WorldWideScience

Sample records for learning introductory physics

  1. Using isomorphic problems to learn introductory physics

    Directory of Open Access Journals (Sweden)

    Shih-Yin Lin

    2011-08-01

    Full Text Available In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  2. Using isomorphic problems to learn introductory physics

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem) which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.

  3. Instructional strategies for online introductory college physics based on learning styles

    Science.gov (United States)

    Ekwue, Eleazer U.

    The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the instructional strategy used to deliver the course is not compatible with the learners' preferred learning styles. This study investigates the effect of four instructional strategies based on four learning styles (listening, reading, iconic, and direct-experience) to improve learning for introductory college physics in an online environment. Learning styles of 146 participants were determined with Canfield Learning Style inventory. Of the 85 learners who completed the study, research results showed a statistically significant increase in learning performance following the online instruction in all four learning style groups. No statistically significant differences in learning were found among the four groups. However, greater significant academic improvement was found among learners with iconic and direct-experience modes of learning. Learners in all four groups expressed that the design of the unit presentation to match their individual learning styles contributed most to their learning experience. They were satisfied with learning a new physics concept online that, in their opinion, is either comparable or better than an instructor-led classroom experience. Findings from this study suggest that learners' performance and satisfaction in an online introductory physics course could be improved by using instructional designs that are tailored to learners' preferred ways of learning. It could contribute toward the challenge of providing viable online physics instruction in colleges and universities.

  4. Improving student learning and views of physics in a large enrollment introductory physics class

    Science.gov (United States)

    Salehzadeh Einabad, Omid

    Introductory physics courses often serve as gatekeepers for many scientific and engineering programs and, increasingly, colleges are relying on large, lecture formats for these courses. Many students, however, leave having learned very little physics and with poor views of the subject. In interactive engagement (IE), classroom activities encourage students to engage with each other and with physics concepts and to be actively involved in their own learning. These methods have been shown to be effective in introductory physics classes with small group recitations. This study examined student learning and views of physics in a large enrollment course that included IE methods with no separate, small-group recitations. In this study, a large, lecture-based course included activities that had students explaining their reasoning both verbally and in writing, revise their ideas about physics concepts, and apply their reasoning to various problems. The questions addressed were: (a) What do students learn about physics concepts and how does student learning in this course compare to that reported in the literature for students in a traditional course?, (b) Do students' views of physics change and how do students' views of physics compare to that reported in the literature for students in a traditional course?, and (c) Which of the instructional strategies contribute to student learning in this course? Data included: pre-post administration of the Force Concept Inventory (FCI), classroom exams during the term, pre-post administration of the Colorado Learning Attitudes About Science Survey (CLASS), and student work, interviews, and open-ended surveys. The average normalized gain (=0.32) on the FCI falls within the medium-gain range as reported in the physics education literature, even though the average pre-test score was very low (30%) and this was the instructor's first implementation of IE methods. Students' views of physics remained relatively unchanged by instruction

  5. TA Mentorship in Lecture significantly enhances students' learning in mechanics in large introductory physics classes

    Science.gov (United States)

    Cheng, K.; Caglar, Mehmet

    2011-10-01

    Lab is an important component of students' learning in a traditional lecture-lab setting of introductory physics courses. Using standard mechanics concepts and baseline surveys as well as independent classroom observations, the effects of TA mentorship in Lecture on students' learning of physics concepts and problem-solving skills among different student subgroups taught by other TAs and lecturers using different level of student interactive engagement in classes have been analyzed. Our data indicate that in lecture training of TA promotes lecture/lab synergism in improvement students' learning of mechanics in large introductory physics classes.

  6. Using Isomorphic Problems to Learn Introductory Physics

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2011-01-01

    In this study, we examine introductory physics students' ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the…

  7. Instructional Strategies for Online Introductory College Physics Based on Learning Styles

    Science.gov (United States)

    Ekwue, Eleazer U.

    2013-01-01

    The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the…

  8. Engaging Students In Modeling Instruction for Introductory Physics

    Science.gov (United States)

    Brewe, Eric

    2016-05-01

    Teaching introductory physics is arguably one of the most important things that a physics department does. It is the primary way that students from other science disciplines engage with physics and it is the introduction to physics for majors. Modeling instruction is an active learning strategy for introductory physics built on the premise that science proceeds through the iterative process of model construction, development, deployment, and revision. We describe the role that participating in authentic modeling has in learning and then explore how students engage in this process in the classroom. In this presentation, we provide a theoretical background on models and modeling and describe how these theoretical elements are enacted in the introductory university physics classroom. We provide both quantitative and video data to link the development of a conceptual model to the design of the learning environment and to student outcomes. This work is supported in part by DUE #1140706.

  9. Examining the Gender Gap in Introductory Physics

    Science.gov (United States)

    Kost, Lauren; Pollock, Steven; Finkelstein, Noah

    2009-05-01

    Our previous research[1] showed that despite the use of interactive engagement techniques in the introductory physics course, the gap in performance between males and females on a mechanics conceptual learning survey persisted from pre- to post-test, at our institution. Such findings were counter to previously published work[2]. Follow-up studies[3] identified correlations between student performance on the conceptual learning survey and students' prior physics and math knowledge and their incoming attitudes and beliefs about physics and learning physics. The results indicate that the gender gap at our institution is predominantly associated with differences in males' and females' previous physics and math knowledge, and attitudes and beliefs. Our current work extends these results in two ways: 1) we look at the gender gap in the second semester of the introductory sequence and find results similar to those in the first semester course and 2) we identify ways in which males and females differentially experience several aspects of the introductory course. [1] Pollock, et al, Phys Rev: ST: PER 3, 010107. [2] Lorenzo, et al, Am J Phys 74, 118. [3] Kost, et al, PERC Proceedings 2008.

  10. Mathematical Rigor in Introductory Physics

    Science.gov (United States)

    Vandyke, Michael; Bassichis, William

    2011-10-01

    Calculus-based introductory physics courses intended for future engineers and physicists are often designed and taught in the same fashion as those intended for students of other disciplines. A more mathematically rigorous curriculum should be more appropriate and, ultimately, more beneficial for the student in his or her future coursework. This work investigates the effects of mathematical rigor on student understanding of introductory mechanics. Using a series of diagnostic tools in conjunction with individual student course performance, a statistical analysis will be performed to examine student learning of introductory mechanics and its relation to student understanding of the underlying calculus.

  11. Challenge of engaging all students via self-paced interactive electronic learning tutorials for introductory physics

    Directory of Open Access Journals (Sweden)

    Seth DeVore

    2017-05-01

    Full Text Available As research-based, self-paced electronic learning tools become increasingly available, a critical issue educators encounter is implementing strategies to ensure that all students engage with them as intended. Here, we first discuss the effectiveness of electronic learning tutorials as self-paced learning tools in large enrollment brick and mortar introductory physics courses and then propose a framework for helping students engage effectively with the learning tools. The tutorials were developed via research in physics education and were found to be effective for a diverse group of introductory physics students in one-on-one implementation. Instructors encouraged the use of these tools in a self-paced learning environment by telling students that they would be helpful for solving the assigned homework problems and that the underlying physics principles in the tutorial problems would be similar to those in the in-class quizzes (which we call paired problems. We find that many students in the courses in which these interactive electronic learning tutorials were assigned as a self-study tool performed poorly on the paired problems. In contrast, a majority of student volunteers in one-on-one implementation greatly benefited from the tutorials and performed well on the paired problems. The significantly lower overall performance on paired problems administered as an in-class quiz compared to the performance of student volunteers who used the research-based tutorials in one-on-one implementation suggests that many students enrolled in introductory physics courses did not effectively engage with the tutorials outside of class and may have only used them superficially. The findings suggest that many students in need of out-of-class remediation via self-paced learning tools may have difficulty motivating themselves and may lack the self-regulation and time-management skills to engage effectively with tools specially designed to help them learn at their

  12. Challenge of engaging all students via self-paced interactive electronic learning tutorials for introductory physics

    Science.gov (United States)

    DeVore, Seth; Marshman, Emily; Singh, Chandralekha

    2017-06-01

    As research-based, self-paced electronic learning tools become increasingly available, a critical issue educators encounter is implementing strategies to ensure that all students engage with them as intended. Here, we first discuss the effectiveness of electronic learning tutorials as self-paced learning tools in large enrollment brick and mortar introductory physics courses and then propose a framework for helping students engage effectively with the learning tools. The tutorials were developed via research in physics education and were found to be effective for a diverse group of introductory physics students in one-on-one implementation. Instructors encouraged the use of these tools in a self-paced learning environment by telling students that they would be helpful for solving the assigned homework problems and that the underlying physics principles in the tutorial problems would be similar to those in the in-class quizzes (which we call paired problems). We find that many students in the courses in which these interactive electronic learning tutorials were assigned as a self-study tool performed poorly on the paired problems. In contrast, a majority of student volunteers in one-on-one implementation greatly benefited from the tutorials and performed well on the paired problems. The significantly lower overall performance on paired problems administered as an in-class quiz compared to the performance of student volunteers who used the research-based tutorials in one-on-one implementation suggests that many students enrolled in introductory physics courses did not effectively engage with the tutorials outside of class and may have only used them superficially. The findings suggest that many students in need of out-of-class remediation via self-paced learning tools may have difficulty motivating themselves and may lack the self-regulation and time-management skills to engage effectively with tools specially designed to help them learn at their own pace. We

  13. A Comparison of Online, Video Synchronous, and Traditional Learning Modes for an Introductory Undergraduate Physics Course

    Science.gov (United States)

    Faulconer, E. K.; Griffith, J.; Wood, B.; Acharyya, S.; Roberts, D.

