform a learning task, is an effective instructional method that is increasingly used nowadays. However, model characteristics such as gender tend to differ across videos, and the

  17. Representing adaptive and adaptable Units of Learning. How to model personalized eLearning in IMS Learning Design

    OpenAIRE

    Burgos, Daniel; Tattersall, Colin; Koper, Rob

    2006-01-01

    Burgos, D., Tattersall, C., & Koper, E. J. R. (2007). Representing adaptive and adaptable Units of Learning. How to model personalized eLearning in IMS Learning Design. In B. Fernández Manjon, J. M. Sanchez Perez, J. A. Gómez Pulido, M. A. Vega Rodriguez & J. Bravo (Eds.), Computers and Education: E-learning - from theory to practice. Germany: Kluwer.

  18. Inference in models with adaptive learning

    NARCIS (Netherlands)

    Chevillon, G.; Massmann, M.; Mavroeidis, S.

    2010-01-01

    Identification of structural parameters in models with adaptive learning can be weak, causing standard inference procedures to become unreliable. Learning also induces persistent dynamics, and this makes the distribution of estimators and test statistics non-standard. Valid inference can be

  19. The Influence of Problem Based Learning Model toward Students’ Activities and Learning Outcomes on Financial Management Subject

    Directory of Open Access Journals (Sweden)

    Han Tantri Hardini

    2016-12-01

    Full Text Available This research aims to know the influence of problem based learning model toward students’ activities and achievement on Financial Management subject for undergraduate program students of Accounting Education. It was a quantitative research that used true experimental design. Samples of this study were undergraduate program students of Accounting Education in the year of 2014. Class A were control class and class B were experimental class. Data were analyzed by using t-test in order to determine the differences of learning outcomes between control class and experimental class. Then, questionnaires were distributed to gather students’ activities information in their students’ learning model. Findings show that there is an influence of Problem Based Learning model toward students’ activities and learning outcomes on Financial Management subject for undergraduate program students of Accounting Education since t-count ≥ t-table. It is 6.120 ≥ 1.9904. Students’ learning activities with Problem Based Learning model are better than students who are taught by conventional learning model.

  20. Development of a Model for Whole Brain Learning of Physiology

    Science.gov (United States)

    Eagleton, Saramarie; Muller, Anton

    2011-01-01

    In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed…

  1. Democratic learning in the Aalborg Model

    DEFF Research Database (Denmark)

    Qvist, Palle

    A democratic learning system can be defined as a system where decisions, processes and behaviour related to learning are established through argumentation (discussion) or negotiation (dialog), voting or consensus (alone or in combination) between those affected by the decision simultaneously...... reaching the learning outcomes, the technical and professional knowledge and insight. In principle the participants must be equal with equal rights and feel committed to the values of rationality and impartiality. The Aalborg Model is an example of a democratic learning system although not 100% democratic......, processes and behaviour related to learning can be established through argumentation (discussion) or negotiation (dialog), voting or consensus (alone or in combination) within the group simultaneously reaching the learning outcomes, the technical and professional knowledge and insight. This article...

  2. Digital Competence Model of Distance Learning Students

    Science.gov (United States)

    da Silva, Ketia Kellen A.; Behar, Patricia A.

    2017-01-01

    This article presents the development of a digital competency model of Distance Learning (DL) students in Brazil called CompDigAl_EAD. The following topics were addressed in this study: Educational Competences, Digital Competences, and Distance Learning students. The model was developed between 2015 and 2016 and is being validated in 2017. It was…

  3. A model of olfactory associative learning

    Science.gov (United States)

    Tavoni, Gaia; Balasubramanian, Vijay

    We propose a mechanism, rooted in the known anatomy and physiology of the vertebrate olfactory system, by which presentations of rewarded and unrewarded odors lead to formation of odor-valence associations between piriform cortex (PC) and anterior olfactory nucleus (AON) which, in concert with neuromodulators release in the bulb, entrains a direct feedback from the AON representation of valence to a group of mitral cells (MCs). The model makes several predictions concerning MC activity during and after associative learning: (a) AON feedback produces synchronous divergent responses in a localized subset of MCs; (b) such divergence propagates to other MCs by lateral inhibition; (c) after learning, MC responses reconverge; (d) recall of the newly formed associations in the PC increases feedback inhibition in the MCs. These predictions have been confirmed in disparate experiments which we now explain in a unified framework. For cortex, our model further predicts that the response divergence developed during learning reshapes odor representations in the PC, with the effects of (a) decorrelating PC representations of odors with different valences, (b) increasing the size and reliability of those representations, and enabling recall correction and redundancy reduction after learning. Simons Foundation for Mathematical Modeling of Living Systems.

  4. Quality specifications in postgraduate medical e-learning: an integrative literature review leading to a postgraduate medical e-learning model.

    Science.gov (United States)

    De Leeuw, R A; Westerman, Michiel; Nelson, E; Ket, J C F; Scheele, F

    2016-07-08

    E-learning is driving major shifts in medical education. Prioritizing learning theories and quality models improves the success of e-learning programs. Although many e-learning quality standards are available, few are focused on postgraduate medical education. We conducted an integrative review of the current postgraduate medical e-learning literature to identify quality specifications. The literature was thematically organized into a working model. Unique quality specifications (n = 72) were consolidated and re-organized into a six-domain model that we called the Postgraduate Medical E-learning Model (Postgraduate ME Model). This model was partially based on the ISO-19796 standard, and drew on cognitive load multimedia principles. The domains of the model are preparation, software design and system specifications, communication, content, assessment, and maintenance. This review clarified the current state of postgraduate medical e-learning standards and specifications. It also synthesized these specifications into a single working model. To validate our findings, the next-steps include testing the Postgraduate ME Model in controlled e-learning settings.

  5. Technological learning in energy-environment-economy modelling: A survey

    International Nuclear Information System (INIS)

    Kahouli-Brahmi, Sondes

    2008-01-01

    This paper aims at providing an overview and a critical analysis of the technological learning concept and its incorporation in energy-environment-economy models. A special emphasis is put on surveying and discussing, through the so-called learning curve, both studies estimating learning rates in the energy field and studies incorporating endogenous technological learning in bottom-up and top-down models. The survey of learning rate estimations gives special attention to interpreting and explaining the sources of variability of estimated rates, which is shown to be mainly inherent in R and D expenditures, the problem of omitted variable bias, the endogeneity relationship and the role of spillovers. Large-scale models survey show that, despite some methodological and computational complexity related to the non-linearity and the non-convexity associated with the learning curve incorporation, results of the numerous modelling experiments give several new insights with regard to the analysis of the prospects of specific technological options and their cost decrease potential (bottom-up models), and with regard to the analysis of strategic considerations, especially inherent in the innovation and energy diffusion process, in particular the energy sector's endogenous responses to environment policy instruments (top-down models)

  6. Learning curves in energy planning models

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, L; Kypreos, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    This study describes the endogenous representation of investment cost learning curves into the MARKAL energy planning model. A piece-wise representation of the learning curves is implemented using Mixed Integer Programming. The approach is briefly described and some results are presented. (author) 3 figs., 5 refs.

  7. Learning Graphical Models With Hubs.

    Science.gov (United States)

    Tan, Kean Ming; London, Palma; Mohan, Karthik; Lee, Su-In; Fazel, Maryam; Witten, Daniela

    2014-10-01

    We consider the problem of learning a high-dimensional graphical model in which there are a few hub nodes that are densely-connected to many other nodes. Many authors have studied the use of an ℓ 1 penalty in order to learn a sparse graph in the high-dimensional setting. However, the ℓ 1 penalty implicitly assumes that each edge is equally likely and independent of all other edges. We propose a general framework to accommodate more realistic networks with hub nodes, using a convex formulation that involves a row-column overlap norm penalty. We apply this general framework to three widely-used probabilistic graphical models: the Gaussian graphical model, the covariance graph model, and the binary Ising model. An alternating direction method of multipliers algorithm is used to solve the corresponding convex optimization problems. On synthetic data, we demonstrate that our proposed framework outperforms competitors that do not explicitly model hub nodes. We illustrate our proposal on a webpage data set and a gene expression data set.

  8. Development of a model for whole brain learning of physiology.

    Science.gov (United States)

    Eagleton, Saramarie; Muller, Anton

    2011-12-01

    In this report, a model was developed for whole brain learning based on Curry's onion model. Curry described the effect of personality traits as the inner layer of learning, information-processing styles as the middle layer of learning, and environmental and instructional preferences as the outer layer of learning. The model that was developed elaborates on these layers by relating the personality traits central to learning to the different quadrants of brain preference, as described by Neethling's brain profile, as the inner layer of the onion. This layer is encircled by the learning styles that describe different information-processing preferences for each brain quadrant. For the middle layer, the different stages of Kolb's learning cycle are classified into the four brain quadrants associated with the different brain processing strategies within the information processing circle. Each of the stages of Kolb's learning cycle is also associated with a specific cognitive learning strategy. These two inner circles are enclosed by the circle representing the role of the environment and instruction on learning. It relates environmental factors that affect learning and distinguishes between face-to-face and technology-assisted learning. This model informs on the design of instructional interventions for physiology to encourage whole brain learning.

  9. Exploring the Dimensions of E-learning Maturity Model

    Directory of Open Access Journals (Sweden)

    George Maher Iskander

    2012-06-01

    Full Text Available Despite the highlighting on e-learning, it was obvious that models for successful deployment have not yet been recognized. Even with the huge quantities of money being spent, it is not clear that any enhancement in student learning outcomes has been recognized. To address this issue, this qualitative research aimed to explore and understand dimensions of E-learning Maturity Model (ELMM. An inductive approach, using qualitative methods, was used in this research. Fifty interviewees suggested five dimensions: Students' Attitudes, University attitudes from students’ perspectives, E-learning features, E-learning implementation and Effects of E-learning on students. Students from different majors and levels participated in this study. Findings of this study show that, there are significant five factors which formulate ELMM. Moreover, the study demonstrates that e-learning features have significant effects on student. It also highlights the relevance of using qualitative research in exploring maturity concept in e- learning.

  10. Diagnostic Machine Learning Models for Acute Abdominal Pain: Towards an e-Learning Tool for Medical Students.

    Science.gov (United States)

    Khumrin, Piyapong; Ryan, Anna; Judd, Terry; Verspoor, Karin

    2017-01-01

    Computer-aided learning systems (e-learning systems) can help medical students gain more experience with diagnostic reasoning and decision making. Within this context, providing feedback that matches students' needs (i.e. personalised feedback) is both critical and challenging. In this paper, we describe the development of a machine learning model to support medical students' diagnostic decisions. Machine learning models were trained on 208 clinical cases presenting with abdominal pain, to predict five diagnoses. We assessed which of these models are likely to be most effective for use in an e-learning tool that allows students to interact with a virtual patient. The broader goal is to utilise these models to generate personalised feedback based on the specific patient information requested by students and their active diagnostic hypotheses.

  11. Building a Model of Successful Collaborative Learning for Company Innovativeness

    Directory of Open Access Journals (Sweden)

    Agata Sudolska

    2014-01-01

    Full Text Available The aim of the paper is to develop a model of successful collaborative learning for company innovativeness. First of all, the paper explores the issue of inter-firm learning, focusing its attention on collaborative learning. Secondly, inter-firm learning relationships are considered. Thirdly, the ex ante conditions of collaborative learning and the intra-organizational enhancers of inter-firm learning processes are studied. Finally, a model of the critical success factors for collaborative learning is developed.

  12. The Effect of Cooperative Learning Model of Teams Games Tournament (TGT) and Students' Motivation toward Physics Learning Outcome

    Science.gov (United States)

    Nadrah; Tolla, Ismail; Ali, Muhammad Sidin; Muris

    2017-01-01

    This research aims at describing the effect of cooperative learning model of Teams Games Tournament (TGT) and motivation toward physics learning outcome. This research was a quasi-experimental research with a factorial design conducted at SMAN 2 Makassar. Independent variables were learning models. They were cooperative learning model of TGT and…

  13. Stochastic collusion and the power law of learning: a general reinforcement learning model of cooperation

    NARCIS (Netherlands)

    Flache, A.

    2002-01-01

    Concerns about models of cultural adaptation as analogs of genetic selection have led cognitive game theorists to explore learning-theoretic specifications. Two prominent examples, the Bush-Mosteller stochastic learning model and the Roth-Erev payoff-matching model, are aligned and integrated as

  14. Representing adaptive and adaptable Units of Learning. How to model personalized eLearning in IMS Learning Design

    NARCIS (Netherlands)

    Burgos, Daniel; Tattersall, Colin; Koper, Rob

    2006-01-01

    Burgos, D., Tattersall, C., & Koper, E. J. R. (2007). Representing adaptive and adaptable Units of Learning. How to model personalized eLearning in IMS Learning Design. In B. Fernández Manjon, J. M. Sanchez Perez, J. A. Gómez Pulido, M. A. Vega Rodriguez & J. Bravo (Eds.), Computers and Education:

  15. Personal Coaching: Reflection on a Model for Effective Learning

    Science.gov (United States)

    Griffiths, Kerryn

    2015-01-01

    The article "Personal Coaching: A Model for Effective Learning" (Griffiths, 2006) appeared in the "Journal of Learning Design" Volume 1, Issue 2 in 2006. Almost ten years on, Kerryn Griffiths reflects upon her original article. Specifically, Griffiths looks back at the combined coaching-learning model she suggested in her…

  16. General informatics teaching with B-Learning teaching model

    Directory of Open Access Journals (Sweden)

    Nguyen The Dung

    2018-03-01

    Full Text Available Blended learning (B-learning, a combination of face-to-face teaching and E-learning-supported-teaching in an online course, and Information and Communication Technology (ICT tools have been studied in recent years. In addition, the use of this teaching model is effective in teaching and learning conditions in which some certain subjects are appropriate for the specific teaching context. As it has been a matter of concern of the universities in Vietnam today, deep studies related to this topic is crucial to be conducted. In this article, the process of developing online courses and organizing teaching for the General Informatics subject for first-year students at the Hue University of Education with B-learning teaching model will be presented. The combination of 60% face-to-face and 40% online learning.

  17. A model of using social media for collaborative learning to enhance learners’ performance on learning

    Directory of Open Access Journals (Sweden)

    Waleed Mugahed Al-Rahmi

    2017-10-01

    Full Text Available Social media has been always described as the channel through which knowledge is transmitted between communities and learners. This social media has been utilized by colleges in a way to encourage collaborative learning and social interaction. This study explores the use of social media in the process of collaborative learning through learning Quran and Hadith. Through this investigation, different factors enhancing collaborative learning in learning Quran and Hadith in the context of using social media are going to be examined. 340 respondents participated in this study. The structural equation modeling (SEM was used to analyze the data obtained. Upon analysis and structural model validities, the study resulted in a model used for measuring the influences of the different variables. The study reported direct and indirect significant impacts of these variables on collaborative learning through the use of social media which might lead to a better performance by learners.

  18. Sensorimotor learning biases choice behavior: a learning neural field model for decision making.

    Directory of Open Access Journals (Sweden)

    Christian Klaes

    Full Text Available According to a prominent view of sensorimotor processing in primates, selection and specification of possible actions are not sequential operations. Rather, a decision for an action emerges from competition between different movement plans, which are specified and selected in parallel. For action choices which are based on ambiguous sensory input, the frontoparietal sensorimotor areas are considered part of the common underlying neural substrate for selection and specification of action. These areas have been shown capable of encoding alternative spatial motor goals in parallel during movement planning, and show signatures of competitive value-based selection among these goals. Since the same network is also involved in learning sensorimotor associations, competitive action selection (decision making should not only be driven by the sensory evidence and expected reward in favor of either action, but also by the subject's learning history of different sensorimotor associations. Previous computational models of competitive neural decision making used predefined associations between sensory input and corresponding motor output. Such hard-wiring does not allow modeling of how decisions are influenced by sensorimotor learning or by changing reward contingencies. We present a dynamic neural field model which learns arbitrary sensorimotor associations with a reward-driven Hebbian learning algorithm. We show that the model accurately simulates the dynamics of action selection with different reward contingencies, as observed in monkey cortical recordings, and that it correctly predicted the pattern of choice errors in a control experiment. With our adaptive model we demonstrate how network plasticity, which is required for association learning and adaptation to new reward contingencies, can influence choice behavior. The field model provides an integrated and dynamic account for the operations of sensorimotor integration, working memory and action

  19. The Answering Process for Multiple-Choice Questions in Collaborative Learning: A Mathematical Learning Model Analysis

    Science.gov (United States)

    Nakamura, Yasuyuki; Nishi, Shinnosuke; Muramatsu, Yuta; Yasutake, Koichi; Yamakawa, Osamu; Tagawa, Takahiro

    2014-01-01

    In this paper, we introduce a mathematical model for collaborative learning and the answering process for multiple-choice questions. The collaborative learning model is inspired by the Ising spin model and the model for answering multiple-choice questions is based on their difficulty level. An intensive simulation study predicts the possibility of…

  20. Quasilinear Extreme Learning Machine Model Based Internal Model Control for Nonlinear Process

    Directory of Open Access Journals (Sweden)

    Dazi Li

    2015-01-01

    Full Text Available A new strategy for internal model control (IMC is proposed using a regression algorithm of quasilinear model with extreme learning machine (QL-ELM. Aimed at the chemical process with nonlinearity, the learning process of the internal model and inverse model is derived. The proposed QL-ELM is constructed as a linear ARX model with a complicated nonlinear coefficient. It shows some good approximation ability and fast convergence. The complicated coefficients are separated into two parts. The linear part is determined by recursive least square (RLS, while the nonlinear part is identified through extreme learning machine. The parameters of linear part and the output weights of ELM are estimated iteratively. The proposed internal model control is applied to CSTR process. The effectiveness and accuracy of the proposed method are extensively verified through numerical results.

  1. The effect of learning models and emotional intelligence toward students learning outcomes on reaction rate

    Science.gov (United States)

    Sutiani, Ani; Silitonga, Mei Y.

    2017-08-01

    This research focused on the effect of learning models and emotional intelligence in students' chemistry learning outcomes on reaction rate teaching topic. In order to achieve the objectives of the research, with 2x2 factorial research design was used. There were two factors tested, namely: the learning models (factor A), and emotional intelligence (factor B) factors. Then, two learning models were used; problem-based learning/PBL (A1), and project-based learning/PjBL (A2). While, the emotional intelligence was divided into higher and lower types. The number of population was six classes containing 243 grade X students of SMAN 10 Medan, Indonesia. There were 15 students of each class were chosen as the sample of the research by applying purposive sampling technique. The data were analyzed by applying two-ways analysis of variance (2X2) at the level of significant α = 0.05. Based on hypothesis testing, there was the interaction between learning models and emotional intelligence in students' chemistry learning outcomes. Then, the finding of the research showed that students' learning outcomes in reaction rate taught by using PBL with higher emotional intelligence is higher than those who were taught by using PjBL. There was no significant effect between students with lower emotional intelligence taught by using both PBL and PjBL in reaction rate topic. Based on the finding, the students with lower emotional intelligence were quite hard to get in touch with other students in group discussion.

  2. Perbandingan antara Keefektifan Model Guided Discovery Learning dan Project-Based Learning pada Matakuliah Geometri

    Directory of Open Access Journals (Sweden)

    Okky Riswandha Imawan

    2015-12-01

    Abstract This research aims to describe the effectiveness and effectiveness differences of the Guided Discovery Learning (GDL Model and the Project Based Learning (PjBL Model in terms of achievement, self-confidence, and critical thinking skills of students on the Solid Geometry subjects. This research was quasi experimental. The research subjects were two undergraduate classes of Mathematics Education Program, Ahmad Dahlan University, in their second semester, established at random. The data analysis to test the effectiveness of the GDL and PjBL Models in terms of each of the dependent variables used the t-test. The data analysis to test differences between effectiveness of the GDL and that of the PjBL Model used the MANOVA test. The results of this research show that viewed from achievement, self confidence, and critical thinking skills of the students are the application of the GDL Model on Solid Geometry subject is effective, the application of the PjBL Model on Solid Geometry subject is effective, and there is no difference in the effectiveness of GDL and PjBL Models on Solid Geometry subject in terms of achievement, self confidence, and critical thinking skills of the students. Keywords: guided discovery learning model, project-based learning model, achievement, self-confidence, critical thinking skills

  3. A strategy learning model for autonomous agents based on classification

    Directory of Open Access Journals (Sweden)

    Śnieżyński Bartłomiej

    2015-09-01

    Full Text Available In this paper we propose a strategy learning model for autonomous agents based on classification. In the literature, the most commonly used learning method in agent-based systems is reinforcement learning. In our opinion, classification can be considered a good alternative. This type of supervised learning can be used to generate a classifier that allows the agent to choose an appropriate action for execution. Experimental results show that this model can be successfully applied for strategy generation even if rewards are delayed. We compare the efficiency of the proposed model and reinforcement learning using the farmer-pest domain and configurations of various complexity. In complex environments, supervised learning can improve the performance of agents much faster that reinforcement learning. If an appropriate knowledge representation is used, the learned knowledge may be analyzed by humans, which allows tracking the learning process

  4. Effect of quantum learning model in improving creativity and memory

    Science.gov (United States)

    Sujatmika, S.; Hasanah, D.; Hakim, L. L.

    2018-04-01

    Quantum learning is a combination of many interactions that exist during learning. This model can be applied by current interesting topic, contextual, repetitive, and give opportunities to students to demonstrate their abilities. The basis of the quantum learning model are left brain theory, right brain theory, triune, visual, auditorial, kinesthetic, game, symbol, holistic, and experiential learning theory. Creativity plays an important role to be success in the working world. Creativity shows alternatives way to problem-solving or creates something. Good memory plays a role in the success of learning. Through quantum learning, students will use all of their abilities, interested in learning and create their own ways of memorizing concepts of the material being studied. From this idea, researchers assume that quantum learning models can improve creativity and memory of the students.

  5. PENGARUH MODEL EXPERIENTIAL LEARNING TERHADAP KEMAMPUAN BERPIKIR SISWA SMA

    Directory of Open Access Journals (Sweden)

    Mar’atus Sholihah

    2016-11-01

    Full Text Available The purpose of this study was to determine the effect of Experiential Learning models developed by Kolb's theory of the critical thinking skills of high school students. This study uses a quasi experiment conducted in SMA Assa'adah Gresik. The population of students of class X IS second semester of academic year 2015/2016. Samples are 2 classes that are homogeneous. Methods of data collection using test questions and the ability to think critically using observation sheet. Data were analyzed by comparing the average acquisition value of critical thinking skills with experimental class control class. Average value of the critical thinking skills using model Experiential Learning higher at 80.9 while the control class is 71.2. Based on the average it can be concluded that the learning model of Experiential Learning can improve students' critical thinking skills. This study is expected to provide information on the application and benefits of the model Experiential Learning in teaching geography and make it more meaningful for students. Tujuan dari penelitian ini adalah mengetahui pengaruh model Experiential Learning yang dikembangkan oleh teori Kolb terhadap kemampuan berpikir kritis siswa SMA. Penelitian ini menggunakan metode quasi experimen yang dilakukan di SMA Assa’adah Gresik. Populasi siswa kelas X IS semester genap tahun pelajaran 2015/2016. Sampel yang digunakan sebanyak 2 kelas yang bersifat homogen. Metode pengumpulan data menggunakan soal tes kemampuan berpikir kritis serta menggunakan lembar observasi. Data yang diperoleh kemudian dianalisis dengan membandingkan rata-rata perolehan nilai kemampuan berpikir kritis kelas kontrol dengan kelas eksperimen. Nilai rata rata kemampuan berpikir kritis yang menggunakan model pembelajaran Experiential Learning lebih tinggi, yaitu sebesar 80,9, sedangkan kelas kontrol sebesar 71,2. Berdasarkan nilai rata-rata tersebut dapat disimpulkan bahwa model pembelajaran Experiential Learning dapat

  6. The 8 Learning Events Model: a Pedagogic Conceptual Tool Supporting Diversification of Learning Methods

    NARCIS (Netherlands)

    Verpoorten, Dominique; Poumay, M; Leclercq, D

    2006-01-01

    Please, cite this publication as: Verpoorten, D., Poumay, M., & Leclercq, D. (2006). The 8 Learning Events Model: a Pedagogic Conceptual Tool Supporting Diversification of Learning Methods. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence

  7. Proposing a Model of Co-Regulated Learning for Graduate Medical Education.

    Science.gov (United States)

    Rich, Jessica V

    2017-08-01

    Primarily grounded in Zimmerman's social cognitive model of self-regulation, graduate medical education is guided by principles that self-regulated learning takes place within social context and influence, and that the social context and physical environment reciprocally influence persons and their cognition, behavior, and development. However, contemporary perspectives on self-regulation are moving beyond Zimmerman's triadic reciprocal orientation to models that consider social transactions as the central core of regulated learning. Such co-regulated learning models emphasize shared control of learning and the role more advanced others play in scaffolding novices' metacognitive engagement.Models of co-regulated learning describe social transactions as periods of distributed regulation among individuals, which instrumentally promote or inhibit the capacity for individuals to independently self-regulate. Social transactions with other regulators, including attending physicians, more experienced residents, and allied health care professionals, are known to mediate residents' learning and to support or hamper the development of their self-regulated learning competence. Given that social transactions are at the heart of learning-oriented assessment and entrustment decisions, an appreciation for co-regulated learning is likely important for advancing medical education research and practice-especially given the momentum of new innovations such as entrustable professional activities.In this article, the author explains why graduate medical educators should consider adopting a model of co-regulated learning to complement and extend Zimmerman's models of self-regulated learning. In doing so, the author suggests a model of co-regulated learning and provides practical examples of how the model is relevant to graduate medical education research and practice.

  8. The Effect of Group Investigation Learning Model with Brainstroming Technique on Students Learning Outcomes

    Directory of Open Access Journals (Sweden)

    Astiti Kade kAyu

    2018-01-01

    Full Text Available This study aims to determine the effect of group investigation (GI learning model with brainstorming technique on student physics learning outcomes (PLO compared to jigsaw learning model with brainstroming technique. The learning outcome in this research are the results of learning in the cognitive domain. The method used in this research is experiment with Randomised Postest Only Control Group Design. Population in this research is all students of class XI IPA SMA Negeri 9 Kupang year lesson 2015/2016. The selected sample are 40 students of class XI IPA 1 as the experimental class and 38 students of class XI IPA 2 as the control class using simple random sampling technique. The instrument used is 13 items description test. The first hypothesis was tested by using two tailed t-test. From that, it is obtained that H0 rejected which means there are differences of students physics learning outcome. The second hypothesis was tested using one tailed t-test. It is obtained that H0 rejected which means the students PLO in experiment class were higher than control class. Based on the results of this study, researchers recommend the use of GI learning models with brainstorming techniques to improve PLO, especially in the cognitive domain.

  9. A Model for Discussing the Quality of Technology-Enhanced Learning in Blended Learning Programmes

    Science.gov (United States)

    Casanova, Diogo; Moreira, António

    2017-01-01

    This paper presents a comprehensive model for supporting informed and critical discussions concerning the quality of Technology-Enhanced Learning in Blended Learning programmes. The model aims to support discussions around domains such as how institutions are prepared, the participants' background and expectations, the course design, and the…

  10. The Effects of ePortfolio-Based Learning Model on Student Self-Regulated Learning

    Science.gov (United States)

    Nguyen, Lap Trung; Ikeda, Mitsuru

    2015-01-01

    Self-regulated learners are aware of their knowledge and skills and proactive in learning. They view learning as a controllable process and accept more responsibility for the results of this process. The research described in this article proposes, implements, and evaluates an ePortfolio-based self-regulated learning model. An ePortfolio system…

  11. Effectiveness of discovery learning model on mathematical problem solving

    Science.gov (United States)

    Herdiana, Yunita; Wahyudin, Sispiyati, Ririn

    2017-08-01

    This research is aimed to describe the effectiveness of discovery learning model on mathematical problem solving. This research investigate the students' problem solving competency before and after learned by using discovery learning model. The population used in this research was student in grade VII in one of junior high school in West Bandung Regency. From nine classes, class VII B were randomly selected as the sample of experiment class, and class VII C as control class, which consist of 35 students every class. The method in this research was quasi experiment. The instrument in this research is pre-test, worksheet and post-test about problem solving of mathematics. Based on the research, it can be conclude that the qualification of problem solving competency of students who gets discovery learning model on level 80%, including in medium category and it show that discovery learning model effective to improve mathematical problem solving.

  12. A Visual Detection Learning Model

    Science.gov (United States)

    Beard, Bettina L.; Ahumada, Albert J., Jr.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Our learning model has memory templates representing the target-plus-noise and noise-alone stimulus sets. The best correlating template determines the response. The correlations and the feedback participate in the additive template updating rule. The model can predict the relative thresholds for detection in random, fixed and twin noise.

  13. FACILITATING THE STATISTIC’S LEARNING: A B-LEARNING MODEL FOR OUR STUDENTS

    Directory of Open Access Journals (Sweden)

    Miguel Ángel Montero

    2011-05-01

    Full Text Available The experience which we count with in the university education, the development of the ICT (Information and Communications Technology, the integration in the ESSE, the new qualifications (or Grades and mainly the desire to improve push us to innovate and to put into practice new methodologies in the teaching and learning of the subjects of Mathematics and Statistic assigned to our department. These methods totally renovate the lecturer’s roll and the traditional teaching, introducing multimedia tools, support platforms and new resources that provide students an autonomy which before they did not have, modifying the organization of time and space, increasing modalities and strategies of teaching-learning-tutorization and therefore developing more flexible models. It is tried to facilitate the learning of these subjects, providing a model b-learning, a comple- ment or alternative to the attendance classes, reinforcing the student’s active self-training.

  14. THE EFFECT OF LEARNING INQUIRY TRAINING MODEL ON STUDENT LEARNING OUTCOMES ON MEASUREMENT MATERIALS

    Directory of Open Access Journals (Sweden)

    Felisa Irawani Hutabarat

    2017-06-01

    Full Text Available This research aims to know the effect of learning model of inquiry learning results students training material measurement. This type of research is quasi experiment. Sampling done by cluster random sampling by taking 2 classes from grade 9 i.e. class X SCIENCE experiments as a class-B that add up to 35 people and class X SCIENCE-C as control classes that add up to 35 people. The instruments used to find out the results of student learning is the learning outcomes tests have been validated in multiple choice form numbered 15 reserved and activity sheets students. The results of the value obtained 37.71 pretes and postest 70.11. The t-test analysis retrieved thitung greater than ttabel so that it can be concluded no difference due to the influence of the learning model of inquiry learning results students training material measurement.

  15. The Comparison of Learning Model Viewed from the Students Thinking Style

    Directory of Open Access Journals (Sweden)

    Mohamad Nur Fauzi

    2017-09-01

    Full Text Available The aim of the research was to determine the effect of learning models with scientific approach, characteristics thinking style, the interaction between learning model with scientific approach and characteristics thinking style toward mathematics achievement. This research was quasi-experimental research with factorial design 2 x 4. The population of research was all students of the seven graders of junior high school in Surakarta city in academic year 2016/2017. The sample of research consists of 190 students. The data in the research was two ways analysis of variance with unequal cells, with the 5% level of significance. The results of the research were as follow: (1 SFEs Learning model gave better mathematics achievement than direct instruction model: (2 Characteristics of Sequential concret (SK, sequential abstract (SA, random concret (AK, and random abstract (AA thinking styles give the same effect on mathematics learning achievement; (3 In each learning model with SK, SA, AK, and AA thinking style characteristics have the same mathematics learning achievement. (4 In each of the SK, SA, AK, and AA thinking styles that are subject to the SFEs learning model and direct learning have the same mathematical learning achievement.

  16. Implementation of ICARE learning model using visualization animation on biotechnology course

    Science.gov (United States)

    Hidayat, Habibi

    2017-12-01

    ICARE is a learning model that directly ensure the students to actively participate in the learning process using animation media visualization. ICARE have five key elements of learning experience from children and adult that is introduction, connection, application, reflection and extension. The use of Icare system to ensure that participants have opportunity to apply what have been they learned. So that, the message delivered by lecture to students can be understood and recorded by students in a long time. Learning model that was deemed capable of improving learning outcomes and interest to learn in following learning process Biotechnology with applying the ICARE learning model using visualization animation. This learning model have been giving motivation to participate in the learning process and learning outcomes obtained becomes more increased than before. From the results of student learning in subjects Biotechnology by applying the ICARE learning model using Visualization Animation can improving study results of student from the average value of middle test amounted to 70.98 with the percentage of 75% increased value of final test to be 71.57 with the percentage of 68.63%. The interest to learn from students more increasing visits of student activities at each cycle, namely the first cycle obtained average value by 33.5 with enough category. The second cycle is obtained an average value of 36.5 to good category and third cycle the average value of 36.5 with a student activity to good category.

  17. Model-based and model-free Pavlovian reward learning: revaluation, revision, and revelation.

    Science.gov (United States)

    Dayan, Peter; Berridge, Kent C

    2014-06-01

    Evidence supports at least two methods for learning about reward and punishment and making predictions for guiding actions. One method, called model-free, progressively acquires cached estimates of the long-run values of circumstances and actions from retrospective experience. The other method, called model-based, uses representations of the environment, expectations, and prospective calculations to make cognitive predictions of future value. Extensive attention has been paid to both methods in computational analyses of instrumental learning. By contrast, although a full computational analysis has been lacking, Pavlovian learning and prediction has typically been presumed to be solely model-free. Here, we revise that presumption and review compelling evidence from Pavlovian revaluation experiments showing that Pavlovian predictions can involve their own form of model-based evaluation. In model-based Pavlovian evaluation, prevailing states of the body and brain influence value computations, and thereby produce powerful incentive motivations that can sometimes be quite new. We consider the consequences of this revised Pavlovian view for the computational landscape of prediction, response, and choice. We also revisit differences between Pavlovian and instrumental learning in the control of incentive motivation.

  18. The drift diffusion model as the choice rule in reinforcement learning.

    Science.gov (United States)

    Pedersen, Mads Lund; Frank, Michael J; Biele, Guido

    2017-08-01

    Current reinforcement-learning models often assume simplified decision processes that do not fully reflect the dynamic complexities of choice processes. Conversely, sequential-sampling models of decision making account for both choice accuracy and response time, but assume that decisions are based on static decision values. To combine these two computational models of decision making and learning, we implemented reinforcement-learning models in which the drift diffusion model describes the choice process, thereby capturing both within- and across-trial dynamics. To exemplify the utility of this approach, we quantitatively fit data from a common reinforcement-learning paradigm using hierarchical Bayesian parameter estimation, and compared model variants to determine whether they could capture the effects of stimulant medication in adult patients with attention-deficit hyperactivity disorder (ADHD). The model with the best relative fit provided a good description of the learning process, choices, and response times. A parameter recovery experiment showed that the hierarchical Bayesian modeling approach enabled accurate estimation of the model parameters. The model approach described here, using simultaneous estimation of reinforcement-learning and drift diffusion model parameters, shows promise for revealing new insights into the cognitive and neural mechanisms of learning and decision making, as well as the alteration of such processes in clinical groups.

  19. Flipped classroom model for learning evidence-based medicine.

    Science.gov (United States)

    Rucker, Sydney Y; Ozdogan, Zulfukar; Al Achkar, Morhaf

    2017-01-01

    Journal club (JC), as a pedagogical strategy, has long been used in graduate medical education (GME). As evidence-based medicine (EBM) becomes a mainstay in GME, traditional models of JC present a number of insufficiencies and call for novel models of instruction. A flipped classroom model appears to be an ideal strategy to meet the demands to connect evidence to practice while creating engaged, culturally competent, and technologically literate physicians. In this article, we describe a novel model of flipped classroom in JC. We present the flow of learning activities during the online and face-to-face instruction, and then we highlight specific considerations for implementing a flipped classroom model. We show that implementing a flipped classroom model to teach EBM in a residency program not only is possible but also may constitute improved learning opportunity for residents. Follow-up work is needed to evaluate the effectiveness of this model on both learning and clinical practice.

  20. Components in models of learning: Different operationalisations and relations between components

    Directory of Open Access Journals (Sweden)

    Mirkov Snežana

    2013-01-01

    Full Text Available This paper provides the presentation of different operationalisations of components in different models of learning. Special emphasis is on the empirical verifications of relations between components. Starting from the research of congruence between learning motives and strategies, underlying the general model of school learning that comprises different approaches to learning, we have analyzed the empirical verifications of factor structure of instruments containing the scales of motives and learning strategies corresponding to these motives. Considering the problems in the conceptualization of the achievement approach to learning, we have discussed the ways of operational sing the goal orientations and exploring their role in using learning strategies, especially within the model of the regulation of constructive learning processes. This model has served as the basis for researching learning styles that are the combination of a large number of components. Complex relations between the components point to the need for further investigation of the constructs involved in various models. We have discussed the findings and implications of the studies of relations between the components involved in different models, especially between learning motives/goals and learning strategies. We have analyzed the role of regulation in the learning process, whose elaboration, as indicated by empirical findings, can contribute to a more precise operationalisation of certain learning components. [Projekat Ministarstva nauke Republike Srbije, br. 47008: Unapređivanje kvaliteta i dostupnosti obrazovanja u procesima modernizacije Srbije i br. 179034: Od podsticanja inicijative, saradnje i stvaralaštva u obrazovanju do novih uloga i identiteta u društvu

  1. Ontology Update in the Cognitive Model of Ontology Learning

    Directory of Open Access Journals (Sweden)

    Zhang De-Hai

    2016-01-01

    Full Text Available Ontology has been used in many hot-spot fields, but most ontology construction methods are semiautomatic, and the construction process of ontology is still a tedious and painstaking task. In this paper, a kind of cognitive models is presented for ontology learning which can simulate human being’s learning from world. In this model, the cognitive strategies are applied with the constrained axioms. Ontology update is a key step when the new knowledge adds into the existing ontology and conflict with old knowledge in the process of ontology learning. This proposal designs and validates the method of ontology update based on the axiomatic cognitive model, which include the ontology update postulates, axioms and operations of the learning model. It is proved that these operators subject to the established axiom system.

  2. Electronic learning and constructivism: a model for nursing education.

    Science.gov (United States)

    Kala, Sasikarn; Isaramalai, Sang-Arun; Pohthong, Amnart

    2010-01-01

    Nurse educators are challenged to teach nursing students to become competent professionals, who have both in-depth knowledge and decision-making skills. The use of electronic learning methods has been found to facilitate the teaching-learning process in nursing education. Although learning theories are acknowledged as useful guides to design strategies and activities of learning, integration of these theories into technology-based courses appears limited. Constructivism is a theoretical paradigm that could prove to be effective in guiding the design of electronic learning experiences for the purpose of providing positive outcomes, such as the acquisition of knowledge and decision-making skills. Therefore, the purposes of this paper are to: describe electronic learning, present a brief overview of what is known about the outcomes of electronic learning, discuss constructivism theory, present a model for electronic learning using constructivism, and describe educators' roles emphasizing the utilization of the model in developing electronic learning experiences in nursing education.

  3. Use of the 5E learning cycle model combined with problem-based learning for a fundamentals of nursing course.

    Science.gov (United States)

    Jun, Won Hee; Lee, Eun Ju; Park, Han Jong; Chang, Ae Kyung; Kim, Mi Ja

    2013-12-01

    The 5E learning cycle model has shown a positive effect on student learning in science education, particularly in courses with theory and practice components. Combining problem-based learning (PBL) with the 5E learning cycle was suggested as a better option for students' learning of theory and practice. The purpose of this study was to compare the effects of the traditional learning method with the 5E learning cycle model with PBL. The control group (n = 78) was subjected to a learning method that consisted of lecture and practice. The experimental group (n = 83) learned by using the 5E learning cycle model with PBL. The results showed that the experimental group had significantly improved self-efficacy, critical thinking, learning attitude, and learning satisfaction. Such an approach could be used in other countries to enhance students' learning of fundamental nursing. Copyright 2013, SLACK Incorporated.

  4. Development of Learning Models Based on Problem Solving and Meaningful Learning Standards by Expert Validity for Animal Development Course

    Science.gov (United States)

    Lufri, L.; Fitri, R.; Yogica, R.

    2018-04-01

    The purpose of this study is to produce a learning model based on problem solving and meaningful learning standards by expert assessment or validation for the course of Animal Development. This research is a development research that produce the product in the form of learning model, which consist of sub product, namely: the syntax of learning model and student worksheets. All of these products are standardized through expert validation. The research data is the level of validity of all sub products obtained using questionnaire, filled by validators from various field of expertise (field of study, learning strategy, Bahasa). Data were analysed using descriptive statistics. The result of the research shows that the problem solving and meaningful learning model has been produced. Sub products declared appropriate by expert include the syntax of learning model and student worksheet.

  5. Designing for Learning and Play - The Smiley Model as Framework

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke

    2016-01-01

    digital games. The Smiley Model inspired and provided a scaffold or a heuristic for the overall gamified learning design –- as well as for the students’ learning game design processes when creating small games turning the learning situation into an engaging experience. The audience for the experiments......This paper presents a framework for designing engaging learning experiences in games – the Smiley Model. In this Design-Based Research project, student-game-designers were learning inside a gamified learning design - while designing and implementing learning goals from curriculum into the small...... was adult upper secondary general students as well as 7th grade primary school students. The intention with this article is to inspire future learning designers that would like to experiment with integrating learning and play....

