WorldWideScience

Sample records for learning method called

  1. Do market participants learn from conference calls?

    NARCIS (Netherlands)

    Roelofsen, E.; Verbeeten, F.; Mertens, G.

    2014-01-01

    We examine whether market participants learn from the information that is disseminated during the Q-and-A section of conference calls. Specifically, we investigate whether stock prices react to information on intangible assets provided during conference calls, and whether conference calls

  2. Computer Assisted Language Learning (CALL) Software: Evaluation ...

    African Journals Online (AJOL)

    Evaluating the nature and extent of the influence of Computer Assisted Language Learning (CALL) on the quality of language learning is highly problematic. This is owing to the number and complexity of interacting variables involved in setting the items for teaching and learning languages. This paper identified and ...

  3. Wild birds learn to eavesdrop on heterospecific alarm calls.

    Science.gov (United States)

    Magrath, Robert D; Haff, Tonya M; McLachlan, Jessica R; Igic, Branislav

    2015-08-03

    Many vertebrates gain critical information about danger by eavesdropping on other species' alarm calls [1], providing an excellent context in which to study information flow among species in animal communities [2-4]. A fundamental but unresolved question is how individuals recognize other species' alarm calls. Although individuals respond to heterospecific calls that are acoustically similar to their own, alarms vary greatly among species, and eavesdropping probably also requires learning [1]. Surprisingly, however, we lack studies demonstrating such learning. Here, we show experimentally that individual wild superb fairy-wrens, Malurus cyaneus, can learn to recognize previously unfamiliar alarm calls. We trained individuals by broadcasting unfamiliar sounds while simultaneously presenting gliding predatory birds. Fairy-wrens in the experiment originally ignored these sounds, but most fled in response to the sounds after two days' training. The learned response was not due to increased responsiveness in general or to sensitization following repeated exposure and was independent of sound structure. Learning can therefore help explain the taxonomic diversity of eavesdropping and the refining of behavior to suit the local community. In combination with previous work on unfamiliar predator recognition (e.g., [5]), our results imply rapid spread of anti-predator behavior within wild populations and suggest methods for training captive-bred animals before release into the wild [6]. A remaining challenge is to assess the importance and consequences of direct association of unfamiliar sounds with predators, compared with social learning-such as associating unfamiliar sounds with conspecific alarms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. 76 Computer Assisted Language Learning (CALL) Software ...

    African Journals Online (AJOL)

    Ike Odimegwu

    combination with other factors which may enhance or ameliorate the ... form of computer-based learning which carries two important features: .... To take some commonplace examples, a ... photographs, and even full-motion video clips.

  5. Professionals calling in lifelong learning centers

    Directory of Open Access Journals (Sweden)

    Victor Manuel Monteiro Seco

    2013-06-01

    Full Text Available Purpose: This study aims to understand how the way people see their work and the authentizotic character of their organizational climate contribute to the building of a Great Place to Work. Design/methodology/approach: This paper presents the results of a quantitative investigation that correlate the perceptions of organizational climate and the work orientations of professionals with different occupations on Portuguese lifelong education centers. Findings: The study indicates that all the core elements of an authentizotic organization contribute to explain what people potentially expect from their companies:  adequate  material  conditions  plus  a  meaningful contribution. Practical implications: The study has implications in the future for National Qualification Agency directors, education politicians and human resource managers who are responsible for providing good expectations within a healthy context of talent retention. Originality/value: The novel contribution of this paper is the finding that employee’s work orientations and authentizotic climate are related to each other in a Lifelong learning Center in the public education sector.

  6. Sustainability in CALL Learning Environments: A Systemic Functional Grammar Approach

    Science.gov (United States)

    McDonald, Peter

    2014-01-01

    This research aims to define a sustainable resource in Computer-Assisted Language Learning (CALL). In order for a CALL resource to be sustainable it must work within existing educational curricula. This feature is a necessary prerequisite of sustainability because, despite the potential for educational change that digitalization has offered since…

  7. Studying Language Learning Opportunities Afforded by a Collaborative CALL Task

    Science.gov (United States)

    Leahy, Christine

    2016-01-01

    This research study explores the learning potential of a computer-assisted language learning (CALL) activity. Research suggests that the dual emphasis on content development and language accuracy, as well as the complexity of L2 production in natural settings, can potentially create cognitive overload. This study poses the question whether, and…

  8. Social Learning: Medical Student Perceptions of Geriatric House Calls

    Science.gov (United States)

    Abbey, Linda; Willett, Rita; Selby-Penczak, Rachel; McKnight, Roberta

    2010-01-01

    Bandura's social learning theory provides a useful conceptual framework to understand medical students' perceptions of a house calls experience at Virginia Commonwealth University School of Medicine. Social learning and role modeling reflect Liaison Committee on Medical Education guidelines for "Medical schools (to) ensure that the learning…

  9. Computer Assisted Language Learning (CALL): Using Internet for Effective Language Learning

    NARCIS (Netherlands)

    Kremenska, Anelly

    2006-01-01

    Please, cite this publication as: Kremenska, A. (2006). Computer Assisted Language Learning (CALL): Using Internet for Effective Language Learning. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence Conference. March 30th-31st, Sofia,

  10. Social learning: medical student perceptions of geriatric house calls.

    Science.gov (United States)

    Abbey, Linda; Willett, Rita; Selby-Penczak, Rachel; McKnight, Roberta

    2010-01-01

    Bandura's social learning theory provides a useful conceptual framework to understand medical students' perceptions of a house calls experience at Virginia Commonwealth University School of Medicine. Social learning and role modeling reflect Liaison Committee on Medical Education guidelines for "Medical schools (to) ensure that the learning environment for medical students promotes the development of explicit and appropriate professional attributes (attitudes, behaviors, and identity) in their medical students." This qualitative study reports findings from open-ended survey questions from 123 medical students who observed a preceptor during house calls to elderly homebound patients. Their comments included reflections on the medical treatment as well as interactions with family and professional care providers. Student insights about the social learning process they experienced during house calls to geriatric patients characterized physician role models as dedicated, compassionate, and communicative. They also described patient care in the home environment as comprehensive, personalized, more relaxed, and comfortable. Student perceptions reflect an appreciation of the richness and complexity of details learned from home visits and social interaction with patients, families, and caregivers.

  11. Complexity Theory and CALL Curriculum in Foreign Language Learning

    Directory of Open Access Journals (Sweden)

    Hassan Soleimani

    2014-05-01

    Full Text Available Complexity theory literally indicates the complexity of a system, behavior, or a process. Its connotative meaning, while, implies dynamism, openness, sensitivity to initial conditions and feedback, and adaptation properties of a system. Regarding English as a Foreign/ Second Language (EFL/ESL this theory emphasizes on the complexity of the process of teaching and learning, including all the properties of a complex system. The purpose of the current study is to discuss the role of CALL as a modern technology in simplifying the process of teaching and learning a new language while integrating into the complexity theory. Nonetheless, the findings obtained from reviewing previously conducted studies in this field confirmed the usefulness of CALL curriculum in EFL/ESL contexts. These findings can also provide pedagogical implications for employing computer as an effective teaching and learning tool.

  12. The Effectiveness of Using Contextual Clues, Dictionary Strategy and Computer Assisted Language Learning (Call In Learning Vocabulary

    Directory of Open Access Journals (Sweden)

    Zuraina Ali

    2013-07-01

    Full Text Available This study investigates the effectiveness of three vocabulary learning methods that are Contextual Clues, Dictionary Strategy, and Computer Assisted Language Learning (CALL in learning vocabulary among ESL learners. First, it aims at finding which of the vocabulary learning methods namely Dictionary Strategy, Contextual Clues, and CALL that may result in the highest number of words learnt in the immediate and delayed recall tests. Second, it compares the results of the Pre-test and the Delayed Recall Post-test to determine the differences of learning vocabulary using the methods. A quasi-experiment that tested the effectiveness of learning vocabulary using Dictionary Strategy, Contextual clues, and CALL involved 123 first year university students. Qualitative procedures included the collection of data from interviews which were conducted to triangulate the data obtain from the quantitative inquiries. Findings from the study using ANOVA revealed that there were significant differences when students were exposed to Dictionary Strategy, Contextual Clues and CALL in the immediate recall tests but not in the Delayed Recall Post-test. Also, there were significant differences when t test was used to compare the scores between the Pre-test and the Delayed Recall Post-test in using the three methods of vocabulary learning. Although many researchers have advocated the relative effectiveness of Dictionary Strategy, Contextual Clues, and CALL in learning vocabulary, the study however, is still paramount since there is no study has ever empirically investigated the relative efficacy of these three methods in a single study.

  13. Sustainability in CALL Learning Environments: A Systemic Functional Grammar Approach

    Directory of Open Access Journals (Sweden)

    Peter McDonald

    2014-09-01

    Full Text Available This research aims to define a sustainable resource in Computer-Assisted Language Learning (CALL. In order for a CALL resource to be sustainable it must work within existing educational curricula. This feature is a necessary prerequisite of sustainability because, despite the potential for educational change that digitalization has offered since the nineteen nineties, curricula in traditional educational institutions have not fundamentally changed, even as we move from a pre-digital society towards a digital society. Curricula have failed to incorporate CALL resources because no agreed-upon pedagogical language enables teachers to discuss CALL classroom practices. Systemic Functional Grammar (SFG can help to provide this language and bridge the gap between the needs of the curriculum and the potentiality of CALL-based resources. This paper will outline how SFG principles can be used to create a pedagogical language for CALL and it will give practical examples of how this language can be used to create sustainable resources in classroom contexts.

  14. Constructivism, the so-called semantic learning theories, and situated cognition versus the psychological learning theories.

    Science.gov (United States)

    Aparicio, Juan José; Rodríguez Moneo, María

    2005-11-01

    In this paper, the perspective of situated cognition, which gave rise both to the pragmatic theories and the so-called semantic theories of learning and has probably become the most representative standpoint of constructivism, is examined. We consider the claim of situated cognition to provide alternative explanations of the learning phenomenon to those of psychology and, especially, to those of the symbolic perspective, currently predominant in cognitive psychology. The level of analysis of situated cognition (i.e., global interactive systems) is considered an inappropriate approach to the problem of learning. From our analysis, it is concluded that the pragmatic theories and the so-called semantic theories of learning which originated in situated cognition can hardly be considered alternatives to the psychological learning theories, and they are unlikely to add anything of interest to the learning theory or to contribute to the improvement of our knowledge about the learning phenomenon.

  15. Exploration of Textual Interactions in CALL Learning Communities: Emerging Research and Opportunities

    Science.gov (United States)

    White, Jonathan R.

    2017-01-01

    Computer-assisted language learning (CALL) has greatly enhanced the realm of online social interaction and behavior. In language classrooms, it allows the opportunity for students to enhance their learning experiences. "Exploration of Textual Interactions in CALL Learning Communities: Emerging Research and Opportunities" is an ideal…

  16. svclassify: a method to establish benchmark structural variant calls.

    Science.gov (United States)

    Parikh, Hemang; Mohiyuddin, Marghoob; Lam, Hugo Y K; Iyer, Hariharan; Chen, Desu; Pratt, Mark; Bartha, Gabor; Spies, Noah; Losert, Wolfgang; Zook, Justin M; Salit, Marc

    2016-01-16

    The human genome contains variants ranging in size from small single nucleotide polymorphisms (SNPs) to large structural variants (SVs). High-quality benchmark small variant calls for the pilot National Institute of Standards and Technology (NIST) Reference Material (NA12878) have been developed by the Genome in a Bottle Consortium, but no similar high-quality benchmark SV calls exist for this genome. Since SV callers output highly discordant results, we developed methods to combine multiple forms of evidence from multiple sequencing technologies to classify candidate SVs into likely true or false positives. Our method (svclassify) calculates annotations from one or more aligned bam files from many high-throughput sequencing technologies, and then builds a one-class model using these annotations to classify candidate SVs as likely true or false positives. We first used pedigree analysis to develop a set of high-confidence breakpoint-resolved large deletions. We then used svclassify to cluster and classify these deletions as well as a set of high-confidence deletions from the 1000 Genomes Project and a set of breakpoint-resolved complex insertions from Spiral Genetics. We find that likely SVs cluster separately from likely non-SVs based on our annotations, and that the SVs cluster into different types of deletions. We then developed a supervised one-class classification method that uses a training set of random non-SV regions to determine whether candidate SVs have abnormal annotations different from most of the genome. To test this classification method, we use our pedigree-based breakpoint-resolved SVs, SVs validated by the 1000 Genomes Project, and assembly-based breakpoint-resolved insertions, along with semi-automated visualization using svviz. We find that candidate SVs with high scores from multiple technologies have high concordance with PCR validation and an orthogonal consensus method MetaSV (99.7 % concordant), and candidate SVs with low scores are

  17. Virtual Learning Environments on the Go: CALL Meets MALL

    Science.gov (United States)

    Arús Hita, Jorge

    2016-01-01

    This paper presents "Eating out," a Moodle-based digital learning resource for English as a Foreign Language (EFL) teaching that can be run both on computers and mobile devices. It is argued that Mobile Assisted Language Learning (MALL) resources do not necessarily need to be specifically designed for such platforms. Rather, a carefully…

  18. Is CALL Obsolete? Language Acquisition and Language Learning Revisited in a Digital Age

    Science.gov (United States)

    Jarvis, Huw; Krashen, Stephen

    2014-01-01

    In this article, Huw Jarvis and Stephen Krashen ask "Is CALL Obsolete?" When the term CALL (Computer-Assisted Language Learning) was introduced in the 1960s, the language education profession knew only about language learning, not language acquisition, and assumed the computer's primary contribution to second language acquisition…

  19. Translating and transforming (a) CALL for leadership for learning

    DEFF Research Database (Denmark)

    Weinreich, Elvi; Bjerg, Helle

    2015-01-01

    "The paper pursues the argument that the process of translation is not solely a linguistic exercise. It also implies methodological and conceptual questions related to the translation and as such transformation of general and theoretical research based models of leadership for learning...

  20. Computer-Assisted Language Learning (CALL) in Support of (Re)-Learning Native Languages: The Case of Runyakitara

    Science.gov (United States)

    Katushemererwe, Fridah; Nerbonne, John

    2015-01-01

    This study presents the results from a computer-assisted language learning (CALL) system of Runyakitara (RU_CALL). The major objective was to provide an electronic language learning environment that can enable learners with mother tongue deficiencies to enhance their knowledge of grammar and acquire writing skills in Runyakitara. The system…

  1. Systems configured to distribute a telephone call, communication systems, communication methods and methods of routing a telephone call to a service representative

    Science.gov (United States)

    Harris, Scott H.; Johnson, Joel A.; Neiswanger, Jeffery R.; Twitchell, Kevin E.

    2004-03-09

    The present invention includes systems configured to distribute a telephone call, communication systems, communication methods and methods of routing a telephone call to a customer service representative. In one embodiment of the invention, a system configured to distribute a telephone call within a network includes a distributor adapted to connect with a telephone system, the distributor being configured to connect a telephone call using the telephone system and output the telephone call and associated data of the telephone call; and a plurality of customer service representative terminals connected with the distributor and a selected customer service representative terminal being configured to receive the telephone call and the associated data, the distributor and the selected customer service representative terminal being configured to synchronize, application of the telephone call and associated data from the distributor to the selected customer service representative terminal.

  2. Developing an effective corrective action process : lessons learned from operating a confidential close call reporting system

    Science.gov (United States)

    2013-03-05

    In 2007, the Federal Railroad Administration (FRA) launched : C3RS, the Confidential Close Call Reporting System, as a : demonstration project to learn how to facilitate the effective : reporting and implementation of corrective actions, and assess t...

  3. Attitudes of Jordanian Undergraduate Students towards Using Computer Assisted Language Learning (CALL)

    Science.gov (United States)

    Saeed, Farah Jamal Abed Alrazeq; Al-Zayed, Norma Nawaf

    2018-01-01

    The study aimed at investigating the attitudes of Jordanian undergraduate students towards using computer assisted-language learning (CALL) and its effectiveness in the process of learning the English language. In order to fulfill the study's objective, the researchers used a questionnaire to collect data, followed-up with semi-structured…

  4. CALL AND COOPERATIVE LEARNING: A SOLUTION TO DEVELOP STUDENTS‟ LISTENING ABILITY

    OpenAIRE

    Delsa Miranty

    2017-01-01

    This paper aims to provide some ideas both for English teachers and target learners about how to apply CALL and Cooperative Learning as the solution to develop students‘ listening activities in the classroom. Since teachers need to understand about students‘ needs, background, age and expectations when they learn English as the foreign language in the classroom. Therefore, the English teacher should provide environment which facilitates the children to have fun di the teaching learning proces...

  5. A Call to Action for Research in Digital Learning: Learning without Limits of Time, Place, Path, Pace…or Evidence

    Science.gov (United States)

    Cavanaugh, Cathy; Sessums, Christopher; Drexler, Wendy

    2015-01-01

    This essay is a call for rethinking our approach to research in digital learning. It plots a path founded in social trends and advances in education. A brief review of these trends and advances is followed by discussion of what flattened research might look like at scale. Scaling research in digital learning is crucial to advancing understanding…

  6. Investigating Language Learning Activity Using a CALL Task in the Self-access Centre

    Directory of Open Access Journals (Sweden)

    Carlos Montoro

    2011-09-01

    Full Text Available This article describes a small study of the language learning activity of individual learners using a CALL task in a self-access environment. The research focuses on the nature of the language learning activity, the most salient elements that make up its structure and major disturbances observed between and within some of those elements. It is set in the context of computer-assisted language learning (CALL and activity theory. A CALL task designed by the authors was made available online to be used as a research and learning tool. Empirical data was collected from two participants using ethnographic tools, such as participant observation and stimulated recall sessions. The analysis focuses on disturbances mainly involving the subject (i.e., the learner, mediating artefacts (e.g., the CALL task, the community (e.g., management and other self-access centre users and the object of the activity (i.e., learning English. It is recommended that future studies should look deeper into contradictions in the learning activity from a cultural-historical perspective.

  7. The method of global learning in teaching foreign languages

    Directory of Open Access Journals (Sweden)

    Tatjana Dragovič

    2001-12-01

    Full Text Available The authors describe the method of global learning of foreign languages, which is based on the principles of neurolinguistic programming (NLP. According to this theory, the educator should use the method of the so-called periphery learning, where students learn relaxation techniques and at the same time they »incidentally « or subconsciously learn a foreign language. The method of global learning imitates successful strategies of learning in early childhood and therefore creates a relaxed attitude towards learning. Global learning is also compared with standard methods.

  8. Cooperative Learning as a Democratic Learning Method

    Science.gov (United States)

    Erbil, Deniz Gökçe; Kocabas, Ayfer

    2018-01-01

    In this study, the effects of applying the cooperative learning method on the students' attitude toward democracy in an elementary 3rd-grade life studies course was examined. Over the course of 8 weeks, the cooperative learning method was applied with an experimental group, and traditional methods of teaching life studies in 2009, which was still…

  9. Neural Correlates of Threat Perception: Neural Equivalence of Conspecific and Heterospecific Mobbing Calls Is Learned

    Science.gov (United States)

    Avey, Marc T.; Hoeschele, Marisa; Moscicki, Michele K.; Bloomfield, Laurie L.; Sturdy, Christopher B.

    2011-01-01

    Songbird auditory areas (i.e., CMM and NCM) are preferentially activated to playback of conspecific vocalizations relative to heterospecific and arbitrary noise [1]–[2]. Here, we asked if the neural response to auditory stimulation is not simply preferential for conspecific vocalizations but also for the information conveyed by the vocalization. Black-capped chickadees use their chick-a-dee mobbing call to recruit conspecifics and other avian species to mob perched predators [3]. Mobbing calls produced in response to smaller, higher-threat predators contain more “D” notes compared to those produced in response to larger, lower-threat predators and thus convey the degree of threat of predators [4]. We specifically asked whether the neural response varies with the degree of threat conveyed by the mobbing calls of chickadees and whether the neural response is the same for actual predator calls that correspond to the degree of threat of the chickadee mobbing calls. Our results demonstrate that, as degree of threat increases in conspecific chickadee mobbing calls, there is a corresponding increase in immediate early gene (IEG) expression in telencephalic auditory areas. We also demonstrate that as the degree of threat increases for the heterospecific predator, there is a corresponding increase in IEG expression in the auditory areas. Furthermore, there was no significant difference in the amount IEG expression between conspecific mobbing calls or heterospecific predator calls that were the same degree of threat. In a second experiment, using hand-reared chickadees without predator experience, we found more IEG expression in response to mobbing calls than corresponding predator calls, indicating that degree of threat is learned. Our results demonstrate that degree of threat corresponds to neural activity in the auditory areas and that threat can be conveyed by different species signals and that these signals must be learned. PMID:21909363

  10. Neural correlates of threat perception: neural equivalence of conspecific and heterospecific mobbing calls is learned.

    Science.gov (United States)

    Avey, Marc T; Hoeschele, Marisa; Moscicki, Michele K; Bloomfield, Laurie L; Sturdy, Christopher B

    2011-01-01

    Songbird auditory areas (i.e., CMM and NCM) are preferentially activated to playback of conspecific vocalizations relative to heterospecific and arbitrary noise. Here, we asked if the neural response to auditory stimulation is not simply preferential for conspecific vocalizations but also for the information conveyed by the vocalization. Black-capped chickadees use their chick-a-dee mobbing call to recruit conspecifics and other avian species to mob perched predators. Mobbing calls produced in response to smaller, higher-threat predators contain more "D" notes compared to those produced in response to larger, lower-threat predators and thus convey the degree of threat of predators. We specifically asked whether the neural response varies with the degree of threat conveyed by the mobbing calls of chickadees and whether the neural response is the same for actual predator calls that correspond to the degree of threat of the chickadee mobbing calls. Our results demonstrate that, as degree of threat increases in conspecific chickadee mobbing calls, there is a corresponding increase in immediate early gene (IEG) expression in telencephalic auditory areas. We also demonstrate that as the degree of threat increases for the heterospecific predator, there is a corresponding increase in IEG expression in the auditory areas. Furthermore, there was no significant difference in the amount IEG expression between conspecific mobbing calls or heterospecific predator calls that were the same degree of threat. In a second experiment, using hand-reared chickadees without predator experience, we found more IEG expression in response to mobbing calls than corresponding predator calls, indicating that degree of threat is learned. Our results demonstrate that degree of threat corresponds to neural activity in the auditory areas and that threat can be conveyed by different species signals and that these signals must be learned.

  11. Neural correlates of threat perception: neural equivalence of conspecific and heterospecific mobbing calls is learned.

    Directory of Open Access Journals (Sweden)

    Marc T Avey

    Full Text Available Songbird auditory areas (i.e., CMM and NCM are preferentially activated to playback of conspecific vocalizations relative to heterospecific and arbitrary noise. Here, we asked if the neural response to auditory stimulation is not simply preferential for conspecific vocalizations but also for the information conveyed by the vocalization. Black-capped chickadees use their chick-a-dee mobbing call to recruit conspecifics and other avian species to mob perched predators. Mobbing calls produced in response to smaller, higher-threat predators contain more "D" notes compared to those produced in response to larger, lower-threat predators and thus convey the degree of threat of predators. We specifically asked whether the neural response varies with the degree of threat conveyed by the mobbing calls of chickadees and whether the neural response is the same for actual predator calls that correspond to the degree of threat of the chickadee mobbing calls. Our results demonstrate that, as degree of threat increases in conspecific chickadee mobbing calls, there is a corresponding increase in immediate early gene (IEG expression in telencephalic auditory areas. We also demonstrate that as the degree of threat increases for the heterospecific predator, there is a corresponding increase in IEG expression in the auditory areas. Furthermore, there was no significant difference in the amount IEG expression between conspecific mobbing calls or heterospecific predator calls that were the same degree of threat. In a second experiment, using hand-reared chickadees without predator experience, we found more IEG expression in response to mobbing calls than corresponding predator calls, indicating that degree of threat is learned. Our results demonstrate that degree of threat corresponds to neural activity in the auditory areas and that threat can be conveyed by different species signals and that these signals must be learned.

  12. Machine learning methods for planning

    CERN Document Server

    Minton, Steven

    1993-01-01

    Machine Learning Methods for Planning provides information pertinent to learning methods for planning and scheduling. This book covers a wide variety of learning methods and learning architectures, including analogical, case-based, decision-tree, explanation-based, and reinforcement learning.Organized into 15 chapters, this book begins with an overview of planning and scheduling and describes some representative learning systems that have been developed for these tasks. This text then describes a learning apprentice for calendar management. Other chapters consider the problem of temporal credi

  13. Pre-Service Teachers' Uses of and Barriers from Adopting Computer-Assisted Language Learning (CALL) Programs

    Science.gov (United States)

    Samani, Ebrahim; Baki, Roselan; Razali, Abu Bakar

    2014-01-01

    Success in implementation of computer-assisted language learning (CALL) programs depends on the teachers' understanding of the roles of CALL programs in education. Consequently, it is also important to understand the barriers teachers face in the use of computer-assisted language learning (CALL) programs. The current study was conducted on 14…

  14. From Computer Assisted Language Learning (CALL) to Mobile Assisted Language Use (MALU)

    Science.gov (United States)

    Jarvis, Huw; Achilleos, Marianna

    2013-01-01

    This article begins by critiquing the long-established acronym CALL (Computer Assisted Language Learning). We then go on to report on a small-scale study which examines how student non-native speakers of English use a range of digital devices beyond the classroom in both their first (L1) and second (L2) languages. We look also at the extent to…

  15. Learning Based Approach for Optimal Clustering of Distributed Program's Call Flow Graph

    Science.gov (United States)

    Abofathi, Yousef; Zarei, Bager; Parsa, Saeed

    Optimal clustering of call flow graph for reaching maximum concurrency in execution of distributable components is one of the NP-Complete problems. Learning automatas (LAs) are search tools which are used for solving many NP-Complete problems. In this paper a learning based algorithm is proposed to optimal clustering of call flow graph and appropriate distributing of programs in network level. The algorithm uses learning feature of LAs to search in state space. It has been shown that the speed of reaching to solution increases remarkably using LA in search process, and it also prevents algorithm from being trapped in local minimums. Experimental results show the superiority of proposed algorithm over others.

  16. Active Learning Methods

    Science.gov (United States)

    Zayapragassarazan, Z.; Kumar, Santosh

    2012-01-01

    Present generation students are primarily active learners with varied learning experiences and lecture courses may not suit all their learning needs. Effective learning involves providing students with a sense of progress and control over their own learning. This requires creating a situation where learners have a chance to try out or test their…

  17. Qualitative methods in workplace learning

    OpenAIRE

    Fabritius, Hannele

    2015-01-01

    Methods of learning in the workplace will be introduced. The methods are connect to competence development and to the process of conducting development discussions in a dialogical way. The tools developed and applied are a fourfold table, a cycle of work identity, a plan of personal development targets, a learning meeting and a learning map. The methods introduced will aim to better learning at work.

  18. Attitudes of Jordanian Undergraduate Students towards Using Computer Assisted Language Learning (CALL

    Directory of Open Access Journals (Sweden)

    Farah Jamal Abed Alrazeq Saeed

    2018-01-01

    Full Text Available The study aimed at investigating the attitudes of Jordanian undergraduate students towards using computer assisted -language learning (CALL and its effectiveness in the process of learning the English language.  In order to fulfill the study’s objective, the researchers used a questionnaire to collect data, followed-up with semi-structured interviews to investigate the students’ beliefs towards CALL. Twenty- one of Jordanian BA students majoring in English language and literature were selected according to simple random sampling. The results revealed positive attitudes towards CALL in facilitating the process of writing assignments, gaining information; making learning enjoyable; improving their creativity, productivity, academic achievement, critical thinking skills, and enhancing their knowledge about vocabulary grammar, and culture. Furthermore, they believed that computers can motivate them to learn English language and help them to communicate and interact with their teachers and colleagues. The researchers recommended conducting a research on the same topic, taking into consideration the variables of age, gender, experience in using computers, and computer skills.

  19. CALL AND COOPERATIVE LEARNING: A SOLUTION TO DEVELOP STUDENTS‟ LISTENING ABILITY

    Directory of Open Access Journals (Sweden)

    Delsa Miranty

    2017-04-01

    Full Text Available This paper aims to provide some ideas both for English teachers and target learners about how to apply CALL and Cooperative Learning as the solution to develop students‘ listening activities in the classroom. Since teachers need to understand about students‘ needs, background, age and expectations when they learn English as the foreign language in the classroom. Therefore, the English teacher should provide environment which facilitates the children to have fun di the teaching learning process, nice atmosphere, comfort and enjoyable to learn English and practice it both in the classroom and in the laboratory. Furthermore, this paper will provide what the teachers should do related activities such as: listening to the songs, movies, cartoon by applying STAD (Students Teams – Achievement Divisions in the classroom in order to develop students‘ listening ability both in the classroom and laboratory.

  20. A Reinforcement Learning Approach to Call Admission Control in HAPS Communication System

    Directory of Open Access Journals (Sweden)

    Ni Shu Yan

    2017-01-01

    Full Text Available The large changing of link capacity and number of users caused by the movement of both platform and users in communication system based on high altitude platform station (HAPS will resulting in high dropping rate of handover and reduce resource utilization. In order to solve these problems, this paper proposes an adaptive call admission control strategy based on reinforcement learning approach. The goal of this strategy is to maximize long-term gains of system, with the introduction of cross-layer interaction and the service downgraded. In order to access different traffics adaptively, the access utility of handover traffics and new call traffics is designed in different state of communication system. Numerical simulation result shows that the proposed call admission control strategy can enhance bandwidth resource utilization and the performances of handover traffics.

  1. Study on effective methods to call attention in power plant sites. Towards sharing know-how

    International Nuclear Information System (INIS)

    Tsukada, Tetsuya; Nakamura, Hajime

    1999-01-01

    Methods to call attention during field work in nuclear power plants have not obtained the desired results due to redundancy and poor theoretical support. From the points of view of psychology and human engineering, we theoretically examined the validity of each of the following methods for calling attention: methods deployed in power plants, methods obtained through case studies in other industries, and newly developed methods, and then systematized these methods. Using five typical operations with different operating characteristics as models, we also determined methods deployed for each situation in the operation process. Then we determined and categorized the ways of utilizing methods to call attention according to each operating characteristic. With the aim of utilizing these results in many power plants and promoting the sharing of know-how concerning calling attention, we put together an easy-to-understand 'instruction manual', which contains know-how concerning methods to call attention and an introduction to the newly developed methods. Moreover, we established a 'database' (with a registration function) of methods to call attention, which contains organized methods and patterns of utilizing such methods in each operating characteristic. The present study is thus a report that aims at sharing the know-how, centered on this database. (author)

  2. The Adaptation Study of the Questionnaires of the Attitude towards CALL (A-CALL), the Attitude towards CAL (A-CAL), the Attitude towards Foreign Language Learning (A-FLL) to Turkish Language

    Science.gov (United States)

    Erdem, Cahit; Saykili, Abdullah; Kocyigit, Mehmet

    2018-01-01

    This study primarily aims to adapt the Foreign Language Learning (FLL), Computer assisted Learning (CAL) and Computer assisted Language Learning (CALL) scales developed by Vandewaetere and Desmet into Turkish context. The instrument consists of three scales which are "the attitude towards CALL questionnaire" ("A-CALL")…

  3. Editorial (special issue on CALL, e-learning and m-learning

    Directory of Open Access Journals (Sweden)

    Jo Mynard

    2011-09-01

    Full Text Available Technology has, in one form of another, been a part of self-access learning since the very first self-access centres (SACs of the 1980s. Some of the better-funded centres featured elaborate listening and recording machinery and (occasionally early personal computers. Early software programmes and language-learning websites available for self-access use tended to be aimed at individual study, initially following the language lab model, and were often designed to teach or test discrete language points. Of course, in 2011 programmes aimed at individual study do still exist and certainly have a place in self-access learning, particularly if a learner has identified a target language area that the software or website covers. However, in this special issue we go beyond language learning software and look at tools and technologies currently available to the learner as self-access resources.

  4. Geometrical methods in learning theory

    International Nuclear Information System (INIS)

    Burdet, G.; Combe, Ph.; Nencka, H.

    2001-01-01

    The methods of information theory provide natural approaches to learning algorithms in the case of stochastic formal neural networks. Most of the classical techniques are based on some extremization principle. A geometrical interpretation of the associated algorithms provides a powerful tool for understanding the learning process and its stability and offers a framework for discussing possible new learning rules. An illustration is given using sequential and parallel learning in the Boltzmann machine

  5. Methodological Challenges in Sustainability Science: A Call for Method Plurality, Procedural Rigor and Longitudinal Research

    Directory of Open Access Journals (Sweden)

    Henrik von Wehrden

    2017-02-01

    Full Text Available Sustainability science encompasses a unique field that is defined through its purpose, the problem it addresses, and its solution-oriented agenda. However, this orientation creates significant methodological challenges. In this discussion paper, we conceptualize sustainability problems as wicked problems to tease out the key challenges that sustainability science is facing if scientists intend to deliver on its solution-oriented agenda. Building on the available literature, we discuss three aspects that demand increased attention for advancing sustainability science: 1 methods with higher diversity and complementarity are needed to increase the chance of deriving solutions to the unique aspects of wicked problems; for instance, mixed methods approaches are potentially better suited to allow for an approximation of solutions, since they cover wider arrays of knowledge; 2 methodologies capable of dealing with wicked problems demand strict procedural and ethical guidelines, in order to ensure their integration potential; for example, learning from solution implementation in different contexts requires increased comparability between research approaches while carefully addressing issues of legitimacy and credibility; and 3 approaches are needed that allow for longitudinal research, since wicked problems are continuous and solutions can only be diagnosed in retrospect; for example, complex dynamics of wicked problems play out across temporal patterns that are not necessarily aligned with the common timeframe of participatory sustainability research. Taken together, we call for plurality in methodologies, emphasizing procedural rigor and the necessity of continuous research to effectively addressing wicked problems as well as methodological challenges in sustainability science.

  6. Project Oriented Immersion Learning: Method and Results

    DEFF Research Database (Denmark)

    Icaza, José I.; Heredia, Yolanda; Borch, Ole M.

    2005-01-01

    A pedagogical approach called “project oriented immersion learning” is presented and tested on a graduate online course. The approach combines the Project Oriented Learning method with immersion learning in a virtual enterprise. Students assumed the role of authors hired by a fictitious publishing...... house that develops digital products including e-books, tutorials, web sites and so on. The students defined the problem that their product was to solve; choose the type of product and the content; and built the product following a strict project methodology. A wiki server was used as a platform to hold...

  7. Bat calls while preying: A method for reconstructing the signal emitted by a directional sound source

    DEFF Research Database (Denmark)

    Guarato, Francesco; Hallam, John

    2010-01-01

    Understanding and modeling bat biosonar behavior should take into account what the bat actually emitted while exploring the surrounding environment. Recording of the bat calls could be performed by means of a telemetry system small enough to sit on the bat head, though filtering due to bat...... directivity affects recordings and not all bat species are able to carry such a device. Instead, remote microphone recordings of the bat calls could be processed by means of a mathematical method that estimates bat head orientation as a first step before calculating the amplitudes of each call for each...... and discussed. A further improvement of the method is necessary as its performance for call reconstruction strongly depends on correct choice of the sample at which the recorded call is thought to start in each microphone data set....

  8. Skype™ Conference Calls: A Way to Promote Speaking Skills in the Teaching and Learning of English

    Directory of Open Access Journals (Sweden)

    Yeferson Romaña Correa

    2015-01-01

    Full Text Available This article presents the results of a research project on the teaching and learning of English through the use of Skype™ conference calls. The research was carried out with a group of 12 English as a foreign language adult learners in the language institute of Universidad Distrital Francisco José de Caldas, Bogotá, Colombia. The findings of this study suggest that Skype™ conference calls might be considered as an influential computer-mediated communication tool in order to promote English as a foreign language adult A1 learners’ speaking skill, especially for social interaction purposes and oral reinforcement of both language fluency and course contents outside of classroom settings.

  9. Classification of large acoustic datasets using machine learning and crowdsourcing: Application to whale calls

    NARCIS (Netherlands)

    Shamir, L.; Carol Yerby, C.; Simpson, R.; Benda-Beckmann, A.M. von; Tyack, P.; Samarra, F.; Miller, P.; Wallin, J.

    2014-01-01

    Vocal communication is a primary communication method of killer and pilot whales, and is used for transmitting a broad range of messages and information for short and long distance. The large variation in call types of these species makes it challenging to categorize them. In this study, sounds

  10. The Differences across Distributed Leadership Practices by School Position According to the Comprehensive Assessment of Leadership for Learning (CALL)

    Science.gov (United States)

    Blitz, Mark H.; Modeste, Marsha

    2015-01-01

    The Comprehensive Assessment of Leadership for Learning (CALL) is a multi-source assessment of distributed instructional leadership. As part of the validation of CALL, researchers examined differences between teacher and leader ratings in assessing distributed leadership practices. The authors utilized a t-test for equality of means for the…

  11. Reflexive Learning through Visual Methods

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth

    2014-01-01

    What. This chapter concerns how visual methods and visual materials can support visually oriented, collaborative, and creative learning processes in education. The focus is on facilitation (guiding, teaching) with visual methods in learning processes that are designerly or involve design. Visual...... methods are exemplified through two university classroom cases about collaborative idea generation processes. The visual methods and materials in the cases are photo elicitation using photo cards, and modeling with LEGO Serious Play sets. Why. The goal is to encourage the reader, whether student...... or professional, to facilitate with visual methods in a critical, reflective, and experimental way. The chapter offers recommendations for facilitating with visual methods to support playful, emergent designerly processes. The chapter also has a critical, situated perspective. Where. This chapter offers case...

  12. Enriching behavioral ecology with reinforcement learning methods.

    Science.gov (United States)

    Frankenhuis, Willem E; Panchanathan, Karthik; Barto, Andrew G

    2018-02-13

    This article focuses on the division of labor between evolution and development in solving sequential, state-dependent decision problems. Currently, behavioral ecologists tend to use dynamic programming methods to study such problems. These methods are successful at predicting animal behavior in a variety of contexts. However, they depend on a distinct set of assumptions. Here, we argue that behavioral ecology will benefit from drawing more than it currently does on a complementary collection of tools, called reinforcement learning methods. These methods allow for the study of behavior in highly complex environments, which conventional dynamic programming methods do not feasibly address. In addition, reinforcement learning methods are well-suited to studying how biological mechanisms solve developmental and learning problems. For instance, we can use them to study simple rules that perform well in complex environments. Or to investigate under what conditions natural selection favors fixed, non-plastic traits (which do not vary across individuals), cue-driven-switch plasticity (innate instructions for adaptive behavioral development based on experience), or developmental selection (the incremental acquisition of adaptive behavior based on experience). If natural selection favors developmental selection, which includes learning from environmental feedback, we can also make predictions about the design of reward systems. Our paper is written in an accessible manner and for a broad audience, though we believe some novel insights can be drawn from our discussion. We hope our paper will help advance the emerging bridge connecting the fields of behavioral ecology and reinforcement learning. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. The Significant Incidents and Close Calls in Human Space Flight Chart: Lessons Learned Gone Viral

    Science.gov (United States)

    Wood, Bill; Pate, Dennis; Thelen, David

    2010-01-01

    This presentation will explore the surprising history and events that transformed a mundane spreadsheet of historical spaceflight incidents into a popular and widely distributed visual compendium of lessons learned. The Significant Incidents and Close Calls in Human Space Flight Chart (a.k.a. The Significant Incidents Chart) is a popular and visually captivating reference product that has arisen from the work of the Johnson Space Center (JSC) Safety and Mission Assurance (S&MA) Flight Safety Office (FSO). It began as an internal tool intended to increase our team s awareness of historical and modern space flight incidents. Today, the chart is widely recognized across the agency as a reference tool. It appears in several training and education programs. It is used in familiarization training in the JSC Building 9 Mockup Facility and is seen by hundreds of center visitors each week. The chart visually summarizes injuries, fatalities, and close calls sustained during the continuing development of human space flight. The poster-sized chart displays over 100 total events that have direct connections to human space flight endeavors. The chart is updated periodically. The update process itself has become a collaborative effort. Many people, spanning multiple NASA organizations, have provided suggestions for additional entries. The FSO maintains a growing list of subscribers who have requested to receive updates. The presenters will discuss the origins and motivations behind the significant incidents chart. A review of the inclusion criteria used to select events will be offered. We will address how the chart is used today by S&MA and offer a vision of how it might be used by other organizations now and in the future. Particular emphasis will be placed on features of the chart that have met with broad acceptance and have helped spread awareness of the most important lessons in human spaceflight.

  14. Decomposition methods for unsupervised learning

    DEFF Research Database (Denmark)

    Mørup, Morten

    2008-01-01

    This thesis presents the application and development of decomposition methods for Unsupervised Learning. It covers topics from classical factor analysis based decomposition and its variants such as Independent Component Analysis, Non-negative Matrix Factorization and Sparse Coding...... methods and clustering problems is derived both in terms of classical point clustering but also in terms of community detection in complex networks. A guiding principle throughout this thesis is the principle of parsimony. Hence, the goal of Unsupervised Learning is here posed as striving for simplicity...... in the decompositions. Thus, it is demonstrated how a wide range of decomposition methods explicitly or implicitly strive to attain this goal. Applications of the derived decompositions are given ranging from multi-media analysis of image and sound data, analysis of biomedical data such as electroencephalography...

  15. Call mimicry by eastern towhees and its significance in relation to auditory learning

    Science.gov (United States)

    Jon S. Greenlaw; Clifford E. Shackelford; Raymond E. Brown

    1998-01-01

    The authors document cases of eastern towhees (Pipilo erythrophthalmus) using mimicked alarm calls from three presumptive models (blue jay (Cyanocitta cristata), brown thrasher (Toxostoma rufum), and American robin (Turdus migratorius)). In four instances, male towhees employed heterospecific calls without substitution in their own call repertoires. Three birds (New...

  16. EFL Teachers' Knowledge of the Use and Development of Computer-Assisted Language Learning (CALL) Materials

    Science.gov (United States)

    Dashtestani, Reza

    2014-01-01

    Even though there are a plethora of CALL materials available to EFL teachers nowadays, very limited attention has been directed toward the issue that most EFL teachers are merely the consumers of CALL materials. The main challenge is to equip EFL teachers with the required CALL materials development skills to enable them to be contributors to CALL…

  17. Finite Volume Method for Pricing European Call Option with Regime-switching Volatility

    Science.gov (United States)

    Lista Tauryawati, Mey; Imron, Chairul; Putri, Endah RM

    2018-03-01

    In this paper, we present a finite volume method for pricing European call option using Black-Scholes equation with regime-switching volatility. In the first step, we formulate the Black-Scholes equations with regime-switching volatility. we use a finite volume method based on fitted finite volume with spatial discretization and an implicit time stepping technique for the case. We show that the regime-switching scheme can revert to the non-switching Black Scholes equation, both in theoretical evidence and numerical simulations.

  18. Characterizing Engineering Learners' Preferences for Active and Passive Learning Methods

    Science.gov (United States)

    Magana, Alejandra J.; Vieira, Camilo; Boutin, Mireille

    2018-01-01

    This paper studies electrical engineering learners' preferences for learning methods with various degrees of activity. Less active learning methods such as homework and peer reviews are investigated, as well as a newly introduced very active (constructive) learning method called "slectures," and some others. The results suggest that…

  19. Performance, Cognitive Load, and Behaviour of Technology-Assisted English Listening Learning: From CALL to MALL

    Science.gov (United States)

    Chang, Chi-Cheng; Warden, Clyde A.; Liang, Chaoyun; Chou, Pao-Nan

    2018-01-01

    This study examines differences in English listening comprehension, cognitive load, and learning behaviour between outdoor ubiquitous learning and indoor computer-assisted learning. An experimental design, employing a pretest-posttest control group is employed. Randomly assigned foreign language university majors joined either the experimental…

  20. Identification of alternative method of teaching and learning the ...

    African Journals Online (AJOL)

    This study examines alternative method of teaching and learning of the concept of diffusion. An improvised U-shape glass tube called ionic mobility tube was used to observed and measure the rate of movement of divalent metal ions in an aqueous medium in the absence of an electric current. The study revealed that the ...

  1. Kernel Methods for Machine Learning with Life Science Applications

    DEFF Research Database (Denmark)

    Abrahamsen, Trine Julie

    Kernel methods refer to a family of widely used nonlinear algorithms for machine learning tasks like classification, regression, and feature extraction. By exploiting the so-called kernel trick straightforward extensions of classical linear algorithms are enabled as long as the data only appear a...

  2. Statistical learning methods: Basics, control and performance

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: zimmerm@mppmu.mpg.de

    2006-04-01

    The basics of statistical learning are reviewed with a special emphasis on general principles and problems for all different types of learning methods. Different aspects of controlling these methods in a physically adequate way will be discussed. All principles and guidelines will be exercised on examples for statistical learning methods in high energy and astrophysics. These examples prove in addition that statistical learning methods very often lead to a remarkable performance gain compared to the competing classical algorithms.

  3. Statistical learning methods: Basics, control and performance

    International Nuclear Information System (INIS)

    Zimmermann, J.

    2006-01-01

    The basics of statistical learning are reviewed with a special emphasis on general principles and problems for all different types of learning methods. Different aspects of controlling these methods in a physically adequate way will be discussed. All principles and guidelines will be exercised on examples for statistical learning methods in high energy and astrophysics. These examples prove in addition that statistical learning methods very often lead to a remarkable performance gain compared to the competing classical algorithms

  4. Detection and Classification of Baleen Whale Foraging Calls Combining Pattern Recognition and Machine Learning Techniques

    Science.gov (United States)

    2016-12-01

    for a call is also a time- consuming task. None of these chores bothers the analyst when applying the selection algorithm. With help from the...1365- 2907.2007.00106.x. Castellote, M., C. W. Clark, and M. O. Lammers, 2012: Acoustic and behavioural changes by fin whales (Balaenoptera physalus...separation of blue whale call types on a southern California feeding ground. Animal Behaviour , 74, 881–894, doi:10.1016/j.anbehav.2007.01.022. Rocha, R

  5. A machine learning model to determine the accuracy of variant calls in capture-based next generation sequencing.

    Science.gov (United States)

    van den Akker, Jeroen; Mishne, Gilad; Zimmer, Anjali D; Zhou, Alicia Y

    2018-04-17

    Next generation sequencing (NGS) has become a common technology for clinical genetic tests. The quality of NGS calls varies widely and is influenced by features like reference sequence characteristics, read depth, and mapping accuracy. With recent advances in NGS technology and software tools, the majority of variants called using NGS alone are in fact accurate and reliable. However, a small subset of difficult-to-call variants that still do require orthogonal confirmation exist. For this reason, many clinical laboratories confirm NGS results using orthogonal technologies such as Sanger sequencing. Here, we report the development of a deterministic machine-learning-based model to differentiate between these two types of variant calls: those that do not require confirmation using an orthogonal technology (high confidence), and those that require additional quality testing (low confidence). This approach allows reliable NGS-based calling in a clinical setting by identifying the few important variant calls that require orthogonal confirmation. We developed and tested the model using a set of 7179 variants identified by a targeted NGS panel and re-tested by Sanger sequencing. The model incorporated several signals of sequence characteristics and call quality to determine if a variant was identified at high or low confidence. The model was tuned to eliminate false positives, defined as variants that were called by NGS but not confirmed by Sanger sequencing. The model achieved very high accuracy: 99.4% (95% confidence interval: +/- 0.03%). It categorized 92.2% (6622/7179) of the variants as high confidence, and 100% of these were confirmed to be present by Sanger sequencing. Among the variants that were categorized as low confidence, defined as NGS calls of low quality that are likely to be artifacts, 92.1% (513/557) were found to be not present by Sanger sequencing. This work shows that NGS data contains sufficient characteristics for a machine-learning-based model to

  6. Exercise, Character Strengths, Well-Being and Learning Climate in the Prediction of Performance over a Six-Month Period at a Call Center

    Directory of Open Access Journals (Sweden)

    Saleh eMoradi

    2014-06-01

    Full Text Available Background: Performance monitoring might have an adverse influence on call center agents’ well-being. We investigate how performance, over a six-month period, is related to agents’ perceptions of their learning climate, character strengths, well-being (subjective and psychological, and physical activity.Method: Agents (N = 135 self-reported perception of the learning climate (Learning Climate Questionnaire, character strengths (Values In Action Inventory Short Version, well-being (Positive Affect, Negative Affect Schedule, Satisfaction With Life Scale, Psychological Well-Being Scales Short Version, and how often/intensively they engaged in physical activity. Performance, time on the phone, was monitored for six consecutive months by the same system handling the calls. Results: Performance was positively related to having opportunities to develop, the character strengths clusters of Wisdom and Knowledge (e.g., curiosity for learning, perspective and Temperance (e.g., having self-control, being prudent, humble, and modest, and exercise frequency. Performance was negatively related to the sense of autonomy and responsibility, contentedness, the character strengths clusters of Humanity and Love (e.g., helping others, cooperation and Justice (e.g., affiliation, fairness, leadership, positive affect, life satisfaction and exercise Intensity.Conclusion: Call centers may need to create opportunities to develop to increase agents’ performance and focus on individual differences in the recruitment and selection of agents to prevent future shortcomings or worker dissatisfaction. Nevertheless, performance measurement in call centers may need to include other aspects that are more attuned with different character strengths. After all, allowing individuals to put their strengths at work should empower the individual and at the end the organization itself. Finally, physical activity enhancement programs might offer considerable positive work outcomes.