    2018-05-01

    While the equivalence between online and traditional classrooms has been well-researched, very little of this includes college-level introductory Physics. Only one study explored Physics at the whole-class level rather than specific course components such as a single lab or a homework platform. In this work, we compared the failure rate, grade distribution, and withdrawal rates in an introductory undergraduate Physics course across several learning modes including traditional face-to-face instruction, synchronous video instruction, and online classes. Statistically significant differences were found for student failure rates, grade distribution, and withdrawal rates but yielded small effect sizes. Post-hoc pair-wise test was run to determine differences between learning modes. Online students had a significantly lower failure rate than students who took the class via synchronous video classroom. While statistically significant differences were found for grade distributions, the pair-wise comparison yielded no statistically significance differences between learning modes when using the more conservative Bonferroni correction in post-hoc testing. Finally, in this study, student withdrawal rates were lowest for students who took the class in person (in-person classroom and synchronous video classroom) than online. Students that persist in an online introductory Physics class are more likely to achieve an A than in other modes. However, the withdrawal rate is higher from online Physics courses. Further research is warranted to better understand the reasons for higher withdrawal rates in online courses. Finding the root cause to help eliminate differences in student performance across learning modes should remain a high priority for education researchers and the education community as a whole.

  14. Teaching Electrostatics and Entropy in Introductory Physics

    Science.gov (United States)

    Reeves, Mark

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology courses is important contribution of the entropy in driving fundamental biological processes towards equilibrium. I will present material developed to teach electrostatic screening in solutions and the function of nerve cells where entropic effects act to counterbalance electrostatic attraction. These ideas are taught in an introductory, calculus-based physics course to biomedical engineers using SCALEUP pedagogy. Results of student mastering of complex problems that cross disciplinary boundaries between biology and physics, as well as the challenges that they face in learning this material will be presented.

  15. Consideration of learning orientations as an application of achievement goals in evaluating life science majors in introductory physics

    Science.gov (United States)

    Mason, Andrew J.; Bertram, Charles A.

    2018-06-01

    When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics such as metacognition. We investigate a sample population of 218 students in a first-semester introductory algebra-based physics course, drawn from 14 laboratory sections within six semesters of course sections, to determine the influence of achievement goals on life science majors' attitudes towards physics. Learning orientations that, respectively, pertain to mastery goals and performance goals, in addition to a learning orientation that does not report a performance goal, were recorded from students in the specific context of learning a problem-solving framework during an in-class exercise. Students' learning orientations, defined within the context of students' self-reported statements in the specific context of a problem-solving-related research-based course implementation, are compared to pre-post results on physics problem-solving items in a well-established attitudinal survey instrument, in order to establish the categories' validity. In addition, mastery-related and performance-related orientations appear to extend to overall pre-post attitudinal shifts, but not to force and motion concepts or to overall course grade, within the scope of an introductory physics course. There also appears to be differentiation regarding overall course performance within health science majors, but not within biology majors, in terms of learning orientations; however, health science majors generally appear to fare less well on all measurements in the study than do biology majors, regardless of learning orientations.

  16. The role of applied physics in American introductory physics courses

    Science.gov (United States)

    Poduska, Ervin L.; Lunetta, Vincent N.

    1984-09-01

    To what extent should technology and applied physics be included in introductory physics courses? What is the proper balance between pure and applied physics? Should physics teachers devote precious time to socially relevant issues like nuclear power and alternative sources of energy? How much time should be spent, if any, on applications that are more relevant to the student's world like cars, music, television and refrigeration? Does including applications reduce or enhance student understanding of important classical topics? A response to these questions must be based on goals for physics teaching, on knowledge of how students learn and on the nature of the physics discipline. Since there is not enough time to teach everything in an introductory course, priorities must be determined.

  17. Application of the K-W-L Teaching and Learning Method to an Introductory Physics Course

    Science.gov (United States)

    Wrinkle, Cheryl Schaefer; Manivannan, Mani K.

    2009-01-01

    The K-W-L method of teaching is a simple method that actively engages students in their own learning. It has been used with kindergarten and elementary grades to teach other subjects. The authors have successfully used it to teach physics at the college level. In their introductory physics labs, the K-W-L method helped students think about what…

  18. An analysis of science content and representations in introductory college physics textbooks and multimodal learning resources

    Science.gov (United States)

    Donnelly, Suzanne M.

    This study features a comparative descriptive analysis of the physics content and representations surrounding the first law of thermodynamics as presented in four widely used introductory college physics textbooks representing each of four physics textbook categories (calculus-based, algebra/trigonometry-based, conceptual, and technical/applied). Introducing and employing a newly developed theoretical framework, multimodal generative learning theory (MGLT), an analysis of the multimodal characteristics of textbook and multimedia representations of physics principles was conducted. The modal affordances of textbook representations were identified, characterized, and compared across the four physics textbook categories in the context of their support of problem-solving. Keywords: college science, science textbooks, multimodal learning theory, thermodynamics, representations

  19. Introductory physics in biological context: An approach to improve introductory physics for life science students

    Science.gov (United States)

    Crouch, Catherine H.; Heller, Kenneth

    2014-05-01

    We describe restructuring the introductory physics for life science students (IPLS) course to better support these students in using physics to understand their chosen fields. Our courses teach physics using biologically rich contexts. Specifically, we use examples in which fundamental physics contributes significantly to understanding a biological system to make explicit the value of physics to the life sciences. This requires selecting the course content to reflect the topics most relevant to biology while maintaining the fundamental disciplinary structure of physics. In addition to stressing the importance of the fundamental principles of physics, an important goal is developing students' quantitative and problem solving skills. Our guiding pedagogical framework is the cognitive apprenticeship model, in which learning occurs most effectively when students can articulate why what they are learning matters to them. In this article, we describe our courses, summarize initial assessment data, and identify needs for future research.

  20. Barriers to Teaching Introductory Physical Geography Online

    Science.gov (United States)

    Ritter, Michael E.

    2012-01-01

    Learning geography online is becoming an option for more students but not without controversy. Issues of faculty resources, logistics, professional recognition, and pedagogical concerns are cited as barriers to teaching online. Offering introductory physical geography online presents special challenges. As a general education course, an…

  1. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major

    Science.gov (United States)

    Rodriguez, Idaykis; Potvin, Geoff; Kramer, Laird H.

    2016-12-01

    [This paper is part of the Focused Collection on Gender in Physics.] Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014)]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of concern [A. Madsen, S. B. McKagan, and E. C. Sayre, Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013)]. Further, the long-term impacts of active-learning experiences are also understudied. At Florida International University, a Hispanic-majority institution, we have implemented Modeling Instruction (MI) and the Integrated Science Learning Environment (ISLE) in introductory physics classes for the past decade. In this empirical paper, we report on a longitudinal investigation of student performance and persistence in upper level physics courses after having previously experienced MI or ISLE in their introductory physics courses, and disaggregate students by gender. Using survival analysis methods, we find women who declare physics as a major are more likely than men to graduate with a physics degree. Women are also just as likely as men to pass through the upper division courses, with the highest failure risk for both men and women occurring in the first semester of upper-division course taking. These results reinforce the need to expand considerations of performance outcomes to be longitudinal to measure the effectiveness of the entire physics experience.

  2. How gender and reformed introductory physics impacts student success in advanced physics courses and continuation in the physics major

    Directory of Open Access Journals (Sweden)

    Idaykis Rodriguez

    2016-08-01

    Full Text Available [This paper is part of the Focused Collection on Gender in Physics.] Active-learning approaches to teaching introductory physics have been found to improve student learning and affective gains on short-term outcomes [S. Freeman et al., Proc. Natl. Acad. Sci. U.S.A. 111, 8410 (2014]; however, whether or not the benefits of active learning impact women to the same degree as men has been a point of concern [A. Madsen, S. B. McKagan, and E. C. Sayre, Phys. Rev. ST Phys. Educ. Res. 9, 020121 (2013]. Further, the long-term impacts of active-learning experiences are also understudied. At Florida International University, a Hispanic-majority institution, we have implemented Modeling Instruction (MI and the Integrated Science Learning Environment (ISLE in introductory physics classes for the past decade. In this empirical paper, we report on a longitudinal investigation of student performance and persistence in upper level physics courses after having previously experienced MI or ISLE in their introductory physics courses, and disaggregate students by gender. Using survival analysis methods, we find women who declare physics as a major are more likely than men to graduate with a physics degree. Women are also just as likely as men to pass through the upper division courses, with the highest failure risk for both men and women occurring in the first semester of upper-division course taking. These results reinforce the need to expand considerations of performance outcomes to be longitudinal to measure the effectiveness of the entire physics experience.