  6. A theoretical design for learning model addressing the networked society

    DEFF Research Database (Denmark)

    Levinsen, Karin; Nielsen, Janni; Sørensen, Birgitte Holm

    2010-01-01

    The transition from the industrial to the networked society produces contradictions that challenges the educational system and force it to adapt to new conditions. In a Danish virtual Master in Information and Communication Technologies and Learning (MIL) these contradictions appear as a field of...... which enables students to develop Networked Society competencies and maintain progression in the learning process also during the online periods. Additionally we suggest that our model contributes to the innovation of a networked society's design for learning....... is continuously decreasing. We teach for deep learning but are confronted by students' cost-benefit strategies when they navigate through the study programme under time pressure. To meet these challenges a Design for Learning Model has been developed. The aim is to provide a scaffold that ensures students......' acquisition of the subject matter within a time limit and at a learning quality that support their deep learning process during a subsequent period of on-line study work. In the process of moving from theory to application the model passes through three stages: 1) Conceptual modelling; 2) Orchestration, and 3...

  7. Perspectives of Students’ Behavior Towards Mobile Learning (M-learning in Egypt: an Extension of the UTAUT Model

    Directory of Open Access Journals (Sweden)

    R. A. Ali

    2016-08-01

    Full Text Available The rapid development of third-generation (3G mobile technologies has led to the emergence of a new kind of learning called mobile learning (m-learning. M-learning means the use of mobile devices to access learning materials at anytime and anywhere with the aid of mobile terminals and networks. This paper explores the possibility of applying m-learning for schools in Egypt through a proposed model of acceptance factors that may affect the students’ intentions to adopt m-learning. We use the original model of Unified Theory of Acceptance and Use of Technology (UTAUT and extended it with three new factors mobility, interactivity, and enjoyment.

  8. Simulation modelling: educational development roles for learning technologists

    Directory of Open Access Journals (Sweden)

    David Riley

    2002-12-01

    Full Text Available Simulation modelling was in the mainstream of CAL development in the 1980s when the late David Squires introduced this author to the Dynamic Modelling System. Since those early days, it seems that simulation modelling has drifted into a learning technology backwater to become a member of Laurillard's underutilized, 'adaptive and productive' media. Referring to her Conversational Framework, Laurillard constructs a pedagogic case for modelling as a productive student activity but provides few references to current practice and available resources. This paper seeks to complement her account by highlighting the pioneering initiatives of the Computers in the Curriculum Project and more recent developments in systems modelling within geographic and business education. The latter include improvements to system dynamics modelling programs such as STELLA®, the publication of introductory textbooks, and the emergence of online resources. The paper indicates several ways in which modelling activities may be approached and identifies some educational development roles for learning technologists. The paper concludes by advocating simulation modelling as an exemplary use of learning technologies - one that realizes their creative-transformative potential.

  9. Representative Model of the Learning Process in Virtual Spaces Supported by ICT

    Science.gov (United States)

    Capacho, José

    2014-01-01

    This paper shows the results of research activities for building the representative model of the learning process in virtual spaces (e-Learning). The formal basis of the model are supported in the analysis of models of learning assessment in virtual spaces and specifically in Dembo´s teaching learning model, the systemic approach to evaluating…

  10. Learning Quantum Chemical Model with Learning Media Concept Map and Power Point Viewed from Memory and Creativity Skills Students

    Directory of Open Access Journals (Sweden)

    Agus Wahidi

    2017-03-01

    Full Text Available This research is experimental, using first class learning a quantum model of learning with concept maps media and the second media using real environments by power point presentation. The population is all class XI Science, number 2 grade. The sampling technique is done by purposive random sampling. Data collection techniques to test for cognitive performance and memory capabilities, with a questionnaire for creativity. Hypothesis testing using three-way ANOVA different cells with the help of software Minitab 15.Based on the results of data processing, concluded: (1 there is no influence of the quantum model of learning with media learning concept maps and real environments for learning achievement chemistry, (2 there is a high impact memory ability and low on student achievement, (3 there is no the effect of high and low creativity in student performance, (4 there is no interaction learning model quantum media learning concept maps and real environments with memory ability on student achievement, (5 there is no interaction learning model quantum media learning concept maps and real environments with creativity of student achievement, (6 there is no interaction memory skills and creativity of student achievement, (7 there is no interaction learning model quantum media learning concept maps and real environments, memory skills, and creativity on student achievement.

  11. Semi-supervised Learning with Deep Generative Models

    NARCIS (Netherlands)

    Kingma, D.P.; Rezende, D.J.; Mohamed, S.; Welling, M.

    2014-01-01

    The ever-increasing size of modern data sets combined with the difficulty of obtaining label information has made semi-supervised learning one of the problems of significant practical importance in modern data analysis. We revisit the approach to semi-supervised learning with generative models and

  12. The Usage of E-Learning Model To Optimize Learning System In Higher Education by Using Dick and Carey Design Approach

    Directory of Open Access Journals (Sweden)

    Anak Agung Gde Satia Utama

    2016-04-01

    Full Text Available Nowadays many universities in the world apply technology enhanced learning in order to help learning activities. Due to the potentials technology enhanced learning offers, recent education using it and universities in particular are trying to apply it. One of the subjects of this research is The Accounting Department of Airlangga University in Surabaya. The idea of this research is to investigate the students about how they know deeply about e-learning system and learning objectives as a first step to conduct e-learning model. After the model completed, the next step is to prepare database learning. Entity Relationship Diagram (ERD can help to explain the model. The purpose of this research was done by using Dick and Carey Design Model. There are nine steps to conduct e-learning model. All steps can be categorized into three steps research: first is the introduction or empirical study, the next step is the design and the last is the feedback after the implementation. The methodology used in this research is using Qualitative Exploratory, by using questionnaire and interviews as data collection techniques. The analysis of the data shows organization requires information about e-learning content, user as a learning subject and information technology infrastructures. E-learning model as one of the alternative learning can help users to optimized learning.

  13. Prototype-based models in machine learning.

    Science.gov (United States)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of potentially high-dimensional, complex datasets. We discuss basic schemes of competitive vector quantization as well as the so-called neural gas approach and Kohonen's topology-preserving self-organizing map. Supervised learning in prototype systems is exemplified in terms of learning vector quantization. Most frequently, the familiar Euclidean distance serves as a dissimilarity measure. We present extensions of the framework to nonstandard measures and give an introduction to the use of adaptive distances in relevance learning. © 2016 Wiley Periodicals, Inc.

  14. Learning, Learning Analytics, Activity Visualisation and Open learner Model

    DEFF Research Database (Denmark)

    Bull, Susan; Kickmeier-Rust, Michael; Vatrapu, Ravi

    2013-01-01

    This paper draws on visualisation approaches in learning analytics, considering how classroom visualisations can come together in practice. We suggest an open learner model in situations where many tools and activity visualisations produce more visual information than can be readily interpreted....

  15. A New Profile Learning Model for Recommendation System based on Machine Learning Technique

    Directory of Open Access Journals (Sweden)

    Shereen H. Ali

    2016-03-01

    Full Text Available Recommender systems (RSs have been used to successfully address the information overload problem by providing personalized and targeted recommendations to the end users. RSs are software tools and techniques providing suggestions for items to be of use to a user, hence, they typically apply techniques and methodologies from Data Mining. The main contribution of this paper is to introduce a new user profile learning model to promote the recommendation accuracy of vertical recommendation systems. The proposed profile learning model employs the vertical classifier that has been used in multi classification module of the Intelligent Adaptive Vertical Recommendation (IAVR system to discover the user’s area of interest, and then build the user’s profile accordingly. Experimental results have proven the effectiveness of the proposed profile learning model, which accordingly will promote the recommendation accuracy.

  16. Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning

    Science.gov (United States)

    Talei, Amin; Chua, Lloyd Hock Chye; Quek, Chai; Jansson, Per-Erik

    2013-04-01

    SummaryA study using local learning Neuro-Fuzzy System (NFS) was undertaken for a rainfall-runoff modeling application. The local learning model was first tested on three different catchments: an outdoor experimental catchment measuring 25 m2 (Catchment 1), a small urban catchment 5.6 km2 in size (Catchment 2), and a large rural watershed with area of 241.3 km2 (Catchment 3). The results obtained from the local learning model were comparable or better than results obtained from physically-based, i.e. Kinematic Wave Model (KWM), Storm Water Management Model (SWMM), and Hydrologiska Byråns Vattenbalansavdelning (HBV) model. The local learning algorithm also required a shorter training time compared to a global learning NFS model. The local learning model was next tested in real-time mode, where the model was continuously adapted when presented with current information in real time. The real-time implementation of the local learning model gave better results, without the need for retraining, when compared to a batch NFS model, where it was found that the batch model had to be retrained periodically in order to achieve similar results.

  17. A Convergent Participation Model for Evaluation of Learning Objects

    Directory of Open Access Journals (Sweden)

    John Nesbit

    2002-10-01

    Full Text Available The properties that distinguish learning objects from other forms of educational software - global accessibility, metadata standards, finer granularity and reusability - have implications for evaluation. This article proposes a convergent participation model for learning object evaluation in which representatives from stakeholder groups (e.g., students, instructors, subject matter experts, instructional designers, and media developers converge toward more similar descriptions and ratings through a two-stage process supported by online collaboration tools. The article reviews evaluation models that have been applied to educational software and media, considers models for gathering and meta-evaluating individual user reviews that have recently emerged on the Web, and describes the peer review model adopted for the MERLOT repository. The convergent participation model is assessed in relation to other models and with respect to its support for eight goals of learning object evaluation: (1 aid for searching and selecting, (2 guidance for use, (3 formative evaluation, (4 influence on design practices, (5 professional development and student learning, (6 community building, (7 social recognition, and (8 economic exchange.

  18. Automatic, Global and Dynamic Student Modeling in a Ubiquitous Learning Environment

    Directory of Open Access Journals (Sweden)

    Sabine Graf

    2009-03-01

    Full Text Available Ubiquitous learning allows students to learn at any time and any place. Adaptivity plays an important role in ubiquitous learning, aiming at providing students with adaptive and personalized learning material, activities, and information at the right place and the right time. However, for providing rich adaptivity, the student model needs to be able to gather a variety of information about the students. In this paper, an automatic, global, and dynamic student modeling approach is introduced, which aims at identifying and frequently updating information about students’ progress, learning styles, interests and knowledge level, problem solving abilities, preferences for using the system, social connectivity, and current location. This information is gathered in an automatic way, using students’ behavior and actions in different learning situations provided by different components/services of the ubiquitous learning environment. By providing a comprehensive student model, students can be supported by rich adaptivity in every component/service of the learning environment. Furthermore, the information in the student model can help in giving teachers a better understanding about the students’ learning process.

  19. Learning general phonological rules from distributional information: a computational model.

    Science.gov (United States)

    Calamaro, Shira; Jarosz, Gaja

    2015-04-01

    Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006). This paper extends the model to account for learning of a broader set of phonological alternations and the formalization of these alternations as general rules. In Experiment 1, we apply the original model to new data in Dutch and demonstrate its limitations in learning nonallophonic rules. In Experiment 2, we extend the model to allow it to learn general rules for alternations that apply to a class of segments. In Experiment 3, the model is further extended to allow for generalization by context; we argue that this generalization must be constrained by linguistic principles. Copyright © 2014 Cognitive Science Society, Inc.

  20. Machine learning models in breast cancer survival prediction.

    Science.gov (United States)

    Montazeri, Mitra; Montazeri, Mohadeseh; Montazeri, Mahdieh; Beigzadeh, Amin

    2016-01-01

    Breast cancer is one of the most common cancers with a high mortality rate among women. With the early diagnosis of breast cancer survival will increase from 56% to more than 86%. Therefore, an accurate and reliable system is necessary for the early diagnosis of this cancer. The proposed model is the combination of rules and different machine learning techniques. Machine learning models can help physicians to reduce the number of false decisions. They try to exploit patterns and relationships among a large number of cases and predict the outcome of a disease using historical cases stored in datasets. The objective of this study is to propose a rule-based classification method with machine learning techniques for the prediction of different types of Breast cancer survival. We use a dataset with eight attributes that include the records of 900 patients in which 876 patients (97.3%) and 24 (2.7%) patients were females and males respectively. Naive Bayes (NB), Trees Random Forest (TRF), 1-Nearest Neighbor (1NN), AdaBoost (AD), Support Vector Machine (SVM), RBF Network (RBFN), and Multilayer Perceptron (MLP) machine learning techniques with 10-cross fold technique were used with the proposed model for the prediction of breast cancer survival. The performance of machine learning techniques were evaluated with accuracy, precision, sensitivity, specificity, and area under ROC curve. Out of 900 patients, 803 patients and 97 patients were alive and dead, respectively. In this study, Trees Random Forest (TRF) technique showed better results in comparison to other techniques (NB, 1NN, AD, SVM and RBFN, MLP). The accuracy, sensitivity and the area under ROC curve of TRF are 96%, 96%, 93%, respectively. However, 1NN machine learning technique provided poor performance (accuracy 91%, sensitivity 91% and area under ROC curve 78%). This study demonstrates that Trees Random Forest model (TRF) which is a rule-based classification model was the best model with the highest level of

  1. DEVELOPMENT OF SCIENCE PROCESS SKILLS STUDENTS WITH PROJECT BASED LEARNING MODEL- BASED TRAINING IN LEARNING PHYSICS

    Directory of Open Access Journals (Sweden)

    Ratna Malawati

    2016-06-01

    Full Text Available This study aims to improve the physics Science Process Skills Students on cognitive and psychomotor aspects by using model based Project Based Learning training.The object of this study is the Project Based Learning model used in the learning process of Computationa Physics.The method used is classroom action research through two learning cycles, each cycle consisting of the stages of planning, implementation, observation and reflection. In the first cycle of treatment with their emphasis given training in the first phase up to third in the model Project Based Learning, while the second cycle is given additional treatment with emphasis discussion is collaboration in achieving the best results for each group of products. The results of data analysis showed increased ability to think Students on cognitive and Science Process Skills in the psychomotor.

  2. Learning sparse generative models of audiovisual signals

    OpenAIRE

    Monaci, Gianluca; Sommer, Friedrich T.; Vandergheynst, Pierre

    2008-01-01

    This paper presents a novel framework to learn sparse represen- tations for audiovisual signals. An audiovisual signal is modeled as a sparse sum of audiovisual kernels. The kernels are bimodal functions made of synchronous audio and video components that can be positioned independently and arbitrarily in space and time. We design an algorithm capable of learning sets of such audiovi- sual, synchronous, shift-invariant functions by alternatingly solving a coding and a learning pr...

  3. MODELS OF THE USE OF DISTANCE LEARNING ELEMENTS IN SCHOOL

    Directory of Open Access Journals (Sweden)

    Vasyl I. Kovalchuk

    2017-09-01

    Full Text Available The article presents three models of the use of elements of distance learning at school. All models partially or fully implement the training, interaction and collaboration of the participants in the educational process. The first model is determined by the use of open cloud services and Web 2.0 for the implementation of certain educational and managerial tasks of the school. The second model uses support for learning management and content creation. The introduction of the second model is possible with the development of the IT infrastructure of the school, the training of teachers for the use of distance learning technologies, the creation of electronic educational resources. The third model combines the use of Web 2.0 technologies and training and content management systems. Models of the use of elements of distance learning are presented of the results of regional research experimental work of schools.

  4. Cognitive Models for Learning to Control Dynamic Systems

    National Research Council Canada - National Science Library

    Eberhart, Russ; Hu, Xiaohui; Chen, Yaobin

    2008-01-01

    Report developed under STTR contract for topic "Cognitive models for learning to control dynamic systems" demonstrated a swarm intelligence learning algorithm and its application in unmanned aerial vehicle (UAV) mission planning...

  5. Quality Assurance in E-Learning: PDPP Evaluation Model and its Application

    Directory of Open Access Journals (Sweden)

    Weiyuan Zhang

    2012-06-01

    Full Text Available E-learning has become an increasingly important teaching and learning mode in educational institutions and corporate training. The evaluation of e-learning, however, is essential for the quality assurance of e-learning courses. This paper constructs a four-phase evaluation model for e-learning courses, which includes planning, development, process, and product evaluation, called the PDPP evaluation model. Planning evaluation includes market demand, feasibility, target student group, course objectives, and finance. Development evaluation includes instructional design, course material design, course Web site design, flexibility, student-student interaction, teacher/tutor support, technical support, and assessment. Process evaluation includes technical support, Web site utilization, learning interaction, learning evaluation, learning support, and flexibility. Product evaluation includes student satisfaction, teaching effectiveness, learning effectiveness, and sustainability. Using the PDPP model as a research framework, a purely e-learning course on Research Methods in Distance Education, developed by the School of Professional and Continuing Education at the University of Hong Kong (HKU SPACE and jointly offered with the School of Distance Learning for Medical Education of Peking University (SDLME, PKU, was used as a case study. Sixty students from mainland China, Hong Kong, Macau, and Malaysia were recruited for this course. According to summative evaluation through a student e-learning experience survey, the majority of students were very satisfied/satisfied on all e-learning dimensions of this course. The majority of students thought that the learning effectiveness of this course was equivalent, even better, than face-to-face learning because of cross-border collaborative learning, student-centred learning, sufficient learning support, and learning flexibility. This study shows that a high quality of teaching and learning might be assured by

  6. Culture in Transition: A learning model

    DEFF Research Database (Denmark)

    Baca, Susan

    2010-01-01

    of organizational transition, and 3) demonstrating the efficacy of the model by using it to explain empirical research findings. It is argued that learning new cultural currency involves the use of active intelligence to locate and answer relevant questions, and further that this process requires the interplay......This paper addresses the problem of resistance to attempted changes in organizational culture, particularly those involving diversity, by 1) identifying precisely what is meant by organizational as opposed to societal culture, 2) developing a theoretical model of learning useful in contexts...... is useful for both management and labor in regulating transition processes, thus making a contribution to industrial relations....

  7. Stakeholder Perceptions, Learning Opportunities, and Student Outcomes in Three Clinical Learning Models.

    Science.gov (United States)

    Hendricks, Susan; DeMeester, Deborah; Stephenson, Evelyn; Welch, Janet

    2016-05-01

    Understanding the strengths and challenges of various clinical models is important for nursing education. Three long-standing clinical models (preceptored, hybrid, and traditional) were compared on several outcome measures related to satisfaction, learning opportunities, and student outcomes. Students, faculty, and preceptors participated in this study. Although no differences were noted in satisfaction or standardized examination scores, students in the preceptored clinical model were able to practice more psychomotor skills. Although participants in the preceptored model reported spending more time communicating with staff nurses than did those in the other models, students in the traditional model spent more time with faculty. No differences were noted among groups in student clinical observation time. All clinical learning models were focused on how clinical time was structured, without an emphasis on how faculty and preceptors work with students to develop nursing clinical reasoning skills. Identifying methodology to impact thinking in the clinical environment is a key next step. [J Nurs Educ. 2016;55(5):271-277.]. Copyright 2016, SLACK Incorporated.

  8. Engaging Students in Mathematical Modeling through Service-Learning

    Science.gov (United States)

    Carducci, Olivia M.

    2014-01-01

    I have included a service-learning project in my mathematical modeling course for the last 6 years. This article describes my experience with service-learning in this course. The article includes a description of the course and the service-learning projects. There is a discussion of how to connect with community partners and identify…

  9. Knowledge transfer for learning robot models via local procrustes analysis

    CSIR Research Space (South Africa)

    Makondo, N

    2015-11-01

    Full Text Available Learning of robot kinematic and dynamic models from data has attracted much interest recently as an alternative to manually defined models. However, the amount of data required to learn these models becomes large when the number of degrees...

  10. The Gain-Loss Model: A Probabilistic Skill Multimap Model for Assessing Learning Processes

    Science.gov (United States)

    Robusto, Egidio; Stefanutti, Luca; Anselmi, Pasquale

    2010-01-01

    Within the theoretical framework of knowledge space theory, a probabilistic skill multimap model for assessing learning processes is proposed. The learning process of a student is modeled as a function of the student's knowledge and of an educational intervention on the attainment of specific skills required to solve problems in a knowledge…

  11. Hyperparameterization of soil moisture statistical models for North America with Ensemble Learning Models (Elm)

    Science.gov (United States)

    Steinberg, P. D.; Brener, G.; Duffy, D.; Nearing, G. S.; Pelissier, C.

    2017-12-01

    Hyperparameterization, of statistical models, i.e. automated model scoring and selection, such as evolutionary algorithms, grid searches, and randomized searches, can improve forecast model skill by reducing errors associated with model parameterization, model structure, and statistical properties of training data. Ensemble Learning Models (Elm), and the related Earthio package, provide a flexible interface for automating the selection of parameters and model structure for machine learning models common in climate science and land cover classification, offering convenient tools for loading NetCDF, HDF, Grib, or GeoTiff files, decomposition methods like PCA and manifold learning, and parallel training and prediction with unsupervised and supervised classification, clustering, and regression estimators. Continuum Analytics is using Elm to experiment with statistical soil moisture forecasting based on meteorological forcing data from NASA's North American Land Data Assimilation System (NLDAS). There Elm is using the NSGA-2 multiobjective optimization algorithm for optimizing statistical preprocessing of forcing data to improve goodness-of-fit for statistical models (i.e. feature engineering). This presentation will discuss Elm and its components, including dask (distributed task scheduling), xarray (data structures for n-dimensional arrays), and scikit-learn (statistical preprocessing, clustering, classification, regression), and it will show how NSGA-2 is being used for automate selection of soil moisture forecast statistical models for North America.

  12. Comparison of Chemistry Learning Outcomes with Inquiry Learning Model and Learning Cycle 5E in Material Solubility and Solubility Multiplication Results

    Directory of Open Access Journals (Sweden)

    Nur Indah Firdausi

    2015-04-01

    Full Text Available Perbandingan Hasil Belajar Kimia dengan Model Pembelajaran Inquiry dan Learning Cycle 5E pada Materi Kelarutan dan Hasil Kali Kelarutan   Abstract: This research is aimed to compare the effectiveness between inquiry and LC 5E in solubility equilibria and the solubility product for students with different prior knowledge. The effectiveness of both learning models is measured from students learning outcome. This quasi experimental research uses factorial2x2 with posttest only design. Research samples are chosen using cluster random sampling. They are two classes of XI IPA SMAN 1 Kepanjen in the 2012/2013 academic year which consist of 31 students in each class. Cognitive learning outcome is measured by test items consist of four objective items and nine subjective items. Technique of data analysis in this research is two way ANOVA. Research results show that: (1 cognitive learning outcome and higher cognitive learning outcome of students in inquiry class is higher than students in LC 5E class; (2 cognitive learning outcome and higher cognitive learning outcome of students who have upper prior knowledge is higher than students who have lower prior knowledge in both inquiry and LC 5E. Key Words: learning outcome, inquiry, learning cycle 5E, solubility equilibria and the solubility product   Abstrak: Penelitian ini bertujuan membandingkan keefektifan model inquiry dan LC 5E pada materi kelarutan dan hasil kali kelarutan untuk siswa dengan kemampuan awal berbeda. Keefektifan model pembelajaran dilihat dari hasil belajar kognitif siswa. Penelitian ini menggunakan rancangan eksperimen semu dengan desain faktorial 2x2. Subjek penelitian dipilih secara cluster random sampling yaitu dua kelas XI IPA SMAN 1 Kepanjen dengan jumlah masing-masing kelas sebanyak 31 siswa. Instrumen perlakuan yang digunakan adalah silabus dan RPP sedangkan instrumen pengukuran berupa soal tes terdiri dari empat soal objektif dan sembilan soal subjektif. Teknik analisis data

  13. The Actualization of Literary Learning Model Based on Verbal-Linguistic Intelligence

    Directory of Open Access Journals (Sweden)

    Nur Ihsan Halil

    2017-10-01

    Full Text Available This article is inspired by Howard Gardner's concept of linguistic intelligence and also from some authors' previous writings. All of them became the authors' reference in developing ideas on constructing a literary learning model based on linguistic intelligence. The writing of this article is not done by collecting data empirically, but by developing and constructing an existing concept, namely the concept of linguistic intelligence, which is disseminated into a literature-based learning of verbal-linguistic intelligence. The purpose of this paper is to answer the question of how to apply the literary learning model based on the verbal-linguistic intelligence. Then, regarding Gardner's concept, the author formulated a literary learning model based on the verbal-linguistic intelligence through a story-telling learning model with five steps namely arguing, discussing, interpreting, speaking, and writing about literary works. In short, the writer draw a conclusion that learning-based models of verbal-linguistic intelligence can be designed with attention into five components namely (1 definition, (2 characteristics, (3 teaching strategy, (4 final learning outcomes, and (5 figures.

  14. Hybrid Model for e-Learning Quality Evaluation

    Directory of Open Access Journals (Sweden)

    Suzana M. Savic

    2012-02-01

    Full Text Available E-learning is becoming increasingly important for the competitive advantage of economic organizations and higher education institutions. Therefore, it is becoming a significant aspect of quality which has to be integrated into the management system of every organization or institution. The paper examines e-learning quality characteristics, standards, criteria and indicators and presents a multi-criteria hybrid model for e-learning quality evaluation based on the method of Analytic Hierarchy Process, trend analysis, and data comparison.

  15. PERBEDAAN JENIS PEMBELAJARAN MODEL CTL DAN DISCOVERY LEARNING DITINJAU DARI MOTIVASI BELAJAR IPS

    Directory of Open Access Journals (Sweden)

    Elpri Darta Putra

    2015-06-01

    Full Text Available Tujuan penelitian ini adalah menganalisis perbedaan motivasi belajar siswa melalui model pembelajaran Contextual Teaching And Learning, Discovery Learning dan pembelajaran ekspositori. Subjek penelitian ini adalah siswa kelas IV SDN Kuningan 01, SDN Kuningan 04, dan SDN Dadapsari Semarang tahun ajaran 2014/2015. Penelitian dilakukan empat kali pertemuan. Instrumen penelitian ini adalah angket yang berupa butir-butir pernyataan dan lembar wawancara guru. Penelitian ini dalam bentuk penelitian quasi-experimental atau eksperimen semu. Jumlah sampel dalam penelitian ini adalah 85 siswa. Hasil penelitian tentang motivasi belajar siswa di kelas empat menunjukkan bahwa melalui model pembelajaran CTL motivasi belajar siswa dengan nilai rata-rata pada kelas tersebut 81,92 melalui model pembelajaran Discovery Learning 77,66dan melalui pembelajaran ekspositori memiliki rata-rata 52.28. Berdasarkan hasil penelitian tersebut terdapat perbedaan antara motivasi belajar siswa yang menggunakan model pembelajaran CTL, Discovery Learning dan ekspositori, pembelajaran melalui model CTL lebih baik dari pembelajaran melalui model discovery learning dan ekspositrori. The purpose of this study was to analyze differences in student motivation through learning model Contextual Teaching And Learning, Discovery Learning and expository. Subjects in this study were fourth grade students of SDN 01 Brass, Brass SDN 04, and SDN Dadapsari Semarang academic year 2014/2015. The study was conducted four meetings. Data collection instruments in this study was a questionnaire in the form of grains statements and teacher questionnaires. The study is in the form of quasi-experimental or quasi-experimental, the number of samples in this study were 85 students .. The results of students' motivation in the fourth grade showed that through learning model CTL student motivation with the average value in the class 81, 92 through Discovery Learning learning model through expository 77.66 and

  16. Learning while (re)configuring: Business model innovation processes in established firms.

    Science.gov (United States)

    Berends, Hans; Smits, Armand; Reymen, Isabelle; Podoynitsyna, Ksenia

    2016-08-01

    This study addresses the question of how established organizations develop new business models over time, using a process research approach to trace how four business model innovation trajectories unfold. With organizational learning as analytical lens, we discern two process patterns: "drifting" starts with an emphasis on experiential learning and shifts later to cognitive search; "leaping," in contrast, starts with an emphasis on cognitive search and shifts later to experiential learning. Both drifting and leaping can result in radical business model innovations, while their occurrence depends on whether a new business model takes off from an existing model and when it goes into operation. We discuss the implications of these findings for theory on business models and organizational learning.

  17. ModelHub: Towards Unified Data and Lifecycle Management for Deep Learning

    OpenAIRE

    Miao, Hui; Li, Ang; Davis, Larry S.; Deshpande, Amol

    2016-01-01

    Deep learning has improved state-of-the-art results in many important fields, and has been the subject of much research in recent years, leading to the development of several systems for facilitating deep learning. Current systems, however, mainly focus on model building and training phases, while the issues of data management, model sharing, and lifecycle management are largely ignored. Deep learning modeling lifecycle generates a rich set of data artifacts, such as learned parameters and tr...

  18. Community of inquiry model: advancing distance learning in nurse anesthesia education.

    Science.gov (United States)

    Pecka, Shannon L; Kotcherlakota, Suhasini; Berger, Ann M

    2014-06-01

    The number of distance education courses offered by nurse anesthesia programs has increased substantially. Emerging distance learning trends must be researched to ensure high-quality education for student registered nurse anesthetists. However, research to examine distance learning has been hampered by a lack of theoretical models. This article introduces the Community of Inquiry model for use in nurse anesthesia education. This model has been used for more than a decade to guide and research distance learning in higher education. A major strength of this model learning. However, it lacks applicability to the development of higher order thinking for student registered nurse anesthetists. Thus, a new derived Community of Inquiry model was designed to improve these students' higher order thinking in distance learning. The derived model integrates Bloom's revised taxonomy into the original Community of Inquiry model and provides a means to design, evaluate, and research higher order thinking in nurse anesthesia distance education courses.

  19. Integrating Collaborative and Decentralized Models to Support Ubiquitous Learning

    Science.gov (United States)

    Barbosa, Jorge Luis Victória; Barbosa, Débora Nice Ferrari; Rigo, Sandro José; de Oliveira, Jezer Machado; Rabello, Solon Andrade, Jr.

    2014-01-01

    The application of ubiquitous technologies in the improvement of education strategies is called Ubiquitous Learning. This article proposes the integration between two models dedicated to support ubiquitous learning environments, called Global and CoolEdu. CoolEdu is a generic collaboration model for decentralized environments. Global is an…

  20. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    Science.gov (United States)

    Park, Saerom; Lee, Jaewook; Son, Youngdoo

    2016-01-01

    Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  1. THE EFFECT OF 5E LEARNING CYCLE INSTRUCTIONAL MODEL USING SOCIOSCIENTIFIC ISSUES (SSI LEARNING CONTEXT ON STUDENTS’ CRITICAL THINKING

    Directory of Open Access Journals (Sweden)

    A. Cahyarini

    2016-11-01

    Full Text Available The aim of this study was to investigate the effect of 5E learning cycle instructional model using socioscientific issues (SSI learning context on students’ critical thinking skills of acid-base. This study used quasi-experimental posttest only control group design. The sample consisted of three classes, which were XI MIA-4class (n = 32 that learned using 5E LC model, XI MIA-5 class (n = 33 that learned using 5E LC+SSI, and XI MIA-6 class (n = 32 that learned using conventional method. The samples were choosen by convenience sampling technique. The test instrument consisted of 15 multiple choice items which were valid and reliable (r = 0.806. The data were analyzed using one way ANOVA test and LSD posthoc test. The results of this study indicated that the students who learned using 5E LC+SSI model showed greater levels of critical thinking skills (  = 74,95 than both the student who learned using 5E LC model (  = 74,17 and  the student who learned using conventional method (  = 68,96. Based on statistics analysis, there was significant differences on students’ critical thinkings between students taught using conventional method and students taught either using 5E LC+SSI model and 5E LC model. However,  there was no significant differences on students’ critical thinking skills between students taught using 5E LC+SSI model and the students taught using 5E LC model.

  2. Knowledge Management through the Equilibrium Pattern Model for Learning

    Science.gov (United States)

    Sarirete, Akila; Noble, Elizabeth; Chikh, Azeddine

    Contemporary students are characterized by having very applied learning styles and methods of acquiring knowledge. This behavior is consistent with the constructivist models where students are co-partners in the learning process. In the present work the authors developed a new model of learning based on the constructivist theory coupled with the cognitive development theory of Piaget. The model considers the level of learning based on several stages and the move from one stage to another requires learners' challenge. At each time a new concept is introduced creates a disequilibrium that needs to be worked out to return back to its equilibrium stage. This process of "disequilibrium/equilibrium" has been analyzed and validated using a course in computer networking as part of Cisco Networking Academy Program at Effat College, a women college in Saudi Arabia. The model provides a theoretical foundation for teaching especially in a complex knowledge domain such as engineering and can be used in a knowledge economy.

  3. Continuous Online Sequence Learning with an Unsupervised Neural Network Model.

    Science.gov (United States)

    Cui, Yuwei; Ahmad, Subutar; Hawkins, Jeff

    2016-09-14

    The ability to recognize and predict temporal sequences of sensory inputs is vital for survival in natural environments. Based on many known properties of cortical neurons, hierarchical temporal memory (HTM) sequence memory recently has been proposed as a theoretical framework for sequence learning in the cortex. In this letter, we analyze properties of HTM sequence memory and apply it to sequence learning and prediction problems with streaming data. We show the model is able to continuously learn a large number of variableorder temporal sequences using an unsupervised Hebbian-like learning rule. The sparse temporal codes formed by the model can robustly handle branching temporal sequences by maintaining multiple predictions until there is sufficient disambiguating evidence. We compare the HTM sequence memory with other sequence learning algorithms, including statistical methods: autoregressive integrated moving average; feedforward neural networks-time delay neural network and online sequential extreme learning machine; and recurrent neural networks-long short-term memory and echo-state networks on sequence prediction problems with both artificial and real-world data. The HTM model achieves comparable accuracy to other state-of-the-art algorithms. The model also exhibits properties that are critical for sequence learning, including continuous online learning, the ability to handle multiple predictions and branching sequences with high-order statistics, robustness to sensor noise and fault tolerance, and good performance without task-specific hyperparameter tuning. Therefore, the HTM sequence memory not only advances our understanding of how the brain may solve the sequence learning problem but is also applicable to real-world sequence learning problems from continuous data streams.

  4. Improving Student Learning Outcomes Marketing Strategy Lesson By Applying SFAE Learning Model

    Directory of Open Access Journals (Sweden)

    Winda Nur Rohmawati

    2017-11-01

    Full Text Available Research objectives for improving student learning outcomes on the subjects of marketing strategy through the implementation of model learning SFAE. This type of research this is a class action research using a qualitative approach which consists of two cycles with the subject Marketing X grade SMK YPI Darussalam 2 Cerme Gresik Regency. This research consists of four stages: (1 the Planning Act, (2 the implementation of the action, (3 observations (observation, and (4 Reflection. The result of the research shows that cognitive and affective learning outcomes of students have increased significantly.

  5. A model for hypermedia learning environments based on electronic books

    Directory of Open Access Journals (Sweden)

    Ignacio Aedo

    1997-12-01

    Full Text Available Current hypermedia learning environments do not have a common development basis. Their designers have often used ad-hoc solutions to solve the learning problems they have encountered. However, hypermedia technology can take advantage of employing a theoretical scheme - a model - which takes into account various kinds of learning activities, and solves some of the problems associated with its use in the learning process. The model can provide designers with the tools for creating a hypermedia learning system, by allowing the elements and functions involved in the definition of a specific application to be formally represented.

  6. Toxin-Induced Experimental Models of Learning and Memory Impairment.

    Science.gov (United States)

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-09-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.

  7. The Game Object Model and expansive learning: Creation ...

    African Journals Online (AJOL)

    The Game Object Model and expansive learning: Creation, instantiation, ... The aim of the paper is to develop insights into the design, integration, evaluation and use of video games in learning and teaching. ... AJOL African Journals Online.

  8. Efficient Actor-Critic Algorithm with Hierarchical Model Learning and Planning

    Science.gov (United States)

    Fu, QiMing

    2016-01-01

    To improve the convergence rate and the sample efficiency, two efficient learning methods AC-HMLP and RAC-HMLP (AC-HMLP with ℓ 2-regularization) are proposed by combining actor-critic algorithm with hierarchical model learning and planning. The hierarchical models consisting of the local and the global models, which are learned at the same time during learning of the value function and the policy, are approximated by local linear regression (LLR) and linear function approximation (LFA), respectively. Both the local model and the global model are applied to generate samples for planning; the former is used only if the state-prediction error does not surpass the threshold at each time step, while the latter is utilized at the end of each episode. The purpose of taking both models is to improve the sample efficiency and accelerate the convergence rate of the whole algorithm through fully utilizing the local and global information. Experimentally, AC-HMLP and RAC-HMLP are compared with three representative algorithms on two Reinforcement Learning (RL) benchmark problems. The results demonstrate that they perform best in terms of convergence rate and sample efficiency. PMID:27795704

  9. Statistical and Machine Learning Models to Predict Programming Performance

    OpenAIRE

    Bergin, Susan

    2006-01-01

    This thesis details a longitudinal study on factors that influence introductory programming success and on the development of machine learning models to predict incoming student performance. Although numerous studies have developed models to predict programming success, the models struggled to achieve high accuracy in predicting the likely performance of incoming students. Our approach overcomes this by providing a machine learning technique, using a set of three significant...

  10. An extended dual search space model of scientific discovery learning

    NARCIS (Netherlands)

    van Joolingen, Wouter; de Jong, Anthonius J.M.

    1997-01-01

    This article describes a theory of scientific discovery learning which is an extension of Klahr and Dunbar''s model of Scientific Discovery as Dual Search (SDDS) model. We present a model capable of describing and understanding scientific discovery learning in complex domains in terms of the SDDS

  11. Pengembangan Model Outdoor Learning melalui Project Berbasis Local Wisdom dalam Pembelajaran Fisika

    Directory of Open Access Journals (Sweden)

    Indah kurnia Putri Damayanti

    2017-12-01

    Full Text Available Abstrak Penelitian ini bertujuan untuk: (1 menghasilkan model outdoor learning melalui project berbasis local wisdom yang layak digunakan dalam pembelajaran fisika, (2 mengetahui keefektifan penggunaan model outdoor learning melalui project berbasis local wisdom. Penelitian pengembangan ini menggunakan metode pengembangan R & D (Research dan Development. Pada tahap Development, peneliti mengadopsi model 4D, yaitu Define, Design, Develop, dan Disseminate. Hasil penelitian menunjukkan bahwa model outdoor learning melalui project berbasis local wisdom yang dikembangkan layak digunakan dari segi produk pendukung pembelajaran yang memenuhi kriteria sangat tinggi menurut para ahli, praktis menurut guru dan peserta didik. Lembar observasi yang memenuhi kriteria valid dan reliabel berdasarkan hasil ICC dan tes hasil belajar yang memenuhi kriteria valid dan reliabel berdasarkan hasil Quest. Selain itu, model outdoor learning melalui project berbasis local wisdom lebih efektif digunakan dalam pembelajaran fisika dilihat dari hasil analisis multivariate dan GLMMDs yang memperoleh nilai signifikansi 0,000 dan MD yang tinggi.   AbstractThis research was aimed to: (1 produce outdoor learning via project based suitable local wisdom model used in physics learning, (2 know the effectiveness in using outdoor learning via project based local wisdom model. This developing research used a R & D method (Research and Development. On Development step, the researcher adopted 4D model, they were Define, Design, Develop, dan Dissemination. The results showed that the developed outdoor learning via project based local wisdom model was suitable to be used in terms of learning support product that was in very high category according expert, practical according teacher and students. In addition the observation sheet was in valid criteria and reliabel based on ICC and the learning outcome test was in valid criteria and reliabel based on Quest. Besides, outdoor learning via

  12. Machine learning modelling for predicting soil liquefaction susceptibility

    Directory of Open Access Journals (Sweden)

    P. Samui

    2011-01-01

    Full Text Available This study describes two machine learning techniques applied to predict liquefaction susceptibility of soil based on the standard penetration test (SPT data from the 1999 Chi-Chi, Taiwan earthquake. The first machine learning technique which uses Artificial Neural Network (ANN based on multi-layer perceptions (MLP that are trained with Levenberg-Marquardt backpropagation algorithm. The second machine learning technique uses the Support Vector machine (SVM that is firmly based on the theory of statistical learning theory, uses classification technique. ANN and SVM have been developed to predict liquefaction susceptibility using corrected SPT [(N160] and cyclic stress ratio (CSR. Further, an attempt has been made to simplify the models, requiring only the two parameters [(N160 and peck ground acceleration (amax/g], for the prediction of liquefaction susceptibility. The developed ANN and SVM models have also been applied to different case histories available globally. The paper also highlights the capability of the SVM over the ANN models.