  7. The Unreasonable Effectiveness of CALL: What Have We Learned in Two Decades of Research?

    Science.gov (United States)

    Felix, Uschi

    2008-01-01

    This paper presents a comprehensive picture of what has been investigated in terms of CALL effectiveness over the period 1981-2005 throwing light on why this question is still such a difficult one to answer unequivocally. The author looks at both strengths and weaknesses in this body of work, highlighting pitfalls and paradoxes in research…

  8. Investigating Learning with an Interactive Tutorial: A Mixed-Methods Strategy

    Science.gov (United States)

    de Villiers, M. R.; Becker, Daphne

    2017-01-01

    From the perspective of parallel mixed-methods research, this paper describes interactivity research that employed usability-testing technology to analyse cognitive learning processes; personal learning styles and times; and errors-and-recovery of learners using an interactive e-learning tutorial called "Relations." "Relations"…

  9. The Role of Computer-Assisted Language Learning (CALL) in Promoting Learner Autonomy

    Science.gov (United States)

    Mutlu, Arzu; Eroz-Tuga, Betil

    2013-01-01

    Problem Statement: Teaching a language with the help of computers and the Internet has attracted the attention of many practitioners and researchers in the last 20 years, so the number of studies that investigate whether computers and the Internet promote language learning continues to increase. These studies have focused on exploring the beliefs…

  10. Leaders Learning Orientation and the HCM-turn in call centres

    DEFF Research Database (Denmark)

    Gnaur, Dorina

    2013-01-01

    as a significant leadership quality that promotes reflexivity in the ongoing processes of interpretation and meaning creation enhancing the human dimension in the production of service. Learning orientation will be related to high-commitment management (HCM) as a way to reconcile the logics of efficiency...

  11. "I Learned that There's a State Called Victoria and He Has Six Blue-Tongued Lizards!"

    Science.gov (United States)

    Charron, Nancy Necora

    2007-01-01

    In the study described in this article, fourth-grade teachers and students of different abilities and language backgrounds were interviewed before, during, and after participating in an Internet pen pal program. Results reveal that the program's authentic tasks and texts facilitated communication and enabled students to learn about a different…

  12. Making Skills Everyone's Business: A Call to Transform Adult Learning in the United States

    Science.gov (United States)

    Strawn, Julie

    2015-01-01

    To address the need to connect Americans with learning opportunities, the Office of Career, Technical, and Adult Education released the present report. Grounded in evidence and informed by effective and emerging practices, "Making Skills Everyone's Business" offers seven strategies that hold great promise for improving the conditions…

  13. New e-learning method using databases

    Directory of Open Access Journals (Sweden)

    Andreea IONESCU

    2012-10-01

    Full Text Available The objective of this paper is to present a new e-learning method that use databases. The solution could pe implemented for any typeof e-learning system in any domain. The article will purpose a solution to improve the learning process for virtual classes.

  14. Global learning on carbon capture and storage: A call for strong international cooperation on CCS demonstration

    International Nuclear Information System (INIS)

    Coninck, Heleen de; Stephens, Jennie C.; Metz, Bert

    2009-01-01

    Closing the gap between carbon dioxide capture and storage (CCS) rhetoric and technical progress is critically important to global climate mitigation efforts. Developing strong international cooperation on CCS demonstration with global coordination, transparency, cost-sharing and communication as guiding principles would facilitate efficient and cost-effective collaborative global learning on CCS, would allow for improved understanding of the global capacity and applicability of CCS, and would strengthen global trust, awareness and public confidence in the technology.

  15. DESIGNING AND BUILDING EXERCISE MODEL OF TECHNICAL ENGLISH VOCABULARIES USING CALL (COMPUTER ASSISTED LANGUAGE LEARNING

    Directory of Open Access Journals (Sweden)

    Yogi Widiawati

    2017-11-01

    Full Text Available The research is aimed to assist and facilitate the students of Electrical and Electronics Department of Politeknik Negeri Jakarta (State Polytechnics of Jakarta, Indonesia, in learning technical English vocabulary. As technical students, they study ESP (English for Specific Purposes and they find some obstacles in memorizing technical vocabularies which are very important in order to read and understand manual books for laboratory and workshop. Some English technical vocabularies among others are “generate”, “pile”, “bench”, et cetera. The research outcome is software which will be beneficial for technical students, especially electrical and electronics students. This software can be used to practice their vocabulary skills, so they will be more skillful and knowledgeable. This software is designed by using the program of Rapid E-Learning Suite Version 5.2 and Flash CS3. The software practice contains some exercises on reading text and reading comprehension questions and presented with the multiple answers. This software is handy and flexible because students can bring it anywhere and be studied anytime. It is handy because this software is put and saved in CD (compact disc, so the students can take it with them anywhere and anytime they want to learn. In other words, they have flexibility to learn and practice English Technical Vocabularies. As a result, the students are found one of the ways to overcome their problems of memorizing vocabularies. The product is a kind of software which is easily used and portable so that the students can use the software anywhere and anytime. It consists of 3 (three sections of exercises. At the end of each exercise, the students are evaluated automatically by looking at the scoring system. These will encourage them to get good score by repeating it again and again. So the technical words are not problem for them. Furthermore, the students can practice technical English vocabulary both at home and

  16. Case studies in nanny state name-calling: what can we learn?

    Science.gov (United States)

    Magnusson, R S

    2015-08-01

    The 'nanny state' has become a popular metaphor in debates about public health regulation. It fulfils a particular role in that debate: to caution government against taking action. This paper presents case studies of nanny state criticisms, using them to identify a series of contextual features that may assist in better understanding, evaluating and where appropriate, resisting the rhetorical force of nanny state criticisms. The case studies presented include Rush Limbaugh's reactions to Michelle Obama's efforts to encourage American food companies to market healthier food to children; Christopher Hitchens' critique of New York City Mayor Michael Bloomberg's public health policies; and the reaction of neoliberal think tanks to Australia's plain tobacco packaging legislation. These case studies do not provide a basis for making generalisations about the practice of 'nanny state name-calling'. Nor do they preclude debate about the appropriate limits of government action. However, in appropriate cases they may assist policy-makers and public health advocates to contest the framing of public health interventions as unwarranted incursions into the private lives of individuals. One important lesson from these case studies is that the principal concern of nanny state critics is not loss of freedom as such, but the role of the state. The nanny state critique is ultimately a call for the state to be agnostic about the health of citizens, allowing market forces to dominate. Although the nanny state critique is not new, it is a significant challenge to government efforts to address lifestyle-influenced risk factors for non-communicable diseases, including tobacco use, harmful use of alcohol, and unhealthy diet. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  17. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods

    Science.gov (United States)

    Hodson, Derek

    2014-01-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…

  18. Methods for control over learning individual trajectory

    Science.gov (United States)

    Mitsel, A. A.; Cherniaeva, N. V.

    2015-09-01

    The article discusses models, methods and algorithms of determining student's optimal individual educational trajectory. A new method of controlling the learning trajectory has been developed as a dynamic model of learning trajectory control, which uses score assessment to construct a sequence of studied subjects.

  19. The Guided Autobiography Method: A Learning Experience

    Science.gov (United States)

    Thornton, James E.

    2008-01-01

    This article discusses the proposition that learning is an unexplored feature of the guided autobiography method and its developmental exchange. Learning, conceptualized and explored as the embedded and embodied processes, is essential in narrative activities of the guided autobiography method leading to psychosocial development and growth in…

  20. Active teaching methods, studying responses and learning

    DEFF Research Database (Denmark)

    Christensen, Hans Peter; Vigild, Martin Etchells; Thomsen, Erik Vilain

    2010-01-01

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed.......Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed....

  1. Civic Education and the Learning Behaviors of Youth in the Online Environment: A Call for Reform

    Directory of Open Access Journals (Sweden)

    Barbara A. Jansen

    2011-11-01

    Full Text Available Scholarly discourse in political science and communication studies is replete with empirical evidence lamenting the decline in civic engagement and political participation among adolescents and young adults. Scholars offer a variety of factors contributing to the disengagement of youth from the civic and political process including lack of attention paid to youth by politicians and the political process, the limited experience and a narrow frame of reference of young people in the political process, their aversion to traditional politics, and to poor quality courses and a decline in civic education in schools. Youth frequently lack civic and political knowledge as well as information and communications technology and social skills needed to engage in public life due in large part to the superficial coverage of substantive civic topics in textbooks and concentrating on knowledge level information that focuses on rights to the exclusion of obligations and participation. Civics curriculum often lacks opportunities for young people to embrace and communicate about politics on their own terms and frequently has little connection between the academic presentation of politics and the acquisition of skills that might help develop engaged citizens. Current approaches to civic education are at odds with young people’s experiences of informal participation with their peers in a nonhierarchical network. Traditional civics curriculum often treats subject matter as another academic subject with right or wrong answers arbitrated by the teacher as central authority and students in competition for grades. A growing body of literature discusses the affinity that youth have for Internet use and the possibilities of new media to address disengagement and to enhance new forms of citizenship calling for pedagogical reform in civic education.

  2. Why the changing American economy calls for twenty-first century learning: answers to educators' questions.

    Science.gov (United States)

    Levy, Frank; Murnane, Richard J

    2006-01-01

    While struggling with the current pressures of educational reform, some educators will ask whether their efforts make economic sense. Questioning the future makeup of the nation's workforce, many wonder how the educational system should be tempered to better prepare today's youth. This chapter answers educators' and parents' questions around the effect of fluctuations in the American economy on the future of education. The authors offer reassurance that good jobs will always be available, but warn that those jobs will require a new level of skills: expert thinking and complex communication. Schools need to go beyond their current curriculum and prepare students to use reading, math, and communication skills to build a deeper and more thoughtful understanding of subject matter. To explain the implications of the nation's changing economy on jobs, technology, and therefore education, the authors address a range of vital questions. Citing occupational distribution data, the chapter explores the supply and range of jobs in the future, as well as why changes in the U.S. job distribution have taken place. As much of the explanation for the shift in job distribution over the past several decades is due to the computerization of the workforce, the authors discuss how computers will affect the future composition of the workforce. The chapter also addresses the consequences of educational improvement on earnings distribution. The authors conclude that beyond workforce preparedness, students need to learn how to be contributing members of a democracy.

  3. Pembuatan Kakas Pendeteksi Unused Method pada Kode Program PHP dengan Framework CodeIgniter Menggunakan Call Graph

    Directory of Open Access Journals (Sweden)

    Divi Galih Prasetyo Putri

    2014-03-01

    Full Text Available Proses evolusi dan perawatan dari sebuah sistem merupakan proses yang sangat penting dalam rekayasa perangkat lunak tidak terkecuali pada aplikasi web. Pada proses ini kebanyakan pengembang tidak lagi berpatokan pada rancangan sistem. Hal ini menyebabkan munculnya unused method. Bagian-bagian program ini tidak lagi terpakai namun masih berada dalam sistem. Keadaan ini meningkatkan kompleksitas dan mengurangi tingkat understandability sistem. Guna mendeteksi adanya unused method pada progam diperlukan teknik untuk melakukan code analysis. Teknik static analysis yang digunakan memanfaatkan call graph yang dibangun dari kode program untuk mengetahui adanya unused method. Call graph dibangun berdasarkan pemanggilan antar method. Aplikasi ini mendeteksi unused method pada kode program PHP yang dibangun menggunakan framework CodeIgniter. Kode program sebagai inputan diurai kedalam bentuk Abstract Syntax Tree (AST yang kemudian dimanfaatkan untuk melakukan analisis terhadap kode program. Proses analisis tersebut kemudian menghasilkan sebuah call graph. Dari call graph yang dihasilkan dapat dideteksi method-method mana saja yang tidak berhasil ditelusuri dan tergolong kedalam unused method. Kakas telah diuji coba pada 5 aplikasi PHP dengan hasil  rata-rata nilai presisi sistem sebesar 0.749 dan recall sebesar 1.

  4. Complex Domains Call for Automation but Automation Requires More Knowledge and Learning

    DEFF Research Database (Denmark)

    Madsen, Erik Skov; Mikkelsen, Lars Lindegaard

    studies investigate operation and automation of oil and gas production in the North Sea. Semi-structured interviews, surveys, and observations are the main methods used. The paper provides a novel conceptual framework around which management may generate discussions about productivity and the need...

  5. Critically Evaluating Prensky in a Language Learning Context: The "Digital Natives/Immigrants Debate" and Its Implications for CALL

    Science.gov (United States)

    Benini, Silvia; Murray, Liam

    2013-01-01

    More than 10 years have passed since the first introduction of the term "digital natives" in Prensky's (2001a, 2001b) two seminal articles. Prensky argues that students today, having grown up in the Digital Age, learn differently from their predecessors, or "digital immigrants". As such, the pedagogical tools and methods used…

  6. Kernel methods for deep learning

    OpenAIRE

    Cho, Youngmin

    2012-01-01

    We introduce a new family of positive-definite kernels that mimic the computation in large neural networks. We derive the different members of this family by considering neural networks with different activation functions. Using these kernels as building blocks, we also show how to construct other positive-definite kernels by operations such as composition, multiplication, and averaging. We explore the use of these kernels in standard models of supervised learning, such as support vector mach...

  7. Tourism websites in English as a source for the autonomous learning of specialized terminology: A CALL application

    Directory of Open Access Journals (Sweden)

    Ángel Felices Lago

    2016-04-01

    Full Text Available For years now, it has been an unquestioned fact that a large majority of textbooks available in English for Tourism, either in book format, CD-Rom or web site access are based on situations and professional contexts connected with the Anglo-Saxon environment, even though the vast majority of graduates in Tourism in Spain (and other countries end up working in the region (autonomous community of origin or in the province of reference for studies. There is, therefore, a clear dysfunction between the textbooks available in the market and the materials and situations that the students will face in their professional future. However, the Internet now allows us to exploit the availability of vast quantities of local resources (websites, blogs, etc. with their corresponding versions in English, which include tourist information referring to, for example, hotels, restaurants, historical and artistic heritage sites, tour operators, travel agencies, trade fairs or specialized services at the national, regional or communal levels. All these sites offer a special showcase of all the linguistic resources available (be they lexical, syntactic or terminological that the learners must acquire for their professional development. Consequently, the purpose of this study is to offer the results of the computer-assisted language learning (CALL project entitled Autonomous Learning of Specialized Vocabulary in English for Tourism (http://wdb.ugr.es/~afelices/, which takes into consideration the previous premises in order to promote, as its title indicates, autonomous learning in a more realistic professional context and to serve as a model for the development of similar e-learning platforms in other regions or countries.

  8. Machine learning and deep analytics for biocomputing: call for better explainability.

    Science.gov (United States)

    Petkovic, Dragutin; Kobzik, Lester; Re, Christopher

    2018-01-01

    The goals of this workshop are to discuss challenges in explainability of current Machine Leaning and Deep Analytics (MLDA) used in biocomputing and to start the discussion on ways to improve it. We define explainability in MLDA as easy to use information explaining why and how the MLDA approach made its decisions. We believe that much greater effort is needed to address the issue of MLDA explainability because of: 1) the ever increasing use and dependence on MLDA in biocomputing including the need for increased adoption by non-MLD experts; 2) the diversity, complexity and scale of biocomputing data and MLDA algorithms; 3) the emerging importance of MLDA-based decisions in patient care, in daily research, as well as in the development of new costly medical procedures and drugs. This workshop aims to: a) analyze and challenge the current level of explainability of MLDA methods and practices in biocomputing; b) explore benefits of improvements in this area; and c) provide useful and practical guidance to the biocomputing community on how to address these challenges and how to develop improvements. The workshop format is designed to encourage a lively discussion with panelists to first motivate and understand the problem and then to define next steps and solutions needed to improve MLDA explainability.

  9. Pedagogical Scholarship in Public Health: A Call for Cultivating Learning Communities to Support Evidence-Based Education.

    Science.gov (United States)

    Merzel, Cheryl; Halkitis, Perry; Healton, Cheryl

    Public health education is experiencing record growth and transformation. The current emphasis on learning outcomes necessitates attention to creating and evaluating the best curricula and learning methods for helping public health students develop public health competencies. Schools and programs of public health would benefit from active engagement in pedagogical research and additional platforms to support dissemination and implementation of educational research findings. We reviewed current avenues for sharing public health educational research, curricula, and best teaching practices; we identified useful models from other health professions; and we offered suggestions for how the field of public health education can develop communities of learning devoted to supporting pedagogy. Our goal was to help advance an agenda of innovative evidence-based public health education, enabling schools and programs of public health to evaluate and measure success in meeting the current and future needs of the public health profession.

  10. Activating teaching methods, studying responses and learning

    OpenAIRE

    Christensen, Hans Peter; Vigild, Martin E.; Thomsen, Erik; Szabo, Peter; Horsewell, Andy

    2009-01-01

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching. The resulting learning outcome is discussed. Peer Reviewed

  11. SMALL GROUP LEARNING METHODS AND THEIR EFFECT ON LEARNERS’ RELATIONSHIPS

    Directory of Open Access Journals (Sweden)

    Radka Borůvková

    2016-04-01

    Full Text Available Building relationships in the classroom is an essential part of any teacher's career. Having healthy teacher-to-learner and learner-to-learner relationships is an effective way to help prevent pedagogical failure, social conflict and quarrelsome behavior. Many strategies are available that can be used to achieve good long-lasting relationships in the classroom setting. Successful teachers’ pedagogical work in the classroom requires detailed knowledge of learners’ relationships. Good understanding of the relationships is necessary, especially in the case of teenagers’ class. This sensitive period of adolescence demands attention of all teachers who should deal with the problems of their learners. Special care should be focused on children that are out of their classmates’ interest (so called isolated learners or isolates in such class and on possibilities to integrate them into the class. Natural idea how to do it is that of using some modern non-traditional teaching/learning methods, especially the methods based on work in small groups involving learners’ cooperation. Small group education (especially problem-based learning, project-based learning, cooperative learning, collaborative learning or inquire-based learning as one of these methods involves a high degree of interaction. The effectiveness of learning groups is determined by the extent to which the interaction enables members to clarify their own understanding, build upon each other's contributions, sift out meanings, ask and answer questions. An influence of this kind of methods (especially cooperative learning (CL on learners’ relationships was a subject of the further described research. Within the small group education, students work with their classmates to solve complex and authentic problems that help develop content knowledge as well as problem-solving, reasoning, communication, and self-assessment skills. The aim of the research was to answer the question: Can the

  12. Aggregative Learning Method and Its Application for Communication Quality Evaluation

    Science.gov (United States)

    Akhmetov, Dauren F.; Kotaki, Minoru

    2007-12-01

    In this paper, so-called Aggregative Learning Method (ALM) is proposed to improve and simplify the learning and classification abilities of different data processing systems. It provides a universal basis for design and analysis of mathematical models of wide class. A procedure was elaborated for time series model reconstruction and analysis for linear and nonlinear cases. Data approximation accuracy (during learning phase) and data classification quality (during recall phase) are estimated from introduced statistic parameters. The validity and efficiency of the proposed approach have been demonstrated through its application for monitoring of wireless communication quality, namely, for Fixed Wireless Access (FWA) system. Low memory and computation resources were shown to be needed for the procedure realization, especially for data classification (recall) stage. Characterized with high computational efficiency and simple decision making procedure, the derived approaches can be useful for simple and reliable real-time surveillance and control system design.

  13. The Keyimage Method of Learning Sound-Symbol Correspondences: A Case Study of Learning Written Khmer

    Directory of Open Access Journals (Sweden)

    Elizabeth Lavolette

    2009-01-01

    Full Text Available I documented my strategies for learning sound-symbol correspondences during a Khmer course. I used a mnemonic strategy that I call the keyimage method. In this method, a character evokes an image (the keyimage, which evokes the corresponding sound. For example, the keyimage for the character 2 could be a swan with its head tucked in. This evokes the sound "kaw" that a swan makes, which sounds similar to the Khmer sound corresponding to 2. The method has some similarities to the keyword method. Considering the results of keyword studies, I hypothesize that the keyimage method is more effective than rote learning and that peer-generated keyimages are more effective than researcher- or teacher-generated keyimages, which are more effective than learner-generated ones. In Dr. Andrew Cohen's plenary presentation at the Hawaii TESOL 2007 conference, he mentioned that more case studies are needed on learning strategies (LSs. One reason to study LSs is that what learners do with input to produce output is unclear, and knowing what strategies learners use may help us understand that process (Dornyei, 2005, p. 170. Hopefully, we can use that knowledge to improve language learning, perhaps by teaching learners to use the strategies that we find. With that in mind, I have examined the LSs that I used in studying Khmer as a foreign language, focusing on learning the syllabic alphabet.

  14. Effect of Methods of Learning and Self Regulated Learning toward Outcomes of Learning Social Studies

    Science.gov (United States)

    Tjalla, Awaluddin; Sofiah, Evi

    2015-01-01

    This research aims to reveal the influence of learning methods and self-regulated learning on students learning scores for Social Studies object. The research was done in Islamic Junior High School (MTs Manba'ul Ulum), Batuceper City Tangerang using quasi-experimental method. The research employed simple random technique to 28 students. Data were…

  15. The Learning Called Psychomotor

    Science.gov (United States)

    Banville, Tom

    1976-01-01

    The nature of psychomotor skills and their relationship to academic achievement and positive self concept are discussed. Illustrations of program implementation and instructor preparation in several schools are presented. (RW)

  16. Each to his own: how different users call for different interaction methods in recommender systems

    NARCIS (Netherlands)

    Knijnenburg, B.P.; Reijmer, N.J.M.; Willemsen, M.C.; Mobasher, B.; Burke, R.

    2011-01-01

    This paper compares five different ways of interacting with an attribute-based recommender system and shows that different types of users prefer different interaction methods. In an online experiment with an energy-saving recommender system the interaction methods are compared in terms of perceived

  17. A Call for Qualitative Methods in Action: Enlisting Positionality as an Equity Tool

    Science.gov (United States)

    Relles, Stefani R.

    2016-01-01

    This article describes how the qualitative research tradition known as "positionality" can be used as a method to support classroom equity. The text describes three ways teachers can use a spoken approach to positionality in their day-to-day practice. Classroom vignettes illuminate how these spoken methods of positionality can address…

  18. A comparative study of software adaptation using remote method call and Web Services

    Directory of Open Access Journals (Sweden)

    AFFONSO, F. J.

    2011-06-01

    Full Text Available The software development process has been directed, over the years, to various methodologies with specific purposes to attend emerging needs. Besides, it can also be noticed, during this period, that some processes require mechanisms related to software reuse and greater speed in the development stage. An important factor in this context is the mutation (adaptation, which occurs in all the software's life cycle, due to its customers' needs or due to technological changes. Regarding the latter factor, it has been observed a significant increase in developments that use distributed applications through the World Wide Web or remote application. Based on the adaptation idea and on the necessity of software distribution systems, this paper presents a technique to reconfigure software capable of acting in several developmental contexts (local, distributed and/or Web. In order to demonstrate its applicability, a case study, through the use of service orientation and remote calls, was done to show the software adaptation in the development of applications. Besides, comparative results among the approaches used in the development of reconfigurable applications are also presented.

  19. Active learning methods for interactive image retrieval.

    Science.gov (United States)

    Gosselin, Philippe Henri; Cord, Matthieu

    2008-07-01

    Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.

  20. Deep Learning and Bayesian Methods

    Directory of Open Access Journals (Sweden)

    Prosper Harrison B.

    2017-01-01

    Full Text Available A revolution is underway in which deep neural networks are routinely used to solve diffcult problems such as face recognition and natural language understanding. Particle physicists have taken notice and have started to deploy these methods, achieving results that suggest a potentially significant shift in how data might be analyzed in the not too distant future. We discuss a few recent developments in the application of deep neural networks and then indulge in speculation about how such methods might be used to automate certain aspects of data analysis in particle physics. Next, the connection to Bayesian methods is discussed and the paper ends with thoughts on a significant practical issue, namely, how, from a Bayesian perspective, one might optimize the construction of deep neural networks.

  1. Learning styles: The learning methods of air traffic control students

    Science.gov (United States)

    Jackson, Dontae L.

    In the world of aviation, air traffic controllers are an integral part in the overall level of safety that is provided. With a number of controllers reaching retirement age, the Air Traffic Collegiate Training Initiative (AT-CTI) was created to provide a stronger candidate pool. However, AT-CTI Instructors have found that a number of AT-CTI students are unable to memorize types of aircraft effectively. This study focused on the basic learning styles (auditory, visual, and kinesthetic) of students and created a teaching method to try to increase memorization in AT-CTI students. The participants were asked to take a questionnaire to determine their learning style. Upon knowing their learning styles, participants attended two classroom sessions. The participants were given a presentation in the first class, and divided into a control and experimental group for the second class. The control group was given the same presentation from the first classroom session while the experimental group had a group discussion and utilized Middle Tennessee State University's Air Traffic Control simulator to learn the aircraft types. Participants took a quiz and filled out a survey, which tested the new teaching method. An appropriate statistical analysis was applied to determine if there was a significant difference between the control and experimental groups. The results showed that even though the participants felt that the method increased their learning, there was no significant difference between the two groups.

  2. Pragmatics of Contemporary Teaching and Learning Methods

    Directory of Open Access Journals (Sweden)

    Ryszard Józef Panfil

    2013-09-01

    Full Text Available The dynamics of the environment in which educational institutions operate have a significant influence on the basic activity of these institutions, i.e. the process of educating, and particularly teaching and learning methods used during that process: traditional teaching, tutoring, mentoring and coaching. The identity of an educational institution and the appeal of its services depend on how flexible, diverse and adaptable is the educational process it offers as a core element of its services. Such a process is determined by how its pragmatism is displayed in the operational relativism of methods, their applicability, as well as practical dimension of achieved results and values. Based on the above premises, this publication offers a pragmatic-systemic identification of contemporary teaching and learning methods, while taking into account the differences between them and the scope of their compatibility. Secondly, using the case of sport coaches’ education, the author exemplifies the pragmatic theory of perception of contemporary teaching and learning methods.

  3. e-Learning Business Research Methods

    Science.gov (United States)

    Cowie, Jonathan

    2004-01-01

    This paper outlines the development of a generic Business Research Methods course from a simple name in a box to a full e-Learning web based module. It highlights particular issues surrounding the nature of the discipline and the integration of a large number of cross faculty subject specific research methods courses into a single generic module.…

  4. LEARNING TO READ SCIENTIFIC RUSSIAN BY THE THREE QUESTION EXPERIMENTAL (3QX) METHOD.

    Science.gov (United States)

    ALFORD, M.H.T.

    A NEW METHOD FOR LEARNING TO READ TECHNICAL LITERATURE IN A FOREIGN LANGUAGE IS BEING DEVELOPED AND TESTED AT THE LANGUAGE CENTRE OF THE UNIVERSITY OF ESSEX, COLCHESTER, ENGLAND. THE METHOD IS CALLED "THREE QUESTION EXPERIMENTAL METHOD (3QX)," AND IT HAS BEEN USED IN THREE COURSES FOR TEACHING SCIENTIFIC RUSSIAN TO PHYSICISTS. THE THREE…

  5. Deep Learning and Bayesian Methods

    OpenAIRE

    Prosper Harrison B.

    2017-01-01

    A revolution is underway in which deep neural networks are routinely used to solve diffcult problems such as face recognition and natural language understanding. Particle physicists have taken notice and have started to deploy these methods, achieving results that suggest a potentially significant shift in how data might be analyzed in the not too distant future. We discuss a few recent developments in the application of deep neural networks and then indulge in speculation about how such meth...

  6. Characterizing Reinforcement Learning Methods through Parameterized Learning Problems

    Science.gov (United States)

    2011-06-03

    extraneous. The agent could potentially adapt these representational aspects by applying methods from feature selection ( Kolter and Ng, 2009; Petrik et al...611–616. AAAI Press. Kolter , J. Z. and Ng, A. Y. (2009). Regularization and feature selection in least-squares temporal difference learning. In A. P

  7. [Validation of the telephone call as a method for measuring compliance to arterial hypertension treatment in Extremadura].

    Science.gov (United States)

    Espinosa-García, J; Cobaleda-Polo, J; González-Velasco, M; Fernández-Bergés, D

    2014-10-01

    Pharmacological non-compliance is a significant problem that can affect patient health. The main aim of this investigation is to validate the telephone call to the patient' home as a self-report method of counting the amount of tablets taken by the patient, as an alternative method to a simple tablet count in the clinic (gold standard). An observational, multicentre, prospective, and longitudinal study was conducted by 25 researchers in different health centres in Extremadura, and which included 125 consecutively enrolled patients with uncontrolled arterial hypertension, 121 ended the study. Three visits were made, including enrollment visit, follow-up visit at 4 weeks, and final visit at 8 weeks. A telephone call was made prior to the enrollment and final visit to remind the patients of the next visit, and to ask at the same time about the number of tablets remaining. A total of 121 patients completed the study. In the final visit, the phone-call method of compliance showed: 100% sensitivity, 86% specificity, 86.8% of overall accuracy, 30.4% PPV, 100% NPV, CP+ 7.13, CP- 0.0, and a kappa index of 0.415 (Pphone call, as a therapeutic compliance method, can be a good alternative due to being almost universal, easy to use, its reduced cost, and without the need of patients to go to the medical centres. Copyright © 2013 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  8. Tracking by Machine Learning Methods

    CERN Document Server

    Jofrehei, Arash

    2015-01-01

    Current track reconstructing methods start with two points and then for each layer loop through all possible hits to find proper hits to add to that track. Another idea would be to use this large number of already reconstructed events and/or simulated data and train a machine on this data to find tracks given hit pixels. Training time could be long but real time tracking is really fast Simulation might not be as realistic as real data but tacking has been done for that with 100 percent efficiency while by using real data we would probably be limited to current efficiency.

  9. Advanced Steel Microstructural Classification by Deep Learning Methods.

    Science.gov (United States)

    Azimi, Seyed Majid; Britz, Dominik; Engstler, Michael; Fritz, Mario; Mücklich, Frank

    2018-02-01

    The inner structure of a material is called microstructure. It stores the genesis of a material and determines all its physical and chemical properties. While microstructural characterization is widely spread and well known, the microstructural classification is mostly done manually by human experts, which gives rise to uncertainties due to subjectivity. Since the microstructure could be a combination of different phases or constituents with complex substructures its automatic classification is very challenging and only a few prior studies exist. Prior works focused on designed and engineered features by experts and classified microstructures separately from the feature extraction step. Recently, Deep Learning methods have shown strong performance in vision applications by learning the features from data together with the classification step. In this work, we propose a Deep Learning method for microstructural classification in the examples of certain microstructural constituents of low carbon steel. This novel method employs pixel-wise segmentation via Fully Convolutional Neural Network (FCNN) accompanied by a max-voting scheme. Our system achieves 93.94% classification accuracy, drastically outperforming the state-of-the-art method of 48.89% accuracy. Beyond the strong performance of our method, this line of research offers a more robust and first of all objective way for the difficult task of steel quality appreciation.

  10. Minimizing Barriers in Learning for On-Call Radiology Residents-End-to-End Web-Based Resident Feedback System.

    Science.gov (United States)

    Choi, Hailey H; Clark, Jennifer; Jay, Ann K; Filice, Ross W

    2018-02-01

    Feedback is an essential part of medical training, where trainees are provided with information regarding their performance and further directions for improvement. In diagnostic radiology, feedback entails a detailed review of the differences between the residents' preliminary interpretation and the attendings' final interpretation of imaging studies. While the on-call experience of independently interpreting complex cases is important to resident education, the more traditional synchronous "read-out" or joint review is impossible due to multiple constraints. Without an efficient method to compare reports, grade discrepancies, convey salient teaching points, and view images, valuable lessons in image interpretation and report construction are lost. We developed a streamlined web-based system, including report comparison and image viewing, to minimize barriers in asynchronous communication between attending radiologists and on-call residents. Our system provides real-time, end-to-end delivery of case-specific and user-specific feedback in a streamlined, easy-to-view format. We assessed quality improvement subjectively through surveys and objectively through participation metrics. Our web-based feedback system improved user satisfaction for both attending and resident radiologists, and increased attending participation, particularly with regards to cases where substantive discrepancies were identified.

  11. On call at the mall: a mixed methods study of U.S. medical malls.

    Science.gov (United States)

    Uscher-Pines, Lori; Mehrotra, Ateev; Chari, Ramya

    2013-11-09

    The decline of the traditional U.S. shopping mall and a focus on more consumer- centered care have created an opportunity for "medical malls". Medical malls are defined as former retail spaces repurposed for healthcare tenants or mixed-use medical/retail facilities.We aimed to describe the current reach of healthcare services in U.S. malls, characterize the medical mall model and emerging trends, and assess the potential of these facilities to serve low-income populations. We used a mixed methods approach which included a comprehensive literature review, key informant interviews, and a descriptive analysis of the Directory of Major Malls, an online retail database. Six percent (n = 89) of large, enclosed shopping malls in the U.S. include at least one non-optometry or dental healthcare tenant. We identified a total of 28 medical malls across the U.S., the majority of which opened in the past five years and serve middle or high income populations. Stakeholders felt the key strengths of medical malls were more convenient access including public transportation, greater familiarity for patients, and "one stop shopping" for primary care and specialty services as well as retail needs. While medical malls currently account for a small fraction of malls in the US, they are a new model for healthcare with significant potential for growth.

  12. Frank Gilbreth and health care delivery method study driven learning.

    Science.gov (United States)

    Towill, Denis R

    2009-01-01

    The purpose of this article is to look at method study, as devised by the Gilbreths at the beginning of the twentieth century, which found early application in hospital quality assurance and surgical "best practice". It has since become a core activity in all modern methods, as applied to healthcare delivery improvement programmes. The article traces the origin of what is now currently and variously called "business process re-engineering", "business process improvement" and "lean healthcare" etc., by different management gurus back to the century-old pioneering work of Frank Gilbreth. The outcome is a consistent framework involving "width", "length" and "depth" dimensions within which healthcare delivery systems can be analysed, designed and successfully implemented to achieve better and more consistent performance. Healthcare method (saving time plus saving motion) study is best practised as co-joint action learning activity "owned" by all "players" involved in the re-engineering process. However, although process mapping is a key step forward, in itself it is no guarantee of effective re-engineering. It is not even the beginning of the end of the change challenge, although it should be the end of the beginning. What is needed is innovative exploitation of method study within a healthcare organisational learning culture accelerated via the Gilbreth Knowledge Flywheel. It is shown that effective healthcare delivery pipeline improvement is anchored into a team approach involving all "players" in the system especially physicians. A comprehensive process study, constructive dialogue, proper and highly professional re-engineering plus managed implementation are essential components. Experience suggests "learning" is thereby achieved via "natural groups" actively involved in healthcare processes. The article provides a proven method for exploiting Gilbreths' outputs and their many successors in enabling more productive evidence-based healthcare delivery as summarised

  13. A Scale Development for Teacher Competencies on Cooperative Learning Method

    Science.gov (United States)

    Kocabas, Ayfer; Erbil, Deniz Gokce

    2017-01-01

    Cooperative learning method is a learning method studied both in Turkey and in the world for long years as an active learning method. Although cooperative learning method takes place in training programs, it cannot be implemented completely in the direction of its principles. The results of the researches point out that teachers have problems with…

  14. A call for a multifaceted approach to language learning motivation research: Combining complexity, humanistic, and critical perspectives

    Directory of Open Access Journals (Sweden)

    Julian Pigott

    2012-10-01

    Full Text Available In this paper I give an overview of recent developments in the L2 motivation field, in particular the movement away from quantitative, questionnaire-based methodologies toward smaller-scale qualitative studies incorporating concepts from complexity theory. While complexity theory provides useful concepts for exploring motivation in new ways, it has nothing to say about ethics, morality, ideology, politics, power or educational purpose. Furthermore, calls for its use come primarily from researchers from the quantitative tradition whose aim in importing this paradigm from the physical sciences appears to be to conceptualize and model motivation more accurately. The endeavor therefore remains a fundamentally positivist one. Rather than being embraced as a self-contained methodology, I argue that complexity theory should be used cautiously and prudently alongside methods grounded in other philosophical traditions. Possibilities abound, but here I suggest one possible multifaceted approach combining complexity theory, a humanisticconception of motivation, and a critical perspective.

  15. Learning Method, Facilities And Infrastructure, And Learning Resources In Basic Networking For Vocational School

    OpenAIRE

    Pamungkas, Bian Dwi

    2017-01-01

    This study aims to examine the contribution of learning methods on learning output, the contribution of facilities and infrastructure on output learning, the contribution of learning resources on learning output, and the contribution of learning methods, the facilities and infrastructure, and learning resources on learning output. The research design is descriptive causative, using a goal-oriented assessment approach in which the assessment focuses on assessing the achievement of a goal. The ...

  16. Early Language Learning: Complexity and Mixed Methods

    Science.gov (United States)

    Enever, Janet, Ed.; Lindgren, Eva, Ed.

    2017-01-01

    This is the first collection of research studies to explore the potential for mixed methods to shed light on foreign or second language learning by young learners in instructed contexts. It brings together recent studies undertaken in Cameroon, China, Croatia, Ethiopia, France, Germany, Italy, Kenya, Mexico, Slovenia, Spain, Sweden, Tanzania and…

  17. Keystone Method: A Learning Paradigm in Mathematics

    Science.gov (United States)

    Siadat, M. Vali; Musial, Paul M.; Sagher, Yoram

    2008-01-01

    This study reports the effects of an integrated instructional program (the Keystone Method) on the students' performance in mathematics and reading, and tracks students' persistence and retention. The subject of the study was a large group of students in remedial mathematics classes at the college, willing to learn but lacking basic educational…

  18. Students' Ideas on Cooperative Learning Method

    Science.gov (United States)

    Yoruk, Abdulkadir

    2016-01-01

    Aim of this study is to investigate students' ideas on cooperative learning method. For that purpose students who are studying at elementary science education program are distributed into two groups through an experimental design. Factors threaten the internal validity are either eliminated or reduced to minimum value. Data analysis is done…

  19. Suggestology as an Effective Language Learning Method.

    Science.gov (United States)

    MaCoy, Katherine W.

    The methods used and the results obtained by means of the accelerated language learning techniques developed by Georgi Lozanov, Director of the Institute of Suggestology in Bulgaria, are discussed. The following topics are included: (1) discussion of hypermnesia, "super memory," and the reasons foreign languages were chosen for purposes…

  20. Effects of Jigsaw Learning Method on Students’ Self-Efficacy and Motivation to Learn

    OpenAIRE

    Dwi Nur Rachmah

    2017-01-01

    Jigsaw learning as a cooperative learning method, according to the results of some studies, can improve academic skills, social competence, behavior in learning, and motivation to learn. However, in some other studies, there are different findings regarding the effect of jigsaw learning method on self-efficacy. The purpose of this study is to examine the effects of jigsaw learning method on self-efficacy and motivation to learn in psychology students at the Faculty of Medicine, Universitas La...

  1. Color image definition evaluation method based on deep learning method

    Science.gov (United States)

    Liu, Di; Li, YingChun

    2018-01-01

    In order to evaluate different blurring levels of color image and improve the method of image definition evaluation, this paper proposed a method based on the depth learning framework and BP neural network classification model, and presents a non-reference color image clarity evaluation method. Firstly, using VGG16 net as the feature extractor to extract 4,096 dimensions features of the images, then the extracted features and labeled images are employed in BP neural network to train. And finally achieve the color image definition evaluation. The method in this paper are experimented by using images from the CSIQ database. The images are blurred at different levels. There are 4,000 images after the processing. Dividing the 4,000 images into three categories, each category represents a blur level. 300 out of 400 high-dimensional features are trained in VGG16 net and BP neural network, and the rest of 100 samples are tested. The experimental results show that the method can take full advantage of the learning and characterization capability of deep learning. Referring to the current shortcomings of the major existing image clarity evaluation methods, which manually design and extract features. The method in this paper can extract the images features automatically, and has got excellent image quality classification accuracy for the test data set. The accuracy rate is 96%. Moreover, the predicted quality levels of original color images are similar to the perception of the human visual system.

  2. The Effect of Computer Assisted Language Learning (CALL) on Performance in the Test of English for International Communication (TOEIC) Listening Module

    Science.gov (United States)

    van Han, Nguyen; van Rensburg, Henriette

    2014-01-01

    Many companies and organizations have been using the Test of English for International Communication (TOEIC) for business and commercial communication purpose in Vietnam and around the world. The present study investigated the effect of Computer Assisted Language Learning (CALL) on performance in the Test of English for International Communication…

  3. Women with learning disabilities and access to cervical screening: retrospective cohort study using case control methods

    Science.gov (United States)

    Reynolds, Fiona; Stanistreet, Debbi; Elton, Peter

    2008-01-01

    Background Several studies in the UK have suggested that women with learning disabilities may be less likely to receive cervical screening tests and a previous local study in had found that GPs considered screening unnecessary for women with learning disabilities. This study set out to ascertain whether women with learning disabilities are more likely to be ceased from a cervical screening programme than women without; and to examine the reasons given for ceasing women with learning disabilities. It was carried out in Bury, Heywood-and-Middleton and Rochdale. Methods Carried out using retrospective cohort study methods, women with learning disabilities were identified by Read code; and their cervical screening records were compared with the Call-and-Recall records of women without learning disabilities in order to examine their screening histories. Analysis was carried out using case-control methods – 1:2 (women with learning disabilities: women without learning disabilities), calculating odds ratios. Results 267 women's records were compared with the records of 534 women without learning disabilities. Women with learning disabilities had an odds ratio (OR) of 0.48 (Confidence Interval (CI) 0.38 – 0.58; X2: 72.227; p.value learning disabilities. Conclusion The reasons given for ceasing and/or not screening suggest that merely being coded as having a learning disability is not the sole reason for these actions. There are training needs among smear takers regarding appropriate reasons not to screen and providing screening for women with learning disabilities. PMID:18218106

  4. Convergence of calls as animals form social bonds, active compensation for noisy communication channels, and the evolution of vocal learning in mammals.

    Science.gov (United States)

    Tyack, Peter L

    2008-08-01

    The classic evidence for vocal production learning involves imitation of novel, often anthropogenic sounds. Among mammals, this has been reported for dolphins, elephants, harbor seals, and humans. A broader taxonomic distribution has been reported for vocal convergence, where the acoustic properties of calls from different individuals converge when they are housed together in captivity or form social bonds in the wild. Vocal convergence has been demonstrated for animals as diverse as songbirds, parakeets, hummingbirds, bats, elephants, cetaceans, and primates. For most species, call convergence is thought to reflect a group-distinctive identifier, with shared calls reflecting and strengthening social bonds. A ubiquitous function for vocal production learning that is starting to receive attention involves modifying signals to improve communication in a noisy channel. Pooling data on vocal imitation, vocal convergence, and compensation for noise suggests a wider taxonomic distribution of vocal production learning among mammals than has been generally appreciated. The wide taxonomic distribution of this evidence for vocal production learning suggests that perhaps more of the neural underpinnings for vocal production learning are in place in mammals than is usually recognized. (c) 2008 APA, all rights reserved

  5. Parallelization of the ROOT Machine Learning Methods

    CERN Document Server

    Vakilipourtakalou, Pourya

    2016-01-01

    Today computation is an inseparable part of scientific research. Specially in Particle Physics when there is a classification problem like discrimination of Signals from Backgrounds originating from the collisions of particles. On the other hand, Monte Carlo simulations can be used in order to generate a known data set of Signals and Backgrounds based on theoretical physics. The aim of Machine Learning is to train some algorithms on known data set and then apply these trained algorithms to the unknown data sets. However, the most common framework for data analysis in Particle Physics is ROOT. In order to use Machine Learning methods, a Toolkit for Multivariate Data Analysis (TMVA) has been added to ROOT. The major consideration in this report is the parallelization of some TMVA methods, specially Cross-Validation and BDT.

  6. Machine Learning Methods for Production Cases Analysis

    Science.gov (United States)

    Mokrova, Nataliya V.; Mokrov, Alexander M.; Safonova, Alexandra V.; Vishnyakov, Igor V.

    2018-03-01

    Approach to analysis of events occurring during the production process were proposed. Described machine learning system is able to solve classification tasks related to production control and hazard identification at an early stage. Descriptors of the internal production network data were used for training and testing of applied models. k-Nearest Neighbors and Random forest methods were used to illustrate and analyze proposed solution. The quality of the developed classifiers was estimated using standard statistical metrics, such as precision, recall and accuracy.

  7. Relabeling exchange method (REM) for learning in neural networks

    Science.gov (United States)

    Wu, Wen; Mammone, Richard J.

    1994-02-01

    The supervised training of neural networks require the use of output labels which are usually arbitrarily assigned. In this paper it is shown that there is a significant difference in the rms error of learning when `optimal' label assignment schemes are used. We have investigated two efficient random search algorithms to solve the relabeling problem: the simulated annealing and the genetic algorithm. However, we found them to be computationally expensive. Therefore we shall introduce a new heuristic algorithm called the Relabeling Exchange Method (REM) which is computationally more attractive and produces optimal performance. REM has been used to organize the optimal structure for multi-layered perceptrons and neural tree networks. The method is a general one and can be implemented as a modification to standard training algorithms. The motivation of the new relabeling strategy is based on the present interpretation of dyslexia as an encoding problem.

  8. Decentralized indirect methods for learning automata games.

    Science.gov (United States)

    Tilak, Omkar; Martin, Ryan; Mukhopadhyay, Snehasis

    2011-10-01

    We discuss the application of indirect learning methods in zero-sum and identical payoff learning automata games. We propose a novel decentralized version of the well-known pursuit learning algorithm. Such a decentralized algorithm has significant computational advantages over its centralized counterpart. The theoretical study of such a decentralized algorithm requires the analysis to be carried out in a nonstationary environment. We use a novel bootstrapping argument to prove the convergence of the algorithm. To our knowledge, this is the first time that such analysis has been carried out for zero-sum and identical payoff games. Extensive simulation studies are reported, which demonstrate the proposed algorithm's fast and accurate convergence in a variety of game scenarios. We also introduce the framework of partial communication in the context of identical payoff games of learning automata. In such games, the automata may not communicate with each other or may communicate selectively. This comprehensive framework has the capability to model both centralized and decentralized games discussed in this paper.

  9. Implementing Collaborative Learning Methods in the Political Science Classroom

    Science.gov (United States)

    Wolfe, Angela

    2012-01-01

    Collaborative learning is one, among other, active learning methods, widely acclaimed in higher education. Consequently, instructors in fields that lack pedagogical training often implement new learning methods such as collaborative learning on the basis of trial and error. Moreover, even though the benefits in academic circles are broadly touted,…

  10. Calle Blanco

    Directory of Open Access Journals (Sweden)

    Gonzalo Cerda Brintrup

    1988-06-01

    Full Text Available Importante arteria, que comunica el sector del puerto con la plaza. Las más imponentes construcciones se sucedían de un modo continuo, encaramándose a ambos lados de la empinada calle. Antes del gran incendio de 1936 grandes casonas de madera destacaban en calle Irarrázabal y en la esquina de ésta con calle Blanco, la más hermosa construcción pertenecía a don Alberto Oyarzún y la casa vecina hacia Blanco era de don Mateo Miserda, limitada por arriba con la casa de don Augusto Van Der Steldt y ésta era seguida de la casa de don David Barrientos provista de cuatro cúpulas en las esquinas y de un amplio corredor en el frontis. Todas estas construcciones de madera fueron destruidas en el gran incendio de 1936.

  11. The 8 Learning Events Model: a Pedagogic Conceptual Tool Supporting Diversification of Learning Methods

    NARCIS (Netherlands)

    Verpoorten, Dominique; Poumay, M; Leclercq, D

    2006-01-01

    Please, cite this publication as: Verpoorten, D., Poumay, M., & Leclercq, D. (2006). The 8 Learning Events Model: a Pedagogic Conceptual Tool Supporting Diversification of Learning Methods. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence

  12. Exercise, character strengths, well-being, and learning climate in the prediction of performance over a 6-month period at a call center.

    Science.gov (United States)

    Moradi, Saleh; Nima, Ali A; Rapp Ricciardi, Max; Archer, Trevor; Garcia, Danilo

    2014-01-01

    Performance monitoring might have an adverse influence on call center agents' well-being. We investigate how performance, over a 6-month period, is related to agents' perceptions of their learning climate, character strengths, well-being (subjective and psychological), and physical activity. Agents (N = 135) self-reported perception of the learning climate (Learning Climate Questionnaire), character strengths (Values In Action Inventory Short Version), well-being (Positive Affect, Negative Affect Schedule, Satisfaction With Life Scale, Psychological Well-Being Scales Short Version), and how often/intensively they engaged in physical activity. Performance, "time on the phone," was monitored for 6 consecutive months by the same system handling the calls. Performance was positively related to having opportunities to develop, the character strengths clusters of Wisdom and Knowledge (e.g., curiosity for learning, perspective) and Temperance (e.g., having self-control, being prudent, humble, and modest), and exercise frequency. Performance was negatively related to the sense of autonomy and responsibility, contentedness, the character strengths clusters of Humanity and Love (e.g., helping others, cooperation) and Justice (e.g., affiliation, fairness, leadership), positive affect, life satisfaction and exercise Intensity. Call centers may need to create opportunities to develop to increase agents' performance and focus on individual differences in the recruitment and selection of agents to prevent future shortcomings or worker dissatisfaction. Nevertheless, performance measurement in call centers may need to include other aspects that are more attuned with different character strengths. After all, allowing individuals to put their strengths at work should empower the individual and at the end the organization itself. Finally, physical activity enhancement programs might offer considerable positive work outcomes.