  3. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    Science.gov (United States)

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  4. Using an isomorphic problem pair to learn introductory physics: Transferring from a two-step problem to a three-step problem

    Directory of Open Access Journals (Sweden)

    Shih-Yin Lin

    2013-10-01

    Full Text Available In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem. The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few

  5. Using an isomorphic problem pair to learn introductory physics: Transferring from a two-step problem to a three-step problem

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2013-12-01

    In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation in which they had to learn from a solved problem provided and take advantage of what they learned from it to solve another isomorphic problem (which we call the quiz problem). The solved problem provided has two subproblems while the quiz problem has three subproblems, which is known from previous research to be challenging for introductory students. In addition to the solved problem, students also received extra scaffolding supports that were intended to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. The data analysis suggests that students had great difficulty in transferring what they learned from a two-step problem to a three-step problem. Although most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem, they were not necessarily able to apply the principles correctly. We also conducted think-aloud interviews with six introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. The interviews suggest that students often superficially mapped the principles employed in the solved problem to the quiz problem without necessarily understanding the governing conditions underlying each principle and examining the applicability of the principle in the new situation in an in-depth manner. Findings suggest that more scaffolding is needed to help students in transferring from a two-step problem to a three-step problem and applying the physics principles appropriately. We outline a few possible strategies

  6. Exoplanet Science in the Classroom: Learning Activities for an Introductory Physics Course

    Science.gov (United States)

    Della-Rose, Devin; Carlson, Randall; de La Harpe, Kimberly; Novotny, Steven; Polsgrove, Daniel

    2018-03-01

    Discovery of planets outside our solar system, known as extra-solar planets or exoplanets for short, has been at the forefront of astronomical research for over 25 years. Reports of new discoveries have almost become routine; however, the excitement surrounding them has not. Amazingly, as groundbreaking as exoplanet science is, the basic physics is quite accessible to first-year physics students, as discussed in previous TPT articles. To further illustrate this point, we developed an iOS application that generates synthetic exoplanet data to provide students and teachers with interactive learning activities. Using introductory physics concepts, we demonstrate how to estimate exoplanet mass, radius, and density from the app output. These calculations form the basis for a diverse range of classroom activities. We conclude with a summary of exoplanet science resources for teachers.

  7. Toward equity through participation in Modeling Instruction in introductory university physics

    Science.gov (United States)

    Brewe, Eric; Sawtelle, Vashti; Kramer, Laird H.; O'Brien, George E.; Rodriguez, Idaykis; Pamelá, Priscilla

    2010-06-01

    We report the results of a five year evaluation of the reform of introductory calculus-based physics by implementation of Modeling Instruction (MI) at Florida International University (FIU), a Hispanic-serving institution. MI is described in the context of FIU’s overall effort to enhance student participation in physics and science broadly. Our analysis of MI from a “participationist” perspective on learning identifies aspects of MI including conceptually based instruction, culturally sensitive instruction, and cooperative group learning, which are consistent with research on supporting equitable learning and participation by students historically under-represented in physics (i.e., Black, Hispanic, women). This study uses markers of conceptual understanding as measured by the Force Concept Inventory (FCI) and odds of success as measured by the ratio of students completing introductory physics and earning a passing grade (i.e., C- or better) by students historically under-represented in physics to reflect equity and participation in introductory physics. FCI pre and post scores for students in MI are compared with lecture-format taught students. Modeling Instruction students outperform students taught in lecture-format classes on post instruction FCI (61.9% vs 47.9%, p<0.001 ), where these benefits are seen across both ethnic and gender comparisons. In addition, we report that the odds of success in MI are 6.73 times greater than in lecture instruction. Both odds of success and FCI scores within Modeling Instruction are further disaggregated by ethnicity and by gender to address the question of equity within the treatment. The results of this disaggregation indicate that although ethnically under-represented students enter with lower overall conceptual understanding scores, the gap is not widened during introductory physics but instead is maintained, and the odds of success for under-represented students is not different from majority students. Women

  8. Toward equity through participation in Modeling Instruction in introductory university physics

    Directory of Open Access Journals (Sweden)

    Eric Brewe

    2010-05-01

    Full Text Available We report the results of a five year evaluation of the reform of introductory calculus-based physics by implementation of Modeling Instruction (MI at Florida International University (FIU, a Hispanic-serving institution. MI is described in the context of FIU’s overall effort to enhance student participation in physics and science broadly. Our analysis of MI from a “participationist” perspective on learning identifies aspects of MI including conceptually based instruction, culturally sensitive instruction, and cooperative group learning, which are consistent with research on supporting equitable learning and participation by students historically under-represented in physics (i.e., Black, Hispanic, women. This study uses markers of conceptual understanding as measured by the Force Concept Inventory (FCI and odds of success as measured by the ratio of students completing introductory physics and earning a passing grade (i.e., C− or better by students historically under-represented in physics to reflect equity and participation in introductory physics. FCI pre and post scores for students in MI are compared with lecture-format taught students. Modeling Instruction students outperform students taught in lecture-format classes on post instruction FCI (61.9% vs 47.9%, p<0.001, where these benefits are seen across both ethnic and gender comparisons. In addition, we report that the odds of success in MI are 6.73 times greater than in lecture instruction. Both odds of success and FCI scores within Modeling Instruction are further disaggregated by ethnicity and by gender to address the question of equity within the treatment. The results of this disaggregation indicate that although ethnically under-represented students enter with lower overall conceptual understanding scores, the gap is not widened during introductory physics but instead is maintained, and the odds of success for under-represented students is not different from majority students

  9. Using Research-Based Interactive Video Vignettes to Enhance Out-of-Class Learning in Introductory Physics

    Science.gov (United States)

    Laws, Priscilla W.; Willis, Maxine C.; Jackson, David P.; Koenig, Kathleen; Teese, Robert

    2015-02-01

    Ever since the first generalized computer-assisted instruction system (PLATO1) was introduced over 50 years ago, educators have been adding computer-based materials to their classes. Today many textbooks have complete online versions that include video lectures and other supplements. In the past 25 years the web has fueled an explosion of online homework and course management systems, both as blended learning and online courses. Meanwhile, introductory physics instructors have been implementing new approaches to teaching based on the outcomes of Physics Education Research (PER). A common theme of PER-based instruction has been the use of active-learning strategies designed to help students overcome alternative conceptions that they often bring to the study of physics.2 Unfortunately, while classrooms have become more active, online learning typically relies on passive lecture videos or Kahn-style3 tablet drawings. To bring active learning online, the LivePhoto Physics Group has been developing Interactive Video Vignettes (IVVs) that add interactivity and PER-based elements to short presentations. These vignettes incorporate web-based video activities that contain interactive elements and typically require students to make predictions and analyze real-world phenomena.

  10. Cognitive development in introductory physics: A research-based approach to curriculum reform

    Science.gov (United States)

    Teodorescu, Raluca Elena

    This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish

  11. Modern introductory physics

    CERN Document Server

    Holbrow, Charles H; Amato, Joseph C; Galvez, Enrique; Parks, M. Elizabeth

    2010-01-01

    Modern Introductory Physics, 2nd Edition, by Charles H. Holbrow, James N. Lloyd, Joseph C. Amato, Enrique Galvez, and Beth Parks, is a successful innovative text for teaching introductory college and university physics. It is thematically organized to emphasize the physics that answers the fundamental question: Why do we believe in atoms and their properties?  The book provides a sound introduction to basic physical concepts with particular attention to the nineteenth- and twentieth-century physics underlying our modern ideas of atoms and their structure.  After a review of basic Newtonian mechanics, the book discusses early physical evidence that matter is made of atoms.  With a simple model of the atom Newtonian mechanics can explain the ideal gas laws, temperature, and viscosity.  Basic concepts of electricity and magnetism are introduced along with a more complicated model of the atom to account for the observed electrical properties of atoms. The physics of waves---particularly light and x-rays---an...

  12. Topic Order in Introductory Physics and its Impact on the STEM Curricular Ladder

    Directory of Open Access Journals (Sweden)

    Teresa L Larkin

    2017-02-01

    Full Text Available Introductory physics courses are an important rung on the curricular ladder in STEM. These courses help to strengthen students critical thinking and problem solving skills while simultaneously introducing them to many topics they will explore in more detail in later courses in physics and engineering. For these reasons, introductory physics is a required element on the curricular ladder. Most often, introductory physics is offered as a two-semester sequence with basic mechanics being taught in the first semester and electricity and magnetism in the second. In fact, this curricular sequence has not been altered in decades. Is there a reason for this? There are many other enduring questions that arise pertaining to these foundation courses in physics. These questions include: Does taking the introductory course sequence “out of order” have an impact on student learning in physics? What topics should be taught? When should these topics be taught? What topics could be left out? The list of questions is essentially endless. This paper will address some of these questions in part, through a brief discussion on student learning in a second-semester algebra-based physics course. Connections will also be made to the broader curricular ladder in STEM. To this end, an illustration that makes connections to an engineering statics course will be presented. This discussion will conclude by presenting some broader implications for the larger STEM communities.

  13. Mathematization in introductory physics

    Science.gov (United States)

    Brahmia, Suzanne M.

    Mathematization is central to STEM disciplines as a cornerstone of the quantitative reasoning that characterizes these fields. Introductory physics is required for most STEM majors in part so that students develop expert-like mathematization. This dissertation describes coordinated research and curriculum development for strengthening mathematization in introductory physics; it blends scholarship in physics and mathematics education in the form of three papers. The first paper explores mathematization in the context of physics, and makes an original contribution to the measurement of physics students' struggle to mathematize. Instructors naturally assume students have a conceptual mastery of algebra before embarking on a college physics course because these students are enrolled in math courses beyond algebra. This paper provides evidence that refutes the validity of this assumption and categorizes some of the barriers students commonly encounter with quantification and representing ideas symbolically. The second paper develops a model of instruction that can help students progress from their starting points to their instructor's desired endpoints. Instructors recognize that the introductory physics course introduces new ideas at an astonishing rate. More than most physicists realize, however, the way that mathematics is used in the course is foreign to a large portion of class. This paper puts forth an instructional model that can move all students toward better quantitative and physical reasoning, despite the substantial variability of those students' initial states. The third paper describes the design and testing of curricular materials that foster mathematical creativity to prepare students to better understand physics reasoning. Few students enter introductory physics with experience generating equations in response to specific challenges involving unfamiliar quantities and units, yet this generative use of mathematics is typical of the thinking involved in

  14. Measuring the impact of an instructional laboratory on the learning of introductory physics

    OpenAIRE

    Wieman, Carl; Holmes, N. G.