  13. Learning while (re)configuring: Business model innovation processes in established firms

    Science.gov (United States)

    Berends, Hans; Smits, Armand; Reymen, Isabelle; Podoynitsyna, Ksenia

    2016-01-01

    This study addresses the question of how established organizations develop new business models over time, using a process research approach to trace how four business model innovation trajectories unfold. With organizational learning as analytical lens, we discern two process patterns: “drifting” starts with an emphasis on experiential learning and shifts later to cognitive search; “leaping,” in contrast, starts with an emphasis on cognitive search and shifts later to experiential learning. Both drifting and leaping can result in radical business model innovations, while their occurrence depends on whether a new business model takes off from an existing model and when it goes into operation. We discuss the implications of these findings for theory on business models and organizational learning. PMID:28596704

  14. THE PROPOSED MODEL OF COLLABORATIVE VIRTUAL LEARNING ENVIRONMENT FOR INTRODUCTORY PROGRAMMING COURSE

    Directory of Open Access Journals (Sweden)

    Mahfudzah OTHMAN

    2012-01-01

    Full Text Available This paper discusses the proposed model of the collaborative virtual learning system for the introductory computer programming course which uses one of the collaborative learning techniques known as the “Think-Pair-Share”. The main objective of this study is to design a model for an online learning system that facilitates the collaborative learning activities in a virtual environment such as online communications and pair or small group discussions. In order to model the virtual learning environment, the RUP methodology has been used where it involves the data collection phase and the analysis and design phase. Fifty respondents have been randomly selected to participate in the data collection phase to investigate the students’ interest and learning styles as well as their learning preferences. The results have shown the needs for the development of online small group discussions that can be used as an alternative learning style for programming courses. The proposed design of the virtual learning system named as the Online Collaborative Learning System or OCLS is being depicted using the object-oriented models which are the use-case model and class diagram in order to show the concise processes of virtual “Think-Pair-Share” collaborative activities. The “Think-Pair-Share” collaborative learning technique that is being used in this model has been chosen because of its simplicity and relatively low-risk. This paper also presents the proposed model of the system’s architecture that will become the guidelines for the physical development of OCLS using the web-based applications.

  15. The structure of observed learning outcome (SOLO) taxonomy: a model to promote dental students' learning.

    Science.gov (United States)

    Lucander, H; Bondemark, L; Brown, G; Knutsson, K

    2010-08-01

    Selective memorising of isolated facts or reproducing what is thought to be required - the surface approach to learning - is not the desired outcome for a dental student or a dentist in practice. The preferred outcome is a deep approach as defined by an intention to seek understanding, develop expertise and relate information and knowledge into a coherent whole. The aim of this study was to investigate whether the structure of observed learning outcome (SOLO) taxonomy could be used as a model to assist and promote the dental students to develop a deep approach to learning assessed as learning outcomes in a summative assessment. Thirty-two students, participating in course eight in 2007 at the Faculty of Odontology at Malmö University, were introduced to the SOLO taxonomy and constituted the test group. The control group consisted of 35 students participating in course eight in 2006. The effect of the introduction was measured by evaluating responses to a question in the summative assessment by using the SOLO taxonomy. The evaluators consisted of two teachers who performed the assessment of learning outcomes independently and separately on the coded material. The SOLO taxonomy as a model for learning was found to improve the quality of learning. Compared to the control group significantly more strings and structured relations between these strings were present in the test group after the SOLO taxonomy had been introduced (P SOLO taxonomy is recommended as a model for promoting and developing a deeper approach to learning in dentistry.

  16. Collaborative learning model inquiring based on digital game

    Science.gov (United States)

    Yuan, Jiugen; Xing, Ruonan

    2012-04-01

    With the development of computer education software, digital educational game has become an important part in our life, entertainment and education. Therefore how to make full use of digital game's teaching functions and educate through entertainment has become the focus of current research. The thesis make a connection between educational game and collaborative learning, the current popular teaching model, and concludes digital game-based collaborative learning model combined with teaching practice.

  17. Predicting Market Impact Costs Using Nonparametric Machine Learning Models.

    Directory of Open Access Journals (Sweden)

    Saerom Park

    Full Text Available Market impact cost is the most significant portion of implicit transaction costs that can reduce the overall transaction cost, although it cannot be measured directly. In this paper, we employed the state-of-the-art nonparametric machine learning models: neural networks, Bayesian neural network, Gaussian process, and support vector regression, to predict market impact cost accurately and to provide the predictive model that is versatile in the number of variables. We collected a large amount of real single transaction data of US stock market from Bloomberg Terminal and generated three independent input variables. As a result, most nonparametric machine learning models outperformed a-state-of-the-art benchmark parametric model such as I-star model in four error measures. Although these models encounter certain difficulties in separating the permanent and temporary cost directly, nonparametric machine learning models can be good alternatives in reducing transaction costs by considerably improving in prediction performance.

  18. [Connectionist models of social learning: a case of learning by observing a simple task].

    Science.gov (United States)

    Paignon, A; Desrichard, O; Bollon, T

    2004-03-01

    This article proposes a connectionist model of the social learning theory developed by Bandura (1977). The theory posits that an individual in an interactive situation is capable of learning new behaviours merely by observing them in others. Such learning is acquired through an initial phase in which the individual memorizes what he has observed (observation phase), followed by a second phase where he puts the recorded observations to use as a guide for adjusting his own behaviour (reproduction phase). We shall refer to the two above-mentioned phases to demonstrate that it is conceivable to simulate learning by observation otherwise than through the recording of perceived information using symbolic representation. To this end we shall rely on the formalism of ecological neuron networks (Parisi, Cecconi, & Nolfi, 1990) to implement an agent provided with the major processes identified as essential to learning through observation. The connectionist model so designed shall implement an agent capable of recording perceptive information and producing motor behaviours. The learning situation we selected associates an agent demonstrating goal-achievement behaviour and an observer agent learning the same behaviour by observation. Throughout the acquisition phase, the demonstrator supervises the observer's learning process based on association between spatial information (input) and behavioural information (output). Representation thus constructed then serves as an adjustment guide during the production phase, involving production by the observer of a sequence of actions which he compares to the representation stored in distributed form as constructed through observation. An initial simulation validates model architecture by confirming the requirement for both phases identified in the literature (Bandura, 1977) to simulate learning through observation. The representation constructed over the observation phase evidences acquisition of observed behaviours, although this phase

  19. Model Transport: Towards Scalable Transfer Learning on Manifolds

    DEFF Research Database (Denmark)

    Freifeld, Oren; Hauberg, Søren; Black, Michael J.

    2014-01-01

    We consider the intersection of two research fields: transfer learning and statistics on manifolds. In particular, we consider, for manifold-valued data, transfer learning of tangent-space models such as Gaussians distributions, PCA, regression, or classifiers. Though one would hope to simply use...... ordinary Rn-transfer learning ideas, the manifold structure prevents it. We overcome this by basing our method on inner-product-preserving parallel transport, a well-known tool widely used in other problems of statistics on manifolds in computer vision. At first, this straightforward idea seems to suffer...... “commutes” with learning. Consequently, our compact framework, applicable to a large class of manifolds, is not restricted by the size of either the training or test sets. We demonstrate the approach by transferring PCA and logistic-regression models of real-world data involving 3D shapes and image...

  20. INDUSTRY PARTNERSHIPS LEARNING MODELS FOR SURVEYING AND MAPPING OF VOCATIONAL HIGH SCHOOLS

    Directory of Open Access Journals (Sweden)

    Sunar Rochmadi

    2016-09-01

    Full Text Available This study aims to identify a learning involving the world of work, to formulate the learning model, and to evaluate the learning model. This study used a qualitative approach for design and development research, consisting of the development and validation steps. The study concludes as follows. (1 the learning through partnerships having been conducted in all vocational high schools were industrial practice and vocational practice examination. (2 the constraints of learning through partnerships were mainly the far distance and the industry schedules that did not always match with the school’s. (3 the model development could be done by improving the learning quality by industrial practices in the private companies and with adding the learning model by industry visits, guest teaching, and up-to-date technology training. (4 the implementation of the developed model showed the feasibility and the effectiveness to prepare the students with the competencies required by the world of work. (5 the learning models through partnerships that could be practiced were guest teaching, orientation for industrial practice, industrial practices, students’ industry visits, up-to-date technology training, and vocational practice examination.

  1. A Bayesian Approach for Structural Learning with Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Cen Li

    2002-01-01

    Full Text Available Hidden Markov Models(HMM have proved to be a successful modeling paradigm for dynamic and spatial processes in many domains, such as speech recognition, genomics, and general sequence alignment. Typically, in these applications, the model structures are predefined by domain experts. Therefore, the HMM learning problem focuses on the learning of the parameter values of the model to fit the given data sequences. However, when one considers other domains, such as, economics and physiology, model structure capturing the system dynamic behavior is not available. In order to successfully apply the HMM methodology in these domains, it is important that a mechanism is available for automatically deriving the model structure from the data. This paper presents a HMM learning procedure that simultaneously learns the model structure and the maximum likelihood parameter values of a HMM from data. The HMM model structures are derived based on the Bayesian model selection methodology. In addition, we introduce a new initialization procedure for HMM parameter value estimation based on the K-means clustering method. Experimental results with artificially generated data show the effectiveness of the approach.

  2. Integrating Learning Styles and Personality Traits into an Affective Model to Support Learner's Learning

    Science.gov (United States)

    Leontidis, Makis; Halatsis, Constantin

    The aim of this paper is to present a model in order to integrate the learning style and the personality traits of a learner into an enhanced Affective Style which is stored in the learner’s model. This model which can deal with the cognitive abilities as well as the affective preferences of the learner is called Learner Affective Model (LAM). The LAM is used to retain learner’s knowledge and activities during his interaction with a Web-based learning environment and also to provide him with the appropriate pedagogical guidance. The proposed model makes use of an ontological approach in combination with the Bayesian Network model and contributes to the efficient management of the LAM in an Affective Module.

  3. Bottom-up learning of hierarchical models in a class of deterministic POMDP environments

    Directory of Open Access Journals (Sweden)

    Itoh Hideaki

    2015-09-01

    Full Text Available The theory of partially observable Markov decision processes (POMDPs is a useful tool for developing various intelligent agents, and learning hierarchical POMDP models is one of the key approaches for building such agents when the environments of the agents are unknown and large. To learn hierarchical models, bottom-up learning methods in which learning takes place in a layer-by-layer manner from the lowest to the highest layer are already extensively used in some research fields such as hidden Markov models and neural networks. However, little attention has been paid to bottom-up approaches for learning POMDP models. In this paper, we present a novel bottom-up learning algorithm for hierarchical POMDP models and prove that, by using this algorithm, a perfect model (i.e., a model that can perfectly predict future observations can be learned at least in a class of deterministic POMDP environments

  4. Using Active Learning for Speeding up Calibration in Simulation Models.

    Science.gov (United States)

    Cevik, Mucahit; Ergun, Mehmet Ali; Stout, Natasha K; Trentham-Dietz, Amy; Craven, Mark; Alagoz, Oguzhan

    2016-07-01

    Most cancer simulation models include unobservable parameters that determine disease onset and tumor growth. These parameters play an important role in matching key outcomes such as cancer incidence and mortality, and their values are typically estimated via a lengthy calibration procedure, which involves evaluating a large number of combinations of parameter values via simulation. The objective of this study is to demonstrate how machine learning approaches can be used to accelerate the calibration process by reducing the number of parameter combinations that are actually evaluated. Active learning is a popular machine learning method that enables a learning algorithm such as artificial neural networks to interactively choose which parameter combinations to evaluate. We developed an active learning algorithm to expedite the calibration process. Our algorithm determines the parameter combinations that are more likely to produce desired outputs and therefore reduces the number of simulation runs performed during calibration. We demonstrate our method using the previously developed University of Wisconsin breast cancer simulation model (UWBCS). In a recent study, calibration of the UWBCS required the evaluation of 378 000 input parameter combinations to build a race-specific model, and only 69 of these combinations produced results that closely matched observed data. By using the active learning algorithm in conjunction with standard calibration methods, we identify all 69 parameter combinations by evaluating only 5620 of the 378 000 combinations. Machine learning methods hold potential in guiding model developers in the selection of more promising parameter combinations and hence speeding up the calibration process. Applying our machine learning algorithm to one model shows that evaluating only 1.49% of all parameter combinations would be sufficient for the calibration. © The Author(s) 2015.

  5. The Kinematic Learning Model using Video and Interfaces Analysis

    Science.gov (United States)

    Firdaus, T.; Setiawan, W.; Hamidah, I.

    2017-09-01

    An educator currently in demand to apply the learning to not be separated from the development of technology. Educators often experience difficulties when explaining kinematics material, this is because kinematics is one of the lessons that often relate the concept to real life. Kinematics is one of the courses of physics that explains the cause of motion of an object, Therefore it takes the thinking skills and analytical skills in understanding these symptoms. Technology is one that can bridge between conceptual relationship with real life. A framework of technology-based learning models has been developed using video and interfaces analysis on kinematics concept. By using this learning model, learners will be better able to understand the concept that is taught by the teacher. This learning model is able to improve the ability of creative thinking, analytical skills, and problem-solving skills on the concept of kinematics.

  6. MODELING STUDENTS' INTENTION TO ADOPT E-LEARNING A CASE FROM EGYPT

    Directory of Open Access Journals (Sweden)

    Ahmed Gad abdel-WAHAB

    2008-01-01

    Full Text Available ABSTRACTE-learning is becoming increasingly prominent in higher education, with universities increasing provision and more students signing up. This paper examines factors that predict students' intention to adopt e-learning at the Egyptian University of Mansourra. Understanding the nature of these factors may assist Egyptian universities in promoting the use of information and communication technology in teaching and learning. The main focus of the paper is on the university students, whose decision supports effective implementation of e-learning. Data was collected through a survey of 258 first year business students at the University of Mansoura in Egypt. The technology adoption model put forward by Davis is utilized in this study. Two more independent variables are added to the original model, namely, the pressure to act and resources availability. The results show that there are five factors that can be used in modeling students' intentions to adopt e-learning. These factors are attitudes toward e-learning, perceived usefulness of e-learning, perceived ease of e-learning use, pressure to use e-learning, and the availability of resources needed to use e-learning.

  7. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling.

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava

    2018-01-11

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies.

  8. Machine Learning Methods for Analysis of Metabolic Data and Metabolic Pathway Modeling

    Science.gov (United States)

    Cuperlovic-Culf, Miroslava

    2018-01-01

    Machine learning uses experimental data to optimize clustering or classification of samples or features, or to develop, augment or verify models that can be used to predict behavior or properties of systems. It is expected that machine learning will help provide actionable knowledge from a variety of big data including metabolomics data, as well as results of metabolism models. A variety of machine learning methods has been applied in bioinformatics and metabolism analyses including self-organizing maps, support vector machines, the kernel machine, Bayesian networks or fuzzy logic. To a lesser extent, machine learning has also been utilized to take advantage of the increasing availability of genomics and metabolomics data for the optimization of metabolic network models and their analysis. In this context, machine learning has aided the development of metabolic networks, the calculation of parameters for stoichiometric and kinetic models, as well as the analysis of major features in the model for the optimal application of bioreactors. Examples of this very interesting, albeit highly complex, application of machine learning for metabolism modeling will be the primary focus of this review presenting several different types of applications for model optimization, parameter determination or system analysis using models, as well as the utilization of several different types of machine learning technologies. PMID:29324649

  9. Effects of Problem-Based Learning Model versus Expository Model and Motivation to Achieve for Student's Physic Learning Result of Senior High School at Class XI

    Science.gov (United States)

    Prayekti

    2016-01-01

    "Problem-based learning" (PBL) is one of an innovative learning model which can provide an active learning to student, include the motivation to achieve showed by student when the learning is in progress. This research is aimed to know: (1) differences of physic learning result for student group which taught by PBL versus expository…

  10. Tool Support for Collaborative Teaching and Learning of Object-Oriented Modelling

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius; Ratzer, Anne Vinter

    2002-01-01

    Modeling is central to doing and learning object-oriented development. We present a new tool, Ideogramic UML, for gesture-based collaborative modeling with the Unified Modeling Language (UML), which can be used to collaboratively teach and learn modeling. Furthermore, we discuss how we have...

  11. The Integration of Environmental Education in Science Materials by Using "MOTORIC" Learning Model

    Science.gov (United States)

    Sukarjita, I. Wayan; Ardi, Muhammad; Rachman, Abdul; Supu, Amiruddin; Dirawan, Gufran Darma

    2015-01-01

    The research of the integration of Environmental Education in science subject matter by application of "MOTORIC" Learning models has carried out on Junior High School Kupang Nusa Tenggara Timur Indonesia. "MOTORIC" learning model is an Environmental Education (EE) learning model that collaborate three learning approach i.e.…

  12. A Dual-Route Model that Learns to Pronounce English Words

    Science.gov (United States)

    Remington, Roger W.; Miller, Craig S.; Null, Cynthia H. (Technical Monitor)

    1995-01-01

    This paper describes a model that learns to pronounce English words. Learning occurs in two modules: 1) a rule-based module that constructs pronunciations by phonetic analysis of the letter string, and 2) a whole-word module that learns to associate subsets of letters to the pronunciation, without phonetic analysis. In a simulation on a corpus of over 300 words the model produced pronunciation latencies consistent with the effects of word frequency and orthographic regularity observed in human data. Implications of the model for theories of visual word processing and reading instruction are discussed.

  13. Measuring organizational learning. Model testing in two Romanian universities

    OpenAIRE

    Alexandra Luciana Guţă

    2014-01-01

    The scientific literature associates organizational learning with superior organization performance. If we refer to the academic environment, we appreciate that it can develop and reach better levels of performance through changes driven from the inside. Thus, through this paper we elaborate on a conceptual model of organizational learning and we test the model on a sample of employees (university teachers and researchers) from two Romanian universities. The model comprises the process of org...

  14. Flipped classroom model for learning evidence-based medicine

    Directory of Open Access Journals (Sweden)

    Rucker SY

    2017-08-01

    Full Text Available Sydney Y Rucker,1 Zulfukar Ozdogan,1 Morhaf Al Achkar2 1School of Education, Indiana University, Bloomington, IN, 2Department of Family Medicine, School of Medicine, University of Washington, Seattle, WA, USA Abstract: Journal club (JC, as a pedagogical strategy, has long been used in graduate medical education (GME. As evidence-based medicine (EBM becomes a mainstay in GME, traditional models of JC present a number of insufficiencies and call for novel models of instruction. A flipped classroom model appears to be an ideal strategy to meet the demands to connect evidence to practice while creating engaged, culturally competent, and technologically literate physicians. In this article, we describe a novel model of flipped classroom in JC. We present the flow of learning activities during the online and face-to-face instruction, and then we highlight specific considerations for implementing a flipped classroom model. We show that implementing a flipped classroom model to teach EBM in a residency program not only is possible but also may constitute improved learning opportunity for residents. Follow-up work is needed to evaluate the effectiveness of this model on both learning and clinical practice. Keywords: evidence-based medicine, flipped classroom, residency education

  15. Intensitas Perilaku Pengguna E-learning System dengan Model Utaut

    OpenAIRE

    Sari, Fatma; Purnamasari, Susan Dian

    2013-01-01

    This study aims to determine behavioral intention in the use of e-learning system using models UTAUT. The phenomenon underlying the research is: It is not yet optimal use of e-learning by students information systems in the learning process, not yet optimal socialization of the existence of e-learning, so that is not maximized and yet utilization measurability of the impact of using e-learning for lecturers.This study is limited in its scope: analysis of the influence of performance expectanc...

  16. A 3D Geometry Model Search Engine to Support Learning

    Science.gov (United States)

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  17. Collaborative Inquiry Learning: Models, tools, and challenges

    Science.gov (United States)

    Bell, Thorsten; Urhahne, Detlef; Schanze, Sascha; Ploetzner, Rolf

    2010-02-01

    Collaborative inquiry learning is one of the most challenging and exciting ventures for today's schools. It aims at bringing a new and promising culture of teaching and learning into the classroom where students in groups engage in self-regulated learning activities supported by the teacher. It is expected that this way of learning fosters students' motivation and interest in science, that they learn to perform steps of inquiry similar to scientists and that they gain knowledge on scientific processes. Starting from general pedagogical reflections and science standards, the article reviews some prominent models of inquiry learning. This comparison results in a set of inquiry processes being the basis for cooperation in the scientific network NetCoIL. Inquiry learning is conceived in several ways with emphasis on different processes. For an illustration of the spectrum, some main conceptions of inquiry and their focuses are described. In the next step, the article describes exemplary computer tools and environments from within and outside the NetCoIL network that were designed to support processes of collaborative inquiry learning. These tools are analysed by describing their functionalities as well as effects on student learning known from the literature. The article closes with challenges for further developments elaborated by the NetCoIL network.

  18. Designing An Effective Mobile-learning Model By Integrating Student Culture

    OpenAIRE

    Ibrahim Mohamad; Abdalla AlAmeen

    2014-01-01

    Mobile learning is a good technology because it allows communication, collaboration, and sharing information or resources among all of learning members. Mobile learning can be used as perfect solutions to support the learning process. Thither are many concepts and factors influencing effective learning results through creativity, collaboration, and communication. However, culture is an unaccounted factor which should be appended to the existing M-learning model. Culture may improve the learni...

  19. A new semi-supervised learning model combined with Cox and SP-AFT models in cancer survival analysis.

    Science.gov (United States)

    Chai, Hua; Li, Zi-Na; Meng, De-Yu; Xia, Liang-Yong; Liang, Yong

    2017-10-12

    Gene selection is an attractive and important task in cancer survival analysis. Most existing supervised learning methods can only use the labeled biological data, while the censored data (weakly labeled data) far more than the labeled data are ignored in model building. Trying to utilize such information in the censored data, a semi-supervised learning framework (Cox-AFT model) combined with Cox proportional hazard (Cox) and accelerated failure time (AFT) model was used in cancer research, which has better performance than the single Cox or AFT model. This method, however, is easily affected by noise. To alleviate this problem, in this paper we combine the Cox-AFT model with self-paced learning (SPL) method to more effectively employ the information in the censored data in a self-learning way. SPL is a kind of reliable and stable learning mechanism, which is recently proposed for simulating the human learning process to help the AFT model automatically identify and include samples of high confidence into training, minimizing interference from high noise. Utilizing the SPL method produces two direct advantages: (1) The utilization of censored data is further promoted; (2) the noise delivered to the model is greatly decreased. The experimental results demonstrate the effectiveness of the proposed model compared to the traditional Cox-AFT model.

  20. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

    Science.gov (United States)

    Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro

    2017-10-01

    Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.

  1. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

    Directory of Open Access Journals (Sweden)

    Marcello Benedetti

    2017-11-01

    Full Text Available Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.

  2. Research on Model of Student Engagement in Online Learning

    Science.gov (United States)

    Peng, Wang

    2017-01-01

    In this study, online learning refers students under the guidance of teachers through the online learning platform for organized learning. Based on the analysis of related research results, considering the existing problems, the main contents of this paper include the following aspects: (1) Analyze and study the current student engagement model.…

  3. A Bootstrapping Model of Frequency and Context Effects in Word Learning.

    Science.gov (United States)

    Kachergis, George; Yu, Chen; Shiffrin, Richard M

    2017-04-01

    Prior research has shown that people can learn many nouns (i.e., word-object mappings) from a short series of ambiguous situations containing multiple words and objects. For successful cross-situational learning, people must approximately track which words and referents co-occur most frequently. This study investigates the effects of allowing some word-referent pairs to appear more frequently than others, as is true in real-world learning environments. Surprisingly, high-frequency pairs are not always learned better, but can also boost learning of other pairs. Using a recent associative model (Kachergis, Yu, & Shiffrin, 2012), we explain how mixing pairs of different frequencies can bootstrap late learning of the low-frequency pairs based on early learning of higher frequency pairs. We also manipulate contextual diversity, the number of pairs a given pair appears with across training, since it is naturalistically confounded with frequency. The associative model has competing familiarity and uncertainty biases, and their interaction is able to capture the individual and combined effects of frequency and contextual diversity on human learning. Two other recent word-learning models do not account for the behavioral findings. Copyright © 2016 Cognitive Science Society, Inc.

  4. THE LEARNING RESULT DIFFERENCE OF STUDENT TEACH BY USING ENHANCEMENT LEARNING MODEL OF STUDENT’S THINKING ABILITY WITH CONVENSIONAL MODEL FOR FORCE AND NEWTON LAWS MATERIAL

    Directory of Open Access Journals (Sweden)

    Derlina .

    2013-06-01

    Full Text Available This research was done to observe the difference of learning achievement between student who have been teach by Enhancement Learning Model of Student’s Thinking Ability and Conventional Model. This research was done at SMP Negeri 2 Gebang. Type of this research is quasi experiment. Research population is every student of grade VIII semester 2 SMP Negeri 2 Gebang. Research sample was taken by random sampling around 2 classes as 34 students for experiment class and 34 students for control class. Learning achievement of test objective 20 of multiple choice was done as an instrument. The experiment result of pretest average is 37.94 for experiment class and 36.82 for control class. Treatment was done to each class, post test average score is 73.38 for experiment class and for student who have been teach by conventional learning is 67.05. Hypothetical testing is tcalculate > ttabe i.e 3.459 > 1.66 with significance standard α = 0.05 and dk = 66. It means that Ha was accepted, so it may conclude that there is a difference of learning achievement between Enhancement Learning Model of Student’s Thinking Ability with Conventional Learning Model for Force and Newton Laws on Grade VIII SMP Negeri 2 Gebang Annual Year 2011/2012.

  5. The development of learning material using learning cycle 5E model based stem to improve students’ learning outcomes in Thermochemistry

    Science.gov (United States)

    sugiarti, A. C.; suyatno, S.; Sanjaya, I. G. M.

    2018-04-01

    The objective of this study is describing the feasibility of Learning Cycle 5E STEM (Science, Technology, Engineering, and Mathematics) based learning material which is appropriate to improve students’ learning achievement in Thermochemistry. The study design used 4-D models and one group pretest-posttest design to obtain the information about the improvement of sudents’ learning outcomes. The subject was learning cycle 5E based STEM learning materials which the data were collected from 30 students of Science class at 11th Grade. The techniques used in this study were validation, observation, test, and questionnaire. Some result attain: (1) all the learning materials contents were valid, (2) the practicality and the effectiveness of all the learning materials contents were classified as good. The conclution of this study based on those three condition, the Learnig Cycle 5E based STEM learning materials is appropriate to improve students’ learning outcomes in studying Thermochemistry.

  6. Urban Studies: A Learning Model.

    Science.gov (United States)

    Cooper, Terry L.; Sundeen, Richard

    1979-01-01

    The urban studies learning model described in this article was found to increase students' self-esteem, imbue a more flexible and open perspective, contribute to the capacity for self-direction, produce increases on the feeling reactivity, spontaneity, and acceptance of aggression scales, and expand interpersonal competence. (Author/WI)

  7. Temporal-pattern learning in neural models

    CERN Document Server

    Genís, Carme Torras

    1985-01-01

    While the ability of animals to learn rhythms is an unquestionable fact, the underlying neurophysiological mechanisms are still no more than conjectures. This monograph explores the requirements of such mechanisms, reviews those previously proposed and postulates a new one based on a direct electric coding of stimulation frequencies. Experi­ mental support for the option taken is provided both at the single neuron and neural network levels. More specifically, the material presented divides naturally into four parts: a description of the experimental and theoretical framework where this work becomes meaningful (Chapter 2), a detailed specifica­ tion of the pacemaker neuron model proposed together with its valida­ tion through simulation (Chapter 3), an analytic study of the behavior of this model when submitted to rhythmic stimulation (Chapter 4) and a description of the neural network model proposed for learning, together with an analysis of the simulation results obtained when varying seve­ ral factors r...

  8. Service Learning In Physics: The Consultant Model

    Science.gov (United States)

    Guerra, David

    2005-04-01

    Each year thousands of students across the country and across the academic disciplines participate in service learning. Unfortunately, with no clear model for integrating community service into the physics curriculum, there are very few physics students engaged in service learning. To overcome this shortfall, a consultant based service-learning program has been developed and successfully implemented at Saint Anselm College (SAC). As consultants, students in upper level physics courses apply their problem solving skills in the service of others. Most recently, SAC students provided technical and managerial support to a group from Girl's Inc., a national empowerment program for girls in high-risk, underserved areas, who were participating in the national FIRST Lego League Robotics competition. In their role as consultants the SAC students provided technical information through brainstorming sessions and helped the girls stay on task with project management techniques, like milestone charting. This consultant model of service-learning, provides technical support to groups that may not have a great deal of resources and gives physics students a way to improve their interpersonal skills, test their technical expertise, and better define the marketable skill set they are developing through the physics curriculum.

  9. Design e-learning with flipped learning model to improve layout understanding the concepts basic of the loop control structure

    Science.gov (United States)

    Handayani, D. P.; Sutarno, H.; Wihardi, Y.

    2018-05-01

    This study aimed in design and build e-learning with classroom flipped model to improve the concept of understanding of SMK students on the basic programming subject. Research and development obtained research data from survey questionnaire given to students of SMK class X RPL in SMK Negeri 2 Bandung and interviews to RPL productive teacher. Data also obtained from questionnaire of expert validation and students' assessment from e-learning with flipped classroom models. Data also obtained from multiple-choice test to measure improvements in conceptual understanding. The results of this research are: 1) Developed e- learning with flipped classroom model considered good and worthy of use by the average value of the percentage of 86,3% by media experts, and 85,5% by subjects matter experts, then students gave judgment is very good on e-learning either flipped classroom model with a percentage of 79,15% votes. 2) e-learning with classroom flipped models show an increase in the average value of pre-test before using e-learning 26.67 compared to the average value post-test after using e- learning at 63.37 and strengthened by the calculation of the index gains seen Increased understanding of students 'concepts by 50% with moderate criteria indicating that students' understanding is improving.

  10. Educational Modelling Language and Learning Design: new challenges for instructional re-usability and personalized learning

    NARCIS (Netherlands)

    Hummel, Hans; Manderveld, Jocelyn; Tattersall, Colin; Koper, Rob

    2003-01-01

    Published: Hummel, H. G. K., Manderveld, J. M., Tattersall, C.,& Koper, E. J. R. (2004). Educational Modelling Language: new challenges for instructional re-usability and personalized learning. International Journal of Learning Technology, 1, 1, 110-111.

  11. The Self-Regulated Learning Model and Music Education

    OpenAIRE

    Maja Marijan

    2017-01-01

    Self-regulation and self-regulated learning (SRL) are important features in music education. In this research self-regulated learning model is presented as a complex, multidimensional structure. SRL starts with the self-regulation. Self-regulation is formed through interaction with the environment, thus self-learning, self-analysis, self-judgment, self-instruction, and self-monitoring are the main functions in self-regulatory structure. Co-regulation is needed, and helps self-regulation to be...

  12. Dynamic Textures Modeling via Joint Video Dictionary Learning.

    Science.gov (United States)

    Wei, Xian; Li, Yuanxiang; Shen, Hao; Chen, Fang; Kleinsteuber, Martin; Wang, Zhongfeng

    2017-04-06

    Video representation is an important and challenging task in the computer vision community. In this paper, we consider the problem of modeling and classifying video sequences of dynamic scenes which could be modeled in a dynamic textures (DT) framework. At first, we assume that image frames of a moving scene can be modeled as a Markov random process. We propose a sparse coding framework, named joint video dictionary learning (JVDL), to model a video adaptively. By treating the sparse coefficients of image frames over a learned dictionary as the underlying "states", we learn an efficient and robust linear transition matrix between two adjacent frames of sparse events in time series. Hence, a dynamic scene sequence is represented by an appropriate transition matrix associated with a dictionary. In order to ensure the stability of JVDL, we impose several constraints on such transition matrix and dictionary. The developed framework is able to capture the dynamics of a moving scene by exploring both sparse properties and the temporal correlations of consecutive video frames. Moreover, such learned JVDL parameters can be used for various DT applications, such as DT synthesis and recognition. Experimental results demonstrate the strong competitiveness of the proposed JVDL approach in comparison with state-of-the-art video representation methods. Especially, it performs significantly better in dealing with DT synthesis and recognition on heavily corrupted data.

  13. Pengembangan Model Pembelajaran Project Based Learning pada Mata Kuliah Computer Aided Design

    Directory of Open Access Journals (Sweden)

    Satoto Endar Nayono

    2013-09-01

    Full Text Available One of the key competencies of graduates majoring in Civil Engineering and Planning Education, Faculty of Engineering, Yogyakarta State University (YSU is able to plan buildings. CAD courses aim to train students to be able to pour the planning concepts into the picture. One of the obstacles faced in the course are concepts and pictures that created by the students often do not correspond to the standards used in the field. This study aims to develop a model of project-based learning so that the students’ pictures are more in line with the actual conditions in the field. This study was carried out through the stages as follows: (1 Pre test, (2 Planning of learning, (3 Implementation of the learning model of project-based learning, (4 monitoring and evaluation (5 Reflection and revision, (6 Implementation of learning in the next cycle, and (7 Evaluation of the learning outcomes. This study was conducted for four months in 2012 in the Department of Civil Engineering and Planning Education, Faculty of Engineering, YSU. The subjects of this study are the students who took the course of Computer Aided Design. The analysis of the data used descriptive qualitative and descriptive statistics. The results of this study were: (1 The implementation of project based learning model was proven to increase the learning process and the learning outcomes of students in the subject of CAD through the provision of buildings planning pictures tasks of school buildings based on the real conditions in the field. The task was delivered in every meeting and improved based on the feedback from their lecturers, (2 the learning model of project based learning will be easier to be implemented if it is accompanied by the model of peer tutoring and the learning model of PAIKEM.

  14. A model of e-learning uptake and continuance in Higher Educational Institutions

    OpenAIRE

    Pinpathomrat, Nakarin

    2015-01-01

    To predict and explain E-learning usage in higher educational institutes (HEIs) better, this research conceptualized E-learning usage as two steps, E-learning uptake and continuance. The aim was to build a model of effective uptake and continuance of E-learning in HEIs, or ‘EUCH’.The EUCH model was constructed by applying five grounded theories: Unified Theory of Acceptance and Use of Technology (UTAUT); Keller’s ARCS model; Theory of Reasoned Action (TRA); Cognitive Dissonance Theory (CDT); ...

  15. Learning and evolution in games and oligopoly models

    NARCIS (Netherlands)

    Possajennikov, A.

    2000-01-01

    Dynamic models of adjustment, as well as static models of equilibrium, are important to understand economic reality. This thesis considers such dynamic models applied to economic games. The models can broadly be divided into two categories: learning and evolution. This thesis analyzes reinforcement

  16. Development Of Entrepreneur Learning Model Based On Problem Based Learning To Increase Competency Independence And Creativity Students Of Industrial Engineering

    Directory of Open Access Journals (Sweden)

    Leola Dewiyani

    2017-10-01

    Full Text Available Currently it is undeniable that the competition to get a job is very tight and of course universities have an important role in printing human resources that can compete globally not least with the Department of Industrial Engineering Faculty of Engineering Muhammadiyah University of Jakarta FT UMJ. Problems that occur is based on the analysis obtained from the track record of graduates researchers found that 60 percent of students of Industrial Engineering FT UMJ work not in accordance with the level of education owned so financially their income is still below the standard. This study aims to improve the competence of students of Industrial Engineering Department FT UMJ in entrepreneurship courses especially through the development of Problem Based Learning based learning model. Specific targets of this research were conducted with the aim to identify and analyze the need to implement learning model based on Problem Based Learning Entrepreneurship and to design and develop the model of entrepreneurship based on Problem Based Learning to improve the competence independence and creativity of Industrial Engineering students of FT UMJ in Entrepreneurship course. To achieve the above objectives this research uses research and development R amp D method. The product produced in this research is the detail of learning model of entrepreneurial model based on Problem Based Learning entrepreneurship model based on Problem Based Learning and international journals

  17. Learning Methods for Dynamic Topic Modeling in Automated Behavior Analysis.

    Science.gov (United States)

    Isupova, Olga; Kuzin, Danil; Mihaylova, Lyudmila

    2017-09-27

    Semisupervised and unsupervised systems provide operators with invaluable support and can tremendously reduce the operators' load. In the light of the necessity to process large volumes of video data and provide autonomous decisions, this paper proposes new learning algorithms for activity analysis in video. The activities and behaviors are described by a dynamic topic model. Two novel learning algorithms based on the expectation maximization approach and variational Bayes inference are proposed. Theoretical derivations of the posterior estimates of model parameters are given. The designed learning algorithms are compared with the Gibbs sampling inference scheme introduced earlier in the literature. A detailed comparison of the learning algorithms is presented on real video data. We also propose an anomaly localization procedure, elegantly embedded in the topic modeling framework. It is shown that the developed learning algorithms can achieve 95% success rate. The proposed framework can be applied to a number of areas, including transportation systems, security, and surveillance.

  18. Models in Science Education: Applications of Models in Learning and Teaching Science

    Science.gov (United States)

    Ornek, Funda

    2008-01-01

    In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…

  19. Modelling energy technology dynamics: methodology for adaptive expectations models with learning by doing and learning by searching

    International Nuclear Information System (INIS)

    Kouvaritakis, N.; Soria, A.; Isoard, S.

    2000-01-01

    This paper presents a module endogenising technical change which is capable of being attached to large scale energy models that follow an adaptive-expectations. The formulation includes, apart from the more classical learning by doing effects, quantitative relationships between technology performance and R and D expenditure. It even attempts to go further by partially endogenising the latter by incorporating an optimisation module describing private equipment manufacturers' R and D budget allocation in a context of risk and expectation. Having presented this module in abstract, the paper proceeds to describe how an operational version of it has been constructed and implemented inside a large-scale partial equilibrium world energy model (the POLES model). Concerning learning functions problems associated with the data are alluded to, the hybrid econometric methods used to estimate them are presented as well as the adjustments which had to be effected to ensure a smooth incorporation into the large model. In the final sections is explained the use of the model itself to generate partial foresight parameters for the determination of return expectations particularly in view of CO 2 constraints and associated carbon values. (orig.)

  20. Distributional Language Learning: Mechanisms and Models of ategory Formation.

    Science.gov (United States)

    Aslin, Richard N; Newport, Elissa L

    2014-09-01

    In the past 15 years, a substantial body of evidence has confirmed that a powerful distributional learning mechanism is present in infants, children, adults and (at least to some degree) in nonhuman animals as well. The present article briefly reviews this literature and then examines some of the fundamental questions that must be addressed for any distributional learning mechanism to operate effectively within the linguistic domain. In particular, how does a naive learner determine the number of categories that are present in a corpus of linguistic input and what distributional cues enable the learner to assign individual lexical items to those categories? Contrary to the hypothesis that distributional learning and category (or rule) learning are separate mechanisms, the present article argues that these two seemingly different processes---acquiring specific structure from linguistic input and generalizing beyond that input to novel exemplars---actually represent a single mechanism. Evidence in support of this single-mechanism hypothesis comes from a series of artificial grammar-learning studies that not only demonstrate that adults can learn grammatical categories from distributional information alone, but that the specific patterning of distributional information among attested utterances in the learning corpus enables adults to generalize to novel utterances or to restrict generalization when unattested utterances are consistently absent from the learning corpus. Finally, a computational model of distributional learning that accounts for the presence or absence of generalization is reviewed and the implications of this model for linguistic-category learning are summarized.

  1. A developmental approach to learning causal models for cyber security

    Science.gov (United States)

    Mugan, Jonathan

    2013-05-01

    To keep pace with our adversaries, we must expand the scope of machine learning and reasoning to address the breadth of possible attacks. One approach is to employ an algorithm to learn a set of causal models that describes the entire cyber network and each host end node. Such a learning algorithm would run continuously on the system and monitor activity in real time. With a set of causal models, the algorithm could anticipate novel attacks, take actions to thwart them, and predict the second-order effects flood of information, and the algorithm would have to determine which streams of that flood were relevant in which situations. This paper will present the results of efforts toward the application of a developmental learning algorithm to the problem of cyber security. The algorithm is modeled on the principles of human developmental learning and is designed to allow an agent to learn about the computer system in which it resides through active exploration. Children are flexible learners who acquire knowledge by actively exploring their environment and making predictions about what they will find,1, 2 and our algorithm is inspired by the work of the developmental psychologist Jean Piaget.3 Piaget described how children construct knowledge in stages and learn new concepts on top of those they already know. Developmental learning allows our algorithm to focus on subsets of the environment that are most helpful for learning given its current knowledge. In experiments, the algorithm was able to learn the conditions for file exfiltration and use that knowledge to protect sensitive files.

  2. Gender-related model for mobile-based learning

    Science.gov (United States)

    Simanjuntak, R. R.; Dewi, U. P.; Rifai, I.

    2018-03-01

    The study investigates gender influence on mobile-based learning. This case study of university students in Jakarta involved 235 students (128 male, 97 female). Results of this qualitative study showed 96% preference for mobile-based learning. A further 94% showed the needs for collaboration and authenticity for 92%. Hofstede’s cultural dimensions were used to identify the gender aspects of MALL. Preference for Masculinity (65%) was showed rather than Femininity (35%), even among the female respondents (70% of the population). Professions and professionalism received strongest preference (70%) while Individuality and Collectivism had equal preferences among students. Both female and male respondents requested Indulgence (84%) for mobile-based learning with more male respondents opted for Indulgence. The study provided a model for this gender sensitive mobile-based learning. Implications of implementing mobile-based learning as an ideal alternative for well-accommodated education are is also discussed.