  13. Teaching learning methods of an entrepreneurship curriculum

    Directory of Open Access Journals (Sweden)

    KERAMAT ESMI

    2015-10-01

    Full Text Available Introduction: One of the most significant elements of entrepreneurship curriculum design is teaching-learning methods, which plays a key role in studies and researches related to such a curriculum. It is the teaching method, and systematic, organized and logical ways of providing lessons that should be consistent with entrepreneurship goals and contents, and should also be developed according to the learners’ needs. Therefore, the current study aimed to introduce appropriate, modern, and effective methods of teaching entrepreneurship and their validation Methods: This is a mixed method research of a sequential exploratory kind conducted through two stages: a developing teaching methods of entrepreneurship curriculum, and b validating developed framework. Data were collected through “triangulation” (study of documents, investigating theoretical basics and the literature, and semi-structured interviews with key experts. Since the literature on this topic is very rich, and views of the key experts are vast, directed and summative content analysis was used. In the second stage, qualitative credibility of research findings was obtained using qualitative validation criteria (credibility, confirmability, and transferability, and applying various techniques. Moreover, in order to make sure that the qualitative part is reliable, reliability test was used. Moreover, quantitative validation of the developed framework was conducted utilizing exploratory and confirmatory factor analysis methods and Cronbach’s alpha. The data were gathered through distributing a three-aspect questionnaire (direct presentation teaching methods, interactive, and practical-operational aspects with 29 items among 90 curriculum scholars. Target population was selected by means of purposive sampling and representative sample. Results: Results obtained from exploratory factor analysis showed that a three factor structure is an appropriate method for describing elements of

  14. Statistical learning methods in high-energy and astrophysics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J. [Forschungszentrum Juelich GmbH, Zentrallabor fuer Elektronik, 52425 Juelich (Germany) and Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: zimmerm@mppmu.mpg.de; Kiesling, C. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)

    2004-11-21

    We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application.

  15. Statistical learning methods in high-energy and astrophysics analysis

    International Nuclear Information System (INIS)

    Zimmermann, J.; Kiesling, C.

    2004-01-01

    We discuss several popular statistical learning methods used in high-energy- and astro-physics analysis. After a short motivation for statistical learning we present the most popular algorithms and discuss several examples from current research in particle- and astro-physics. The statistical learning methods are compared with each other and with standard methods for the respective application

  16. Learning phacoemulsification. Results of different teaching methods.

    Directory of Open Access Journals (Sweden)

    Hennig Albrecht

    2004-01-01

    Full Text Available We report the learning curves of three eye surgeons converting from sutureless extracapsular cataract extraction to phacoemulsification using different teaching methods. Posterior capsule rupture (PCR as a per-operative complication and visual outcome of the first 100 operations were analysed. The PCR rate was 4% and 15% in supervised and unsupervised surgery respectively. Likewise, an uncorrected visual acuity of > or = 6/18 on the first postoperative day was seen in 62 (62% of patients and in 22 (22% in supervised and unsupervised surgery respectively.

  17. Subsampled Hessian Newton Methods for Supervised Learning.

    Science.gov (United States)

    Wang, Chien-Chih; Huang, Chun-Heng; Lin, Chih-Jen

    2015-08-01

    Newton methods can be applied in many supervised learning approaches. However, for large-scale data, the use of the whole Hessian matrix can be time-consuming. Recently, subsampled Newton methods have been proposed to reduce the computational time by using only a subset of data for calculating an approximation of the Hessian matrix. Unfortunately, we find that in some situations, the running speed is worse than the standard Newton method because cheaper but less accurate search directions are used. In this work, we propose some novel techniques to improve the existing subsampled Hessian Newton method. The main idea is to solve a two-dimensional subproblem per iteration to adjust the search direction to better minimize the second-order approximation of the function value. We prove the theoretical convergence of the proposed method. Experiments on logistic regression, linear SVM, maximum entropy, and deep networks indicate that our techniques significantly reduce the running time of the subsampled Hessian Newton method. The resulting algorithm becomes a compelling alternative to the standard Newton method for large-scale data classification.

  18. Teaching learning methods of an entrepreneurship curriculum.

    Science.gov (United States)

    Esmi, Keramat; Marzoughi, Rahmatallah; Torkzadeh, Jafar

    2015-10-01

    One of the most significant elements of entrepreneurship curriculum design is teaching-learning methods, which plays a key role in studies and researches related to such a curriculum. It is the teaching method, and systematic, organized and logical ways of providing lessons that should be consistent with entrepreneurship goals and contents, and should also be developed according to the learners' needs. Therefore, the current study aimed to introduce appropriate, modern, and effective methods of teaching entrepreneurship and their validation. This is a mixed method research of a sequential exploratory kind conducted through two stages: a) developing teaching methods of entrepreneurship curriculum, and b) validating developed framework. Data were collected through "triangulation" (study of documents, investigating theoretical basics and the literature, and semi-structured interviews with key experts). Since the literature on this topic is very rich, and views of the key experts are vast, directed and summative content analysis was used. In the second stage, qualitative credibility of research findings was obtained using qualitative validation criteria (credibility, confirmability, and transferability), and applying various techniques. Moreover, in order to make sure that the qualitative part is reliable, reliability test was used. Moreover, quantitative validation of the developed framework was conducted utilizing exploratory and confirmatory factor analysis methods and Cronbach's alpha. The data were gathered through distributing a three-aspect questionnaire (direct presentation teaching methods, interactive, and practical-operational aspects) with 29 items among 90 curriculum scholars. Target population was selected by means of purposive sampling and representative sample. Results obtained from exploratory factor analysis showed that a three factor structure is an appropriate method for describing elements of teaching-learning methods of entrepreneurship curriculum

  19. Influence on Learning of a Collaborative Learning Method Comprising the Jigsaw Method and Problem-based Learning (PBL).

    Science.gov (United States)

    Takeda, Kayoko; Takahashi, Kiyoshi; Masukawa, Hiroyuki; Shimamori, Yoshimitsu

    2017-01-01

    Recently, the practice of active learning has spread, increasingly recognized as an essential component of academic studies. Classes incorporating small group discussion (SGD) are conducted at many universities. At present, assessments of the effectiveness of SGD have mostly involved evaluation by questionnaires conducted by teachers, by peer assessment, and by self-evaluation of students. However, qualitative data, such as open-ended descriptions by students, have not been widely evaluated. As a result, we have been unable to analyze the processes and methods involved in how students acquire knowledge in SGD. In recent years, due to advances in information and communication technology (ICT), text mining has enabled the analysis of qualitative data. We therefore investigated whether the introduction of a learning system comprising the jigsaw method and problem-based learning (PBL) would improve student attitudes toward learning; we did this by text mining analysis of the content of student reports. We found that by applying the jigsaw method before PBL, we were able to improve student attitudes toward learning and increase the depth of their understanding of the area of study as a result of working with others. The use of text mining to analyze qualitative data also allowed us to understand the processes and methods by which students acquired knowledge in SGD and also changes in students' understanding and performance based on improvements to the class. This finding suggests that the use of text mining to analyze qualitative data could enable teachers to evaluate the effectiveness of various methods employed to improve learning.

  20. COOPERATIVE LEARNING IN DISTANCE LEARNING: A MIXED METHODS STUDY

    Directory of Open Access Journals (Sweden)

    Lori Kupczynski

    2012-07-01

    Full Text Available Distance learning has facilitated innovative means to include Cooperative Learning (CL in virtual settings. This study, conducted at a Hispanic-Serving Institution, compared the effectiveness of online CL strategies in discussion forums with traditional online forums. Quantitative and qualitative data were collected from 56 graduate student participants. Quantitative results revealed no significant difference on student success between CL and Traditional formats. The qualitative data revealed that students in the cooperative learning groups found more learning benefits than the Traditional group. The study will benefit instructors and students in distance learning to improve teaching and learning practices in a virtual classroom.

  1. Machine learning methods for metabolic pathway prediction

    Directory of Open Access Journals (Sweden)

    Karp Peter D

    2010-01-01

    Full Text Available Abstract Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations.

  2. Machine learning methods for metabolic pathway prediction

    Science.gov (United States)

    2010-01-01

    Background A key challenge in systems biology is the reconstruction of an organism's metabolic network from its genome sequence. One strategy for addressing this problem is to predict which metabolic pathways, from a reference database of known pathways, are present in the organism, based on the annotated genome of the organism. Results To quantitatively validate methods for pathway prediction, we developed a large "gold standard" dataset of 5,610 pathway instances known to be present or absent in curated metabolic pathway databases for six organisms. We defined a collection of 123 pathway features, whose information content we evaluated with respect to the gold standard. Feature data were used as input to an extensive collection of machine learning (ML) methods, including naïve Bayes, decision trees, and logistic regression, together with feature selection and ensemble methods. We compared the ML methods to the previous PathoLogic algorithm for pathway prediction using the gold standard dataset. We found that ML-based prediction methods can match the performance of the PathoLogic algorithm. PathoLogic achieved an accuracy of 91% and an F-measure of 0.786. The ML-based prediction methods achieved accuracy as high as 91.2% and F-measure as high as 0.787. The ML-based methods output a probability for each predicted pathway, whereas PathoLogic does not, which provides more information to the user and facilitates filtering of predicted pathways. Conclusions ML methods for pathway prediction perform as well as existing methods, and have qualitative advantages in terms of extensibility, tunability, and explainability. More advanced prediction methods and/or more sophisticated input features may improve the performance of ML methods. However, pathway prediction performance appears to be limited largely by the ability to correctly match enzymes to the reactions they catalyze based on genome annotations. PMID:20064214

  3. Student Achievement in Basic College Mathematics: Its Relationship to Learning Style and Learning Method

    Science.gov (United States)

    Gunthorpe, Sydney

    2006-01-01

    From the assumption that matching a student's learning style with the learning method best suited for the student, it follows that developing courses that correlate learning method with learning style would be more successful for students. Albuquerque Technical Vocational Institute (TVI) in New Mexico has attempted to provide students with more…

  4. Two Undergraduate Process Modeling Courses Taught Using Inductive Learning Methods

    Science.gov (United States)

    Soroush, Masoud; Weinberger, Charles B.

    2010-01-01

    This manuscript presents a successful application of inductive learning in process modeling. It describes two process modeling courses that use inductive learning methods such as inquiry learning and problem-based learning, among others. The courses include a novel collection of multi-disciplinary complementary process modeling examples. They were…

  5. The Method of High School English Word Learning

    Institute of Scientific and Technical Information of China (English)

    吴博涵

    2016-01-01

    Most Chinese students are not interested in English learning, especially English words. In this paper, I focus on English vocabulary learning, for example, the study of high school students English word learning method, and also introduce several ways to make vocabulary memory becomes more effective. The purpose is to make high school students grasp more English word learning skills.

  6. Learning Strategies in Play during Basic Training for Medal of Honor and Call of Duty Video Games

    Science.gov (United States)

    Ziaeehezarjeribi, Yadi

    2010-01-01

    This study, based on experiential play methodology was used to explore student engagement while playing "Medal of Honor (2002)" and "Call of Duty (2003)". It identifies some of the key issues related to the use of video games and simulations during the training phase of game play. Research into the effects of gaming in education has been extremely…

  7. Reinforcement learning for a biped robot based on a CPG-actor-critic method.

    Science.gov (United States)

    Nakamura, Yutaka; Mori, Takeshi; Sato, Masa-aki; Ishii, Shin

    2007-08-01

    Animals' rhythmic movements, such as locomotion, are considered to be controlled by neural circuits called central pattern generators (CPGs), which generate oscillatory signals. Motivated by this biological mechanism, studies have been conducted on the rhythmic movements controlled by CPG. As an autonomous learning framework for a CPG controller, we propose in this article a reinforcement learning method we call the "CPG-actor-critic" method. This method introduces a new architecture to the actor, and its training is roughly based on a stochastic policy gradient algorithm presented recently. We apply this method to an automatic acquisition problem of control for a biped robot. Computer simulations show that training of the CPG can be successfully performed by our method, thus allowing the biped robot to not only walk stably but also adapt to environmental changes.

  8. Active semi-supervised learning method with hybrid deep belief networks.

    Science.gov (United States)

    Zhou, Shusen; Chen, Qingcai; Wang, Xiaolong

    2014-01-01

    In this paper, we develop a novel semi-supervised learning algorithm called active hybrid deep belief networks (AHD), to address the semi-supervised sentiment classification problem with deep learning. First, we construct the previous several hidden layers using restricted Boltzmann machines (RBM), which can reduce the dimension and abstract the information of the reviews quickly. Second, we construct the following hidden layers using convolutional restricted Boltzmann machines (CRBM), which can abstract the information of reviews effectively. Third, the constructed deep architecture is fine-tuned by gradient-descent based supervised learning with an exponential loss function. Finally, active learning method is combined based on the proposed deep architecture. We did several experiments on five sentiment classification datasets, and show that AHD is competitive with previous semi-supervised learning algorithm. Experiments are also conducted to verify the effectiveness of our proposed method with different number of labeled reviews and unlabeled reviews respectively.

  9. Peak Detection Method Evaluation for Ion Mobility Spectrometry by Using Machine Learning Approaches

    DEFF Research Database (Denmark)

    Hauschild, Anne-Christin; Kopczynski, Dominik; D'Addario, Marianna

    2013-01-01

    machine learning methods exist, an inevitable preprocessing step is reliable and robust peak detection without manual intervention. In this work we evaluate four state-of-the-art approaches for automated IMS-based peak detection: local maxima search, watershed transformation with IPHEx, region......-merging with VisualNow, and peak model estimation (PME).We manually generated Metabolites 2013, 3 278 a gold standard with the aid of a domain expert (manual) and compare the performance of the four peak calling methods with respect to two distinct criteria. We first utilize established machine learning methods...

  10. Reading and proclaiming the Advent call of John the Baptist: An empirical enquiry employing the SIFT method

    Directory of Open Access Journals (Sweden)

    Leslie J. Francis

    2014-10-01

    Full Text Available Drawing on Jungian psychological type theory, the SIFT method of biblical hermeneutics and liturgical preaching suggests that the reading and proclaiming of scripture reflects the psychological type preferences of the reader and preacher. This thesis is examined among a sample of clergy (training incumbents and curates serving in the one Diocese of the Church of England (N = 22. After completing the Myers-Briggs Type Indicator, the clergy worked in groups (designed to cluster individuals who shared similar psychological type characteristics to reflect on and to discuss the Advent call of John the Baptist. The Marcan account was chosen for the exercise exploring the perceiving functions (sensing and intuition in light of its rich narrative. The Lucan account was chosen for the exercise exploring the judging functions (thinking and feeling in light of the challenges offered by the passage. In accordance with the theory, the data confirmed characteristic differences between the approaches of sensing types and intuitive types, and between the approaches of thinking types and feeling types.

  11. EMERGENCY CALLS

    CERN Multimedia

    Medical Service

    2001-01-01

    IN URGENT NEED OF A DOCTOR GENEVA EMERGENCY SERVICES GENEVA AND VAUD 144 FIRE BRIGADE 118 POLICE 117 CERN FIREMEN 767-44-44 ANTI-POISONS CENTRE Open 24h/24h 01-251-51-51 Patient not fit to be moved, call family doctor, or: GP AT HOME, open 24h/24h 748-49-50 Association Of Geneva Doctors Emergency Doctors at home 07h-23h 322 20 20 Patient fit to be moved: HOPITAL CANTONAL CENTRAL 24 Micheli-du-Crest 372-33-11 ou 382-33-11 EMERGENCIES 382-33-11 ou 372-33-11 CHILDREN'S HOSPITAL 6 rue Willy-Donzé 372-33-11 MATERNITY 32 bvd.de la Cluse 382-68-16 ou 382-33-11 OPHTHALMOLOGY 22 Alcide Jentzer 382-33-11 ou 372-33-11 MEDICAL CENTRE CORNAVIN 1-3 rue du Jura 345 45 50 HOPITAL DE LA TOUR Meyrin EMERGENCIES 719-61-11 URGENCES PEDIATRIQUES 719-61-00 LA TOUR MEDICAL CENTRE 719-74-00 European Emergency Call 112 FRANCE EMERGENCY SERVICES 15 FIRE BRIGADE 18 POLICE 17 CERN FIREMEN AT HOME 00-41-22-767-44-44 ANTI-POISONS CENTRE Open 24h/24h 04-72-11-69-11 All doctors ...

  12. Under which conditions does ICT have a positive effect on teaching and learning? A Call to Action

    NARCIS (Netherlands)

    Voogt, Joke; Knezek, G.; Cox, M.; Knezek, D.; ten Brummelhuis, A.C.A.

    2013-01-01

    Under which conditions does ICT have a positive effect on teaching and learning?’ This was the leading question of the International EDUsummIT in The Hague, the Netherlands. The bases for the discussion were the scholarly findings of the International Handbook of Information Technology in Primary

  13. Under Which Conditions Does ICT Have a Positive Effect on Teaching and Learning? A Call to Action

    Science.gov (United States)

    Voogt, J.; Knezek, G.; Cox, M.; Knezek, D.; ten Brummelhuis, A.

    2013-01-01

    "Under which conditions does ICT have a positive effect on teaching and learning?" This was the leading question of the International EDUsummIT in The Hague, the Netherlands. The bases for the discussion were the scholarly findings of the International Handbook of Information Technology in Primary and Secondary Education, a synthesis of research…

  14. Reciprocal Learning Strategy in CALL Environment: A Case Study of EFL Teaching at X University in Shanghai

    Science.gov (United States)

    Liu, An; Bu, Yuhua

    2016-01-01

    Colleges and universities in China have been bent on remolding the existing unitary teacher-centered education mode and enhancing students' individualized and autonomous learning with the help of multimedia and cyber technology in order to meet the College English Curriculum Requirements instituted by the Ministry of Education in 2004. Admittedly…

  15. The Learner, the Media and the Community: How Does Learning Take Place in the Other CALL Triangle?

    Science.gov (United States)

    Sockett, Geoffrey

    2012-01-01

    In this research project, students in applied linguistics were asked to keep blogs over a three-month period in which they reported on their online informal learning of English through activities such as social networking, downloading films and TV series and listening to music on demand. The study is situated within the framework of complexity…

  16. Teaching and learning methods in IVET

    DEFF Research Database (Denmark)

    Aarkrog, Vibe

    The cases deals about learner centered learning in a commercial program and a technical program.......The cases deals about learner centered learning in a commercial program and a technical program....

  17. Peer Feedback, Learning, and Improvement: Answering the Call of the Institute of Medicine Report on Diagnostic Error.

    Science.gov (United States)

    Larson, David B; Donnelly, Lane F; Podberesky, Daniel J; Merrow, Arnold C; Sharpe, Richard E; Kruskal, Jonathan B

    2017-04-01

    In September 2015, the Institute of Medicine (IOM) published a report titled "Improving Diagnosis in Health Care," in which it was recommended that "health care organizations should adopt policies and practices that promote a nonpunitive culture that values open discussion and feedback on diagnostic performance." It may seem counterintuitive that a report addressing a highly technical skill such as medical diagnosis would be focused on organizational culture. The wisdom becomes clearer, however, when examined in the light of recent advances in the understanding of human error and individual and organizational performance. The current dominant model for radiologist performance improvement is scoring-based peer review, which reflects a traditional quality assurance approach, derived from manufacturing in the mid-1900s. Far from achieving the goals of the IOM, which are celebrating success, recognizing mistakes as an opportunity to learn, and fostering openness and trust, we have found that scoring-based peer review tends to drive radiologists inward, against each other, and against practice leaders. Modern approaches to quality improvement focus on using and enhancing interpersonal professional relationships to achieve and maintain high levels of individual and organizational performance. In this article, the authors review the recommendations set forth by the recent IOM report, discuss the science and theory that underlie several of those recommendations, and assess how well they fit with the current dominant approach to radiology peer review. The authors also offer an alternative approach to peer review: peer feedback, learning, and improvement (or more succinctly, "peer learning"), which they believe is better aligned with the principles promoted by the IOM. © RSNA, 2016.

  18. Do students’ styles of learning affect how they adapt to learning methods and to the learning environment?

    OpenAIRE

    Topal, Kenan; Sarıkaya, Özlem; Basturk, Ramazan; Buke, Akile

    2015-01-01

    Objectives: The process of development and evaluation of undergraduate medical education programs should include analysis of learners’ characteristics, needs, and perceptions about learning methods. This study aims to evaluate medical students’ perceptions about problem-based learning methods and to compare these results with their individual learning styles.Materials and Methods: The survey was conducted at Marmara University Medical School where problem-based learning was implemented in the...

  19. Extremely Randomized Machine Learning Methods for Compound Activity Prediction

    Directory of Open Access Journals (Sweden)

    Wojciech M. Czarnecki

    2015-11-01

    Full Text Available Speed, a relatively low requirement for computational resources and high effectiveness of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in the application of machine learning methods to virtual screening tasks. However, due to the growth of the amount of data also in cheminformatics and related fields, the aim of research has shifted not only towards the development of algorithms of high predictive power but also towards the simplification of previously existing methods to obtain results more quickly. In the study, we tested two approaches belonging to the group of so-called ‘extremely randomized methods’—Extreme Entropy Machine and Extremely Randomized Trees—for their ability to properly identify compounds that have activity towards particular protein targets. These methods were compared with their ‘non-extreme’ competitors, i.e., Support Vector Machine and Random Forest. The extreme approaches were not only found out to improve the efficiency of the classification of bioactive compounds, but they were also proved to be less computationally complex, requiring fewer steps to perform an optimization procedure.

  20. Call document

    International Development Research Centre (IDRC) Digital Library (Canada)

    Marie-Isabelle Beyer

    2015-03-31

    Mar 31, 2015 ... It works with researchers as they confront contemporar y challenges .... The type of study and method of systematic review of evidence must be ... of sources valuing rigorous qualitative and quantitative research; and should be ...

  1. DL-ReSuMe: A Delay Learning-Based Remote Supervised Method for Spiking Neurons.

    Science.gov (United States)

    Taherkhani, Aboozar; Belatreche, Ammar; Li, Yuhua; Maguire, Liam P

    2015-12-01

    Recent research has shown the potential capability of spiking neural networks (SNNs) to model complex information processing in the brain. There is biological evidence to prove the use of the precise timing of spikes for information coding. However, the exact learning mechanism in which the neuron is trained to fire at precise times remains an open problem. The majority of the existing learning methods for SNNs are based on weight adjustment. However, there is also biological evidence that the synaptic delay is not constant. In this paper, a learning method for spiking neurons, called delay learning remote supervised method (DL-ReSuMe), is proposed to merge the delay shift approach and ReSuMe-based weight adjustment to enhance the learning performance. DL-ReSuMe uses more biologically plausible properties, such as delay learning, and needs less weight adjustment than ReSuMe. Simulation results have shown that the proposed DL-ReSuMe approach achieves learning accuracy and learning speed improvements compared with ReSuMe.

  2. Deep learning versus traditional machine learning methods for aggregated energy demand prediction

    NARCIS (Netherlands)

    Paterakis, N.G.; Mocanu, E.; Gibescu, M.; Stappers, B.; van Alst, W.

    2018-01-01

    In this paper the more advanced, in comparison with traditional machine learning approaches, deep learning methods are explored with the purpose of accurately predicting the aggregated energy consumption. Despite the fact that a wide range of machine learning methods have been applied to

  3. Preparing Students for Flipped or Team-Based Learning Methods

    Science.gov (United States)

    Balan, Peter; Clark, Michele; Restall, Gregory

    2015-01-01

    Purpose: Teaching methods such as Flipped Learning and Team-Based Learning require students to pre-learn course materials before a teaching session, because classroom exercises rely on students using self-gained knowledge. This is the reverse to "traditional" teaching when course materials are presented during a lecture, and students are…

  4. Women with learning disabilities and access to cervical screening: retrospective cohort study using case control methods

    Directory of Open Access Journals (Sweden)

    Stanistreet Debbi

    2008-01-01

    Full Text Available Abstract Background Several studies in the UK have suggested that women with learning disabilities may be less likely to receive cervical screening tests and a previous local study in had found that GPs considered screening unnecessary for women with learning disabilities. This study set out to ascertain whether women with learning disabilities are more likely to be ceased from a cervical screening programme than women without; and to examine the reasons given for ceasing women with learning disabilities. It was carried out in Bury, Heywood-and-Middleton and Rochdale. Methods Carried out using retrospective cohort study methods, women with learning disabilities were identified by Read code; and their cervical screening records were compared with the Call-and-Recall records of women without learning disabilities in order to examine their screening histories. Analysis was carried out using case-control methods – 1:2 (women with learning disabilities: women without learning disabilities, calculating odds ratios. Results 267 women's records were compared with the records of 534 women without learning disabilities. Women with learning disabilities had an odds ratio (OR of 0.48 (Confidence Interval (CI 0.38 – 0.58; X2: 72.227; p.value X2: 24.236; p.value X2: 286.341; p.value Conclusion The reasons given for ceasing and/or not screening suggest that merely being coded as having a learning disability is not the sole reason for these actions. There are training needs among smear takers regarding appropriate reasons not to screen and providing screening for women with learning disabilities.

  5. Effects of Jigsaw Learning Method on Students’ Self-Efficacy and Motivation to Learn

    Directory of Open Access Journals (Sweden)

    Dwi Nur Rachmah

    2017-12-01

    Full Text Available Jigsaw learning as a cooperative learning method, according to the results of some studies, can improve academic skills, social competence, behavior in learning, and motivation to learn. However, in some other studies, there are different findings regarding the effect of jigsaw learning method on self-efficacy. The purpose of this study is to examine the effects of jigsaw learning method on self-efficacy and motivation to learn in psychology students at the Faculty of Medicine, Universitas Lambung Mangkurat. The method used in the study is the experimental method using one group pre-test and post-test design. The results of the measurements before and after the use of jigsaw learning method were compared using paired samples t-test. The results showed that there is a difference in students’ self-efficacy and motivation to learn before and after subjected to the treatments; therefore, it can be said that jigsaw learning method had significant effects on self-efficacy and motivation to learn. The application of jigsaw learning model in a classroom with large number of students was the discussion of this study.

  6. A Swarm-Based Learning Method Inspired by Social Insects

    Science.gov (United States)

    He, Xiaoxian; Zhu, Yunlong; Hu, Kunyuan; Niu, Ben

    Inspired by cooperative transport behaviors of ants, on the basis of Q-learning, a new learning method, Neighbor-Information-Reference (NIR) learning method, is present in the paper. This is a swarm-based learning method, in which principles of swarm intelligence are strictly complied with. In NIR learning, the i-interval neighbor's information, namely its discounted reward, is referenced when an individual selects the next state, so that it can make the best decision in a computable local neighborhood. In application, different policies of NIR learning are recommended by controlling the parameters according to time-relativity of concrete tasks. NIR learning can remarkably improve individual efficiency, and make swarm more "intelligent".

  7. Arts-based Methods and Organizational Learning

    DEFF Research Database (Denmark)

    This thematic volume explores the relationship between the arts and learning in various educational contexts and across cultures, but with a focus on higher education and organizational learning. Arts-based interventions are at the heart of this volume, which addresses how they are conceived, des...

  8. Reasons and Methods to Learn the Management

    Science.gov (United States)

    Li, Hongxin; Ding, Mengchun

    2010-01-01

    Reasons for learning the management include (1) perfecting the knowledge structure, (2) the management is the base of all organizations, (3) one person may be the manager or the managed person, (4) the management is absolutely not simple knowledge, and (5) the learning of the theoretical knowledge of the management can not be replaced by the…

  9. Microgenetic Learning Analytics Methods: Workshop Report

    Science.gov (United States)

    Aghababyan, Ani; Martin, Taylor; Janisiewicz, Philip; Close, Kevin

    2016-01-01

    Learning analytics is an emerging discipline and, as such, benefits from new tools and methodological approaches. This work reviews and summarizes our workshop on microgenetic data analysis techniques using R, held at the second annual Learning Analytics Summer Institute in Cambridge, Massachusetts, on 30 June 2014. Specifically, this paper…

  10. New Learning Methods for Marine Oil Spill Response Training

    Directory of Open Access Journals (Sweden)

    Justiina Halonen

    2017-06-01

    Full Text Available In Finland the Regional Fire and Rescue Services (RFRS are responsible for near shore oil spill response and shoreline cleanup operations. In addition, they assist in other types of maritime incidents, such as search and rescue operations and fire-fighting on board. These statutory assignments require the RFRS to have capability to act both on land and at sea. As maritime incidents occur infrequently, little routine has been established. In order to improve their performance in maritime operations, the RFRS are participating in a new oil spill training programme to be launched by South-Eastern Finland University of Applied Sciences. This training programme aims to utilize new educational methods; e-learning and simulator based training. In addition to fully exploiting the existing navigational bridge simulator, radio communication simulator and crisis management simulator, an entirely new simulator is developed. This simulator is designed to model the oil recovery process; recovery method, rate and volume in various conditions with different oil types. New simulator enables creation of a comprehensive training programme covering training tasks from a distress call to the completion of an oil spill response operation. Structure of the training programme, as well as the training objectives, are based on the findings from competence and education surveys conducted in spring 2016. In these results, a need for vessel maneuvering and navigation exercises together with actual response measures training were emphasized. Also additional training for maritime radio communication, GMDSS-emergency protocols and collaboration with maritime authorities were seemed important. This paper describes new approach to the maritime operations training designed for rescue authorities, a way of learning by doing, without mobilising the vessels at sea.

  11. Transcriptomic SNP discovery for custom genotyping arrays: impacts of sequence data, SNP calling method and genotyping technology on the probability of validation success.

    Science.gov (United States)

    Humble, Emily; Thorne, Michael A S; Forcada, Jaume; Hoffman, Joseph I

    2016-08-26

    Single nucleotide polymorphism (SNP) discovery is an important goal of many studies. However, the number of 'putative' SNPs discovered from a sequence resource may not provide a reliable indication of the number that will successfully validate with a given genotyping technology. For this it may be necessary to account for factors such as the method used for SNP discovery and the type of sequence data from which it originates, suitability of the SNP flanking sequences for probe design, and genomic context. To explore the relative importance of these and other factors, we used Illumina sequencing to augment an existing Roche 454 transcriptome assembly for the Antarctic fur seal (Arctocephalus gazella). We then mapped the raw Illumina reads to the new hybrid transcriptome using BWA and BOWTIE2 before calling SNPs with GATK. The resulting markers were pooled with two existing sets of SNPs called from the original 454 assembly using NEWBLER and SWAP454. Finally, we explored the extent to which SNPs discovered using these four methods overlapped and predicted the corresponding validation outcomes for both Illumina Infinium iSelect HD and Affymetrix Axiom arrays. Collating markers across all discovery methods resulted in a global list of 34,718 SNPs. However, concordance between the methods was surprisingly poor, with only 51.0 % of SNPs being discovered by more than one method and 13.5 % being called from both the 454 and Illumina datasets. Using a predictive modeling approach, we could also show that SNPs called from the Illumina data were on average more likely to successfully validate, as were SNPs called by more than one method. Above and beyond this pattern, predicted validation outcomes were also consistently better for Affymetrix Axiom arrays. Our results suggest that focusing on SNPs called by more than one method could potentially improve validation outcomes. They also highlight possible differences between alternative genotyping technologies that could be

  12. Question presentation methods for paired-associate learning

    NARCIS (Netherlands)

    Engel, F.L.; Geerings, M.P.W.

    1988-01-01

    Four different methods of question presentation, in interactive computeraided learning of Dutch-English word pairs are evaluated experimentally. These methods are: 1) the 'open-question method', 2) the 'multiple-choice method', 3) the 'sequential method' and 4) the 'true/ false method'. When

  13. Efficient model learning methods for actor-critic control.

    Science.gov (United States)

    Grondman, Ivo; Vaandrager, Maarten; Buşoniu, Lucian; Babuska, Robert; Schuitema, Erik

    2012-06-01

    We propose two new actor-critic algorithms for reinforcement learning. Both algorithms use local linear regression (LLR) to learn approximations of the functions involved. A crucial feature of the algorithms is that they also learn a process model, and this, in combination with LLR, provides an efficient policy update for faster learning. The first algorithm uses a novel model-based update rule for the actor parameters. The second algorithm does not use an explicit actor but learns a reference model which represents a desired behavior, from which desired control actions can be calculated using the inverse of the learned process model. The two novel methods and a standard actor-critic algorithm are applied to the pendulum swing-up problem, in which the novel methods achieve faster learning than the standard algorithm.

  14. Ensemble Machine Learning Methods and Applications

    CERN Document Server

    Ma, Yunqian

    2012-01-01

    It is common wisdom that gathering a variety of views and inputs improves the process of decision making, and, indeed, underpins a democratic society. Dubbed “ensemble learning” by researchers in computational intelligence and machine learning, it is known to improve a decision system’s robustness and accuracy. Now, fresh developments are allowing researchers to unleash the power of ensemble learning in an increasing range of real-world applications. Ensemble learning algorithms such as “boosting” and “random forest” facilitate solutions to key computational issues such as face detection and are now being applied in areas as diverse as object trackingand bioinformatics.   Responding to a shortage of literature dedicated to the topic, this volume offers comprehensive coverage of state-of-the-art ensemble learning techniques, including various contributions from researchers in leading industrial research labs. At once a solid theoretical study and a practical guide, the volume is a windfall for r...

  15. Blended Learning

    OpenAIRE

    Bauerová, Andrea

    2013-01-01

    This thesis is focused on a new approach of education called blended learning. The history and developement of Blended Learning is described in the first part. Then the methods and tools of Blended Learning are evaluated and compared to the traditional methods of education. At the final part an efficient developement of the educational programs is emphasized.

  16. Investigating the Effectiveness of Computer-Assisted Language Learning (CALL) Using Google Documents in Enhancing Writing--A Study on Senior 1 Students in a Chinese Independent High School

    Science.gov (United States)

    Ambrose, Regina Maria; Palpanathan, Shanthini

    2017-01-01

    Computer-assisted language learning (CALL) has evolved through various stages in both technology as well as the pedagogical use of technology (Warschauer & Healey, 1998). Studies show that the CALL trend has facilitated students in their English language writing with useful tools such as computer based activities and word processing. Students…

  17. Adaptive e-learning methods and IMS Learning Design. An integrated approach

    NARCIS (Netherlands)

    Burgos, Daniel; Specht, Marcus

    2006-01-01

    Please, cite this publication as: Burgos, D., & Specht, M. (2006). Adaptive e-learning methods and IMS Learning Design. In Kinshuk, R. Koper, P. Kommers, P. Kirschner, D. G. Sampson & W. Didderen (Eds.), Proceedings of the 6th IEEE International Conference on Advanced Learning Technologies (pp.

  18. An Innovative Teaching Method To Promote Active Learning: Team-Based Learning

    Science.gov (United States)

    Balasubramanian, R.

    2007-12-01

    Traditional teaching practice based on the textbook-whiteboard- lecture-homework-test paradigm is not very effective in helping students with diverse academic backgrounds achieve higher-order critical thinking skills such as analysis, synthesis, and evaluation. Consequently, there is a critical need for developing a new pedagogical approach to create a collaborative and interactive learning environment in which students with complementary academic backgrounds and learning skills can work together to enhance their learning outcomes. In this presentation, I will discuss an innovative teaching method ('Team-Based Learning (TBL)") which I recently developed at National University of Singapore to promote active learning among students in the environmental engineering program with learning abilities. I implemented this new educational activity in a graduate course. Student feedback indicates that this pedagogical approach is appealing to most students, and promotes active & interactive learning in class. Data will be presented to show that the innovative teaching method has contributed to improved student learning and achievement.

  19. Deep kernel learning method for SAR image target recognition

    Science.gov (United States)

    Chen, Xiuyuan; Peng, Xiyuan; Duan, Ran; Li, Junbao

    2017-10-01

    With the development of deep learning, research on image target recognition has made great progress in recent years. Remote sensing detection urgently requires target recognition for military, geographic, and other scientific research. This paper aims to solve the synthetic aperture radar image target recognition problem by combining deep and kernel learning. The model, which has a multilayer multiple kernel structure, is optimized layer by layer with the parameters of Support Vector Machine and a gradient descent algorithm. This new deep kernel learning method improves accuracy and achieves competitive recognition results compared with other learning methods.

  20. A Review on Different Virtual Learning Methods in Pharmacy Education

    Directory of Open Access Journals (Sweden)

    Amin Noori

    2015-10-01

    Full Text Available Virtual learning is a type of electronic learning system based on the web. It models traditional in- person learning by providing virtual access to classes, tests, homework, feedbacks and etc. Students and teachers can interact through chat rooms or other virtual environments. Web 2.0 services are usually used for this method. Internet audio-visual tools, multimedia systems, a disco CD-ROMs, videotapes, animation, video conferencing, and interactive phones can all be used to deliver data to the students. E-learning can occur in or out of the classroom. It is time saving with lower costs compared to traditional methods. It can be self-paced, it is suitable for distance learning and it is flexible. It is a great learning style for continuing education and students can independently solve their problems but it has its disadvantages too. Thereby, blended learning (combination of conventional and virtual education is being used worldwide and has improved knowledge, skills and confidence of pharmacy students.The aim of this study is to review, discuss and introduce different methods of virtual learning for pharmacy students.Google scholar, Pubmed and Scupus databases were searched for topics related to virtual, electronic and blended learning and different styles like computer simulators, virtual practice environment technology, virtual mentor, virtual patient, 3D simulators, etc. are discussed in this article.Our review on different studies on these areas shows that the students are highly satisfied withvirtual and blended types of learning.

  1. A Comparison between the Effect of Cooperative Learning Teaching Method and Lecture Teaching Method on Students' Learning and Satisfaction Level

    Science.gov (United States)

    Mohammadjani, Farzad; Tonkaboni, Forouzan

    2015-01-01

    The aim of the present research is to investigate a comparison between the effect of cooperative learning teaching method and lecture teaching method on students' learning and satisfaction level. The research population consisted of all the fourth grade elementary school students of educational district 4 in Shiraz. The statistical population…

  2. Unsupervised process monitoring and fault diagnosis with machine learning methods

    CERN Document Server

    Aldrich, Chris

    2013-01-01

    This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data

  3. Application of machine learning methods in bioinformatics

    Science.gov (United States)

    Yang, Haoyu; An, Zheng; Zhou, Haotian; Hou, Yawen

    2018-05-01

    Faced with the development of bioinformatics, high-throughput genomic technology have enabled biology to enter the era of big data. [1] Bioinformatics is an interdisciplinary, including the acquisition, management, analysis, interpretation and application of biological information, etc. It derives from the Human Genome Project. The field of machine learning, which aims to develop computer algorithms that improve with experience, holds promise to enable computers to assist humans in the analysis of large, complex data sets.[2]. This paper analyzes and compares various algorithms of machine learning and their applications in bioinformatics.

  4. Are students' impressions of improved learning through active learning methods reflected by improved test scores?

    Science.gov (United States)

    Everly, Marcee C

    2013-02-01

    To report the transformation from lecture to more active learning methods in a maternity nursing course and to evaluate whether student perception of improved learning through active-learning methods is supported by improved test scores. The process of transforming a course into an active-learning model of teaching is described. A voluntary mid-semester survey for student acceptance of the new teaching method was conducted. Course examination results, from both a standardized exam and a cumulative final exam, among students who received lecture in the classroom and students who had active learning activities in the classroom were compared. Active learning activities were very acceptable to students. The majority of students reported learning more from having active-learning activities in the classroom rather than lecture-only and this belief was supported by improved test scores. Students who had active learning activities in the classroom scored significantly higher on a standardized assessment test than students who received lecture only. The findings support the use of student reflection to evaluate the effectiveness of active-learning methods and help validate the use of student reflection of improved learning in other research projects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Bayesian methods for addressing long-standing problems in associative learning: The case of PREE.

    Science.gov (United States)

    Blanco, Fernando; Moris, Joaquín

    2017-07-20

    Most associative models typically assume that learning can be understood as a gradual change in associative strength that captures the situation into one single parameter, or representational state. We will call this view single-state learning. However, there is ample evidence showing that under many circumstances different relationships that share features can be learned independently, and animals can quickly switch between expressing one or another. We will call this multiple-state learning. Theoretically, it is understudied because it needs a different data analysis approach from those usually employed. In this paper, we present a Bayesian model of the Partial Reinforcement Extinction Effect (PREE) that can test the predictions of the multiple-state view. This implies estimating the moment of change in the responses (from the acquisition to the extinction performance), both at the individual and at the group levels. We used this model to analyze data from a PREE experiment with three levels of reinforcement during acquisition (100%, 75% and 50%). We found differences in the estimated moment of switch between states during extinction, so that it was delayed after leaner partial reinforcement schedules. The finding is compatible with the multiple-state view. It is the first time, to our knowledge, that the predictions from the multiple-state view are tested directly. The paper also aims to show the benefits that Bayesian methods can bring to the associative learning field.

  6. A Cross-Correlated Delay Shift Supervised Learning Method for Spiking Neurons with Application to Interictal Spike Detection in Epilepsy.

    Science.gov (United States)

    Guo, Lilin; Wang, Zhenzhong; Cabrerizo, Mercedes; Adjouadi, Malek

    2017-05-01

    This study introduces a novel learning algorithm for spiking neurons, called CCDS, which is able to learn and reproduce arbitrary spike patterns in a supervised fashion allowing the processing of spatiotemporal information encoded in the precise timing of spikes. Unlike the Remote Supervised Method (ReSuMe), synapse delays and axonal delays in CCDS are variants which are modulated together with weights during learning. The CCDS rule is both biologically plausible and computationally efficient. The properties of this learning rule are investigated extensively through experimental evaluations in terms of reliability, adaptive learning performance, generality to different neuron models, learning in the presence of noise, effects of its learning parameters and classification performance. Results presented show that the CCDS learning method achieves learning accuracy and learning speed comparable with ReSuMe, but improves classification accuracy when compared to both the Spike Pattern Association Neuron (SPAN) learning rule and the Tempotron learning rule. The merit of CCDS rule is further validated on a practical example involving the automated detection of interictal spikes in EEG records of patients with epilepsy. Results again show that with proper encoding, the CCDS rule achieves good recognition performance.

  7. An Analytical framework of social learning facilitated by participatory methods

    NARCIS (Netherlands)

    Scholz, G.; Dewulf, A.; Pahl-Wostl, C.

    2014-01-01

    Social learning among different stakeholders is often a goal in problem solving contexts such as environmental management. Participatory methods (e.g., group model-building and role playing games) are frequently assumed to stimulate social learning. Yet understanding if and why this assumption is

  8. Blended learning – integrating E-learning with traditional learning methods in teaching basic medical science

    OpenAIRE

    J.G. Bagi; N.K. Hashilkar

    2014-01-01

    Background: Blended learning includes an integration of face to face classroom learning with technology enhanced online material. It provides the convenience, speed and cost effectiveness of e-learning with the personal touch of traditional learning. Objective: The objective of the present study was to assess the effectiveness of a combination of e-learning module and traditional teaching (Blended learning) as compared to traditional teaching alone to teach acid base homeostasis to Phase I MB...

  9. Learning Methods for Radial Basis Functions Networks

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Kudová, Petra

    2005-01-01

    Roč. 21, - (2005), s. 1131-1142 ISSN 0167-739X R&D Projects: GA ČR GP201/03/P163; GA ČR GA201/02/0428 Institutional research plan: CEZ:AV0Z10300504 Keywords : radial basis function networks * hybrid supervised learning * genetic algorithms * benchmarking Subject RIV: BA - General Mathematics Impact factor: 0.555, year: 2005

  10. Machine Learning Methods to Predict Diabetes Complications.

    Science.gov (United States)

    Dagliati, Arianna; Marini, Simone; Sacchi, Lucia; Cogni, Giulia; Teliti, Marsida; Tibollo, Valentina; De Cata, Pasquale; Chiovato, Luca; Bellazzi, Riccardo

    2018-03-01

    One of the areas where Artificial Intelligence is having more impact is machine learning, which develops algorithms able to learn patterns and decision rules from data. Machine learning algorithms have been embedded into data mining pipelines, which can combine them with classical statistical strategies, to extract knowledge from data. Within the EU-funded MOSAIC project, a data mining pipeline has been used to derive a set of predictive models of type 2 diabetes mellitus (T2DM) complications based on electronic health record data of nearly one thousand patients. Such pipeline comprises clinical center profiling, predictive model targeting, predictive model construction and model validation. After having dealt with missing data by means of random forest (RF) and having applied suitable strategies to handle class imbalance, we have used Logistic Regression with stepwise feature selection to predict the onset of retinopathy, neuropathy, or nephropathy, at different time scenarios, at 3, 5, and 7 years from the first visit at the Hospital Center for Diabetes (not from the diagnosis). Considered variables are gender, age, time from diagnosis, body mass index (BMI), glycated hemoglobin (HbA1c), hypertension, and smoking habit. Final models, tailored in accordance with the complications, provided an accuracy up to 0.838. Different variables were selected for each complication and time scenario, leading to specialized models easy to translate to the clinical practice.

  11. [Methods of the multivariate statistical analysis of so-called polyetiological diseases using the example of coronary heart disease].

    Science.gov (United States)

    Lifshits, A M

    1979-01-01

    General characteristics of the multivariate statistical analysis (MSA) is given. Methodical premises and criteria for the selection of an adequate MSA method applicable to pathoanatomic investigations of the epidemiology of multicausal diseases are presented. The experience of using MSA with computors and standard computing programs in studies of coronary arteries aterosclerosis on the materials of 2060 autopsies is described. The combined use of 4 MSA methods: sequential, correlational, regressional, and discriminant permitted to quantitate the contribution of each of the 8 examined risk factors in the development of aterosclerosis. The most important factors were found to be the age, arterial hypertension, and heredity. Occupational hypodynamia and increased fatness were more important in men, whereas diabetes melitus--in women. The registration of this combination of risk factors by MSA methods provides for more reliable prognosis of the likelihood of coronary heart disease with a fatal outcome than prognosis of the degree of coronary aterosclerosis.

  12. A MODIFICATION OF THE METHOD CALLED “SUM” WITH THE TIME CONSTRAINTS OF DELIVERY OF GOODS

    Directory of Open Access Journals (Sweden)

    Sergey Nikolayevich Prosov

    2017-05-01

    Full Text Available The heuristic procedure considered the shift-daily planning of delivery routes method “amounts”. We present the solution of the transportation problem or the routing problem in efficiency optimization of transportation.

  13. Learning in Non-Stationary Environments Methods and Applications

    CERN Document Server

    Lughofer, Edwin

    2012-01-01

    Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences.   Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dyna...

  14. Comparative Analysis of Kernel Methods for Statistical Shape Learning

    National Research Council Canada - National Science Library

    Rathi, Yogesh; Dambreville, Samuel; Tannenbaum, Allen

    2006-01-01

    .... In this work, we perform a comparative analysis of shape learning techniques such as linear PCA, kernel PCA, locally linear embedding and propose a new method, kernelized locally linear embedding...

  15. Implementing Adaptive Educational Methods with IMS Learning Design

    NARCIS (Netherlands)

    Specht, Marcus; Burgos, Daniel

    2006-01-01

    Please, cite this publication as: Specht, M. & Burgos, D. (2006). Implementing Adaptive Educational Methods with IMS Learning Design. Proceedings of Adaptive Hypermedia. June, Dublin, Ireland. Retrieved June 30th, 2006, from http://dspace.learningnetworks.org

  16. Implementation of Active Learning Method in Unit Operations II Subject

    OpenAIRE

    Ma'mun, Sholeh

    2018-01-01

    ABSTRACT: Active Learning Method which requires students to take an active role in the process of learning in the classroom has been applied in Department of Chemical Engineering, Faculty of Industrial Technology, Islamic University of Indonesia for Unit Operations II subject in the Even Semester of Academic Year 2015/2016. The purpose of implementation of the learning method is to assist students in achieving competencies associated with the Unit Operations II subject and to help in creating...

  17. Studying depression using imaging and machine learning methods

    Directory of Open Access Journals (Sweden)

    Meenal J. Patel

    2016-01-01

    Full Text Available Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis and effective timely treatment. These challenges have prompted the development of multiple machine learning methods to help improve the management of this disease. These methods utilize anatomical and physiological data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed patients and predict treatment outcomes. This article (1 presents a background on depression, imaging, and machine learning methodologies; (2 reviews methodologies of past studies that have used imaging and machine learning to study depression; and (3 suggests directions for future depression-related studies.

  18. Studying depression using imaging and machine learning methods.

    Science.gov (United States)

    Patel, Meenal J; Khalaf, Alexander; Aizenstein, Howard J

    2016-01-01

    Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis and effective timely treatment. These challenges have prompted the development of multiple machine learning methods to help improve the management of this disease. These methods utilize anatomical and physiological data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed patients and predict treatment outcomes. This article (1) presents a background on depression, imaging, and machine learning methodologies; (2) reviews methodologies of past studies that have used imaging and machine learning to study depression; and (3) suggests directions for future depression-related studies.

  19. Barriers to calling 911 and learning and performing cardiopulmonary resuscitation for residents of primarily Latino, high-risk neighborhoods in Denver, Colorado.