    2015-01-01

    We have analyzed the impact of taking an associated lab course on the scores on final exam questions in two large introductory physics courses. Approximately a third of the students who completed each course also took an accompanying instructional lab course. The lab courses were fairly conventional, although they focused on supporting the mastery of a subset of the introductory physics topics covered in the associated course. Performance between students who did and did not take the lab cour...

  15. A MOOC for Introductory Physics

    Science.gov (United States)

    Schatz, Michael

    2014-03-01

    We describe an effort to develop and to implement a college-level introductory physics (mechanics) MOOC that offers bona fide laboratory experiences. We also discuss efforts to use MOOC curricular materials to ``flip'' the classroom in a large lecture introductory physics course offered on-campus at Georgia Tech. Preliminary results of assessments and surveys from both MOOC and on-campus students will be presented.

  16. Interactive Lecture Experiments in Large Introductory Physics Classes

    Science.gov (United States)

    Milner-Bolotin, Marina M.; Kotlicki, A.; Rieger, G.; Bates, F.; Moll, R.; McPhee, K.; Nashon, S.

    2006-12-01

    We describe Interactive Lecture Experiments (ILE), which build on Interactive Lecture Demonstrations proposed by Sokoloff and Thornton (2004) and extends it by providing students with the opportunity to analyze experiments demonstrated in the lecture outside of the classroom. Real time experimental data is collected, using Logger Pro combined with the digital video technology. This data is uploaded to the Internet and made available to the students for further analysis. Student learning is assessed in the following lecture using conceptual questions (clickers). The goal of this project is to use ILE to make large lectures more interactive and promote student interest in science, critical thinking and data analysis skills. We report on the systematic study conducted using the Colorado Learning Attitudes about Science Survey, Force Concept Inventory, open-ended physics problems and focus group interviews to determine the impact of ILE on student academic achievement, motivation and attitudes towards physics. Three sections of students (750 students) experienced four ILE experiments. The surveys were administered twice and academic results for students who experienced the ILE for a particular topic were compared to the students, from a different section, who did not complete the ILE for that topic. Additional qualitative data on students’ attitudes was collected using open ended survey questions and interviews. We will present preliminary conclusions about the role of ILEs as an effective pedagogy in large introductory physics courses. Sokoloff, D.R. and R.K. Thornton (2004). Interactive Lecture Demonstrations: Active Learning in Introductory Physics, J.Wiley & Sons, INC. Interactive Lecture Experiments: http://www.physics.ubc.ca/ year1lab/p100/LectureLabs/lectureLabs.html

  17. Development and evaluation of clicker methodology for introductory physics courses

    Science.gov (United States)

    Lee, Albert H.

    Many educators understand that lectures are cost effective but not learning efficient, so continue to search for ways to increase active student participation in this traditionally passive learning environment. In-class polling systems, or "clickers", are inexpensive and reliable tools allowing students to actively participate in lectures by answering multiple-choice questions. Students assess their learning in real time by observing instant polling summaries displayed in front of them. This in turn motivates additional discussions which increase the opportunity for active learning. We wanted to develop a comprehensive clicker methodology that creates an active lecture environment for a broad spectrum of students taking introductory physics courses. We wanted our methodology to incorporate many findings of contemporary learning science. It is recognized that learning requires active construction; students need to be actively involved in their own learning process. Learning also depends on preexisting knowledge; students construct new knowledge and understandings based on what they already know and believe. Learning is context dependent; students who have learned to apply a concept in one context may not be able to recognize and apply the same concept in a different context, even when both contexts are considered to be isomorphic by experts. On this basis, we developed question sequences, each involving the same concept but having different contexts. Answer choices are designed to address students preexisting knowledge. These sequences are used with the clickers to promote active discussions and multiple assessments. We have created, validated, and evaluated sequences sufficient in number to populate all of introductory physics courses. Our research has found that using clickers with our question sequences significantly improved student conceptual understanding. Our research has also found how to best measure student conceptual gain using research-based instruments

  18. How are learning physics and student beliefs about learning physics connected? Measuring epistemological self-reflection in an introductory course and investigating its relationship to conceptual learning

    Science.gov (United States)

    May, David B.

    2002-11-01

    To explore students' epistemological beliefs in a variety of conceptual domains in physics, and in a specific and novel context of measurement, this Dissertation makes use of Weekly Reports, a class assignment in which students reflect in writing on what they learn each week and how they learn it. Reports were assigned to students in the introductory physics course for honors engineering majors at The Ohio State University in two successive years. The Weekly Reports of several students from the first year were analyzed for the kinds of epistemological beliefs exhibited therein, called epistemological self-reflection, and a coding scheme was developed for categorizing and quantifying this reflection. The connection between epistemological self-reflection and conceptual learning in physics seen in a pilot study was replicated in a larger study, in which the coded reflections from the Weekly Reports of thirty students were correlated with their conceptual learning gains. Although the total amount of epistemological self-reflection was not found to be related to conceptual gain, different kinds of epistemological self-reflection were. Describing learning physics concepts in terms of logical reasoning and making personal connections were positively correlated with gains; describing learning from authority figures or by observing phenomena without making inferences were negatively correlated. Linear regression equations were determined in order to quantify the effects on conceptual gain of specific ways of describing learning. In an experimental test of this model, the regression equations and the Weekly Report coding scheme developed from the first year's data were used to predict the conceptual gains of thirty students from the second year. The prediction was unsuccessful, possibly because these students were not given as much feedback on their reflections as were the first-year students. These results show that epistemological beliefs are important factors affecting

  19. Assessment of Student Learning in Modern Experiments in the Introductory Calculus-Based Physics Labs

    Science.gov (United States)

    Woodahl, Brian; Ross, John; Lang, Sarah; Scott, Derek; Williams, Jeremy

    2010-10-01

    With the advent of newer microelectronic sensors it's now possible to modernize introductory physics labs with the latest technology and this may allow for enhanced student participation/learning in the experiments. For example, force plate sensors can digitize and record the force on an object, later it can be analyzed in detail (i.e, impulse from force vs. time). Small 3-axis accelerometers can record 3-dim, time-dependent acceleration of objects undergoing complex motions. These devices are small, fairly easy to use, and importantly, are likely to enhance student learning by ``personalizing'' data collection, i.e. making the student an active part of the measurement process and no longer a passive observer. To assess whether these new high-tech labs enhance student learning, we have implemented pre- and post- test sessions to measure the effectiveness of student learning. Four of our calculus-based lab sections were used: Two sections the control group, using the previous ``old technology'' labs, the other two, the experimental group, using the new ``modern technology'' labs. Initial returns of assessment data offer some surprising insight.

  20. Equity investigation of attitudinal shifts in introductory physics

    Directory of Open Access Journals (Sweden)

    Adrienne Traxler

    2015-11-01

    Full Text Available We report on seven years of attitudinal data using the Colorado Learning Attitudes about Science Survey from University Modeling Instruction (UMI sections of introductory physics at Florida International University. University Modeling Instruction is a curricular and pedagogical transformation of introductory university physics that engages students in building and testing conceptual models in an integrated lab and lecture learning environment. This work expands upon previous studies that reported consistently positive attitude shifts in UMI courses; here, we disaggregate the data by gender and ethnicity to look for any disparities in the pattern of favorable shifts. We find that women and students from statistically underrepresented ethnic groups have gains that are comparable to those of men and students from well-represented ethnic groups on this attitudinal measure, and that this result holds even when interaction effects of gender and ethnicity are included. We conclude with suggestions for future work in UMI courses and for attitudinal equity investigations generally. We encourage researchers to expand their scope beyond simple performance gaps when considering equity concerns, and to avoid relying on a single measure to evaluate student success. Finally, we conjecture that students’ social and academic networks are one means by which attitudinal and efficacy beliefs about the course are propagated.

  1. Equity investigation of attitudinal shifts in introductory physics

    Science.gov (United States)

    Traxler, Adrienne; Brewe, Eric

    2015-12-01

    We report on seven years of attitudinal data using the Colorado Learning Attitudes about Science Survey from University Modeling Instruction (UMI) sections of introductory physics at Florida International University. University Modeling Instruction is a curricular and pedagogical transformation of introductory university physics that engages students in building and testing conceptual models in an integrated lab and lecture learning environment. This work expands upon previous studies that reported consistently positive attitude shifts in UMI courses; here, we disaggregate the data by gender and ethnicity to look for any disparities in the pattern of favorable shifts. We find that women and students from statistically underrepresented ethnic groups have gains that are comparable to those of men and students from well-represented ethnic groups on this attitudinal measure, and that this result holds even when interaction effects of gender and ethnicity are included. We conclude with suggestions for future work in UMI courses and for attitudinal equity investigations generally. We encourage researchers to expand their scope beyond simple performance gaps when considering equity concerns, and to avoid relying on a single measure to evaluate student success. Finally, we conjecture that students' social and academic networks are one means by which attitudinal and efficacy beliefs about the course are propagated.