  3. An Hourly Streamflow Forecasting Model Coupled with an Enforced Learning Strategy

    Directory of Open Access Journals (Sweden)

    Ming-Chang Wu

    2015-10-01

    Full Text Available Floods, one of the most significant natural hazards, often result in loss of life and property. Accurate hourly streamflow forecasting is always a key issue in hydrology for flood hazard mitigation. To improve the performance of hourly streamflow forecasting, a methodology concerning the development of neural network (NN based models with an enforced learning strategy is proposed in this paper. Firstly, four different NNs, namely back propagation network (BPN, radial basis function network (RBFN, self-organizing map (SOM, and support vector machine (SVM, are used to construct streamflow forecasting models. Through the cross-validation test, NN-based models with superior performance in streamflow forecasting are detected. Then, an enforced learning strategy is developed to further improve the performance of the superior NN-based models, i.e., SOM and SVM in this study. Finally, the proposed flow forecasting model is obtained. Actual applications are conducted to demonstrate the potential of the proposed model. Moreover, comparison between the NN-based models with and without the enforced learning strategy is performed to evaluate the effect of the enforced learning strategy on model performance. The results indicate that the NN-based models with the enforced learning strategy indeed improve the accuracy of hourly streamflow forecasting. Hence, the presented methodology is expected to be helpful for developing improved NN-based streamflow forecasting models.

  4. Using an LMS for Foreign Language Teaching/Learning: An Attempt Based on the "Cyclic Model of Learning"

    OpenAIRE

    SUMI, Seijiro; TAKEUCHI, Osamu

    2008-01-01

    The purposes of the study are (a) to put the “cyclic model of learning” into practice by means of an LMS (Learning Management System) for foreign language teaching /learning, and (b) to examine how the “cyclic model of learning” influences improvement of students' English ability in both proficiency and achievement. Current major concerns of CALL (Computer Assisted Language learning) research have shifted from piecemeal and experimental tests of the use of technology in a single computer lab ...

  5. Situated learning theory: adding rate and complexity effects via Kauffman's NK model.

    Science.gov (United States)

    Yuan, Yu; McKelvey, Bill

    2004-01-01

    For many firms, producing information, knowledge, and enhancing learning capability have become the primary basis of competitive advantage. A review of organizational learning theory identifies two approaches: (1) those that treat symbolic information processing as fundamental to learning, and (2) those that view the situated nature of cognition as fundamental. After noting that the former is inadequate because it focuses primarily on behavioral and cognitive aspects of individual learning, this paper argues the importance of studying learning as interactions among people in the context of their environment. It contributes to organizational learning in three ways. First, it argues that situated learning theory is to be preferred over traditional behavioral and cognitive learning theories, because it treats organizations as complex adaptive systems rather than mere information processors. Second, it adds rate and nonlinear learning effects. Third, following model-centered epistemology, it uses an agent-based computational model, in particular a "humanized" version of Kauffman's NK model, to study the situated nature of learning. Using simulation results, we test eight hypotheses extending situated learning theory in new directions. The paper ends with a discussion of possible extensions of the current study to better address key issues in situated learning.

  6. Keefektifan Model Children Learning in Science (Clis) Untuk Meningkatkan Keterampilan Berpikir Rasional Siswa

    OpenAIRE

    Marlina, Marlina; Zainuddin, Zainuddin; An'nur, Syubhan

    2013-01-01

    The low of rational thinking skills of students in learning physics models encourage researchers to carry out Children's Learning in Science (CLIS). This study aims to determine how the effectiveness of learning by using the model CLIS. The specific aims of research describing: (1) the ability of the teacher to manage the model CLIS, (2) rational thinking skills of students, (3) classical completeness student learning outcomes after participating in learning, (4) students' response to the mod...

  7. A Day-to-Day Route Choice Model Based on Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Fangfang Wei

    2014-01-01

    Full Text Available Day-to-day traffic dynamics are generated by individual traveler’s route choice and route adjustment behaviors, which are appropriate to be researched by using agent-based model and learning theory. In this paper, we propose a day-to-day route choice model based on reinforcement learning and multiagent simulation. Travelers’ memory, learning rate, and experience cognition are taken into account. Then the model is verified and analyzed. Results show that the network flow can converge to user equilibrium (UE if travelers can remember all the travel time they have experienced, but which is not necessarily the case under limited memory; learning rate can strengthen the flow fluctuation, but memory leads to the contrary side; moreover, high learning rate results in the cyclical oscillation during the process of flow evolution. Finally, both the scenarios of link capacity degradation and random link capacity are used to illustrate the model’s applications. Analyses and applications of our model demonstrate the model is reasonable and useful for studying the day-to-day traffic dynamics.

  8. Safe robot execution in model-based reinforcement learning

    OpenAIRE

    Martínez Martínez, David; Alenyà Ribas, Guillem; Torras, Carme

    2015-01-01

    Task learning in robotics requires repeatedly executing the same actions in different states to learn the model of the task. However, in real-world domains, there are usually sequences of actions that, if executed, may produce unrecoverable errors (e.g. breaking an object). Robots should avoid repeating such errors when learning, and thus explore the state space in a more intelligent way. This requires identifying dangerous action effects to avoid including such actions in the generated plans...

  9. Active Learning of Classification Models with Likert-Scale Feedback.

    Science.gov (United States)

    Xue, Yanbing; Hauskrecht, Milos

    2017-01-01

    Annotation of classification data by humans can be a time-consuming and tedious process. Finding ways of reducing the annotation effort is critical for building the classification models in practice and for applying them to a variety of classification tasks. In this paper, we develop a new active learning framework that combines two strategies to reduce the annotation effort. First, it relies on label uncertainty information obtained from the human in terms of the Likert-scale feedback. Second, it uses active learning to annotate examples with the greatest expected change. We propose a Bayesian approach to calculate the expectation and an incremental SVM solver to reduce the time complexity of the solvers. We show the combination of our active learning strategy and the Likert-scale feedback can learn classification models more rapidly and with a smaller number of labeled instances than methods that rely on either Likert-scale labels or active learning alone.

  10. Coaching Model + Clinical Playbook = Transformative Learning.

    Science.gov (United States)

    Fletcher, Katherine A; Meyer, Mary

    2016-01-01

    Health care employers demand that workers be skilled in clinical reasoning, able to work within complex interprofessional teams to provide safe, quality patient-centered care in a complex evolving system. To this end, there have been calls for radical transformation of nursing education including the development of a baccalaureate generalist nurse. Based on recommendations from the American Association of Colleges of Nursing, faculty concluded that clinical education must change moving beyond direct patient care by applying the concepts associated with designer, manager, and coordinator of care and being a member of a profession. To accomplish this, the faculty utilized a system of focused learning assignments (FLAs) that present transformative learning opportunities that expose students to "disorienting dilemmas," alternative perspectives, and repeated opportunities to reflect and challenge their own beliefs. The FLAs collected in a "Playbook" were scaffolded to build the student's competencies over the course of the clinical experience. The FLAs were centered on the 6 Quality and Safety Education for Nurses competencies, with 2 additional concepts of professionalism and systems-based practice. The FLAs were competency-based exercises that students performed when not assigned to direct patient care or had free clinical time. Each FLA had a lesson plan that allowed the student and faculty member to see the competency addressed by the lesson, resources, time on task, student instructions, guide for reflection, grading rubric, and recommendations for clinical instructor. The major advantages of the model included (a) consistent implementation of structured learning experiences by a diverse teaching staff using a coaching model of instruction; (b) more systematic approach to present learning activities that build upon each other; (c) increased time for faculty to interact with students providing direct patient care; (d) guaranteed capture of selected transformative

  11. College English Students’ Autonomous Learning Motivation and Cultivation Model Research

    Institute of Scientific and Technical Information of China (English)

    王艳荣; 李娥

    2015-01-01

    Studying the autonomous learning motivation and excitation model can stimulate intrinsic motivation of foreign language learners,develop students self-management strategy evaluation are very necessary.The purpose of this paper is to give students the skills of listening and speaking for their autonomous learning.Then study the cultivation and motivation of college English students autonomous learning,hoping to make students to learn autonomous learning and stimulate their motivation fully.

  12. A machine learning model with human cognitive biases capable of learning from small and biased datasets.

    Science.gov (United States)

    Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro

    2018-05-09

    Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.

  13. Trustless Machine Learning Contracts; Evaluating and Exchanging Machine Learning Models on the Ethereum Blockchain

    OpenAIRE

    Kurtulmus, A. Besir; Daniel, Kenny

    2018-01-01

    Using blockchain technology, it is possible to create contracts that offer a reward in exchange for a trained machine learning model for a particular data set. This would allow users to train machine learning models for a reward in a trustless manner. The smart contract will use the blockchain to automatically validate the solution, so there would be no debate about whether the solution was correct or not. Users who submit the solutions won't have counterparty risk that they won't get paid fo...

  14. Problem solving based learning model with multiple representations to improve student's mental modelling ability on physics

    Science.gov (United States)

    Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran

    2017-08-01

    Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7Mental Modelling Ability (M-MMA) for 3Mental Modelling Ability (L-MMA) for 0 ≤ x ≤ 3 score. The result shows that problem solving based learning model with multiple representations approach can be an alternative to be applied in improving students' MMA.

  15. Model-Based Learning Environment Based on The Concept IPS School-Based Management

    Directory of Open Access Journals (Sweden)

    Hamid Darmadi

    2017-03-01

    Full Text Available The results showed: (1 learning model IPS-oriented environment can grow and not you love the cultural values of the area as a basis for the development of national culture, (2 community participation, and the role of government in implementing learning model of IPS-based environment provides a positive impact for the improvement of management school resources, (3 learning model IPS-based environment effectively creating a way of life together peacefully, increase the intensity of togetherness and mutual respect (4 learning model IPS-based environment can improve student learning outcomes, (5 there are differences in the expression of attitudes and results learning among students who are located in the area of conflict with students who are outside the area of conflict (6 analysis of the scale of attitudes among school students da SMA result rewards high school students to the values of unity and nation, respect for diversity and peaceful coexistence, It is recommended that the Department of Education authority as an institution of Trustees and the development of social and cultural values in the province can apply IPS learning model based environments.

  16. Model of e-learning with electronic educational resources of new generation

    Directory of Open Access Journals (Sweden)

    A. V. Loban

    2017-01-01

    Full Text Available Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with electronic educational resource of new generation is developed, conditionally decomposed into three basic components: the formalization model of the course in the form of the thesaurusclassifier (“Author of e-resource”, the model of learning as management (“Coordination. Consultation. Control”, the learning model with the thesaurus-classifier (“Student”. Model “Author of e-resource” allows the student to achieve completeness, high degree of didactic elaboration and structuring of the studied material in triples of variants: modules of education information, practical task and control tasks; the result of the student’s (author’s of e-resource activity is the thesaurus-classifier. Model of learning as management is based on the principle of personal orientation of learning in computer environment and determines the logic of interaction between the lecturer and the student when determining the triple of variants individually for each student; organization of a dialogue between the lecturer and the student for consulting purposes; personal control of the student’s success (report generation and iterative search for the concept of the class assignment in the thesaurus-classifier before acquiring the required level of training. Model “Student” makes it possible to concretize the learning tasks in relation to the personality of the student and to the training level achieved; the assumption of the lecturer about the level of training of a

  17. Learning Analytics for Networked Learning Models

    Science.gov (United States)

    Joksimovic, Srecko; Hatala, Marek; Gaševic, Dragan

    2014-01-01

    Teaching and learning in networked settings has attracted significant attention recently. The central topic of networked learning research is human-human and human-information interactions occurring within a networked learning environment. The nature of these interactions is highly complex and usually requires a multi-dimensional approach to…

  18. Refreshing Information Literacy: Learning from Recent British Information Literacy Models

    Science.gov (United States)

    Martin, Justine

    2013-01-01

    Models play an important role in helping practitioners implement and promote information literacy. Over time models can lose relevance with the advances in technology, society, and learning theory. Practitioners and scholars often call for adaptations or transformations of these frameworks to articulate the learning needs in information literacy…

  19. A Combination of Machine Learning and Cerebellar Models for the Motor Control and Learning of a Modular Robot

    DEFF Research Database (Denmark)

    Baira Ojeda, Ismael; Tolu, Silvia; Pacheco, Moises

    2017-01-01

    We scaled up a bio-inspired control architecture for the motor control and motor learning of a real modular robot. In our approach, the Locally Weighted Projection Regression algorithm (LWPR) and a cerebellar microcircuit coexist, forming a Unit Learning Machine. The LWPR optimizes the input space...... and learns the internal model of a single robot module to command the robot to follow a desired trajectory with its end-effector. The cerebellar microcircuit refines the LWPR output delivering corrective commands. We contrasted distinct cerebellar circuits including analytical models and spiking models...

  20. Modeling language and cognition with deep unsupervised learning: a tutorial overview.

    Science.gov (United States)

    Zorzi, Marco; Testolin, Alberto; Stoianov, Ivilin P

    2013-01-01

    Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981) is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative) learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as a way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition.

  1. Modeling Language and Cognition with Deep Unsupervised Learning:A Tutorial Overview

    Directory of Open Access Journals (Sweden)

    Marco eZorzi

    2013-08-01

    Full Text Available Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981 is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition.

  2. Modeling language and cognition with deep unsupervised learning: a tutorial overview

    Science.gov (United States)

    Zorzi, Marco; Testolin, Alberto; Stoianov, Ivilin P.

    2013-01-01

    Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981) is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative) learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as a way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition. PMID:23970869

  3. Quality Assurance in E-Learning: PDPP Evaluation Model and Its Application

    Science.gov (United States)

    Zhang, Weiyuan; Cheng, Y. L.

    2012-01-01

    E-learning has become an increasingly important teaching and learning mode in educational institutions and corporate training. The evaluation of e-learning, however, is essential for the quality assurance of e-learning courses. This paper constructs a four-phase evaluation model for e-learning courses, which includes planning, development,…

  4. Modeling the learning of the English past tense with memory-based learning

    NARCIS (Netherlands)

    van Noord, Rik; Spenader, Jennifer K.

    2015-01-01

    Modeling the acquisition and final state of English past tense inflection has been an ongoing challenge since the mid-eighties. A number of rule-based and connectionist models have been proposed over the years, but the former usually have no explanation of how the rules are learned and the latter

  5. A workflow learning model to improve geovisual analytics utility.

    Science.gov (United States)

    Roth, Robert E; Maceachren, Alan M; McCabe, Craig A

    2009-01-01

    INTRODUCTION: This paper describes the design and implementation of the G-EX Portal Learn Module, a web-based, geocollaborative application for organizing and distributing digital learning artifacts. G-EX falls into the broader context of geovisual analytics, a new research area with the goal of supporting visually-mediated reasoning about large, multivariate, spatiotemporal information. Because this information is unprecedented in amount and complexity, GIScientists are tasked with the development of new tools and techniques to make sense of it. Our research addresses the challenge of implementing these geovisual analytics tools and techniques in a useful manner. OBJECTIVES: The objective of this paper is to develop and implement a method for improving the utility of geovisual analytics software. The success of software is measured by its usability (i.e., how easy the software is to use?) and utility (i.e., how useful the software is). The usability and utility of software can be improved by refining the software, increasing user knowledge about the software, or both. It is difficult to achieve transparent usability (i.e., software that is immediately usable without training) of geovisual analytics software because of the inherent complexity of the included tools and techniques. In these situations, improving user knowledge about the software through the provision of learning artifacts is as important, if not more so, than iterative refinement of the software itself. Therefore, our approach to improving utility is focused on educating the user. METHODOLOGY: The research reported here was completed in two steps. First, we developed a model for learning about geovisual analytics software. Many existing digital learning models assist only with use of the software to complete a specific task and provide limited assistance with its actual application. To move beyond task-oriented learning about software use, we propose a process-oriented approach to learning based on

  6. Biology learning evaluation model in Senior High Schools

    Directory of Open Access Journals (Sweden)

    Sri Utari

    2017-06-01

    Full Text Available The study was to develop a Biology learning evaluation model in senior high schools that referred to the research and development model by Borg & Gall and the logic model. The evaluation model included the components of input, activities, output and outcomes. The developing procedures involved a preliminary study in the form of observation and theoretical review regarding the Biology learning evaluation in senior high schools. The product development was carried out by designing an evaluation model, designing an instrument, performing instrument experiment and performing implementation. The instrument experiment involved teachers and Students from Grade XII in senior high schools located in the City of Yogyakarta. For the data gathering technique and instrument, the researchers implemented observation sheet, questionnaire and test. The questionnaire was applied in order to attain information regarding teacher performance, learning performance, classroom atmosphere and scientific attitude; on the other hand, test was applied in order to attain information regarding Biology concept mastery. Then, for the analysis of instrument construct, the researchers performed confirmatory factor analysis by means of Lisrel 0.80 software and the results of this analysis showed that the evaluation instrument valid and reliable. The construct validity was between 0.43-0.79 while the reliability of measurement model was between 0.88-0.94. Last but not the least, the model feasibility test showed that the theoretical model had been supported by the empirical data.

  7. Learning and Control Model of the Arm for Loading

    Science.gov (United States)

    Kim, Kyoungsik; Kambara, Hiroyuki; Shin, Duk; Koike, Yasuharu

    We propose a learning and control model of the arm for a loading task in which an object is loaded onto one hand with the other hand, in the sagittal plane. Postural control during object interactions provides important points to motor control theories in terms of how humans handle dynamics changes and use the information of prediction and sensory feedback. For the learning and control model, we coupled a feedback-error-learning scheme with an Actor-Critic method used as a feedback controller. To overcome sensory delays, a feedforward dynamics model (FDM) was used in the sensory feedback path. We tested the proposed model in simulation using a two-joint arm with six muscles, each with time delays in muscle force generation. By applying the proposed model to the loading task, we showed that motor commands started increasing, before an object was loaded on, to stabilize arm posture. We also found that the FDM contributes to the stabilization by predicting how the hand changes based on contexts of the object and efferent signals. For comparison with other computational models, we present the simulation results of a minimum-variance model.

  8. Stochastic Online Learning in Dynamic Networks under Unknown Models

    Science.gov (United States)

    2016-08-02

    The key is to develop online learning strategies at each individual node. Specifically, through local information exchange with its neighbors, each...infinitely repeated game with incomplete information and developed a dynamic pricing strategy referred to as Competitive and Cooperative Demand Learning...Stochastic Online Learning in Dynamic Networks under Unknown Models This research aims to develop fundamental theories and practical algorithms for

  9. Assessment for Complex Learning Resources: Development and Validation of an Integrated Model

    Directory of Open Access Journals (Sweden)

    Gudrun Wesiak

    2013-01-01

    Full Text Available Today’s e-learning systems meet the challenge to provide interactive, personalized environments that support self-regulated learning as well as social collaboration and simulation. At the same time assessment procedures have to be adapted to the new learning environments by moving from isolated summative assessments to integrated assessment forms. Therefore, learning experiences enriched with complex didactic resources - such as virtualized collaborations and serious games - have emerged. In this extension of [1] an integrated model for e-assessment (IMA is outlined, which incorporates complex learning resources and assessment forms as main components for the development of an enriched learning experience. For a validation the IMA was presented to a group of experts from the fields of cognitive science, pedagogy, and e-learning. The findings from the validation lead to several refinements of the model, which mainly concern the component forms of assessment and the integration of social aspects. Both aspects are accounted for in the revised model, the former by providing a detailed sub-model for assessment forms.

  10. A Computer Model of Simple Forms of Learning.

    Science.gov (United States)

    Jones, Thomas L.

    A basic unsolved problem in science is that of understanding learning, the process by which people and machines use their experience in a situation to guide future action in similar situations. The ideas of Piaget, Pavlov, Hull, and other learning theorists, as well as previous heuristic programing models of human intelligence, stimulated this…

  11. Game Based Learning (GBL) adoption model for universities: cesim ...

    African Journals Online (AJOL)

    Game Based Learning (GBL) adoption model for universities: cesim simulation. ... The global market has escalated the need of Game Based Learning (GBL) to offer a wide range of courses since there is a ... AJOL African Journals Online.

  12. Modeling human learning involved in car driving

    NARCIS (Netherlands)

    Wewerinke, P.H.

    1994-01-01

    In this paper, car driving is considered at the level of human tracking and maneuvering in the context of other traffic. A model analysis revealed the most salient features determining driving performance and safety. Learning car driving is modelled based on a system theoretical approach and based

  13. Motivation to Improve Work through Learning: A Conceptual Model

    Directory of Open Access Journals (Sweden)

    Kueh Hua Ng

    2014-12-01

    Full Text Available This study aims to enhance our current understanding of the transfer of training by proposing a conceptual model that supports the mediating role of motivation to improve work through learning about the relationship between social support and the transfer of training. The examination of motivation to improve work through motivation to improve work through a learning construct offers a holistic view pertaining to a learner's profile in a workplace setting, which emphasizes learning for the improvement of work performance. The proposed conceptual model is expected to benefit human resource development theory building, as well as field practitioners by emphasizing the motivational aspects crucial for successful transfer of training.

  14. The Emergence of the Open Networked ``i-Learning'' Model

    Science.gov (United States)

    Elia, Gianluca

    The most significant forces that are changing the business world and the society behaviors in this beginning of the twenty-first century can be identified into the globalization of the economy, technological evolution and convergence, change of the workers' expectations, workplace diversity and mobility, and mostly, knowledge and learning as major organizational assets. But which type of ­learning dynamics must be nurtured and pursued within the organizations, today, in order to generate valuable knowledge and its effective applications? After a brief discussion on the main changes observable in management, ICT and society/workplace in the last years, this chapter aims to answer to this question, through the proposition of the “Π-shaped” profile (a new professional archetype for leading change), and through the discussion of the open networked “i-Learning” model (a new framework to “incubate” innovation in learning processes). Actually, the “i” stands for “innovation” (to highlight the nature of the impact on traditional ­learning model), but also it stands for “incubation” (to underline the urgency to have new environments in which incubating new professional profiles). Specifically, the main key characteristics at the basis of the innovation of the learning processes will be ­presented and described, by highlighting the managerial, technological and societal aspects of their nature. A set of operational guidelines will be also ­provided to ­activate and sustain the innovation process, so implementing changes in the strategic dimensions of the model. Finally, the “i-Learning Radar” is presented as an operational tool to design, communicate and control an “i-Learning experience”. This tool is represented by a radar diagram with six strategic dimensions of a ­learning initiative.

  15. Project-Based Learning Using Discussion and Lesson-Learned Methods via Social Media Model for Enhancing Problem Solving Skills

    Science.gov (United States)

    Jewpanich, Chaiwat; Piriyasurawong, Pallop

    2015-01-01

    This research aims to 1) develop the project-based learning using discussion and lesson-learned methods via social media model (PBL-DLL SoMe Model) used for enhancing problem solving skills of undergraduate in education student, and 2) evaluate the PBL-DLL SoMe Model used for enhancing problem solving skills of undergraduate in education student.…

  16. The effectiveness of collaborative problem based physics learning (CPBPL) model to improve student’s self-confidence on physics learning

    Science.gov (United States)

    Prahani, B. K.; Suprapto, N.; Suliyanah; Lestari, N. A.; Jauhariyah, M. N. R.; Admoko, S.; Wahyuni, S.

    2018-03-01

    In the previous research, Collaborative Problem Based Physic Learning (CPBPL) model has been developed to improve student’s science process skills, collaborative problem solving, and self-confidence on physics learning. This research is aimed to analyze the effectiveness of CPBPL model towards the improvement of student’s self-confidence on physics learning. This research implemented quasi experimental design on 140 senior high school students who were divided into 4 groups. Data collection was conducted through questionnaire, observation, and interview. Self-confidence measurement was conducted through Self-Confidence Evaluation Sheet (SCES). The data was analyzed using Wilcoxon test, n-gain, and Kruskal Wallis test. Result shows that: (1) There is a significant score improvement on student’s self-confidence on physics learning (α=5%), (2) n-gain value student’s self-confidence on physics learning is high, and (3) n-gain average student’s self-confidence on physics learning was consistent throughout all groups. It can be concluded that CPBPL model is effective to improve student’s self-confidence on physics learning.

  17. A phenomenological memristor model for synaptic memory and learning behaviors

    Institute of Scientific and Technical Information of China (English)

    Nan Shao; Sheng-Bing Zhang; Shu-Yuan Shao

    2017-01-01

    Properties that are similar to the memory and learning functions in biological systems have been observed and reported in the experimental studies of memristors fabricated by different materials.These properties include the forgetting effect,the transition from short-term memory (STM) to long-term memory (LTM),learning-experience behavior,etc.The mathematical model of this kind of memristor would be very important for its theoretical analysis and application design.In our analysis of the existing memristor model with these properties,we find that some behaviors of the model are inconsistent with the reported experimental observations.A phenomenological memristor model is proposed for this kind of memristor.The model design is based on the forgetting effect and STM-to-LTM transition since these behaviors are two typical properties of these memristors.Further analyses of this model show that this model can also be used directly or modified to describe other experimentally observed behaviors.Simulations show that the proposed model can give a better description of the reported memory and learning behaviors of this kind of memristor than the existing model.

  18. Learning to Apply Models of Materials While Explaining Their Properties

    Science.gov (United States)

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-01-01

    Background: Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose: This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials.…

  19. Towards Increased Relevance: Context-Adapted Models of the Learning Organization

    Science.gov (United States)

    Örtenblad, Anders

    2015-01-01

    Purpose: The purposes of this paper are to take a closer look at the relevance of the idea of the learning organization for organizations in different generalized organizational contexts; to open up for the existence of multiple, context-adapted models of the learning organization; and to suggest a number of such models.…

  20. Technological Learning in Energy Models: Experience and Scenario Analysis with MARKAL and the ERIS Model Prototype

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, L.; Kypreos, S.

    1999-09-01

    Understanding technology dynamics, a fundamental driving factor of the evolution of energy systems, is essential for sound policy formulation and decision making. Technological change is not an autonomous process, but evolves from a number of endogenous interactions within the social system. Technologies evolve and improve only if experience with them is possible. Efforts must be devoted to improve our analytical tools concerning the treatment given to the technological variable, recognising the cumulative and gradual nature of technological change and the important role played by learning processes. This report presents a collection of works developed by the authors concerning the endogenisation of technological change in energy optimisation models, as a contribution to the Energy Technology Dynamics andAdvanced Energy System Modelling Project (TEEM), developed in the framework of the Non Nuclear Energy Programme JOULE III of the European Union (DGXII). Here, learning curves, an empirically observed manifestation of the cumulative technological learning processes, are endogenised in two energy optimisation models. MARKAL, a widely used bottom-up model developed by the ETSAP programme of the IEA and ERIS, a model prototype, developed within the TEEM project for assessing different concepts and approaches. The methodological approach is described and some results and insights derived from the model analyses are presented. The incorporation of learning curves results in significantly different model outcomes than those obtained with traditional approaches. New, innovative technologies, hardly considered by the standard models, are introduced to the solution when endogenous learning is present. Up-front investments in initially expensive, but promising, technologies allow the necessary accumulation of experience to render them cost-effective. When uncertainty in emission reduction commitments is considered, the results point also in the direction of undertaking early

  1. Technological Learning in Energy Models: Experience and Scenario Analysis with MARKAL and the ERIS Model Prototype

    International Nuclear Information System (INIS)

    Barreto, L.; Kypreos, S.

    1999-09-01

    Understanding technology dynamics, a fundamental driving factor of the evolution of energy systems, is essential for sound policy formulation and decision making. Technological change is not an autonomous process, but evolves from a number of endogenous interactions within the social system. Technologies evolve and improve only if experience with them is possible. Efforts must be devoted to improve our analytical tools concerning the treatment given to the technological variable, recognising the cumulative and gradual nature of technological change and the important role played by learning processes. This report presents a collection of works developed by the authors concerning the endogenisation of technological change in energy optimisation models, as a contribution to the Energy Technology Dynamics and Advanced Energy System Modelling Project (TEEM), developed in the framework of the Non Nuclear Energy Programme JOULE III of the European Union (DGXII). Here, learning curves, an empirically observed manifestation of the cumulative technological learning processes, are endogenised in two energy optimisation models. MARKAL, a widely used bottom-up model developed by the ETSAP programme of the IEA and ERIS, a model prototype, developed within the TEEM project for assessing different concepts and approaches. The methodological approach is described and some results and insights derived from the model analyses are presented. The incorporation of learning curves results in significantly different model outcomes than those obtained with traditional approaches. New, innovative technologies, hardly considered by the standard models, are introduced to the solution when endogenous learning is present. Up-front investments in initially expensive, but promising, technologies allow the necessary accumulation of experience to render them cost-effective. When uncertainty in emission reduction commitments is considered, the results point also in the direction of undertaking early

  2. A Concept Transformation Learning Model for Architectural Design Learning Process

    Science.gov (United States)

    Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming

    2016-01-01

    Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…

  3. Learning of Chemical Equilibrium through Modelling-Based Teaching

    Science.gov (United States)

    Maia, Poliana Flavia; Justi, Rosaria

    2009-01-01

    This paper presents and discusses students' learning process of chemical equilibrium from a modelling-based approach developed from the use of the "Model of Modelling" diagram. The investigation was conducted in a regular classroom (students 14-15 years old) and aimed at discussing how modelling-based teaching can contribute to students…

  4. A Model of e-Learning by Constructivism Approach Using Problem-Based Learning to Develop Thinking Skills for Students in Rajaghat University

    Science.gov (United States)

    Shutimarrungson, Werayut; Pumipuntu, Sangkom; Noirid, Surachet

    2014-01-01

    This research aimed to develop a model of e-learning by using Problem-Based Learning--PBL to develop thinking skills for students in Rajabhat University. The research is divided into three phases through the e-learning model via PBL with Constructivism approach as follows: Phase 1 was to study characteristics and factors through the model to…

  5. THE DYNAMIC MODEL FOR CONTROL OF STUDENT’S LEARNING INDIVIDUAL TRAJECTORY

    Directory of Open Access Journals (Sweden)

    A. A. Mitsel

    2015-01-01

    Full Text Available In connection with the transition of the educational system to a competence-oriented approach, the problem of learning outcomes assessment and creating an individual learning trajectory of a student has become relevant. Its solution requires the application of modern information technologies. The third generation of Federal state educational standards of higher professional education (FSES HPE defines the requirements for the results of Mastering the basic educational programs (BEP. According to FSES HPE up to 50% of subjects have a variable character, i.e. depend on the choice of a student. It significantly influences on the results of developing various competencies. The problem of forming student’s learning trajectory is analyzed in general and the choice of an individual direction was studied in details. Various methods, models and algorithms of the student’s individual learning trajectory formation were described. The analysis of the model of educational process organization in terms of individual approach makes it possible to develop a decision support system (DSS. DSS is a set of interrelated programs and data used for analysis of situation, development of alternative solutions and selection of the most acceptable alternative. DSSs are often used when building individual learning path, because this task can be considered as a discrete multi-criteria problem, creating a significant burden on the decision maker. A new method of controlling the learning trajectory has been developed. The article discusses problem statement and solution of determining student’s optimal individual educational trajectory as a dynamic model of learning trajectory control, which uses score assessment to construct a sequence of studied subjects. A new model of management learning trajectory is based on dynamic models for tracking the reference trajectory. The task can be converted to an equivalent model of linear programming, for which a reliable solution

  6. Comparison of learning models based on mathematics logical intelligence in affective domain

    Science.gov (United States)

    Widayanto, Arif; Pratiwi, Hasih; Mardiyana

    2018-04-01

    The purpose of this study was to examine the presence or absence of different effects of multiple treatments (used learning models and logical-mathematical intelligence) on the dependent variable (affective domain of mathematics). This research was quasi experimental using 3x3 of factorial design. The population of this research was VIII grade students of junior high school in Karanganyar under the academic year 2017/2018. Data collected in this research was analyzed by two ways analysis of variance with unequal cells using 5% of significance level. The result of the research were as follows: (1) Teaching and learning with model TS lead to better achievement in affective domain than QSH, teaching and learning with model QSH lead to better achievement in affective domain than using DI; (2) Students with high mathematics logical intelligence have better achievement in affective domain than students with low mathematics logical intelligence have; (3) In teaching and learning mathematics using learning model TS, students with moderate mathematics logical intelligence have better achievement in affective domain than using DI; and (4) In teaching and learning mathematics using learning model TS, students with low mathematics logical intelligence have better achievement in affective domain than using QSH and DI.

  7. A cognitive learning model of clinical nursing leadership.

    Science.gov (United States)

    Pepin, Jacinthe; Dubois, Sylvie; Girard, Francine; Tardif, Jacques; Ha, Laurence

    2011-04-01

    Cognitive modeling of competencies is important to facilitate learning and evaluation. Clinical nursing leadership is considered a competency, as it is a "complex know-act" that students and nurses develop for the quality of care of patients and their families. Previous research on clinical leadership describes the attributes and characteristics of leaders and leadership, but, to our knowledge, a cognitive learning model (CLM) has yet to be developed. The purpose of our research was to develop a CLM of the clinical nursing leadership competency, from the beginning of a nursing program to expertise. An interpretative phenomenological study design was used 1) to document the experience of learning and practicing clinical leadership, and 2) to identify critical-learning turning points. Data was gathered from interviews with 32 baccalaureate students and 21 nurses from two clinical settings. An inductive analysis of data was conducted to determine the learning stages experienced: awareness of clinical leadership in nursing; integration of clinical leadership in actions; active leadership with patient/family; active leadership with the team; and, embedded clinical leadership extended to organizational level and beyond. The resulting CLM could have significant impact on both basic and continuing nursing education. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Polarimetric SAR image classification based on discriminative dictionary learning model

    Science.gov (United States)

    Sang, Cheng Wei; Sun, Hong

    2018-03-01

    Polarimetric SAR (PolSAR) image classification is one of the important applications of PolSAR remote sensing. It is a difficult high-dimension nonlinear mapping problem, the sparse representations based on learning overcomplete dictionary have shown great potential to solve such problem. The overcomplete dictionary plays an important role in PolSAR image classification, however for PolSAR image complex scenes, features shared by different classes will weaken the discrimination of learned dictionary, so as to degrade classification performance. In this paper, we propose a novel overcomplete dictionary learning model to enhance the discrimination of dictionary. The learned overcomplete dictionary by the proposed model is more discriminative and very suitable for PolSAR classification.

  9. Modeling Learning in Doubly Multilevel Binary Longitudinal Data Using Generalized Linear Mixed Models: An Application to Measuring and Explaining Word Learning.

    Science.gov (United States)

    Cho, Sun-Joo; Goodwin, Amanda P

    2016-04-01

    When word learning is supported by instruction in experimental studies for adolescents, word knowledge outcomes tend to be collected from complex data structure, such as multiple aspects of word knowledge, multilevel reader data, multilevel item data, longitudinal design, and multiple groups. This study illustrates how generalized linear mixed models can be used to measure and explain word learning for data having such complexity. Results from this application provide deeper understanding of word knowledge than could be attained from simpler models and show that word knowledge is multidimensional and depends on word characteristics and instructional contexts.

  10. Application of Learning Curves for Didactic Model Evaluation: Case Studies

    Directory of Open Access Journals (Sweden)

    Felix Mödritscher

    2013-01-01

    Full Text Available The success of (online courses depends, among other factors, on the underlying didactical models which have always been evaluated with qualitative and quantitative research methods. Several new evaluation techniques have been developed and established in the last years. One of them is ‘learning curves’, which aim at measuring error rates of users when they interact with adaptive educational systems, thereby enabling the underlying models to be evaluated and improved. In this paper, we report how we have applied this new method to two case studies to show that learning curves are useful to evaluate didactical models and their implementation in educational platforms. Results show that the error rates follow a power law distribution with each additional attempt if the didactical model of an instructional unit is valid. Furthermore, the initial error rate, the slope of the curve and the goodness of fit of the curve are valid indicators for the difficulty level of a course and the quality of its didactical model. As a conclusion, the idea of applying learning curves for evaluating didactical model on the basis of usage data is considered to be valuable for supporting teachers and learning content providers in improving their online courses.

  11. The Proposed Model of Collaborative Virtual Learning Environment for Introductory Programming Course

    Science.gov (United States)

    Othman, Mahfudzah; Othman, Muhaini

    2012-01-01

    This paper discusses the proposed model of the collaborative virtual learning system for the introductory computer programming course which uses one of the collaborative learning techniques known as the "Think-Pair-Share". The main objective of this study is to design a model for an online learning system that facilitates the…

  12. Exploration Of Deep Learning Algorithms Using Openacc Parallel Programming Model

    KAUST Repository

    Hamam, Alwaleed A.

    2017-03-13

    Deep learning is based on a set of algorithms that attempt to model high level abstractions in data. Specifically, RBM is a deep learning algorithm that used in the project to increase it\\'s time performance using some efficient parallel implementation by OpenACC tool with best possible optimizations on RBM to harness the massively parallel power of NVIDIA GPUs. GPUs development in the last few years has contributed to growing the concept of deep learning. OpenACC is a directive based ap-proach for computing where directives provide compiler hints to accelerate code. The traditional Restricted Boltzmann Ma-chine is a stochastic neural network that essentially perform a binary version of factor analysis. RBM is a useful neural net-work basis for larger modern deep learning model, such as Deep Belief Network. RBM parameters are estimated using an efficient training method that called Contrastive Divergence. Parallel implementation of RBM is available using different models such as OpenMP, and CUDA. But this project has been the first attempt to apply OpenACC model on RBM.

  13. Exploration Of Deep Learning Algorithms Using Openacc Parallel Programming Model

    KAUST Repository

    Hamam, Alwaleed A.; Khan, Ayaz H.

    2017-01-01

    Deep learning is based on a set of algorithms that attempt to model high level abstractions in data. Specifically, RBM is a deep learning algorithm that used in the project to increase it's time performance using some efficient parallel implementation by OpenACC tool with best possible optimizations on RBM to harness the massively parallel power of NVIDIA GPUs. GPUs development in the last few years has contributed to growing the concept of deep learning. OpenACC is a directive based ap-proach for computing where directives provide compiler hints to accelerate code. The traditional Restricted Boltzmann Ma-chine is a stochastic neural network that essentially perform a binary version of factor analysis. RBM is a useful neural net-work basis for larger modern deep learning model, such as Deep Belief Network. RBM parameters are estimated using an efficient training method that called Contrastive Divergence. Parallel implementation of RBM is available using different models such as OpenMP, and CUDA. But this project has been the first attempt to apply OpenACC model on RBM.

  14. Cooperative learning model with high order thinking skills questions: an understanding on geometry

    Science.gov (United States)

    Sari, P. P.; Budiyono; Slamet, I.

    2018-05-01

    Geometry, a branch of mathematics, has an important role in mathematics learning. This research aims to find out the effect of learning model, emotional intelligence, and the interaction between learning model and emotional intelligence toward students’ mathematics achievement. This research is quasi-experimental research with 2 × 3 factorial design. The sample in this research included 179 Senior High School students on 11th grade in Sukoharjo Regency, Central Java, Indonesia in academic year of 2016/2017. The sample was taken by using stratified cluster random sampling. The results showed that: the student are taught by Thinking Aloud Pairs Problem-Solving using HOTs questions provides better mathematics learning achievement than Make A Match using HOTs questions. High emotional intelligence students have better mathematics learning achievement than moderate and low emotional intelligence students, and moderate emotional intelligence students have better mathematics learning achievement than low emotional intelligence students. There is an interaction between learning model and emotional intelligence, and these affect mathematics learning achievement. We conclude that appropriate learning model can support learning activities become more meaningful and facilitate students to understand material. For further research, we suggest to explore the contribution of other aspects in cooperative learning modification to mathematics achievement.

  15. Construction of SPOC-based Learning Model and its Application in Linguistics Teaching

    Directory of Open Access Journals (Sweden)

    Hua Lu

    2018-02-01

    Full Text Available The design of a reasonable learning model must take the new internet age into consideration. Following a contrastive study between MOOCs and SPOCs, a SPOC-based learning model is proposed in this paper. This new learning model consists of four components, the preliminary component composed of anterior analysis and course construction, the restrictive admission component for student number control, the learning procedure component which is subdivided into pre-class session, class session and post-class session, and the evaluation component which includes both online assessment and classroom assessment. This model has its advantages and is shown to be effective through the demonstration of its application in teaching linguistics to college students.

  16. Credit Risk Analysis Using Machine and Deep Learning Models

    Directory of Open Access Journals (Sweden)

    Peter Martey Addo

    2018-04-01

    Full Text Available Due to the advanced technology associated with Big Data, data availability and computing power, most banks or lending institutions are renewing their business models. Credit risk predictions, monitoring, model reliability and effective loan processing are key to decision-making and transparency. In this work, we build binary classifiers based on machine and deep learning models on real data in predicting loan default probability. The top 10 important features from these models are selected and then used in the modeling process to test the stability of binary classifiers by comparing their performance on separate data. We observe that the tree-based models are more stable than the models based on multilayer artificial neural networks. This opens several questions relative to the intensive use of deep learning systems in enterprises.

  17. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    Science.gov (United States)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  18. Influence of Problem-Based Learning Model of Learning to the Mathematical Communication Ability of Students of Grade XI IPA SMAN 14 Padang

    Science.gov (United States)

    Nisa, I. M.