    Science.gov (United States)

    Sasson, Comilla; Haukoos, Jason S; Ben-Youssef, Leila; Ramirez, Lorenzo; Bull, Sheana; Eigel, Brian; Magid, David J; Padilla, Ricardo

    2015-05-01

    Individuals in neighborhoods composed of minority and lower socioeconomic status populations are more likely to have an out-of-hospital cardiac arrest event, less likely to have bystander cardiopulmonary resuscitation (CPR) performed, and less likely to survive. Latino cardiac arrest victims are 30% less likely than whites to have bystander CPR performed. The goal of this study is to identify barriers and facilitators to calling 911, and learning and performing CPR in 5 low-income, Latino neighborhoods in Denver, CO. Six focus groups and 9 key informant interviews were conducted in Denver during the summer of 2012. Purposeful and snowball sampling, conducted by community liaisons, was used to recruit participants. Two reviewers analyzed the data to identify recurrent and unifying themes. A qualitative content analysis was used with a 5-stage iterative process to analyze each transcript. Six key barriers to calling 911 were identified: fear of becoming involved because of distrust of law enforcement, financial, immigration status, lack of recognition of cardiac arrest event, language, and violence. Seven cultural barriers were identified that may preclude performance of bystander CPR: age, sex, immigration status, language, racism, strangers, and fear of touching someone. Participants suggested that increasing availability of tailored education in Spanish, increasing the number of bilingual 911 dispatchers, and policy-level changes, including CPR as a requirement for graduation and strengthening Good Samaritan laws, may serve as potential facilitators in increasing the provision of bystander CPR. Distrust of law enforcement, language concerns, lack of recognition of cardiac arrest, and financial issues must be addressed when community-based CPR educational programs for Latinos are implemented. Copyright © 2014 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  20. Development and pilot testing of daily Interactive Voice Response (IVR) calls to support antiretroviral adherence in India: A mixed-methods pilot study

    OpenAIRE

    Swendeman, Dallas; Jana, Smarajit; Ray, Protim; Mindry, Deborah; Das, Madhushree; Bhakta, Bhumi

    2015-01-01

    This two-phase pilot study aimed to design, pilot, and refine an automated Interactive Voice Response (IVR) intervention to support antiretroviral adherence for people living with HIV (PLH), in Kolkata, India. Mixed-methods formative research included a community advisory board (CAB) for IVR message development, one-month pre-post pilot, post-pilot focus groups, and further message development. Two IVR calls are made daily, timed to patients’ dosing schedules, with brief messages (

  1. Active teaching methods, studying responses and learning

    DEFF Research Database (Denmark)

    Christensen, Hans Peter; Vigild, Martin Etchells; Thomsen, Erik Vilain

    Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching.......Students’ study strategies when exposed to activating teaching methods are measured, analysed and compared to study strategies in more traditional lecture-based teaching....

  2. Developing a Blended Learning-Based Method for Problem-Solving in Capability Learning

    Science.gov (United States)

    Dwiyogo, Wasis D.

    2018-01-01

    The main objectives of the study were to develop and investigate the implementation of blended learning based method for problem-solving. Three experts were involved in the study and all three had stated that the model was ready to be applied in the classroom. The implementation of the blended learning-based design for problem-solving was…

  3. Call Forecasting for Inbound Call Center

    Directory of Open Access Journals (Sweden)

    Peter Vinje

    2009-01-01

    Full Text Available In a scenario of inbound call center customer service, the ability to forecast calls is a key element and advantage. By forecasting the correct number of calls a company can predict staffing needs, meet service level requirements, improve customer satisfaction, and benefit from many other optimizations. This project will show how elementary statistics can be used to predict calls for a specific company, forecast the rate at which calls are increasing/decreasing, and determine if the calls may stop at some point.

  4. Think Pair Share (TPS as Method to Improve Student’s Learning Motivation and Learning Achievement

    Directory of Open Access Journals (Sweden)

    Hetika Hetika

    2018-03-01

    Full Text Available This research aims to find out the application of Think Pair Share (TPS learning method in improving learning motivation and learning achievement in the subject of Introduction to Accounting I of the Accounting Study Program students of Politeknik Harapan Bersama. The Method of data collection in this study used observation method, test method, and documentation method. The research instruments used observation sheet, questionnaire and test question. This research used Class Action Research Design which is an action implementation oriented research, with the aim of improving quality or problem solving in a group by carefully and observing the success rate due to the action. The method of analysis used descriptive qualitative and quantitative analysis method. The results showed that the application of Think Pair Share Learning (TPS Method can improve the Learning Motivation and Achievement. Before the implementation of the action, the obtained score is 67% then in the first cycle increases to 72%, and in the second cycle increasws to 80%. In addition, based on questionnaires distributed to students, it also increases the score of Accounting Learning Motivation where the score in the first cycle of 76% increases to 79%. In addition, in the first cycle, the score of pre test and post test of the students has increased from 68.86 to 76.71 while in the second cycle the score of pre test and post test of students has increased from 79.86 to 84.86.

  5. Deep learning methods for protein torsion angle prediction.

    Science.gov (United States)

    Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin

    2017-09-18

    Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.

  6. In silico machine learning methods in drug development.

    Science.gov (United States)

    Dobchev, Dimitar A; Pillai, Girinath G; Karelson, Mati

    2014-01-01

    Machine learning (ML) computational methods for predicting compounds with pharmacological activity, specific pharmacodynamic and ADMET (absorption, distribution, metabolism, excretion and toxicity) properties are being increasingly applied in drug discovery and evaluation. Recently, machine learning techniques such as artificial neural networks, support vector machines and genetic programming have been explored for predicting inhibitors, antagonists, blockers, agonists, activators and substrates of proteins related to specific therapeutic targets. These methods are particularly useful for screening compound libraries of diverse chemical structures, "noisy" and high-dimensional data to complement QSAR methods, and in cases of unavailable receptor 3D structure to complement structure-based methods. A variety of studies have demonstrated the potential of machine-learning methods for predicting compounds as potential drug candidates. The present review is intended to give an overview of the strategies and current progress in using machine learning methods for drug design and the potential of the respective model development tools. We also regard a number of applications of the machine learning algorithms based on common classes of diseases.

  7. TEACHING METHODS IN MBA AND LIFELONG LEARNING PROGRAMMES FOR MANAGERS

    Directory of Open Access Journals (Sweden)

    Jarošová, Eva

    2017-09-01

    Full Text Available Teaching methods in MBA and Lifelong Learning Programmes (LLP for managers should be topically relevant in terms of content as well as the teaching methods used. In terms of the content, the integral part of MBA and Lifelong Learning Programmes for managers should be the development of participants’ leadership competencies and their understanding of current leadership concepts. The teaching methods in educational programmes for managers as adult learners should correspond to the strategy of learner-centred teaching that focuses on the participants’ learning process and their active involvement in class. The focus on the participants’ learning process also raises questions about whether the programme’s participants perceive the teaching methods used as useful and relevant for their development as leaders. The paper presents the results of the analysis of the responses to these questions in a sample of 54 Czech participants in the MBA programme and of lifelong learning programmes at the University of Economics, Prague. The data was acquired based on written or electronically submitted questionnaires. The data was analysed in relation to the usefulness of the teaching methods for understanding the concepts of leadership, leadership skills development as well as respondents’ personal growth. The results show that the respondents most valued the methods that enabled them to get feedback, activated them throughout the programme and got them involved in discussions with others in class. Implications for managerial education practices are discussed.

  8. FLIPPED CLASSROOM LEARNING METHOD TO IMPROVE CARING AND LEARNING OUTCOME IN FIRST YEAR NURSING STUDENT

    Directory of Open Access Journals (Sweden)

    Ni Putu Wulan Purnama Sari

    2017-08-01

    Full Text Available Background and Purpose: Caring is the essence of nursing profession. Stimulation of caring attitude should start early. Effective teaching methods needed to foster caring attitude and improve learning achievement. This study aimed to explain the effect of applying flipped classroom learning method for improving caring attitude and learning achievement of new student nurses at nursing institutions in Surabaya. Method: This is a pre-experimental study using the one group pretest posttest and posttest only design. Population was all new student nurses on nursing institutions in Surabaya. Inclusion criteria: female, 18-21 years old, majoring in nursing on their own volition and being first choice during students selection process, status were active in the even semester of 2015/2016 academic year. Sample size was 67 selected by total sampling. Variables: 1 independent: application of flipped classroom learning method; 2 dependent: caring attitude, learning achievement. Instruments: teaching plan, assignment descriptions, presence list, assignment assessment rubrics, study materials, questionnaires of caring attitude. Data analysis: paired and one sample t test. Ethical clearance was available. Results: Most respondents were 20 years old (44.8%, graduated from high school in Surabaya (38.8%, living with parents (68.7% in their homes (64.2%. All data were normally distributed. Flipped classroom learning method could improve caring attitude by 4.13%. Flipped classroom learning method was proved to be effective for improving caring attitude (p=0.021 and learning achievement (p=0.000. Conclusion and Recommendation: Flipped classroom was effective for improving caring attitude and learning achievement of new student nurse. It is recommended to use mix-method and larger sample for further study.

  9. Science Learning Cycle Method to Enhance the Conceptual Understanding and the Learning Independence on Physics Learning

    Science.gov (United States)

    Sulisworo, Dwi; Sutadi, Novitasari

    2017-01-01

    There have been many studies related to the implementation of cooperative learning. However, there are still many problems in school related to the learning outcomes on science lesson, especially in physics. The aim of this study is to observe the application of science learning cycle (SLC) model on improving scientific literacy for secondary…

  10. Finding protein sites using machine learning methods

    Directory of Open Access Journals (Sweden)

    Jaime Leonardo Bobadilla Molina

    2003-07-01

    Full Text Available The increasing amount of protein three-dimensional (3D structures determined by x-ray and NMR technologies as well as structures predicted by computational methods results in the need for automated methods to provide inital annotations. We have developed a new method for recognizing sites in three-dimensional protein structures. Our method is based on a previosly reported algorithm for creating descriptions of protein microenviroments using physical and chemical properties at multiple levels of detail. The recognition method takes three inputs: 1. A set of control nonsites that share some structural or functional role. 2. A set of control nonsites that lack this role. 3. A single query site. A support vector machine classifier is built using feature vectors where each component represents a property in a given volume. Validation against an independent test set shows that this recognition approach has high sensitivity and specificity. We also describe the results of scanning four calcium binding proteins (with the calcium removed using a three dimensional grid of probe points at 1.25 angstrom spacing. The system finds the sites in the proteins giving points at or near the blinding sites. Our results show that property based descriptions along with support vector machines can be used for recognizing protein sites in unannotated structures.

  11. Approximation methods for efficient learning of Bayesian networks

    CERN Document Server

    Riggelsen, C

    2008-01-01

    This publication offers and investigates efficient Monte Carlo simulation methods in order to realize a Bayesian approach to approximate learning of Bayesian networks from both complete and incomplete data. For large amounts of incomplete data when Monte Carlo methods are inefficient, approximations are implemented, such that learning remains feasible, albeit non-Bayesian. The topics discussed are: basic concepts about probabilities, graph theory and conditional independence; Bayesian network learning from data; Monte Carlo simulation techniques; and, the concept of incomplete data. In order to provide a coherent treatment of matters, thereby helping the reader to gain a thorough understanding of the whole concept of learning Bayesian networks from (in)complete data, this publication combines in a clarifying way all the issues presented in the papers with previously unpublished work.

  12. Experts in Teams – An experiential learning method

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær

    2017-01-01

    T becomes a learning method rather than a teaching method. Besides discussing the pedagogical characteristics of EiT, the study also gives a general introduction to EiT as it was taught at SDU fall 2016 as well as a brief review of the basic theory behind experiential learning. As such this study serves...... courses. Most of the practical courses are group work along the lines of project based learning. EiT is in a way both. It is a practical course in as much as our students get hands-on experience with interdisciplinary team work and innovation processes. EiT is a theoretical course in as much as our...... both as an introduction to e.g. new teachers of EiT but also as a starting point for a clarification of the features that makes EiT an experiential learning endeavor....

  13. Research on demand-oriented Business English learning method

    Directory of Open Access Journals (Sweden)

    Zhou Yuan

    2016-01-01

    Full Text Available Business English is integrated with visual-audio-oral English, which focuses on the application for English listening and speaking skills in common business occasions, and acquire business knowledge and improve skills through English. This paper analyzes the Business English Visual-audio-oral Course, and learning situation of higher vocational students’ learning objectives, interests, vocabulary, listening and speaking, and focuses on the research of effective methods to guide the higher vocational students to learn Business English Visual-audio-oral Course, master Business English knowledge, and improve communicative competence of Business English.

  14. [Which learning methods are expected for ultrasound training? Blended learning on trial].

    Science.gov (United States)

    Röhrig, S; Hempel, D; Stenger, T; Armbruster, W; Seibel, A; Walcher, F; Breitkreutz, R

    2014-10-01

    Current teaching methods in graduate and postgraduate training often include frontal presentations. Especially in ultrasound education not only knowledge but also sensomotory and visual skills need to be taught. This requires new learning methods. This study examined which types of teaching methods are preferred by participants in ultrasound training courses before, during and after the course by analyzing a blended learning concept. It also investigated how much time trainees are willing to spend on such activities. A survey was conducted at the end of a certified ultrasound training course. Participants were asked to complete a questionnaire based on a visual analogue scale (VAS) in which three categories were defined: category (1) vote for acceptance with a two thirds majority (VAS 67-100%), category (2) simple acceptance (50-67%) and category (3) rejection (learning program with interactive elements, short presentations (less than 20 min), incorporating interaction with the audience, hands-on sessions in small groups, an alternation between presentations and hands-on-sessions, live demonstrations and quizzes. For post-course learning, interactive and media-assisted approaches were preferred, such as e-learning, films of the presentations and the possibility to stay in contact with instructors in order to discuss the results. Participants also voted for maintaining a logbook for documentation of results. The results of this study indicate the need for interactive learning concepts and blended learning activities. Directors of ultrasound courses may consider these aspects and are encouraged to develop sustainable learning pathways.

  15. Research on demand-oriented Business English learning method

    OpenAIRE

    Zhou Yuan

    2016-01-01

    Business English is integrated with visual-audio-oral English, which focuses on the application for English listening and speaking skills in common business occasions, and acquire business knowledge and improve skills through English. This paper analyzes the Business English Visual-audio-oral Course, and learning situation of higher vocational students’ learning objectives, interests, vocabulary, listening and speaking, and focuses on the research of effective methods to guide the higher voca...

  16. Future Competencies and Learning Methods in Engineering Education

    DEFF Research Database (Denmark)

    Kolmos, Anette

    2002-01-01

    What are the competencies for tommorow´s enginnering education and the implications of these regarding the choice of teaching content and learning methods? The paper analyses two trends: the traditional and the techo-science approach. These two trends are based on technological innovation...... and change processes and impact on educational content and methods....

  17. Empowering and Engaging Students in Learning Research Methods

    Science.gov (United States)

    Liu, Shuang; Breit, Rhonda

    2013-01-01

    The capacity to conduct research is essential for university graduates to survive and thrive in their future career. However, research methods courses have often been considered by students as "abstract", "uninteresting", and "hard". Thus, motivating students to engage in the process of learning research methods has become a crucial challenge for…

  18. Radiochemical methods. Analytical chemistry by open learning

    Energy Technology Data Exchange (ETDEWEB)

    Geary, W.J.; James, A.M. (ed.)

    1986-01-01

    This book presents the analytical uses of radioactive isotopes within the context of radiochemistry as a whole. It is designed for scientists with relatively little background knowledge of the subject. Thus the initial emphasis is on developing the basic concepts of radioactive decay, particularly as they affect the potential usage of radioisotopes. Discussion of the properties of various types of radiation, and of factors such as half-life, is related to practical considerations such as counting and preparation methods, and handling/disposal problems. Practical aspects are then considered in more detail, and the various radioanalytical methods are outlined with particular reference to their applicability. The approach is 'user friendly' and the use of self assessment questions allows the reader to test his/her understanding of individual sections easily. For those who wish to develop their knowledge further, a reading list is provided.

  19. Uncertain Photometric Redshifts with Deep Learning Methods

    Science.gov (United States)

    D'Isanto, A.

    2017-06-01

    The need for accurate photometric redshifts estimation is a topic that has fundamental importance in Astronomy, due to the necessity of efficiently obtaining redshift information without the need of spectroscopic analysis. We propose a method for determining accurate multi-modal photo-z probability density functions (PDFs) using Mixture Density Networks (MDN) and Deep Convolutional Networks (DCN). A comparison with a Random Forest (RF) is performed.

  20. Monte Carlo methods for preference learning

    DEFF Research Database (Denmark)

    Viappiani, P.

    2012-01-01

    Utility elicitation is an important component of many applications, such as decision support systems and recommender systems. Such systems query the users about their preferences and give recommendations based on the system’s belief about the utility function. Critical to these applications is th...... is the acquisition of prior distribution about the utility parameters and the possibility of real time Bayesian inference. In this paper we consider Monte Carlo methods for these problems....

  1. Choosing Learning Methods Suitable for Teaching and Learning in Computer Science

    Science.gov (United States)

    Taylor, Estelle; Breed, Marnus; Hauman, Ilette; Homann, Armando

    2013-01-01

    Our aim is to determine which teaching methods students in Computer Science and Information Systems prefer. There are in total 5 different paradigms (behaviorism, cognitivism, constructivism, design-based and humanism) with 32 models between them. Each model is unique and states different learning methods. Recommendations are made on methods that…

  2. COMPUTER ASSISTED LANGUAGE LEARNING (CALL: ITS PROSPECTS AND CONSEQUENCES FOR NIGERIAN LANGUAGES / L'APPRENTISSAGE DE LA LANGUE À L'AIDE DES TICE: PERSPECTIVES ET CONSÉQUENCES POUR LES LANGUES NIGÉRIENNES / ÎNVĂŢAREA LIMBII CU TIC: PERSPECTIVE ŞI CONSECINŢE PENTRU LIMBILE NIGERIENE

    Directory of Open Access Journals (Sweden)

    Oyè Táíwò

    2014-11-01

    Full Text Available The shift in language learning today is from “classical teaching environment” to “self-learning environment”. In Nigeria today, although CALL efforts are made by schools and individuals, these effort are geared towards the English language learning other than Nigerian languages. This paper seeks to explore the development of CALL for Nigerian Languages and the challenges of running CALL in Nigeria. The results indicate that CALL for Nigerian languages is needed and should be promoted. CALL in Nigerian can only be successful if the shortcomings of CALL are recognized and the mitigating circumstances tackled. Adequate arrangements must be made to manage CALL and Teacher-Assisted language learning (TALL in consideration of the socioeconomic impact of CALL on the teachers Nigerian languages. The attitude of Nigerians towards Nigerian languages should be positive. The government, corporate bodies and individuals must intervene in CALL programs in schools so as to control the resulting high tuition fee.

  3. Machine Learning Methods for Attack Detection in the Smart Grid.

    Science.gov (United States)

    Ozay, Mete; Esnaola, Inaki; Yarman Vural, Fatos Tunay; Kulkarni, Sanjeev R; Poor, H Vincent

    2016-08-01

    Attack detection problems in the smart grid are posed as statistical learning problems for different attack scenarios in which the measurements are observed in batch or online settings. In this approach, machine learning algorithms are used to classify measurements as being either secure or attacked. An attack detection framework is provided to exploit any available prior knowledge about the system and surmount constraints arising from the sparse structure of the problem in the proposed approach. Well-known batch and online learning algorithms (supervised and semisupervised) are employed with decision- and feature-level fusion to model the attack detection problem. The relationships between statistical and geometric properties of attack vectors employed in the attack scenarios and learning algorithms are analyzed to detect unobservable attacks using statistical learning methods. The proposed algorithms are examined on various IEEE test systems. Experimental analyses show that machine learning algorithms can detect attacks with performances higher than attack detection algorithms that employ state vector estimation methods in the proposed attack detection framework.

  4. Learning Unknown Structure in CRFs via Adaptive Gradient Projection Method

    Directory of Open Access Journals (Sweden)

    Wei Xue

    2016-08-01

    Full Text Available We study the problem of fitting probabilistic graphical models to the given data when the structure is not known. More specifically, we focus on learning unknown structure in conditional random fields, especially learning both the structure and parameters of a conditional random field model simultaneously. To do this, we first formulate the learning problem as a convex minimization problem by adding an l_2-regularization to the node parameters and a group l_1-regularization to the edge parameters, and then a gradient-based projection method is proposed to solve it which combines an adaptive stepsize selection strategy with a nonmonotone line search. Extensive simulation experiments are presented to show the performance of our approach in solving unknown structure learning problems.

  5. Creating a memory of causal relationships an integration of empirical and explanation-based learning methods

    CERN Document Server

    Pazzani, Michael J

    2014-01-01

    This book presents a theory of learning new causal relationships by making use of perceived regularities in the environment, general knowledge of causality, and existing causal knowledge. Integrating ideas from the psychology of causation and machine learning, the author introduces a new learning procedure called theory-driven learning that uses abstract knowledge of causality to guide the induction process. Known as OCCAM, the system uses theory-driven learning when new experiences conform to common patterns of causal relationships, empirical learning to learn from novel experiences, and expl

  6. An Island Called Cuba

    Directory of Open Access Journals (Sweden)

    Jean Stubbs

    2011-06-01

    Full Text Available Review of: An Island Called Home: Returning to Jewish Cuba. Ruth Behar, photographs by Humberto Mayol. New Brunswick NJ: Rutgers University Press, 2007. xiii + 297 pp. (Cloth US$ 29.95 Fidel Castro: My Life: A Spoken Autobiography. Fidel Castro & Ignacio Ramonet. New York: Scribner/Simon & Schuster, 2008. vii + 724 pp. (Paper US$ 22.00, e-book US$ 14.99 Cuba: What Everyone Needs to Know. Julia E. Sweig. New York: Oxford University Press, 2009. xiv + 279 pp. (Paper US$ 16.95 [First paragraph] These three ostensibly very different books tell a compelling story of each author’s approach, as much as the subject matter itself. Fidel Castro: My Life: A Spoken Autobiography is based on a series of long interviews granted by the then-president of Cuba, Fidel Castro, to Spanish-Franco journalist Ignacio Ramonet. Cuba: What Everyone Needs to Know, by U.S. political analyst Julia Sweig, is one of a set country series, and, like Ramonet’s, presented in question/answer format. An Island Called Home: Returning to Jewish Cuba, with a narrative by Cuban-American anthropologist Ruth Behar and photographs by Cuban photographer Humberto Mayol, is a retrospective/introspective account of the Jewish presence in Cuba. While from Ramonet and Sweig we learn much about the revolutionary project, Behar and Mayol convey the lived experience of the small Jewish community against that backdrop.

  7. The Importance of a Teacher in a Distance Education and the Progressive Methods of Teaching in a Virtual Learning Environment

    Directory of Open Access Journals (Sweden)

    Olga Miščenko

    2014-12-01

    Full Text Available The purpose of the article is to analyze the experience of the first work years of teaching the students, who study by distance, to compare other authors’ experience and to examine the advantages of Moodle virtual learning environment (VLE, searching for new applications of it. The relevance of e-learning is noted. It is affirmed that metacognitive learning strategies are typical for learning foreign languages in virtual environment. It is said that the Internet is a tool that ensures studies by distance. It is said that raising the qualification and learning by distance allows a responsible employee to improve foreign language skills while lifelong learning. VLE adaptability for teaching and studying English is being discussed. It is stated that the Internet conditions all types of methods in the virtual environment, application, and its existence expands and deepens the learning approach. In the paper it is claimed that the Moodle VLE function is to improve the learning process to ensure a high level of expertise and the objectivity of assessment. Studying in conventional way and in the virtual environment are briefly compared. Moodle virtual learning environment application objectives to learning outcomes, emphasizing the importance of the traditional teaching methods, the student’s responsibility to call attention to the learning process and system characteristics are defined. It is noted that learning in the virtual environment is based on the principles of epistemology, therefore the Moodle system meets the didactic tasks. The virtual learning environment possibilities ensure a very good feedback and increase students’ motivation, and, consequently, that provides better knowledge. It is emphasized that while teaching by distance, the teacher’s responsibility, his role in the development of educational material and the course tasks have increased. Some specific cases for various forms of studies and exercises to perform in the

  8. "Mastery Learning" Como Metodo Psicoeducativo para Ninos con Problemas Especificos de Aprendizaje. ("Mastery Learning" as a Psychoeducational Method for Children with Specific Learning Problems.)

    Science.gov (United States)

    Coya, Liliam de Barbosa; Perez-Coffie, Jorge

    1982-01-01

    "Mastery Learning" was compared with the "conventional" method of teaching reading skills to Puerto Rican children with specific learning disabilities. The "Mastery Learning" group showed significant gains in the cognitive and affective domains. Results suggested Mastery Learning is a more effective method of teaching…

  9. An Evaluation Framework for CALL

    Science.gov (United States)

    McMurry, Benjamin L.; Williams, David Dwayne; Rich, Peter J.; Hartshorn, K. James

    2016-01-01

    Searching prestigious Computer-assisted Language Learning (CALL) journals for references to key publications and authors in the field of evaluation yields a short list. The "American Journal of Evaluation"--the flagship journal of the American Evaluation Association--is only cited once in both the "CALICO Journal and Language…

  10. Comparisons and Analyses of Gifted Students' Characteristics and Learning Methods

    Science.gov (United States)

    Lu, Jiamei; Li, Daqi; Stevens, Carla; Ye, Renmin

    2017-01-01

    Using PISA 2009, an international education database, this study compares gifted and talented (GT) students in three groups with normal (non-GT) students by examining student characteristics, reading, schooling, learning methods, and use of strategies for understanding and memorizing. Results indicate that the GT and non-GT gender distributions…

  11. Research on Language Learning Strategies: Methods, Findings, and Instructional Issues.

    Science.gov (United States)

    Oxford, Rebecca; Crookall, David

    1989-01-01

    Surveys research on formal and informal second-language learning strategies, covering the effectiveness of research methods involving making lists, interviews and thinking aloud, note-taking, diaries, surveys, and training. Suggestions for future and improved research are presented. (131 references) (CB)

  12. Second-Order Learning Methods for a Multilayer Perceptron

    International Nuclear Information System (INIS)

    Ivanov, V.V.; Purehvdorzh, B.; Puzynin, I.V.

    1994-01-01

    First- and second-order learning methods for feed-forward multilayer neural networks are studied. Newton-type and quasi-Newton algorithms are considered and compared with commonly used back-propagation algorithm. It is shown that, although second-order algorithms require enhanced computer facilities, they provide better convergence and simplicity in usage. 13 refs., 2 figs., 2 tabs

  13. Educational integrating projects as a method of interactive learning

    Directory of Open Access Journals (Sweden)

    Иван Николаевич Куринин

    2013-12-01

    Full Text Available The article describes a method of interactive learning based on educational integrating projects. Some examples of content of such projects for the disciplines related to the study of information and Internet technologies and their application in management are presented.

  14. Learning by Designing Interview Methods in Special Education

    DEFF Research Database (Denmark)

    Jönsson, Lise Høgh

    2017-01-01

    , and people with learning disabilities worked together to develop five new visual and digital methods for interviewing in special education. Thereby not only enhancing the students’ competences, knowledge and proficiency in innovation and research, but also proposing a new teaching paradigm for university...

  15. Arabic Supervised Learning Method Using N-Gram

    Science.gov (United States)

    Sanan, Majed; Rammal, Mahmoud; Zreik, Khaldoun

    2008-01-01

    Purpose: Recently, classification of Arabic documents is a real problem for juridical centers. In this case, some of the Lebanese official journal documents are classified, and the center has to classify new documents based on these documents. This paper aims to study and explain the useful application of supervised learning method on Arabic texts…

  16. A Simulator to Enhance Teaching and Learning of Mining Methods ...

    African Journals Online (AJOL)

    Audio visual education that incorporates devices and materials which involve sight, sound, or both has become a sine qua non in recent times in the teaching and learning process. An automated physical model of mining methods aided with video instructions was designed and constructed by harnessing locally available ...

  17. A Fast Optimization Method for General Binary Code Learning.

    Science.gov (United States)

    Shen, Fumin; Zhou, Xiang; Yang, Yang; Song, Jingkuan; Shen, Heng; Tao, Dacheng

    2016-09-22

    Hashing or binary code learning has been recognized to accomplish efficient near neighbor search, and has thus attracted broad interests in recent retrieval, vision and learning studies. One main challenge of learning to hash arises from the involvement of discrete variables in binary code optimization. While the widely-used continuous relaxation may achieve high learning efficiency, the pursued codes are typically less effective due to accumulated quantization error. In this work, we propose a novel binary code optimization method, dubbed Discrete Proximal Linearized Minimization (DPLM), which directly handles the discrete constraints during the learning process. Specifically, the discrete (thus nonsmooth nonconvex) problem is reformulated as minimizing the sum of a smooth loss term with a nonsmooth indicator function. The obtained problem is then efficiently solved by an iterative procedure with each iteration admitting an analytical discrete solution, which is thus shown to converge very fast. In addition, the proposed method supports a large family of empirical loss functions, which is particularly instantiated in this work by both a supervised and an unsupervised hashing losses, together with the bits uncorrelation and balance constraints. In particular, the proposed DPLM with a supervised `2 loss encodes the whole NUS-WIDE database into 64-bit binary codes within 10 seconds on a standard desktop computer. The proposed approach is extensively evaluated on several large-scale datasets and the generated binary codes are shown to achieve very promising results on both retrieval and classification tasks.

  18. Method to predict process signals to learn for SVM

    International Nuclear Information System (INIS)

    Minowa, Hirotsugu; Gofuku, Akio

    2013-01-01

    Study of diagnostic system using machine learning to reduce the incidents of the plant is in advance because an accident causes large damage about human, economic and social loss. There is a problem that 2 performances between a classification performance and generalization performance on the machine diagnostic machine is exclusive. However, multi agent diagnostic system makes it possible to use a diagnostic machine specialized either performance by multi diagnostic machines can be used. We propose method to select optimized variables to improve classification performance. The method can also be used for other supervised learning machine but Support Vector Machine. This paper reports that our method and result of evaluation experiment applied our method to output 40% of Monju. (author)

  19. Indico CONFERENCE: Define the Call for Abstracts

    CERN Multimedia

    CERN. Geneva; Ferreira, Pedro

    2017-01-01

    In this tutorial, you will learn how to define and open a call for abstracts. When defining a call for abstracts, you will be able to define settings related to the type of questions asked during a review of an abstract, select the users who will review the abstracts, decide when to open the call for abstracts, and more.

  20. Studying depression using imaging and machine learning methods

    OpenAIRE

    Patel, Meenal J.; Khalaf, Alexander; Aizenstein, Howard J.

    2015-01-01

    Depression is a complex clinical entity that can pose challenges for clinicians regarding both accurate diagnosis and effective timely treatment. These challenges have prompted the development of multiple machine learning methods to help improve the management of this disease. These methods utilize anatomical and physiological data acquired from neuroimaging to create models that can identify depressed patients vs. non-depressed patients and predict treatment outcomes. This article (1) presen...

  1. E-learning as new method of medical education.

    Science.gov (United States)

    Masic, Izet

    2008-01-01

    NONE DECLARED Distance learning refers to use of technologies based on health care delivered on distance and covers areas such as electronic health, tele-health (e-health), telematics, telemedicine, tele-education, etc. For the need of e-health, telemedicine, tele-education and distance learning there are various technologies and communication systems from standard telephone lines to the system of transmission digitalized signals with modem, optical fiber, satellite links, wireless technologies, etc. Tele-education represents health education on distance, using Information Communication Technologies (ICT), as well as continuous education of a health system beneficiaries and use of electronic libraries, data bases or electronic data with data bases of knowledge. Distance learning (E-learning) as a part of tele-education has gained popularity in the past decade; however, its use is highly variable among medical schools and appears to be more common in basic medical science courses than in clinical education. Distance learning does not preclude traditional learning processes; frequently it is used in conjunction with in-person classroom or professional training procedures and practices. Tele-education has mostly been used in biomedical education as a blended learning method, which combines tele-education technology with traditional instructor-led training, where, for example, a lecture or demonstration is supplemented by an online tutorial. Distance learning is used for self-education, tests, services and for examinations in medicine i.e. in terms of self-education and individual examination services. The possibility of working in the exercise mode with image files and questions is an attractive way of self education. Automated tracking and reporting of learners' activities lessen faculty administrative burden. Moreover, e-learning can be designed to include outcomes assessment to determine whether learning has occurred. This review article evaluates the current

  2. Distance learning strategies for weight management utilizing social media: A comparison of phone conference call versus social media platform. Rationale and design for a randomized study.

    Science.gov (United States)

    Willis, Erik A; Szabo-Reed, Amanda N; Ptomey, Lauren T; Steger, Felicia L; Honas, Jeffery J; Al-Hihi, Eyad M; Lee, Robert; Vansaghi, Lisa; Washburn, Richard A; Donnelly, Joseph E

    2016-03-01

    Management of obesity in the context of the primary care physician visit is of limited efficacy in part because of limited ability to engage participants in sustained behavior change between physician visits. Therefore, healthcare systems must find methods to address obesity that reach beyond the walls of clinics and hospitals and address the issues of lifestyle modification in a cost-conscious way. The dramatic increase in technology and online social networks may present healthcare providers with innovative ways to deliver weight management programs that could have an impact on health care at the population level. A randomized study will be conducted on 70 obese adults (BMI 30.0-45.0 kg/m(2)) to determine if weight loss (6 months) is equivalent between weight management interventions utilizing behavioral strategies by either a conference call or social media approach. The primary outcome, body weight, will be assessed at baseline and 6 months. Secondary outcomes including waist circumference, energy and macronutrient intake, and physical activity will be assessed on the same schedule. In addition, a cost analysis and process evaluation will be completed. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Non-Gaussian Methods for Causal Structure Learning.

    Science.gov (United States)

    Shimizu, Shohei

    2018-05-22

    Causal structure learning is one of the most exciting new topics in the fields of machine learning and statistics. In many empirical sciences including prevention science, the causal mechanisms underlying various phenomena need to be studied. Nevertheless, in many cases, classical methods for causal structure learning are not capable of estimating the causal structure of variables. This is because it explicitly or implicitly assumes Gaussianity of data and typically utilizes only the covariance structure. In many applications, however, non-Gaussian data are often obtained, which means that more information may be contained in the data distribution than the covariance matrix is capable of containing. Thus, many new methods have recently been proposed for using the non-Gaussian structure of data and inferring the causal structure of variables. This paper introduces prevention scientists to such causal structure learning methods, particularly those based on the linear, non-Gaussian, acyclic model known as LiNGAM. These non-Gaussian data analysis tools can fully estimate the underlying causal structures of variables under assumptions even in the presence of unobserved common causes. This feature is in contrast to other approaches. A simulated example is also provided.

  4. Learning and retention of quantum concepts with different teaching methods

    Science.gov (United States)

    Deslauriers, Louis; Wieman, Carl

    2011-06-01

    We measured mastery and retention of conceptual understanding of quantum mechanics in a modern physics course. This was studied for two equivalent cohorts of students taught with different pedagogical approaches using the Quantum Mechanics Conceptual Survey. We measured the impact of pedagogical approach both on the original conceptual learning and on long-term retention. The cohort of students who had a very highly rated traditional lecturer scored 19% lower than the equivalent cohort that was taught using interactive engagement methods. However, the amount of retention was very high for both cohorts, showing only a few percent decrease in scores when retested 6 and 18 months after completion of the course and with no exposure to the material in the interim period. This high level of retention is in striking contrast to the retention measured for more factual learning from university courses and argues for the value of emphasizing conceptual learning.

  5. Sunspot drawings handwritten character recognition method based on deep learning

    Science.gov (United States)

    Zheng, Sheng; Zeng, Xiangyun; Lin, Ganghua; Zhao, Cui; Feng, Yongli; Tao, Jinping; Zhu, Daoyuan; Xiong, Li

    2016-05-01

    High accuracy scanned sunspot drawings handwritten characters recognition is an issue of critical importance to analyze sunspots movement and store them in the database. This paper presents a robust deep learning method for scanned sunspot drawings handwritten characters recognition. The convolution neural network (CNN) is one algorithm of deep learning which is truly successful in training of multi-layer network structure. CNN is used to train recognition model of handwritten character images which are extracted from the original sunspot drawings. We demonstrate the advantages of the proposed method on sunspot drawings provided by Chinese Academy Yunnan Observatory and obtain the daily full-disc sunspot numbers and sunspot areas from the sunspot drawings. The experimental results show that the proposed method achieves a high recognition accurate rate.

  6. A diagram retrieval method with multi-label learning

    Science.gov (United States)

    Fu, Songping; Lu, Xiaoqing; Liu, Lu; Qu, Jingwei; Tang, Zhi

    2015-01-01

    In recent years, the retrieval of plane geometry figures (PGFs) has attracted increasing attention in the fields of mathematics education and computer science. However, the high cost of matching complex PGF features leads to the low efficiency of most retrieval systems. This paper proposes an indirect classification method based on multi-label learning, which improves retrieval efficiency by reducing the scope of compare operation from the whole database to small candidate groups. Label correlations among PGFs are taken into account for the multi-label classification task. The primitive feature selection for multi-label learning and the feature description of visual geometric elements are conducted individually to match similar PGFs. The experiment results show the competitive performance of the proposed method compared with existing PGF retrieval methods in terms of both time consumption and retrieval quality.

  7. Learning Method and Its Influence on Nutrition Study Results Throwing the Ball

    Science.gov (United States)

    Samsudin; Nugraha, Bayu

    2015-01-01

    This study aimed to know the difference between playing and learning methods of exploratory learning methods to learning outcomes throwing the ball. In addition, this study also aimed to determine the effect of nutritional status of these two learning methods mentioned above. This research was conducted at SDN Cipinang Besar Selatan 16 Pagi East…

  8. Hybrid Method for Mobile learning Cooperative: Study of Timor Leste

    Science.gov (United States)

    da Costa Tavares, Ofelia Cizela; Suyoto; Pranowo

    2018-02-01

    In the modern world today the decision support system is very useful to help in solving a problem, so this study discusses the learning process of savings and loan cooperatives in Timor Leste. The purpose of the observation is that the people of Timor Leste are still in the process of learning the use DSS for good saving and loan cooperative process. Based on existing research on the Timor Leste community on credit cooperatives, a mobile application will be built that will help the cooperative learning process in East Timorese society. The methods used for decision making are AHP (Analytical Hierarchy Process) and SAW (simple additive Weighting) method to see the result of each criterion and the weight of the value. The result of this research is mobile leaning cooperative in decision support system by using SAW and AHP method. Originality Value: Changed the two methods of mobile application development using AHP and SAW methods to help the decision support system process of a savings and credit cooperative in Timor Leste.

  9. Hybrid Method for Mobile learning Cooperative: Study of Timor Leste

    Directory of Open Access Journals (Sweden)

    da Costa Tavares Ofelia Cizela

    2018-01-01

    Full Text Available In the modern world today the decision support system is very useful to help in solving a problem, so this study discusses the learning process of savings and loan cooperatives in Timor Leste. The purpose of the observation is that the people of Timor Leste are still in the process of learning the use DSS for good saving and loan cooperative process. Based on existing research on the Timor Leste community on credit cooperatives, a mobile application will be built that will help the cooperative learning process in East Timorese society. The methods used for decision making are AHP (Analytical Hierarchy Process and SAW (simple additive Weighting method to see the result of each criterion and the weight of the value. The result of this research is mobile leaning cooperative in decision support system by using SAW and AHP method. Originality Value: Changed the two methods of mobile application development using AHP and SAW methods to help the decision support system process of a savings and credit cooperative in Timor Leste.

  10. Development and Pilot Testing of Daily Interactive Voice Response (IVR) Calls to Support Antiretroviral Adherence in India: A Mixed-Methods Pilot Study.

    Science.gov (United States)

    Swendeman, Dallas; Jana, Smarajit; Ray, Protim; Mindry, Deborah; Das, Madhushree; Bhakta, Bhumi

    2015-06-01

    This two-phase pilot study aimed to design, pilot, and refine an automated interactive voice response (IVR) intervention to support antiretroviral adherence for people living with HIV (PLH), in Kolkata, India. Mixed-methods formative research included a community advisory board for IVR message development, 1-month pre-post pilot, post-pilot focus groups, and further message development. Two IVR calls are made daily, timed to patients' dosing schedules, with brief messages (pilot results (n = 46, 80 % women, 60 % sex workers) found significant increases in self-reported ART adherence, both within past three days (p = 0.05) and time since missed last dose (p = 0.015). Depression was common. Messaging content and assessment domains were expanded for testing in a randomized trial currently underway.

  11. Machine learning methods without tears: a primer for ecologists.

    Science.gov (United States)

    Olden, Julian D; Lawler, Joshua J; Poff, N LeRoy

    2008-06-01

    Machine learning methods, a family of statistical techniques with origins in the field of artificial intelligence, are recognized as holding great promise for the advancement of understanding and prediction about ecological phenomena. These modeling techniques are flexible enough to handle complex problems with multiple interacting elements and typically outcompete traditional approaches (e.g., generalized linear models), making them ideal for modeling ecological systems. Despite their inherent advantages, a review of the literature reveals only a modest use of these approaches in ecology as compared to other disciplines. One potential explanation for this lack of interest is that machine learning techniques do not fall neatly into the class of statistical modeling approaches with which most ecologists are familiar. In this paper, we provide an introduction to three machine learning approaches that can be broadly used by ecologists: classification and regression trees, artificial neural networks, and evolutionary computation. For each approach, we provide a brief background to the methodology, give examples of its application in ecology, describe model development and implementation, discuss strengths and weaknesses, explore the availability of statistical software, and provide an illustrative example. Although the ecological application of machine learning approaches has increased, there remains considerable skepticism with respect to the role of these techniques in ecology. Our review encourages a greater understanding of machin learning approaches and promotes their future application and utilization, while also providing a basis from which ecologists can make informed decisions about whether to select or avoid these approaches in their future modeling endeavors.

  12. Peak detection method evaluation for ion mobility spectrometry by using machine learning approaches.

    Science.gov (United States)

    Hauschild, Anne-Christin; Kopczynski, Dominik; D'Addario, Marianna; Baumbach, Jörg Ingo; Rahmann, Sven; Baumbach, Jan

    2013-04-16

    Ion mobility spectrometry with pre-separation by multi-capillary columns (MCC/IMS) has become an established inexpensive, non-invasive bioanalytics technology for detecting volatile organic compounds (VOCs) with various metabolomics applications in medical research. To pave the way for this technology towards daily usage in medical practice, different steps still have to be taken. With respect to modern biomarker research, one of the most important tasks is the automatic classification of patient-specific data sets into different groups, healthy or not, for instance. Although sophisticated machine learning methods exist, an inevitable preprocessing step is reliable and robust peak detection without manual intervention. In this work we evaluate four state-of-the-art approaches for automated IMS-based peak detection: local maxima search, watershed transformation with IPHEx, region-merging with VisualNow, and peak model estimation (PME).We manually generated Metabolites 2013, 3 278 a gold standard with the aid of a domain expert (manual) and compare the performance of the four peak calling methods with respect to two distinct criteria. We first utilize established machine learning methods and systematically study their classification performance based on the four peak detectors' results. Second, we investigate the classification variance and robustness regarding perturbation and overfitting. Our main finding is that the power of the classification accuracy is almost equally good for all methods, the manually created gold standard as well as the four automatic peak finding methods. In addition, we note that all tools, manual and automatic, are similarly robust against perturbations. However, the classification performance is more robust against overfitting when using the PME as peak calling preprocessor. In summary, we conclude that all methods, though small differences exist, are largely reliable and enable a wide spectrum of real-world biomedical applications.

  13. The Effect of Using Cooperative Learning Method on Tenth Grade Students' Learning Achievement and Attitude towards Biology

    Science.gov (United States)

    Rabgay, Tshewang

    2018-01-01

    The study investigated the effect of using cooperative learning method on tenth grade students' learning achievement in biology and their attitude towards the subject in a Higher Secondary School in Bhutan. The study used a mixed method approach. The quantitative component included an experimental design where cooperative learning was the…

  14. Introduction of active learning method in learning physiology by MBBS students.

    Science.gov (United States)

    Gilkar, Suhail Ahmad; Lone, Shabiruddin; Lone, Riyaz Ahmad

    2016-01-01

    Active learning has received considerable attention over the past several years, often presented or perceived as a radical change from traditional instruction methods. Current research on learning indicates that using a variety of teaching strategies in the classroom increases student participation and learning. To introduce active learning methodology, i.e., "jigsaw technique" in undergraduate medical education and assess the student and faculty response to it. This study was carried out in the Department of Physiology in a Medical College of North India. A topic was chosen and taught using one of the active learning methods (ALMs), i.e., jigsaw technique. An instrument (questionnaire) was developed in English through an extensive review of literature and was properly validated. The students were asked to give their response on a five-point Likert scale. The feedback was kept anonymous. Faculty also provided their feedback in a separately provided feedback proforma. The data were collected, compiled, and analyzed. Of 150 students of MBBS-first year batch 2014, 142 participated in this study along with 14 faculty members of the Physiology Department. The majority of the students (>90%) did welcome the introduction of ALM and strongly recommended the use of such methods in teaching many more topics in future. 100% faculty members were of the opinion that many more topics shall be taken up using ALMs. This study establishes the fact that both the medical students and faculty want a change from the traditional way of passive, teacher-centric learning, to the more active teaching-learning techniques.

  15. Kin Signatures Learned in the Egg? Red-Backed Fairy-Wren Songs Are Similar to Their Mother's In-Nest Calls and Songs

    OpenAIRE

    Dowling, Jenélle L.; Colombelli-Négrel, Diane; Webster, Michael S.

    2016-01-01

    Many vocal animals recognize kin using vocal cues, in territorial contexts and in rearing young, but little is known about the developmental and evolutionary mechanisms that produce vocal kin recognition systems. In the cooperatively breeding red-backed fairy-wren (Malurus melanocephalus), females give specific “in-nest calls” while incubating their eggs. Elements from these calls are incorporated into chicks' begging calls, and appear to be used by parents for recognition. This is likely a r...

  16. Data Mining and Machine Learning Methods for Dementia Research.

    Science.gov (United States)

    Li, Rui

    2018-01-01

    Patient data in clinical research often includes large amounts of structured information, such as neuroimaging data, neuropsychological test results, and demographic variables. Given the various sources of information, we can develop computerized methods that can be a great help to clinicians to discover hidden patterns in the data. The computerized methods often employ data mining and machine learning algorithms, lending themselves as the computer-aided diagnosis (CAD) tool that assists clinicians in making diagnostic decisions. In this chapter, we review state-of-the-art methods used in dementia research, and briefly introduce some recently proposed algorithms subsequently.

  17. A Pharmacy Preregistration Course Using Online Teaching and Learning Methods

    Science.gov (United States)

    McDowell, Jenny; Marriott, Jennifer L.; Calandra, Angela; Duncan, Gregory

    2009-01-01

    Objective To design and evaluate a preregistration course utilizing asynchronous online learning as the primary distance education delivery method. Design Online course components including tutorials, quizzes, and moderated small-group asynchronous case-based discussions were implemented. Online delivery was supplemented with self-directed and face-to-face learning. Assessment Pharmacy graduates who had completed the course in 2004 and 2005 were surveyed. The majority felt they had benefited from all components of the course, and that online delivery provided benefits including increased peer support, shared learning, and immediate feedback on performance. A majority of the first cohort reported that the workload associated with asynchronous online discussions was too great. The course was altered in 2005 to reduce the online component. Participant satisfaction improved, and most felt that the balance of online to face-to-face delivery was appropriate. Conclusion A new pharmacy preregistration course was successfully implemented. Online teaching and learning was well accepted and appeared to deliver benefits over traditional distance education methods once workload issues were addressed. PMID:19777092

  18. Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models

    NARCIS (Netherlands)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A.; van t Veld, Aart A.

    2012-01-01

    PURPOSE: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. METHODS AND MATERIALS: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator

  19. Investigating CALL in the Classroom: Situational Variables to Consider

    Directory of Open Access Journals (Sweden)

    Darlene Liutkus

    2012-01-01

    Full Text Available A new paradigm in second language pedagogy has Computer Assisted Language Learning (CALL playing a significant role. Much of the literature to-date claims that CALL can have a positive impact on students’ second language acquisition (SLA. Mixed method of research produces data to investigate if CALL positively affects student language proficiency, motivation and autonomy. Classroom observation of participants in their natural environment is a qualitative technique used but has situational variables that could skew results if not structured. A questionnaire is a quantitative tool that can offer insight regarding participants’ perception of performance but can contradict what the researcher has observed. This paper will take an in-depth look at variables such as: instructor’s pedagogical application; blending CALL into the curriculum; types of CALL implemented; feedback received and their implications for design of the data collection tools

  20. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A Call for Scientist-Science Teacher Partnerships to Promote Inquiry-Based Learning

    Science.gov (United States)

    Mansour, Nasser

    2015-01-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better…

  1. The Learners’ Attitudes towards Using Different Learning Methods in E-Learning Portal Environment

    Directory of Open Access Journals (Sweden)

    Issham Ismail

    2011-09-01

    Full Text Available This study investigates the learners’ preference of academic, collaborative and social interaction towards interaction methods in e-learning portal. Academic interaction consists of interaction between learners and online learning resources such as online reading, online explanation, online examination and also online question answering. Collaborative interaction occurs when learners interact among themselves using online group discussion. Social interaction happens when learners and instructors participate in the session either via online text chatting or voice chatting. The study employed qualitative methodology where data were collected through questionnaire that was administered to 933 distance education students from Bachelor of Management, Bachelor of Science, Bachelor of Social Science and Bachelor of Art. The survey responses were tabulated in a 5-point Likert scale and analyzed using the Statistical Package for Social Science (SPSS Version 12.0 based on frequency and percentage distribution. The result of the study suggest that among three types of interaction, most of the student prefer academic interaction for their learning supports in e-learning portal compared to collaborative and social interaction. They wish to interact with learning content rather than interact with people. They prefer to read and learn from the resources rather than sharing knowledge among themselves and instructors via collaborative and social interaction.

  2. Realization of Chinese word segmentation based on deep learning method

    Science.gov (United States)

    Wang, Xuefei; Wang, Mingjiang; Zhang, Qiquan

    2017-08-01

    In recent years, with the rapid development of deep learning, it has been widely used in the field of natural language processing. In this paper, I use the method of deep learning to achieve Chinese word segmentation, with large-scale corpus, eliminating the need to construct additional manual characteristics. In the process of Chinese word segmentation, the first step is to deal with the corpus, use word2vec to get word embedding of the corpus, each character is 50. After the word is embedded, the word embedding feature is fed to the bidirectional LSTM, add a linear layer to the hidden layer of the output, and then add a CRF to get the model implemented in this paper. Experimental results show that the method used in the 2014 People's Daily corpus to achieve a satisfactory accuracy.