  2. Student effort expectations and their learning in first-year introductory physics: A case study in Thailand

    Directory of Open Access Journals (Sweden)

    N. Emarat

    2011-06-01

    Full Text Available The Maryland Physics Expectations (MPEX survey was designed to probe students’ expectations about their understanding of the process of learning physics and the structure of physics knowledge—cognitive expectations. This survey was administered to first-year university students in Thailand in the first semester of an introductory calculus-based physics course during academic years 2007 and 2008, to assess their expectations at the beginning of the course. The precourse MPEX results were compared and correlated with two separate measures of student learning: (1 individual students’ normalized gains from pre and post Force and Motion Conceptual Evaluation (FMCE results, which measure students’ conceptual understanding, and (2 student’s scores on the final exam, which measure their more general problem-solving ability. The results showed a significant positive correlation between their overall MPEX score and five of the six MPEX cluster scores, with their normalized learning gains on the FMCE for both academic years. The results also showed significant positive correlations between student MPEX scores and their final exam scores for the overall MPEX score and all MPEX cluster scores except for the effort cluster. We interviewed two groups of five students each, one group with small favorable scores on the precourse MPEX effort cluster and one with high favorable scores on the precourse MPEX effort cluster, to see how the students’ learning efforts compared with their MPEX results. We concluded from the interviews that what the students think or expect about the MPEX effort involved in learning physics does not match what they actually do.

  3. Student effort expectations and their learning in first-year introductory physics: A case study in Thailand

    Directory of Open Access Journals (Sweden)

    U. Wutchana

    2011-06-01

    Full Text Available The Maryland Physics Expectations (MPEX survey was designed to probe students’ expectations about their understanding of the process of learning physics and the structure of physics knowledge—cognitive expectations. This survey was administered to first-year university students in Thailand in the first semester of an introductory calculus-based physics course during academic years 2007 and 2008, to assess their expectations at the beginning of the course. The precourse MPEX results were compared and correlated with two separate measures of student learning: (1 individual students’ normalized gains from pre and post Force and Motion Conceptual Evaluation (FMCE results, which measure students’ conceptual understanding, and (2 student’s scores on the final exam, which measure their more general problem-solving ability. The results showed a significant positive correlation between their overall MPEX score and five of the six MPEX cluster scores, with their normalized learning gains on the FMCE for both academic years. The results also showed significant positive correlations between student MPEX scores and their final exam scores for the overall MPEX score and all MPEX cluster scores except for the effort cluster. We interviewed two groups of five students each, one group with small favorable scores on the precourse MPEX effort cluster and one with high favorable scores on the precourse MPEX effort cluster, to see how the students’ learning efforts compared with their MPEX results. We concluded from the interviews that what the students think or expect about the MPEX effort involved in learning physics does not match what they actually do.

  4. Student effort expectations and their learning in first-year introductory physics: A case study in Thailand

    Science.gov (United States)

    Wutchana, U.; Emarat, N.

    2011-06-01

    The Maryland Physics Expectations (MPEX) survey was designed to probe students’ expectations about their understanding of the process of learning physics and the structure of physics knowledge—cognitive expectations. This survey was administered to first-year university students in Thailand in the first semester of an introductory calculus-based physics course during academic years 2007 and 2008, to assess their expectations at the beginning of the course. The precourse MPEX results were compared and correlated with two separate measures of student learning: (1) individual students’ normalized gains from pre and post Force and Motion Conceptual Evaluation (FMCE) results, which measure students’ conceptual understanding, and (2) student’s scores on the final exam, which measure their more general problem-solving ability. The results showed a significant positive correlation between their overall MPEX score and five of the six MPEX cluster scores, with their normalized learning gains on the FMCE for both academic years. The results also showed significant positive correlations between student MPEX scores and their final exam scores for the overall MPEX score and all MPEX cluster scores except for the effort cluster. We interviewed two groups of five students each, one group with small favorable scores on the precourse MPEX effort cluster and one with high favorable scores on the precourse MPEX effort cluster, to see how the students’ learning efforts compared with their MPEX results. We concluded from the interviews that what the students think or expect about the MPEX effort involved in learning physics does not match what they actually do.

  5. Teaching Quantum Interpretations: Revisiting the Goals and Practices of Introductory Quantum Physics Courses

    Science.gov (United States)

    Baily, Charles; Finkelstein, Noah D.

    2015-01-01

    Most introductory quantum physics instructors would agree that transitioning students from classical to quantum thinking is an important learning goal, but may disagree on whether or how this can be accomplished. Although (and perhaps because) physicists have long debated the physical interpretation of quantum theory, many instructors choose to…

  6. Student Responses to a Flipped Introductory Physics Class with built-in Post-Video Feedback Quizzes

    Science.gov (United States)

    Ramos, Roberto

    We present and analyze student responses to multiple Introductory physics classes in a university setting, taught in a ''flipped'' class format. The classes included algebra- and calculus-based introductory physics. Outside class, students viewed over 100 online video lectures on Classical Mechanics, Electricity and Magnetism, and Modern Physics prepared by this author and in some cases, by a third-party lecture package available over YouTube. Inside the class, students solved and discussed problems and conceptual issues in greater detail. A pre-class online quiz was deployed as an important source of feedback. I will report on the student reactions to the feedback mechanism, student responses using data based on anonymous surveys, as well as on learning gains from pre-/post- physics diagnostic tests. The results indicate a broad mixture of responses to different lecture video packages that depend on learning styles and perceptions. Students preferred the online quizzes as a mechanism to validate their understanding. The learning gains based on FCI and CSEM surveys were significant.

  7. Influences of Learning Environment Characteristics on Student Learning During Authentic Science Inquiry in an Introductory Physical Geology Course

    Science.gov (United States)

    Miller, H. R.; Sell, K. S.; Herbert, B. E.

    2004-12-01

    Shifts in learning goals in introductory earth science courses to greater emphasis on critical thinking and the nature of science has led to the adoption of new pedagogical techniques, including inquiry-based learning (IBL). IBL is thought to support understanding of the nature of science and foster development of scientific reasoning and critical thinking skills by modeling authentic science inquiry. Implementation of new pedagogical techniques do not occur without influence, instruction and learning occurs in a complex learning environment, referring to the social, physical, mental, and pedagogical contexts. This study characterized the impact of an IBL module verses a traditionally structured laboratory exercise in an introductory physical geology class at Texas A&M University. Student activities in this study included manipulation of large-scale data sets, use of multiple representations, and exposure to ill-constrained problems common to the Texas Gulf Coast system. Formative assessment data collected included an initial survey of self efficacy, student demographics, content knowledge and a pre-mental model expression. Summative data collected included a post-test, post-mental model expression, final laboratory report, and a post-survey on student attitudes toward the module. Mental model expressions and final reports were scored according to a validated rubric instrument (Cronbrach alpha: 0.84-0.98). Nine lab sections were randomized into experimental and control groups. Experimental groups were taught using IBL pedagogical techniques, while the control groups were taught using traditional laboratory "workbook" techniques. Preliminary assessment based on rubric scores for pre-tests using Student's t-test (N ˜ 140) indicated that the experimental and control groups were not significantly different (ρ > 0.05), therefore, the learning environment likely impacted student's ability to succeed. A non-supportive learning environment, including student attitudes

  8. Gender Differences in Introductory University Physics Performance: The Influence of High School Physics Preparation and Affect

    Science.gov (United States)

    Hazari, Zahra

    2006-12-01

    The attrition of females studying physics after high school has been a continuing concern for the physics education community. If females are well prepared, feel confident, and do well in introductory college physics, they may be inclined to study physics further. This quantitative study uses HLM to identify factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that predict female and male performance in introductory college physics. The study includes controls for student demographic and academic background characteristics, and the final dataset consists of 1973 surveys from 54 introductory college physics classes. The results highlight high school physics and affective experiences that differentially predict female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believe that high school physics would help in university physics. There were also experiences that similarly predict female and male performance. The results paint a dynamic picture of the factors from high school physics and the affective domain that influence the future physics performance of females and males. The implication is that there are many aspects to the teaching of physics in high school that, although widely used and thought to be effective, need reform in their implementation in order to be fully beneficial to females and/or males in college.

  9. New Approach to Analyzing Physics Problems: A Taxonomy of Introductory Physics Problems

    Science.gov (United States)

    Teodorescu, Raluca E.; Bennhold, Cornelius; Feldman, Gerald; Medsker, Larry

    2013-01-01

    This paper describes research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created in order to design educational objectives, to develop…

  10. Gender differences in introductory university physics performance: The influence of high school physics preparation and affect

    Science.gov (United States)

    Hazari, Zahra Sana

    The attrition of females studying physics after high school is a concern to the science education community. Most undergraduate science programs require introductory physics coursework. Thus, success in introductory physics is necessary for students to progress to higher levels of science study. Success also influences attitudes; if females are well-prepared, feel confident, and do well in introductory physics, they may be inclined to study physics further. This quantitative study using multilevel modeling focused on determining factors from high school physics preparation (content, pedagogy, and assessment) and the affective domain that influenced female and male performance in introductory university physics. The study controlled for some university/course level characteristics as well as student demographic and academic background characteristics. The data consisted of 1973 surveys from 54 introductory physics courses within 35 universities across the US. The results highlight high school physics and affective experiences that differentially influenced female and male performance. These experiences include: learning requirements, computer graphing/analysis, long written problems, everyday world examples, community projects, cumulative tests/quizzes, father's encouragement, family's belief that science leads to a better career, and the length of time students believed that high school physics would help in university physics. There were also experiences that had a similar influence on female and male performance. Positively related to performance were: covering fewer topics for longer periods of time, the history of physics as a recurring topic, physics-related videos, and test/quiz questions that involved calculations and/or were drawn from standardized tests. Negatively related to performance were: student-designed projects, reading/discussing labs the day before performing them, microcomputer based laboratories, discussion after demonstrations, and family

  11. Challenge of Helping Introductory Physics Students Transfer Their Learning by Engaging with a Self-Paced Learning Tutorial