    2018-04-01

    The ability of mathematical communication is one of the goals of learning mathematics expected to be mastered by students. However, reality in the field found that the ability of mathematical communication the students of grade XI IPA SMA Negeri 14 Padang have not developed optimally. This is evident from the low test results of communication skills mathematically done. One of the factors that causes this happens is learning that has not been fully able to facilitate students to develop mathematical communication skills well. By therefore, to improve students' mathematical communication skills required a model in the learning activities. One of the models learning that can be used is Problem Based learning model Learning (PBL). The purpose of this study is to see whether the ability the students' mathematical communication using the PBL model better than the students' mathematical communication skills of the learning using conventional learning in Class XI IPA SMAN 14 Padang. This research type is quasi experiment with design Randomized Group Only Design. Population in this research that is student of class XI IPA SMAN 14 Padang with sample class XI IPA 3 and class XI IPA 4. Data retrieval is done by using communication skill test mathematically shaped essay. To test the hypothesis used U-Mann test Whitney. Based on the results of data analysis, it can be concluded that the ability mathematical communication of students whose learning apply more PBL model better than the students' mathematical communication skills of their learning apply conventional learning in class XI IPA SMA 14 Padang at α = 0.05. This indicates that the PBL learning model effect on students' mathematical communication ability.

  19. Hemodynamic modelling of BOLD fMRI - A machine learning approach

    DEFF Research Database (Denmark)

    Jacobsen, Danjal Jakup

    2007-01-01

    This Ph.D. thesis concerns the application of machine learning methods to hemodynamic models for BOLD fMRI data. Several such models have been proposed by different researchers, and they have in common a basis in physiological knowledge of the hemodynamic processes involved in the generation...... of the BOLD signal. The BOLD signal is modelled as a non-linear function of underlying, hidden (non-measurable) hemodynamic state variables. The focus of this thesis work has been to develop methods for learning the parameters of such models, both in their traditional formulation, and in a state space...... formulation. In the latter, noise enters at the level of the hidden states, as well as in the BOLD measurements themselves. A framework has been developed to allow approximate posterior distributions of model parameters to be learned from real fMRI data. This is accomplished with Markov chain Monte Carlo...

  20. The Experimental Research on E-Learning Instructional Design Model Based on Cognitive Flexibility Theory

    Science.gov (United States)

    Cao, Xianzhong; Wang, Feng; Zheng, Zhongmei

    The paper reports an educational experiment on the e-Learning instructional design model based on Cognitive Flexibility Theory, the experiment were made to explore the feasibility and effectiveness of the model in promoting the learning quality in ill-structured domain. The study performed the experiment on two groups of students: one group learned through the system designed by the model and the other learned by the traditional method. The results of the experiment indicate that the e-Learning designed through the model is helpful to promote the intrinsic motivation, learning quality in ill-structured domains, ability to resolve ill-structured problem and creative thinking ability of the students.

  1. L.I.M.E. A recommendation model for informal and formal learning, engaged

    Directory of Open Access Journals (Sweden)

    Daniel Burgos

    2013-06-01

    Full Text Available In current eLearning models and implementations (e.g. Learning Management Systems-LMS there is a lack of engagement between formal and informal activities. Furthermore, the online methodology focuses on a standard set of units of learning and learning objects, along with pre-defined tests, and collateral resources like, i.e. discussion fora and message wall. They miss the huge potential of learning via the interlacement of social networks, LMS and external sources. Thanks to user behaviour, user interaction, and personalised counselling by a tutor, learning performance can be improved. We design and develop an adaptation eLearning model for restricted social networks, which supports this approach. In addition, we build an eLearning module that implements this conceptual model in a real application case, and present the preliminary analysis and positive results.

  2. A System Computational Model of Implicit Emotional Learning.

    Science.gov (United States)

    Puviani, Luca; Rama, Sidita

    2016-01-01

    Nowadays, the experimental study of emotional learning is commonly based on classical conditioning paradigms and models, which have been thoroughly investigated in the last century. Unluckily, models based on classical conditioning are unable to explain or predict important psychophysiological phenomena, such as the failure of the extinction of emotional responses in certain circumstances (for instance, those observed in evaluative conditioning, in post-traumatic stress disorders and in panic attacks). In this manuscript, starting from the experimental results available from the literature, a computational model of implicit emotional learning based both on prediction errors computation and on statistical inference is developed. The model quantitatively predicts (a) the occurrence of evaluative conditioning, (b) the dynamics and the resistance-to-extinction of the traumatic emotional responses, (c) the mathematical relation between classical conditioning and unconditioned stimulus revaluation. Moreover, we discuss how the derived computational model can lead to the development of new animal models for resistant-to-extinction emotional reactions and novel methodologies of emotions modulation.

  3. Organizational Learning, Strategic Flexibility and Business Model Innovation: An Empirical Research Based on Logistics Enterprises

    Science.gov (United States)

    Bao, Yaodong; Cheng, Lin; Zhang, Jian

    Using the data of 237 Jiangsu logistics firms, this paper empirically studies the relationship among organizational learning capability, business model innovation, strategic flexibility. The results show as follows; organizational learning capability has positive impacts on business model innovation performance; strategic flexibility plays mediating roles on the relationship between organizational learning capability and business model innovation; interaction among strategic flexibility, explorative learning and exploitative learning play significant roles in radical business model innovation and incremental business model innovation.

  4. Constructing Pedagogical Models For E-learning

    OpenAIRE

    Patricia Alejandra Behar

    2011-01-01

    This article brings forth an overview of the paradigmatic crisis and the introduction of new pedagogical practices. It also discusses the relationship between paradigm and pedagogical model, presenting a theoretical discussion on the concepts of pedagogical model for E-learning and its pedagogical architecture. To do so, the elements that are part of it such as organizational aspects, content, methodological and technological aspects are discussed. This theoretical discussion underlies the co...

  5. The effectiveness of flipped classroom learning model in secondary physics classroom setting

    Science.gov (United States)

    Prasetyo, B. D.; Suprapto, N.; Pudyastomo, R. N.

    2018-03-01

    The research aimed to describe the effectiveness of flipped classroom learning model on secondary physics classroom setting during Fall semester of 2017. The research object was Secondary 3 Physics group of Singapore School Kelapa Gading. This research was initiated by giving a pre-test, followed by treatment setting of the flipped classroom learning model. By the end of the learning process, the pupils were given a post-test and questionnaire to figure out pupils' response to the flipped classroom learning model. Based on the data analysis, 89% of pupils had passed the minimum criteria of standardization. The increment level in the students' mark was analysed by normalized n-gain formula, obtaining a normalized n-gain score of 0.4 which fulfil medium category range. Obtains from the questionnaire distributed to the students that 93% of students become more motivated to study physics and 89% of students were very happy to carry on hands-on activity based on the flipped classroom learning model. Those three aspects were used to generate a conclusion that applying flipped classroom learning model in Secondary Physics Classroom setting is effectively applicable.

  6. The POL Model: Using a Social Constructivist Framework to Develop Blended and Online Learning

    DEFF Research Database (Denmark)

    Dalsgaard, Christian; Godsk, Mikkel

    2007-01-01

    The paper presents a model for developing blended and online learning based on a given curriculum and typical learning objectives for university courses. The model consists of a three-step-process in which the instructor formulates product-oriented tasks, develops and structures the learning...... materials and tools, outlines a schedule, and supports the students' learning activity in developing a product. The model is based on our experiences with transforming traditional lecture-based lessons into problem-based blended and online learning using a social constructivist approach and a standard...... virtual learning environment (VLE). Our initial experiments indicate that our model is useful to develop blended and online modules and, furthermore, it seems fruitful to use a social constructivist framework and orienting learning activities towards the development of products....

  7. Bidirectional Nonnegative Deep Model and Its Optimization in Learning

    Directory of Open Access Journals (Sweden)

    Xianhua Zeng

    2016-01-01

    Full Text Available Nonnegative matrix factorization (NMF has been successfully applied in signal processing as a simple two-layer nonnegative neural network. Projective NMF (PNMF with fewer parameters was proposed, which projects a high-dimensional nonnegative data onto a lower-dimensional nonnegative subspace. Although PNMF overcomes the problem of out-of-sample of NMF, it does not consider the nonlinear characteristic of data and is only a kind of narrow signal decomposition method. In this paper, we combine the PNMF with deep learning and nonlinear fitting to propose a bidirectional nonnegative deep learning (BNDL model and its optimization learning algorithm, which can obtain nonlinear multilayer deep nonnegative feature representation. Experiments show that the proposed model can not only solve the problem of out-of-sample of NMF but also learn hierarchical nonnegative feature representations with better clustering performance than classical NMF, PNMF, and Deep Semi-NMF algorithms.

  8. Learning Behavior Models for Interpreting and Predicting Traffic Situations

    OpenAIRE

    Gindele, Tobias

    2014-01-01

    In this thesis, we present Bayesian state estimation and machine learning methods for predicting traffic situations. The cognitive ability to assess situations and behaviors of traffic participants, and to anticipate possible developments is an essential requirement for several applications in the traffic domain, especially for self-driving cars. We present a method for learning behavior models from unlabeled traffic observations and develop improved learning methods for decision trees.

  9. Development of collaborative-creative learning model using virtual laboratory media for instrumental analytical chemistry lectures

    Science.gov (United States)

    Zurweni, Wibawa, Basuki; Erwin, Tuti Nurian

    2017-08-01

    The framework for teaching and learning in the 21st century was prepared with 4Cs criteria. Learning providing opportunity for the development of students' optimal creative skills is by implementing collaborative learning. Learners are challenged to be able to compete, work independently to bring either individual or group excellence and master the learning material. Virtual laboratory is used for the media of Instrumental Analytical Chemistry (Vis, UV-Vis-AAS etc) lectures through simulations computer application and used as a substitution for the laboratory if the equipment and instruments are not available. This research aims to design and develop collaborative-creative learning model using virtual laboratory media for Instrumental Analytical Chemistry lectures, to know the effectiveness of this design model adapting the Dick & Carey's model and Hannafin & Peck's model. The development steps of this model are: needs analyze, design collaborative-creative learning, virtual laboratory media using macromedia flash, formative evaluation and test of learning model effectiveness. While, the development stages of collaborative-creative learning model are: apperception, exploration, collaboration, creation, evaluation, feedback. Development of collaborative-creative learning model using virtual laboratory media can be used to improve the quality learning in the classroom, overcome the limitation of lab instruments for the real instrumental analysis. Formative test results show that the Collaborative-Creative Learning Model developed meets the requirements. The effectiveness test of students' pretest and posttest proves significant at 95% confidence level, t-test higher than t-table. It can be concluded that this learning model is effective to use for Instrumental Analytical Chemistry lectures.

  10. BDgraph: An R Package for Bayesian Structure Learning in Graphical Models

    NARCIS (Netherlands)

    Mohammadi, A.; Wit, E.C.

    2017-01-01

    Graphical models provide powerful tools to uncover complicated patterns in multivariate data and are commonly used in Bayesian statistics and machine learning. In this paper, we introduce an R package BDgraph which performs Bayesian structure learning for general undirected graphical models with

  11. The Nemesis E-Learning 4-Sectors-Model - A Concept to Enhance the Reusability of E-Learning Products

    Directory of Open Access Journals (Sweden)

    Wilfried Hendricks

    2007-06-01

    Full Text Available The 4-Sectors-Model has been developed by the TU Berlin and is intended to facilitate providing customized e-learning products to different target learner groups, while keeping the same basic content. This is made possible by the independent development of user interface and content. The different components are assembled at the end to produce the final e-learning product. Software development is based on the Generative Learning Objects concept (UCeL. Further improvements based on results of the ongoing test phase will make the 4-Sectors-Model better adapted to fit user needs. Finally, this project is dedicated to establishing a high standard of didactic quality for the future development of e-learning software at the TU Berlin.

  12. Self Modeling: Expanding the Theories of Learning

    Science.gov (United States)

    Dowrick, Peter W.

    2012-01-01

    Self modeling (SM) offers a unique expansion of learning theory. For several decades, a steady trickle of empirical studies has reported consistent evidence for the efficacy of SM as a procedure for positive behavior change across physical, social, educational, and diagnostic variations. SM became accepted as an extreme case of model similarity;…

  13. Promoting Creative Thinking Ability Using Contextual Learning Model in Technical Drawing Achievement

    Science.gov (United States)

    Mursid, R.

    2018-02-01

    The purpose of this study is to determine whether there is influence; the differences in the results between students that learn drawing techniques taught by the Contextual Innovative Model (CIM) and taught by Direct Instructional Model (DIM), the differences in achievement among students of technical drawing that have High Creative Thinking Ability (HCTA) with Low Creative Thinking Ability (LCTA), and the interaction between the learning model with the ability to think creatively to the achievement technical drawing. Quasi-experimental research method. Results of research appoint that: the achievement of students that learned technical drawing by using CIM is higher than the students that learned technical drawing by using DIM, the achievement of students of technical drawings HCTA is higher than the achievement of students who have technical drawing LCTA, and there are interactions between the use of learning models and creative thinking abilities in influencing student achievement technical drawing.

  14. Model of e-learning with electronic educational resources of new generation

    OpenAIRE

    A. V. Loban; D. A. Lovtsov

    2017-01-01

    Purpose of the article: improving of scientific and methodical base of the theory of the е-learning of variability. Methods used: conceptual and logical modeling of the е-learning of variability process with electronic educational resource of new generation and system analysis of the interconnection of the studied subject area, methods, didactics approaches and information and communication technologies means. Results: the formalization complex model of the е-learning of variability with elec...

  15. A Pedagogical Model for Science Education through Blended Learning

    NARCIS (Netherlands)

    Bidarra, José; Rusman, Ellen

    2015-01-01

    This paper proposes a framework to support science education through blended learning, based on a participatory and interactive approach supported by ICT-based tools, called Science Learning Activities Model (SLAM). The study constitutes a work in progress and started as a response to complex

  16. Time representation in reinforcement learning models of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Samuel Joseph Gershman

    2014-01-01

    Full Text Available Reinforcement learning models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still no theoretical consensus about what kind of time representation is used by the basal ganglia. We review several theoretical accounts and their supporting evidence. We then discuss the relationship between reinforcement learning models and the timing mechanisms that have been attributed to the basal ganglia. We hypothesize that a single computational system may underlie both reinforcement learning and interval timing—the perception of duration in the range of seconds to hours. This hypothesis, which extends earlier models by incorporating a time-sensitive action selection mechanism, may have important implications for understanding disorders like Parkinson's disease in which both decision making and timing are impaired.

  17. An Analysis of the Relationship between the Learning Process and Learning Motivation Profiles of Japanese Pharmacy Students Using Structural Equation Modeling.

    Science.gov (United States)

    Yamamura, Shigeo; Takehira, Rieko

    2018-04-23

    Pharmacy students in Japan have to maintain strong motivation to learn for six years during their education. The authors explored the students’ learning structure. All pharmacy students in their 4th through to 6th year at Josai International University participated in the survey. The revised two factor study process questionnaire and science motivation questionnaire II were used to assess their learning process and learning motivation profiles, respectively. Structural equation modeling (SEM) was used to examine a causal relationship between the latent variables in the learning process and those in the learning motivation profile. The learning structure was modeled on the idea that the learning process affects the learning motivation profile of respondents. In the multi-group SEM, the estimated mean of the deep learning to learning motivation profile increased just after their clinical clerkship for 6th year students. This indicated that the clinical experience benefited students’ deep learning, which is probably because the experience of meeting with real patients encourages meaningful learning in pharmacy studies.

  18. A deep learning-based multi-model ensemble method for cancer prediction.

    Science.gov (United States)

    Xiao, Yawen; Wu, Jun; Lin, Zongli; Zhao, Xiaodong

    2018-01-01

    Cancer is a complex worldwide health problem associated with high mortality. With the rapid development of the high-throughput sequencing technology and the application of various machine learning methods that have emerged in recent years, progress in cancer prediction has been increasingly made based on gene expression, providing insight into effective and accurate treatment decision making. Thus, developing machine learning methods, which can successfully distinguish cancer patients from healthy persons, is of great current interest. However, among the classification methods applied to cancer prediction so far, no one method outperforms all the others. In this paper, we demonstrate a new strategy, which applies deep learning to an ensemble approach that incorporates multiple different machine learning models. We supply informative gene data selected by differential gene expression analysis to five different classification models. Then, a deep learning method is employed to ensemble the outputs of the five classifiers. The proposed deep learning-based multi-model ensemble method was tested on three public RNA-seq data sets of three kinds of cancers, Lung Adenocarcinoma, Stomach Adenocarcinoma and Breast Invasive Carcinoma. The test results indicate that it increases the prediction accuracy of cancer for all the tested RNA-seq data sets as compared to using a single classifier or the majority voting algorithm. By taking full advantage of different classifiers, the proposed deep learning-based multi-model ensemble method is shown to be accurate and effective for cancer prediction. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Fostering the development of effective person-centered healthcare communication skills: an interprofessional shared learning model.

    Science.gov (United States)

    Cavanaugh, James T; Konrad, Shelley Cohen

    2012-01-01

    To describe the implementation of an interprofessional shared learning model designed to promote the development of person-centered healthcare communication skills. Master of social work (MSW) and doctor of physical therapy (DPT) degree students. The model used evidence-based principles of effective healthcare communication and shared learning methods; it was aligned with student learning outcomes contained in MSW and DPT curricula. Students engaged in 3 learning sessions over 2 days. Sessions involved interactive reflective learning, simulated role-modeling with peer assessment, and context-specific practice of communication skills. The perspective of patients/clients was included in each learning activity. Activities were evaluated through narrative feedback. Students valued opportunities to learn directly from each other and from healthcare consumers. Important insights and directions for future interprofessional learning experiences were gleaned from model implementation. The interprofessional shared learning model shows promise as an effective method for developing person-centered communication skills.

  20. PENGEMBANGAN PERANGKAT PEMBELAJARAN MODEL PROBLEM BASED LEARNING UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KREATIF

    Directory of Open Access Journals (Sweden)

    Ali Muntaha

    2013-03-01

    Full Text Available Penelitian ini bertujuan untuk : (1 Mengetahui proses pengembangan perangkat pembelajaran dengan model PBL berbantuan CD Pembelajaran untuk meningkatkan kemampuan berpikir kreatif siswa, (2 Menghasilkan perangkat pembelajaran dengan model PBL berbantuan CD Pembelajaran yang valid, (3 Menghasilkan perangkat pembelajaran dengan model PBL berbantuan CD Pembelajaran yang efektif. Penelitian ini merupakan penelitian pengembangan. Pengembangan yang dilakukan dalam penelitian ini meliputi Silabus, Rencana Pelaksanaan Pembelajaran (RPP,  Buku Siswa, Lembar Kegiatan Siswa (LKS,    dan Tes Kemampuan Berpikir Kreatif Siswa. Data penelitian diperoleh melalui  observasi dan tes kemampuan kognitif. Analisis statistik menggunakan uji ketuntasan (KKM hasil belajar dengan uji One sample t test, uji beda menggunakan independen sample t test, uji normalitas dan uji peningkatan kemampuan menggunakan N-gain. Hasil penelitian menunjukkan: (1 Proses pengembangan perangkat pembelajaran dilakukan melalui empat tahapan yaitu define (pendefinisian /penetapan, design (perancangan, develop (pengembangan, dan disseminate (penyebaran, (2 Hasil pengembangan perangkat pembelajaran dalam penelitian ini valid, (3 Hasil pengembangan perangkat pembelajaran dalam penelitian ini efektif untuk meningkatkan kemampuan berpikir kreatif siswa. This study aims to: (1 Knowing the software development process model of PBL assisted learning with Learning CD to enhance students’ creative thinking skills, (2 Generate the model of learning with Learning CD-assisted PBL valid, (3 Generate the model of learning with PBL CD-assisted learning effective. This research is a research development. Development conducted in this study include syllabus, lesson plan (RPP, Student Book, Student Activity Sheet (LKS, and Student Creative Thinking Ability Test. Data were obtained through observation and tests of cognitive ability. Statistical analysis using the mastery test (KKM learning outcomes to test

  1. A Model for Learning Over Time: The Big Picture

    Science.gov (United States)

    Amato, Herbert K.; Konin, Jeff G.; Brader, Holly

    2002-01-01

    Objective: To present a method of describing the concept of “learning over time” with respect to its implementation into an athletic training education program curriculum. Background: The formal process of learning over time has recently been introduced as a required way for athletic training educational competencies and clinical proficiencies to be delivered and mastered. Learning over time incorporates the documented cognitive, psychomotor, and affective skills associated with the acquisition, progression, and reflection of information. This method of academic preparation represents a move away from a quantitative-based learning module toward a proficiency-based mastery of learning. Little research or documentation can be found demonstrating either the specificity of this concept or suggestions for its application. Description: We present a model for learning over time that encompasses multiple indicators for assessment in a successive format. Based on a continuum approach, cognitive, psychomotor, and affective characteristics are assessed at different levels in classroom and clinical environments. Clinical proficiencies are a common set of entry-level skills that need to be integrated into the athletic training educational domains. Objective documentation is presented, including the skill breakdown of a task and a matrix to identify a timeline of competency and proficiency delivery. Clinical Advantages: The advantages of learning over time pertain to the integration of cognitive knowledge into clinical skill acquisition. Given the fact that learning over time has been implemented as a required concept for athletic training education programs, this model may serve to assist those program faculty who have not yet developed, or are in the process of developing, a method of administering this approach to learning. PMID:12937551

  2. Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding

    Science.gov (United States)

    Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.

    2018-04-01

    The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.

  3. The Twin-Cycle Experiential Learning Model: Reconceptualising Kolb's Theory

    Science.gov (United States)

    Bergsteiner, Harald; Avery, Gayle C.

    2014-01-01

    Experiential learning styles remain popular despite criticisms about their validity, usefulness, fragmentation and poor definitions and categorisation. After examining four prominent models and building on Bergsteiner, Avery, and Neumann's suggestion of a dual cycle, this paper proposes a twin-cycle experiential learning model to overcome…

  4. Influence of Discussion Rating in Cooperative Learning Type Numbered Head Together on Learning Results Students VII MTSN Model Padang

    Science.gov (United States)

    Sasmita, E.; Edriati, S.; Yunita, A.

    2018-04-01

    Related to the math score of the first semester in class at seventh grade of MTSN Model Padang which much the score that low (less than KKM). It because of the students who feel less involved in learning process because the teacher don't do assessment the discussions. The solution of the problem is discussion assessment in Cooperative Learning Model type Numbered Head Together. This study aims to determine whether the discussion assessment in NHT effect on student learning outcomes of class VII MTsN Model Padang. The instrument used in this study is discussion assessment and final tests. The data analysis technique used is the simple linear regression analysis. Hypothesis test results Fcount greater than the value of Ftable then the hypothesis in this study received. So it concluded that the assessment of the discussion in NHT effect on student learning outcomes of class VII MTsN Model Padang.

  5. The Use of Problem-Based Learning Model to Improve Quality Learning Students Morals

    Science.gov (United States)

    Nurzaman

    2017-01-01

    Model of moral cultivation in MTsN Bangunharja done using three methods, classical cultivation methods, extra-curricular activities in the form of religious activities, scouting, sports, and Islamic art, and habituation of morals. Problem base learning models in MTsN Bangunharja applied using the following steps: find the problem, define the…

  6. Prototype-based models in machine learning

    NARCIS (Netherlands)

    Biehl, Michael; Hammer, Barbara; Villmann, Thomas

    2016-01-01

    An overview is given of prototype-based models in machine learning. In this framework, observations, i.e., data, are stored in terms of typical representatives. Together with a suitable measure of similarity, the systems can be employed in the context of unsupervised and supervised analysis of

  7. Testing students' e-learning via Facebook through Bayesian structural equation modeling.

    Science.gov (United States)

    Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad

    2017-01-01

    Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.

  8. Testing students' e-learning via Facebook through Bayesian structural equation modeling.

    Directory of Open Access Journals (Sweden)

    Hashem Salarzadeh Jenatabadi

    Full Text Available Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.

  9. Using Deep Learning Model for Meteorological Satellite Cloud Image Prediction

    Science.gov (United States)

    Su, X.

    2017-12-01

    A satellite cloud image contains much weather information such as precipitation information. Short-time cloud movement forecast is important for precipitation forecast and is the primary means for typhoon monitoring. The traditional methods are mostly using the cloud feature matching and linear extrapolation to predict the cloud movement, which makes that the nonstationary process such as inversion and deformation during the movement of the cloud is basically not considered. It is still a hard task to predict cloud movement timely and correctly. As deep learning model could perform well in learning spatiotemporal features, to meet this challenge, we could regard cloud image prediction as a spatiotemporal sequence forecasting problem and introduce deep learning model to solve this problem. In this research, we use a variant of Gated-Recurrent-Unit(GRU) that has convolutional structures to deal with spatiotemporal features and build an end-to-end model to solve this forecast problem. In this model, both the input and output are spatiotemporal sequences. Compared to Convolutional LSTM(ConvLSTM) model, this model has lower amount of parameters. We imply this model on GOES satellite data and the model perform well.

  10. PENGARUH MODEL PEMBELAJARAN LEARNING CYCLE TERHADAP KETERAMPILAN BERPIKIR KRITIS SISWA

    Directory of Open Access Journals (Sweden)

    Aryani Novianti

    2015-03-01

    Full Text Available Tujuan dari penelitian ini adalah untuk mengetahui pengaruh model pembelajaran Learning Cycle pada konsep Sistem Pencernaan pada Manusia terhadap keterampilan berpikir kritis siswa. Adapun model pembelajaran Learning Cycle yang diterapkan adalah jenis 5E (Engangement, Exploration, Explanation, Elaboration dan Evaluation. Populasi dari penelitian ini adalah seluruh siswa kelas VIII SMP N 9 Kota Tangerang Selatan sedangkan sampelnya adalah seluruh siswa di kelas VIII 7 (38 orang dan VIII 8 (38 orang SMP N 9 Kota Tangsel. Teknik pengambilan sampel dalam penelitian ini dilakukan dengan teknik Sampling Purposive. Metode penelitian yang digunakan dalam penelitian ini adalah metode penelitian Quasi-eksperimental design dengan desain penelitian berupa nonequivalent control group design. Instrumen yang digunakan berupa tes tertulis berupa pilihan ganda dan esai yang ditujukan untuk mengukur keterampilan berpikir kritis. Sedangkan lembar observasi digunakan untuk mengamati keterlaksanaan model pembelajaran Learning Cycle oleh guru dan keterampilan berpikir kritis yang tergali oleh siswa. Analisis data menggunakan uji-t diperoleh hasil thitung 3,703 dan ttabel pada taraf signifikansi 5 % sebesar 2, maka thitung > ttabel. Hal ini dapat disimpulkan bahwa penerapan model pembelajaran Learning Cycle pada konsep Sistem Pencernaan pada Manusia berpengaruh terhadap keterampilan berpikir kritis siswa.

  11. Computational neurorehabilitation: modeling plasticity and learning to predict recovery.

    Science.gov (United States)

    Reinkensmeyer, David J; Burdet, Etienne; Casadio, Maura; Krakauer, John W; Kwakkel, Gert; Lang, Catherine E; Swinnen, Stephan P; Ward, Nick S; Schweighofer, Nicolas

    2016-04-30

    Despite progress in using computational approaches to inform medicine and neuroscience in the last 30 years, there have been few attempts to model the mechanisms underlying sensorimotor rehabilitation. We argue that a fundamental understanding of neurologic recovery, and as a result accurate predictions at the individual level, will be facilitated by developing computational models of the salient neural processes, including plasticity and learning systems of the brain, and integrating them into a context specific to rehabilitation. Here, we therefore discuss Computational Neurorehabilitation, a newly emerging field aimed at modeling plasticity and motor learning to understand and improve movement recovery of individuals with neurologic impairment. We first explain how the emergence of robotics and wearable sensors for rehabilitation is providing data that make development and testing of such models increasingly feasible. We then review key aspects of plasticity and motor learning that such models will incorporate. We proceed by discussing how computational neurorehabilitation models relate to the current benchmark in rehabilitation modeling - regression-based, prognostic modeling. We then critically discuss the first computational neurorehabilitation models, which have primarily focused on modeling rehabilitation of the upper extremity after stroke, and show how even simple models have produced novel ideas for future investigation. Finally, we conclude with key directions for future research, anticipating that soon we will see the emergence of mechanistic models of motor recovery that are informed by clinical imaging results and driven by the actual movement content of rehabilitation therapy as well as wearable sensor-based records of daily activity.

  12. Experiential Learning Model on Entrepreneurship Subject to Improve Students’ Soft Skills

    Directory of Open Access Journals (Sweden)

    Lina Rifda Naufalin

    2016-06-01

    Full Text Available This research aims to improve students’ soft skills on entrepreneurship subject by using experiential learning model. It was expected that the learning model could upgrade students’ soft skills which were indicated by the higher confidence, result and job oriented, being courageous to take risks, leadership, originality, and future-oriented. It was a class action research using Kemmis and Mc Tagart’s design model. The research was conducted for two cycles. The subject of the study was economics education students in the year of 2015/2016.  Findings show that the experiential learning model could improve students’ soft skills. The research showed that there is increased at the dimension of confidence by 52.1%, result-oriented by 22.9%, being courageous to take risks by 10.4%, leadership by 12.5%, originality by 10.4%, and future-oriented by 18.8%. It could be concluded that the experiential learning model is effective model to improve students’ soft skills on entrepreneurship subject. Dimension of confidence has the highest rise. Students’ soft skills are shaped through the continuous stimulus when they get involved at the implementation.

  13. Sinkronisasi Content E-learning Terdistribusi Berbasis Model Komunikasi Indirect Menggunakan Sistem Publish-Subscribe

    Directory of Open Access Journals (Sweden)

    Sufrendo Saputra

    2017-01-01

    Full Text Available Sinkronisasi content antar e-learning memungkinkan beberapa e-learning memiliki content yang sama secara konsisten. Perubahan content pada salah satu e-learning akan membuat sistem memastikan e-learning lain mengetahui perubahan tersebut. Model komunikasi yang memungkinkan adanya sinkronisasi ini merupakan komunikasi indirect berbasis publish-subscribe. Setiap e-learning memiliki content-nya masing-masing yang secara otomatis akan di-publish oleh sistem. E-learning lain yang tergabung dalam sistem sinkronisasi kemudian dapat memilih content mana yang ingin di-subscribe. Jika terdapat perubahan pada sebuah content, dan content tersebut memiliki subscriber, maka sistem akan memberitahu subscriber bahwa telah terjadi perubahan pada content. Teknologi utama yang digunakan dalam sistem ini adalah Moodle, PHP, dan Java. Moodle sebagai modul yang digunakan untuk mensimulasikan e-learning. PHP dan Java sebagai framework dari sistem sinkronisasi. Model komunikasi yang digunakan merupakan komunikasi indirect berbasis publish-subscribe. Model komunikasi ini menempatkan sebuah perantara bagi komunikasi antar e-learning.

  14. The Interaction Model in iLearning Environments and its Use in the Smart Lab Concept

    Directory of Open Access Journals (Sweden)

    Yuliya Lyalina

    2011-11-01

    Full Text Available This paper identifies and discusses current trends and challenges, offers an overview of state-of-the-art technologies in the development of remote and smart laboratories, and introduces the iLearning interaction model. The use of the model allows reconstructing already- existing iLearning environments. The smart lab model is described for face-to-face, Mobile and Blended Learning. As a result, this allows offering new information technology that organizes the educational process according to learning type (face-to-face, hands-on learning, Life Long Learning, E-Learning, M-Learning, Blended learning, Game-based learning, etc.. The remote access Architecture and Interface for the multifunctional Smart Lab will be developed.

  15. Learning-based stochastic object models for characterizing anatomical variations

    Science.gov (United States)

    Dolly, Steven R.; Lou, Yang; Anastasio, Mark A.; Li, Hua

    2018-03-01

    It is widely known that the optimization of imaging systems based on objective, task-based measures of image quality via computer-simulation requires the use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in human anatomy within a specified ensemble of patients remains a challenging task. Previously reported numerical anatomic models lack the ability to accurately model inter-patient and inter-organ variations in human anatomy among a broad patient population, mainly because they are established on image data corresponding to a few of patients and individual anatomic organs. This may introduce phantom-specific bias into computer-simulation studies, where the study result is heavily dependent on which phantom is used. In certain applications, however, databases of high-quality volumetric images and organ contours are available that can facilitate this SOM development. In this work, a novel and tractable methodology for learning a SOM and generating numerical phantoms from a set of volumetric training images is developed. The proposed methodology learns geometric attribute distributions (GAD) of human anatomic organs from a broad patient population, which characterize both centroid relationships between neighboring organs and anatomic shape similarity of individual organs among patients. By randomly sampling the learned centroid and shape GADs with the constraints of the respective principal attribute variations learned from the training data, an ensemble of stochastic objects can be created. The randomness in organ shape and position reflects the learned variability of human anatomy. To demonstrate the methodology, a SOM of an adult male pelvis is computed and examples of corresponding numerical phantoms are created.

  16. Modeling technological learning and its application for clean coal technologies in Japan

    International Nuclear Information System (INIS)

    Nakata, Toshihiko; Sato, Takemi; Wang, Hao; Kusunoki, Tomoya; Furubayashi, Takaaki

    2011-01-01

    Estimating technological progress of emerging technologies such as renewables and clean coal technologies becomes important for designing low carbon energy systems in future and drawing effective energy policies. Learning curve is an analytical approach for describing the decline rate of cost and production caused by technological progress as well as learning. In the study, a bottom-up energy-economic model including an endogenous technological learning function has been designed. The model deals with technological learning in energy conversion technologies and its spillover effect. It is applied as a feasibility study of clean coal technologies such as IGCC (Integrated Coal Gasification Combined Cycle) and IGFC (Integrated Coal Gasification Fuel Cell System) in Japan. As the results of analysis, it is found that technological progress by learning has a positive impact on the penetration of clean coal technologies in the electricity market, and the learning model has a potential for assessing upcoming technologies in future.

  17. Towards a Social Networks Model for Online Learning & Performance

    Science.gov (United States)

    Chung, Kon Shing Kenneth; Paredes, Walter Christian

    2015-01-01

    In this study, we develop a theoretical model to investigate the association between social network properties, "content richness" (CR) in academic learning discourse, and performance. CR is the extent to which one contributes content that is meaningful, insightful and constructive to aid learning and by social network properties we…

  18. Reconstructing Constructivism: Causal Models, Bayesian Learning Mechanisms, and the Theory Theory

    Science.gov (United States)

    Gopnik, Alison; Wellman, Henry M.

    2012-01-01

    We propose a new version of the "theory theory" grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework…

  19. Comparing and Validating Machine Learning Models for Mycobacterium tuberculosis Drug Discovery.

    Science.gov (United States)

    Lane, Thomas; Russo, Daniel P; Zorn, Kimberley M; Clark, Alex M; Korotcov, Alexandru; Tkachenko, Valery; Reynolds, Robert C; Perryman, Alexander L; Freundlich, Joel S; Ekins, Sean

    2018-04-26

    Tuberculosis is a global health dilemma. In 2016, the WHO reported 10.4 million incidences and 1.7 million deaths. The need to develop new treatments for those infected with Mycobacterium tuberculosis ( Mtb) has led to many large-scale phenotypic screens and many thousands of new active compounds identified in vitro. However, with limited funding, efforts to discover new active molecules against Mtb needs to be more efficient. Several computational machine learning approaches have been shown to have good enrichment and hit rates. We have curated small molecule Mtb data and developed new models with a total of 18,886 molecules with activity cutoffs of 10 μM, 1 μM, and 100 nM. These data sets were used to evaluate different machine learning methods (including deep learning) and metrics and to generate predictions for additional molecules published in 2017. One Mtb model, a combined in vitro and in vivo data Bayesian model at a 100 nM activity yielded the following metrics for 5-fold cross validation: accuracy = 0.88, precision = 0.22, recall = 0.91, specificity = 0.88, kappa = 0.31, and MCC = 0.41. We have also curated an evaluation set ( n = 153 compounds) published in 2017, and when used to test our model, it showed the comparable statistics (accuracy = 0.83, precision = 0.27, recall = 1.00, specificity = 0.81, kappa = 0.36, and MCC = 0.47). We have also compared these models with additional machine learning algorithms showing Bayesian machine learning models constructed with literature Mtb data generated by different laboratories generally were equivalent to or outperformed deep neural networks with external test sets. Finally, we have also compared our training and test sets to show they were suitably diverse and different in order to represent useful evaluation sets. Such Mtb machine learning models could help prioritize compounds for testing in vitro and in vivo.

  20. A comparison of machine learning and Bayesian modelling for molecular serotyping.

    Science.gov (United States)

    Newton, Richard; Wernisch, Lorenz

    2017-08-11

    Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples available, a model driven approach was the only option. In the meanwhile, several thousand samples have been made available to us, providing an opportunity to investigate serotype classification by machine learning methods, which could complement the Bayesian model. We compare the performance of the original Bayesian model with two machine learning algorithms: Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible combinations. Most of the available training data comprises samples with only a single serotype. To overcome the lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by combining raw data from single serotype arrays. With the enhanced training set the machine learning algorithms out perform the original Bayesian model. However, for serotypes currently lacking sufficient training data the best performing implementation was a combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle biological

  1. Glutamatergic model psychoses: prediction error, learning, and inference.

    Science.gov (United States)

    Corlett, Philip R; Honey, Garry D; Krystal, John H; Fletcher, Paul C

    2011-01-01

    Modulating glutamatergic neurotransmission induces alterations in conscious experience that mimic the symptoms of early psychotic illness. We review studies that use intravenous administration of ketamine, focusing on interindividual variability in the profundity of the ketamine experience. We will consider this individual variability within a hypothetical model of brain and cognitive function centered upon learning and inference. Within this model, the brains, neural systems, and even single neurons specify expectations about their inputs and responding to violations of those expectations with new learning that renders future inputs more predictable. We argue that ketamine temporarily deranges this ability by perturbing both the ways in which prior expectations are specified and the ways in which expectancy violations are signaled. We suggest that the former effect is predominantly mediated by NMDA blockade and the latter by augmented and inappropriate feedforward glutamatergic signaling. We suggest that the observed interindividual variability emerges from individual differences in neural circuits that normally underpin the learning and inference processes described. The exact source for that variability is uncertain, although it is likely to arise not only from genetic variation but also from subjects' previous experiences and prior learning. Furthermore, we argue that chronic, unlike acute, NMDA blockade alters the specification of expectancies more profoundly and permanently. Scrutinizing individual differences in the effects of acute and chronic ketamine administration in the context of the Bayesian brain model may generate new insights about the symptoms of psychosis; their underlying cognitive processes and neurocircuitry.

  2. Pre-Service Teachers' Intention to Adopt Mobile Learning: A Motivational Model

    Science.gov (United States)

    Baydas, Ozlem; Yilmaz, Rabia M.

    2018-01-01

    This study proposes a model for determining preservice teachers' intentions to adopt mobile learning from a motivational perspective. Data were collected from 276 preservice teachers and analyzed by structural equation modeling. A model capable of explaining 87% of the variance in preservice teachers' intention to adopt mobile learning was…

  3. Students’ Mathematical Problem-Solving Abilities Through The Application of Learning Models Problem Based Learning

    Science.gov (United States)

    Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.

    2018-04-01

    One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.

  4. Threat driven modeling framework using petri nets for e-learning system.

    Science.gov (United States)

    Khamparia, Aditya; Pandey, Babita

    2016-01-01

    Vulnerabilities at various levels are main cause of security risks in e-learning system. This paper presents a modified threat driven modeling framework, to identify the threats after risk assessment which requires mitigation and how to mitigate those threats. To model those threat mitigations aspects oriented stochastic petri nets are used. This paper included security metrics based on vulnerabilities present in e-learning system. The Common Vulnerability Scoring System designed to provide a normalized method for rating vulnerabilities which will be used as basis in metric definitions and calculations. A case study has been also proposed which shows the need and feasibility of using aspect oriented stochastic petri net models for threat modeling which improves reliability, consistency and robustness of the e-learning system.

  5. Dynamic gradient descent learning algorithms for enhanced empirical modeling of power plants

    International Nuclear Information System (INIS)

    Parlos, A.G.; Atiya, Amir; Chong, K.T.

    1991-01-01

    A newly developed dynamic gradient descent-based learning algorithm is used to train a recurrent multilayer perceptron network for use in empirical modeling of power plants. The two main advantages of the proposed learning algorithm are its ability to consider past error gradient information for future use and the two forward passes associated with its implementation, instead of one forward and one backward pass of the backpropagation algorithm. The latter advantage results in computational time saving because both passes can be performed simultaneously. The dynamic learning algorithm is used to train a hybrid feedforward/feedback neural network, a recurrent multilayer perceptron, which was previously found to exhibit good interpolation and extrapolation capabilities in modeling nonlinear dynamic systems. One of the drawbacks, however, of the previously reported work has been the long training times associated with accurate empirical models. The enhanced learning capabilities provided by the dynamic gradient descent-based learning algorithm are demonstrated by a case study of a steam power plant. The number of iterations required for accurate empirical modeling has been reduced from tens of thousands to hundreds, thus significantly expediting the learning process

  6. An Analysis of the Relationship between the Learning Process and Learning Motivation Profiles of Japanese Pharmacy Students Using Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Shigeo Yamamura

    2018-04-01

    Full Text Available Pharmacy students in Japan have to maintain strong motivation to learn for six years during their education. The authors explored the students’ learning structure. All pharmacy students in their 4th through to 6th year at Josai International University participated in the survey. The revised two factor study process questionnaire and science motivation questionnaire II were used to assess their learning process and learning motivation profiles, respectively. Structural equation modeling (SEM was used to examine a causal relationship between the latent variables in the learning process and those in the learning motivation profile. The learning structure was modeled on the idea that the learning process affects the learning motivation profile of respondents. In the multi-group SEM, the estimated mean of the deep learning to learning motivation profile increased just after their clinical clerkship for 6th year students. This indicated that the clinical experience benefited students’ deep learning, which is probably because the experience of meeting with real patients encourages meaningful learning in pharmacy studies.