  3. A Photometric Machine-Learning Method to Infer Stellar Metallicity

    Science.gov (United States)

    Miller, Adam A.

    2015-01-01

    Following its formation, a star's metal content is one of the few factors that can significantly alter its evolution. Measurements of stellar metallicity ([Fe/H]) typically require a spectrum, but spectroscopic surveys are limited to a few x 10(exp 6) targets; photometric surveys, on the other hand, have detected > 10(exp 9) stars. I present a new machine-learning method to predict [Fe/H] from photometric colors measured by the Sloan Digital Sky Survey (SDSS). The training set consists of approx. 120,000 stars with SDSS photometry and reliable [Fe/H] measurements from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g' learning method is similar to the scatter in [Fe/H] measurements from low-resolution spectra..

  4. A Photometric Machine-Learning Method to Infer Stellar Metallicity

    Science.gov (United States)

    Miller, Adam A.

    2015-01-01

    Following its formation, a star's metal content is one of the few factors that can significantly alter its evolution. Measurements of stellar metallicity ([Fe/H]) typically require a spectrum, but spectroscopic surveys are limited to a few x 10(exp 6) targets; photometric surveys, on the other hand, have detected > 10(exp 9) stars. I present a new machine-learning method to predict [Fe/H] from photometric colors measured by the Sloan Digital Sky Survey (SDSS). The training set consists of approx. 120,000 stars with SDSS photometry and reliable [Fe/H] measurements from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g' machine-learning method is similar to the scatter in [Fe/H] measurements from low-resolution spectra..

  5. Comparing three experiential learning methods and their effect on medical students' attitudes to learning communication skills.

    Science.gov (United States)

    Koponen, Jonna; Pyörälä, Eeva; Isotalus, Pekka

    2012-01-01

    Despite numerous studies exploring medical students' attitudes to communication skills learning (CSL), there are apparently no studies comparing different experiential learning methods and their influence on students' attitudes. We compared medical students' attitudes to learning communication skills before and after a communication course in the data as a whole, by gender and when divided into three groups using different methods. Second-year medical students (n = 129) were randomly assigned to three groups. In group A (n = 42) the theatre in education method, in group B (n = 44) simulated patients and in group C (n = 43) role-play were used. The data were gathered before and after the course using Communication Skills Attitude Scale. Students' positive attitudes to learning communication skills (PAS; positive attitude scale) increased significantly and their negative attitudes (NAS; negative attitude scale) decreased significantly between the beginning and end of the course. Female students had more positive attitudes than the male students. There were no significant differences in the three groups in the mean scores for PAS or NAS measured before or after the course. The use of experiential methods and integrating communication skills training with visits to health centres may help medical students to appreciate the importance of CSL.

  6. Housing Value Forecasting Based on Machine Learning Methods

    OpenAIRE

    Mu, Jingyi; Wu, Fang; Zhang, Aihua

    2014-01-01

    In the era of big data, many urgent issues to tackle in all walks of life all can be solved via big data technique. Compared with the Internet, economy, industry, and aerospace fields, the application of big data in the area of architecture is relatively few. In this paper, on the basis of the actual data, the values of Boston suburb houses are forecast by several machine learning methods. According to the predictions, the government and developers can make decisions about whether developing...

  7. Learning with Generalization Capability by Kernel Methods of Bounded Complexity

    Czech Academy of Sciences Publication Activity Database

    Kůrková, Věra; Sanguineti, M.

    2005-01-01

    Roč. 21, č. 3 (2005), s. 350-367 ISSN 0885-064X R&D Projects: GA AV ČR 1ET100300419 Institutional research plan: CEZ:AV0Z10300504 Keywords : supervised learning * generalization * model complexity * kernel methods * minimization of regularized empirical errors * upper bounds on rates of approximate optimization Subject RIV: BA - General Mathematics Impact factor: 1.186, year: 2005

  8. A Doctoral Seminar in Qualitative Research Methods: Lessons Learned

    Directory of Open Access Journals (Sweden)

    Suzanne Franco

    2016-09-01

    Full Text Available New qualitative research methods continue to emerge in response to factors such as renewed interest in mixed methods, better understanding of the importance of a researcher’s philosophical stance, as well as the increased use of technology in data collection and analysis, to name a few. As a result, those facilitating research methods courses must revisit content and instructional strategies in order to prepare well-informed researchers. Approaches range from paradigm to pragmatic emphasis. This descriptive case study of a doctoral seminar for novice qualitative researchers describes the intricacies of the syllabus of a pragmatic approach in a constructivist/social constructionist learning environment. The purpose was to document the delivery and faculty/student interactions and reactions. Noteworthy were the contradictions and frustrations in the delivery as well as in student experiences. In the end, student input led to seminal learning experiences. The confirmation of the effectiveness of a constructivist/social constructivist learning environment is applicable to higher education pedagogy in general.

  9. Deep Learning Methods for Underwater Target Feature Extraction and Recognition

    Directory of Open Access Journals (Sweden)

    Gang Hu

    2018-01-01

    Full Text Available The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwater acoustic signal feature extraction. In this paper, a method for feature extraction and identification of underwater noise data based on CNN and ELM is proposed. An automatic feature extraction method of underwater acoustic signals is proposed using depth convolution network. An underwater target recognition classifier is based on extreme learning machine. Although convolution neural networks can execute both feature extraction and classification, their function mainly relies on a full connection layer, which is trained by gradient descent-based; the generalization ability is limited and suboptimal, so an extreme learning machine (ELM was used in classification stage. Firstly, CNN learns deep and robust features, followed by the removing of the fully connected layers. Then ELM fed with the CNN features is used as the classifier to conduct an excellent classification. Experiments on the actual data set of civil ships obtained 93.04% recognition rate; compared to the traditional Mel frequency cepstral coefficients and Hilbert-Huang feature, recognition rate greatly improved.

  10. Construction of a combinatorial pipeline using two somatic variant  calling  methods  for whole exome sequence data of gastric cancer.

    Science.gov (United States)

    Kohmoto, Tomohiro; Masuda, Kiyoshi; Naruto, Takuya; Tange, Shoichiro; Shoda, Katsutoshi; Hamada, Junichi; Saito, Masako; Ichikawa, Daisuke; Tajima, Atsushi; Otsuji, Eigo; Imoto, Issei

    2017-01-01

    High-throughput next-generation sequencing is a powerful tool to identify the genotypic landscapes of somatic variants and therapeutic targets in various cancers including gastric cancer, forming the basis for personalized medicine in the clinical setting. Although the advent of many computational algorithms leads to higher accuracy in somatic variant calling, no standard method exists due to the limitations of each method. Here, we constructed a new pipeline. We combined two different somatic variant callers with different algorithms, Strelka and VarScan 2, and evaluated performance using whole exome sequencing data obtained from 19 Japanese cases with gastric cancer (GC); then, we characterized these tumors based on identified driver molecular alterations. More single nucleotide variants (SNVs) and small insertions/deletions were detected by Strelka and VarScan 2, respectively. SNVs detected by both tools showed higher accuracy for estimating somatic variants compared with those detected by only one of the two tools and accurately showed the mutation signature and mutations of driver genes reported for GC. Our combinatorial pipeline may have an advantage in detection of somatic mutations in GC and may be useful for further genomic characterization of Japanese patients with GC to improve the efficacy of GC treatments. J. Med. Invest. 64: 233-240, August, 2017.

  11. Application of machine learning methods for traffic signs recognition

    Science.gov (United States)

    Filatov, D. V.; Ignatev, K. V.; Deviatkin, A. V.; Serykh, E. V.

    2018-02-01

    This paper focuses on solving a relevant and pressing safety issue on intercity roads. Two approaches were considered for solving the problem of traffic signs recognition; the approaches involved neural networks to analyze images obtained from a camera in the real-time mode. The first approach is based on a sequential image processing. At the initial stage, with the help of color filters and morphological operations (dilatation and erosion), the area containing the traffic sign is located on the image, then the selected and scaled fragment of the image is analyzed using a feedforward neural network to determine the meaning of the found traffic sign. Learning of the neural network in this approach is carried out using a backpropagation method. The second approach involves convolution neural networks at both stages, i.e. when searching and selecting the area of the image containing the traffic sign, and when determining its meaning. Learning of the neural network in the second approach is carried out using the intersection over union function and a loss function. For neural networks to learn and the proposed algorithms to be tested, a series of videos from a dash cam were used that were shot under various weather and illumination conditions. As a result, the proposed approaches for traffic signs recognition were analyzed and compared by key indicators such as recognition rate percentage and the complexity of neural networks’ learning process.

  12. Kernel methods for interpretable machine learning of order parameters

    Science.gov (United States)

    Ponte, Pedro; Melko, Roger G.

    2017-11-01

    Machine learning is capable of discriminating phases of matter, and finding associated phase transitions, directly from large data sets of raw state configurations. In the context of condensed matter physics, most progress in the field of supervised learning has come from employing neural networks as classifiers. Although very powerful, such algorithms suffer from a lack of interpretability, which is usually desired in scientific applications in order to associate learned features with physical phenomena. In this paper, we explore support vector machines (SVMs), which are a class of supervised kernel methods that provide interpretable decision functions. We find that SVMs can learn the mathematical form of physical discriminators, such as order parameters and Hamiltonian constraints, for a set of two-dimensional spin models: the ferromagnetic Ising model, a conserved-order-parameter Ising model, and the Ising gauge theory. The ability of SVMs to provide interpretable classification highlights their potential for automating feature detection in both synthetic and experimental data sets for condensed matter and other many-body systems.

  13. Machine Learning and Data Mining Methods in Diabetes Research.

    Science.gov (United States)

    Kavakiotis, Ioannis; Tsave, Olga; Salifoglou, Athanasios; Maglaveras, Nicos; Vlahavas, Ioannis; Chouvarda, Ioanna

    2017-01-01

    The remarkable advances in biotechnology and health sciences have led to a significant production of data, such as high throughput genetic data and clinical information, generated from large Electronic Health Records (EHRs). To this end, application of machine learning and data mining methods in biosciences is presently, more than ever before, vital and indispensable in efforts to transform intelligently all available information into valuable knowledge. Diabetes mellitus (DM) is defined as a group of metabolic disorders exerting significant pressure on human health worldwide. Extensive research in all aspects of diabetes (diagnosis, etiopathophysiology, therapy, etc.) has led to the generation of huge amounts of data. The aim of the present study is to conduct a systematic review of the applications of machine learning, data mining techniques and tools in the field of diabetes research with respect to a) Prediction and Diagnosis, b) Diabetic Complications, c) Genetic Background and Environment, and e) Health Care and Management with the first category appearing to be the most popular. A wide range of machine learning algorithms were employed. In general, 85% of those used were characterized by supervised learning approaches and 15% by unsupervised ones, and more specifically, association rules. Support vector machines (SVM) arise as the most successful and widely used algorithm. Concerning the type of data, clinical datasets were mainly used. The title applications in the selected articles project the usefulness of extracting valuable knowledge leading to new hypotheses targeting deeper understanding and further investigation in DM.

  14. A cross-benchmark comparison of 87 learning to rank methods

    NARCIS (Netherlands)

    Tax, N.; Bockting, S.; Hiemstra, D.

    2015-01-01

    Learning to rank is an increasingly important scientific field that comprises the use of machine learning for the ranking task. New learning to rank methods are generally evaluated on benchmark test collections. However, comparison of learning to rank methods based on evaluation results is hindered

  15. Characteristics and Consequences of Adult Learning Methods and Strategies. Practical Evaluation Reports, Volume 2, Number 1

    Science.gov (United States)

    Trivette, Carol M.; Dunst, Carl J.; Hamby, Deborah W.; O'Herin, Chainey E.

    2009-01-01

    The effectiveness of four adult learning methods (accelerated learning, coaching, guided design, and just-in-time training) constituted the focus of this research synthesis. Findings reported in "How People Learn" (Bransford et al., 2000) were used to operationally define six adult learning method characteristics, and to code and analyze…

  16. Introducing the Collaborative E-Learning Design Method (CoED)

    DEFF Research Database (Denmark)

    Ryberg, Thomas; Buus, Lillian; Nyvang, Tom

    2015-01-01

    In this chapter, a specific learning design method is introduced and explained, namely the Collaborative E-learning Design method (CoED), which has been developed through various projects in “e-Learning Lab – Centre for User Driven Innovation, Learning and Design” (Nyvang & Georgsen, 2007). We br...

  17. Actively Teaching Research Methods with a Process Oriented Guided Inquiry Learning Approach

    Science.gov (United States)

    Mullins, Mary H.

    2017-01-01

    Active learning approaches have shown to improve student learning outcomes and improve the experience of students in the classroom. This article compares a Process Oriented Guided Inquiry Learning style approach to a more traditional teaching method in an undergraduate research methods course. Moving from a more traditional learning environment to…

  18. Effect of Chemistry Triangle Oriented Learning Media on Cooperative, Individual and Conventional Method on Chemistry Learning Result

    Science.gov (United States)

    Latisma D, L.; Kurniawan, W.; Seprima, S.; Nirbayani, E. S.; Ellizar, E.; Hardeli, H.

    2018-04-01

    The purpose of this study was to see which method are well used with the Chemistry Triangle-oriented learning media. This quasi experimental research involves first grade of senior high school students in six schools namely each two SMA N in Solok city, in Pasaman and two SMKN in Pariaman. The sampling technique was done by Cluster Random Sampling. Data were collected by test and analyzed by one-way anova and Kruskall Wallish test. The results showed that the high school students in Solok learning taught by cooperative method is better than the results of student learning taught by conventional and Individual methods, both for students who have high initial ability and low-ability. Research in SMK showed that the overall student learning outcomes taught by conventional method is better than the student learning outcomes taught by cooperative and individual methods. Student learning outcomes that have high initial ability taught by individual method is better than student learning outcomes that are taught by cooperative method and for students who have low initial ability, there is no difference in student learning outcomes taught by cooperative, individual and conventional methods. Learning in high school in Pasaman showed no significant difference in learning outcomes of the three methods undertaken.

  19. Measuring the surgical 'learning curve': methods, variables and competency.

    Science.gov (United States)

    Khan, Nuzhath; Abboudi, Hamid; Khan, Mohammed Shamim; Dasgupta, Prokar; Ahmed, Kamran

    2014-03-01

    To describe how learning curves are measured and what procedural variables are used to establish a 'learning curve' (LC). To assess whether LCs are a valuable measure of competency. A review of the surgical literature pertaining to LCs was conducted using the Medline and OVID databases. Variables should be fully defined and when possible, patient-specific variables should be used. Trainee's prior experience and level of supervision should be quantified; the case mix and complexity should ideally be constant. Logistic regression may be used to control for confounding variables. Ideally, a learning plateau should reach a predefined/expert-derived competency level, which should be fully defined. When the group splitting method is used, smaller cohorts should be used in order to narrow the range of the LC. Simulation technology and competence-based objective assessments may be used in training and assessment in LC studies. Measuring the surgical LC has potential benefits for patient safety and surgical education. However, standardisation in the methods and variables used to measure LCs is required. Confounding variables, such as participant's prior experience, case mix, difficulty of procedures and level of supervision, should be controlled. Competency and expert performance should be fully defined. © 2013 The Authors. BJU International © 2013 BJU International.

  20. The difficult medical emergency call

    DEFF Research Database (Denmark)

    Møller, Thea Palsgaard; Kjærulff, Thora Majlund; Viereck, Søren

    2017-01-01

    BACKGROUND: Pre-hospital emergency care requires proper categorization of emergency calls and assessment of emergency priority levels by the medical dispatchers. We investigated predictors for emergency call categorization as "unclear problem" in contrast to "symptom-specific" categories and the ......BACKGROUND: Pre-hospital emergency care requires proper categorization of emergency calls and assessment of emergency priority levels by the medical dispatchers. We investigated predictors for emergency call categorization as "unclear problem" in contrast to "symptom-specific" categories...... and the effect of categorization on mortality. METHODS: Register-based study in a 2-year period based on emergency call data from the emergency medical dispatch center in Copenhagen combined with nationwide register data. Logistic regression analysis (N = 78,040 individuals) was used for identification...

  1. Application of unsupervised learning methods in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Koevesarki, Peter; Nuncio Quiroz, Adriana Elizabeth; Brock, Ian C. [Physikalisches Institut, Universitaet Bonn, Bonn (Germany)

    2011-07-01

    High energy physics is a home for a variety of multivariate techniques, mainly due to the fundamentally probabilistic behaviour of nature. These methods generally require training based on some theory, in order to discriminate a known signal from a background. Nevertheless, new physics can show itself in ways that previously no one thought about, and in these cases conventional methods give little or no help. A possible way to discriminate between known processes (like vector bosons or top-quark production) or look for new physics is using unsupervised machine learning to extract the features of the data. A technique was developed, based on the combination of neural networks and the method of principal curves, to find a parametrisation of the non-linear correlations of the data. The feasibility of the method is shown on ATLAS data.

  2. Comparison of Machine Learning Methods for the Arterial Hypertension Diagnostics

    Directory of Open Access Journals (Sweden)

    Vladimir S. Kublanov

    2017-01-01

    Full Text Available The paper presents results of machine learning approach accuracy applied analysis of cardiac activity. The study evaluates the diagnostics possibilities of the arterial hypertension by means of the short-term heart rate variability signals. Two groups were studied: 30 relatively healthy volunteers and 40 patients suffering from the arterial hypertension of II-III degree. The following machine learning approaches were studied: linear and quadratic discriminant analysis, k-nearest neighbors, support vector machine with radial basis, decision trees, and naive Bayes classifier. Moreover, in the study, different methods of feature extraction are analyzed: statistical, spectral, wavelet, and multifractal. All in all, 53 features were investigated. Investigation results show that discriminant analysis achieves the highest classification accuracy. The suggested approach of noncorrelated feature set search achieved higher results than data set based on the principal components.

  3. An Efficient Ensemble Learning Method for Gene Microarray Classification

    Directory of Open Access Journals (Sweden)

    Alireza Osareh

    2013-01-01

    Full Text Available The gene microarray analysis and classification have demonstrated an effective way for the effective diagnosis of diseases and cancers. However, it has been also revealed that the basic classification techniques have intrinsic drawbacks in achieving accurate gene classification and cancer diagnosis. On the other hand, classifier ensembles have received increasing attention in various applications. Here, we address the gene classification issue using RotBoost ensemble methodology. This method is a combination of Rotation Forest and AdaBoost techniques which in turn preserve both desirable features of an ensemble architecture, that is, accuracy and diversity. To select a concise subset of informative genes, 5 different feature selection algorithms are considered. To assess the efficiency of the RotBoost, other nonensemble/ensemble techniques including Decision Trees, Support Vector Machines, Rotation Forest, AdaBoost, and Bagging are also deployed. Experimental results have revealed that the combination of the fast correlation-based feature selection method with ICA-based RotBoost ensemble is highly effective for gene classification. In fact, the proposed method can create ensemble classifiers which outperform not only the classifiers produced by the conventional machine learning but also the classifiers generated by two widely used conventional ensemble learning methods, that is, Bagging and AdaBoost.

  4. IP-MLI: An Independency of Learning Materials from Platforms in a Mobile Learning using Intelligent Method

    Directory of Open Access Journals (Sweden)

    Mohammed Abdallh Otair

    2006-06-01

    Full Text Available Attempting to deliver a monolithic mobile learning system is too inflexible in view of the heterogeneous mixture of hardware and services available and the desirability of facility blended approaches to learning delivery, and how to build learning materials to run on all platforms[1]. This paper proposes a framework of mobile learning system using an intelligent method (IP-MLI . A fuzzy matching method is used to find suitable learning material design. It will provide a best matching for each specific platform type for each learner. The main contribution of the proposed method is to use software layer to insulate learning materials from device-specific features. Consequently, many versions of learning materials can be designed to work on many platform types.

  5. Lessons learned: advantages and disadvantages of mixed method research

    DEFF Research Database (Denmark)

    Malina, Mary A.; Nørreklit, Hanne; Selto, Frank H.

    2011-01-01

    on the use and usefulness of a specialized balanced scorecard; and third, to encourage researchers to actually use multiple methods and sources of data to address the very many accounting phenomena that are not fully understood. Design/methodology/approach – This paper is an opinion piece based...... on the authors' experience conducting a series of longitudinal mixed method studies. Findings – The authors suggest that in many studies, using a mixed method approach provides the best opportunity for addressing research questions. Originality/value – This paper provides encouragement to those who may wish......Purpose – The purpose of this paper is first, to discuss the theoretical assumptions, qualities, problems and myopia of the dominating quantitative and qualitative approaches; second, to describe the methodological lessons that the authors learned while conducting a series of longitudinal studies...

  6. Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides

    Directory of Open Access Journals (Sweden)

    Stanislawski Jerzy

    2013-01-01

    Full Text Available Abstract Background Amyloids are proteins capable of forming fibrils. Many of them underlie serious diseases, like Alzheimer disease. The number of amyloid-associated diseases is constantly increasing. Recent studies indicate that amyloidogenic properties can be associated with short segments of aminoacids, which transform the structure when exposed. A few hundreds of such peptides have been experimentally found. Experimental testing of all possible aminoacid combinations is currently not feasible. Instead, they can be predicted by computational methods. 3D profile is a physicochemical-based method that has generated the most numerous dataset - ZipperDB. However, it is computationally very demanding. Here, we show that dataset generation can be accelerated. Two methods to increase the classification efficiency of amyloidogenic candidates are presented and tested: simplified 3D profile generation and machine learning methods. Results We generated a new dataset of hexapeptides, using more economical 3D profile algorithm, which showed very good classification overlap with ZipperDB (93.5%. The new part of our dataset contains 1779 segments, with 204 classified as amyloidogenic. The dataset of 6-residue sequences with their binary classification, based on the energy of the segment, was applied for training machine learning methods. A separate set of sequences from ZipperDB was used as a test set. The most effective methods were Alternating Decision Tree and Multilayer Perceptron. Both methods obtained area under ROC curve of 0.96, accuracy 91%, true positive rate ca. 78%, and true negative rate 95%. A few other machine learning methods also achieved a good performance. The computational time was reduced from 18-20 CPU-hours (full 3D profile to 0.5 CPU-hours (simplified 3D profile to seconds (machine learning. Conclusions We showed that the simplified profile generation method does not introduce an error with regard to the original method, while

  7. Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides.

    Science.gov (United States)

    Stanislawski, Jerzy; Kotulska, Malgorzata; Unold, Olgierd

    2013-01-17

    Amyloids are proteins capable of forming fibrils. Many of them underlie serious diseases, like Alzheimer disease. The number of amyloid-associated diseases is constantly increasing. Recent studies indicate that amyloidogenic properties can be associated with short segments of aminoacids, which transform the structure when exposed. A few hundreds of such peptides have been experimentally found. Experimental testing of all possible aminoacid combinations is currently not feasible. Instead, they can be predicted by computational methods. 3D profile is a physicochemical-based method that has generated the most numerous dataset - ZipperDB. However, it is computationally very demanding. Here, we show that dataset generation can be accelerated. Two methods to increase the classification efficiency of amyloidogenic candidates are presented and tested: simplified 3D profile generation and machine learning methods. We generated a new dataset of hexapeptides, using more economical 3D profile algorithm, which showed very good classification overlap with ZipperDB (93.5%). The new part of our dataset contains 1779 segments, with 204 classified as amyloidogenic. The dataset of 6-residue sequences with their binary classification, based on the energy of the segment, was applied for training machine learning methods. A separate set of sequences from ZipperDB was used as a test set. The most effective methods were Alternating Decision Tree and Multilayer Perceptron. Both methods obtained area under ROC curve of 0.96, accuracy 91%, true positive rate ca. 78%, and true negative rate 95%. A few other machine learning methods also achieved a good performance. The computational time was reduced from 18-20 CPU-hours (full 3D profile) to 0.5 CPU-hours (simplified 3D profile) to seconds (machine learning). We showed that the simplified profile generation method does not introduce an error with regard to the original method, while increasing the computational efficiency. Our new dataset

  8. Improving Nursing Students' Learning Outcomes in Fundamentals of Nursing Course through Combination of Traditional and e-Learning Methods.

    Science.gov (United States)

    Sheikhaboumasoudi, Rouhollah; Bagheri, Maryam; Hosseini, Sayed Abbas; Ashouri, Elaheh; Elahi, Nasrin

    2018-01-01

    Fundamentals of nursing course are prerequisite to providing comprehensive nursing care. Despite development of technology on nursing education, effectiveness of using e-learning methods in fundamentals of nursing course is unclear in clinical skills laboratory for nursing students. The aim of this study was to compare the effect of blended learning (combining e-learning with traditional learning methods) with traditional learning alone on nursing students' scores. A two-group post-test experimental study was administered from February 2014 to February 2015. Two groups of nursing students who were taking the fundamentals of nursing course in Iran were compared. Sixty nursing students were selected as control group (just traditional learning methods) and experimental group (combining e-learning with traditional learning methods) for two consecutive semesters. Both groups participated in Objective Structured Clinical Examination (OSCE) and were evaluated in the same way using a prepared checklist and questionnaire of satisfaction. Statistical analysis was conducted through SPSS software version 16. Findings of this study reflected that mean of midterm (t = 2.00, p = 0.04) and final score (t = 2.50, p = 0.01) of the intervention group (combining e-learning with traditional learning methods) were significantly higher than the control group (traditional learning methods). The satisfaction of male students in intervention group was higher than in females (t = 2.60, p = 0.01). Based on the findings, this study suggests that the use of combining traditional learning methods with e-learning methods such as applying educational website and interactive online resources for fundamentals of nursing course instruction can be an effective supplement for improving nursing students' clinical skills.

  9. Best practices for learning physiology: combining classroom and online methods.

    Science.gov (United States)

    Anderson, Lisa C; Krichbaum, Kathleen E

    2017-09-01

    Physiology is a requisite course for many professional allied health programs and is a foundational science for learning pathophysiology, health assessment, and pharmacology. Given the demand for online learning in the health sciences, it is important to evaluate the efficacy of online and in-class teaching methods, especially as they are combined to form hybrid courses. The purpose of this study was to compare two hybrid physiology sections in which one section was offered mostly in-class (85% in-class), and the other section was offered mostly online (85% online). The two sections in 2 yr ( year 1 and year 2 ) were compared in terms of knowledge of physiology measured in exam scores and pretest-posttest improvement, and in measures of student satisfaction with teaching. In year 1 , there were some differences on individual exam scores between the two sections, but no significant differences in mean exam scores or in pretest-posttest improvements. However, in terms of student satisfaction, the mostly in-class students in year 1 rated the instructor significantly higher than did the mostly online students. Comparisons between in-class and online students in the year 2 cohort yielded data that showed that mean exam scores were not statistically different, but pre-post changes were significantly greater in the mostly online section; student satisfaction among mostly online students also improved significantly. Education researchers must investigate effective combinations of in-class and online methods for student learning outcomes, while maintaining the flexibility and convenience that online methods provide. Copyright © 2017 the American Physiological Society.

  10. MACHINE LEARNING METHODS IN DIGITAL AGRICULTURE: ALGORITHMS AND CASES

    Directory of Open Access Journals (Sweden)

    Aleksandr Vasilyevich Koshkarov

    2018-05-01

    Full Text Available Ensuring food security is a major challenge in many countries. With a growing global population, the issues of improving the efficiency of agriculture have become most relevant. Farmers are looking for new ways to increase yields, and governments of different countries are developing new programs to support agriculture. This contributes to a more active implementation of digital technologies in agriculture, helping farmers to make better decisions, increase yields and take care of the environment. The central point is the collection and analysis of data. In the industry of agriculture, data can be collected from different sources and may contain useful patterns that identify potential problems or opportunities. Data should be analyzed using machine learning algorithms to extract useful insights. Such methods of precision farming allow the farmer to monitor individual parts of the field, optimize the consumption of water and chemicals, and identify problems quickly. Purpose: to make an overview of the machine learning algorithms used for data analysis in agriculture. Methodology: an overview of the relevant literature; a survey of farmers. Results: relevant algorithms of machine learning for the analysis of data in agriculture at various levels were identified: soil analysis (soil assessment, soil classification, soil fertility predictions, weather forecast (simulation of climate change, temperature and precipitation prediction, and analysis of vegetation (weed identification, vegetation classification, plant disease identification, crop forecasting. Practical implications: agriculture, crop production.

  11. Estimating building energy consumption using extreme learning machine method

    International Nuclear Information System (INIS)

    Naji, Sareh; Keivani, Afram; Shamshirband, Shahaboddin; Alengaram, U. Johnson; Jumaat, Mohd Zamin; Mansor, Zulkefli; Lee, Malrey

    2016-01-01

    The current energy requirements of buildings comprise a large percentage of the total energy consumed around the world. The demand of energy, as well as the construction materials used in buildings, are becoming increasingly problematic for the earth's sustainable future, and thus have led to alarming concern. The energy efficiency of buildings can be improved, and in order to do so, their operational energy usage should be estimated early in the design phase, so that buildings are as sustainable as possible. An early energy estimate can greatly help architects and engineers create sustainable structures. This study proposes a novel method to estimate building energy consumption based on the ELM (Extreme Learning Machine) method. This method is applied to building material thicknesses and their thermal insulation capability (K-value). For this purpose up to 180 simulations are carried out for different material thicknesses and insulation properties, using the EnergyPlus software application. The estimation and prediction obtained by the ELM model are compared with GP (genetic programming) and ANNs (artificial neural network) models for accuracy. The simulation results indicate that an improvement in predictive accuracy is achievable with the ELM approach in comparison with GP and ANN. - Highlights: • Buildings consume huge amounts of energy for operation. • Envelope materials and insulation influence building energy consumption. • Extreme learning machine is used to estimate energy usage of a sample building. • The key effective factors in this study are insulation thickness and K-value.

  12. Evaluation Methods on Usability of M-Learning Environments

    Directory of Open Access Journals (Sweden)

    Teresa Magal-Royo

    2007-10-01

    Full Text Available Nowadays there are different evaluation methods focused in the assessment of the usability of telematic methods. The assessment of 3rd generation web environments evaluates the effectiveness and usability of application with regard to the user needs. Wireless usability and, specifically in mobile phones, is concentrated in the validation of the features and tools management using conventional interactive environments. There is not a specific and suitable criterion to evaluate created environments and m-learning platforms, where the restricted and sequential representation is a fundamental aspect to be considered.The present paper exposes the importance of the conventional usability methods to verify both: the employed contents in wireless formats, and the possible interfaces from the conception phases, to the validations of the platform with such characteristics.The development of usability adapted inspection could be complemented with the Remote’s techniques of usability testing, which are being carried out these days in the mobile devices field and which pointed out the need to apply common criteria in the validation of non-located learning scenarios.

  13. A Preliminary Survey of the Preferred Learning Methods for Interpretation Students

    Science.gov (United States)

    Heinz, Michael

    2013-01-01

    There are many different methods that individuals use to learn languages like reading books or writing essays. Not all methods are equally successful for second language learners but nor do all successful learners of a second language show identical preferences for learning methods. Additionally, at the highest level of language learning various…

  14. Comparisons of likelihood and machine learning methods of individual classification

    Science.gov (United States)

    Guinand, B.; Topchy, A.; Page, K.S.; Burnham-Curtis, M. K.; Punch, W.F.; Scribner, K.T.

    2002-01-01

    Classification methods used in machine learning (e.g., artificial neural networks, decision trees, and k-nearest neighbor clustering) are rarely used with population genetic data. We compare different nonparametric machine learning techniques with parametric likelihood estimations commonly employed in population genetics for purposes of assigning individuals to their population of origin (“assignment tests”). Classifier accuracy was compared across simulated data sets representing different levels of population differentiation (low and high FST), number of loci surveyed (5 and 10), and allelic diversity (average of three or eight alleles per locus). Empirical data for the lake trout (Salvelinus namaycush) exhibiting levels of population differentiation comparable to those used in simulations were examined to further evaluate and compare classification methods. Classification error rates associated with artificial neural networks and likelihood estimators were lower for simulated data sets compared to k-nearest neighbor and decision tree classifiers over the entire range of parameters considered. Artificial neural networks only marginally outperformed the likelihood method for simulated data (0–2.8% lower error rates). The relative performance of each machine learning classifier improved relative likelihood estimators for empirical data sets, suggesting an ability to “learn” and utilize properties of empirical genotypic arrays intrinsic to each population. Likelihood-based estimation methods provide a more accessible option for reliable assignment of individuals to the population of origin due to the intricacies in development and evaluation of artificial neural networks. In recent years, characterization of highly polymorphic molecular markers such as mini- and microsatellites and development of novel methods of analysis have enabled researchers to extend investigations of ecological and evolutionary processes below the population level to the level of

  15. Advanced methods in NDE using machine learning approaches

    Science.gov (United States)

    Wunderlich, Christian; Tschöpe, Constanze; Duckhorn, Frank

    2018-04-01

    Machine learning (ML) methods and algorithms have been applied recently with great success in quality control and predictive maintenance. Its goal to build new and/or leverage existing algorithms to learn from training data and give accurate predictions, or to find patterns, particularly with new and unseen similar data, fits perfectly to Non-Destructive Evaluation. The advantages of ML in NDE are obvious in such tasks as pattern recognition in acoustic signals or automated processing of images from X-ray, Ultrasonics or optical methods. Fraunhofer IKTS is using machine learning algorithms in acoustic signal analysis. The approach had been applied to such a variety of tasks in quality assessment. The principal approach is based on acoustic signal processing with a primary and secondary analysis step followed by a cognitive system to create model data. Already in the second analysis steps unsupervised learning algorithms as principal component analysis are used to simplify data structures. In the cognitive part of the software further unsupervised and supervised learning algorithms will be trained. Later the sensor signals from unknown samples can be recognized and classified automatically by the algorithms trained before. Recently the IKTS team was able to transfer the software for signal processing and pattern recognition to a small printed circuit board (PCB). Still, algorithms will be trained on an ordinary PC; however, trained algorithms run on the Digital Signal Processor and the FPGA chip. The identical approach will be used for pattern recognition in image analysis of OCT pictures. Some key requirements have to be fulfilled, however. A sufficiently large set of training data, a high signal-to-noise ratio, and an optimized and exact fixation of components are required. The automated testing can be done subsequently by the machine. By integrating the test data of many components along the value chain further optimization including lifetime and durability

  16. Call Center Capacity Planning

    DEFF Research Database (Denmark)

    Nielsen, Thomas Bang

    in order to relate the results to the service levels used in call centers. Furthermore, the generic nature of the approximation is demonstrated by applying it to a system incorporating a dynamic priority scheme. In the last paper Optimization of overflow policies in call centers, overflows between agent......The main topics of the thesis are theoretical and applied queueing theory within a call center setting. Call centers have in recent years become the main means of communication between customers and companies, and between citizens and public institutions. The extensively computerized infrastructure...... in modern call centers allows for a high level of customization, but also induces complicated operational processes. The size of the industry together with the complex and labor intensive nature of large call centers motivates the research carried out to understand the underlying processes. The customizable...

  17. Self-directed learning can outperform direct instruction in the course of a modern German medical curriculum - results of a mixed methods trial.

    Science.gov (United States)

    Peine, Arne; Kabino, Klaus; Spreckelsen, Cord

    2016-06-03

    Modernised medical curricula in Germany (so called "reformed study programs") rely increasingly on alternative self-instructed learning forms such as e-learning and curriculum-guided self-study. However, there is a lack of evidence that these methods can outperform conventional teaching methods such as lectures and seminars. This study was conducted in order to compare extant traditional teaching methods with new instruction forms in terms of learning effect and student satisfaction. In a randomised trial, 244 students of medicine in their third academic year were assigned to one of four study branches representing self-instructed learning forms (e-learning and curriculum-based self-study) and instructed learning forms (lectures and seminars). All groups participated in their respective learning module with standardised materials and instructions. Learning effect was measured with pre-test and post-test multiple-choice questionnaires. Student satisfaction and learning style were examined via self-assessment. Of 244 initial participants, 223 completed the respective module and were included in the study. In the pre-test, the groups showed relatively homogenous scores. All students showed notable improvements compared with the pre-test results. Participants in the non-self-instructed learning groups reached scores of 14.71 (seminar) and 14.37 (lecture), while the groups of self-instructed learners reached higher scores with 17.23 (e-learning) and 15.81 (self-study). All groups improved significantly (p learning group, whose self-assessment improved by 2.36. The study shows that students in modern study curricula learn better through modern self-instructed methods than through conventional methods. These methods should be used more, as they also show good levels of student acceptance and higher scores in personal self-assessment of knowledge.

  18. Help Options in CALL: A Systematic Review

    Science.gov (United States)

    Cardenas-Claros, Monica S.; Gruba, Paul A.

    2009-01-01

    This paper is a systematic review of research investigating help options in the different language skills in computer-assisted language learning (CALL). In this review, emerging themes along with is-sues affecting help option research are identified and discussed. We argue that help options in CALL are application resources that do not only seem…

  19. The experimental field work as practical learning method

    Directory of Open Access Journals (Sweden)

    Nicolás Fernández Losa

    2014-11-01

    Full Text Available This paper describes a teaching experience about experimental field work as practical learning method implemented in the subject of Organizational Behaviour. With this teaching experience we pretend to change the practical training, as well as in its evaluation process, in order to favour the development of transversal skills of students. For this purpose, the use of a practice plan, tackled through an experimental field work and carried out with the collaboration of a business organization within a work team (as organic unity of learning, arises as an alternative to the traditional method of practical teachings and allows the approach of business reality into the classroom, as well as actively promote the use of transversal skills. In particular, we develop the experience in three phases. Initially, the students, after forming a working group and define a field work project, should get the collaboration of a nearby business organization in which to obtain data on one or more functional areas of organizational behaviour. Subsequently, students carry out the field work with the realization of the scheduled visits and elaboration of a memory to establish a diagnosis of the strategy followed by the company in these functional areas in order to propose and justify alternative actions that improve existing ones. Finally, teachers assess the different field work memories and their public presentations according to evaluation rubrics, which try to objectify and unify to the maximum the evaluation criteria and serve to guide the learning process of students. The results of implementation of this teaching experience, measured through a Likert questionnaire, are very satisfactory for students.

  20. Application of blended learning in teaching statistical methods

    Directory of Open Access Journals (Sweden)

    Barbara Dębska

    2012-12-01

    Full Text Available The paper presents the application of a hybrid method (blended learning - linking traditional education with on-line education to teach selected problems of mathematical statistics. This includes the teaching of the application of mathematical statistics to evaluate laboratory experimental results. An on-line statistics course was developed to form an integral part of the module ‘methods of statistical evaluation of experimental results’. The course complies with the principles outlined in the Polish National Framework of Qualifications with respect to the scope of knowledge, skills and competencies that students should have acquired at course completion. The paper presents the structure of the course and the educational content provided through multimedia lessons made accessible on the Moodle platform. Following courses which used the traditional method of teaching and courses which used the hybrid method of teaching, students test results were compared and discussed to evaluate the effectiveness of the hybrid method of teaching when compared to the effectiveness of the traditional method of teaching.

  1. Methods of Efficient Study Habits and Physics Learning

    Science.gov (United States)

    Zettili, Nouredine

    2010-02-01

    We want to discuss the methods of efficient study habits and how they can be used by students to help them improve learning physics. In particular, we deal with the most efficient techniques needed to help students improve their study skills. We focus on topics such as the skills of how to develop long term memory, how to improve concentration power, how to take class notes, how to prepare for and take exams, how to study scientific subjects such as physics. We argue that the students who conscientiously use the methods of efficient study habits achieve higher results than those students who do not; moreover, a student equipped with the proper study skills will spend much less time to learn a subject than a student who has no good study habits. The underlying issue here is not the quantity of time allocated to the study efforts by the students, but the efficiency and quality of actions so that the student can function at peak efficiency. These ideas were developed as part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), an outreach grant funded by the Alabama Commission on Higher Education. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. )

  2. A Photometric Machine-Learning Method to Infer Stellar Metallicity

    Science.gov (United States)

    Miller, Adam A.

    2015-01-01

    Following its formation, a star's metal content is one of the few factors that can significantly alter its evolution. Measurements of stellar metallicity ([Fe/H]) typically require a spectrum, but spectroscopic surveys are limited to a few x 10(exp 6) targets; photometric surveys, on the other hand, have detected > 10(exp 9) stars. I present a new machine-learning method to predict [Fe/H] from photometric colors measured by the Sloan Digital Sky Survey (SDSS). The training set consists of approx. 120,000 stars with SDSS photometry and reliable [Fe/H] measurements from the SEGUE Stellar Parameters Pipeline (SSPP). For bright stars (g' < or = 18 mag), with 4500 K < or = Teff < or = 7000 K, corresponding to those with the most reliable SSPP estimates, I find that the model predicts [Fe/H] values with a root-mean-squared-error (RMSE) of approx.0.27 dex. The RMSE from this machine-learning method is similar to the scatter in [Fe/H] measurements from low-resolution spectra..

  3. Multiple instance learning tracking method with local sparse representation

    KAUST Repository

    Xie, Chengjun

    2013-10-01

    When objects undergo large pose change, illumination variation or partial occlusion, most existed visual tracking algorithms tend to drift away from targets and even fail in tracking them. To address this issue, in this study, the authors propose an online algorithm by combining multiple instance learning (MIL) and local sparse representation for tracking an object in a video system. The key idea in our method is to model the appearance of an object by local sparse codes that can be formed as training data for the MIL framework. First, local image patches of a target object are represented as sparse codes with an overcomplete dictionary, where the adaptive representation can be helpful in overcoming partial occlusion in object tracking. Then MIL learns the sparse codes by a classifier to discriminate the target from the background. Finally, results from the trained classifier are input into a particle filter framework to sequentially estimate the target state over time in visual tracking. In addition, to decrease the visual drift because of the accumulative errors when updating the dictionary and classifier, a two-step object tracking method combining a static MIL classifier with a dynamical MIL classifier is proposed. Experiments on some publicly available benchmarks of video sequences show that our proposed tracker is more robust and effective than others. © The Institution of Engineering and Technology 2013.

  4. CASE METHOD. ACTIVE LEARNING METHODOLOGY TO ACQUIRE SIGNIFICANT IN CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Clotilde Pizarro

    2015-09-01

    Full Text Available In this paper the methodology of cases in first year students of the Engineering Risk Prevention and Environment is applied. For this purpose a real case of contamination occurred at a school in the region of Valparaiso called "La Greda" is presented. If the application starts delivering an extract of the information collected from the media and they made a brief induction on the methodology to be applied. A plenary session, which is debate about possible solutions to the problem and establishing a relationship between the case and drives the chemistry program is then performed. Is concluded that the application of the case method, was a fruitful tool in yields obtained by students, since the percentage of approval was 75%, which is considerably higher than previous years.

  5. Deep Learning Methods for Improved Decoding of Linear Codes

    Science.gov (United States)

    Nachmani, Eliya; Marciano, Elad; Lugosch, Loren; Gross, Warren J.; Burshtein, David; Be'ery, Yair

    2018-02-01

    The problem of low complexity, close to optimal, channel decoding of linear codes with short to moderate block length is considered. It is shown that deep learning methods can be used to improve a standard belief propagation decoder, despite the large example space. Similar improvements are obtained for the min-sum algorithm. It is also shown that tying the parameters of the decoders across iterations, so as to form a recurrent neural network architecture, can be implemented with comparable results. The advantage is that significantly less parameters are required. We also introduce a recurrent neural decoder architecture based on the method of successive relaxation. Improvements over standard belief propagation are also observed on sparser Tanner graph representations of the codes. Furthermore, we demonstrate that the neural belief propagation decoder can be used to improve the performance, or alternatively reduce the computational complexity, of a close to optimal decoder of short BCH codes.

  6. Machine learning methods for clinical forms analysis in mental health.

    Science.gov (United States)

    Strauss, John; Peguero, Arturo Martinez; Hirst, Graeme

    2013-01-01

    In preparation for a clinical information system implementation, the Centre for Addiction and Mental Health (CAMH) Clinical Information Transformation project completed multiple preparation steps. An automated process was desired to supplement the onerous task of manual analysis of clinical forms. We used natural language processing (NLP) and machine learning (ML) methods for a series of 266 separate clinical forms. For the investigation, documents were represented by feature vectors. We used four ML algorithms for our examination of the forms: cluster analysis, k-nearest neigh-bours (kNN), decision trees and support vector machines (SVM). Parameters for each algorithm were optimized. SVM had the best performance with a precision of 64.6%. Though we did not find any method sufficiently accurate for practical use, to our knowledge this approach to forms has not been used previously in mental health.

  7. Statistical learning modeling method for space debris photometric measurement

    Science.gov (United States)

    Sun, Wenjing; Sun, Jinqiu; Zhang, Yanning; Li, Haisen

    2016-03-01

    Photometric measurement is an important way to identify the space debris, but the present methods of photometric measurement have many constraints on star image and need complex image processing. Aiming at the problems, a statistical learning modeling method for space debris photometric measurement is proposed based on the global consistency of the star image, and the statistical information of star images is used to eliminate the measurement noises. First, the known stars on the star image are divided into training stars and testing stars. Then, the training stars are selected as the least squares fitting parameters to construct the photometric measurement model, and the testing stars are used to calculate the measurement accuracy of the photometric measurement model. Experimental results show that, the accuracy of the proposed photometric measurement model is about 0.1 magnitudes.

  8. A Learning-Based Steganalytic Method against LSB Matching Steganography

    Directory of Open Access Journals (Sweden)

    Z. Xia

    2011-04-01

    Full Text Available This paper considers the detection of spatial domain least significant bit (LSB matching steganography in gray images. Natural images hold some inherent properties, such as histogram, dependence between neighboring pixels, and dependence among pixels that are not adjacent to each other. These properties are likely to be disturbed by LSB matching. Firstly, histogram will become smoother after LSB matching. Secondly, the two kinds of dependence will be weakened by the message embedding. Accordingly, three features, which are respectively based on image histogram, neighborhood degree histogram and run-length histogram, are extracted at first. Then, support vector machine is utilized to learn and discriminate the difference of features between cover and stego images. Experimental results prove that the proposed method possesses reliable detection ability and outperforms the two previous state-of-the-art methods. Further more, the conclusions are drawn by analyzing the individual performance of three features and their fused feature.

  9. Inclusion of mobile phone numbers into an ongoing population health survey in New South Wales, Australia: design, methods, call outcomes, costs and sample representativeness.

    Science.gov (United States)

    Barr, Margo L; van Ritten, Jason J; Steel, David G; Thackway, Sarah V

    2012-11-22

    In Australia telephone surveys have been the method of choice for ongoing jurisdictional population health surveys. Although it was estimated in 2011 that nearly 20% of the Australian population were mobile-only phone users, the inclusion of mobile phone numbers into these existing landline population health surveys has not occurred. This paper describes the methods used for the inclusion of mobile phone numbers into an existing ongoing landline random digit dialling (RDD) health survey in an Australian state, the New South Wales Population Health Survey (NSWPHS). This paper also compares the call outcomes, costs and the representativeness of the resultant sample to that of the previous landline sample. After examining several mobile phone pilot studies conducted in Australia and possible sample designs (screening dual-frame and overlapping dual-frame), mobile phone numbers were included into the NSWPHS using an overlapping dual-frame design. Data collection was consistent, where possible, with the previous years' landline RDD phone surveys and between frames. Survey operational data for the frames were compared and combined. Demographic information from the interview data for mobile-only phone users, both, and total were compared to the landline frame using χ2 tests. Demographic information for each frame, landline and the mobile-only (equivalent to a screening dual frame design), and the frames combined (with appropriate overlap adjustment) were compared to the NSW demographic profile from the 2011 census using χ2 tests. In the first quarter of 2012, 3395 interviews were completed with 2171 respondents (63.9%) from the landline frame (17.6% landline only) and 1224 (36.1%) from the mobile frame (25.8% mobile only). Overall combined response, contact and cooperation rates were 33.1%, 65.1% and 72.2% respectively. As expected from previous research, the demographic profile of the mobile-only phone respondents differed most (more that were young, males, Aboriginal

  10. Incorporating Meaningful Gamification in a Blended Learning Research Methods Class: Examining Student Learning, Engagement, and Affective Outcomes

    Science.gov (United States)

    Tan, Meng; Hew, Khe Foon

    2016-01-01

    In this study, we investigated how the use of meaningful gamification affects student learning, engagement, and affective outcomes in a short, 3-day blended learning research methods class using a combination of experimental and qualitative research methods. Twenty-two postgraduates were randomly split into two groups taught by the same…

  11. Prediction of Student Dropout in E-Learning Program Through the Use of Machine Learning Method

    Directory of Open Access Journals (Sweden)

    Mingjie Tan

    2015-02-01

    Full Text Available The high rate of dropout is a serious problem in E-learning program. Thus it has received extensive concern from the education administrators and researchers. Predicting the potential dropout students is a workable solution to prevent dropout. Based on the analysis of related literature, this study selected student’s personal characteristic and academic performance as input attributions. Prediction models were developed using Artificial Neural Network (ANN, Decision Tree (DT and Bayesian Networks (BNs. A large sample of 62375 students was utilized in the procedures of model training and testing. The results of each model were presented in confusion matrix, and analyzed by calculating the rates of accuracy, precision, recall, and F-measure. The results suggested all of the three machine learning methods were effective in student dropout prediction, and DT presented a better performance. Finally, some suggestions were made for considerable future research.

  12. A Simple Deep Learning Method for Neuronal Spike Sorting

    Science.gov (United States)

    Yang, Kai; Wu, Haifeng; Zeng, Yu

    2017-10-01

    Spike sorting is one of key technique to understand brain activity. With the development of modern electrophysiology technology, some recent multi-electrode technologies have been able to record the activity of thousands of neuronal spikes simultaneously. The spike sorting in this case will increase the computational complexity of conventional sorting algorithms. In this paper, we will focus spike sorting on how to reduce the complexity, and introduce a deep learning algorithm, principal component analysis network (PCANet) to spike sorting. The introduced method starts from a conventional model and establish a Toeplitz matrix. Through the column vectors in the matrix, we trains a PCANet, where some eigenvalue vectors of spikes could be extracted. Finally, support vector machine (SVM) is used to sort spikes. In experiments, we choose two groups of simulated data from public databases availably and compare this introduced method with conventional methods. The results indicate that the introduced method indeed has lower complexity with the same sorting errors as the conventional methods.