    Directory of Open Access Journals (Sweden)

    Emily Megan Marshman

    2018-03-01

    Full Text Available With advances in digital technology, research-validated self-paced learning tools can play an increasingly important role in helping students with diverse backgrounds become good problem solvers and independent learners. Thus, it is important to ensure that all students engage with self-paced learning tools effectively in order to learn the content deeply, develop good problem-solving skills, and transfer their learning from one context to another. Here, we first provide an overview of a holistic framework for engaging students with self-paced learning tools so that they can transfer their learning to solve novel problems. The framework not only takes into account the features of the self-paced learning tools but also how those tools are implemented, the extent to which the tools take into account student characteristics, and whether factors related to students’ social environments are accounted for appropriately in the implementation of those tools. We then describe an investigation in which we interpret the findings using the framework. In this study, a research-validated self-paced physics tutorial was implemented in both controlled one-on-one interviews and in large enrollment, introductory calculus-based physics courses as a self-paced learning tool. We find that students who used the tutorial in a controlled one-on-one interview situation performed significantly better on transfer problems than those who used it as a self-paced learning tool in the large-scale implementation. The findings suggest that critically examining and taking into account how the self-paced tools are implemented and incentivized, student characteristics including their self-regulation and time-management skills, and social and environmental factors can greatly impact the extent and manner in which students engage with these learning tools. Getting buy in from students about the value of these tools and providing appropriate support while implementing them is

  12. Beginning Introductory Physics with Two-Dimensional Motion

    Science.gov (United States)

    Huggins, Elisha

    2009-01-01

    During the session on "Introductory College Physics Textbooks" at the 2007 Summer Meeting of the AAPT, there was a brief discussion about whether introductory physics should begin with one-dimensional motion or two-dimensional motion. Here we present the case that by starting with two-dimensional motion, we are able to introduce a considerable…

  13. Characterizing, modeling, and addressing gender disparities in introductory college physics

    Science.gov (United States)

    Kost-Smith, Lauren Elizabeth

    2011-12-01

    The underrepresentation and underperformance of females in physics has been well documented and has long concerned policy-makers, educators, and the physics community. In this thesis, we focus on gender disparities in the first- and second-semester introductory, calculus-based physics courses at the University of Colorado. Success in these courses is critical for future study and careers in physics (and other sciences). Using data gathered from roughly 10,000 undergraduate students, we identify and model gender differences in the introductory physics courses in three areas: student performance, retention, and psychological factors. We observe gender differences on several measures in the introductory physics courses: females are less likely to take a high school physics course than males and have lower standardized mathematics test scores; males outscore females on both pre- and post-course conceptual physics surveys and in-class exams; and males have more expert-like attitudes and beliefs about physics than females. These background differences of males and females account for 60% to 70% of the gender gap that we observe on a post-course survey of conceptual physics understanding. In analyzing underlying psychological factors of learning, we find that female students report lower self-confidence related to succeeding in the introductory courses (self-efficacy) and are less likely to report seeing themselves as a "physics person". Students' self-efficacy beliefs are significant predictors of their performance, even when measures of physics and mathematics background are controlled, and account for an additional 10% of the gender gap. Informed by results from these studies, we implemented and tested a psychological, self-affirmation intervention aimed at enhancing female students' performance in Physics 1. Self-affirmation reduced the gender gap in performance on both in-class exams and the post-course conceptual physics survey. Further, the benefit of the self

  14. Situated Self-efficacy in Introductory Physics Students

    Science.gov (United States)

    Henderson, Rachel; DeVore, Seth; Michaluk, Lynnette; Stewart, John

    2017-01-01

    Within the general university environment, students' perceived self-efficacy has been widely studied and findings suggest it plays a role in student success. The current research adapted a self-efficacy survey, from the ``Self-Efficacy for Learning Performance'' subscale of the Motivated Learning Strategies Questionnaire and administered it to the introductory, calculus-based physics classes (N=1005) over the fall 2015 and spring 2016 semesters. This assessment measured students' self-efficacy in domains including the physics class, other science and mathematics classes, and their intended future career. The effect of gender was explored with the only significant gender difference (p gender difference was not explained by a student's performance which was measured by test average. However, a mediation analysis showed that students' overall academic self-efficacy, measured by their math and science self-efficacy, acts as a mediator for the effect of test average on self-efficacy towards the physics class domain. This mediation effect was significant for both female (p < . 01) and male students (p < . 001) however, it was more pronounced for male students.

  15. Gender, experience, and self-efficacy in introductory physics

    Directory of Open Access Journals (Sweden)

    Jayson M. Nissen

    2016-08-01

    Full Text Available [This paper is part of the Focused Collection on Gender in Physics.] There is growing evidence of persistent gender achievement gaps in university physics instruction, not only for learning physics content, but also for developing productive attitudes and beliefs about learning physics. These gaps occur in both traditional and interactive-engagement (IE styles of physics instruction. We investigated one gender gap in the area of attitudes and beliefs. This was men’s and women’s physics self-efficacy, which comprises students’ thoughts and feelings about their capabilities to succeed as learners in physics. According to extant research using pre- and post-course surveys, the self-efficacy of both men and women tends to be reduced after taking traditional and IE physics courses. Moreover, self-efficacy is reduced further for women than for men. However, it remains unclear from these studies whether this gender difference is caused by physics instruction. It may be, for instance, that the greater reduction of women’s self-efficacy in physics merely reflects a broader trend in university education that has little to do with physics per se. We investigated this and other alternative causes, using an in-the-moment measurement technique called the Experience Sampling Method (ESM. We used ESM to collect multiple samples of university students’ feelings of self-efficacy during four types of activity for two one-week periods: (i an introductory IE physics course, (ii students’ other introductory STEM courses, (iii their non-STEM courses, and (iv their activities outside of school. We found that women experienced the IE physics course with lower self-efficacy than men, but for the other three activity types, women’s self-efficacy was not reliably different from men’s. We therefore concluded that the experience of physics instruction in the IE physics course depressed women’s self-efficacy. Using complementary measures showing the IE

  16. A physics department's role in preparing physics teachers: The Colorado learning assistant model

    Science.gov (United States)

    Otero, Valerie; Pollock, Steven; Finkelstein, Noah

    2010-11-01

    In response to substantial evidence that many U.S. students are inadequately prepared in science and mathematics, we have developed an effective and adaptable model that improves the education of all students in introductory physics and increases the numbers of talented physics majors becoming certified to teach physics. We report on the Colorado Learning Assistant model and discuss its effectiveness at a large research university. Since its inception in 2003, we have increased the pool of well-qualified K-12 physics teachers by a factor of approximately three, engaged scientists significantly in the recruiting and preparation of future teachers, and improved the introductory physics sequence so that students' learning gains are typically double the traditional average.

  17. Inquiry-based problem solving in introductory physics

    Science.gov (United States)

    Koleci, Carolann

    What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).

  18. A collaborative learning approach for service-oriented introductory physics

    Science.gov (United States)

    Smith, Michael R.

    1997-03-01

    I have taught algebra-based introductory physics for six years to liberal arts students. It was primarily a service course for students majoring in Athletic Training, Physical Therapy, Geology, Biology, and Pre-Med. The typical student was characterized by having a minimal math and problem-solving proficiency. There also was a pattern of students being predisposed to memorizing facts and formulas, and attempting to solve problems by finding the correct formula and "plugging in" numbers to get an answer. The students seemed to have a minimal ability in deductive reasoning and problem solving, starting from basic principles. It is no wonder that they entered the introductory physics service course with extreme trepidation, based upon a strongly perceived physics phobia. A standard lecture format was used for the class size of approximately 25-30 students; and an attempt was always made to engage the students through the Socratic approach, by asking leading questions during the course of the lecture. The students were relatively unprepared and couldn't participate in the class, and often responded antagonistically. They indicated they didn't want to be asked to think about an issue, but would rather just be told the facts so they could take specific notes for subsequent memorization. It was clear from the results of the open book exams given during the semester that the majority of students could not approach problem solving using deductive reasoning based on basic principles, but relied on attempting to force-fit the problem into a worked example in the text (often out of context, with illogical results). The absentee rate in the classroom was usually around 30-40%. The academic administration of my liberal arts university has the policy of formal course evaluations by the students at the end of each semester. The evaluation questionnaire appears to be primarily a measurement of the stress level of the student during the course, and the evaluation score I received

  19. Comparing the efficacy of multimedia modules with traditional textbooks for learning introductory physics content

    Science.gov (United States)

    Stelzer, Timothy; Gladding, Gary; Mestre, José P.; Brookes, David T.

    2009-02-01

    We compared the efficacy of multimedia learning modules with traditional textbooks for the first few topics of a calculus-based introductory electricity and magnetism course. Students were randomly assigned to three groups. One group received the multimedia learning module presentations, and the other two received the presentations via written text. All students were then tested on their learning immediately following the presentations as well as 2weeks later. The students receiving the multimedia learning modules performed significantly better on both tests than the students experiencing the text-based presentations.