  7. The Effectiveness of Cooperative Learning Model of Pair Checks Type on Motivation and Mathematics Learning Outcomes of 8th Grade Junior High School Students

    Directory of Open Access Journals (Sweden)

    Wahyu Budi Wicaksono

    2017-08-01

    Full Text Available The purpose of this research was to know the effectiveness of Pair Checks cooperative model towards students’ learning result and learning motivation of eight grade. Population of this research were students of eight grade Junior High School 2 Pati in the academic year 2016/1017. The research used cluster random sampling technique.Where the selected samples were students of class VIII H as experimental class and class VIII G as control class. The data collected by the method of documentation, test methods, and scale methods. The analyzed of data used completeness test and average different test. The results showed that: (1 students’ learning result who join Pair Checks cooperative model have classical study completeness; (2 students’ mathematics learning result who join Pair Checks cooperative model is better than students mathematics learning result who join ekspository learning; (3 students’ learning motivation who join Pair Checks cooperative model is better than students’ learning motivation who join ekspository learning.

  8. Learning the ShamWow: Creating Infomercials to Teach the AIDA Model

    Science.gov (United States)

    Lee, Seung Hwan; Hoffman, K. Douglas

    2015-01-01

    The AIDA Model (Attention-Interest-Desire-Action) is one of the classical promotional theories in marketing. Through active-learning techniques and peer critiques, we use infomercials as an innovative educational tool to instruct the four components of the AIDA model. Student evaluations regarding this active-learning assignment reveal that the…

  9. A Rotational Blended Learning Model: Enhancement and Quality Assurance

    Science.gov (United States)

    Ghoul, Said

    2013-01-01

    Research on blended learning theory and practice is growing nowadays with a focus on the development, evaluation, and quality assurance of case studies. However, the enhancement of blended learning existing models, the specification of their online parts, and the quality assurance related specifically to them have not received enough attention.…

  10. A joint model of word segmentation and meaning acquisition through cross-situational learning.

    Science.gov (United States)

    Räsänen, Okko; Rasilo, Heikki

    2015-10-01

    Human infants learn meanings for spoken words in complex interactions with other people, but the exact learning mechanisms are unknown. Among researchers, a widely studied learning mechanism is called cross-situational learning (XSL). In XSL, word meanings are learned when learners accumulate statistical information between spoken words and co-occurring objects or events, allowing the learner to overcome referential uncertainty after having sufficient experience with individually ambiguous scenarios. Existing models in this area have mainly assumed that the learner is capable of segmenting words from speech before grounding them to their referential meaning, while segmentation itself has been treated relatively independently of the meaning acquisition. In this article, we argue that XSL is not just a mechanism for word-to-meaning mapping, but that it provides strong cues for proto-lexical word segmentation. If a learner directly solves the correspondence problem between continuous speech input and the contextual referents being talked about, segmentation of the input into word-like units emerges as a by-product of the learning. We present a theoretical model for joint acquisition of proto-lexical segments and their meanings without assuming a priori knowledge of the language. We also investigate the behavior of the model using a computational implementation, making use of transition probability-based statistical learning. Results from simulations show that the model is not only capable of replicating behavioral data on word learning in artificial languages, but also shows effective learning of word segments and their meanings from continuous speech. Moreover, when augmented with a simple familiarity preference during learning, the model shows a good fit to human behavioral data in XSL tasks. These results support the idea of simultaneous segmentation and meaning acquisition and show that comprehensive models of early word segmentation should take referential word

  11. Preference learning for cognitive modeling: a case study on entertainment preferences

    DEFF Research Database (Denmark)

    Yannakakis, Georgios; Maragoudakis, Manolis; Hallam, John

    2009-01-01

    Learning from preferences, which provide means for expressing a subject's desires, constitutes an important topic in machine learning research. This paper presents a comparative study of four alternative instance preference learning algorithms (both linear and nonlinear). The case study...... investigated is to learn to predict the expressed entertainment preferences of children when playing physical games built on their personalized playing features (entertainment modeling). Two of the approaches are derived from the literature--the large-margin algorithm (LMA) and preference learning...... with Gaussian processes--while the remaining two are custom-designed approaches for the problem under investigation: meta-LMA and neuroevolution. Preference learning techniques are combined with feature set selection methods permitting the construction of effective preference models, given suitable individual...

  12. Experiential learning model on entrepreneurship subject for improving students’ soft skills

    Directory of Open Access Journals (Sweden)

    Lina Rifda Naufalin

    2017-01-01

    Full Text Available The objective of the research was to improve students’ soft skills on entrepreneurship subject by using experiential learning model. It was expected that the learning model could upgrade students’ soft skills which were indicated by the higher confidence, result and job oriented, being courageous to take risks, leadership, originality, and future-oriented. It was a class action research using Kemmis and Mc Tagart’s design model. The research was conducted for two cycles. The subject of the study was economics education students in 2015/2016.  The result of the research showed that the experiential learning model could improve students’ soft skills. The research showed that there were increases at the dimension of confidence, (52.1%, result-oriented (22.9%, being courageous to take risks (10.4%, leadership (12.5%, originality (10.4%, and future-oriented (18.8%. It could be concluded that the experiential learning model was effective to improve students’ soft skills on entrepreneurship subject. It also showed that the dimension of confidence had the highest rise. Students’ soft skills were shaped through the continuous stimulus when they got involved at the implementation.Penelitian ini bertujuan untuk meningkatkan soft skills mahasiswa dalam mata kuliah kewirausahaan dengan menggunakan model experietial learning. Diharapkan dengan model pembelajaran ini terjadi peningkatan soft skills mahasiswa yang ditandai dengan peningkatan rasa percaya diri, berorientasi tugas dan hasil, berani mengambil resiko, kepemimpinan, keorisinilan, dan berorientasi masa depan. Penelitian ini menggunakan metode penelitian tindakan kelas dengan menggunakan model desain menurut Kemmis dan Mc Tagart. Penelitian ini dilakukan dalam dua siklus, yaitu siklus I dan siklus II. Penelitian ini dilaksanakan di kelas pendidikan ekonomi angkatan 2015/2016. Hasil penelitian ini menunjukkan bahwa penggunaan model experiential learning dapat meningkatkan soft skills

  13. Runtime Optimizations for Tree-Based Machine Learning Models

    NARCIS (Netherlands)

    N. Asadi; J.J.P. Lin (Jimmy); A.P. de Vries (Arjen)

    2014-01-01

    htmlabstractTree-based models have proven to be an effective solution for web ranking as well as other machine learning problems in diverse domains. This paper focuses on optimizing the runtime performance of applying such models to make predictions, specifically using gradient-boosted regression

  14. Learning about Ecological Systems by Constructing Qualitative Models with DynaLearn

    Science.gov (United States)

    Leiba, Moshe; Zuzovsky, Ruth; Mioduser, David; Benayahu, Yehuda; Nachmias, Rafi

    2012-01-01

    A qualitative model of a system is an abstraction that captures ordinal knowledge and predicts the set of qualitatively possible behaviours of the system, given a qualitative description of its structure and initial state. This paper examines an innovative approach to science education using an interactive learning environment that supports…

  15. Learning Bayesian Dependence Model for Student Modelling

    Directory of Open Access Journals (Sweden)

    Adina COCU

    2008-12-01

    Full Text Available Learning a Bayesian network from a numeric set of data is a challenging task because of dual nature of learning process: initial need to learn network structure, and then to find out the distribution probability tables. In this paper, we propose a machine-learning algorithm based on hill climbing search combined with Tabu list. The aim of learning process is to discover the best network that represents dependences between nodes. Another issue in machine learning procedure is handling numeric attributes. In order to do that, we must perform an attribute discretization pre-processes. This discretization operation can influence the results of learning network structure. Therefore, we make a comparative study to find out the most suitable combination between discretization method and learning algorithm, for a specific data set.

  16. The Self-Regulated Learning Model and Music Education

    Directory of Open Access Journals (Sweden)

    Maja Marijan

    2017-02-01

    Full Text Available Self-regulation and self-regulated learning (SRL are important features in music education. In this research self-regulated learning model is presented as a complex, multidimensional structure. SRL starts with the self-regulation. Self-regulation is formed through interaction with the environment, thus self-learning, self-analysis, self-judgment, self-instruction, and self-monitoring are the main functions in self-regulatory structure. Co-regulation is needed, and helps self-regulation to be activated and monitored. In music education, co-regulation refers to the instructions that teacher introduces in the lessons. These instructions have to enhance learning and develop regulation over emotions, cognitive, auditor, and motor skills in students. Learning techniques and learning strategies are core components in music education. Adapting those, students become aware of their learning processes, actions, thoughts, feelings and behaviors that are involved in learning. It is suggested that every teaching methodology has to develop learning techniques, as well as metamemory and metacognition in students, in order to gain expertise. The author has emphasized her attention to every aspect that is believed to belong to SRL. There are not many articles on the SRL in music education, written by musicians, in compare with those written by psychologists and neurologists,. Therefore, the author has suggested that this paper would encourage music teachers and performers to take an advantage in the research of SRL. These researches would help music educational systems and teachers to develop and promote learning techniques and strategies. The results would show improvement in student’s learning and self-regulation.

  17. Advances in Bayesian Model Based Clustering Using Particle Learning

    Energy Technology Data Exchange (ETDEWEB)

    Merl, D M

    2009-11-19

    Recent work by Carvalho, Johannes, Lopes and Polson and Carvalho, Lopes, Polson and Taddy introduced a sequential Monte Carlo (SMC) alternative to traditional iterative Monte Carlo strategies (e.g. MCMC and EM) for Bayesian inference for a large class of dynamic models. The basis of SMC techniques involves representing the underlying inference problem as one of state space estimation, thus giving way to inference via particle filtering. The key insight of Carvalho et al was to construct the sequence of filtering distributions so as to make use of the posterior predictive distribution of the observable, a distribution usually only accessible in certain Bayesian settings. Access to this distribution allows a reversal of the usual propagate and resample steps characteristic of many SMC methods, thereby alleviating to a large extent many problems associated with particle degeneration. Furthermore, Carvalho et al point out that for many conjugate models the posterior distribution of the static variables can be parametrized in terms of [recursively defined] sufficient statistics of the previously observed data. For models where such sufficient statistics exist, particle learning as it is being called, is especially well suited for the analysis of streaming data do to the relative invariance of its algorithmic complexity with the number of data observations. Through a particle learning approach, a statistical model can be fit to data as the data is arriving, allowing at any instant during the observation process direct quantification of uncertainty surrounding underlying model parameters. Here we describe the use of a particle learning approach for fitting a standard Bayesian semiparametric mixture model as described in Carvalho, Lopes, Polson and Taddy. In Section 2 we briefly review the previously presented particle learning algorithm for the case of a Dirichlet process mixture of multivariate normals. In Section 3 we describe several novel extensions to the original

  18. "The Spiral Model for the Development of Coordination": A Learning Model Based on Eshkol-Wachman Movement Notation (EWMN)

    Science.gov (United States)

    Al-Dor, Nira

    2006-01-01

    The objective of this study is to present "The Spiral Model for the Development of Coordination" (SMDC), a learning model that reflects the complexity and possibilities embodied in the learning of movement notation Eshkol-Wachman (EWMN), an Israeli invention. This model constituted the infrastructure for a comprehensive study that examined the…

  19. Learning and inference using complex generative models in a spatial localization task.

    Science.gov (United States)

    Bejjanki, Vikranth R; Knill, David C; Aslin, Richard N

    2016-01-01

    A large body of research has established that, under relatively simple task conditions, human observers integrate uncertain sensory information with learned prior knowledge in an approximately Bayes-optimal manner. However, in many natural tasks, observers must perform this sensory-plus-prior integration when the underlying generative model of the environment consists of multiple causes. Here we ask if the Bayes-optimal integration seen with simple tasks also applies to such natural tasks when the generative model is more complex, or whether observers rely instead on a less efficient set of heuristics that approximate ideal performance. Participants localized a "hidden" target whose position on a touch screen was sampled from a location-contingent bimodal generative model with different variances around each mode. Over repeated exposure to this task, participants learned the a priori locations of the target (i.e., the bimodal generative model), and integrated this learned knowledge with uncertain sensory information on a trial-by-trial basis in a manner consistent with the predictions of Bayes-optimal behavior. In particular, participants rapidly learned the locations of the two modes of the generative model, but the relative variances of the modes were learned much more slowly. Taken together, our results suggest that human performance in a more complex localization task, which requires the integration of sensory information with learned knowledge of a bimodal generative model, is consistent with the predictions of Bayes-optimal behavior, but involves a much longer time-course than in simpler tasks.

  20. Intelligent Cloud Learning Model for Online Overseas Chinese Education

    Directory of Open Access Journals (Sweden)

    Yidong Chen

    2015-02-01

    Full Text Available With the development of Chinese economy, oversea Chinese education has been paid more and more attention. However, the overseas Chinese education resource is relatively lack because of historical reasons, which hindered further development . How to better share the Chinese education resources and provide intelligent personalized information service for overseas student is a key problem to be solved. In recent years, the rise of cloud computing provides us an opportunity to realize intelligent learning mode. Cloud computing offers some advantages by allowing users to use infrastructure, platforms and software . In this paper we proposed an intelligent cloud learning model based on cloud computing. The learning model can utilize network resources sufficiently to implement resource sharing according to the personal needs of students, and provide a good practicability for online overseas Chinese education.

  1. Towards a Semantic E-Learning Theory by Using a Modelling Approach

    Science.gov (United States)

    Yli-Luoma, Pertti V. J.; Naeve, Ambjorn

    2006-01-01

    In the present study, a semantic perspective on e-learning theory is advanced and a modelling approach is used. This modelling approach towards the new learning theory is based on the four SECI phases of knowledge conversion: Socialisation, Externalisation, Combination and Internalisation, introduced by Nonaka in 1994, and involving two levels of…

  2. Dynamic Models of Learning That Characterize Parent-Child Exchanges Predict Vocabulary Growth

    Science.gov (United States)

    Ober, David R.; Beekman, John A.

    2016-01-01

    Cumulative vocabulary models for infants and toddlers were developed from models of learning that predict trajectories associated with low, average, and high vocabulary growth rates (14 to 46 months). It was hypothesized that models derived from rates of learning mirror the type of exchanges provided to infants and toddlers by parents and…

  3. Table-sized matrix model in fractional learning

    Science.gov (United States)

    Soebagyo, J.; Wahyudin; Mulyaning, E. C.

    2018-05-01

    This article provides an explanation of the fractional learning model i.e. a Table-Sized Matrix model in which fractional representation and its operations are symbolized by the matrix. The Table-Sized Matrix are employed to develop problem solving capabilities as well as the area model. The Table-Sized Matrix model referred to in this article is used to develop an understanding of the fractional concept to elementary school students which can then be generalized into procedural fluency (algorithm) in solving the fractional problem and its operation.

  4. Building Bridges: Seeking Structure and Direction for Higher Education Motivated Learning Strategy Models

    Science.gov (United States)

    Fryer, Luke K.

    2017-01-01

    Many of our current higher education (HE) learning strategy models intersect at important points. At the same time, these theories also often demonstrate important unique perspectives on student learning within HE. Currently, research with one learning strategy model rarely leads to developments in others, as each group of researchers works in…

  5. Computational Modeling of Statistical Learning: Effects of Transitional Probability versus Frequency and Links to Word Learning

    Science.gov (United States)

    Mirman, Daniel; Estes, Katharine Graf; Magnuson, James S.

    2010-01-01

    Statistical learning mechanisms play an important role in theories of language acquisition and processing. Recurrent neural network models have provided important insights into how these mechanisms might operate. We examined whether such networks capture two key findings in human statistical learning. In Simulation 1, a simple recurrent network…

  6. Grasping the Dynamic Complexity of Team Learning: An Integrative Model for Effective Team Learning in Organisations

    Science.gov (United States)

    Decuyper, Stefan; Dochy, Filip; Van den Bossche, Piet

    2010-01-01

    In this article we present an integrative model of team learning. Literature shows that effective team learning requires the establishment of a dialogical space amongst team members, in which communicative behaviours such as "sharing", "co-construction" and "constructive conflict" are balanced. However, finding this balance is not enough.…

  7. The Aalborg Model and participant directed learning

    DEFF Research Database (Denmark)

    Qvist, Palle

    2009-01-01

    Preparing students for a life as active citizens in a democratic society is one of the aims within the Bologna process. The Council of Europe has also stressed the importance of focus on democracy in Higher Education. Higher Education is seen as important to develop a democratic culture among...... students. Teaching democracy should be promoted in lessons and curricula. Creating democratic learning systems in institutions of higher education could be the answer to reaching the aim related to democracy. The Aalborg Model practised at Aalborg University is a learning system which has collaborative...

  8. Technology learning in a small open economy-The systems, modelling and exploiting the learning effect

    International Nuclear Information System (INIS)

    Martinsen, Thomas

    2011-01-01

    This paper reviews the characteristics of technology learning and discusses its application in energy system modelling in a global-local perspective. Its influence on the national energy system, exemplified by Norway, is investigated using a global and national Markal model. The dynamic nature of the learning system boundary and coupling between the national energy system and the global development and manufacturing system is elaborated. Some criteria important for modelling of spillover are suggested. Particularly, to ensure balance in global energy demand and supply and accurately reflect alternative global pathways spillover for all technologies as well as energy carrier cost/prices should be estimated under the same global scenario. The technology composition, CO 2 emissions and system cost in Norway up to 2050 exhibit sensitivity to spillover. Moreover, spillover may reduce both CO 2 emissions and total system cost. National energy system analysis of low carbon society should therefore consider technology development paths in global policy scenarios. Without the spillover from international deployment a domestic technology relies only on endogenous national learning. However, with high but realistic learning rates offshore floating wind may become cost-efficient even if initially deployed only in Norwegian niche markets. - Research highlights: → Spillover for all technologies should emanate from the same global scenario. → A global model is called for to estimate spillover.→ Spillover may reduce CO 2 emissions and the total system cost in a small open economy. → Off-shore floating wind may become cost-efficient in a national niche market.

  9. The development of learning materials based on core model to improve students’ learning outcomes in topic of Chemical Bonding

    Science.gov (United States)

    Avianti, R.; Suyatno; Sugiarto, B.

    2018-04-01

    This study aims to create an appropriate learning material based on CORE (Connecting, Organizing, Reflecting, Extending) model to improve students’ learning achievement in Chemical Bonding Topic. This study used 4-D models as research design and one group pretest-posttest as design of the material treatment. The subject of the study was teaching materials based on CORE model, conducted on 30 students of Science class grade 10. The collecting data process involved some techniques such as validation, observation, test, and questionnaire. The findings were that: (1) all the contents were valid, (2) the practicality and the effectiveness of all the contents were good. The conclusion of this research was that the CORE model is appropriate to improve students’ learning outcomes for studying Chemical Bonding.

  10. ECLIPPx: an innovative model for reflective portfolios in life-long learning.

    Science.gov (United States)

    Cheung, C Ronny

    2011-03-01

    For healthcare professionals, the educational portfolio is the most widely used component of lifelong learning - a vital aspect of modern medical practice. When used effectively, portfolios provide evidence of continuous learning and promote reflective practice. But traditional portfolio models are in danger of becoming outmoded, in the face of changing expectations of healthcare provider competences today. Portfolios in health care have generally focused on competencies in clinical skills. However, many other domains of professional development, such as professionalism and leadership skills, are increasingly important for doctors and health care professionals, and must be addressed in amassing evidence for training and revalidation. There is a need for modern health care learning portfolios to reflect this sea change. A new model for categorising the health care portfolios of professionals is proposed. The ECLIPPx model is based on personal practice, and divides the evidence of ongoing professional learning into four categories: educational development; clinical practice; leadership, innovation and professionalism; and personal experience. The ECLIPPx model offers a new approach for personal reflection and longitudinal learning, one that gives flexibility to the user whilst simultaneously encompassing the many relatively new areas of competence and expertise that are now required of a modern doctor. © Blackwell Publishing Ltd 2011.

  11. [Purity Detection Model Update of Maize Seeds Based on Active Learning].

    Science.gov (United States)

    Tang, Jin-ya; Huang, Min; Zhu, Qi-bing

    2015-08-01

    Seed purity reflects the degree of seed varieties in typical consistent characteristics, so it is great important to improve the reliability and accuracy of seed purity detection to guarantee the quality of seeds. Hyperspectral imaging can reflect the internal and external characteristics of seeds at the same time, which has been widely used in nondestructive detection of agricultural products. The essence of nondestructive detection of agricultural products using hyperspectral imaging technique is to establish the mathematical model between the spectral information and the quality of agricultural products. Since the spectral information is easily affected by the sample growth environment, the stability and generalization of model would weaken when the test samples harvested from different origin and year. Active learning algorithm was investigated to add representative samples to expand the sample space for the original model, so as to implement the rapid update of the model's ability. Random selection (RS) and Kennard-Stone algorithm (KS) were performed to compare the model update effect with active learning algorithm. The experimental results indicated that in the division of different proportion of sample set (1:1, 3:1, 4:1), the updated purity detection model for maize seeds from 2010 year which was added 40 samples selected by active learning algorithm from 2011 year increased the prediction accuracy for 2011 new samples from 47%, 33.75%, 49% to 98.89%, 98.33%, 98.33%. For the updated purity detection model of 2011 year, its prediction accuracy for 2010 new samples increased by 50.83%, 54.58%, 53.75% to 94.57%, 94.02%, 94.57% after adding 56 new samples from 2010 year. Meanwhile the effect of model updated by active learning algorithm was better than that of RS and KS. Therefore, the update for purity detection model of maize seeds is feasible by active learning algorithm.

  12. Analysis of e-learning implementation readiness based on integrated elr model

    Science.gov (United States)

    Adiyarta, K.; Napitupulu, D.; Rahim, R.; Abdullah, D.; Setiawan, MI

    2018-04-01

    E-learning nowadays has become a requirement for institutions to support their learning activities. To adopt e-learning, an institution requires a large strategy and resources for optimal application. Unfortunately, not all institutions that have used e-learning got the desired results or expectations. This study aims to identify the extent of the level of readiness of e-learning implementation in institution X. The degree of institutional readiness will determine the success of future e-learning utilization. In addition, institutional readiness measurement are needed to evaluate the effectiveness of strategies in e-learning development. The research method used is survey with questionnaire designed based on integration of 8 best practice ELR (e-learning readiness) model. The results showed that from 13 factors of integrated ELR model being measured, there are 3 readiness factors included in the category of not ready and needs a lot of work. They are human resource (2.57), technology skill (2.38) and content factors (2.41). In general, e-learning implementation in institutions is in the category of not ready but needs some of work (3.27). Therefore, the institution should consider which factors or areas of ELR factors are considered still not ready and needs improvement in the future.

  13. MODEL DISCOVERY LEARNING DENGAN PENDEKATAN SAINTIFIK BERMUATAN KARAKTER UNTUK MENINGKATKAN KEMAMPUAN BERPIKIR KREATIF

    Directory of Open Access Journals (Sweden)

    Hendra Erik Rudyanto

    2016-11-01

    Full Text Available This Study aims to produce a model learning device discovery learning with scientific approach to improve the character charged valid creative thinking, practical and effective. The model refers to a model of learning development includes activities Plomp initial investigation, design, realization/contruction, testing, evaluation and revision. The results showed that (1 learning tools developed valid; syllabus ehit an average of 3,3 (very good; RPP with an average of 3,2 (good; LKS with an average of 3,2 (good; textbook student with an average of 3,3 (very good; and TKBK with an average of 3,5 (good.; (2 the stated learning practical , namely: 1 the activity of student on both criteria, an average score 74,1%; 2 the activity of the teacher are very good on the criterion, the average score of 98,25; 3 positive teacher response, a score of 97,14; 4 positive students response, average 89,73.; (3 the learning of mathematics is declared effective the indicator 1 traffic to think creatively achieve mastery with the average value of 71,55 and a classical completeness reaches 90%; 2 the average grade of creative thinking ability model of discovery learning with scientific approachis better than ekspositori class; 3 the character of the curiosity and skills to communicate a positive influence on the ability to think creatively; and 4 an increase in the ability to think creatively in class models discovery learning with scientific approach.   Keywords: discovery learning, scientific approach, creative thinking ability.

  14. Prenatal treatment prevents learning deficit in Down syndrome model.

    Science.gov (United States)

    Incerti, Maddalena; Horowitz, Kari; Roberson, Robin; Abebe, Daniel; Toso, Laura; Caballero, Madeline; Spong, Catherine Y

    2012-01-01

    Down syndrome is the most common genetic cause of mental retardation. Active fragments of neurotrophic factors release by astrocyte under the stimulation of vasoactive intestinal peptide, NAPVSIPQ (NAP) and SALLRSIPA (SAL) respectively, have shown therapeutic potential for developmental delay and learning deficits. Previous work demonstrated that NAP+SAL prevent developmental delay and glial deficit in Ts65Dn that is a well-characterized mouse model for Down syndrome. The objective of this study is to evaluate if prenatal treatment with these peptides prevents the learning deficit in the Ts65Dn mice. Pregnant Ts65Dn female and control pregnant females were randomly treated (intraperitoneal injection) on pregnancy days 8 through 12 with saline (placebo) or peptides (NAP 20 µg +SAL 20 µg) daily. Learning was assessed in the offspring (8-10 months) using the Morris Watermaze, which measures the latency to find the hidden platform (decrease in latency denotes learning). The investigators were blinded to the prenatal treatment and genotype. Pups were genotyped as trisomic (Down syndrome) or euploid (control) after completion of all tests. two-way ANOVA followed by Neuman-Keuls test for multiple comparisons, PDown syndrome-placebo; n = 11) did not demonstrate learning over the five day period. DS mice that were prenatally exposed to peptides (Down syndrome-peptides; n = 10) learned significantly better than Down syndrome-placebo (ptreatment with the neuroprotective peptides (NAP+SAL) prevented learning deficits in a Down syndrome model. These findings highlight a possibility for the prevention of sequelae in Down syndrome and suggest a potential pregnancy intervention that may improve outcome.

  15. Genetic Learning of Fuzzy Parameters in Predictive and Decision Support Modelling

    Directory of Open Access Journals (Sweden)

    Nebot

    2012-04-01

    Full Text Available In this research a genetic fuzzy system (GFS is proposed that performs discretization parameter learning in the context of the Fuzzy Inductive Reasoning (FIR methodology and the Linguistic Rule FIR (LR-FIR algorithm. The main goal of the GFS is to take advantage of the potentialities of GAs to learn the fuzzification parameters of the FIR and LR-FIR approaches in order to obtain reliable and useful predictive (FIR models and decision support (LR-FIR models. The GFS is evaluated in an e-learning context.

  16. A Model for In-service Teacher Learning in the Context of an Innovation

    Science.gov (United States)

    Coenders, Fer; Terlouw, Cees

    2015-08-01

    When curricula change, teachers have to bring their knowledge and beliefs up to date. Two aspects can be distinguished: what do teachers learn and how is it learned. Two groups of teachers were involved during the preparation of a new chemistry curriculum. One group developed student learning material and subsequently enacted this in class. Another group only class-enacted this. Based on teacher learning, a model to understand teacher growth is presented. As the combination of a development phase with a class enactment phase proved instrumental, an existing model, the interconnected model of teacher professional growth, was extended. The consequence is that for teacher learning for a renewal a (re)development phase followed by a class enactment phase is essential.

  17. Online Library of Scientific Models, A New Way to Teach, Learn, and Share Learning Experience

    Directory of Open Access Journals (Sweden)

    Hatem H. Elrefaei

    2008-05-01

    Full Text Available While scientific models are usually communicated in paper format, the need to reprogram every model by every user results in a huge loss of efforts, time and money, hence lengthening the educational and research developing cycle and loosing the learning experience and expertise gained by every user. We demonstrate a new portal www.imodelit.com that hosts a library of scientific models for electrical engineers in the form of java applets. They are all conformal, informative, with strong input and output filing system. The software design allows a fast developing cycle and it represents a strong infrastructure that can be shared by researchers to develop their own applets to be posted on the library. We aim for a community based library of scientific models that enhances the e-learning process for engineering students.

  18. Toward a Generative Model of the Teaching-Learning Process.

    Science.gov (United States)

    McMullen, David W.

    Until the rise of cognitive psychology, models of the teaching-learning process (TLP) stressed external rather than internal variables. Models remained general descriptions until control theory introduced explicit system analyses. Cybernetic models emphasize feedback and adaptivity but give little attention to creativity. Research on artificial…

  19. Knowledge models as agents of meaninful learning and knowledge creation.

    OpenAIRE

    Fermín María González García; Jorge Fernando Veloz Ortiz; Iovanna Alejandra Rodríguez Moreno; Luis Efrén Velos Ortiz; Beatriz Guardián Soto; Antoni Ballester Valori

    2013-01-01

    The educational change that pushes the current context requires a shift in the unfortunately predominant positivist-behaviourist model that favours mechanical      memoristic learning, ideal breeding ground for the existence and maintenance of conceptual errors, to another cognitive-constructivist that stimulates meaningful learning to allow students to build and master knowledge, therefore to be more creative and critical. We present here a model of knowledge where students construct new...

  20. Best-practice model for technology enhanced learning in the creative arts

    Directory of Open Access Journals (Sweden)

    Jess Power

    2016-12-01

    Full Text Available This paper presents a best-practice model for the redesign of virtual learning environments (VLEs within creative arts to augment blended learning. In considering a blended learning best-practice model, three factors should be considered: the conscious and active human intervention, good learning design and pedagogical input, and the sensitive handling of the process by trained professionals. This study is based on a comprehensive VLE content analysis conducted across two academic schools within the creative arts at one Post-92 higher education (HE institution. It was found that four main barriers affect the use of the VLE within creative arts: lack of flexibility in relation to navigation and interface, time in developing resources, competency level of tutors (confidence in developing online resources balanced against other flexible open resources and factors affecting the engagement of ‘digital residents’. The experimental approach adopted in this study involved a partnership between the learning technology advisor and academic staff, which resulted in a VLE best-practice model that focused directly on improving aesthetics and navigation. The approach adopted in this study allowed a purposive sample of academic staff to engage as participants, stepping back cognitively from their routine practices in relation to their use of the VLE and questioning approaches to how they embed the VLE to support teaching and learning. The model presented in this paper identified a potential solution to overcome the challenges of integrating the VLE within creative arts. The findings of this study demonstrate positive impact on staff and student experience and provide a sustainable model of good practice for the redesign of the VLE within creative disciplines.

  1. Application of Model Project Based Learning on Integrated Science in Water Pollution

    Science.gov (United States)

    Yamin, Y.; Permanasari, A.; Redjeki, S.; Sopandi, W.

    2017-09-01

    The function of this research was to analyze the influence model Project Based Learning (PjBl) on integrated science about the concept mastery for junior high school students. Method used for this research constitutes the quasi of experiment method. Population and sample for this research are the students junior high school in Bandung as many as two classes to be experiment and control class. The instrument that used for this research is the test concept mastery, assessment questionnaire of product and the questionnaire responses of the student about learning integrated science. Based on the result of this research get some data that with accomplishment the model of PjBl. Learning authority of integrated science can increase the concept mastery for junior high school students. The highest increase in the theme of pollution water is in the concept of mixtures and the separation method. The students give a positive response in learning of integrated science for the theme of pollution of the water used model PjBL with questionnaire of the opinion aspect in amount of 83.5%, the anxiety of the students in amount of 95.5%, the profit learning model of PjBL in amount of 96.25% and profit learning of integrated science in amount of 95.75%.

  2. KAJIAN KONSEPTUAL MODEL PEMBELAJARAN BLENDED LEARNING BERBASIS WEB UNTUK MENINGKATKAN HASIL BELAJAR DAN MOTIVASI BELAJAR

    Directory of Open Access Journals (Sweden)

    Ahmad Kholiqul Amin

    2017-07-01

    Full Text Available Abstract: Conceptual Analysis of  Web basis Blended learning teaching model to improve the student’s achievement and motivation.. In this article, describe the content of some research result journals which is focuses on the blended learning teaching model. The research result which is analyzed based on searching result of online journal database such as database Education Resources Information Center (ERIC, The turkish Online Journal of Education Tecnology (TOJET dan Academics’ research center (ARC. In this article, for about twenty international journals focused on blended learning teaching model. This article discuss based on blended learning limitation. i.e.  the concept of blended learning, research method, technique of collecting data, research  instrument, data analysis. The discussion of this article partly as a reference to conduct further research. The result of this conceptual study from some journals show that blended learning is a mix method among conventional learning and online learning. The students expected to be actively to find out the learning technique  which is comfortable for the students. Teacher has a function as mediator, facilitator, and also as a friend who always build conducive situation for the students. Blended learning will also strength conventional model through the development of technology for education. Beside, the result of the journals can be concluded that the average of the research result in blended learning also contribute to the student’s achievement . Keywords:  Abstrak: Kjian Konseptual Model Pemebelajaran Blended Learning berbasis web untuk meningkatkan hasil belajar dan motivasi belajar. Pada artikel ini memaparkan kajian isi jurnal dari beberapa hasil penelitian yang difokuskan pada model pembelajaran blended learning. Hasil jurnal penelitian yang dianalisis berdasarkan dari hasil penelusuran database jurnal online seperti database Education Resources Information Center (ERIC, The

  3. A Metadata Model for E-Learning Coordination through Semantic Web Languages

    Science.gov (United States)

    Elci, Atilla

    2005-01-01

    This paper reports on a study aiming to develop a metadata model for e-learning coordination based on semantic web languages. A survey of e-learning modes are done initially in order to identify content such as phases, activities, data schema, rules and relations, etc. relevant for a coordination model. In this respect, the study looks into the…

  4. Ready to learn physics: a team-based learning model for first year university

    Science.gov (United States)

    Parappilly, Maria; Schmidt, Lisa; De Ritter, Samantha

    2015-09-01

    Team-based learning (TBL) is an established model of group work which aims to improve students' ability to apply discipline-related content. TBL consists of a readiness assurance process (RAP), student groups and application activities. While TBL has not been implemented widely in science, technology, engineering and mathematics disciplines, it has been effective in improving student learning in other disciplines. This paper describes the incorporation of TBL activities into a non-calculus based introductory level physics topic—Physics for the Modern World. Students were given pre-class preparation materials and an individual RAP online test before the workshops. The pre-workshop individual RAP test ensured that all students were exposed to concept-based questions before their workshops and motivated them to use the preparatory materials in readiness for the workshop. The students were placed into random teams and during the first part of the workshop, the teams went through a subset of the quiz questions (team RAP test) and in the remaining time, teams completed an in-class assignment. After the workshop students were allowed another attempt at the individual RAP test to see if their knowledge had improved. The ability of TBL to promote student learning of key concepts was evaluated by experiment using pre- and post- testing. The students’ perception of TBL was monitored by discussion posts and survey responses. Finally, the ability of TBL to support peer-peer interaction was evaluated by video analysis of the class. We found that the TBL process improved student learning; students did interact with each other in class; and the students had a positive view of TBL. To assess the transferability of this model to other topics, we conducted a comparison study with an environmental science topic which produced similar results. Our study supports the use of this TBL model in science topics.

  5. Implementation of K-Means Clustering Method for Electronic Learning Model

    Science.gov (United States)

    Latipa Sari, Herlina; Suranti Mrs., Dewi; Natalia Zulita, Leni

    2017-12-01

    Teaching and Learning process at SMK Negeri 2 Bengkulu Tengah has applied e-learning system for teachers and students. The e-learning was based on the classification of normative, productive, and adaptive subjects. SMK Negeri 2 Bengkulu Tengah consisted of 394 students and 60 teachers with 16 subjects. The record of e-learning database was used in this research to observe students’ activity pattern in attending class. K-Means algorithm in this research was used to classify students’ learning activities using e-learning, so that it was obtained cluster of students’ activity and improvement of student’s ability. Implementation of K-Means Clustering method for electronic learning model at SMK Negeri 2 Bengkulu Tengah was conducted by observing 10 students’ activities, namely participation of students in the classroom, submit assignment, view assignment, add discussion, view discussion, add comment, download course materials, view article, view test, and submit test. In the e-learning model, the testing was conducted toward 10 students that yielded 2 clusters of membership data (C1 and C2). Cluster 1: with membership percentage of 70% and it consisted of 6 members, namely 1112438 Anggi Julian, 1112439 Anis Maulita, 1112441 Ardi Febriansyah, 1112452 Berlian Sinurat, 1112460 Dewi Anugrah Anwar and 1112467 Eka Tri Oktavia Sari. Cluster 2:with membership percentage of 30% and it consisted of 4 members, namely 1112463 Dosita Afriyani, 1112471 Erda Novita, 1112474 Eskardi and 1112477 Fachrur Rozi.

  6. Enhanced HMAX model with feedforward feature learning for multiclass categorization

    Directory of Open Access Journals (Sweden)

    Yinlin eLi

    2015-10-01

    Full Text Available In recent years, the interdisciplinary research between neuroscience and computer vision has promoted the development in both fields. Many biologically inspired visual models are proposed, and among them, the Hierarchical Max-pooling model (HMAX is a feedforward model mimicking the structures and functions of V1 to posterior inferotemporal (PIT layer of the primate visual cortex, which could generate a series of position- and scale- invariant features. However, it could be improved with attention modulation and memory processing, which are two important properties of the primate visual cortex. Thus, in this paper, based on recent biological research on the primate visual cortex, we still mimic the first 100-150 milliseconds of visual cognition to enhance the HMAX model, which mainly focuses on the unsupervised feedforward feature learning process. The main modifications are as follows: 1 To mimic the attention modulation mechanism of V1 layer, a bottom-up saliency map is computed in the S1 layer of the HMAX model, which can support the initial feature extraction for memory processing; 2 To mimic the learning, clustering and short-term memory to long-term memory conversion abilities of V2 and IT, an unsupervised iterative clustering method is used to learn clusters with multiscale middle level patches, which are taken as long-term memory; 3 Inspired by the multiple feature encoding mode of the primate visual cortex, information including color, orientation, and spatial position are encoded in different layers of the HMAX model progressively. By adding a softmax layer at the top of the model, multiclass categorization experiments can be conducted, and the results on Caltech101 show that the enhanced model with a smaller memory size exhibits higher accuracy than the original HMAX model, and could also achieve better accuracy than other unsupervised feature learning methods in multiclass categorization task.

  7. Enhanced HMAX model with feedforward feature learning for multiclass categorization.

    Science.gov (United States)

    Li, Yinlin; Wu, Wei; Zhang, Bo; Li, Fengfu

    2015-01-01

    In recent years, the interdisciplinary research between neuroscience and computer vision has promoted the development in both fields. Many biologically inspired visual models are proposed, and among them, the Hierarchical Max-pooling model (HMAX) is a feedforward model mimicking the structures and functions of V1 to posterior inferotemporal (PIT) layer of the primate visual cortex, which could generate a series of position- and scale- invariant features. However, it could be improved with attention modulation and memory processing, which are two important properties of the primate visual cortex. Thus, in this paper, based on recent biological research on the primate visual cortex, we still mimic the first 100-150 ms of visual cognition to enhance the HMAX model, which mainly focuses on the unsupervised feedforward feature learning process. The main modifications are as follows: (1) To mimic the attention modulation mechanism of V1 layer, a bottom-up saliency map is computed in the S1 layer of the HMAX model, which can support the initial feature extraction for memory processing; (2) To mimic the learning, clustering and short-term memory to long-term memory conversion abilities of V2 and IT, an unsupervised iterative clustering method is used to learn clusters with multiscale middle level patches, which are taken as long-term memory; (3) Inspired by the multiple feature encoding mode of the primate visual cortex, information including color, orientation, and spatial position are encoded in different layers of the HMAX model progressively. By adding a softmax layer at the top of the model, multiclass categorization experiments can be conducted, and the results on Caltech101 show that the enhanced model with a smaller memory size exhibits higher accuracy than the original HMAX model, and could also achieve better accuracy than other unsupervised feature learning methods in multiclass categorization task.