  13. PYRAMID METHOD OF DISTANCE LEARNING IN HIGER EDUCATION

    Directory of Open Access Journals (Sweden)

    Дмитрий Васильевич Сенашенко

    2017-12-01

    Full Text Available The article deals with modern methods of distance learning in the corporate sector. On the specifics of the application of the described methods is their classification and be subject to review their specific differences based on the features and applications of these techniques given the characteristics of the organization of teaching in higher education, a conclusion about their preferred sides, which can be used in distance education. Later in the article, taking into account the above factors, it is proposed an innovative method of formation of educational programs. In view of the similarity of the rendered appearance of the pyramids, this technique proposed name “pyramid”. Offered by the authors, this technique is best synthesis of the best features of the previously described in the article for the online teaching methods. In the future, we are given a detailed description and conducted a preliminary analysis of the applicability of this technique to the training process in the Russian Federation. The analysis describes the eight alleged authors of distance education problems of high school that this method can help to solve.

  14. Callings and Organizational Behavior

    Science.gov (United States)

    Elangovan, A. R.; Pinder, Craig C.; McLean, Murdith

    2010-01-01

    Current literature on careers, social identity and meaning in work tends to understate the multiplicity, historical significance, and nuances of the concept of calling(s). In this article, we trace the evolution of the concept from its religious roots into secular realms and develop a typology of interpretations using occupation and religious…

  15. Learning Specific Content in Technology Education: Learning Study as a Collaborative Method in Swedish Preschool Class Using Hands-On Material

    Science.gov (United States)

    Kilbrink, Nina; Bjurulf, Veronica; Blomberg, Ingela; Heidkamp, Anja; Hollsten, Ann-Christin

    2014-01-01

    This article describes the process of a learning study conducted in technology education in a Swedish preschool class. The learning study method used in this study is a collaborative method, where researchers and teachers work together as a team concerning teaching and learning about a specific learning object. The object of learning in this study…

  16. A Learning Method for Neural Networks Based on a Pseudoinverse Technique

    Directory of Open Access Journals (Sweden)

    Chinmoy Pal

    1996-01-01

    Full Text Available A theoretical formulation of a fast learning method based on a pseudoinverse technique is presented. The efficiency and robustness of the method are verified with the help of an Exclusive OR problem and a dynamic system identification of a linear single degree of freedom mass–spring problem. It is observed that, compared with the conventional backpropagation method, the proposed method has a better convergence rate and a higher degree of learning accuracy with a lower equivalent learning coefficient. It is also found that unlike the steepest descent method, the learning capability of which is dependent on the value of the learning coefficient ν, the proposed pseudoinverse based backpropagation algorithm is comparatively robust with respect to its equivalent variable learning coefficient. A combination of the pseudoinverse method and the steepest descent method is proposed for a faster, more accurate learning capability.

  17. Internet-based versus traditional teaching and learning methods.

    Science.gov (United States)

    Guarino, Salvatore; Leopardi, Eleonora; Sorrenti, Salvatore; De Antoni, Enrico; Catania, Antonio; Alagaratnam, Swethan

    2014-10-01

    The rapid and dramatic incursion of the Internet and social networks in everyday life has revolutionised the methods of exchanging data. Web 2.0 represents the evolution of the Internet as we know it. Internet users are no longer passive receivers, and actively participate in the delivery of information. Medical education cannot evade this process. Increasingly, students are using tablets and smartphones to instantly retrieve medical information on the web or are exchanging materials on their Facebook pages. Medical educators cannot ignore this continuing revolution, and therefore the traditional academic schedules and didactic schemes should be questioned. Analysing opinions collected from medical students regarding old and new teaching methods and tools has become mandatory, with a view towards renovating the process of medical education. A cross-sectional online survey was created with Google® docs and administrated to all students of our medical school. Students were asked to express their opinion on their favourite teaching methods, learning tools, Internet websites and Internet delivery devices. Data analysis was performed using spss. The online survey was completed by 368 students. Although textbooks remain a cornerstone for training, students also identified Internet websites, multimedia non-online material, such as the Encyclopaedia on CD-ROM, and other non-online computer resources as being useful. The Internet represented an important aid to support students' learning needs, but textbooks are still their resource of choice. Among the websites noted, Google and Wikipedia significantly surpassed the peer-reviewed medical databases, and access to the Internet was primarily through personal computers in preference to other Internet access devices, such as mobile phones and tablet computers. Increasingly, students are using tablets and smartphones to instantly retrieve medical information. © 2014 John Wiley & Sons Ltd.

  18. The Keyword Method of Foreign Vocabulary Learning: An Investigation of Its Generalizability. Working Paper No. 270.

    Science.gov (United States)

    Pressley, Michael; And Others

    In five experiments, college-age students of differing foreign language-learning abilities were asked to learn Latin word translations to determine the effectiveness of the keyword method of foreign language vocabulary learning. The Latin words were the types for which it has been argued that the keyword method effects would be maximized (the…

  19. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    Science.gov (United States)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  20. Statistical and Machine Learning forecasting methods: Concerns and ways forward.

    Science.gov (United States)

    Makridakis, Spyros; Spiliotis, Evangelos; Assimakopoulos, Vassilios

    2018-01-01

    Machine Learning (ML) methods have been proposed in the academic literature as alternatives to statistical ones for time series forecasting. Yet, scant evidence is available about their relative performance in terms of accuracy and computational requirements. The purpose of this paper is to evaluate such performance across multiple forecasting horizons using a large subset of 1045 monthly time series used in the M3 Competition. After comparing the post-sample accuracy of popular ML methods with that of eight traditional statistical ones, we found that the former are dominated across both accuracy measures used and for all forecasting horizons examined. Moreover, we observed that their computational requirements are considerably greater than those of statistical methods. The paper discusses the results, explains why the accuracy of ML models is below that of statistical ones and proposes some possible ways forward. The empirical results found in our research stress the need for objective and unbiased ways to test the performance of forecasting methods that can be achieved through sizable and open competitions allowing meaningful comparisons and definite conclusions.

  1. Statistical and Machine Learning forecasting methods: Concerns and ways forward

    Science.gov (United States)

    Makridakis, Spyros; Assimakopoulos, Vassilios

    2018-01-01

    Machine Learning (ML) methods have been proposed in the academic literature as alternatives to statistical ones for time series forecasting. Yet, scant evidence is available about their relative performance in terms of accuracy and computational requirements. The purpose of this paper is to evaluate such performance across multiple forecasting horizons using a large subset of 1045 monthly time series used in the M3 Competition. After comparing the post-sample accuracy of popular ML methods with that of eight traditional statistical ones, we found that the former are dominated across both accuracy measures used and for all forecasting horizons examined. Moreover, we observed that their computational requirements are considerably greater than those of statistical methods. The paper discusses the results, explains why the accuracy of ML models is below that of statistical ones and proposes some possible ways forward. The empirical results found in our research stress the need for objective and unbiased ways to test the performance of forecasting methods that can be achieved through sizable and open competitions allowing meaningful comparisons and definite conclusions. PMID:29584784

  2. Short message service (SMS) texting as a method of communication during on call: prevalence and experience of medical staff in a large acute NHS Trust in the UK.

    Science.gov (United States)

    Matharu, J; Hale, B; Ammar, M; Brennan, P A

    2016-10-01

    With the widespread use of smartphones, text messaging has become an accepted form of communication for both social and professional use in medicine. To our knowledge no published studies have assessed the prevalence and use of short message service (SMS) texting by doctors on call. We have used an online questionnaire to seek information from doctors in a large NHS Trust in the UK about their use of texting while on call, what they use it for, and whether they send images relevant to patients' care. We received 302 responses (43% response rate), of whom 166 (55%) used SMS while on call. There was a significant association between SMS and age group (p=0.005), with the 20-30-year-old group using it much more than the other age groups. Doctors in the surgical specialties used it significantly less than those in other speciality groups (pcall was deemed to be safe and reliable (pcommunication to use when on call. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  3. Learning the scientific method using GloFish.

    Science.gov (United States)

    Vick, Brianna M; Pollak, Adrianna; Welsh, Cynthia; Liang, Jennifer O

    2012-12-01

    Here we describe projects that used GloFish, brightly colored, fluorescent, transgenic zebrafish, in experiments that enabled students to carry out all steps in the scientific method. In the first project, students in an undergraduate genetics laboratory course successfully tested hypotheses about the relationships between GloFish phenotypes and genotypes using PCR, fluorescence microscopy, and test crosses. In the second and third projects, students doing independent research carried out hypothesis-driven experiments that also developed new GloFish projects for future genetics laboratory students. Brianna Vick, an undergraduate student, identified causes of the different shades of color found in orange GloFish. Adrianna Pollak, as part of a high school science fair project, characterized the fluorescence emission patterns of all of the commercially available colors of GloFish (red, orange, yellow, green, blue, and purple). The genetics laboratory students carrying out the first project found that learning new techniques and applying their knowledge of genetics were valuable. However, assessments of their learning suggest that this project was not challenging to many of the students. Thus, the independent projects will be valuable as bases to widen the scope and range of difficulty of experiments available to future genetics laboratory students.

  4. Machine Learning-Empowered Biometric Methods for Biomedicine Applications

    Directory of Open Access Journals (Sweden)

    Qingxue Zhang

    2017-07-01

    Full Text Available Nowadays, pervasive computing technologies are paving a promising way for advanced smart health applications. However, a key impediment faced by wide deployment of these assistive smart devices, is the increasing privacy and security issue, such as how to protect access to sensitive patient data in the health record. Focusing on this challenge, biometrics are attracting intense attention in terms of effective user identification to enable confidential health applications. In this paper, we take special interest in two bio-potential-based biometric modalities, electrocardiogram (ECG and electroencephalogram (EEG, considering that they are both unique to individuals, and more reliable than token (identity card and knowledge-based (username/password methods. After extracting effective features in multiple domains from ECG/EEG signals, several advanced machine learning algorithms are introduced to perform the user identification task, including Neural Network, K-nearest Neighbor, Bagging, Random Forest and AdaBoost. Experimental results on two public ECG and EEG datasets show that ECG is a more robust biometric modality compared to EEG, leveraging a higher signal to noise ratio and also more distinguishable morphological patterns. Among different machine learning classifiers, the random forest greatly outperforms the others and owns an identification rate as high as 98%. This study is expected to demonstrate that properly selected biometric empowered by an effective machine learner owns a great potential, to enable confidential biomedicine applications in the era of smart digital health.

  5. E-learning support for Economic-mathematical methods

    Directory of Open Access Journals (Sweden)

    Pavel Kolman

    2009-01-01

    Full Text Available Article is describing process of creating and using of e-learning program for graphical solution of li­near programming problems that is used in the Economic mathematical methods course on Faculty of Business and Economics, MZLU. The program was created within FRVŠ 788/2008 grant and is intended for practicing of graphical solution of LP problems and allows better understanding of the li­near programming problems. In the article is on one hand described the way, how does the program work, it means how were the algorithms implemented, and on the other hand there is described way of use of that program. The program is constructed for working with integer and rational numbers. At the end of the article are shown basic statistics of programs use of students in the present form and the part-time form of study. It is mainly the number of programs downloads and comparison to another programs and students opinion on the e-learning support.

  6. Geocoding location expressions in Twitter messages: A preference learning method

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-12-01

    Full Text Available Resolving location expressions in text to the correct physical location, also known as geocoding or grounding, is complicated by the fact that so many places around the world share the same name. Correct resolution is made even more difficult when there is little context to determine which place is intended, as in a 140-character Twitter message, or when location cues from different sources conflict, as may be the case among different metadata fields of a Twitter message. We used supervised machine learning to weigh the different fields of the Twitter message and the features of a world gazetteer to create a model that will prefer the correct gazetteer candidate to resolve the extracted expression. We evaluated our model using the F1 measure and compared it to similar algorithms. Our method achieved results higher than state-of-the-art competitors.

  7. Employing Machine-Learning Methods to Study Young Stellar Objects

    Science.gov (United States)

    Moore, Nicholas

    2018-01-01

    Vast amounts of data exist in the astronomical data archives, and yet a large number of sources remain unclassified. We developed a multi-wavelength pipeline to classify infrared sources. The pipeline uses supervised machine learning methods to classify objects into the appropriate categories. The program is fed data that is already classified to train it, and is then applied to unknown catalogues. The primary use for such a pipeline is the rapid classification and cataloging of data that would take a much longer time to classify otherwise. While our primary goal is to study young stellar objects (YSOs), the applications extend beyond the scope of this project. We present preliminary results from our analysis and discuss future applications.

  8. BEBP: An Poisoning Method Against Machine Learning Based IDSs

    OpenAIRE

    Li, Pan; Liu, Qiang; Zhao, Wentao; Wang, Dongxu; Wang, Siqi

    2018-01-01

    In big data era, machine learning is one of fundamental techniques in intrusion detection systems (IDSs). However, practical IDSs generally update their decision module by feeding new data then retraining learning models in a periodical way. Hence, some attacks that comprise the data for training or testing classifiers significantly challenge the detecting capability of machine learning-based IDSs. Poisoning attack, which is one of the most recognized security threats towards machine learning...

  9. Call cultures in orang-utans?

    Directory of Open Access Journals (Sweden)

    Serge A Wich

    Full Text Available BACKGROUND: Several studies suggested great ape cultures, arguing that human cumulative culture presumably evolved from such a foundation. These focused on conspicuous behaviours, and showed rich geographic variation, which could not be attributed to known ecological or genetic differences. Although geographic variation within call types (accents has previously been reported for orang-utans and other primate species, we examine geographic variation in the presence/absence of discrete call types (dialects. Because orang-utans have been shown to have geographic variation that is not completely explicable by genetic or ecological factors we hypothesized that this will be similar in the call domain and predict that discrete call type variation between populations will be found. METHODOLOGY/PRINCIPAL FINDINGS: We examined long-term behavioural data from five orang-utan populations and collected fecal samples for genetic analyses. We show that there is geographic variation in the presence of discrete types of calls. In exactly the same behavioural context (nest building and infant retrieval, individuals in different wild populations customarily emit either qualitatively different calls or calls in some but not in others. By comparing patterns in call-type and genetic similarity, we suggest that the observed variation is not likely to be explained by genetic or ecological differences. CONCLUSION/SIGNIFICANCE: These results are consistent with the potential presence of 'call cultures' and suggest that wild orang-utans possess the ability to invent arbitrary calls, which spread through social learning. These findings differ substantially from those that have been reported for primates before. First, the results reported here are on dialect and not on accent. Second, this study presents cases of production learning whereas most primate studies on vocal learning were cases of contextual learning. We conclude with speculating on how these findings might

  10. Housing Value Forecasting Based on Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Jingyi Mu

    2014-01-01

    Full Text Available In the era of big data, many urgent issues to tackle in all walks of life all can be solved via big data technique. Compared with the Internet, economy, industry, and aerospace fields, the application of big data in the area of architecture is relatively few. In this paper, on the basis of the actual data, the values of Boston suburb houses are forecast by several machine learning methods. According to the predictions, the government and developers can make decisions about whether developing the real estate on corresponding regions or not. In this paper, support vector machine (SVM, least squares support vector machine (LSSVM, and partial least squares (PLS methods are used to forecast the home values. And these algorithms are compared according to the predicted results. Experiment shows that although the data set exists serious nonlinearity, the experiment result also show SVM and LSSVM methods are superior to PLS on dealing with the problem of nonlinearity. The global optimal solution can be found and best forecasting effect can be achieved by SVM because of solving a quadratic programming problem. In this paper, the different computation efficiencies of the algorithms are compared according to the computing times of relevant algorithms.

  11. Nurse practitioner preferences for distance education methods related to learning style, course content, and achievement.

    Science.gov (United States)

    Andrusyszyn, M A; Cragg, C E; Humbert, J

    2001-04-01

    The relationships among multiple distance delivery methods, preferred learning style, content, and achievement was sought for primary care nurse practitioner students. A researcher-designed questionnaire was completed by 86 (71%) participants, while 6 engaged in follow-up interviews. The results of the study included: participants preferred learning by "considering the big picture"; "setting own learning plans"; and "focusing on concrete examples." Several positive associations were found: learning on own with learning by reading, and setting own learning plans; small group with learning through discussion; large group with learning new things through hearing and with having learning plans set by others. The most preferred method was print-based material and the least preferred method was audio tape. The most suited method for content included video teleconferencing for counseling, political action, and transcultural issues; and video tape for physical assessment. Convenience, self-direction, and timing of learning were more important than delivery method or learning style. Preferred order of learning was reading, discussing, observing, doing, and reflecting. Recommended considerations when designing distance courses include a mix of delivery methods, specific content, outcomes, learner characteristics, and state of technology.

  12. Computerization of Hungarian reforestation manual with machine learning methods

    Science.gov (United States)

    Czimber, Kornél; Gálos, Borbála; Mátyás, Csaba; Bidló, András; Gribovszki, Zoltán

    2017-04-01

    Hungarian forests are highly sensitive to the changing climate, especially to the available precipitation amount. Over the past two decades several drought damages were observed for tree species which are in the lower xeric limit of their distribution. From year to year these affected forest stands become more difficult to reforest with the same native species because these are not able to adapt to the increasing probability of droughts. The climate related parameter set of the Hungarian forest stand database needs updates. Air humidity that was formerly used to define the forest climate zones is not measured anymore and its value based on climate model outputs is highly uncertain. The aim was to develop a novel computerized and objective method to describe the species-specific climate conditions that is essential for survival, growth and optimal production of the forest ecosystems. The method is expected to project the species spatial distribution until 2100 on the basis of regional climate model simulations. Until now, Hungarian forest managers have been using a carefully edited spreadsheet for reforestation purposes. Applying binding regulations this spreadsheet prescribes the stand-forming and admixed tree species and their expected growth rate for each forest site types. We are going to present a new machine learning based method to replace the former spreadsheet. We took into great consideration of various methods, such as maximum likelihood, Bayesian networks, Fuzzy logic. The method calculates distributions, setups classification, which can be validated and modified by experts if necessary. Projected climate change conditions makes necessary to include into this system an additional climate zone that does not exist in our region now, as well as new options for potential tree species. In addition to or instead of the existing ones, the influence of further limiting parameters (climatic extremes, soil water retention) are also investigated. Results will be

  13. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection.

    Science.gov (United States)

    Kim, Jihun; Kim, Jonghong; Jang, Gil-Jin; Lee, Minho

    2017-03-01

    Deep learning has received significant attention recently as a promising solution to many problems in the area of artificial intelligence. Among several deep learning architectures, convolutional neural networks (CNNs) demonstrate superior performance when compared to other machine learning methods in the applications of object detection and recognition. We use a CNN for image enhancement and the detection of driving lanes on motorways. In general, the process of lane detection consists of edge extraction and line detection. A CNN can be used to enhance the input images before lane detection by excluding noise and obstacles that are irrelevant to the edge detection result. However, training conventional CNNs requires considerable computation and a big dataset. Therefore, we suggest a new learning algorithm for CNNs using an extreme learning machine (ELM). The ELM is a fast learning method used to calculate network weights between output and hidden layers in a single iteration and thus, can dramatically reduce learning time while producing accurate results with minimal training data. A conventional ELM can be applied to networks with a single hidden layer; as such, we propose a stacked ELM architecture in the CNN framework. Further, we modify the backpropagation algorithm to find the targets of hidden layers and effectively learn network weights while maintaining performance. Experimental results confirm that the proposed method is effective in reducing learning time and improving performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Learner Personas in CALL

    Science.gov (United States)

    Heift, Trude

    2007-01-01

    In examining the titles of this year's conference presentations, the author noticed quite a few papers that focus on learner-specific issues, for instance, papers that address learning styles, learner needs, personality and learning, learner modeling and, more generally, pedagogical issues that deal with individual learner differences in…

  15. Understanding the Effects of Time on Collaborative Learning Processes in Problem Based Learning: A Mixed Methods Study

    Science.gov (United States)

    Hommes, J.; Van den Bossche, P.; de Grave, W.; Bos, G.; Schuwirth, L.; Scherpbier, A.

    2014-01-01

    Little is known how time influences collaborative learning groups in medical education. Therefore a thorough exploration of the development of learning processes over time was undertaken in an undergraduate PBL curriculum over 18 months. A mixed-methods triangulation design was used. First, the quantitative study measured how various learning…

  16. Project-Based Learning Using Discussion and Lesson-Learned Methods via Social Media Model for Enhancing Problem Solving Skills

    Science.gov (United States)

    Jewpanich, Chaiwat; Piriyasurawong, Pallop

    2015-01-01

    This research aims to 1) develop the project-based learning using discussion and lesson-learned methods via social media model (PBL-DLL SoMe Model) used for enhancing problem solving skills of undergraduate in education student, and 2) evaluate the PBL-DLL SoMe Model used for enhancing problem solving skills of undergraduate in education student.…

  17. Cross-organism learning method to discover new gene functionalities.

    Science.gov (United States)

    Domeniconi, Giacomo; Masseroli, Marco; Moro, Gianluca; Pinoli, Pietro

    2016-04-01

    Knowledge of gene and protein functions is paramount for the understanding of physiological and pathological biological processes, as well as in the development of new drugs and therapies. Analyses for biomedical knowledge discovery greatly benefit from the availability of gene and protein functional feature descriptions expressed through controlled terminologies and ontologies, i.e., of gene and protein biomedical controlled annotations. In the last years, several databases of such annotations have become available; yet, these valuable annotations are incomplete, include errors and only some of them represent highly reliable human curated information. Computational techniques able to reliably predict new gene or protein annotations with an associated likelihood value are thus paramount. Here, we propose a novel cross-organisms learning approach to reliably predict new functionalities for the genes of an organism based on the known controlled annotations of the genes of another, evolutionarily related and better studied, organism. We leverage a new representation of the annotation discovery problem and a random perturbation of the available controlled annotations to allow the application of supervised algorithms to predict with good accuracy unknown gene annotations. Taking advantage of the numerous gene annotations available for a well-studied organism, our cross-organisms learning method creates and trains better prediction models, which can then be applied to predict new gene annotations of a target organism. We tested and compared our method with the equivalent single organism approach on different gene annotation datasets of five evolutionarily related organisms (Homo sapiens, Mus musculus, Bos taurus, Gallus gallus and Dictyostelium discoideum). Results show both the usefulness of the perturbation method of available annotations for better prediction model training and a great improvement of the cross-organism models with respect to the single-organism ones

  18. Machine Learning Methods for Prediction of CDK-Inhibitors

    Science.gov (United States)

    Ramana, Jayashree; Gupta, Dinesh

    2010-01-01

    Progression through the cell cycle involves the coordinated activities of a suite of cyclin/cyclin-dependent kinase (CDK) complexes. The activities of the complexes are regulated by CDK inhibitors (CDKIs). Apart from its role as cell cycle regulators, CDKIs are involved in apoptosis, transcriptional regulation, cell fate determination, cell migration and cytoskeletal dynamics. As the complexes perform crucial and diverse functions, these are important drug targets for tumour and stem cell therapeutic interventions. However, CDKIs are represented by proteins with considerable sequence heterogeneity and may fail to be identified by simple similarity search methods. In this work we have evaluated and developed machine learning methods for identification of CDKIs. We used different compositional features and evolutionary information in the form of PSSMs, from CDKIs and non-CDKIs for generating SVM and ANN classifiers. In the first stage, both the ANN and SVM models were evaluated using Leave-One-Out Cross-Validation and in the second stage these were tested on independent data sets. The PSSM-based SVM model emerged as the best classifier in both the stages and is publicly available through a user-friendly web interface at http://bioinfo.icgeb.res.in/cdkipred. PMID:20967128

  19. Machine-learning methods in the classification of water bodies

    Directory of Open Access Journals (Sweden)

    Sołtysiak Marek

    2016-06-01

    Full Text Available Amphibian species have been considered as useful ecological indicators. They are used as indicators of environmental contamination, ecosystem health and habitat quality., Amphibian species are sensitive to changes in the aquatic environment and therefore, may form the basis for the classification of water bodies. Water bodies in which there are a large number of amphibian species are especially valuable even if they are located in urban areas. The automation of the classification process allows for a faster evaluation of the presence of amphibian species in the water bodies. Three machine-learning methods (artificial neural networks, decision trees and the k-nearest neighbours algorithm have been used to classify water bodies in Chorzów – one of 19 cities in the Upper Silesia Agglomeration. In this case, classification is a supervised data mining method consisting of several stages such as building the model, the testing phase and the prediction. Seven natural and anthropogenic features of water bodies (e.g. the type of water body, aquatic plants, the purpose of the water body (destination, position of the water body in relation to any possible buildings, condition of the water body, the degree of littering, the shore type and fishing activities have been taken into account in the classification. The data set used in this study involved information about 71 different water bodies and 9 amphibian species living in them. The results showed that the best average classification accuracy was obtained with the multilayer perceptron neural network.

  20. Recent Advances in Conotoxin Classification by Using Machine Learning Methods.

    Science.gov (United States)

    Dao, Fu-Ying; Yang, Hui; Su, Zhen-Dong; Yang, Wuritu; Wu, Yun; Hui, Ding; Chen, Wei; Tang, Hua; Lin, Hao

    2017-06-25

    Conotoxins are disulfide-rich small peptides, which are invaluable peptides that target ion channel and neuronal receptors. Conotoxins have been demonstrated as potent pharmaceuticals in the treatment of a series of diseases, such as Alzheimer's disease, Parkinson's disease, and epilepsy. In addition, conotoxins are also ideal molecular templates for the development of new drug lead compounds and play important roles in neurobiological research as well. Thus, the accurate identification of conotoxin types will provide key clues for the biological research and clinical medicine. Generally, conotoxin types are confirmed when their sequence, structure, and function are experimentally validated. However, it is time-consuming and costly to acquire the structure and function information by using biochemical experiments. Therefore, it is important to develop computational tools for efficiently and effectively recognizing conotoxin types based on sequence information. In this work, we reviewed the current progress in computational identification of conotoxins in the following aspects: (i) construction of benchmark dataset; (ii) strategies for extracting sequence features; (iii) feature selection techniques; (iv) machine learning methods for classifying conotoxins; (v) the results obtained by these methods and the published tools; and (vi) future perspectives on conotoxin classification. The paper provides the basis for in-depth study of conotoxins and drug therapy research.

  1. Learning a specific content in technology education : Learning Study as collaborative method in Swedish preschool class using hands-on material 

    OpenAIRE

    Kilbrink, Nina; Bjurulf, Veronica; Blomberg, Ingela; Heidkamp, Anja; Hollsten, Ann-Christin

    2014-01-01

    This article describes the process of a learning study conducted in technology education in a Swedish preschool class. The learning study method used in this study is a collaborative method, where researchers and teachers work together as a team concerning teaching and learning about a specific learning object. The object of learning in this study concerns strong constructions and framed structures. This article describes how this learning study was conducted and discusses reflections made du...

  2. Assessing call centers’ success:

    Directory of Open Access Journals (Sweden)

    Hesham A. Baraka

    2013-07-01

    This paper introduces a model to evaluate the performance of call centers based on the Delone and McLean Information Systems success model. A number of indicators are identified to track the call center’s performance. Mapping of the proposed indicators to the six dimensions of the D&M model is presented. A Weighted Call Center Performance Index is proposed to assess the call center performance; the index is used to analyze the effect of the identified indicators. Policy-Weighted approach was used to assume the weights with an analysis of different weights for each dimension. The analysis of the different weights cases gave priority to the User satisfaction and net Benefits dimension as the two outcomes from the system. For the input dimensions, higher priority was given to the system quality and the service quality dimension. Call centers decision makers can use the tool to tune the different weights in order to reach the objectives set by the organization. Multiple linear regression analysis was used in order to provide a linear formula for the User Satisfaction dimension and the Net Benefits dimension in order to be able to forecast the values for these two dimensions as function of the other dimensions

  3. DLTAP: A Network-efficient Scheduling Method for Distributed Deep Learning Workload in Containerized Cluster Environment

    Directory of Open Access Journals (Sweden)

    Qiao Wei

    2017-01-01

    Full Text Available Deep neural networks (DNNs have recently yielded strong results on a range of applications. Training these DNNs using a cluster of commodity machines is a promising approach since training is time consuming and compute-intensive. Furthermore, putting DNN tasks into containers of clusters would enable broader and easier deployment of DNN-based algorithms. Toward this end, this paper addresses the problem of scheduling DNN tasks in the containerized cluster environment. Efficiently scheduling data-parallel computation jobs like DNN over containerized clusters is critical for job performance, system throughput, and resource utilization. It becomes even more challenging with the complex workloads. We propose a scheduling method called Deep Learning Task Allocation Priority (DLTAP which performs scheduling decisions in a distributed manner, and each of scheduling decisions takes aggregation degree of parameter sever task and worker task into account, in particularly, to reduce cross-node network transmission traffic and, correspondingly, decrease the DNN training time. We evaluate the DLTAP scheduling method using a state-of-the-art distributed DNN training framework on 3 benchmarks. The results show that the proposed method can averagely reduce 12% cross-node network traffic, and decrease the DNN training time even with the cluster of low-end servers.

  4. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets.

    Science.gov (United States)

    Korotcov, Alexandru; Tkachenko, Valery; Russo, Daniel P; Ekins, Sean

    2017-12-04

    Machine learning methods have been applied to many data sets in pharmaceutical research for several decades. The relative ease and availability of fingerprint type molecular descriptors paired with Bayesian methods resulted in the widespread use of this approach for a diverse array of end points relevant to drug discovery. Deep learning is the latest machine learning algorithm attracting attention for many of pharmaceutical applications from docking to virtual screening. Deep learning is based on an artificial neural network with multiple hidden layers and has found considerable traction for many artificial intelligence applications. We have previously suggested the need for a comparison of different machine learning methods with deep learning across an array of varying data sets that is applicable to pharmaceutical research. End points relevant to pharmaceutical research include absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, as well as activity against pathogens and drug discovery data sets. In this study, we have used data sets for solubility, probe-likeness, hERG, KCNQ1, bubonic plague, Chagas, tuberculosis, and malaria to compare different machine learning methods using FCFP6 fingerprints. These data sets represent whole cell screens, individual proteins, physicochemical properties as well as a data set with a complex end point. Our aim was to assess whether deep learning offered any improvement in testing when assessed using an array of metrics including AUC, F1 score, Cohen's kappa, Matthews correlation coefficient and others. Based on ranked normalized scores for the metrics or data sets Deep Neural Networks (DNN) ranked higher than SVM, which in turn was ranked higher than all the other machine learning methods. Visualizing these properties for training and test sets using radar type plots indicates when models are inferior or perhaps over trained. These results also suggest the need for assessing deep learning further

  5. The Implementation of Discovery Learning Method to Increase Learning Outcomes and Motivation of Student in Senior High School

    Directory of Open Access Journals (Sweden)

    Nanda Saridewi

    2017-11-01

    Full Text Available Based on data from the observation of high school students grade XI that daily low student test scores due to a lack of role of students in the learning process. This classroom action research aims to improve learning outcomes and student motivation through discovery learning method in colloidal material. This study uses the approach developed by Lewin consisting of planning, action, observation, and reflection. Data collection techniques used the questionnaires and ability tests end. Based on the research that results for students received a positive influence on learning by discovery learning model by increasing the average value of 74 students from the first cycle to 90.3 in the second cycle and increased student motivation in the form of two statements based competence (KD categories (sometimes on the first cycle and the first statement KD category in the second cycle. Thus the results of this study can be used to improve learning outcomes and student motivation

  6. Computer game-based and traditional learning method: a comparison regarding students’ knowledge retention

    Directory of Open Access Journals (Sweden)

    Rondon Silmara

    2013-02-01

    Full Text Available Abstract Background Educational computer games are examples of computer-assisted learning objects, representing an educational strategy of growing interest. Given the changes in the digital world over the last decades, students of the current generation expect technology to be used in advancing their learning requiring a need to change traditional passive learning methodologies to an active multisensory experimental learning methodology. The objective of this study was to compare a computer game-based learning method with a traditional learning method, regarding learning gains and knowledge retention, as means of teaching head and neck Anatomy and Physiology to Speech-Language and Hearing pathology undergraduate students. Methods Students were randomized to participate to one of the learning methods and the data analyst was blinded to which method of learning the students had received. Students’ prior knowledge (i.e. before undergoing the learning method, short-term knowledge retention and long-term knowledge retention (i.e. six months after undergoing the learning method were assessed with a multiple choice questionnaire. Students’ performance was compared considering the three moments of assessment for both for the mean total score and for separated mean scores for Anatomy questions and for Physiology questions. Results Students that received the game-based method performed better in the pos-test assessment only when considering the Anatomy questions section. Students that received the traditional lecture performed better in both post-test and long-term post-test when considering the Anatomy and Physiology questions. Conclusions The game-based learning method is comparable to the traditional learning method in general and in short-term gains, while the traditional lecture still seems to be more effective to improve students’ short and long-term knowledge retention.

  7. Care and calls

    DEFF Research Database (Denmark)

    Paasch, Bettina Sletten

    -centred care through the use of tactile resources and embodied orientations while they attend to the phone call. Experienced nurses Thus perform multiactivity by distributing attention towards both the patient and the phone, and the analysis shows that their concrete ways of doing so depend on the complex...... they are telephoned during interactions with patients are not universal. Indeed different strategies have evolved in other hospital departments. Not only does this thesis contribute insights into the way nurses manage phone calls during interactions with patients, but by subscribing to a growing body of embodied...... of human interaction....

  8. L2 Vocabulary Acquisition in Children: Effects of Learning Method and Cognate Status

    Science.gov (United States)

    Tonzar, Claudio; Lotto, Lorella; Job, Remo

    2009-01-01

    In this study we investigated the effects of two learning methods (picture- or word-mediated learning) and of word status (cognates vs. noncognates) on the vocabulary acquisition of two foreign languages: English and German. We examined children from fourth and eighth grades in a school setting. After a learning phase during which L2 words were…

  9. Spatial Visualization Learning in Engineering: Traditional Methods vs. a Web-Based Tool

    Science.gov (United States)

    Pedrosa, Carlos Melgosa; Barbero, Basilio Ramos; Miguel, Arturo Román

    2014-01-01

    This study compares an interactive learning manager for graphic engineering to develop spatial vision (ILMAGE_SV) to traditional methods. ILMAGE_SV is an asynchronous web-based learning tool that allows the manipulation of objects with a 3D viewer, self-evaluation, and continuous assessment. In addition, student learning may be monitored, which…

  10. Application of a Novel Collaboration Engineering Method for Learning Design: A Case Study

    Science.gov (United States)

    Cheng, Xusen; Li, Yuanyuan; Sun, Jianshan; Huang, Jianqing

    2016-01-01

    Collaborative case studies and computer-supported collaborative learning (CSCL) play an important role in the modern education environment. A number of researchers have given significant attention to learning design in order to improve the satisfaction of collaborative learning. Although collaboration engineering (CE) is a mature method widely…

  11. Strategic Management: An Evaluation of the Use of Three Learning Methods.

    Science.gov (United States)

    Jennings, David

    2002-01-01

    A study of 46 management students compared three methods for learning strategic management: cases, simulation, and action learning through consulting projects. Simulation was superior to action learning on all outcomes and equal or superior to cases on two. Simulation gave students a central role in management and greater control of the learning…

  12. Using Problem Based Learning Methods from Engineering Education in Company Based Development

    DEFF Research Database (Denmark)

    Kofoed, Lise B.; Jørgensen, Frances

    2007-01-01

    This paper discusses how Problem-Based Learning (PBL) methods were used to support a Danish company in its efforts to become more of a 'learning organisation', characterized by sharing of knowledge and experiences. One of the central barriers to organisational learning in this company involved...

  13. Multi-Role Project (MRP): A New Project-Based Learning Method for STEM

    Science.gov (United States)

    Warin, Bruno; Talbi, Omar; Kolski, Christophe; Hoogstoel, Frédéric

    2016-01-01

    This paper presents the "Multi-Role Project" method (MRP), a broadly applicable project-based learning method, and describes its implementation and evaluation in the context of a Science, Technology, Engineering, and Mathematics (STEM) course. The MRP method is designed around a meta-principle that considers the project learning activity…

  14. An online supervised learning method based on gradient descent for spiking neurons.

    Science.gov (United States)

    Xu, Yan; Yang, Jing; Zhong, Shuiming

    2017-09-01

    The purpose of supervised learning with temporal encoding for spiking neurons is to make the neurons emit a specific spike train encoded by precise firing times of spikes. The gradient-descent-based (GDB) learning methods are widely used and verified in the current research. Although the existing GDB multi-spike learning (or spike sequence learning) methods have good performance, they work in an offline manner and still have some limitations. This paper proposes an online GDB spike sequence learning method for spiking neurons that is based on the online adjustment mechanism of real biological neuron synapses. The method constructs error function and calculates the adjustment of synaptic weights as soon as the neurons emit a spike during their running process. We analyze and synthesize desired and actual output spikes to select appropriate input spikes in the calculation of weight adjustment in this paper. The experimental results show that our method obviously improves learning performance compared with the offline learning manner and has certain advantage on learning accuracy compared with other learning methods. Stronger learning ability determines that the method has large pattern storage capacity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. RULE-BASE METHOD FOR ANALYSIS OF QUALITY E-LEARNING IN HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    darsih darsih darsih

    2016-04-01

    Full Text Available ABSTRACT Assessing the quality of e-learning courses to measure the success of e-learning systems in online learning is essential. The system can be used to improve education. The study analyzes the quality of e-learning course on the web site www.kulon.undip.ac.id used a questionnaire with questions based on the variables of ISO 9126. Penilaiann Likert scale was used with a web app. Rule-base reasoning method is used to subject the quality of e-learningyang assessed. A case study conducted in four e-learning courses with 133 sample / respondents as users of the e-learning course. From the obtained results of research conducted both for the value of e-learning from each subject tested. In addition, each e-learning courses have different advantages depending on certain variables. Keywords : E-Learning, Rule-Base, Questionnaire, Likert, Measuring.

  16. Approximation Methods for Inference and Learning in Belief Networks: Progress and Future Directions

    National Research Council Canada - National Science Library

    Pazzan, Michael

    1997-01-01

    .... In this research project, we have investigated methods and implemented algorithms for efficiently making certain classes of inference in belief networks, and for automatically learning certain...

  17. Multiresolution, Geometric, and Learning Methods in Statistical Image Processing, Object Recognition, and Sensor Fusion

    National Research Council Canada - National Science Library

    Willsky, Alan

    2004-01-01

    .... Our research blends methods from several fields-statistics and probability, signal and image processing, mathematical physics, scientific computing, statistical learning theory, and differential...

  18. Computer game-based and traditional learning method: a comparison regarding students' knowledge retention.

    Science.gov (United States)

    Rondon, Silmara; Sassi, Fernanda Chiarion; Furquim de Andrade, Claudia Regina

    2013-02-25

    Educational computer games are examples of computer-assisted learning objects, representing an educational strategy of growing interest. Given the changes in the digital world over the last decades, students of the current generation expect technology to be used in advancing their learning requiring a need to change traditional passive learning methodologies to an active multisensory experimental learning methodology. The objective of this study was to compare a computer game-based learning method with a traditional learning method, regarding learning gains and knowledge retention, as means of teaching head and neck Anatomy and Physiology to Speech-Language and Hearing pathology undergraduate students. Students were randomized to participate to one of the learning methods and the data analyst was blinded to which method of learning the students had received. Students' prior knowledge (i.e. before undergoing the learning method), short-term knowledge retention and long-term knowledge retention (i.e. six months after undergoing the learning method) were assessed with a multiple choice questionnaire. Students' performance was compared considering the three moments of assessment for both for the mean total score and for separated mean scores for Anatomy questions and for Physiology questions. Students that received the game-based method performed better in the pos-test assessment only when considering the Anatomy questions section. Students that received the traditional lecture performed better in both post-test and long-term post-test when considering the Anatomy and Physiology questions. The game-based learning method is comparable to the traditional learning method in general and in short-term gains, while the traditional lecture still seems to be more effective to improve students' short and long-term knowledge retention.

  19. Learners with learning difficulties in mathematics : attitudes, curriculum and methods of teaching mathematics

    OpenAIRE

    2012-01-01

    D.Ed. The aim of this theses is to find out whether there is any relationship between learners' attitudes and learning difficulties in mathematics: To investigate whether learning difficulties in mathematics are associated with learners' gender. To establish the nature of teachers' perceptions of the learning problem areas in the mathematics curriculum. To find out about the teachers' views on the methods of teaching mathematics, resources, learning of mathematics, extra curricular activit...

  20. Partitioning a call graph

    NARCIS (Netherlands)

    Bisseling, R.H.; Byrka, J.; Cerav-Erbas, S.; Gvozdenovic, N.; Lorenz, M.; Pendavingh, R.A.; Reeves, C.; Röger, M.; Verhoeven, A.; Berg, van den J.B.; Bhulai, S.; Hulshof, J.; Koole, G.; Quant, C.; Williams, J.F.

    2006-01-01

    Splitting a large software system into smaller and more manageable units has become an important problem for many organizations. The basic structure of a software system is given by a directed graph with vertices representing the programs of the system and arcs representing calls from one program to

  1. CALLING AQUARIUM LOVERS...

    CERN Multimedia

    2002-01-01

    CERN's anemones will soon be orphans. We are looking for someone willing to look after the aquarium in the main building, for one year. If you are interested, or if you would like more information, please call 73830. (The anemones living in the aquarium thank you in anticipation.)

  2. A call for surveys

    DEFF Research Database (Denmark)

    Bernstein, Philip A.; Jensen, Christian S.; Tan, Kian-Lee

    2012-01-01

    The database field is experiencing an increasing need for survey papers. We call on more researchers to set aside time for this important writing activity. The database field is growing in population, scope of topics covered, and the number of papers published. Each year, thousands of new papers ...

  3. Call for Research

    International Development Research Centre (IDRC) Digital Library (Canada)

    Marie-Isabelle Beyer

    2014-10-03

    Oct 3, 2014 ... 5.Submission process. 6.Eligibility criteria. 7.Selection Process. 8. Format and requirements. 9.Evaluation criteria. 10.Country clearance requirements. 11. .... It is envisaged that through this call a single consortium will undertake 6-8 projects within a total budget of up to ... principle qualify for IDRC's support.

  4. Too close to call

    DEFF Research Database (Denmark)

    Kurrild-Klitgaard, Peter

    2012-01-01

    a number of other frequent explanations and is found to be quite robust. When augmented with approval ratings for incumbent presidents, the explanatory power increases to 83 pct. and only incorrectly calls one of the last 15 US presidential elections. Applied to the 2012 election as a forecasting model...

  5. A lifelong learning hyper-heuristic method for bin packing.

    Science.gov (United States)

    Sim, Kevin; Hart, Emma; Paechter, Ben

    2015-01-01

    We describe a novel hyper-heuristic system that continuously learns over time to solve a combinatorial optimisation problem. The system continuously generates new heuristics and samples problems from its environment; and representative problems and heuristics are incorporated into a self-sustaining network of interacting entities inspired by methods in artificial immune systems. The network is plastic in both its structure and content, leading to the following properties: it exploits existing knowledge captured in the network to rapidly produce solutions; it can adapt to new problems with widely differing characteristics; and it is capable of generalising over the problem space. The system is tested on a large corpus of 3,968 new instances of 1D bin-packing problems as well as on 1,370 existing problems from the literature; it shows excellent performance in terms of the quality of solutions obtained across the datasets and in adapting to dynamically changing sets of problem instances compared to previous approaches. As the network self-adapts to sustain a minimal repertoire of both problems and heuristics that form a representative map of the problem space, the system is further shown to be computationally efficient and therefore scalable.

  6. Teaching organization theory for healthcare management: three applied learning methods.

    Science.gov (United States)

    Olden, Peter C

    2006-01-01

    Organization theory (OT) provides a way of seeing, describing, analyzing, understanding, and improving organizations based on patterns of organizational design and behavior (Daft 2004). It gives managers models, principles, and methods with which to diagnose and fix organization structure, design, and process problems. Health care organizations (HCOs) face serious problems such as fatal medical errors, harmful treatment delays, misuse of scarce nurses, costly inefficiency, and service failures. Some of health care managers' most critical work involves designing and structuring their organizations so their missions, visions, and goals can be achieved-and in some cases so their organizations can survive. Thus, it is imperative that graduate healthcare management programs develop effective approaches for teaching OT to students who will manage HCOs. Guided by principles of education, three applied teaching/learning activities/assignments were created to teach OT in a graduate healthcare management program. These educationalmethods develop students' competency with OT applied to HCOs. The teaching techniques in this article may be useful to faculty teaching graduate courses in organization theory and related subjects such as leadership, quality, and operation management.

  7. Modeling Music Emotion Judgments Using Machine Learning Methods

    Directory of Open Access Journals (Sweden)

    Naresh N. Vempala

    2018-01-01

    Full Text Available Emotion judgments and five channels of physiological data were obtained from 60 participants listening to 60 music excerpts. Various machine learning (ML methods were used to model the emotion judgments inclusive of neural networks, linear regression, and random forests. Input for models of perceived emotion consisted of audio features extracted from the music recordings. Input for models of felt emotion consisted of physiological features extracted from the physiological recordings. Models were trained and interpreted with consideration of the classic debate in music emotion between cognitivists and emotivists. Our models supported a hybrid position wherein emotion judgments were influenced by a combination of perceived and felt emotions. In comparing the different ML approaches that were used for modeling, we conclude that neural networks were optimal, yielding models that were flexible as well as interpretable. Inspection of a committee machine, encompassing an ensemble of networks, revealed that arousal judgments were predominantly influenced by felt emotion, whereas valence judgments were predominantly influenced by perceived emotion.

  8. Matching Learning Style to Instructional Method: Effects on Comprehension

    Science.gov (United States)

    Rogowsky, Beth A.; Calhoun, Barbara M.; Tallal, Paula

    2015-01-01

    While it is hypothesized that providing instruction based on individuals' preferred learning styles improves learning (i.e., reading for visual learners and listening for auditory learners, also referred to as the "meshing hypothesis"), after a critical review of the literature Pashler, McDaniel, Rohrer, and Bjork (2008) concluded that…

  9. Newton Methods for Large Scale Problems in Machine Learning

    Science.gov (United States)

    Hansen, Samantha Leigh

    2014-01-01

    The focus of this thesis is on practical ways of designing optimization algorithms for minimizing large-scale nonlinear functions with applications in machine learning. Chapter 1 introduces the overarching ideas in the thesis. Chapters 2 and 3 are geared towards supervised machine learning applications that involve minimizing a sum of loss…

  10. Learning Algorithm of Boltzmann Machine Based on Spatial Monte Carlo Integration Method

    Directory of Open Access Journals (Sweden)

    Muneki Yasuda

    2018-04-01

    Full Text Available The machine learning techniques for Markov random fields are fundamental in various fields involving pattern recognition, image processing, sparse modeling, and earth science, and a Boltzmann machine is one of the most important models in Markov random fields. However, the inference and learning problems in the Boltzmann machine are NP-hard. The investigation of an effective learning algorithm for the Boltzmann machine is one of the most important challenges in the field of statistical machine learning. In this paper, we study Boltzmann machine learning based on the (first-order spatial Monte Carlo integration method, referred to as the 1-SMCI learning method, which was proposed in the author’s previous paper. In the first part of this paper, we compare the method with the maximum pseudo-likelihood estimation (MPLE method using a theoretical and a numerical approaches, and show the 1-SMCI learning method is more effective than the MPLE. In the latter part, we compare the 1-SMCI learning method with other effective methods, ratio matching and minimum probability flow, using a numerical experiment, and show the 1-SMCI learning method outperforms them.

  11. WebMail versus WebApp: Comparing Problem-Based Learning Methods in a Business Research Methods Course

    Science.gov (United States)

    Williams van Rooij, Shahron

    2007-01-01

    This study examined the impact of two Problem-Based Learning (PBL) approaches on knowledge transfer, problem-solving self-efficacy, and perceived learning gains among four intact classes of adult learners engaged in a group project in an online undergraduate business research methods course. With two of the classes using a text-only PBL workbook…

  12. Learning Methods for Dynamic Topic Modeling in Automated Behavior Analysis.

    Science.gov (United States)

    Isupova, Olga; Kuzin, Danil; Mihaylova, Lyudmila

    2017-09-27

    Semisupervised and unsupervised systems provide operators with invaluable support and can tremendously reduce the operators' load. In the light of the necessity to process large volumes of video data and provide autonomous decisions, this paper proposes new learning algorithms for activity analysis in video. The activities and behaviors are described by a dynamic topic model. Two novel learning algorithms based on the expectation maximization approach and variational Bayes inference are proposed. Theoretical derivations of the posterior estimates of model parameters are given. The designed learning algorithms are compared with the Gibbs sampling inference scheme introduced earlier in the literature. A detailed comparison of the learning algorithms is presented on real video data. We also propose an anomaly localization procedure, elegantly embedded in the topic modeling framework. It is shown that the developed learning algorithms can achieve 95% success rate. The proposed framework can be applied to a number of areas, including transportation systems, security, and surveillance.

  13. Using the time and motion method to study clinical work processes and workflow: methodological inconsistencies and a call for standardized research.