  20. Examining issues of underrepresented minority students in introductory physics

    Science.gov (United States)

    Watkins, Jessica Ellen

    In this dissertation we examine several issues related to the retention of under-represented minority students in physics and science. In the first section, we show that in calculus-based introductory physics courses, the gender gap on the FCI is diminished through the use of interactive techniques, but in lower-level introductory courses, the gap persists, similar to reports published at other institutions. We find that under-represented racial minorities perform similar to their peers with comparable academic preparation on conceptual surveys, but their average exam grades and course grades are lower. We also examine student persistence in science majors; finding a significant relationship between pedagogy in an introductory physics course and persistence in science. In the second section, we look at student end-of-semester evaluations and find that female students rate interactive teaching methods a full point lower than their male peers. Looking more deeply at student interview data, we find that female students report more social issues related to the discussions in class and both male and female students cite feeling pressure to obtain the correct answer to clicker questions. Finally, we take a look an often-cited claim for gender differences in STEM participation: cognitive differences explain achievement differences in physics. We examine specifically the role of mental rotations in physics achievement and problem-solving, viewing mental rotations as a tool that students can use on physics problems. We first look at student survey results for lower-level introductory students, finding a low, but significant correlation between performance on a mental rotations test and performance in introductory physics courses. In contrast, we did not find a significant relationship for students in the upper-level introductory course. We also examine student problem-solving interviews to investigate the role of mental rotations on introductory problems.

  1. Crossword Puzzles as Learning Tools in Introductory Soil Science

    Science.gov (United States)

    Barbarick, K. A.

    2010-01-01

    Students in introductory courses generally respond favorably to novel approaches to learning. To this end, I developed and used three crossword puzzles in spring and fall 2009 semesters in Introductory Soil Science Laboratory at Colorado State University. The first hypothesis was that crossword puzzles would improve introductory soil science…

  2. MRI Experiments for Introductory Physics

    Science.gov (United States)

    Taghizadeh, Sanaz; Lincoln, James

    2018-01-01

    The introductory physics classroom has long educated students about the properties of the atom and the nucleus. But absent from these lessons has been an informed discussion of magnetic resonance imaging (MRI) and its parent science nuclear magnetic resonance (NMR). Physics teachers should not miss the opportunity to instruct upon this highly…

  3. Investigating and improving introductory physics students’ understanding of symmetry and Gauss’s law

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2018-01-01

    We discuss an investigation of student difficulties with symmetry and Gauss’s law and how the research on students’ difficulties was used as a guide to develop a tutorial related to these topics to help students in the calculus-based introductory physics courses learn these concepts. During the development of the tutorial, we interviewed students individually at various stages of development and administered written tests in the free-response and multiple-choice formats on these concepts to learn about common student difficulties. We also obtained feedback from physics instructors who teach introductory physics courses regularly in which these concepts were covered. The students in several ‘equivalent’ sections worked on the tutorial after traditional lecture-based instruction. We discuss the performance of students on the written pre-test (administered after lecture-based instruction in relevant concepts) and post-test given after students worked on the tutorial. We find that on the pre-test, all sections of the course performed comparably regardless of the instructor. Also, on average, student performance on the post-test after working on the tutorial is significantly better than on the pre-test after lecture-based instruction. We also compare the post-test performance of introductory students in sections of the course in which the tutorial was used versus not used and find that sections in which students engaged with the tutorial outperformed those in which students did not engage with it.

  4. Scientific thinking employed in tasks of introductory physics

    Directory of Open Access Journals (Sweden)

    Alexandre Fagundes Faria

    2017-04-01

    Full Text Available In Science Education, notably in Physics Teaching, there are research based instructional strategies that are renown by their potential to promote conceptual development. It is likely that many of these strategies lead to more elaborate learning; promoting, for instance, scientific thinking development. Scientific thinking might be construed as the sum of domain-specific knowledge and domain-general strategies. Here is reported an investigation of domain-general strategies used by students on tasks proposed in a Newtonian Dynamics activity inspired by “Tutorials in Introductory Physics”. Nineteen volunteers, aged 15-17, participated; all were students in electronics or computer science from a Brazilian vocational high school. The school activities proposed to the students have been regularly used in the Physics course for seven years. Therefore, there was no special interventions prepared with research purposes. Data collection involved audio and video recordings of students’ teamwork; field notes; and photographs of student’s notebooks and of posters teams presented in classes. Data analysis was based on categorization of domain-general strategies used by students. We found that students used four domain-general strategies on the proposed tasks: evidence-based reasoning, assessment of the reasoning line, reason based on operational definition and hypothetic-deductive reasoning. These findings suggest that activities inspired by the “Tutorials in Introductory Physics” favor the learning of scientific concepts plus further – and yet more elaborate – learning. These results place a demand on the field of Science Education to refine the strategies of data collection and data analysis as a way to identify the use of other domain-general strategies by students in similar contexts, as well as the expansion of research to other schools contexts.

  5. Pre-Service Physics Teachers' Opinions about the Difficulties in Understanding Introductory Quantum Physics Topics

    Science.gov (United States)

    Kizilcik, Hasan Sahin; Yavas, Pervin Ünlü

    2017-01-01

    The aim of this study is to identify the opinions of pre-service physics teachers about the difficulties in introductory quantum physics topics. In this study conducted with twenty-five pre-service physics teachers, the case study method was used. The participants were interviewed about introductory quantum physics topics. The interviews were…

  6. Promoting Success in the Physical Sciences: The University of Wisconsin's Physics Learning Program

    Science.gov (United States)

    Nossal, S. M.; Jacob, A. T.

    2002-05-01

    The Physics Learning Program at the University of Wisconsin-Madison provides small group, academic and mentoring support for students enrolled in algebra-based introductory physics courses. Those students accepted into our program are potentially at-risk academically in their physics course or for feeling isolated at the University. They include, among others, students who have not taken high school physics, returning adults, minority students, students with disabilities, and students with English as a second language. A core component of the program is the peer-lead teaching and mentoring groups that match upper level undergraduate physics majors with students potentially at-risk in introductory physics. The tutors receive ongoing training and supervision throughout the year. The program has expanded over the years to include staff tutors, the majority of whom are scientists who seek additional teaching experience. The Physics Peer Mentor Tutor Program is run in collaboration with a similar chemistry program at the University of Wisconsin's Chemistry Learning Center. We will describe our Physics Learning Programs and discuss some of the challenges, successes, and strategies used to work with our tutors and students.

  7. Impacts of curricular change: Implications from 8 years of data in introductory physics

    Science.gov (United States)

    Pollock, Steven J.; Finkelstein, Noah

    2013-01-01

    Introductory calculus-based physics classes at the University of Colorado Boulder were significantly transformed beginning in 2004. They now regularly include: interactive engagement using clickers in large lecture settings, Tutorials in Introductory Physics with use of undergraduate Learning Assistants in recitation sections, and a staffed help-room setting where students work on personalized CAPA homework. We compile and summarize conceptual (FMCE and BEMA) pre- and post-data from over 9,000 unique students after 16 semesters of both Physics 1 and 2. Within a single institution with stable pre-test scores, we reproduce results of Hake's 1998 study that demonstrate the positive impacts of interactive engagement on student performance. We link the degree of faculty's use of interactive engagement techniques and their experience levels on student outcomes, and argue for the role of such systematic data collection in sustained course and institutional transformations.

  8. Using an Isomorphic Problem Pair to Learn Introductory Physics: Transferring from a Two-Step Problem to a Three-Step Problem

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2013-01-01

    In this study, we examine introductory physics students' ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. 382 students from a calculus-based and an algebra-based introductory physics course were administered a quiz in the recitation…

  9. Connecting Symbolic Integrals to Physical Meaning in Introductory Physics

    Science.gov (United States)

    Amos, Nathaniel R.

    This dissertation presents a series of studies pertaining to introductory physics students' abilities to derive physical meaning from symbolic integrals (e.g., the integral of vdt) and their components, namely differentials and differential products (e.g., dt and vdt, respectively). Our studies focus on physical meaning in the form of interpretations (e.g., "the total displacement of an object") and units (e.g., "meters"). Our first pair of studies independently attempted to identify introductory-level mechanics students' common conceptual difficulties with and unproductive interpretations of physics integrals and their components, as well as to estimate the frequencies of these difficulties. Our results confirmed some previously-observed incorrect interpretations, such as the notion that differentials are physically meaningless; however, we also uncovered two new conceptualizations of differentials, the "rate" (differentials are "rates" or "derivatives") and "instantaneous value" (differentials are values of physical variables "at an instant") interpretations, which were exhibited by more than half of our participants at least once. Our next study used linear regression analysis to estimate the strengths of the inter-connections between the abilities to derive physical meaning from each of differentials, differential products, and integrals in both first- and second-semester, calculus-based introductory physics. As part of this study, we also developed a highly reliable, multiple choice assessment designed to measure students' abilities to connect symbolic differentials, differential products, and integrals with their physical interpretations and units. Findings from this study were consistent with statistical mediation via differential products. In particular, students' abilities to extract physical meaning from differentials were seen to be strongly related to their abilities to derive physical meaning from differential products, and similarly differential

  10. Optimizing Introductory Physics for the Life Sciences: Placing Physics in Biological Context

    Science.gov (United States)

    Crouch, Catherine

    2014-03-01

    Physics is a critical foundation for today's life sciences and medicine. However, the physics content and ways of thinking identified by life scientists as most important for their fields are often not taught, or underemphasized, in traditional introductory physics courses. Furthermore, such courses rarely give students practice using physics to understand living systems in a substantial way. Consequently, students are unlikely to recognize the value of physics to their chosen fields, or to develop facility in applying physics to biological systems. At Swarthmore, as at several other institutions engaged in reforming this course, we have reorganized the introductory course for life science students around touchstone biological examples, in which fundamental physics contributes significantly to understanding biological phenomena or research techniques, in order to make explicit the value of physics to the life sciences. We have also focused on the physics topics and approaches most relevant to biology while seeking to develop rigorous qualitative reasoning and quantitative problem solving skills, using established pedagogical best practices. Each unit is motivated by and culminates with students analyzing one or more touchstone examples. For example, in the second semester we emphasize electric potential and potential difference more than electric field, and start from students' typically superficial understanding of the cell membrane potential and of electrical interactions in biochemistry to help them develop a more sophisticated understanding of electric forces, field, and potential, including in the salt water environment of life. Other second semester touchstones include optics of vision and microscopes, circuit models for neural signaling, and magnetotactic bacteria. When possible, we have adapted existing research-based curricular materials to support these examples. This talk will describe the design and development process for this course, give examples of

  11. Computer-Tailored Student Support in Introductory Physics

    Science.gov (United States)

    Huberth, Madeline; Chen, Patricia; Tritz, Jared; McKay, Timothy A.