  8. Impact of censoring on learning Bayesian networks in survival modelling.

    Science.gov (United States)

    Stajduhar, Ivan; Dalbelo-Basić, Bojana; Bogunović, Nikola

    2009-11-01

    Bayesian networks are commonly used for presenting uncertainty and covariate interactions in an easily interpretable way. Because of their efficient inference and ability to represent causal relationships, they are an excellent choice for medical decision support systems in diagnosis, treatment, and prognosis. Although good procedures for learning Bayesian networks from data have been defined, their performance in learning from censored survival data has not been widely studied. In this paper, we explore how to use these procedures to learn about possible interactions between prognostic factors and their influence on the variate of interest. We study how censoring affects the probability of learning correct Bayesian network structures. Additionally, we analyse the potential usefulness of the learnt models for predicting the time-independent probability of an event of interest. We analysed the influence of censoring with a simulation on synthetic data sampled from randomly generated Bayesian networks. We used two well-known methods for learning Bayesian networks from data: a constraint-based method and a score-based method. We compared the performance of each method under different levels of censoring to those of the naive Bayes classifier and the proportional hazards model. We did additional experiments on several datasets from real-world medical domains. The machine-learning methods treated censored cases in the data as event-free. We report and compare results for several commonly used model evaluation metrics. On average, the proportional hazards method outperformed other methods in most censoring setups. As part of the simulation study, we also analysed structural similarities of the learnt networks. Heavy censoring, as opposed to no censoring, produces up to a 5% surplus and up to 10% missing total arcs. It also produces up to 50% missing arcs that should originally be connected to the variate of interest. Presented methods for learning Bayesian networks from

  9. Modelling the pre-assessment learning effects of assessment: evidence in the validity chain.

    Science.gov (United States)

    Cilliers, Francois J; Schuwirth, Lambert W T; van der Vleuten, Cees P M

    2012-11-01

    We previously developed a model of the pre-assessment learning effects of consequential assessment and started to validate it. The model comprises assessment factors, mechanism factors and learning effects. The purpose of this study was to continue the validation process. For stringency, we focused on a subset of assessment factor-learning effect associations that featured least commonly in a baseline qualitative study. Our aims were to determine whether these uncommon associations were operational in a broader but similar population to that in which the model was initially derived. A cross-sectional survey of 361 senior medical students at one medical school was undertaken using a purpose-made questionnaire based on a grounded theory and comprising pairs of written situational tests. In each pair, the manifestation of an assessment factor was varied. The frequencies at which learning effects were selected were compared for each item pair, using an adjusted alpha to assign significance. The frequencies at which mechanism factors were selected were calculated. There were significant differences in the learning effect selected between the two scenarios of an item pair for 13 of this subset of 21 uncommon associations, even when a p-value of value. For a subset of uncommon associations in the model, the role of most assessment factor-learning effect associations and the mechanism factors involved were supported in a broader but similar population to that in which the model was derived. Although model validation is an ongoing process, these results move the model one step closer to the stage of usefully informing interventions. Results illustrate how factors not typically included in studies of the learning effects of assessment could confound the results of interventions aimed at using assessment to influence learning. © Blackwell Publishing Ltd 2012.

  10. Empirical model development and validation with dynamic learning in the recurrent multilayer perception

    International Nuclear Information System (INIS)

    Parlos, A.G.; Chong, K.T.; Atiya, A.F.

    1994-01-01

    A nonlinear multivariable empirical model is developed for a U-tube steam generator using the recurrent multilayer perceptron network as the underlying model structure. The recurrent multilayer perceptron is a dynamic neural network, very effective in the input-output modeling of complex process systems. A dynamic gradient descent learning algorithm is used to train the recurrent multilayer perceptron, resulting in an order of magnitude improvement in convergence speed over static learning algorithms. In developing the U-tube steam generator empirical model, the effects of actuator, process,and sensor noise on the training and testing sets are investigated. Learning and prediction both appear very effective, despite the presence of training and testing set noise, respectively. The recurrent multilayer perceptron appears to learn the deterministic part of a stochastic training set, and it predicts approximately a moving average response. Extensive model validation studies indicate that the empirical model can substantially generalize (extrapolate), though online learning becomes necessary for tracking transients significantly different than the ones included in the training set and slowly varying U-tube steam generator dynamics. In view of the satisfactory modeling accuracy and the associated short development time, neural networks based empirical models in some cases appear to provide a serious alternative to first principles models. Caution, however, must be exercised because extensive on-line validation of these models is still warranted

  11. Innovative learning model for improving students’ argumentation skill and concept understanding on science

    Science.gov (United States)

    Nafsiati Astuti, Rini

    2018-04-01

    Argumentation skill is the ability to compose and maintain arguments consisting of claims, supports for evidence, and strengthened-reasons. Argumentation is an important skill student needs to face the challenges of globalization in the 21st century. It is not an ability that can be developed by itself along with the physical development of human, but it must be developed under nerve like process, giving stimulus so as to require a person to be able to argue. Therefore, teachers should develop students’ skill of arguing in science learning in the classroom. The purpose of this study is to obtain an innovative learning model that are valid in terms of content and construct in improving the skills of argumentation and concept understanding of junior high school students. The assessment of content validity and construct validity was done through Focus Group Discussion (FGD), using the content and construct validation sheet, book model, learning video, and a set of learning aids for one meeting. Assessment results from 3 (three) experts showed that the learning model developed in the category was valid. The validity itself shows that the developed learning model has met the content requirement, the student needs, state of the art, strong theoretical and empirical foundation and construct validity, which has a connection of syntax stages and components of learning model so that it can be applied in the classroom activities

  12. A Learning Model for L/M Specificity in Ganglion Cells

    Science.gov (United States)

    Ahumada, Albert J.

    2016-01-01

    An unsupervised learning model for developing LM specific wiring at the ganglion cell level would support the research indicating LM specific wiring at the ganglion cell level (Reid and Shapley, 2002). Removing the contributions to the surround from cells of the same cone type improves the signal-to-noise ratio of the chromatic signals. The unsupervised learning model used is Hebbian associative learning, which strengthens the surround input connections according to the correlation of the output with the input. Since the surround units of the same cone type as the center are redundant with the center, their weights end up disappearing. This process can be thought of as a general mechanism for eliminating unnecessary cells in the nervous system.

  13. Attacking Machine Learning models as part of a cyber kill chain

    OpenAIRE

    Nguyen, Tam N.

    2017-01-01

    Machine learning is gaining popularity in the network security domain as many more network-enabled devices get connected, as malicious activities become stealthier, and as new technologies like Software Defined Networking emerge. Compromising machine learning model is a desirable goal. In fact, spammers have been quite successful getting through machine learning enabled spam filters for years. While previous works have been done on adversarial machine learning, none has been considered within...

  14. Inhibition of vicariously learned fear in children using positive modeling and prior exposure.

    Science.gov (United States)

    Askew, Chris; Reynolds, Gemma; Fielding-Smith, Sarah; Field, Andy P

    2016-02-01

    One of the challenges to conditioning models of fear acquisition is to explain how different individuals can experience similar learning events and only some of them subsequently develop fear. Understanding factors moderating the impact of learning events on fear acquisition is key to understanding the etiology and prevention of fear in childhood. This study investigates these moderators in the context of vicarious (observational) learning. Two experiments tested predictions that the acquisition or inhibition of fear via vicarious learning is driven by associative learning mechanisms similar to direct conditioning. In Experiment 1, 3 groups of children aged 7 to 9 years received 1 of 3 inhibitive information interventions-psychoeducation, factual information, or no information (control)-prior to taking part in a vicarious fear learning procedure. In Experiment 2, 3 groups of children aged 7 to 10 years received 1 of 3 observational learning interventions-positive modeling (immunization), observational familiarity (latent inhibition), or no prevention (control)-before vicarious fear learning. Results indicated that observationally delivered manipulations inhibited vicarious fear learning, while preventions presented via written information did not. These findings confirm that vicarious learning shares some of the characteristics of direct conditioning and can explain why not all individuals will develop fear following a vicarious learning event. They also suggest that the modality of inhibitive learning is important and should match the fear learning pathway for increased chances of inhibition. Finally, the results demonstrate that positive modeling is likely to be a particularly effective method for preventing fear-related observational learning in children. (c) 2016 APA, all rights reserved).

  15. Design of an Effective WSN-Based Interactive u-Learning Model

    OpenAIRE

    Kim, Hye-jin; Caytiles, Ronnie D.; Kim, Tai-hoon

    2012-01-01

    Wireless sensor networks include a wide range of potential applications to improve the quality of teaching and learning in a ubiquitous environment. WSNs become an evolving technology that acts as the ultimate interface between the learners and the context, enhancing the interactivity and improving the acquisition or collection of learner's contextual information in ubiquitous learning. This paper presents a model of an effective and interactive ubiquitous learning environment system based on...

  16. Improving a Deep Learning based RGB-D Object Recognition Model by Ensemble Learning

    DEFF Research Database (Denmark)

    Aakerberg, Andreas; Nasrollahi, Kamal; Heder, Thomas

    2018-01-01

    Augmenting RGB images with depth information is a well-known method to significantly improve the recognition accuracy of object recognition models. Another method to im- prove the performance of visual recognition models is ensemble learning. However, this method has not been widely explored...... in combination with deep convolutional neural network based RGB-D object recognition models. Hence, in this paper, we form different ensembles of complementary deep convolutional neural network models, and show that this can be used to increase the recognition performance beyond existing limits. Experiments...

  17. Theory-based Bayesian models of inductive learning and reasoning.

    Science.gov (United States)

    Tenenbaum, Joshua B; Griffiths, Thomas L; Kemp, Charles

    2006-07-01

    Inductive inference allows humans to make powerful generalizations from sparse data when learning about word meanings, unobserved properties, causal relationships, and many other aspects of the world. Traditional accounts of induction emphasize either the power of statistical learning, or the importance of strong constraints from structured domain knowledge, intuitive theories or schemas. We argue that both components are necessary to explain the nature, use and acquisition of human knowledge, and we introduce a theory-based Bayesian framework for modeling inductive learning and reasoning as statistical inferences over structured knowledge representations.

  18. Language learning apps or games: an investigation utilizing the RETAIN model

    Directory of Open Access Journals (Sweden)

    Glenda A. Gunter

    2016-01-01

    Full Text Available Abstract: Combining games with mobile devices can promote learning opportunities at the learners' fingertips and enable ubiquitous learning experiences. As teachers increasingly assign games to reinforce language learning, it becomes essential to evaluate how effective these applications are in helping students learn the content or develop the skills that the games are reinforcing. This article examines two English language learning apps under the RETAIN model (GUNTER; KENNY; VICK, 2008. The findings indicate that although these apps offer some language learning opportunities, they do not present scenario-based quality or gameplay, among other elements, if they are to be considered games.

  19. Hebbian learning in a model with dynamic rate-coded neurons: an alternative to the generative model approach for learning receptive fields from natural scenes.

    Science.gov (United States)

    Hamker, Fred H; Wiltschut, Jan

    2007-09-01

    Most computational models of coding are based on a generative model according to which the feedback signal aims to reconstruct the visual scene as close as possible. We here explore an alternative model of feedback. It is derived from studies of attention and thus, probably more flexible with respect to attentive processing in higher brain areas. According to this model, feedback implements a gain increase of the feedforward signal. We use a dynamic model with presynaptic inhibition and Hebbian learning to simultaneously learn feedforward and feedback weights. The weights converge to localized, oriented, and bandpass filters similar as the ones found in V1. Due to presynaptic inhibition the model predicts the organization of receptive fields within the feedforward pathway, whereas feedback primarily serves to tune early visual processing according to the needs of the task.

  20. An implementation of 7E Learning Cycle Model to Improve Student Self-esteem

    Science.gov (United States)

    Firdaus, F.; Priatna, N.; Suhendra, S.

    2017-09-01

    One of the affective factors that affect student learning outcomes is student self-esteem in mathematics, learning achievement and self-esteem influence each other. The purpose of this research is to know whether self-esteem students who get 7E learning cycle model is better than students who get conventional learning. This research method is a non-control group design. Based on the results obtained that the normal and homogeneous data so that the t test and from the test results showed there are significant differences in self-esteem students learning with 7E learning cycle model compared with students who get conventional learning. The implications of the results of this study are that students should be required to conduct many discussions, presentations and evaluations on classroom activities as these learning stages can improve students’ self-esteem especially pride in the results achieved.

  1. Occam factors and model independent Bayesian learning of continuous distributions

    International Nuclear Information System (INIS)

    Nemenman, Ilya; Bialek, William

    2002-01-01

    Learning of a smooth but nonparametric probability density can be regularized using methods of quantum field theory. We implement a field theoretic prior numerically, test its efficacy, and show that the data and the phase space factors arising from the integration over the model space determine the free parameter of the theory ('smoothness scale') self-consistently. This persists even for distributions that are atypical in the prior and is a step towards a model independent theory for learning continuous distributions. Finally, we point out that a wrong parametrization of a model family may sometimes be advantageous for small data sets

  2. STEPP: A Grounded Model to Assure the Quality of Instructional Activities in e-Learning Environments

    Directory of Open Access Journals (Sweden)

    Hamdy AHMED ABDELAZIZ

    2013-07-01

    Full Text Available The present theoretical paper aims to develop a grounded model for designing instructional activities appropriate to e-learning and online learning environments. The suggested model is guided by learning principles of cognitivism, constructivism, and connectivism learning principles to help online learners constructing meaningful experiences and moving from knowledge acquisition to knowledge creation process. The proposed model consists of five dynamic and grounded domains that assure the quality of designing and using e-learning activities: Ø Social Domain; Ø Technological Domain; Ø Epistemological Domain; Ø Psychological domain; and Ø Pedagogical Domain. Each of these domains needs four types of presences to reflect the design and the application process of e-learning activities. These four presences are: Ø cognitive presence, Ø human presence, Ø psychological presence and Ø mental presence. Applying the proposed model (STEPP throughout all online and adaptive e-learning environments may improve the process of designing and developing e-learning activities to be used as mindtools for current and future learners.

  3. Cross-Situational Learning with Bayesian Generative Models for Multimodal Category and Word Learning in Robots

    Directory of Open Access Journals (Sweden)

    Akira Taniguchi

    2017-12-01

    Full Text Available In this paper, we propose a Bayesian generative model that can form multiple categories based on each sensory-channel and can associate words with any of the four sensory-channels (action, position, object, and color. This paper focuses on cross-situational learning using the co-occurrence between words and information of sensory-channels in complex situations rather than conventional situations of cross-situational learning. We conducted a learning scenario using a simulator and a real humanoid iCub robot. In the scenario, a human tutor provided a sentence that describes an object of visual attention and an accompanying action to the robot. The scenario was set as follows: the number of words per sensory-channel was three or four, and the number of trials for learning was 20 and 40 for the simulator and 25 and 40 for the real robot. The experimental results showed that the proposed method was able to estimate the multiple categorizations and to learn the relationships between multiple sensory-channels and words accurately. In addition, we conducted an action generation task and an action description task based on word meanings learned in the cross-situational learning scenario. The experimental results showed that the robot could successfully use the word meanings learned by using the proposed method.

  4. Use of machine learning techniques for modeling of snow depth

    Directory of Open Access Journals (Sweden)

    G. V. Ayzel

    2017-01-01

    Full Text Available Snow exerts significant regulating effect on the land hydrological cycle since it controls intensity of heat and water exchange between the soil-vegetative cover and the atmosphere. Estimating of a spring flood runoff or a rain-flood on mountainous rivers requires understanding of the snow cover dynamics on a watershed. In our work, solving a problem of the snow cover depth modeling is based on both available databases of hydro-meteorological observations and easily accessible scientific software that allows complete reproduction of investigation results and further development of this theme by scientific community. In this research we used the daily observational data on the snow cover and surface meteorological parameters, obtained at three stations situated in different geographical regions: Col de Porte (France, Sodankyla (Finland, and Snoquamie Pass (USA.Statistical modeling of the snow cover depth is based on a complex of freely distributed the present-day machine learning models: Decision Trees, Adaptive Boosting, Gradient Boosting. It is demonstrated that use of combination of modern machine learning methods with available meteorological data provides the good accuracy of the snow cover modeling. The best results of snow cover depth modeling for every investigated site were obtained by the ensemble method of gradient boosting above decision trees – this model reproduces well both, the periods of snow cover accumulation and its melting. The purposeful character of learning process for models of the gradient boosting type, their ensemble character, and use of combined redundancy of a test sample in learning procedure makes this type of models a good and sustainable research tool. The results obtained can be used for estimating the snow cover characteristics for river basins where hydro-meteorological information is absent or insufficient.

  5. Integrating Machine Learning into a Crowdsourced Model for Earthquake-Induced Damage Assessment

    Science.gov (United States)

    Rebbapragada, Umaa; Oommen, Thomas

    2011-01-01

    On January 12th, 2010, a catastrophic 7.0M earthquake devastated the country of Haiti. In the aftermath of an earthquake, it is important to rapidly assess damaged areas in order to mobilize the appropriate resources. The Haiti damage assessment effort introduced a promising model that uses crowdsourcing to map damaged areas in freely available remotely-sensed data. This paper proposes the application of machine learning methods to improve this model. Specifically, we apply work on learning from multiple, imperfect experts to the assessment of volunteer reliability, and propose the use of image segmentation to automate the detection of damaged areas. We wrap both tasks in an active learning framework in order to shift volunteer effort from mapping a full catalog of images to the generation of high-quality training data. We hypothesize that the integration of machine learning into this model improves its reliability, maintains the speed of damage assessment, and allows the model to scale to higher data volumes.

  6. PENGEMBANGAN LKS DENGAN MODEL DISCOVERY LEARNING PADA MATERI IRISAN DUA LINGKARAN

    Directory of Open Access Journals (Sweden)

    Harisman Nizar

    2016-07-01

    Full Text Available This research aims at (1producing a valid and practical LKS (Student Worksheet in discovery learning model in two circles intersection material in class XI, and (2 to find out the potential effect toward the learning outcomes from the development of LKS with discovery learning model in two circles intersections material in class XI MIA. The design ofthis research is a developmental study. The subjects of this research were 33 students of XI MIA 1 SMA N 1 Indralaya in academic year 2015/2016. The data collecting technique used were observation, test, and interview. The result of the researches were : (1 This research produced a valid and practical LKS with discovery learning model in two circles intersections material in class XI MIA withsome characteristics such as, (a Contain the operational steps of discovery learning model, (b Help students in finding the concept of two circles intersections model. (c Make students active in learning. Being valid can be seen from the results of validator assessment, where the validator comments on the first prototype of LKS from content, construct, and language. Being practical can be seen from the results of  small group try out, in which it was based on analysis of the answer sheets of students, it was found that students were able to complete each steps there and students’ comments obtained from the sheets that stated the LKS given was easy to be done by students. (2 The developed LKS consisted of potential effect toward the learning outcomes from cognitive (knowledge, affective (attitude, and psychomotor (skill. In the cognitive domain 81.81% of students got score > 65, in the affective domain all of the students had shown an attitude of honesty and responsiveness shown by observations during LKS usage, as well as in the of psychomotor domain skills all of students had good skill that seen from the result of students performance.

  7. Evaluation of quality of pedagogic model for blended learning on course “Life safety”

    Directory of Open Access Journals (Sweden)

    M. V. Legan

    2016-01-01

    Full Text Available The article is devoted to evaluating the quality of the pedagogical model for the students’ blended learning on the course «Health and Safety». A choice of the used technologies, forms, active and interactive methods in the learning process, learning tools is made; a new generation of multi-media resources is developed; the quality of teaching evaluation by blended learning model according to the process approach is carried out.The purpose of the study was to assess the quality blended learning model with different ratios of classroom and e-learning component of students on the course “Health and Safety”.Two groups of students were involved in the experiment:1st experimental group (152 persons were the students of all areas of training, learning on the course “Health and Safety”, using a blended approach. E-learning technologies were used to provide the access to information resources (electronic educational-methodical complex on discipline, placed in the electronic educational environment of the University, the organization of self-study, sending the lecturer coursework and examinations, passing the intermediate and final testing for the purpose of monitoring assessment of the knowledge quality. This kind of blended learning models («with a web-enabled learning» is characterized by the addition of electronic educational resources without reducing the hours of a traditional component.2nd experimental group: (164 persons – students enrolled in the course «Health and Safety» in the blended learning model. Students have been using the distance technology for self-study according to the curriculum – 80% of university hours. Personal communication («face to face» was with the lecturer during the session.We have tested two groups of students who participated in the experiment (final control via a module testing electronic environment. In order to assess the quality of blended learning model we used a process approach. An

  8. An analysis of mathematical connection ability based on student learning style on visualization auditory kinesthetic (VAK) learning model with self-assessment

    Science.gov (United States)

    Apipah, S.; Kartono; Isnarto

    2018-03-01

    This research aims to analyze the quality of VAK learning with self-assessment toward the ability of mathematical connection performed by students and to analyze students’ mathematical connection ability based on learning styles in VAK learning model with self-assessment. This research applies mixed method type with concurrent embedded design. The subject of this research consists of VIII grade students from State Junior High School 9 Semarang who apply visual learning style, auditory learning style, and kinesthetic learning style. The data of learning style is collected by using questionnaires, the data of mathematical connection ability is collected by performing tests, and the data of self-assessment is collected by using assessment sheets. The quality of learning is qualitatively valued from planning stage, realization stage, and valuation stage. The result of mathematical connection ability test is analyzed quantitatively by mean test, conducting completeness test, mean differentiation test, and mean proportional differentiation test. The result of the research shows that VAK learning model results in well-qualified learning regarded from qualitative and quantitative sides. Students with visual learning style perform the highest mathematical connection ability, students with kinesthetic learning style perform average mathematical connection ability, and students with auditory learning style perform the lowest mathematical connection ability.

  9. A Multianalyzer Machine Learning Model for Marine Heterogeneous Data Schema Mapping

    Science.gov (United States)

    Yan, Wang; Jiajin, Le; Yun, Zhang

    2014-01-01

    The main challenges that marine heterogeneous data integration faces are the problem of accurate schema mapping between heterogeneous data sources. In order to improve the schema mapping efficiency and get more accurate learning results, this paper proposes a heterogeneous data schema mapping method basing on multianalyzer machine learning model. The multianalyzer analysis the learning results comprehensively, and a fuzzy comprehensive evaluation system is introduced for output results' evaluation and multi factor quantitative judging. Finally, the data mapping comparison experiment on the East China Sea observing data confirms the effectiveness of the model and shows multianalyzer's obvious improvement of mapping error rate. PMID:25250372

  10. Learning of Cross-Sectional Anatomy Using Clay Models

    Science.gov (United States)

    Oh, Chang-Seok; Kim, Ji-Young; Choe, Yeon Hyeon

    2009-01-01

    We incorporated clay modeling into gross anatomy and neuro-anatomy courses to help students understand cross-sectional anatomy. By making clay models, cutting them and comparing cut surfaces to CT and MR images, students learned how cross-sectional two-dimensional images were created from three-dimensional structure of human organs. Most students…

  11. Vicarious Learning and Reduction of Fear in Children via Adult and Child Models.

    Science.gov (United States)

    Dunne, Güler; Askew, Chris

    2017-06-01

    Children can learn to fear stimuli vicariously, by observing adults' or peers' responses to them. Given that much of school-age children's time is typically spent with their peers, it is important to establish whether fear learning from peers is as effective or robust as learning from adults, and also whether peers can be successful positive models for reducing fear. During a vicarious fear learning procedure, children (6 to 10 years; N = 60) were shown images of novel animals together with images of adult or peer faces expressing fear. Later they saw their fear-paired animal again together with positive emotional adult or peer faces. Children's fear beliefs and avoidance for the animals increased following vicarious fear learning and decreased following positive vicarious counterconditioning. There was little evidence of differences in learning from adults and peers, demonstrating that for this age group peer models are effective models for both fear acquisition and reduction. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Second Graders' Emerging Particle Models of Matter in the Context of Learning through Model-Based Inquiry

    Science.gov (United States)

    Samarapungavan, Ala; Bryan, Lynn; Wills, Jamison

    2017-01-01

    In this paper, we present a study of second graders' learning about the nature of matter in the context of content-rich, model-based inquiry instruction. The goal of instruction was to help students learn to use simple particle models to explain states of matter and phase changes. We examined changes in students' ideas about matter, the coherence…

  13. Do sophisticated epistemic beliefs predict meaningful learning? Findings from a structural equation model of undergraduate biology learning

    Science.gov (United States)

    Lee, Silvia Wen-Yu; Liang, Jyh-Chong; Tsai, Chin-Chung

    2016-10-01

    This study investigated the relationships among college students' epistemic beliefs in biology (EBB), conceptions of learning biology (COLB), and strategies of learning biology (SLB). EBB includes four dimensions, namely 'multiple-source,' 'uncertainty,' 'development,' and 'justification.' COLB is further divided into 'constructivist' and 'reproductive' conceptions, while SLB represents deep strategies and surface learning strategies. Questionnaire responses were gathered from 303 college students. The results of the confirmatory factor analysis and structural equation modelling showed acceptable model fits. Mediation testing further revealed two paths with complete mediation. In sum, students' epistemic beliefs of 'uncertainty' and 'justification' in biology were statistically significant in explaining the constructivist and reproductive COLB, respectively; and 'uncertainty' was statistically significant in explaining the deep SLB as well. The results of mediation testing further revealed that 'uncertainty' predicted surface strategies through the mediation of 'reproductive' conceptions; and the relationship between 'justification' and deep strategies was mediated by 'constructivist' COLB. This study provides evidence for the essential roles some epistemic beliefs play in predicting students' learning.

  14. Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization

    International Nuclear Information System (INIS)

    Yu, Kunjie; Chen, Xu; Wang, Xin; Wang, Zhenlei

    2017-01-01

    Highlights: • SATLBO is proposed to identify the PV model parameters efficiently. • In SATLBO, the learners self-adaptively select different learning phases. • An elite learning is developed in teacher phase to perform local searching. • A diversity learning is proposed in learner phase to maintain population diversity. • SATLBO achieves the first in ranking on overall performance among nine algorithms. - Abstract: Parameters identification of photovoltaic (PV) model based on measured current-voltage characteristic curves plays an important role in the simulation and evaluation of PV systems. To accurately and reliably identify the PV model parameters, a self-adaptive teaching-learning-based optimization (SATLBO) is proposed in this paper. In SATLBO, the learners can self-adaptively select different learning phases based on their knowledge level. The better learners are more likely to choose the learner phase for improving the population diversity, while the worse learners tend to choose the teacher phase to enhance the convergence rate. Thus, learners at different levels focus on different searching abilities to efficiently enhance the performance of algorithm. In addition, to improve the searching ability of different learning phases, an elite learning strategy and a diversity learning method are introduced into the teacher phase and learner phase, respectively. The performance of SATLBO is firstly evaluated on 34 benchmark functions, and experimental results show that SATLBO achieves the first in ranking on the overall performance among nine algorithms. Then, SATLBO is employed to identify parameters of different PV models, i.e., single diode, double diode, and PV module. Experimental results indicate that SATLBO exhibits high accuracy and reliability compared with other parameter extraction methods.

  15. Kolb's Experiential Learning Theory: A Meta-Model for Career Exploration.

    Science.gov (United States)

    Atkinson, George, Jr.; Murrell, Patricia H.

    1988-01-01

    Kolb's experiential learning theory offers the career counselor a meta-model with which to structure career exploration exercises and ensure a thorough investigation of self and the world of work in a manner that provides the client with an optimal amount of learning and personal development. (Author)

  16. Interactive ontology-based user modelling for personalized learning content management

    NARCIS (Netherlands)

    Denaux, R.O.; Dimitrova, V.; Aroyo, L.M.; Aroyo, L.; Tasso, C.

    2004-01-01

    This position paper discusses the need for using interactive ontology-based user modeling to empower on the fly adaptation in learning information systems. We outline several open issues related to adaptive learning content delivery and present an approach to deal with these issues based on the

  17. Modeling Geomagnetic Variations using a Machine Learning Framework

    Science.gov (United States)

    Cheung, C. M. M.; Handmer, C.; Kosar, B.; Gerules, G.; Poduval, B.; Mackintosh, G.; Munoz-Jaramillo, A.; Bobra, M.; Hernandez, T.; McGranaghan, R. M.

    2017-12-01

    We present a framework for data-driven modeling of Heliophysics time series data. The Solar Terrestrial Interaction Neural net Generator (STING) is an open source python module built on top of state-of-the-art statistical learning frameworks (traditional machine learning methods as well as deep learning). To showcase the capability of STING, we deploy it for the problem of predicting the temporal variation of geomagnetic fields. The data used includes solar wind measurements from the OMNI database and geomagnetic field data taken by magnetometers at US Geological Survey observatories. We examine the predictive capability of different machine learning techniques (recurrent neural networks, support vector machines) for a range of forecasting times (minutes to 12 hours). STING is designed to be extensible to other types of data. We show how STING can be used on large sets of data from different sensors/observatories and adapted to tackle other problems in Heliophysics.

  18. Blended learning in anesthesia education: current state and future model.

    Science.gov (United States)

    Kannan, Jaya; Kurup, Viji

    2012-12-01

    Educators in anesthesia residency programs across the country are facing a number of challenges as they attempt to integrate blended learning techniques in their curriculum. Compared with the rest of higher education, which has made advances to varying degrees in the adoption of online learning anesthesiology education has been sporadic in the active integration of blended learning. The purpose of this review is to discuss the challenges in anesthesiology education and relevance of the Universal Design for Learning framework in addressing them. There is a wide chasm between student demand for online education and the availability of trained faculty to teach. The design of the learning interface is important and will significantly affect the learning experience for the student. This review examines recent literature pertaining to this field, both in the realm of higher education in general and medical education in particular, and proposes the application of a comprehensive learning model that is new to anesthesiology education and relevant to its goals of promoting self-directed learning.

  19. The Implementation of C-ID, R2D2 Model on Learning Reading Comprehension

    Science.gov (United States)

    Rayanto, Yudi Hari; Rusmawan, Putu Ngurah

    2016-01-01

    The purposes of this research are to find out, (1) whether C-ID, R2D2 model is effective to be implemented on learning Reading comprehension, (2) college students' activity during the implementation of C-ID, R2D2 model on learning Reading comprehension, and 3) college students' learning achievement during the implementation of C-ID, R2D2 model on…

  20. Mixed Methods Study Using Constructive Learning Team Model for Secondary Mathematics Teachers

    Science.gov (United States)

    Ritter, Kristy L.

    2010-01-01

    The constructive learning team model for secondary mathematics teachers (CLTM) was created to provide students with learning opportunities and experiences that address deficiencies in oral and written communication, logical processes and analysis, mathematical operations, independent learning, teamwork, and technology utilization. This study…

  1. A Theoretical Model for Meaning Construction through Constructivist Concept Learning

    DEFF Research Database (Denmark)

    Badie, Farshad

    The central focus of this Ph.D. research is on ‘Logic and Cognition’ and, more specifically, this research covers the quintuple (Logic and Logical Philosophy, Philosophy of Education, Educational Psychology, Cognitive Science, Computer Science). The most significant contributions of this Ph.D. di...... of ‘learning’, ‘mentoring’, and ‘knowledge’ within learning and knowledge acquisition systems. Constructivism as an epistemology and as a model of knowing and, respectively as a theoretical model of learning builds up the central framework of this research........D. dissertation are conceptual, logical, terminological, and semantic analysis of Constructivist Concept Learning (specifically, in the context of humans’ interactions with their environment and with other agents). This dissertation is concerned with the specification of the conceptualisation of the phenomena...

  2. Advancing Affect Modeling via Preference Learning and Unsupervised Feature Extraction

    DEFF Research Database (Denmark)

    Martínez, Héctor Pérez

    strategies (error functions and training algorithms) for artificial neural networks are examined across synthetic and psycho-physiological datasets, and compared against support vector machines and Cohen’s method. Results reveal the best training strategies for neural networks and suggest their superiority...... difficulties, ordinal reports such as rankings and ratings can yield more reliable affect annotations than alternative tools. This thesis explores preference learning methods to automatically learn computational models from ordinal annotations of affect. In particular, an extensive collection of training...... over the other examined methods. The second challenge addressed in this thesis refers to the extraction of relevant information from physiological modalities. Deep learning is proposed as an automatic approach to extract input features for models of affect from physiological signals. Experiments...

  3. Preceptors' perspectives of an integrated clinical learning model in a mental health environment.

    Science.gov (United States)

    Boardman, Gayelene; Lawrence, Karen; Polacsek, Meg

    2018-02-14

    Supervised clinical practice is an essential component of undergraduate nursing students' learning and development. In the mental health setting, nursing students traditionally undertake four-week block placements. An integrated clinical learning model, where preceptors mentor students on an individual basis, has been used successfully in the clinical learning environment. This flexible model provides the opportunity for students to work across morning, afternoon, night and weekend shifts. There is a need to improve the evidence base for a flexible model for students undertaking a mental health placement. The aim of this study was to understand preceptors' experience of, and satisfaction with, a mental health integrated clinical learning model. Focus groups were used to elicit the views of preceptors from a mental health service. Findings highlight the advantages and disadvantages of an integrated clinical learning model in the mental health setting. Participants suggested that students may benefit from flexible work arrangements, a variety of experiences and a more realistic experience of working in a mental health service. However, they found it challenging to mentor and evaluate students under this model. Most also agreed that the model impeded students' ability to engage with consumers and develop rapport with staff. The findings indicate the need to develop a placement model that meets the unique needs of the mental health setting. © 2018 Australian College of Mental Health Nurses Inc.

  4. A Survey: Time Travel in Deep Learning Space: An Introduction to Deep Learning Models and How Deep Learning Models Evolved from the Initial Ideas

    OpenAIRE

    Wang, Haohan; Raj, Bhiksha

    2015-01-01

    This report will show the history of deep learning evolves. It will trace back as far as the initial belief of connectionism modelling of brain, and come back to look at its early stage realization: neural networks. With the background of neural network, we will gradually introduce how convolutional neural network, as a representative of deep discriminative models, is developed from neural networks, together with many practical techniques that can help in optimization of neural networks. On t...

  5. Service learning in teacher education: an institutional model for an ...

    African Journals Online (AJOL)

    Interest in service learning is growing at a time of curriculum change in teacher education and institutional change in higher education in South Africa. This raises the question ";What models are available to guide institutions to develop service learning?"; This article outlines Pollack's typology of institutional responses to ...

  6. Transformative Learning Model for Youth Life Skills Entrepreneurs in Poor Weavers Songket Palembang

    Directory of Open Access Journals (Sweden)

    Ayi Olim

    2015-05-01

    Full Text Available Non-formal education serves to develop the potential of students with an emphasis on the mastery of knowledge and functional skills and professional attitude and personality development, is now understood as an alternative approach to the future education with an emphasis on the mastery of skills. transformative learning, life skills and entrepreneurship as a modality of model development. learner/ prospective participants learn from the lower-middle group (in the shadow of the transmission of learning should be the owner of the learning process and should be able to identify the capabilities and environmental problems, reflect and take action in developing entrepreneurial abilities. The model requires changing patterns of transformative learning and utilization participants life skills learning, facilitation and management support from stakeholders

  7. Developing the Mathematics Learning Management Model for Improving Creative Thinking in Thailand

    Science.gov (United States)

    Sriwongchai, Arunee; Jantharajit, Nirat; Chookhampaeng, Sumalee

    2015-01-01

    The study purposes were: 1) To study current states and problems of relevant secondary students in developing mathematics learning management model for improving creative thinking, 2) To evaluate the effectiveness of model about: a) efficiency of learning process, b) comparisons of pretest and posttest on creative thinking and achievement of…

  8. Analysis student self efficacy in terms of using Discovery Learning model with SAVI approach

    Science.gov (United States)

    Sahara, Rifki; Mardiyana, S., Dewi Retno Sari

    2017-12-01

    Often students are unable to prove their academic achievement optimally according to their abilities. One reason is that they often feel unsure that they are capable of completing the tasks assigned to them. For students, such beliefs are necessary. The term belief has called self efficacy. Self efficacy is not something that has brought about by birth or something with permanent quality of an individual, but is the result of cognitive processes, the meaning one's self efficacy will be stimulated through learning activities. Self efficacy has developed and enhanced by a learning model that can stimulate students to foster confidence in their capabilities. One of them is by using Discovery Learning model with SAVI approach. Discovery Learning model with SAVI approach is one of learning models that involves the active participation of students in exploring and discovering their own knowledge and using it in problem solving by utilizing all the sensory devices they have. This naturalistic qualitative research aims to analyze student self efficacy in terms of use the Discovery Learning model with SAVI approach. The subjects of this study are 30 students focused on eight students who have high, medium, and low self efficacy obtained through purposive sampling technique. The data analysis of this research used three stages, that were reducing, displaying, and getting conclusion of the data. Based on the results of data analysis, it was concluded that the self efficacy appeared dominantly on the learning by using Discovery Learning model with SAVI approach is magnitude dimension.

  9. A Model of E-Learning Uptake and Continued Use in Higher Education Institutions

    Science.gov (United States)

    Pinpathomrat, Nakarin; Gilbert, Lester; Wills, Gary B.

    2013-01-01

    This research investigates the factors that affect a students' take-up and continued use of E-learning. A mathematical model was constructed by applying three grounded theories; Unified Theory of Acceptance and Use of Technology, Keller's ARCS model, and Expectancy Disconfirm Theory. The learning preference factor was included in the model.…

  10. Toward Self-Referential Autonomous Learning of Object and Situation Models.

    Science.gov (United States)

    Damerow, Florian; Knoblauch, Andreas; Körner, Ursula; Eggert, Julian; Körner, Edgar

    2016-01-01

    Most current approaches to scene understanding lack the capability to adapt object and situation models to behavioral needs not anticipated by the human system designer. Here, we give a detailed description of a system architecture for self-referential autonomous learning which enables the refinement of object and situation models during operation in order to optimize behavior. This includes structural learning of hierarchical models for situations and behaviors that is triggered by a mismatch between expected and actual action outcome. Besides proposing architectural concepts, we also describe a first implementation of our system within a simulated traffic scenario to demonstrate the feasibility of our approach.

  11. Machine Learning Algorithms Outperform Conventional Regression Models in Predicting Development of Hepatocellular Carcinoma

    Science.gov (United States)

    Singal, Amit G.; Mukherjee, Ashin; Elmunzer, B. Joseph; Higgins, Peter DR; Lok, Anna S.; Zhu, Ji; Marrero, Jorge A; Waljee, Akbar K

    2015-01-01

    Background Predictive models for hepatocellular carcinoma (HCC) have been limited by modest accuracy and lack of validation. Machine learning algorithms offer a novel methodology, which may improve HCC risk prognostication among patients with cirrhosis. Our study's aim was to develop and compare predictive models for HCC development among cirrhotic patients, using conventional regression analysis and machine learning algorithms. Methods We enrolled 442 patients with Child A or B cirrhosis at the University of Michigan between January 2004 and September 2006 (UM cohort) and prospectively followed them until HCC development, liver transplantation, death, or study termination. Regression analysis and machine learning algorithms were used to construct predictive models for HCC development, which were tested on an independent validation cohort from the Hepatitis C Antiviral Long-term Treatment against Cirrhosis (HALT-C) Trial. Both models were also compared to the previously published HALT-C model. Discrimination was assessed using receiver operating characteristic curve analysis and diagnostic accuracy was assessed with net reclassification improvement and integrated discrimination improvement statistics. Results After a median follow-up of 3.5 years, 41 patients developed HCC. The UM regression model had a c-statistic of 0.61 (95%CI 0.56-0.67), whereas the machine learning algorithm had a c-statistic of 0.64 (95%CI 0.60–0.69) in the validation cohort. The machine learning algorithm had significantly better diagnostic accuracy as assessed by net reclassification improvement (pmachine learning algorithm (p=0.047). Conclusion Machine learning algorithms improve the accuracy of risk stratifying patients with cirrhosis and can be used to accurately identify patients at high-risk for developing HCC. PMID:24169273

  12. A MODEL OF MANAGEMENT STRATEGY FOR A QUALITY LEARNING IN ISLAMIC HIGHER EDUCATION (IHE

    Directory of Open Access Journals (Sweden)

    Ara Hidayat

    2016-03-01

    Full Text Available The quality of Islamic education is generally influenced by several factors, among other things: leadership, organizational culture, lecturercompetence versus faculty student ratio, dynamic curriculum, library collections and learning facilities. The factors above are most likely to influence and impact the quality of education process in general. Developing a model of management strategy for quality learning is a minimal effort to improve quality graduates of a university. The model was developed on the basis of the following theories: (1 transformative leadership (Tichy and Devana (1997, (2 strategy of learning organization, (Peter (2002, and (3 a quality-based management (Griffin, 2004. Furthermore, the model shares the following characteristics: (1 a quality learning emerges from an effective and efficient management of academic service; (2 developing management of a quality learning is continuous lecture development; (3 lecture plays an important role in developing a quality learning; (4 a quality learning stipulates that a leader be loyal and committed to their job, wise and have a sense of democracy.

  13. Organizational Learning Supported by Reference Architecture Models

    DEFF Research Database (Denmark)

    Nardello, Marco; Møller, Charles; Gøtze, John

    2017-01-01

    of an emerging technical standard specific for the manufacturing industry. Global manufacturing experts consider the Reference Architecture Model Industry 4.0 (RAMI4.0) as one of the corner stones for the implementation of Industry 4.0. The instantiation contributed to organizational learning in the laboratory...