    Science.gov (United States)

    Zheng, Kai; Guo, Michael H; Hanauer, David A

    2011-01-01

    To identify ways for improving the consistency of design, conduct, and results reporting of time and motion (T&M) research in health informatics. We analyzed the commonalities and divergences of empirical studies published 1990-2010 that have applied the T&M approach to examine the impact of health IT implementation on clinical work processes and workflow. The analysis led to the development of a suggested 'checklist' intended to help future T&M research produce compatible and comparable results. We call this checklist STAMP (Suggested Time And Motion Procedures). STAMP outlines a minimum set of 29 data/ information elements organized into eight key areas, plus three supplemental elements contained in an 'Ancillary Data' area, that researchers may consider collecting and reporting in their future T&M endeavors. T&M is generally regarded as the most reliable approach for assessing the impact of health IT implementation on clinical work. However, there exist considerable inconsistencies in how previous T&M studies were conducted and/or how their results were reported, many of which do not seem necessary yet can have a significant impact on quality of research and generalisability of results. Therefore, we deem it is time to call for standards that can help improve the consistency of T&M research in health informatics. This study represents an initial attempt. We developed a suggested checklist to improve the methodological and results reporting consistency of T&M research, so that meaningful insights can be derived from across-study synthesis and health informatics, as a field, will be able to accumulate knowledge from these studies.

  14. An Improved Ensemble Learning Method for Classifying High-Dimensional and Imbalanced Biomedicine Data.

    Science.gov (United States)

    Yu, Hualong; Ni, Jun

    2014-01-01

    Training classifiers on skewed data can be technically challenging tasks, especially if the data is high-dimensional simultaneously, the tasks can become more difficult. In biomedicine field, skewed data type often appears. In this study, we try to deal with this problem by combining asymmetric bagging ensemble classifier (asBagging) that has been presented in previous work and an improved random subspace (RS) generation strategy that is called feature subspace (FSS). Specifically, FSS is a novel method to promote the balance level between accuracy and diversity of base classifiers in asBagging. In view of the strong generalization capability of support vector machine (SVM), we adopt it to be base classifier. Extensive experiments on four benchmark biomedicine data sets indicate that the proposed ensemble learning method outperforms many baseline approaches in terms of Accuracy, F-measure, G-mean and AUC evaluation criterions, thus it can be regarded as an effective and efficient tool to deal with high-dimensional and imbalanced biomedical data.

  15. Towards a Quality Assessment Method for Learning Preference Profiles in Negotiation

    Science.gov (United States)

    Hindriks, Koen V.; Tykhonov, Dmytro

    In automated negotiation, information gained about an opponent's preference profile by means of learning techniques may significantly improve an agent's negotiation performance. It therefore is useful to gain a better understanding of how various negotiation factors influence the quality of learning. The quality of learning techniques in negotiation are typically assessed indirectly by means of comparing the utility levels of agreed outcomes and other more global negotiation parameters. An evaluation of learning based on such general criteria, however, does not provide any insight into the influence of various aspects of negotiation on the quality of the learned model itself. The quality may depend on such aspects as the domain of negotiation, the structure of the preference profiles, the negotiation strategies used by the parties, and others. To gain a better understanding of the performance of proposed learning techniques in the context of negotiation and to be able to assess the potential to improve the performance of such techniques a more systematic assessment method is needed. In this paper we propose such a systematic method to analyse the quality of the information gained about opponent preferences by learning in single-instance negotiations. The method includes measures to assess the quality of a learned preference profile and proposes an experimental setup to analyse the influence of various negotiation aspects on the quality of learning. We apply the method to a Bayesian learning approach for learning an opponent's preference profile and discuss our findings.

  16. Lesson learned - CGID based on the Method 1 and Method 2 for digital equipment

    International Nuclear Information System (INIS)

    Hwang, Wonil; Sohn, Kwang Young; Cho, Chang Hwan; Kim, Sung Jong

    2015-01-01

    The acceptance methods associated with commercial-grade dedication are the following: 1) Special tests and inspection (Method 1) 2) Commercial-grade surveys (Method 2) 3) Source verification (Method 3) 4) An acceptable item and supplier performance record (Method 4) Special tests and inspections, often referred to as Method 1, are performed by the dedicating entity after the item is received to verify selected critical characteristics. Conducting a commercial-grade survey of a supplier is often referred to as Method 2. Supplier audits to verify compliance with a nuclear QA program do not meet the intent of a commercial-grade survey. Source verification, often referred to as Method 3, entails verification of critical characteristics during manufacture and testing of the item being procured. The performance history (good or bad) of the item and supplier is a consideration when determining the use of the other acceptance methods and the rigor with which they are used on a case-by-case basis. Some digital equipment system has the delivery reference and its operating history for Nuclear Power Plant as far as surveyed. However it was found that there is difficulty in collecting this of supporting data sheet, so that supplier usually decide to conduct the CGID based on the Method-1 and Method-2 based on the initial qualification likely. It is conceived that the Method-4 might be a better approach for CGID(Commercial Grade Item Dedication) even if there are some difficulties in data package for justifying CGID from the vendor and operating organization. This paper present the lesson learned from the consulting for Method-1 and 2 for digital equipment dedication. Considering all the information above, there are a couple of issues to remind in order to perform the CGID for Method-2. In doing commercial grade survey based on Method 2, quality personnel as well as technical engineer shall be involved for integral dedication. Other than this, the review of critical

  17. Care and Calls

    DEFF Research Database (Denmark)

    Paasch, Bettina Sletten

    on the enactment of care but also on patient safety. Nurses working in various hospital departments have developed different strategies for handling mobile phone calls when with a patient. Additional research into the ways nurses successfully or unsuccessfully enact care and ensure patient safety when they answer......In Danish hospitals, nurses have been equipped with a mobile work phone to improve their availability and efficiency. On the phones nurses receive internal and external phone conversations, patient calls, and alarms from electronic surveillance equipment. For safety reasons the phones cannot...... be switched off or silenced; they consequently ring during all activities and also during interactions with patients. A possible tension thus arises when nurses have to be both caring and sensitive towards the patient and simultaneously be efficient and available and answer their phone. The present paper...

  18. Flight calls and orientation

    DEFF Research Database (Denmark)

    Larsen, Ole Næsbye; Andersen, Bent Bach; Kropp, Wibke

    2008-01-01

    flight calls was simulated by sequential computer controlled activation of five loudspeakers placed in a linear array perpendicular to the bird's migration course. The bird responded to this stimulation by changing its migratory course in the direction of that of the ‘flying conspecifics' but after about......  In a pilot experiment a European Robin, Erithacus rubecula, expressing migratory restlessness with a stable orientation, was video filmed in the dark with an infrared camera and its directional migratory activity was recorded. The flight overhead of migrating conspecifics uttering nocturnal...... 30 minutes it drifted back to its original migration course. The results suggest that songbirds migrating alone at night can use the flight calls from conspecifics as additional cues for orientation and that they may compare this information with other cues to decide what course to keep....

  19. Exploring an experiential learning project through Kolb's Learning Theory using a qualitative research method

    Science.gov (United States)

    Yuk Chan, Cecilia Ka

    2012-08-01

    Experiential learning pedagogy is taking a lead in the development of graduate attributes and educational aims as these are of prime importance for society. This paper shows a community service experiential project conducted in China. The project enabled students to serve the affected community in a post-earthquake area by applying their knowledge and skills. This paper documented the students' learning process from their project goals, pre-trip preparations, work progress, obstacles encountered to the final results and reflections. Using the data gathered from a focus group interview approach, the four components of Kolb's learning cycle, the concrete experience, reflection observation, abstract conceptualisation and active experimentation, have been shown to transform and internalise student's learning experience, achieving a variety of learning outcomes. The author will also explore how this community service type of experiential learning in the engineering discipline allowed students to experience deep learning and develop their graduate attributes.

  20. A review for detecting gene-gene interactions using machine learning methods in genetic epidemiology.

    Science.gov (United States)

    Koo, Ching Lee; Liew, Mei Jing; Mohamad, Mohd Saberi; Salleh, Abdul Hakim Mohamed

    2013-01-01

    Recently, the greatest statistical computational challenge in genetic epidemiology is to identify and characterize the genes that interact with other genes and environment factors that bring the effect on complex multifactorial disease. These gene-gene interactions are also denoted as epitasis in which this phenomenon cannot be solved by traditional statistical method due to the high dimensionality of the data and the occurrence of multiple polymorphism. Hence, there are several machine learning methods to solve such problems by identifying such susceptibility gene which are neural networks (NNs), support vector machine (SVM), and random forests (RFs) in such common and multifactorial disease. This paper gives an overview on machine learning methods, describing the methodology of each machine learning methods and its application in detecting gene-gene and gene-environment interactions. Lastly, this paper discussed each machine learning method and presents the strengths and weaknesses of each machine learning method in detecting gene-gene interactions in complex human disease.

  1. Robust Control Methods for On-Line Statistical Learning

    Directory of Open Access Journals (Sweden)

    Capobianco Enrico

    2001-01-01

    Full Text Available The issue of controlling that data processing in an experiment results not affected by the presence of outliers is relevant for statistical control and learning studies. Learning schemes should thus be tested for their capacity of handling outliers in the observed training set so to achieve reliable estimates with respect to the crucial bias and variance aspects. We describe possible ways of endowing neural networks with statistically robust properties by defining feasible error criteria. It is convenient to cast neural nets in state space representations and apply both Kalman filter and stochastic approximation procedures in order to suggest statistically robustified solutions for on-line learning.

  2. Teaching Research Methods and Statistics in eLearning Environments: Pedagogy, Practical Examples, and Possible Futures

    OpenAIRE

    Rock, Adam J.; Coventry, William L.; Morgan, Methuen I.; Loi, Natasha M.

    2016-01-01

    Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal, Ginsburg, & Schau, 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof, Ceroni, Jeong, & Moghaddam, 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to...

  3. Change Of Learning Environment Using Game Production ­Theory, Methods And Practice

    DEFF Research Database (Denmark)

    Reng, Lars; Kofoed, Lise; Schoenau-Fog, Henrik

    2018-01-01

    will focus on cases in which development of games did change the learning environments into production units where students or employees were producing games as part of the learning process. The cases indicate that the motivation as well as the learning curve became very high. The pedagogical theories......Game Based Learning has proven to have many possibilities for supporting better learning outcomes, when using educational or commercial games in the classroom. However, there is also a great potential in using game development as a motivator in other kinds of learning scenarios. This study...... and methods are based on Problem Based Learning (PBL), but are developed further by combining PBL with a production-oriented/design based approach. We illustrate the potential of using game production as a learning environment with investigation of three game productions. We can conclude that using game...

  4. "Galileo Calling Earth..."

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    This guide presents an activity for helping students understand how data from the Galileo spacecraft is sent to scientists on earth. Students are asked to learn about the concepts of bit-rate and resolution and apply them to the interpretation of images from the Galileo Orbiter. (WRM)

  5. The Effects of the CALL Model on College English Reading Teaching

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2017-12-01

    Full Text Available Computer Assisted Language Learning (CALL is an important concept in English teaching method reform. College students’ English reading ability is an important indicator in the evaluation on the college students’ English proficiency. Therefore, this paper applies the CALL model in English reading teaching. Firstly, it introduces the application and development prospect of the CALL model, and analyzes its advantages and disadvantages; secondly, it analyzes the present situation of college English teaching and its influencing factors and then designs an application example to integrate the CALL model with different aspect of English reading. Finally, it analyzes the teaching results of college English reading under the CALL model. Therefore, in both theory and practice, this paper proves the effectiveness and innovativeness of the CALL model.

  6. Becker muscular dystrophy-like myopathy regarded as so-called "fatty muscular dystrophy" in a pig: a case report and its diagnostic method.

    Science.gov (United States)

    Horiuchi, Noriyuki; Aihara, Naoyuki; Mizutani, Hiroshi; Kousaka, Shinichi; Nagafuchi, Tsuneyuki; Ochiai, Mariko; Ochiai, Kazuhiko; Kobayashi, Yoshiyasu; Furuoka, Hidefumi; Asai, Tetsuo; Oishi, Koji

    2014-03-01

    We describe a case of human Becker muscular dystrophy (BMD)-like myopathy that was characterized by the declined stainability of dystrophin at sarcolemma in a pig and the immunostaining for dystrophin on the formalin-fixed, paraffin-embedded (FFPE) tissue. The present case was found in a meat inspection center. The pig looked appeared healthy at the ante-mortem inspection. Muscular abnormalities were detected after carcass dressing as pale, discolored skeletal muscles with prominent fat infiltrations and considered so-called "fatty muscular dystrophy". Microscopic examination revealed following characteristics: diffused fat infiltration into the skeletal muscle and degeneration and regeneration of the remaining skeletal muscle fibers. Any lesions that were suspected of neurogenic atrophy, traumatic muscular degeneration, glycogen storage disease or other porcine muscular disorders were not observed. The immunostaining for dystrophin was conducted and confirmed to be applicable on FFPE porcine muscular tissues and revealed diminished stainability of dystrophin at the sarcolemma in the present case. Based on the histological observations and immunostaining results, the present case was diagnosed with BMD-like myopathy associated with dystrophin abnormality in a pig. Although the genetic properties were not clear, the present BMD-like myopathy implied the occurrence of dystrophinopathy in pigs. To the best of our knowledge, this is the first report of a natural case of myopathy associated with dystrophin abnormalities in a pig.

  7. Sparse Machine Learning Methods for Understanding Large Text Corpora

    Data.gov (United States)

    National Aeronautics and Space Administration — Sparse machine learning has recently emerged as powerful tool to obtain models of high-dimensional data with high degree of interpretability, at low computational...

  8. A blended learning approach to teaching sociolinguistic research methods

    Directory of Open Access Journals (Sweden)

    Olivier, Jako

    2014-12-01

    Full Text Available This article reports on the use of Wiktionary, an open source online dictionary, as well as generic wiki pages within a university’s e-learning environment as teaching and learning resources in an Afrikaans sociolinguistics module. In a communal constructivist manner students learnt, but also constructed learning content. From the qualitative research conducted with students it is clear that wikis provide for effective facilitation of a blended learning approach to sociolinguistic research. The use of this medium was positively received, however, some students did prefer handing in assignments in hard copy. The issues of computer literacy and access to the internet were also raised by the respondents. The use of wikis and Wiktionary prompted useful unplanned discussions around reliability and quality of public wikis. The use of a public wiki such as Wiktionary served as encouragement for students as they were able to contribute to the promotion of Afrikaans in this way.

  9. How Learning Designs, Teaching Methods and Activities Differ by Discipline in Australian Universities

    Science.gov (United States)

    Cameron, Leanne

    2017-01-01

    This paper reports on the learning designs, teaching methods and activities most commonly employed within the disciplines in six universities in Australia. The study sought to establish if there were significant differences between the disciplines in learning designs, teaching methods and teaching activities in the current Australian context, as…

  10. "Debate" Learning Method and Its Implications for the Formal Education System

    Science.gov (United States)

    Najafi, Mohammad; Motaghi, Zohre; Nasrabadi, Hassanali Bakhtiyar; Heshi, Kamal Nosrati

    2016-01-01

    Regarding the importance of enhancement in learner's social skills, especially in learning process, this study tries to introduce one of the group learning programs entitled "debate" as a teaching method in Iran religious universities. It also considers the concept and the history of this method by qualitative and descriptive-analytical…

  11. An exploration of learning to link with Wikipedia: features, methods and training collection

    NARCIS (Netherlands)

    He, J.; de Rijke, M.

    2010-01-01

    We describe our participation in the Link-the-Wiki track at INEX 2009. We apply machine learning methods to the anchor-to-best-entry-point task and explore the impact of the following aspects of our approaches: features, learning methods as well as the collection used for training the models. We

  12. APA's Learning Objectives for Research Methods and Statistics in Practice: A Multimethod Analysis

    Science.gov (United States)

    Tomcho, Thomas J.; Rice, Diana; Foels, Rob; Folmsbee, Leah; Vladescu, Jason; Lissman, Rachel; Matulewicz, Ryan; Bopp, Kara

    2009-01-01

    Research methods and statistics courses constitute a core undergraduate psychology requirement. We analyzed course syllabi and faculty self-reported coverage of both research methods and statistics course learning objectives to assess the concordance with APA's learning objectives (American Psychological Association, 2007). We obtained a sample of…

  13. Listening to Our Students: Understanding How They Learn Research Methods in Geography

    Science.gov (United States)

    Keenan, Kevin; Fontaine, Danielle

    2012-01-01

    How undergraduate students learn research methods in geography has been understudied. Existing work has focused on course description from the instructor's perspective. This study, however, uses a grounded theory approach to allow students' voices to shape a new theory of how they themselves say that they learn research methods. Data from two…

  14. Learning Practice-Based Research Methods: Capturing the Experiences of MSW Students

    Science.gov (United States)

    Natland, Sidsel; Weissinger, Erika; Graaf, Genevieve; Carnochan, Sarah

    2016-01-01

    The literature on teaching research methods to social work students identifies many challenges, such as dealing with the tensions related to producing research relevant to practice, access to data to teach practice-based research, and limited student interest in learning research methods. This is an exploratory study of the learning experiences of…

  15. Square Pegs, Round Holes: An Exploration of Teaching Methods and Learning Styles of Millennial College Students

    Science.gov (United States)

    Bailey, Regina M.

    2012-01-01

    In an information-saturated world, today's college students desire to be engaged both in and out of their college classrooms. This mixed-methods study sought to explore how replacing traditional teaching methods with engaged learning activities affects millennial college student attitudes and perceptions about learning. The sub-questions…

  16. Exploring Non-Traditional Learning Methods in Virtual and Real-World Environments

    Science.gov (United States)

    Lukman, Rebeka; Krajnc, Majda

    2012-01-01

    This paper identifies the commonalities and differences within non-traditional learning methods regarding virtual and real-world environments. The non-traditional learning methods in real-world have been introduced within the following courses: Process Balances, Process Calculation, and Process Synthesis, and within the virtual environment through…

  17. Adult Learners' Preferred Methods of Learning Preventative Heart Disease Care

    Science.gov (United States)

    Alavi, Nasim

    2016-01-01

    The purpose of this study was to investigate the preferred method of learning about heart disease by adult learners. This research study also investigated if there was a statistically significant difference between race/ethnicity, age, and gender of adult learners and their preferred method of learning preventative heart disease care. This…

  18. Studying learning in the healthcare setting: the potential of quantitative diary methods.

    Science.gov (United States)

    Ciere, Yvette; Jaarsma, Debbie; Visser, Annemieke; Sanderman, Robbert; Snippe, Evelien; Fleer, Joke

    2015-08-01

    Quantitative diary methods are longitudinal approaches that involve the repeated measurement of aspects of peoples' experience of daily life. In this article, we outline the main characteristics and applications of quantitative diary methods and discuss how their use may further research in the field of medical education. Quantitative diary methods offer several methodological advantages, such as measuring aspects of learning with great detail, accuracy and authenticity. Moreover, they enable researchers to study how and under which conditions learning in the health care setting occurs and in which way learning can be promoted. Hence, quantitative diary methods may contribute to theory development and the optimization of teaching methods in medical education.

  19. Case-Based Web Learning Versus Face-to-Face Learning: A Mixed-Method Study on University Nursing Students.

    Science.gov (United States)

    Chan, Aileen Wai-Kiu; Chair, Sek-Ying; Sit, Janet Wing-Hung; Wong, Eliza Mi-Ling; Lee, Diana Tze-Fun; Fung, Olivia Wai-Man

    2016-03-01

    Case-based learning (CBL) is an effective educational method for improving the learning and clinical reasoning skills of students. Advances in e-learning technology have supported the development of the Web-based CBL approach to teaching as an alternative or supplement to the traditional classroom approach. This study aims to examine the CBL experience of Hong Kong students using both traditional classroom and Web-based approaches in undergraduate nursing education. This experience is examined in terms of the perceived self-learning ability, clinical reasoning ability, and satisfaction in learning of these students. A mixture of quantitative and qualitative approaches was adopted. All Year-3 undergraduate nursing students were recruited. CBL was conducted using the traditional classroom approach in Semester 1, and the Web-based approach was conducted in Semester 2. Student evaluations were collected at the end of each semester using a self-report questionnaire. In-depth, focus-group interviews were conducted at the end of Semester 2. One hundred twenty-two students returned their questionnaires. No difference between the face-to-face and Web-based approaches was found in terms of self-learning ability (p = .947), clinical reasoning ability (p = .721), and satisfaction (p = .083). Focus group interview findings complemented survey findings and revealed five themes that reflected the CBL learning experience of Hong Kong students. These themes were (a) the structure of CBL, (b) the learning environment of Web-based CBL, (c) critical thinking and problem solving, (d) cultural influence on CBL learning experience, and (e) student-centered and teacher-centered learning. The Web-based CBL approach was comparable but not superior to the traditional classroom CBL approach. The Web-based CBL experience of these students sheds light on the impact of Chinese culture on student learning behavior and preferences.

  20. Simultaneous anatomical sketching as learning by doing method of teaching human anatomy.

    Science.gov (United States)

    Noorafshan, Ali; Hoseini, Leila; Amini, Mitra; Dehghani, Mohammad-Reza; Kojuri, Javad; Bazrafkan, Leila

    2014-01-01

    Learning by lecture is a passive experience. Many innovative techniques have been presented to stimulate students to assume a more active attitude toward learning. In this study, simultaneous sketch drawing, as an interactive learning technique was applied to teach anatomy to the medical students. We reconstructed a fun interactive model of teaching anatomy as simultaneous anatomic sketching. To test the model's instruction effectiveness, we conducted a quasi- experimental study and then the students were asked to write their learning experiences in their portfolio, also their view was evaluated by a questionnaire. The results of portfolio evaluation revealed that students believed that this method leads to deep learning and understanding anatomical subjects better. Evaluation of the students' views on this teaching approach was showed that, more than 80% of the students were agreed or completely agreed with this statement that leaning anatomy concepts are easier and the class is less boring with this method. More than 60% of the students were agreed or completely agreed to sketch anatomical figures with professor simultaneously. They also found the sketching make anatomy more attractive and it reduced the time for learning anatomy. These number of students were agree or completely agree that the method help them learning anatomical concept in anatomy laboratory. More than 80% of the students found the simultaneous sketching is a good method for learning anatomy overall. Sketch drawing, as an interactive learning technique, is an attractive for students to learn anatomy.

  1. Impact of Statistical Learning Methods on the Predictive Power of Multivariate Normal Tissue Complication Probability Models

    Energy Technology Data Exchange (ETDEWEB)

    Xu Chengjian, E-mail: c.j.xu@umcg.nl [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands); Schaaf, Arjen van der; Schilstra, Cornelis; Langendijk, Johannes A.; Veld, Aart A. van' t [Department of Radiation Oncology, University of Groningen, University Medical Center Groningen, Groningen (Netherlands)

    2012-03-15

    Purpose: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. Methods and Materials: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. Results: It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. Conclusions: The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended.

  2. Impact of Statistical Learning Methods on the Predictive Power of Multivariate Normal Tissue Complication Probability Models

    International Nuclear Information System (INIS)

    Xu Chengjian; Schaaf, Arjen van der; Schilstra, Cornelis; Langendijk, Johannes A.; Veld, Aart A. van’t

    2012-01-01

    Purpose: To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. Methods and Materials: In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. Results: It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. Conclusions: The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended.

  3. Different protein-protein interface patterns predicted by different machine learning methods.

    Science.gov (United States)

    Wang, Wei; Yang, Yongxiao; Yin, Jianxin; Gong, Xinqi

    2017-11-22

    Different types of protein-protein interactions make different protein-protein interface patterns. Different machine learning methods are suitable to deal with different types of data. Then, is it the same situation that different interface patterns are preferred for prediction by different machine learning methods? Here, four different machine learning methods were employed to predict protein-protein interface residue pairs on different interface patterns. The performances of the methods for different types of proteins are different, which suggest that different machine learning methods tend to predict different protein-protein interface patterns. We made use of ANOVA and variable selection to prove our result. Our proposed methods taking advantages of different single methods also got a good prediction result compared to single methods. In addition to the prediction of protein-protein interactions, this idea can be extended to other research areas such as protein structure prediction and design.

  4. Learning physics: A comparative analysis between instructional design methods

    Science.gov (United States)

    Mathew, Easow

    The purpose of this research was to determine if there were differences in academic performance between students who participated in traditional versus collaborative problem-based learning (PBL) instructional design approaches to physics curricula. This study utilized a quantitative quasi-experimental design methodology to determine the significance of differences in pre- and posttest introductory physics exam performance between students who participated in traditional (i.e., control group) versus collaborative problem solving (PBL) instructional design (i.e., experimental group) approaches to physics curricula over a college semester in 2008. There were 42 student participants (N = 42) enrolled in an introductory physics course at the research site in the Spring 2008 semester who agreed to participate in this study after reading and signing informed consent documents. A total of 22 participants were assigned to the experimental group (n = 22) who participated in a PBL based teaching methodology along with traditional lecture methods. The other 20 students were assigned to the control group (n = 20) who participated in the traditional lecture teaching methodology. Both the courses were taught by experienced professors who have qualifications at the doctoral level. The results indicated statistically significant differences (p traditional (i.e., lower physics posttest scores and lower differences between pre- and posttest scores) versus collaborative (i.e., higher physics posttest scores, and higher differences between pre- and posttest scores) instructional design approaches to physics curricula. Despite some slight differences in control group and experimental group demographic characteristics (gender, ethnicity, and age) there were statistically significant (p = .04) differences between female average academic improvement which was much higher than male average academic improvement (˜63%) in the control group which may indicate that traditional teaching methods

  5. A reward optimization method based on action subrewards in hierarchical reinforcement learning.

    Science.gov (United States)

    Fu, Yuchen; Liu, Quan; Ling, Xionghong; Cui, Zhiming

    2014-01-01

    Reinforcement learning (RL) is one kind of interactive learning methods. Its main characteristics are "trial and error" and "related reward." A hierarchical reinforcement learning method based on action subrewards is proposed to solve the problem of "curse of dimensionality," which means that the states space will grow exponentially in the number of features and low convergence speed. The method can reduce state spaces greatly and choose actions with favorable purpose and efficiency so as to optimize reward function and enhance convergence speed. Apply it to the online learning in Tetris game, and the experiment result shows that the convergence speed of this algorithm can be enhanced evidently based on the new method which combines hierarchical reinforcement learning algorithm and action subrewards. The "curse of dimensionality" problem is also solved to a certain extent with hierarchical method. All the performance with different parameters is compared and analyzed as well.

  6. Blockchain learning: can crypto-currency methods be appropriated to enhance online learning?

    OpenAIRE

    Devine, Peter

    2015-01-01

    Blockchain is a distributed database that maintains a dynamic list of data records, hardened to prevent tampering and revision. It is the framework for cryptocurrencies like Bitcoin.\\ud \\ud A Blockchain learning tool would provide a secure and verifiable learning transaction ledger. Its decentralised nature would ensure a learner, rather than institution-centred record of achievements that would be difficult to tamper with, enabling parties, such as employers or learning institutions, to revi...

  7. Teaching Research Methods and Statistics in eLearning Environments: Pedagogy, Practical Examples, and Possible Futures

    Science.gov (United States)

    Rock, Adam J.; Coventry, William L.; Morgan, Methuen I.; Loi, Natasha M.

    2016-01-01

    Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology. PMID:27014147

  8. Teaching Research Methods and Statistics in eLearning Environments: Pedagogy, Practical Examples, and Possible Futures.

    Science.gov (United States)

    Rock, Adam J; Coventry, William L; Morgan, Methuen I; Loi, Natasha M

    2016-01-01

    Generally, academic psychologists are mindful of the fact that, for many students, the study of research methods and statistics is anxiety provoking (Gal et al., 1997). Given the ubiquitous and distributed nature of eLearning systems (Nof et al., 2015), teachers of research methods and statistics need to cultivate an understanding of how to effectively use eLearning tools to inspire psychology students to learn. Consequently, the aim of the present paper is to discuss critically how using eLearning systems might engage psychology students in research methods and statistics. First, we critically appraise definitions of eLearning. Second, we examine numerous important pedagogical principles associated with effectively teaching research methods and statistics using eLearning systems. Subsequently, we provide practical examples of our own eLearning-based class activities designed to engage psychology students to learn statistical concepts such as Factor Analysis and Discriminant Function Analysis. Finally, we discuss general trends in eLearning and possible futures that are pertinent to teachers of research methods and statistics in psychology.

  9. FERMILAB: Call for physics

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Several hundred physicists attended a special Fermilab 'All Experimenter's Meeting' on November 20 to hear Director John Peoples call for new Tevatron Collider proposals for the years 2000-2005, when the new Main Injector will be complete. At the Tevatron proton-antiproton collider, the CDF and DO experiments are currently completing improvements for Run II to use the Tevatron when the Main Injector is complete later in this decade. New proposals would be aimed at a Collider Run III to follow these CDF and DO efforts

  10. To be called upon

    DEFF Research Database (Denmark)

    Kublitz, Anja

    2015-01-01

    When Danish Muslims explain what made them decide to travel to the Middle East and take up arms in the wake of the Arab Spring, they say that they were called upon. Displayed on videos on social media, women and sometimes children begged them to come to their rescue. In light of some...... to the mass if it is no longer a causal phenomenon that expands from small to big, but rather a simultaneous multitude of one to one relations that are neither local nor global? How are the one and the many related in this specific setting? Furthermore, many of the videos display dead bodies. How can we...

  11. Learning Analytics Architecture to Scaffold Learning Experience through Technology-based Methods

    Directory of Open Access Journals (Sweden)

    Jannicke Madeleine Baalsrud Hauge

    2015-02-01

    Full Text Available The challenge of delivering personalized learning experiences is often increased by the size of classrooms and online learning communities. Serious Games (SGs are increasingly recognized for their potential to improve education. However, the issues related to their development and their level of effectiveness can be seriously affected when brought too rapidly into growing online learning communities. Deeper insights into how the students are playing is needed to deliver a comprehensive and intelligent learning framework that facilitates better understanding of learners' knowledge, effective assessment of their progress and continuous evaluation and optimization of the environments in which they learn. This paper discusses current SOTA and aims to explore the potential in the use of games and learning analytics towards scaffolding and supporting teaching and learning experience. The conceptual model (ecosystem and architecture discussed in this paper aims to highlight the key considerations that may advance the current state of learning analytics, adaptive learning and SGs, by leveraging SGs as an suitable medium for gathering data and performing adaptations.

  12. Collaborative Autonomous English Language Learning in CALL

    OpenAIRE

    Alghammas, Abdurrazzag

    2010-01-01

    The explosive growth of technology has affected almost all cities and villages around the globe. This century might be deemed to be the era of technology. Computers were amazing key technological invention of the 20st century and were first used for military purposes many years ago in both America and Britain. Now that we are living in a technological village, each successive generation is more dependent on technology. There is at least one computer and one mobile phone in most homes and it i...

  13. Impact of statistical learning methods on the predictive power of multivariate normal tissue complication probability models.

    Science.gov (United States)

    Xu, Cheng-Jian; van der Schaaf, Arjen; Schilstra, Cornelis; Langendijk, Johannes A; van't Veld, Aart A

    2012-03-15

    To study the impact of different statistical learning methods on the prediction performance of multivariate normal tissue complication probability (NTCP) models. In this study, three learning methods, stepwise selection, least absolute shrinkage and selection operator (LASSO), and Bayesian model averaging (BMA), were used to build NTCP models of xerostomia following radiotherapy treatment for head and neck cancer. Performance of each learning method was evaluated by a repeated cross-validation scheme in order to obtain a fair comparison among methods. It was found that the LASSO and BMA methods produced models with significantly better predictive power than that of the stepwise selection method. Furthermore, the LASSO method yields an easily interpretable model as the stepwise method does, in contrast to the less intuitive BMA method. The commonly used stepwise selection method, which is simple to execute, may be insufficient for NTCP modeling. The LASSO method is recommended. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Non-linguistic learning in aphasia: Effects of training method and stimulus characteristics

    Science.gov (United States)

    Vallila-Rohter, Sofia; Kiran, Swathi

    2013-01-01

    Purpose The purpose of the current study was to explore non-linguistic learning ability in patients with aphasia, examining the impact of stimulus typicality and feedback on success with learning. Method Eighteen patients with aphasia and eight healthy controls participated in this study. All participants completed four computerized, non-linguistic category-learning tasks. We probed learning ability under two methods of instruction: feedback-based (FB) and paired-associate (PA). We also examined the impact of task complexity on learning ability, comparing two stimulus conditions: typical (Typ) and atypical (Atyp). Performance was compared between groups and across conditions. Results Results demonstrated that healthy controls were able to successfully learn categories under all conditions. For our patients with aphasia, two patterns of performance arose. One subgroup of patients was able to maintain learning across task manipulations and conditions. The other subgroup of patients demonstrated a sensitivity to task complexity, learning successfully only in the typical training conditions. Conclusions Results support the hypothesis that impairments of general learning are present in aphasia. Some patients demonstrated the ability to extract category information under complex training conditions, while others learned only under conditions that were simplified and emphasized salient category features. Overall, the typical training condition facilitated learning for all participants. Findings have implications for therapy, which are discussed. PMID:23695914

  15. CALL in the Year 2000: A Look Back from 2016

    Science.gov (United States)

    Chapelle, Carol A.

    2016-01-01

    This commentary offers a brief reflection on the state of CALL in 1997, when "Language Learning & Technology" was launched with my paper entitled "CALL in the year 2000: Still in search of research paradigms?" The point of my 1997 paper was to suggest the potential value of research on second language learning for the study…

  16. Impact of Using CALL on Iranian EFL Learners' Vocabulary Knowledge

    Science.gov (United States)

    Yunus, Melor Md; Salehi, Hadi; Amini, Mahdi

    2016-01-01

    Computer Assisted Language Learning (CALL) integration in EFL contexts has intensified noticeably in recent years. This integration might be in different ways and for different purposes such as vocabulary acquisition, grammar learning, phonology, writing skills, etc. More explicitly, this study is an attempt to explore the effect of using CALL on…

  17. A novel time series link prediction method: Learning automata approach

    Science.gov (United States)

    Moradabadi, Behnaz; Meybodi, Mohammad Reza

    2017-09-01

    Link prediction is a main social network challenge that uses the network structure to predict future links. The common link prediction approaches to predict hidden links use a static graph representation where a snapshot of the network is analyzed to find hidden or future links. For example, similarity metric based link predictions are a common traditional approach that calculates the similarity metric for each non-connected link and sort the links based on their similarity metrics and label the links with higher similarity scores as the future links. Because people activities in social networks are dynamic and uncertainty, and the structure of the networks changes over time, using deterministic graphs for modeling and analysis of the social network may not be appropriate. In the time-series link prediction problem, the time series link occurrences are used to predict the future links In this paper, we propose a new time series link prediction based on learning automata. In the proposed algorithm for each link that must be predicted there is one learning automaton and each learning automaton tries to predict the existence or non-existence of the corresponding link. To predict the link occurrence in time T, there is a chain consists of stages 1 through T - 1 and the learning automaton passes from these stages to learn the existence or non-existence of the corresponding link. Our preliminary link prediction experiments with co-authorship and email networks have provided satisfactory results when time series link occurrences are considered.

  18. MEDICAL SERVICE - URGENT CALLS

    CERN Multimedia

    Service Médical

    2000-01-01

    IN URGENT NEED OF A DOCTOR GENEVA: EMERGENCY SERVICES GENEVA AND VAUD 144 FIRE BRIGADE 118 POLICE 117 CERN FIREMEN 767-44-44 ANTI-POISONS CENTRE Open 24h/24h 01-251-51-51 Patient not fit to be moved, call family doctor, or: GP AT HOME: Open 24h/24h 748-49-50 AMG- Association Of Geneva Doctors: Emergency Doctors at home 07h-23h 322 20 20 Patient fit to be moved: HOPITAL CANTONAL CENTRAL 24 Micheli-du-Crest 372-33-11 ou 382-33-11 EMERGENCIES 382-33-11 ou 372-33-11 CHILDREN'S HOSPITAL 6 rue Willy-Donzé 372-33-11 MATERNITY 32 bvd.de la Cluse 382-68-16 ou 382-33-11 OPHTHALMOLOGY 22 Alcide Jentzer 382-33-11 ou 372-33-11 MEDICAL CENTRE CORNAVIN 1-3 rue du Jura 345 45 50 HOPITAL DE LA TOUR Meyrin 719-61-11 EMERGENCIES 719-61-11 CHILDREN'S EMERGENCIES 719-61-00 LA TOUR MEDICAL CENTRE 719-74-00 European Emergency Call 112   FRANCE: EMERGENCY SERVICES 15 FIRE BRIGADE 18 POLICE 17 CERN FIREMEN AT HOME 00-41-22-767-44-44 ...

  19. Call for volunteers

    CERN Document Server

    2008-01-01

    CERN is calling for volunteers from all members of the Laboratory for organizing the two exceptional Open days.CERN is calling for volunteers from all members of the Laboratory’s personnel to help with the organisation of these two exceptional Open Days, for the visits of CERN personnel and their families on the Saturday and above all for the major public Open Day on the Sunday. As for the 50th anniversary in 2004, the success of the Open Days will depend on a large number of volunteers. All those working for CERN as well as retired members of the personnel can contribute to making this event a success. Many guides will be needed at the LHC points, for the activities at the surface and to man the reception and information points. The aim of these major Open Days is to give the local populations the opportunity to discover the fruits of almost 20 years of work carried out at CERN. We are hoping for some 2000 volunteers for the two Open Days, on the Saturday from 9 a.m. to ...

  20. Measuring the learning effectiveness of Web-based teacher professional development in the hypothesis based learning method of teaching science

    Science.gov (United States)

    Wilson, Penne L.

    2007-12-01

    This study was conducted as part of the five year evaluation of the Star Schools grant awarded to Oklahoma State University for the development on online teacher professional development in the Hypothesis Based Learning (HbL) method of science instruction. Participants in this research were five teachers who had completed the online workshop, submitted a lesson plan, and who allowed this researcher and other members of the University of New Mexico Evaluation Team into their classrooms to observe and to determine if the learning of the method from the online HbL workshop had translated into practice. These teachers worked in inner city, suburban, metropolitan, and rural communities in the U.S. Southwest. This study was conducted to determine if teachers learned the HbL method from the online HbL workshop, to examine the relationship of satisfaction to learning, and to determine the elements of the online workshop that led to teacher learning. To measure learning of HbL, three different assessment instruments were used: embedded assessments within the online HbL workshop that gave teachers a scenario and asked them to generate questions to facilitate the HbL process; the analysis of a lesson plan provided by teachers using a science concept that they wished to incorporate in their curriculum using an HbL lesson template provided at the HbL website; and, observations of teachers facilitating the HbL process conducted at three different times during the year that they began the HbL online workshop. To determine if teachers were satisfied with the learning environment, the online HbL workshop, and the product, HbL Method for Teaching Science, and to determine if teachers could identify the elements of the online workshop that led to learning, interviews with the participants were conducted. The research findings were presented in two parts: Part I is an analysis of data provided by the assessment instruments and a content analysis of the transcripts of the teacher

  1. Don't Call It School

    Science.gov (United States)

    Robb, Daniel

    2006-01-01

    "Homeschooling," "deschooling," and "unschooling" are commonly used terms in the alternative-education world, but each lacks specificity. In this article, the author describes what he discovered during several visits to North Star. Known officially as North Star: Self-Directed Learning for Teens, it is not as structured as a so-called "free"…

  2. Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science).

    Science.gov (United States)

    Zeng, Irene Sui Lan; Lumley, Thomas

    2018-01-01

    Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.

  3. Aligning professional skills and active learning methods: an application for information and communications technology engineering

    Science.gov (United States)

    Llorens, Ariadna; Berbegal-Mirabent, Jasmina; Llinàs-Audet, Xavier

    2017-07-01

    Engineering education is facing new challenges to effectively provide the appropriate skills to future engineering professionals according to market demands. This study proposes a model based on active learning methods, which is expected to facilitate the acquisition of the professional skills most highly valued in the information and communications technology (ICT) market. The theoretical foundations of the study are based on the specific literature on active learning methodologies. The Delphi method is used to establish the fit between learning methods and generic skills required by the ICT sector. An innovative proposition is therefore presented that groups the required skills in relation to the teaching method that best develops them. The qualitative research suggests that a combination of project-based learning and the learning contract is sufficient to ensure a satisfactory skills level for this profile of engineers.

  4. Millennial Students' Preferred Methods for Learning Concepts in Psychiatric Nursing.

    Science.gov (United States)

    Garwood, Janet K

    2015-09-01

    The current longitudinal, descriptive, and correlational study explored which traditional teaching strategies can engage Millennial students and adequately prepare them for the ultimate test of nursing competence: the National Council Licensure Examination. The study comprised a convenience sample of 40 baccalaureate nursing students enrolled in a psychiatric nursing course. The students were exposed to a variety of traditional (e.g., PowerPoint(®)-guided lectures) and nontraditional (e.g., concept maps, group activities) teaching and learning strategies, and rated their effectiveness. The students' scores on the final examination demonstrated that student learning outcomes met or exceeded national benchmarks. Copyright 2015, SLACK Incorporated.

  5. Conversational Analysis as a Method for Research on Intercultural Learning: A Report on a Project with the Aim of "Learning by Undertaking Research"

    Directory of Open Access Journals (Sweden)

    Gabriele Berkenbusch

    2009-01-01

    Full Text Available Conversational analysis—situated between pragmatic linguistics and qualitative empirical research—is a complex method, which needs a lot of time and dedication. It is necessary to develop a so-called “analytical mentality”. The aim of the project presented in this paper was to develop the theoretical insights and the practical skills of a group of students for this kind of research. They worked together throughout the duration of the project, especially in the collec¬tion of empiric material: i.e. the recording of conversations between foreign and German stu¬dents, the transcription of the material, a group discussion on the data and finally its analysis. This articles aims at showing what students can learn by doing this kind of work, based on examples of the collected empirical material: (1 they will be introduced to the different levels and stages of the research process and have the chance to develop a methodical and methodological competence; (2 their general communicative competences and their special competences of the foreign language will increase, as well as (3 their knowledge of intercultural learning by working with authentic data of intercultural communication. So, for instance, stereotypes and how they have been constructed during the interaction may be analysed and precisely described on a micro-analytical level. URN: urn:nbn:de:0114-fqs0901335

  6. Neuroanatomical heterogeneity of schizophrenia revealed by semi-supervised machine learning methods.

    Science.gov (United States)

    Honnorat, Nicolas; Dong, Aoyan; Meisenzahl-Lechner, Eva; Koutsouleris, Nikolaos; Davatzikos, Christos

    2017-12-20

    Schizophrenia is associated with heterogeneous clinical symptoms and neuroanatomical alterations. In this work, we aim to disentangle the patterns of neuroanatomical alterations underlying a heterogeneous population of patients using a semi-supervised clustering method. We apply this strategy to a cohort of patients with schizophrenia of varying extends of disease duration, and we describe the neuroanatomical, demographic and clinical characteristics of the subtypes discovered. We analyze the neuroanatomical heterogeneity of 157 patients diagnosed with Schizophrenia, relative to a control population of 169 subjects, using a machine learning method called CHIMERA. CHIMERA clusters the differences between patients and a demographically-matched population of healthy subjects, rather than clustering patients themselves, thereby specifically assessing disease-related neuroanatomical alterations. Voxel-Based Morphometry was conducted to visualize the neuroanatomical patterns associated with each group. The clinical presentation and the demographics of the groups were then investigated. Three subgroups were identified. The first two differed substantially, in that one involved predominantly temporal-thalamic-peri-Sylvian regions, whereas the other involved predominantly frontal regions and the thalamus. Both subtypes included primarily male patients. The third pattern was a mix of these two and presented milder neuroanatomic alterations and comprised a comparable number of men and women. VBM and statistical analyses suggest that these groups could correspond to different neuroanatomical dimensions of schizophrenia. Our analysis suggests that schizophrenia presents distinct neuroanatomical variants. This variability points to the need for a dimensional neuroanatomical approach using data-driven, mathematically principled multivariate pattern analysis methods, and should be taken into account in clinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. An Activity-based Approach to the Learning and Teaching of Research Methods: Measuring Student Engagement and Learning

    Directory of Open Access Journals (Sweden)

    Eimear Fallon

    2013-05-01

    Full Text Available This paper discusses a research project carried out with 82 final and third year undergraduate students, learning Research Methods prior to undertaking an undergraduate thesis during the academic years 2010 and 2011. The research had two separate, linked objectives, (a to develop a Research Methods module that embraces an activity-based approach to learning in a group environment, (b to improve engagement by all students. The Research Methods module was previously taught through a traditional lecture-based format. Anecdotally, it was felt that student engagement was poor and learning was limited. It was believed that successful completion of the development of this Module would equip students with a deeply-learned battery of research skills to take into their further academic and professional careers. Student learning was achieved through completion of a series of activities based on different research methods. In order to encourage student engagement, a wide variety of activities were used. These activities included workshops, brainstorming, mind-mapping, presentations, written submissions, peer critiquing, lecture/seminar, and ‘speed dating’ with more senior students and self reflection. Student engagement was measured through a survey based on a U.S. National Survey of Student Engagement (2000. A questionnaire was devised to establish whether, and to what degree, students were engaged in the material that they were learning, while they were learning it. The results of the questionnaire were very encouraging with between 63% and 96% of students answering positively to a range of questions concerning engagement. In terms of the two objectives set, these were satisfactorily met. The module was successfully developed and continues to be delivered, based upon this new and significant level of student engagement.

  8. Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries.

    Science.gov (United States)

    Ma, Xiao H; Jia, Jia; Zhu, Feng; Xue, Ying; Li, Ze R; Chen, Yu Z

    2009-05-01

    Machine learning methods have been explored as ligand-based virtual screening tools for facilitating drug lead discovery. These methods predict compounds of specific pharmacodynamic, pharmacokinetic or toxicological properties based on their structure-derived structural and physicochemical properties. Increasing attention has been directed at these methods because of their capability in predicting compounds of diverse structures and complex structure-activity relationships without requiring the knowledge of target 3D structure. This article reviews current progresses in using machine learning methods for virtual screening of pharmacodynamically active compounds from large compound libraries, and analyzes and compares the reported performances of machine learning tools with those of structure-based and other ligand-based (such as pharmacophore and clustering) virtual screening methods. The feasibility to improve the performance of machine learning methods in screening large libraries is discussed.

  9. Integration of Traditional and E-Learning Methods to Improve Learning Outcomes for Dental Students in Histopathology.

    Science.gov (United States)

    Ariana, Armin; Amin, Moein; Pakneshan, Sahar; Dolan-Evans, Elliot; Lam, Alfred K

    2016-09-01

    Dental students require a basic ability to explain and apply general principles of pathology to systemic, dental, and oral pathology. Although there have been recent advances in electronic and online resources, the academic effectiveness of using self-directed e-learning tools in pathology courses for dental students is unclear. The aim of this study was to determine if blended learning combining e-learning with traditional learning methods of lectures and tutorials would improve students' scores and satisfaction over those who experienced traditional learning alone. Two consecutive cohorts of Bachelor of Dentistry and Oral Health students taking the general pathology course at Griffith University in Australia were compared. The control cohort experienced traditional methods only, while members of the study cohort were also offered self-directed learning materials including online resources and online microscopy classes. Final assessments for the course were used to compare the differences in effectiveness of the intervention, and students' satisfaction with the teaching format was evaluated using questionnaires. On the final course assessments, students in the study cohort had significantly higher scores than students in the control cohort (plearning tools such as virtual microscopy and interactive online resources for delivering pathology instruction can be an effective supplement for developing dental students' competence, confidence, and satisfaction.

  10. Constructivist Teaching/Learning Theory and Participatory Teaching Methods

    Science.gov (United States)

    Fernando, Sithara Y. J. N.; Marikar, Faiz M. M. T.

    2017-01-01

    Evidence for the teaching involves transmission of knowledge, superiority of guided transmission is explained in the context of our knowledge, but it is also much more that. In this study we have examined General Sir John Kotelawala Defence University's cadet and civilian students' response to constructivist learning theory and participatory…

  11. Active Learning Methods and Technology: Strategies for Design Education

    Science.gov (United States)

    Coorey, Jillian

    2016-01-01

    The demands in higher education are on the rise. Charged with teaching more content, increased class sizes and engaging students, educators face numerous challenges. In design education, educators are often torn between the teaching of technology and the teaching of theory. Learning the formal concepts of hierarchy, contrast and space provide the…

  12. Sensor Data Air Pollution Prediction by Machine Learning Methods

    Czech Academy of Sciences Publication Activity Database

    Vidnerová, Petra; Neruda, Roman

    submitted 25. 1. (2018) ISSN 1530-437X R&D Projects: GA ČR GA15-18108S Grant - others:GA MŠk(CZ) LM2015042 Institutional support: RVO:67985807 Keywords : machine learning * sensors * air pollution * deep neural networks * regularization networks Subject RIV: IN - Informatics, Computer Science Impact factor: 2.512, year: 2016

  13. Classification of carcinogenic and mutagenic properties using machine learning method

    DEFF Research Database (Denmark)

    Moorthy, N. S.Hari Narayana; Kumar, Surendra; Poongavanam, Vasanthanathan

    2017-01-01

    An accurate calculation of carcinogenicity of chemicals became a serious challenge for the health assessment authority around the globe because of not only increased cost for experiments but also various ethical issues exist using animal models. In this study, we provide machine learning...