  14. School Improvement Model to Foster Student Learning

    Science.gov (United States)

    Rulloda, Rudolfo Barcena

    2011-01-01

    Many classroom teachers are still using the traditional teaching methods. The traditional teaching methods are one-way learning process, where teachers would introduce subject contents such as language arts, English, mathematics, science, and reading separately. However, the school improvement model takes into account that all students have…

  15. The Role of a Mental Model in Learning to Operate a Device.

    Science.gov (United States)

    Kieras, David E.; Bovair, Susan

    1984-01-01

    Describes three studies concerned with learning to operate a control panel device and how this learning is affected by understanding a device model that describes its internal mechanism. Results indicate benefits of a device model depend on whether it supports direct inference of exact steps required to operate the device. (Author/MBR)

  16. Computational Modeling of Teaching and Learning through Application of Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Richard Lamb

    2015-09-01

    Full Text Available Within the mind, there are a myriad of ideas that make sense within the bounds of everyday experience, but are not reflective of how the world actually exists; this is particularly true in the domain of science. Classroom learning with teacher explanation are a bridge through which these naive understandings can be brought in line with scientific reality. The purpose of this paper is to examine how the application of a Multiobjective Evolutionary Algorithm (MOEA can work in concert with an existing computational-model to effectively model critical-thinking in the science classroom. An evolutionary algorithm is an algorithm that iteratively optimizes machine learning based computational models. The research question is, does the application of an evolutionary algorithm provide a means to optimize the Student Task and Cognition Model (STAC-M and does the optimized model sufficiently represent and predict teaching and learning outcomes in the science classroom? Within this computational study, the authors outline and simulate the effect of teaching on the ability of a “virtual” student to solve a Piagetian task. Using the Student Task and Cognition Model (STAC-M a computational model of student cognitive processing in science class developed in 2013, the authors complete a computational experiment which examines the role of cognitive retraining on student learning. Comparison of the STAC-M and the STAC-M with inclusion of the Multiobjective Evolutionary Algorithm shows greater success in solving the Piagetian science-tasks post cognitive retraining with the Multiobjective Evolutionary Algorithm. This illustrates the potential uses of cognitive and neuropsychological computational modeling in educational research. The authors also outline the limitations and assumptions of computational modeling.

  17. Effect of Internet-Based Cognitive Apprenticeship Model (i-CAM) on Statistics Learning among Postgraduate Students.

    Science.gov (United States)

    Saadati, Farzaneh; Ahmad Tarmizi, Rohani; Mohd Ayub, Ahmad Fauzi; Abu Bakar, Kamariah

    2015-01-01

    Because students' ability to use statistics, which is mathematical in nature, is one of the concerns of educators, embedding within an e-learning system the pedagogical characteristics of learning is 'value added' because it facilitates the conventional method of learning mathematics. Many researchers emphasize the effectiveness of cognitive apprenticeship in learning and problem solving in the workplace. In a cognitive apprenticeship learning model, skills are learned within a community of practitioners through observation of modelling and then practice plus coaching. This study utilized an internet-based Cognitive Apprenticeship Model (i-CAM) in three phases and evaluated its effectiveness for improving statistics problem-solving performance among postgraduate students. The results showed that, when compared to the conventional mathematics learning model, the i-CAM could significantly promote students' problem-solving performance at the end of each phase. In addition, the combination of the differences in students' test scores were considered to be statistically significant after controlling for the pre-test scores. The findings conveyed in this paper confirmed the considerable value of i-CAM in the improvement of statistics learning for non-specialized postgraduate students.

  18. Learning a generative probabilistic grammar of experience: a process-level model of language acquisition.

    Science.gov (United States)

    Kolodny, Oren; Lotem, Arnon; Edelman, Shimon

    2015-03-01

    We introduce a set of biologically and computationally motivated design choices for modeling the learning of language, or of other types of sequential, hierarchically structured experience and behavior, and describe an implemented system that conforms to these choices and is capable of unsupervised learning from raw natural-language corpora. Given a stream of linguistic input, our model incrementally learns a grammar that captures its statistical patterns, which can then be used to parse or generate new data. The grammar constructed in this manner takes the form of a directed weighted graph, whose nodes are recursively (hierarchically) defined patterns over the elements of the input stream. We evaluated the model in seventeen experiments, grouped into five studies, which examined, respectively, (a) the generative ability of grammar learned from a corpus of natural language, (b) the characteristics of the learned representation, (c) sequence segmentation and chunking, (d) artificial grammar learning, and (e) certain types of structure dependence. The model's performance largely vindicates our design choices, suggesting that progress in modeling language acquisition can be made on a broad front-ranging from issues of generativity to the replication of human experimental findings-by bringing biological and computational considerations, as well as lessons from prior efforts, to bear on the modeling approach. Copyright © 2014 Cognitive Science Society, Inc.

  19. The Development of the Assessment for Learning Model of Mathematics for Rajamangala University of Technology Rattanakosin

    Directory of Open Access Journals (Sweden)

    Wannaree Pansiri

    2016-12-01

    Full Text Available The objectives of this research were 1 to develop the assessment for learning model of Mathematics for Rajamangala University 2 to study the effectivness of assessment for learning model of Mathematics for Rajamagala University of Technology Rattanakosin. The research target group consisted of 72 students from 3 classes and 3 General Mathematics teachers. The data was gathered from observation, worksheets, achievement test and skill of assessment for learning, questionnaire of the assessment for learning model of Mathematics. The statistics that used in this research were Frequency, Percentage, Mean, Standard Deviation, and Growth Score. The results of this research were 1. The assessment of learning model of Mathematics for Rajamangala University of Technology Rattanakosin consisted of 3 components ; 1. Pre-assessment which consisted of 4 activities ; a Preparation b Teacher development c Design and creation the assessment plan and instrument for assessment and d Creation of the learning experience plan 2. The component for assessment process consisted of 4 steps which were a Identifying the learning objectives and criteria b Identifying the learning experience plan and assessment follow the plan c Learning reflection and giving feedback and d Learner development based on information and improve instruction and 3. Giving feedback component. 2. The effective of assessment for learning model found that most students had good score in concentration, honest, responsibilities, group work, task presentation, worksheets, and doing exercises. The development knowledge of learning and knowledge and skill of assessment for learning of lecturers were fairly good. The opinion to the assessment for learning of learners and assessment for learning model of Mathematics of teachers found that was in a good level.

  20. A Multianalyzer Machine Learning Model for Marine Heterogeneous Data Schema Mapping

    Directory of Open Access Journals (Sweden)

    Wang Yan

    2014-01-01

    Full Text Available The main challenges that marine heterogeneous data integration faces are the problem of accurate schema mapping between heterogeneous data sources. In order to improve the schema mapping efficiency and get more accurate learning results, this paper proposes a heterogeneous data schema mapping method basing on multianalyzer machine learning model. The multianalyzer analysis the learning results comprehensively, and a fuzzy comprehensive evaluation system is introduced for output results’ evaluation and multi factor quantitative judging. Finally, the data mapping comparison experiment on the East China Sea observing data confirms the effectiveness of the model and shows multianalyzer’s obvious improvement of mapping error rate.

  1. Implementation of Reseptive Esteemy Approach Model in Learning Reading Literature

    Directory of Open Access Journals (Sweden)

    Titin Nurhayatin

    2017-03-01

    Full Text Available Research on the implementation of aesthetic model of receptive aesthetic approach in learning to read the literature on the background of the low quality of results and learning process of Indonesian language, especially the study of literature. Students as prospective teachers of Indonesian language are expected to have the ability to speak, have literature, and their learning in a balanced manner in accordance with the curriculum demands. This study examines the effectiveness, quality, acceptability, and sustainability of the aesthetic approach of receptions in improving students' literary skills. Based on these problems, this study is expected to produce a learning model that contributes high in improving the quality of results and the process of learning literature. This research was conducted on the students of Language Education Program, Indonesian Literature and Regional FKIP Pasundan University. The research method used is experiment with randomized type pretest-posttest control group design. Based on preliminary and final test data obtained in the experimental class the average preliminary test was 55.86 and the average final test was 76.75. From the preliminary test data in the control class the average score was 55.07 and the average final test was 68.76. These data suggest that there is a greater increase in grades in the experimental class using the aesthetic approach of the reception compared with the increase in values in the control class using a conventional approach. The results show that the aesthetic approach of receptions is more effective than the conventional approach in literary reading. Based on observations, acceptance, and views of sustainability, the aesthetic approach of receptions in literary learning is expected to be an alternative and solution in overcoming the problems of literary learning and improving the quality of Indonesian learning outcomes and learning process.

  2. Daily Discharge Estimation in Talar River Using Lazy Learning Model

    Directory of Open Access Journals (Sweden)

    Zahra Abdollahi

    2017-03-01

    Full Text Available Introduction: River discharge as one of the most important hydrology factors has a vital role in physical, ecological, social and economic processes. So, accurate and reliable prediction and estimation of river discharge have been widely considered by many researchers in different fields such as surface water management, design of hydraulic structures, flood control and ecological studies in spetialand temporal scale. Therefore, in last decades different techniques for short-term and long-term estimation of hourly, daily, monthly and annual discharge have been developed for many years. However, short-term estimation models are less sophisticated and more accurate.Various global and local algorithms have been widely used to estimate hydrologic variables. The current study effort to use Lazy Learning approach to evaluate the adequacy of input data in order to follow the variation of discharge and also simulate next-day discharge in Talar River in KasilianBasinwhere is located in north of Iran with an area of 66.75 km2. Lazy learning is a local linear modelling approach in which generalization beyond the training data is delayed until a query is made to the system, as opposed to in eager learning, where the system tries to generalize the training data before receiving queries Materials and Methods: The current study was conducted in Kasilian Basin, where is located in north of Iran with an area of 66.75 km2. The main river of this basin joins to Talar River near Valicbon village and then exit from the watershed. Hydrometric station located near Valicbon village is equipped with Parshall flume and Limnogragh which can record river discharge of about 20 cubic meters per second.In this study, daily data of discharge recorded in Valicbon station related to 2002 to 2012 was used to estimate the discharge of 19 September 2012. The mean annual discharge of considered river was also calculated by using available data about 0.441 cubic meters per second. To

  3. High School Students' Epistemological Beliefs, Conceptions of Learning, and Self-Efficacy for Learning Biology: A Study of Their Structural Models

    Science.gov (United States)

    Sadi, Özlem; Dagyar, Miray

    2015-01-01

    The current work reveals the data of the study which examines the relationships among epistemological beliefs, conceptions of learning, and self-efficacy for biology learning with the help of the Structural Equation Modeling. Three questionnaires, the Epistemological Beliefs, the Conceptions of Learning Biology and the Self-efficacy for Learning…

  4. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation.

    Science.gov (United States)

    Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T

    2016-05-01

    Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.

  5. Students' Critical Thinking Skills in Chemistry Learning Using Local Culture-Based 7E Learning Cycle Model

    Science.gov (United States)

    Suardana, I. Nyoman; Redhana, I. Wayan; Sudiatmika, A. A. Istri Agung Rai; Selamat, I. Nyoman

    2018-01-01

    This research aimed at describing the effectiveness of the local culture-based 7E learning cycle model in improving students' critical thinking skills in chemistry learning. It was an experimental research with post-test only control group design. The population was the eleventh-grade students of senior high schools in Singaraja, Indonesia. The…

  6. Meta Analisis Model Pembelajaran Problem Based Learning dalam Meningkatkan Keterampilan Berpikir Kritis di Sekolah Dasar [A Meta-analysis of Problem-Based Learning Models in Increasing Critical Thinking Skills in Elementary Schools

    Directory of Open Access Journals (Sweden)

    Indri Anugraheni

    2018-01-01

    Full Text Available This study aims to analyze Problem-based Learning models intended to improve critical thinking skills in elementary school students. Problem-based learning models are learning processes where students are open minded, reflexive, active, reflective, and critical through real-world context activities. In this study the researcher used a meta-analysis method. First, the researcher formulated the research problem, then proceeded to review the existing relevant research for analysis. Data were collected by using a non-test technique by browsing electronic journals through Google Scholar and studying documentation in the library. Seven articles were found through Google Scholar and only one was found in the library. Based on the analysis of the results, the problem-based learning model can improve students' thinking ability from as little as 2.87% up to 33.56% with an average of 14.18%. BAHASA INDONESIA ABSTRAK: Penelitian ini bertujuan untuk menganalisis kembali tentang model pembelajaran Problem Based Learning untuk meningkatkan keterampilan berpikir kritis di Sekolah Dasar. Model pembelajaran Problem Based Learning adalah proses pembelajaran dimana siswa mampu memiliki pola pikir yang terbuka, refktif, aktif, reflektif dan kritis melalui kegiatan konteks dunia nyata. Dalam penelitian ini peneliti menggunakan metode meta analisis. Pertama-tama, peneliti merumuskan masalah penelitian, kemudian dilanjutkan dengan menelusuri penelitian yang sudah ada dan relevan untuk dianalisis. Teknik pengumpulan data dengan menggunakan non tes yaitu dengan menelusuri jurnal elektronik melalui google Cendekia dan studi dokumentasi di perpustakaan. Dari hasil penelusuran diperoleh 20 artikel dari jurnal dan 3 dari repository. Berdasarkan hasil analisis ternyata model pembelajaran Problem Based Learning mampu meningkatkan kemampuan berpikir Siswa mulai dari yang terendah 2,87% sampai yang tertinggi 33,56% dengan rata-rata 12,73%.

  7. Development of syntax of intuition-based learning model in solving mathematics problems

    Science.gov (United States)

    Yeni Heryaningsih, Nok; Khusna, Hikmatul

    2018-01-01

    The aim of the research was to produce syntax of Intuition Based Learning (IBL) model in solving mathematics problem for improving mathematics students’ achievement that valid, practical and effective. The subject of the research were 2 classes in grade XI students of SMAN 2 Sragen, Central Java. The type of the research was a Research and Development (R&D). Development process adopted Plomp and Borg & Gall development model, they were preliminary investigation step, design step, realization step, evaluation and revision step. Development steps were as follow: (1) Collected the information and studied of theories in Preliminary Investigation step, studied about intuition, learning model development, students condition, and topic analysis, (2) Designed syntax that could bring up intuition in solving mathematics problem and then designed research instruments. They were several phases that could bring up intuition, Preparation phase, Incubation phase, Illumination phase and Verification phase, (3) Realized syntax of Intuition Based Learning model that has been designed to be the first draft, (4) Did validation of the first draft to the validator, (5) Tested the syntax of Intuition Based Learning model in the classrooms to know the effectiveness of the syntax, (6) Conducted Focus Group Discussion (FGD) to evaluate the result of syntax model testing in the classrooms, and then did the revision on syntax IBL model. The results of the research were produced syntax of IBL model in solving mathematics problems that valid, practical and effective. The syntax of IBL model in the classroom were, (1) Opening with apperception, motivations and build students’ positive perceptions, (2) Teacher explains the material generally, (3) Group discussion about the material, (4) Teacher gives students mathematics problems, (5) Doing exercises individually to solve mathematics problems with steps that could bring up students’ intuition: Preparations, Incubation, Illumination, and

  8. Discriminative Nonlinear Analysis Operator Learning: When Cosparse Model Meets Image Classification.

    Science.gov (United States)

    Wen, Zaidao; Hou, Biao; Jiao, Licheng

    2017-05-03

    Linear synthesis model based dictionary learning framework has achieved remarkable performances in image classification in the last decade. Behaved as a generative feature model, it however suffers from some intrinsic deficiencies. In this paper, we propose a novel parametric nonlinear analysis cosparse model (NACM) with which a unique feature vector will be much more efficiently extracted. Additionally, we derive a deep insight to demonstrate that NACM is capable of simultaneously learning the task adapted feature transformation and regularization to encode our preferences, domain prior knowledge and task oriented supervised information into the features. The proposed NACM is devoted to the classification task as a discriminative feature model and yield a novel discriminative nonlinear analysis operator learning framework (DNAOL). The theoretical analysis and experimental performances clearly demonstrate that DNAOL will not only achieve the better or at least competitive classification accuracies than the state-of-the-art algorithms but it can also dramatically reduce the time complexities in both training and testing phases.

  9. A Benefit/Cost/Deficit (BCD) model for learning from human errors

    International Nuclear Information System (INIS)

    Vanderhaegen, Frederic; Zieba, Stephane; Enjalbert, Simon; Polet, Philippe

    2011-01-01

    This paper proposes an original model for interpreting human errors, mainly violations, in terms of benefits, costs and potential deficits. This BCD model is then used as an input framework to learn from human errors, and two systems based on this model are developed: a case-based reasoning system and an artificial neural network system. These systems are used to predict a specific human car driving violation: not respecting the priority-to-the-right rule, which is a decision to remove a barrier. Both prediction systems learn from previous violation occurrences, using the BCD model and four criteria: safety, for identifying the deficit or the danger; and opportunity for action, driver comfort, and time spent; for identifying the benefits or the costs. The application of learning systems to predict car driving violations gives a rate over 80% of correct prediction after 10 iterations. These results are validated for the non-respect of priority-to-the-right rule.

  10. Implementing a New Model for Teachers' Professional Learning in Papua New Guinea

    Science.gov (United States)

    Honan, Eileen; Evans, Terry; Muspratt, Sandy; Paraide, Patricia; Reta, Medi; Baroutsis, Aspa

    2012-01-01

    This article reports on a study that investigates the possibilities of developing a professional learning model based on action research that could lead to sustained improvements in teaching and learning in schools in remote areas of Papua New Guinea. The issues related to the implementation of this model are discussed using a critical lens that…

  11. Using IMS Learning Design to model collaborative learning activities

    NARCIS (Netherlands)

    Tattersall, Colin

    2006-01-01

    IMS Learning Design provides a counter to the trend towards designing for lone-learners reading from screens. It guides staff and educational developers to start not with content, but with learning activities and the achievement of learning objectives. It recognises that learning can happen without

  12. SISL and SIRL: Two knowledge dissemination models with leader nodes on cooperative learning networks

    Science.gov (United States)

    Li, Jingjing; Zhang, Yumei; Man, Jiayu; Zhou, Yun; Wu, Xiaojun

    2017-02-01

    Cooperative learning is one of the most effective teaching methods, which has been widely used. Students' mutual contact forms a cooperative learning network in this process. Our previous research demonstrated that the cooperative learning network has complex characteristics. This study aims to investigating the dynamic spreading process of the knowledge in the cooperative learning network and the inspiration of leaders in this process. To this end, complex network transmission dynamics theory is utilized to construct the knowledge dissemination model of a cooperative learning network. Based on the existing epidemic models, we propose a new susceptible-infected-susceptible-leader (SISL) model that considers both students' forgetting and leaders' inspiration, and a susceptible-infected-removed-leader (SIRL) model that considers students' interest in spreading and leaders' inspiration. The spreading threshold λcand its impact factors are analyzed. Then, numerical simulation and analysis are delivered to reveal the dynamic transmission mechanism of knowledge and leaders' role. This work is of great significance to cooperative learning theory and teaching practice. It also enriches the theory of complex network transmission dynamics.

  13. Proof of Economic Viability of Blended Learning Business Models

    Science.gov (United States)

    Druhmann, Carsten; Hohenberg, Gregor

    2014-01-01

    The discussion on economically sustainable business models with respect to information technology is lacking in many aspects of proven approaches. In the following contribution the economic viability is valued based on a procedural model for design and evaluation of e-learning business models in the form of a case study. As a case study object a…

  14. Human-Guided Learning for Probabilistic Logic Models

    Directory of Open Access Journals (Sweden)

    Phillip Odom

    2018-06-01

    Full Text Available Advice-giving has been long explored in the artificial intelligence community to build robust learning algorithms when the data is noisy, incorrect or even insufficient. While logic based systems were effectively used in building expert systems, the role of the human has been restricted to being a “mere labeler” in recent times. We hypothesize and demonstrate that probabilistic logic can provide an effective and natural way for the expert to specify domain advice. Specifically, we consider different types of advice-giving in relational domains where noise could arise due to systematic errors or class-imbalance inherent in the domains. The advice is provided as logical statements or privileged features that are thenexplicitly considered by an iterative learning algorithm at every update. Our empirical evidence shows that human advice can effectively accelerate learning in noisy, structured domains where so far humans have been merely used as labelers or as designers of the (initial or final structure of the model.

  15. THE USE OF NUMBERED HEADS TOGETHER (NHT LEARNING MODEL WITH SCIENCE, ENVIRONMENT, TECHNOLOGY, SOCIETY (SETS APPROACH TO IMPROVE STUDENT LEARNING MOTIVATION OF SENIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    B. Sutipnyo

    2018-01-01

    Full Text Available This research was aimed to determine the increasing of students' motivation that has been applied by Numbered Heads Together (NHT learning model with Science, Environment, Technology, Society (SETS approach. The design of this study was quasi experiment with One Group Pretest-Posttest Design. The data of students’ learning motivation obtained through questionnaire administered before and after NHT learning model with SETS approach. In this research, the indicators of learning-motivation were facing tasks diligently, showing interest in variety of problems, prefering to work independently, keeping students’ opinions, and feeling happy to find and solve problems. Increasing of the students’ learning motivation was analyzed by using a gain test. The results showed that applying NHT learning model with SETS approach could increase the students’ learning motivation in medium categories.

  16. Developing of Indicators of an E-Learning Benchmarking Model for Higher Education Institutions

    Science.gov (United States)

    Sae-Khow, Jirasak

    2014-01-01

    This study was the development of e-learning indicators used as an e-learning benchmarking model for higher education institutes. Specifically, it aimed to: 1) synthesize the e-learning indicators; 2) examine content validity by specialists; and 3) explore appropriateness of the e-learning indicators. Review of related literature included…

  17. Evaluation of Deep Learning Models for Predicting CO2 Flux

    Science.gov (United States)

    Halem, M.; Nguyen, P.; Frankel, D.

    2017-12-01

    Artificial neural networks have been employed to calculate surface flux measurements from station data because they are able to fit highly nonlinear relations between input and output variables without knowing the detail relationships between the variables. However, the accuracy in performing neural net estimates of CO2 flux from observations of CO2 and other atmospheric variables is influenced by the architecture of the neural model, the availability, and complexity of interactions between physical variables such as wind, temperature, and indirect variables like latent heat, and sensible heat, etc. We evaluate two deep learning models, feed forward and recurrent neural network models to learn how they each respond to the physical measurements, time dependency of the measurements of CO2 concentration, humidity, pressure, temperature, wind speed etc. for predicting the CO2 flux. In this paper, we focus on a) building neural network models for estimating CO2 flux based on DOE data from tower Atmospheric Radiation Measurement data; b) evaluating the impact of choosing the surface variables and model hyper-parameters on the accuracy and predictions of surface flux; c) assessing the applicability of the neural network models on estimate CO2 flux by using OCO-2 satellite data; d) studying the efficiency of using GPU-acceleration for neural network performance using IBM Power AI deep learning software and packages on IBM Minsky system.

  18. Caka E-Learning Model

    Science.gov (United States)

    Gorsev, Gonca; Turkmen, Ugur; Askin, Cihat

    2017-01-01

    In today's world, in order to obtain the information in education, various approaches, methods and devices have been developed. Like many developing countries, e-learning and distance learning (internet based learning) are used today in many areas of education in Turkey. This research aims to contribute to education systems and develop a…

  19. Using visual lateralization to model learning and memory in zebrafish larvae.

    Science.gov (United States)

    Andersson, Madelene Åberg; Ek, Fredrik; Olsson, Roger

    2015-03-02

    Impaired learning and memory are common symptoms of neurodegenerative and neuropsychiatric diseases. Present, there are several behavioural test employed to assess cognitive functions in animal models, including the frequently used novel object recognition (NOR) test. However, although atypical functional brain lateralization has been associated with neuropsychiatric conditions, spanning from schizophrenia to autism, few animal models are available to study this phenomenon in learning and memory deficits. Here we present a visual lateralization NOR model (VLNOR) in zebrafish larvae as an assay that combines brain lateralization and NOR. In zebrafish larvae, learning and memory are generally assessed by habituation, sensitization, or conditioning paradigms, which are all representatives of nondeclarative memory. The VLNOR is the first model for zebrafish larvae that studies a memory similar to the declarative memory described for mammals. We demonstrate that VLNOR can be used to study memory formation, storage, and recall of novel objects, both short and long term, in 10-day-old zebrafish. Furthermore we show that the VLNOR model can be used to study chemical modulation of memory formation and maintenance using dizocilpine (MK-801), a frequently used non-competitive antagonist of the NMDA receptor, used to test putative antipsychotics in animal models.

  20. An Integrated Qualitative and Quantitative Biochemical Model Learning Framework Using Evolutionary Strategy and Simulated Annealing.

    Science.gov (United States)

    Wu, Zujian; Pang, Wei; Coghill, George M

    2015-01-01

    Both qualitative and quantitative model learning frameworks for biochemical systems have been studied in computational systems biology. In this research, after introducing two forms of pre-defined component patterns to represent biochemical models, we propose an integrative qualitative and quantitative modelling framework for inferring biochemical systems. In the proposed framework, interactions between reactants in the candidate models for a target biochemical system are evolved and eventually identified by the application of a qualitative model learning approach with an evolution strategy. Kinetic rates of the models generated from qualitative model learning are then further optimised by employing a quantitative approach with simulated annealing. Experimental results indicate that our proposed integrative framework is feasible to learn the relationships between biochemical reactants qualitatively and to make the model replicate the behaviours of the target system by optimising the kinetic rates quantitatively. Moreover, potential reactants of a target biochemical system can be discovered by hypothesising complex reactants in the synthetic models. Based on the biochemical models learned from the proposed framework, biologists can further perform experimental study in wet laboratory. In this way, natural biochemical systems can be better understood.

  1. Towards a Pragmatic Model for Group-Based, Technology-Mediated, Project-Oriented Learning - An Overview of the B2C Model

    Science.gov (United States)

    Lawlor, John; Conneely, Claire; Tangney, Brendan

    The poor assimilation of ICT in formal education is firmly rooted in models of learning prevalent in the classroom which are largely teacher-led, individualistic and reproductive, with little connection between theory and practice and poor linkages across the curriculum. A new model of classroom practice is required to allow for creativity, peer-learning, thematic learning, collaboration and problem solving, i.e. the skills commonly deemed necessary for the knowledge-based society of the 21st century. This paper describes the B2C model for group-based, technology-mediated, project-oriented learning which, while being developed as part of an out of school programme, offers a pragmatic alternative to traditional classroom pedagogy.

  2. Game Based Learning (GBL) Adoption Model for Universities ...

    African Journals Online (AJOL)

    pc

    2018-03-05

    Mar 5, 2018 ... faced while adopting Game Based Learning (GBL) model, its benefits and ... preferred traditional lectures styles, 7% online class and. 34% preferred .... students in developing problem-solving skills which in return may help ...

  3. Fuzzy comprehensive evaluation model of interuniversity collaborative learning based on network

    Science.gov (United States)

    Wenhui, Ma; Yu, Wang

    2017-06-01

    Learning evaluation is an effective method, which plays an important role in the network education evaluation system. But most of the current network learning evaluation methods still use traditional university education evaluation system, which do not take into account of web-based learning characteristics, and they are difficult to fit the rapid development of interuniversity collaborative learning based on network. Fuzzy comprehensive evaluation method is used to evaluate interuniversity collaborative learning based on the combination of fuzzy theory and analytic hierarchy process. Analytic hierarchy process is used to determine the weight of evaluation factors of each layer and to carry out the consistency check. According to the fuzzy comprehensive evaluation method, we establish interuniversity collaborative learning evaluation mathematical model. The proposed scheme provides a new thought for interuniversity collaborative learning evaluation based on network.

  4. What can we learn from learning models about sensitivity to letter-order in visual word recognition?

    Science.gov (United States)

    Lerner, Itamar; Armstrong, Blair C.; Frost, Ram

    2014-01-01

    Recent research on the effects of letter transposition in Indo-European Languages has shown that readers are surprisingly tolerant of these manipulations in a range of tasks. This evidence has motivated the development of new computational models of reading that regard flexibility in positional coding to be a core and universal principle of the reading process. Here we argue that such approach does not capture cross-linguistic differences in transposed-letter effects, nor do they explain them. To address this issue, we investigated how a simple domain-general connectionist architecture performs in tasks such as letter-transposition and letter substitution when it had learned to process words in the context of different linguistic environments. The results show that in spite of of the neurobiological noise involved in registering letter-position in all languages, flexibility and inflexibility in coding letter order is also shaped by the statistical orthographic properties of words in a language, such as the relative prevalence of anagrams. Our learning model also generated novel predictions for targeted empirical research, demonstrating a clear advantage of learning models for studying visual word recognition. PMID:25431521

  5. Reconstructing constructivism: Causal models, Bayesian learning mechanisms and the theory theory

    OpenAIRE

    Gopnik, Alison; Wellman, Henry M.

    2012-01-01

    We propose a new version of the “theory theory” grounded in the computational framework of probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but rigorous and detailed approach to cognitive development. They also explain the learning of both more specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas, explain the computational framework in an intuitive and non-technical way, and review an extensive but ...

  6. Scalable learning of probabilistic latent models for collaborative filtering

    DEFF Research Database (Denmark)

    Langseth, Helge; Nielsen, Thomas Dyhre

    2015-01-01

    variational Bayes learning and inference algorithm for these types of models. Empirical results show that the proposed algorithm achieves significantly better accuracy results than other straw-men models evaluated on a collection of well-known data sets. We also demonstrate that the algorithm has a highly...

  7. MODEL OF COLLABORATIVE COURSES DEVELOPMENT IN DISTANCE LEARNING PLATFORMS

    Directory of Open Access Journals (Sweden)

    Dmytro S. Morozov

    2015-02-01

    Full Text Available The research paper outlines the problem of organization collaboration of users group on creation distance learning courses. The article contains analysis of the courses data structure. According to proposed structure the model of developer’s collaboration on creating distance learning courses based on basic principles of source code management was proposed. The article also provides result of research on necessary tools for collaborative development of courses in distance learning platforms. According to the requirements of flexibility and simplicity of access to system for any level educational institutions, technological decisions on granting permissions on performing basic operations on course elements and providing to user moderation’s privileges were proposed.

  8. Internal cholinergic regulation of learning and recall in a model of olfactory processing

    Directory of Open Access Journals (Sweden)

    Licurgo Benemann Almeida

    2016-11-01

    Full Text Available In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC and horizontal limb of the diagonal band of Broca (HDB to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system. In the model, cholinergic neurons reduce their firing in response to familiar odors – reducing plasticity in the PC, but increase their firing in response to novel odor – increasing PC plasticity. Recordings from HDB neurons in awake behaving rats reflect predictions from the model by showing that a subset of neurons decrease their firing as an odor becomes familiar.

  9. Effect of Internet-Based Cognitive Apprenticeship Model (i-CAM on Statistics Learning among Postgraduate Students.

    Directory of Open Access Journals (Sweden)

    Farzaneh Saadati

    Full Text Available Because students' ability to use statistics, which is mathematical in nature, is one of the concerns of educators, embedding within an e-learning system the pedagogical characteristics of learning is 'value added' because it facilitates the conventional method of learning mathematics. Many researchers emphasize the effectiveness of cognitive apprenticeship in learning and problem solving in the workplace. In a cognitive apprenticeship learning model, skills are learned within a community of practitioners through observation of modelling and then practice plus coaching. This study utilized an internet-based Cognitive Apprenticeship Model (i-CAM in three phases and evaluated its effectiveness for improving statistics problem-solving performance among postgraduate students. The results showed that, when compared to the conventional mathematics learning model, the i-CAM could significantly promote students' problem-solving performance at the end of each phase. In addition, the combination of the differences in students' test scores were considered to be statistically significant after controlling for the pre-test scores. The findings conveyed in this paper confirmed the considerable value of i-CAM in the improvement of statistics learning for non-specialized postgraduate students.

  10. Personal recommender systems for learners in lifelong learning: requirements, techniques and model

    NARCIS (Netherlands)

    Drachsler, Hendrik; Hummel, Hans; Koper, Rob

    2007-01-01

    Drachsler, H., Hummel, H. G. K., & Koper, R. (2008). Personal recommender systems for learners in lifelong learning: requirements, techniques and model. International Journal of Learning Technology, 3(4), 404-423.

  11. BLENDED LEARNING AND FEATURES OF THE USE OF THE ROTATION MODEL IN THE EDUCATIONAL PROCESS

    Directory of Open Access Journals (Sweden)

    Tkachuk H.

    2017-12-01

    Full Text Available The article analyzes of the problem of blended learning in higher education institutions. In particular, the article analyzes the legislative documents about the implementation of information technologies in the educational process, strategies for higher education, the introduction of distance learning, that determine importance of blended learning. The author also analyzes the concept of blended learning based on the definitions that are considered in the scientific and pedagogical literature. That analysis determines the ambiguity and incorrectness of the different definitions. It was proposed author's definition for this term. For order to identify the benefits of blended learning, it was analyzed of the positive and negative aspects of all technologies that are combined in the system of blended learning. Based on the analysis of different learning models, it was determined that the most optimal models is the station rotation model and the flipped classroom. The article provides an example of the use of a combination of these models for learning the topic "Computer Structure" by the students of the direction of training "Informatics". The education session was taking place in several stages and involves changing the five stations. Based on the conducted research was identified the general didactic and methodical principles of organization of blended learning.

  12. The Development of Writing Learning Model Based on the Arces Motivation for Students of Senior High School

    Directory of Open Access Journals (Sweden)

    Andreas Kosasih

    2014-08-01

    Full Text Available This research obtains some of the findings which in a word can be described as follows: (1 the step of Introduction (exploration: through study library and observation, it can be found that the quality of writing learning and the need of a better writing learning model, and it is formulated the prototype of writing learning model based on the ARCES motivation, serta dirumuskan prototipe model pembelajaran menulis berbasis motivasi ARCES after the draft is validated by the Indonesian language experts and education technology experts. (2 The step of model development: through development of preliminary model and development of  main model and after it is done by  monitoring, evaluation, focus group discussion and revision, then it is produced a better writing learning model based on ARCES motivation. (3 The step of model effectiveness examination: through pre-test, treatment, and post-test which is produced writing learning model  based on ARCES motivation. From the effectiveness test result of model, it can be concluded that writing learning based on ARCES motivation is more effective (in average value of post test is 83,94 than writing learning conventionally (in average value of post-test is 75,79.

  13. Utilizing the Active and Collaborative Learning Model in the Introductory Physics Course

    Science.gov (United States)

    Nam, Nguyen Hoai

    2014-01-01

    Model of active and collaborative learning (ACLM) applied in training specific subject makes clear advantage due to the goals of knowledge, skills that students got to develop successful future job. The author exploits the learning management system (LMS) of Hanoi National University of Education (HNUE) to establish a learning environment in the…

  14. TRACX2: a connectionist autoencoder using graded chunks to model infant visual statistical learning.

    Science.gov (United States)

    Mareschal, Denis; French, Robert M

    2017-01-05

    Even newborn infants are able to extract structure from a stream of sensory inputs; yet how this is achieved remains largely a mystery. We present a connectionist autoencoder model, TRACX2, that learns to extract sequence structure by gradually constructing chunks, storing these chunks in a distributed manner across its synaptic weights and recognizing these chunks when they re-occur in the input stream. Chunks are graded rather than all-or-nothing in nature. As chunks are learnt their component parts become more and more tightly bound together. TRACX2 successfully models the data from five experiments from the infant visual statistical learning literature, including tasks involving forward and backward transitional probabilities, low-salience embedded chunk items, part-sequences and illusory items. The model also captures performance differences across ages through the tuning of a single-learning rate parameter. These results suggest that infant statistical learning is underpinned by the same domain-general learning mechanism that operates in auditory statistical learning and, potentially, in adult artificial grammar learning.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Author(s).

  15. THE INTEGRATION OF CREATIVITY MANAGEMENT MODELS INTO UNIVERSITIES’VIRTUAL LEARNING COMMUNITIES

    Directory of Open Access Journals (Sweden)

    Alexandru STRUNGĂ

    2014-12-01

    Full Text Available Given the access of an increasingly higher number of individuals to virtual learning networks, the issue of creativity management becomes extremely important, especially for schools and universities. In the specialized literature, participating in virtual learning communities has several advantages, including: permanent access to information, high educational performance and increased creativity, and also better-developed professional identity (North and Kumta, 2014; Boulay and van Raalte, 2014. In the Romanian literature, there are few studies that aim directly at the relationship between the participation in virtual learning networks and creativity and innovation management models, especially in higher education institutions. This paper aims to study the ways in which creativity and innovation management models can be used in virtual learning networks in order to achieve better productivity at both individual and organizational levels, taking into account several best practices from this field and their possible implementation in Romanian educational institutions.

  16. Upscaling of Surface Soil Moisture Using a Deep Learning Model with VIIRS RDR

    Directory of Open Access Journals (Sweden)

    Dongying Zhang

    2017-04-01

    Full Text Available In current upscaling of in situ surface soil moisture practices, commonly used novel statistical or machine learning-based regression models combined with remote sensing data show some advantages in accurately capturing the satellite footprint scale of specific local or regional surface soil moisture. However, the performance of most models is largely determined by the size of the training data and the limited generalization ability to accomplish correlation extraction in regression models, which are unsuitable for larger scale practices. In this paper, a deep learning model was proposed to estimate soil moisture on a national scale. The deep learning model has the advantage of representing nonlinearities and modeling complex relationships from large-scale data. To illustrate the deep learning model for soil moisture estimation, the croplands of China were selected as the study area, and four years of Visible Infrared Imaging Radiometer Suite (VIIRS raw data records (RDR were used as input parameters, then the models were trained and soil moisture estimates were obtained. Results demonstrate that the estimated models captured the complex relationship between the remote sensing variables and in situ surface soil moisture with an adjusted coefficient of determination of R ¯ 2 = 0.9875 and a root mean square error (RMSE of 0.0084 in China. These results were more accurate than the Soil Moisture Active Passive (SMAP active radar soil moisture products and the Global Land data assimilation system (GLDAS 0–10 cm depth soil moisture data. Our study suggests that deep learning model have potential for operational applications of upscaling in situ surface soil moisture data at the national scale.

  17. Sensitivity analysis of machine-learning models of hydrologic time series

    Science.gov (United States)

    O'Reilly, A. M.

    2017-12-01

    Sensitivity analysis traditionally has been applied to assessing model response to perturbations in model parameters, where the parameters are those model input variables adjusted during calibration. Unlike physics-based models where parameters represent real phenomena, the equivalent of parameters for machine-learning models are simply mathematical "knobs" that are automatically adjusted during training/testing/verification procedures. Thus the challenge of extracting knowledge of hydrologic system functionality from machine-learning models lies in their very nature, leading to the label "black box." Sensitivity analysis of the forcing-response behavior of machine-learning models, however, can provide understanding of how the physical phenomena represented by model inputs affect the physical phenomena represented by model outputs.As part of a previous study, hybrid spectral-decomposition artificial neural network (ANN) models were developed to simulate the observed behavior of hydrologic response contained in multidecadal datasets of lake water level, groundwater level, and spring flow. Model inputs used moving window averages (MWA) to represent various frequencies and frequency-band components of time series of rainfall and groundwater use. Using these forcing time series, the MWA-ANN models were trained to predict time series of lake water level, groundwater level, and spring flow at 51 sites in central Florida, USA. A time series of sensitivities for each MWA-ANN model was produced by perturbing forcing time-series and computing the change in response time-series per unit change in perturbation. Variations in forcing-response sensitivities are evident between types (lake, groundwater level, or spring), spatially (among sites of the same type), and temporally. Two generally common characteristics among sites are more uniform sensitivities to rainfall over time and notable increases in sensitivities to groundwater usage during significant drought periods.

  18. Attention to the Model's Face When Learning from Video Modeling Examples in Adolescents with and without Autism Spectrum Disorder

    Science.gov (United States)

    van Wermeskerken, Margot; Grimmius, Bianca; van Gog, Tamara

    2018-01-01

    We investigated the effects of seeing the instructor's (i.e., the model's) face in video modeling examples on students' attention and their learning outcomes. Research with university students suggested that the model's face attracts students' attention away from what the model is doing, but this did not hamper learning. We aimed to investigate…

  19. The Influence of E-learning Characteristics and Basic Ict Competencies to Actual USAge of E-learning: a Path Diagram Model

    OpenAIRE

    Suarta, I Made; Suwintana, I Ketut

    2015-01-01

    In this paper, the Technology Acceptance Model (TAM) is extent with two external stimulus namely e-learning characteristics and basic ICT (Information and Communication Technology) competencies. The purpose of this study are (1) finding relationship between e-learning characteristics and lecturers' basic ICT competencies with the perceived ease of use and perceived usefulness of e-learning; and (2) determining the effect of e-learning characteristics and lecturer basic ICT competencies to the...

  20. STRUCTURAL AND FUNCTIONAL MODEL OF CLOUD ORIENTED LEARNING ENVIRONMENT FOR BACHELORS OF INFORMATICS TRAINING

    Directory of Open Access Journals (Sweden)

    Tetiana A. Vakaliuk

    2017-06-01

    Full Text Available The article summarizes the essence of the category "model". There are presented the main types of models used in educational research: structural, functional, structural and functional model as well as basic requirements for building these types of models. The national experience in building models and designing cloud-based learning environment of educational institutions (both higher and secondary is analyzed. It is presented structural and functional model of cloud-based learning environment for Bachelor of Informatics. Also we describe each component of cloud-based learning environment model for bachelors of informatics training: target, managerial, organizational, content and methodical, communication, technological and productive. It is summarized, that COLE should solve all major tasks that relate to higher education institutions.