  14. Improve Biomedical Information Retrieval using Modified Learning to Rank Methods.

    Science.gov (United States)

    Xu, Bo; Lin, Hongfei; Lin, Yuan; Ma, Yunlong; Yang, Liang; Wang, Jian; Yang, Zhihao

    2016-06-14

    In these years, the number of biomedical articles has increased exponentially, which becomes a problem for biologists to capture all the needed information manually. Information retrieval technologies, as the core of search engines, can deal with the problem automatically, providing users with the needed information. However, it is a great challenge to apply these technologies directly for biomedical retrieval, because of the abundance of domain specific terminologies. To enhance biomedical retrieval, we propose a novel framework based on learning to rank. Learning to rank is a series of state-of-the-art information retrieval techniques, and has been proved effective in many information retrieval tasks. In the proposed framework, we attempt to tackle the problem of the abundance of terminologies by constructing ranking models, which focus on not only retrieving the most relevant documents, but also diversifying the searching results to increase the completeness of the resulting list for a given query. In the model training, we propose two novel document labeling strategies, and combine several traditional retrieval models as learning features. Besides, we also investigate the usefulness of different learning to rank approaches in our framework. Experimental results on TREC Genomics datasets demonstrate the effectiveness of our framework for biomedical information retrieval.

  15. Vygotskian methods of teaching and learning in the English ...

    African Journals Online (AJOL)

    This paper describes an alternative approachto the teaching of concepts related to theEnglish curriculum, namely literature, writing summaries and grammar. It combines ashift in the theory of school learning development by a combination with a psychologicaltheory of development. The research was conducted over the ...

  16. Understanding Sample Surveys: Selective Learning about Social Science Research Methods

    Science.gov (United States)

    Currin-Percival, Mary; Johnson, Martin

    2010-01-01

    We investigate differences in what students learn about survey methodology in a class on public opinion presented in two critically different ways: with the inclusion or exclusion of an original research project using a random-digit-dial telephone survey. Using a quasi-experimental design and data obtained from pretests and posttests in two public…

  17. Predicting Solar Activity Using Machine-Learning Methods

    Science.gov (United States)

    Bobra, M.

    2017-12-01

    Of all the activity observed on the Sun, two of the most energetic events are flares and coronal mass ejections. However, we do not, as of yet, fully understand the physical mechanism that triggers solar eruptions. A machine-learning algorithm, which is favorable in cases where the amount of data is large, is one way to [1] empirically determine the signatures of this mechanism in solar image data and [2] use them to predict solar activity. In this talk, we discuss the application of various machine learning algorithms - specifically, a Support Vector Machine, a sparse linear regression (Lasso), and Convolutional Neural Network - to image data from the photosphere, chromosphere, transition region, and corona taken by instruments aboard the Solar Dynamics Observatory in order to predict solar activity on a variety of time scales. Such an approach may be useful since, at the present time, there are no physical models of flares available for real-time prediction. We discuss our results (Bobra and Couvidat, 2015; Bobra and Ilonidis, 2016; Jonas et al., 2017) as well as other attempts to predict flares using machine-learning (e.g. Ahmed et al., 2013; Nishizuka et al. 2017) and compare these results with the more traditional techniques used by the NOAA Space Weather Prediction Center (Crown, 2012). We also discuss some of the challenges in using machine-learning algorithms for space science applications.

  18. A study on the engineering education methods with a learning management system

    OpenAIRE

    海老澤, 賢史; Ebisawa, Satoshi

    2017-01-01

    The educational methods with Learning Management System (LMS) are described, which are applied to two specialized courses for engineering education and a research guidance for graduation work at Niigata Institute of Technology.According to the analysis of LMS usage situation for graduation work, the LMS has provided an effect that learning time outside class hour is held and the convenience of students in learning is enhanced.In the specializedcourses, the rate of utilization of LMS has depen...

  19. Interest in Currency Trading Learning – Preferred Methods and Motivational Factors

    Directory of Open Access Journals (Sweden)

    Pintar Rok

    2016-02-01

    Full Text Available Background and purpose: This paper analyzes the interest of potential users for learning in the field of currency trading or foreign exchange (forex, FX. The purpose of our article is a to present currency trading, b to present different options, methods and learning approaches to educating in forex, c to present the research results discovering the interest of potential users for learning in the field of currency trading.

  20. Blended call center with idling times during the call service

    NARCIS (Netherlands)

    Legros, Benjamin; Jouini, Oualid; Koole, Ger

    We consider a blended call center with calls arriving over time and an infinitely backlogged amount of outbound jobs. Inbound calls have a non-preemptive priority over outbound jobs. The inbound call service is characterized by three successive stages where the second one is a break; i.e., there is

  1. An Integrated Mixed Methods Research Design: Example of the Project Foreign Language Learning Strategies and Achievement: Analysis of Strategy Clusters and Sequences

    OpenAIRE

    Vlčková Kateřina

    2014-01-01

    The presentation focused on an so called integrated mixed method research design example on a basis of a Czech Science Foundation Project Nr. GAP407/12/0432 "Foreign Language Learning Strategies and Achievement: Analysis of Strategy Clusters and Sequences". All main integrated parts of the mixed methods research design were discussed: the aim, theoretical framework, research question, methods and validity threats. Prezentace se zaměřovala na tzv. integrovaný vícemetodový výzkumný design na...

  2. A deep learning-based multi-model ensemble method for cancer prediction.

    Science.gov (United States)

    Xiao, Yawen; Wu, Jun; Lin, Zongli; Zhao, Xiaodong

    2018-01-01

    Cancer is a complex worldwide health problem associated with high mortality. With the rapid development of the high-throughput sequencing technology and the application of various machine learning methods that have emerged in recent years, progress in cancer prediction has been increasingly made based on gene expression, providing insight into effective and accurate treatment decision making. Thus, developing machine learning methods, which can successfully distinguish cancer patients from healthy persons, is of great current interest. However, among the classification methods applied to cancer prediction so far, no one method outperforms all the others. In this paper, we demonstrate a new strategy, which applies deep learning to an ensemble approach that incorporates multiple different machine learning models. We supply informative gene data selected by differential gene expression analysis to five different classification models. Then, a deep learning method is employed to ensemble the outputs of the five classifiers. The proposed deep learning-based multi-model ensemble method was tested on three public RNA-seq data sets of three kinds of cancers, Lung Adenocarcinoma, Stomach Adenocarcinoma and Breast Invasive Carcinoma. The test results indicate that it increases the prediction accuracy of cancer for all the tested RNA-seq data sets as compared to using a single classifier or the majority voting algorithm. By taking full advantage of different classifiers, the proposed deep learning-based multi-model ensemble method is shown to be accurate and effective for cancer prediction. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Criteria of GenCall score to edit marker data and methods to handle missing markers have an influence on accuracy of genomic predictions

    DEFF Research Database (Denmark)

    Edriss, Vahid; Guldbrandtsen, Bernt; Lund, Mogens Sandø

    2013-01-01

    The aim of this study was to investigate the effect of different strategies for handling low-quality or missing data on prediction accuracy for direct genomic values of protein yield, mastitis and fertility using a Bayesian variable model and a GBLUP model in the Danish Jersey population. The data...... contained 1071 Jersey bulls that were genotyped with the Illumina Bovine 50K chip. After preliminary editing, 39227 SNP remained in the dataset. Four methods to handle missing genotypes were: 1) BEAGLE: missing markers were imputed using Beagle 3.3 software, 2) COMMON: missing genotypes at a locus were...

  4. Building Customer Churn Prediction Models in Fitness Industry with Machine Learning Methods

    OpenAIRE

    Shan, Min

    2017-01-01

    With the rapid growth of digital systems, churn management has become a major focus within customer relationship management in many industries. Ample research has been conducted for churn prediction in different industries with various machine learning methods. This thesis aims to combine feature selection and supervised machine learning methods for defining models of churn prediction and apply them on fitness industry. Forward selection is chosen as feature selection methods. Support Vector ...

  5. Machine Learning Methods for Identifying Composition of Uranium Deposits in Kazakhstan

    Directory of Open Access Journals (Sweden)

    Kuchin Yan

    2017-12-01

    Full Text Available The paper explores geophysical methods of wells survey, as well as their role in the development of Kazakhstan’s uranium deposit mining efforts. An analysis of the existing methods for solving the problem of interpreting geophysical data using machine learning in petroleum geophysics is made. The requirements and possible applications of machine learning methods in regard to uranium deposits of Kazakhstan are formulated in the paper.

  6. Perspective for applying traditional and inovative teaching and learning methods to nurses continuing education

    OpenAIRE

    Bendinskaitė, Irmina

    2015-01-01

    Bendinskaitė I. Perspective for applying traditional and innovative teaching and learning methods to nurse’s continuing education, magister thesis / supervisor Assoc. Prof. O. Riklikienė; Departament of Nursing and Care, Faculty of Nursing, Lithuanian University of Health Sciences. – Kaunas, 2015, – p. 92 The purpose of this study was to investigate traditional and innovative teaching and learning methods perspective to nurse’s continuing education. Material and methods. In a period fro...

  7. Project-Based Learning in Undergraduate Environmental Chemistry Laboratory: Using EPA Methods to Guide Student Method Development for Pesticide Quantitation

    Science.gov (United States)

    Davis, Eric J.; Pauls, Steve; Dick, Jonathan

    2017-01-01

    Presented is a project-based learning (PBL) laboratory approach for an upper-division environmental chemistry or quantitative analysis course. In this work, a combined laboratory class of 11 environmental chemistry students developed a method based on published EPA methods for the extraction of dichlorodiphenyltrichloroethane (DDT) and its…

  8. Evaluation of a Didactic Method for the Active Learning of Greedy Algorithms

    Science.gov (United States)

    Esteban-Sánchez, Natalia; Pizarro, Celeste; Velázquez-Iturbide, J. Ángel

    2014-01-01

    An evaluation of the educational effectiveness of a didactic method for the active learning of greedy algorithms is presented. The didactic method sets students structured-inquiry challenges to be addressed with a specific experimental method, supported by the interactive system GreedEx. This didactic method has been refined over several years of…

  9. Pioneering a Nursing Home Quality Improvement Learning Collaborative: A Case Study of Method and Lessons Learned.

    Science.gov (United States)

    Gillespie, Suzanne M; Olsan, Tobie; Liebel, Dianne; Cai, Xueya; Stewart, Reginald; Katz, Paul R; Karuza, Jurgis

    2016-02-01

    To describe the development of a nursing home (NH) quality improvement learning collaborative (QILC) that provides Lean Six Sigma (LSS) training and infrastructure support for quality assurance performance improvement change efforts. Case report. Twenty-seven NHs located in the Greater Rochester, NY area. The learning collaborative approach in which interprofessional teams from different NHs work together to improve common clinical and organizational processes by sharing experiences and evidence-based practices to achieve measurable changes in resident outcomes and system efficiencies. NH participation, curriculum design, LSS projects. Over 6 years, 27 NHs from urban and rural settings joined the QILC as organizational members and sponsored 47 interprofessional teams to learn LSS techniques and tools, and to implement quality improvement projects. NHs, in both urban and rural settings, can benefit from participation in QILCs and are able to learn and apply LSS tools in their team-based quality improvement efforts. Published by Elsevier Inc.

  10. The Effect of WhatsApp Messenger As Mobile Learning Integrated with Group Investigation Method of Learning Achievement

    Directory of Open Access Journals (Sweden)

    Hendrik Pratama

    2017-12-01

    Full Text Available The purpose of this research was determined the effect of application WhatsApp Messenger in the Group Investigation (GI method on learning achievement. The methods used experimental research with control group pretest-postest design. The sampling procedure used the purposive sampling technique that consists of 17 students as a control group and 17 students as an experimental group. The sample in this research is students in Electrical Engineering Education Study Program. The experimental group used the GI method that integrated with WhatsApp Messenger. The control group used lecture method without social media integration. The collecting data used observation, documentation, interview, questionnaire, and test. The researcher used a t-test for compared the control group and the experimental group’s learning outcomes at an alpha level of 0,05. The results showed differences between the experiment group and the control group. The study result of the experimental higher than the control groups. This learning was designed with start, grouping, planning, presenting, organizing, investigating, evaluating, ending’s stage. Integration of WhatsApp with group investigation method could cause the positive communication between student and lecturer. Discussion in this learning was well done, the student’s knowledge could appear in a group and the information could spread evenly and quickly.

  11. Perception of mathematics teachers on cooperative learning method in the 21st century

    Science.gov (United States)

    Taufik, Nurshahira Alwani Mohd; Maat, Siti Mistima

    2017-05-01

    Mathematics education is one of the branches to be mastered by students to help them compete with the upcoming challenges that are very challenging. As such, all parties should work together to help increase student achievement in Mathematics education in line with the Malaysian Education Blueprint (MEB) 2010-2025. Teaching methods play a very important role in attracting and fostering student understanding and interested in learning Mathematics. Therefore, this study was conducted to identify the perceptions of teachers in carrying out cooperative methods in the teaching and learning of mathematics. Participants of this study involving 4 teachers who teach Mathematics in primary schools around the state of Negeri Sembilan. Interviews are used as a method for gathering data. The findings indicate that cooperative methods help increasing interest and understanding in the teaching and learning of mathematics. In conclusion, the teaching methods affect the interest and understanding of students in the learning of Mathematics in the classroom.

  12. Learning to Run challenge solutions: Adapting reinforcement learning methods for neuromusculoskeletal environments

    OpenAIRE

    Kidziński, Łukasz; Mohanty, Sharada Prasanna; Ong, Carmichael; Huang, Zhewei; Zhou, Shuchang; Pechenko, Anton; Stelmaszczyk, Adam; Jarosik, Piotr; Pavlov, Mikhail; Kolesnikov, Sergey; Plis, Sergey; Chen, Zhibo; Zhang, Zhizheng; Chen, Jiale; Shi, Jun

    2018-01-01

    In the NIPS 2017 Learning to Run challenge, participants were tasked with building a controller for a musculoskeletal model to make it run as fast as possible through an obstacle course. Top participants were invited to describe their algorithms. In this work, we present eight solutions that used deep reinforcement learning approaches, based on algorithms such as Deep Deterministic Policy Gradient, Proximal Policy Optimization, and Trust Region Policy Optimization. Many solutions use similar ...

  13. Blended Learning: A Mixed-Methods Study on Successful Schools and Effective Practices

    Science.gov (United States)

    Mathews, Anne

    2017-01-01

    Blended learning is a teaching technique that utilizes face-to-face teaching and online or technology-based practice in which the learner has the ability to exert some level of control over the pace, place, path, or time of learning. Schools that employ this method of teaching often demonstrate larger gains than traditional face-to-face programs…

  14. Effects of Cooperative Learning Method on the Development of Listening Comprehension and Listening Skills

    Science.gov (United States)

    Kirbas, Abdulkadir

    2017-01-01

    In this study, the effect of the learning together technique, which is one of the cooperative learning methods, on the development of the listening comprehension and listening skills of the secondary school eighth grade students was investigated. Regarding the purpose of the research, experimental and control groups consisting of 75 students from,…

  15. Methods and Case Studies for Teaching and Learning about Failure and Safety.

    Science.gov (United States)

    Bignell, Victor

    1999-01-01

    Discusses methods for analyzing case studies of failures of technological systems. Describes two distance learning courses that compare standard models of failure and success with the actuality of given scenarios. Provides teaching and learning materials and information sources for application to aspects of design, manufacture, inspection, use,…

  16. An Approachment to Cooperative Learning in Higher Education: Comparative Study of Teaching Methods in Engineering

    Science.gov (United States)

    Estébanez, Raquel Pérez

    2017-01-01

    In the way of continuous improvement in teaching methods this paper explores the effects of Cooperative Learning (CL) against Traditional Learning (TL) in academic performance of students in higher education in two groups of the first course of Computer Science Degree at the university. The empirical study was conducted through an analysis of…

  17. e-Research and Learning Theory: What Do Sequence and Process Mining Methods Contribute?

    Science.gov (United States)

    Reimann, Peter; Markauskaite, Lina; Bannert, Maria

    2014-01-01

    This paper discusses the fundamental question of how data-intensive e-research methods could contribute to the development of learning theories. Using methodological developments in research on self-regulated learning as an example, it argues that current applications of data-driven analytical techniques, such as educational data mining and its…

  18. Enhancing the Pronunciation of English Suprasegmental Features through Reflective Learning Method

    Science.gov (United States)

    Suwartono

    2014-01-01

    Suprasegmental features are of paramount importance in spoken English. Yet, these pronunciation features are marginalised in EFL/ESL teaching-learning. This article reported a study that was aimed at improving the students' mastery of English suprasegmental features through the use of reflective learning method. The study adopted Kemmis and…

  19. Cooperative Learning in Virtual Environments: The Jigsaw Method in Statistical Courses

    Science.gov (United States)

    Vargas-Vargas, Manuel; Mondejar-Jimenez, Jose; Santamaria, Maria-Letica Meseguer; Alfaro-Navarro, Jose-Luis; Fernandez-Aviles, Gema

    2011-01-01

    This document sets out a novel teaching methodology as used in subjects with statistical content, traditionally regarded by students as "difficult". In a virtual learning environment, instructional techniques little used in mathematical courses were employed, such as the Jigsaw cooperative learning method, which had to be adapted to the…

  20. Exploring Service Learning Outcomes in Students: A Mixed Methods Study for Nursing

    Science.gov (United States)

    Martin, John F.

    2017-01-01

    This mixed methods study exploring student outcomes of service learning experiences is inter-disciplinary, near the intersection of higher education research, moral development, and nursing. The specific problem examined in this study is that service learning among university students is utilized by educators, but largely without a full…

  1. Applying Cognitive Behavioural Methods to Retrain Children's Attributions for Success and Failure in Learning

    Science.gov (United States)

    Toland, John; Boyle, Christopher

    2008-01-01

    This study involves the use of methods derived from cognitive behavioral therapy (CBT) to change the attributions for success and failure of school children with regard to learning. Children with learning difficulties and/or motivational and self-esteem difficulties (n = 29) were identified by their schools. The children then took part in twelve…

  2. Linked-Class Problem-Based Learning in Engineering: Method and Evaluation

    Science.gov (United States)

    Hunt, Emily M.; Lockwood-Cooke, Pamela; Kelley, Judy

    2010-01-01

    Problem-Based Learning (PBL) is a problem-centered teaching method with exciting potential in engineering education for motivating and enhancing student learning. Implementation of PBL in engineering education has the potential to bridge the gap between theory and practice. Two common problems are encountered when attempting to integrate PBL into…

  3. A mixed methods evaluation of team-based learning for applied pathophysiology in undergraduate nursing education.

    Science.gov (United States)

    Branney, Jonathan; Priego-Hernández, Jacqueline

    2018-02-01

    It is important for nurses to have a thorough understanding of the biosciences such as pathophysiology that underpin nursing care. These courses include content that can be difficult to learn. Team-based learning is emerging as a strategy for enhancing learning in nurse education due to the promotion of individual learning as well as learning in teams. In this study we sought to evaluate the use of team-based learning in the teaching of applied pathophysiology to undergraduate student nurses. A mixed methods observational study. In a year two, undergraduate nursing applied pathophysiology module circulatory shock was taught using Team-based Learning while all remaining topics were taught using traditional lectures. After the Team-based Learning intervention the students were invited to complete the Team-based Learning Student Assessment Instrument, which measures accountability, preference and satisfaction with Team-based Learning. Students were also invited to focus group discussions to gain a more thorough understanding of their experience with Team-based Learning. Exam scores for answers to questions based on Team-based Learning-taught material were compared with those from lecture-taught material. Of the 197 students enrolled on the module, 167 (85% response rate) returned the instrument, the results from which indicated a favourable experience with Team-based Learning. Most students reported higher accountability (93%) and satisfaction (92%) with Team-based Learning. Lectures that promoted active learning were viewed as an important feature of the university experience which may explain the 76% exhibiting a preference for Team-based Learning. Most students wanted to make a meaningful contribution so as not to let down their team and they saw a clear relevance between the Team-based Learning activities and their own experiences of teamwork in clinical practice. Exam scores on the question related to Team-based Learning-taught material were comparable to those

  4. Machine learning methods in predicting the student academic motivation

    Directory of Open Access Journals (Sweden)

    Ivana Đurđević Babić

    2017-01-01

    Full Text Available Academic motivation is closely related to academic performance. For educators, it is equally important to detect early students with a lack of academic motivation as it is to detect those with a high level of academic motivation. In endeavouring to develop a classification model for predicting student academic motivation based on their behaviour in learning management system (LMS courses, this paper intends to establish links between the predicted student academic motivation and their behaviour in the LMS course. Students from all years at the Faculty of Education in Osijek participated in this research. Three machine learning classifiers (neural networks, decision trees, and support vector machines were used. To establish whether a significant difference in the performance of models exists, a t-test of the difference in proportions was used. Although, all classifiers were successful, the neural network model was shown to be the most successful in detecting the student academic motivation based on their behaviour in LMS course.

  5. Survey of Machine Learning Methods for Database Security

    Science.gov (United States)

    Kamra, Ashish; Ber, Elisa

    Application of machine learning techniques to database security is an emerging area of research. In this chapter, we present a survey of various approaches that use machine learning/data mining techniques to enhance the traditional security mechanisms of databases. There are two key database security areas in which these techniques have found applications, namely, detection of SQL Injection attacks and anomaly detection for defending against insider threats. Apart from the research prototypes and tools, various third-party commercial products are also available that provide database activity monitoring solutions by profiling database users and applications. We present a survey of such products. We end the chapter with a primer on mechanisms for responding to database anomalies.

  6. Musical Chairs: An Innovative Teaching and Learning Method

    Science.gov (United States)

    Kuo, Ya-Hui

    2010-01-01

    How teaching and learning takes place in classrooms can be easily seen by the way classrooms are set up: Students' desks and chairs are arranged in rolls while teachers' desks are up front. Yet, why must teachers be the ones who lecture, why can't it be students? Would it be better or worse when teachers are the receivers and the students are the…

  7. Tracing policy movements: methods for studying learning and policy circulation

    OpenAIRE

    Wood, Astrid

    2016-01-01

    Policy flows are not quantifiable and calculating processes but part of the uneven movement of ideas and experiences that involves power and personalities. Processes of learning and policy circulation have thus proven difficult to study especially as the exchanges taking place between actors and localities rarely lead directly to uptake. This paper outlines a conceptual and methodological framework for conducting policy mobilities research by attending to the plethora of ordinary practices – ...

  8. Implementation of Simulation Based-Concept Attainment Method to Increase Interest Learning of Engineering Mechanics Topic

    Science.gov (United States)

    Sultan, A. Z.; Hamzah, N.; Rusdi, M.

    2018-01-01

    The implementation of concept attainment method based on simulation was used to increase student’s interest in the subjects Engineering of Mechanics in second semester of academic year 2016/2017 in Manufacturing Engineering Program, Department of Mechanical PNUP. The result of the implementation of this learning method shows that there is an increase in the students’ learning interest towards the lecture material which is summarized in the form of interactive simulation CDs and teaching materials in the form of printed books and electronic books. From the implementation of achievement method of this simulation based concept, it is noted that the increase of student participation in the presentation and discussion as well as the deposit of individual assignment of significant student. With the implementation of this method of learning the average student participation reached 89%, which before the application of this learning method only reaches an average of 76%. And also with previous learning method, for exam achievement of A-grade under 5% and D-grade above 8%. After the implementation of the new learning method (simulation based-concept attainment method) the achievement of Agrade has reached more than 30% and D-grade below 1%.

  9. Childhood fever management program for Korean pediatric nurses: A comparison between blended and face-to-face learning method.

    Science.gov (United States)

    Jeong, Yong Sun; Kim, Jin Sun

    2014-01-01

    A blended learning can be a useful learning strategy to improve the quality of fever and fever management education for pediatric nurses. This study compared the effects of a blended and face-to-face learning program on pediatric nurses' childhood fever management, using theory of planned behavior. A nonequivalent control group pretest-posttest design was used. A fever management education program using blended learning (combining face-to-face and online learning components) was offered to 30 pediatric nurses, and 29 pediatric nurses received face-to-face education. Learning outcomes did not significantly differ between the two groups. However, learners' satisfaction was higher for the blended learning program than the face-to-face learning program. A blended learning pediatric fever management program was as effective as a traditional face-to-face learning program. Therefore, a blended learning pediatric fever management-learning program could be a useful and flexible learning method for pediatric nurses.

  10. The effect of high fidelity simulated learning methods on physiotherapy pre-registration education: a systematic review protocol.

    Science.gov (United States)

    Roberts, Fiona; Cooper, Kay

    2017-11-01

    The objective of this review is to identify if high fidelity simulated learning methods are effective in enhancing clinical/practical skills compared to usual, low fidelity simulated learning methods in pre-registration physiotherapy education.

  11. A place to call home: study protocol for a longitudinal, mixed methods evaluation of two housing first adaptations in Sydney, Australia.

    Science.gov (United States)

    Whittaker, Elizabeth; Swift, Wendy; Flatau, Paul; Dobbins, Timothy; Schollar-Root, Olivia; Burns, Lucinda

    2015-04-09

    This protocol describes a study evaluating two 'Housing First' programs, Platform 70 and Common Ground, presently being implemented in the inner-city region of Sydney, Australia. The Housing First approach prioritises housing individuals who are homeless in standard lease agreement tenancies as rapidly as possible to lock in the benefits from long-term accommodation, even where the person may not be seen as 'housing ready'. The longitudinal, mixed methods evaluation utilises both quantitative and qualitative data collected at baseline and 12-month follow-up time points. For the quantitative component, clients of each program were invited to complete client surveys that reported on several factors associated with chronic homelessness and were hypothesised to improve under stable housing, including physical and mental health status and treatment rates, quality of life, substance use patterns, and contact with the health and criminal justice systems. Semi-structured interviews with clients and stakeholders comprised the qualitative component and focused on individual experiences with, and perceptions of, the two programs. In addition, program data on housing stability, rental subsidies and support levels provided to clients by agencies was collected and will be used in conjunction with the client survey data to undertake an economic evaluation of the two programs. This study will systematically evaluate the efficacy of a scatter site model (Platform 70) and a congregated model (Common Ground) of the Housing First approach; an examination that has not yet been made either in Australia or internationally. A clear strength of the study is its timing. It was designed and implemented as the programs in question themselves were introduced. Moreover, the programs were introduced when the Australian Government, with State and Territory support, began a more focused, coordinated response to homelessness and funded rapid expansion of innovative homelessness programs across the

  12. Understanding the effects of time on collaborative learning processes in problem based learning: a mixed methods study.

    Science.gov (United States)

    Hommes, J; Van den Bossche, P; de Grave, W; Bos, G; Schuwirth, L; Scherpbier, A

    2014-10-01

    Little is known how time influences collaborative learning groups in medical education. Therefore a thorough exploration of the development of learning processes over time was undertaken in an undergraduate PBL curriculum over 18 months. A mixed-methods triangulation design was used. First, the quantitative study measured how various learning processes developed within and over three periods in the first 1,5 study years of an undergraduate curriculum. Next, a qualitative study using semi-structured individual interviews focused on detailed development of group processes driving collaborative learning during one period in seven tutorial groups. The hierarchic multilevel analyses of the quantitative data showed that a varying combination of group processes developed within and over the three observed periods. The qualitative study illustrated development in psychological safety, interdependence, potency, group learning behaviour, social and task cohesion. Two new processes emerged: 'transactive memory' and 'convergence in mental models'. The results indicate that groups are dynamic social systems with numerous contextual influences. Future research should thus include time as an important influence on collaborative learning. Practical implications are discussed.

  13. Considerations for Task Analysis Methods and Rapid E-Learning Development Techniques

    Directory of Open Access Journals (Sweden)

    Dr. Ismail Ipek

    2014-02-01

    Full Text Available The purpose of this paper is to provide basic dimensions for rapid training development in e-learning courses in education and business. Principally, it starts with defining task analysis and how to select tasks for analysis and task analysis methods for instructional design. To do this, first, learning and instructional technologies as visions of the future were discussed. Second, the importance of task analysis methods in rapid e-learning was considered, with learning technologies as asynchronous and synchronous e-learning development. Finally, rapid instructional design concepts and e-learning design strategies were defined and clarified with examples, that is, all steps for effective task analysis and rapid training development techniques based on learning and instructional design approaches were discussed, such as m-learning and other delivery systems. As a result, the concept of task analysis, rapid e-learning development strategies and the essentials of online course design were discussed, alongside learner interface design features for learners and designers.

  14. Teaching Theory in Occupational Therapy Using a Cooperative Learning: A Mixed-Methods Study.

    Science.gov (United States)

    Howe, Tsu-Hsin; Sheu, Ching-Fan; Hinojosa, Jim

    2018-01-01

    Cooperative learning provides an important vehicle for active learning, as knowledge is socially constructed through interaction with others. This study investigated the effect of cooperative learning on occupational therapy (OT) theory knowledge attainment in professional-level OT students in a classroom environment. Using a pre- and post-test group design, 24 first-year, entry-level OT students participated while taking a theory course in their second semester of the program. Cooperative learning methods were implemented via in-class group assignments. The students were asked to complete two questionnaires regarding their attitudes toward group environments and their perception toward group learning before and after the semester. MANCOVA was used to examine changes in attitudes and perceived learning among groups. Students' summary sheets for each in-class assignment and course evaluations were collected for content analysis. Results indicated significant changes in students' attitude toward working in small groups regardless of their prior group experience.

  15. CALL FOR PROPOSALS

    International Development Research Centre (IDRC) Digital Library (Canada)

    Charles

    The Institute of Statistical, Social and Economic Research (ISSER) of the University of ... surprisingly little about differences in entrepreneurial practices, business ... methods to address the above questions and to provide solid and credible ...

  16. The «PBL WORKING ENVIRONMENT» as interactive and expert system to learn the problem-based learning method

    Directory of Open Access Journals (Sweden)

    Susana Correnti

    2016-01-01

    Full Text Available The «PBL working environment» is a virtual environment developed in the framework of SCENE project (profeSsional development for an effeCtive PBL approach: a practical experiENce through ICT-enabled lEarning solution, co-funded by the European Lifelong Learning Program. The «PBL working environment» is devoted to prepare headmasters and teachers of secondary and vocational schools to use Problem-Based Learning (PBL pedagogy effectively. It is a student-centered pedagogy where learners are «actively» engaged in real world problems to solve or challenges to meet. Students develop problem-solving, self-directed learning and team skills. The «PBL working environment» is an virtual tool including three main elements: e-learning platform, virtual facilitator and PBL repository. Teachers, trainers and headmasters/school managers learn the PBL pedagogy by attending an on-line course (e-learning platform delivered through the «inductive method». It allows learners to experience PBL approach, by practicing it stage by stage, and then learn to turn practice into theory by abstracting their experience to build a theoretical understanding. Since generating the proper scenario is the most critical aspect of PBL, after benefiting from the on-line course, users can benefit from a further support: the Virtual Facilitator. It provides tips and hints on how correctly design a problem scenario and by asking questions to collect data on user's specific needs. The Virtual Facilitator is able to provide a/or more suitable example(s which match as closest as possible the teacher/trainer need. Finally, users can share problem scenarios and projects of different subjects of studies and with different characteristics uploaded and downloaded in the PBL repository.

  17. Assessing and comparison of different machine learning methods in parent-offspring trios for genotype imputation.

    Science.gov (United States)

    Mikhchi, Abbas; Honarvar, Mahmood; Kashan, Nasser Emam Jomeh; Aminafshar, Mehdi

    2016-06-21

    Genotype imputation is an important tool for prediction of unknown genotypes for both unrelated individuals and parent-offspring trios. Several imputation methods are available and can either employ universal machine learning methods, or deploy algorithms dedicated to infer missing genotypes. In this research the performance of eight machine learning methods: Support Vector Machine, K-Nearest Neighbors, Extreme Learning Machine, Radial Basis Function, Random Forest, AdaBoost, LogitBoost, and TotalBoost compared in terms of the imputation accuracy, computation time and the factors affecting imputation accuracy. The methods employed using real and simulated datasets to impute the un-typed SNPs in parent-offspring trios. The tested methods show that imputation of parent-offspring trios can be accurate. The Random Forest and Support Vector Machine were more accurate than the other machine learning methods. The TotalBoost performed slightly worse than the other methods.The running times were different between methods. The ELM was always most fast algorithm. In case of increasing the sample size, the RBF requires long imputation time.The tested methods in this research can be an alternative for imputation of un-typed SNPs in low missing rate of data. However, it is recommended that other machine learning methods to be used for imputation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Results of a study assessing teaching methods of faculty after measuring student learning style preference.

    Science.gov (United States)

    Stirling, Bridget V

    2017-08-01

    Learning style preference impacts how well groups of students respond to their curricula. Faculty have many choices in the methods for delivering nursing content, as well as assessing students. The purpose was to develop knowledge around how faculty delivered curricula content, and then considering these findings in the context of the students learning style preference. Following an in-service on teaching and learning styles, faculty completed surveys on their methods of teaching and the proportion of time teaching, using each learning style (visual, aural, read/write and kinesthetic). This study took place at the College of Nursing a large all-female university in Saudi Arabia. 24 female nursing faculty volunteered to participate in the project. A cross-sectional design was used. Faculty reported teaching using mostly methods that were kinesthetic and visual, although lecture was also popular (aural). Students preferred kinesthetic and aural learning methods. Read/write was the least preferred by students and the least used method of teaching by faculty. Faculty used visual methods about one third of the time, although they were not preferred by the students. Students' preferred learning style (kinesthetic) was the method most used by faculty. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Student Teachers and CALL: Personal and Pedagogical Uses and Beliefs

    Science.gov (United States)

    Hlas, Anne Cummings; Conroy, Kelly; Hildebrandt, Susan A.

    2017-01-01

    The student teaching semester affords teacher candidates the chance to apply what they have learned during their teacher preparation coursework. Therefore, it can be a prime opportunity for student teachers to use technology for their own language learning and to implement computer assisted language learning (CALL) in their instruction. This study…

  20. WHAT ARE AGRICULTURAL ECONOMICS PH.D. STUDENTS LEARNING ABOUT AGRIBUSINESS RESEARCH METHODS AND SUBJECT AREAS?

    OpenAIRE

    House, Lisa; Sterns, James A.

    2002-01-01

    This document contains the PowerPoint presentation given by the authors at the 2002 WCC-72 meetings, regarding what agricultural economics Ph.D students are learning about agribusiness research methods and subject areas.

  1. Application of Computer-Assisted Learning Methods in the Teaching of Chemical Spectroscopy.

    Science.gov (United States)

    Ayscough, P. B.; And Others

    1979-01-01

    Discusses the application of computer-assisted learning methods to the interpretation of infrared, nuclear magnetic resonance, and mass spectra; and outlines extensions into the area of integrated spectroscopy. (Author/CMV)

  2. Improved Saturated Hydraulic Conductivity Pedotransfer Functions Using Machine Learning Methods

    Science.gov (United States)

    Araya, S. N.; Ghezzehei, T. A.

    2017-12-01

    Saturated hydraulic conductivity (Ks) is one of the fundamental hydraulic properties of soils. Its measurement, however, is cumbersome and instead pedotransfer functions (PTFs) are often used to estimate it. Despite a lot of progress over the years, generic PTFs that estimate hydraulic conductivity generally don't have a good performance. We develop significantly improved PTFs by applying state of the art machine learning techniques coupled with high-performance computing on a large database of over 20,000 soils—USKSAT and the Florida Soil Characterization databases. We compared the performance of four machine learning algorithms (k-nearest neighbors, gradient boosted model, support vector machine, and relevance vector machine) and evaluated the relative importance of several soil properties in explaining Ks. An attempt is also made to better account for soil structural properties; we evaluated the importance of variables derived from transformations of soil water retention characteristics and other soil properties. The gradient boosted models gave the best performance with root mean square errors less than 0.7 and mean errors in the order of 0.01 on a log scale of Ks [cm/h]. The effective particle size, D10, was found to be the single most important predictor. Other important predictors included percent clay, bulk density, organic carbon percent, coefficient of uniformity and values derived from water retention characteristics. Model performances were consistently better for Ks values greater than 10 cm/h. This study maximizes the extraction of information from a large database to develop generic machine learning based PTFs to estimate Ks. The study also evaluates the importance of various soil properties and their transformations in explaining Ks.

  3. Combining advanced networked technology and pedagogical methods to improve collaborative distance learning.

    Science.gov (United States)

    Staccini, Pascal; Dufour, Jean-Charles; Raps, Hervé; Fieschi, Marius

    2005-01-01

    Making educational material be available on a network cannot be reduced to merely implementing hypermedia and interactive resources on a server. A pedagogical schema has to be defined to guide students for learning and to provide teachers with guidelines to prepare valuable and upgradeable resources. Components of a learning environment, as well as interactions between students and other roles such as author, tutor and manager, can be deduced from cognitive foundations of learning, such as the constructivist approach. Scripting the way a student will to navigate among information nodes and interact with tools to build his/her own knowledge can be a good way of deducing the features of the graphic interface related to the management of the objects. We defined a typology of pedagogical resources, their data model and their logic of use. We implemented a generic and web-based authoring and publishing platform (called J@LON for Join And Learn On the Net) within an object-oriented and open-source programming environment (called Zope) embedding a content management system (called Plone). Workflow features have been used to mark the progress of students and to trace the life cycle of resources shared by the teaching staff. The platform integrated advanced on line authoring features to create interactive exercises and support live courses diffusion. The platform engine has been generalized to the whole curriculum of medical studies in our faculty; it also supports an international master of risk management in health care and will be extent to all other continuous training diploma.

  4. The Lozanov Method for Accelerating the Learning of Foreign Languages.

    Science.gov (United States)

    Stanton, H. E.

    1978-01-01

    Discusses the Lozanov Method of teaching foreign languages developed by Lozanov in Bulgaria. This method (also known as Suggestopedia) uses various techniques such as physical relaxation exercises, mental concentration, classical music, and ego-enhancing suggestions. (CFM)

  5. Creative teaching method as a learning strategy for student midwives: A qualitative study.

    Science.gov (United States)

    Rankin, Jean; Brown, Val

    2016-03-01

    Traditional ways of teaching in Higher Education are enhanced with adult-based approaches to learning within the curriculum. Adult-based learning enables students to take ownership of their own learning, working in independence using a holistic approach. Introducing creative activities promotes students to think in alternative ways to the traditional learning models. The study aimed to explore student midwives perceptions of a creative teaching method as a learning strategy. A qualitative design was used adopting a phenomenological approach to gain the lived experience of students within this learning culture. Purposive sampling was used to recruit student midwives (n=30). Individual interviews were conducted using semi-structured interviews with open-ended questions to gain subjective information. Data were transcribed and analyzed into useful and meaningful themes and emerging themes using Colaizzi's framework for analyzing qualitative data in a logical and systematic way. Over 500 meaningful statements were identified from the transcripts. Three key themes strongly emerged from the transcriptions. These included'meaningful learning','inspired to learn and achieve', and 'being connected'. A deep meaningful learning experience was found to be authentic in the context of theory and practice. Students were inspired to learn and achieve and positively highlighted the safe learning environment. The abilities of the facilitators were viewed positively in supporting student learning. This approach strengthened the relationships and social engagement with others in the peer group and the facilitators. On a less positive note, tensions and conflict were noted in group work and indirect negative comments about the approach from the teaching team. Incorporating creative teaching activities is a positive addition to the healthcare curriculum. Creativity is clearly an asset to the range of contemporary learning strategies. In doing so, higher education will continue to keep

  6. The Efficacy of Three Learning Methods Collaborative, Context-Based Learning and Traditional, on Learning, Attitude and Behaviour of Undergraduate Nursing Students: Integrating Theory and Practice.

    Science.gov (United States)

    Hasanpour-Dehkordi, Ali; Solati, Kamal

    2016-04-01

    Communication skills training, responsibility, respect, and self-awareness are important indexes of changing learning behaviours in modern approaches. The aim of this study was to investigate the efficacy of three learning approaches, collaborative, context-based learning (CBL), and traditional, on learning, attitude, and behaviour of undergraduate nursing students. This study was a clinical trial with pretest and post-test of control group. The participants were senior nursing students. The samples were randomly assigned to three groups; CBL, collaborative, and traditional. To gather data a standard questionnaire of students' behaviour and attitude was administered prior to and after the intervention. Also, the rate of learning was investigated by a researcher-developed questionnaire prior to and after the intervention in the three groups. In CBL and collaborative training groups, the mean score of behaviour and attitude increased after the intervention. But no significant association was obtained between the mean scores of behaviour and attitude prior to and after the intervention in the traditional group. However, the mean learning score increased significantly in the CBL, collaborative, and traditional groups after the study in comparison to before the study. Both CBL and collaborative approaches were useful in terms of increased respect, self-awareness, self-evaluation, communication skills and responsibility as well as increased motivation and learning score in comparison to traditional method.

  7. What Predicts Use of Learning-Centered, Interactive Engagement Methods?

    Science.gov (United States)

    Madson, Laura; Trafimow, David; Gray, Tara; Gutowitz, Michael

    2014-01-01

    What makes some faculty members more likely to use interactive engagement methods than others? We use the theory of reasoned action to predict faculty members' use of interactive engagement methods. Results indicate that faculty members' beliefs about the personal positive consequences of using these methods (e.g., "Using interactive…

  8. The Ghost in the Machine: Are "Teacherless" CALL Programs Really Possible?

    Science.gov (United States)

    Davies, Ted; Williamson, Rodney

    1998-01-01

    Reflects critically on pedagogical issues in the production of computer-assisted language learning (CALL) courseware and ways CALL has affected the practice of language learning. Concludes that if CALL is to reach full potential, it must be more than a simple medium of information; it should provide a teaching/learning process, with the real…

  9. Machine Learning Method Applied in Readout System of Superheated Droplet Detector

    Science.gov (United States)

    Liu, Yi; Sullivan, Clair Julia; d'Errico, Francesco

    2017-07-01

    Direct readability is one advantage of superheated droplet detectors in neutron dosimetry. Utilizing such a distinct characteristic, an imaging readout system analyzes image of the detector for neutron dose readout. To improve the accuracy and precision of algorithms in the imaging readout system, machine learning algorithms were developed. Deep learning neural network and support vector machine algorithms are applied and compared with generally used Hough transform and curvature analysis methods. The machine learning methods showed a much higher accuracy and better precision in recognizing circular gas bubbles.

  10. IMPROVEMENT OF RECOGNITION QUALITY IN DEEP LEARNING NETWORKS BY SIMULATED ANNEALING METHOD

    Directory of Open Access Journals (Sweden)

    A. S. Potapov

    2014-09-01

    Full Text Available The subject of this research is deep learning methods, in which automatic construction of feature transforms is taken place in tasks of pattern recognition. Multilayer autoencoders have been taken as the considered type of deep learning networks. Autoencoders perform nonlinear feature transform with logistic regression as an upper classification layer. In order to verify the hypothesis of possibility to improve recognition rate by global optimization of parameters for deep learning networks, which are traditionally trained layer-by-layer by gradient descent, a new method has been designed and implemented. The method applies simulated annealing for tuning connection weights of autoencoders while regression layer is simultaneously trained by stochastic gradient descent. Experiments held by means of standard MNIST handwritten digit database have shown the decrease of recognition error rate from 1.1 to 1.5 times in case of the modified method comparing to the traditional method, which is based on local optimization. Thus, overfitting effect doesn’t appear and the possibility to improve learning rate is confirmed in deep learning networks by global optimization methods (in terms of increasing recognition probability. Research results can be applied for improving the probability of pattern recognition in the fields, which require automatic construction of nonlinear feature transforms, in particular, in the image recognition. Keywords: pattern recognition, deep learning, autoencoder, logistic regression, simulated annealing.

  11. Call 1 FAQ (ENG)

    International Development Research Centre (IDRC) Digital Library (Canada)

    Francine Sinzinkayo

    and testing, e.g. construction protein or nucleic acid scaffolds and other state of the art approaches that ... methods and a significant gain in time to proof of concept. ... demonstrates an accelerated vaccine R&D pathway to proof of concept.

  12. Enhancing Critical Thinking Skills for Army Leaders Using Blended-Learning Methods

    Science.gov (United States)

    2013-01-01

    Distance . . . . . . . . . . . . . . . . 84 Successful Programs Use a Variety of Methods to Foster Student Engagement and Success in Online Interactive...sometimes interact in ways that inhibit collaborative learning. Successful Programs Use a Variety of Methods to Foster Student Engagement and...Programs Use a Variety of Methods to Foster Student Engagement and Success in Online Interactive Activities We looked to the case studies for

  13. Critical Communication Pedagogy and Service Learning in a Mixed-Method Communication Research Course

    Science.gov (United States)

    Rudick, C. Kyle; Golsan, Kathryn B.; Freitag, Jennifer

    2018-01-01

    Course: Mixed-Method Communication Research Methods. Objective: The purpose of this semester-long activity is to provide students with opportunities to cultivate mixed-method communication research skills through a social justice-informed service-learning format. Completing this course, students will be able to: recognize the unique strengths of…

  14. Application of the K-W-L Teaching and Learning Method to an Introductory Physics Course

    Science.gov (United States)

    Wrinkle, Cheryl Schaefer; Manivannan, Mani K.

    2009-01-01

    The K-W-L method of teaching is a simple method that actively engages students in their own learning. It has been used with kindergarten and elementary grades to teach other subjects. The authors have successfully used it to teach physics at the college level. In their introductory physics labs, the K-W-L method helped students think about what…

  15. Learning How to Write an Academic Text: The Effect of Instructional Method and Reflection on Text Quality

    Science.gov (United States)

    van der Loo, Janneke; Krahmer, Emiel; van Amelsvoort, Marije

    2016-01-01

    In this paper we present preliminary results on a study on the effect of instructional method (observational learning and learning by doing) and reflection (yes or no) on academic text quality and self-efficacy beliefs. 56 undergraduate students were assigned to either an observational learning or learning-by-doing condition, with or without…

  16. Exploring an Experiential Learning Project through Kolb's Learning Theory Using a Qualitative Research Method

    Science.gov (United States)

    Chan, Cecilia Ka Yuk

    2012-01-01

    Experiential learning pedagogy is taking a lead in the development of graduate attributes and educational aims as these are of prime importance for society. This paper shows a community service experiential project conducted in China. The project enabled students to serve the affected community in a post-earthquake area by applying their knowledge…

  17. Digital game based learning: A new method in teaching and learning mathematics

    Science.gov (United States)

    Hussain, Sayed Yusoff bin Syed; Hoe, Tan Wee; Idris, Muhammad Zaffwan bin

    2017-05-01

    Digital game-based learning (DGBL) had been regarded as a sound learning strategy in raising pupils' willingness and interest in many disciplines. Normally, video and digital games are used in the teaching and learning mathematics. based on literature, digital games have proven its capability in making pupils motivated and are more likely to contribute to effective learning mathematics. Hence this research aims to construct a DGBL in the teaching of Mathematics for Year 1 pupils. Then, a quasi-experimental study was carried out in a school located in Gua Musang, Kelantan, involving 39 pupils. Specifically, this article tests the effectiveness of the use of DGBL in the teaching of the topic Addition of Less than 100 on pupil's achievement. This research employed a quasi-experiment, Pre and Post Test of Non-equivalent Control Group design. The data were analysed using the Nonparametric test namely the Mann-Whitney U. The research finding shows the use of the DGBL could increase the pupils' achievement in the topic of Addition of Less than 100. In practice, this research indicates that the DBGL can utilized as an alternative reference strategy for Mathematics teacher.

  18. A Comparison of Traditional and Cooperative Learning Methods in Online Learning

    Science.gov (United States)

    Kupczynski, Lori; Mundy, Marie-Anne; Ruiz, Alberto

    2013-01-01

    The purpose of this study was to examine the effects of the Community of Inquiry framework through an in-depth examination of learning comprised of teaching, social and cognitive presence in traditional versus cooperative online teaching at a community college. A total of 21 students participated in this study, with approximately 45% having taken…

  19. Exploiting Attribute Correlations: A Novel Trace Lasso-Based Weakly Supervised Dictionary Learning Method.

    Science.gov (United States)

    Wu, Lin; Wang, Yang; Pan, Shirui

    2017-12-01

    It is now well established that sparse representation models are working effectively for many visual recognition tasks, and have pushed forward the success of dictionary learning therein. Recent studies over dictionary learning focus on learning discriminative atoms instead of purely reconstructive ones. However, the existence of intraclass diversities (i.e., data objects within the same category but exhibit large visual dissimilarities), and interclass similarities (i.e., data objects from distinct classes but share much visual similarities), makes it challenging to learn effective recognition models. To this end, a large number of labeled data objects are required to learn models which can effectively characterize these subtle differences. However, labeled data objects are always limited to access, committing it difficult to learn a monolithic dictionary that can be discriminative enough. To address the above limitations, in this paper, we propose a weakly-supervised dictionary learning method to automatically learn a discriminative dictionary by fully exploiting visual attribute correlations rather than label priors. In particular, the intrinsic attribute correlations are deployed as a critical cue to guide the process of object categorization, and then a set of subdictionaries are jointly learned with respect to each category. The resulting dictionary is highly discriminative and leads to intraclass diversity aware sparse representations. Extensive experiments on image classification and object recognition are conducted to show the effectiveness of our approach.

  20. Motivation in service-learning: an improvement over traditional instructional methods

    Directory of Open Access Journals (Sweden)

    Monika Ciesielkiewicz

    2018-05-01

    Full Text Available This paper aims at exploring the motivation of university students who participated in service-learning projects as part of their coursework, and to determine whether their level of motivation is higher for the service-learning project as compared to performing more traditional academic tasks and assignments. The Service-Learning project carried out during the ICT in Education course intended to support the development of digital literacy in a Maasai school in Kenya. The instrument used to evaluate motivation of the university students is the motivation scale called Motivated Strategies for Learning Questionnaire (MSLQ proposed by Pintrich and his collaborators (1991 adapted to the Spanish population by Roces Montero (1996. The results of the research indicate that there are significant differences in favor of service-learning in relation to motivation in general for the completion of the activities and specifically in relation to the utility of the activity as seen at the present moment and in the future, as well as promoting creativity, the interest in the task which includes the perception of the importance of the project, the need to work hard and thoroughly and willingness to face challenges and difficulties in order to achieve the set objective. No significant differences have been observed in relation to the desire to obtain a better grade for completing the activity or need to prove personal value to others, as well as to broaden the information to complete the activity.