    2015-01-01

    Large introductory courses are at a disadvantage in providing personalized guidance and advice for students during the semester. We introduce E2Coach (an Expert Electronic Coaching system), which allows instructors to personalize their communication with thousands of students. We describe the E2Coach system, the nature of the personalized support it provides, and the features of the students who did (and did not) opt-in to using it during the first three terms of its use in four introductory physics courses at the University of Michigan. Defining a ‘better-than-expected’ measure of performance, we compare outcomes for students who used E2Coach to those who did not. We found that moderate and high E2Coach usage was associated with improved performance. This performance boost was prominent among high users, who improved by 0.18 letter grades on average when compared to nonusers with similar incoming GPAs. This improvement in performance was comparable across both genders. E2Coach represents one way to use technology to personalize education at scale, contributing to the move towards individualized learning that is becoming more attainable in the 21st century. PMID:26352403

  12. Computer-Tailored Student Support in Introductory Physics.

    Science.gov (United States)

    Huberth, Madeline; Chen, Patricia; Tritz, Jared; McKay, Timothy A

    2015-01-01

    Large introductory courses are at a disadvantage in providing personalized guidance and advice for students during the semester. We introduce E2Coach (an Expert Electronic Coaching system), which allows instructors to personalize their communication with thousands of students. We describe the E2Coach system, the nature of the personalized support it provides, and the features of the students who did (and did not) opt-in to using it during the first three terms of its use in four introductory physics courses at the University of Michigan. Defining a 'better-than-expected' measure of performance, we compare outcomes for students who used E2Coach to those who did not. We found that moderate and high E2Coach usage was associated with improved performance. This performance boost was prominent among high users, who improved by 0.18 letter grades on average when compared to nonusers with similar incoming GPAs. This improvement in performance was comparable across both genders. E2Coach represents one way to use technology to personalize education at scale, contributing to the move towards individualized learning that is becoming more attainable in the 21st century.

  13. Assessing expertise in introductory physics using categorization task

    Directory of Open Access Journals (Sweden)

    Andrew Mason

    2011-10-01

    Full Text Available The ability to categorize problems based upon underlying principles, rather than surface features or contexts, is considered one of several proxy predictors of expertise in problem solving. With inspiration from the classic study by Chi, Feltovich, and Glaser, we assess the distribution of expertise among introductory physics students by asking three introductory physics classes, each with more than a hundred students, to categorize mechanics problems based upon similarity of solution. We compare their categorization with those of physics graduate students and faculty members. To evaluate the effect of problem context on students’ ability to categorize, two sets of problems were developed for categorization. Some problems in one set included those available from the prior study by Chi et al. We find a large overlap between calculus-based introductory students and graduate students with regard to their categorizations that were assessed as “good.” Our findings, which contrast with those of Chi et al., suggest that there is a wide distribution of expertise in mechanics among introductory and graduate students. Although the categorization task is conceptual, introductory students in the calculus-based course performed better than those in the algebra-based course. Qualitative trends in categorization of problems are similar between the non-Chi problems and problems available from the Chi study used in our study although the Chi problems used are more difficult on average.

  14. Use of camera drive in stereoscopic display of learning contents of introductory physics

    Science.gov (United States)

    Matsuura, Shu

    2011-03-01

    Simple 3D physics simulations with stereoscopic display were created for a part of introductory physics e-Learning. First, cameras to see the 3D world can be made controllable by the user. This enabled to observe the system and motions of objects from any position in the 3D world. Second, cameras were made attachable to one of the moving object in the simulation so as to observe the relative motion of other objects. By this option, it was found that users perceive the velocity and acceleration more sensibly on stereoscopic display than on non-stereoscopic 3D display. Simulations were made using Adobe Flash ActionScript, and Papervison 3D library was used to render the 3D models in the flash web pages. To display the stereogram, two viewports from virtual cameras were displayed in parallel in the same web page. For observation of stereogram, the images of two viewports were superimposed by using 3D stereogram projection box (T&TS CO., LTD.), and projected on an 80-inch screen. The virtual cameras were controlled by keyboard and also by Nintendo Wii remote controller buttons. In conclusion, stereoscopic display offers learners more opportunities to play with the simulated models, and to perceive the characteristics of motion better.

  15. Learning Styles and Student Performance in Introductory Economics

    Science.gov (United States)

    Brunton, Bruce

    2015-01-01

    Data from nine introductory microeconomics classes was used to test the effect of student learning style on academic performance. The Kolb Learning Style Inventory was used to assess individual student learning styles. The results indicate that student learning style has no significant effect on performance, undermining the claims of those who…

  16. Introduction of Interactive Learning into French University Physics Classrooms

    Science.gov (United States)

    Rudolph, Alexander L.; Lamine, Brahim; Joyce, Michael; Vignolles, Hélène; Consiglio, David

    2014-01-01

    We report on a project to introduce interactive learning strategies (ILS) to physics classes at the Université Pierre et Marie Curie, one of the leading science universities in France. In Spring 2012, instructors in two large introductory classes, first-year, second-semester mechanics, and second-year introductory electricity and magnetism,…

  17. Learning in a Physics Classroom Community: Physics Learning Identity Construct Development, Measurement and Validation

    Science.gov (United States)

    Li, Sissi L.

    At the university level, introductory science courses usually have high student to teacher ratios which increases the challenge to meaningfully connect with students. Various curricula have been developed in physics education to actively engage students in learning through social interactions with peers and instructors in class. This learning environment demands not only conceptual understanding but also learning to be a scientist. However, the success of student learning is typically measured in test performance and course grades while assessment of student development as science learners is largely ignored. This dissertation addresses this issue with the development of an instrument towards a measure of physics learning identity (PLI) which is used to guide and complement case studies through student interviews and in class observations. Using the conceptual framework based on Etienne Wenger's communities of practice (1998), I examine the relationship between science learning and learning identity from a situated perspective in the context of a large enrollment science class as a community of practice. This conceptual framework emphasizes the central role of identity in the practices negotiated in the classroom community and in the way students figure out their trajectory as members. Using this framework, I seek to understand how the changes in student learning identity are supported by active engagement based instruction. In turn, this understanding can better facilitate the building of a productive learning community and provide a measure for achievement of the curricular learning goals in active engagement strategies. Based on the conceptual framework, I developed and validated an instrument for measuring physics learning identity in terms of student learning preferences, self-efficacy for learning physics, and self-image as a physics learner. The instrument was pilot tested with a population of Oregon State University students taking calculus based

  18. Behaviorism, latent learning, and cognitive maps: needed revisions in introductory psychology textbooks.

    Science.gov (United States)

    Jensen, Robert

    2006-01-01

    This paper critically assesses the scholarship in introductory psychology textbooks in relation to the topic of latent learning. A review of the treatment of latent learning in 48 introductory psychology textbooks published between 1948 and 2004, with 21 of these texts published since 1999, reveals that the scholarship on the topic of latent learning demonstrated in introductory textbooks warrants improvement. Errors that persist in textbooks include the assertion that the latent learning experiments demonstrate unequivocally that reinforcement was not necessary for learning to occur, that behavioral theories could not account for the results of the latent learning experiments, that B. F. Skinner was an S-R association behaviorist who argued that reinforcement is necessary for learning to occur, and that because behavioral theories (including that of B. F. Skinner) were unable explain the results of the latent learning experiments the cognitive map invoked by Edward Tolman is the only explanation for latent learning. Finally, the validity of the cognitive map is typically accepted without question. Implications of the presence of these errors for students and the discipline are considered. Lastly, remedies are offered to improve the scholarship found in introductory psychology textbooks.

  19. Correlates of gender and achievement in introductory algebra based physics

    Science.gov (United States)

    Smith, Rachel Clara

    The field of physics is heavily male dominated in America. Thus, half of the population of our country is underrepresented and underserved. The identification of factors that contribute to gender disparity in physics is necessary for educators to address the individual needs of students, and, in particular, the separate and specific needs of female students. In an effort to determine if any correlations could be established or strengthened between sex, gender identity, social network, algebra skill, scientific reasoning ability, and/or student attitude, a study was performed on a group of 82 students in an introductory algebra based physics course. The subjects each filled out a survey at the beginning of the semester of their first semester of algebra based physics. They filled out another survey at the end of that same semester. These surveys included physics content pretests and posttests, as well as questions about the students' habits, attitudes, and social networks. Correlates of posttest score were identified, in order of significance, as pretest score, emphasis on conceptual learning, preference for male friends, number of siblings (negatively correlated), motivation in physics, algebra score, and parents' combined education level. Number of siblings was also found to negatively correlate with, in order of significance, gender identity, preference for male friends, emphasis on conceptual learning, and motivation in physics. Preference for male friends was found to correlate with, in order of significance, emphasis on conceptual learning, gender identity, and algebra score. Also, gender identity was found to correlate with emphasis on conceptual learning, the strongest predictor of posttest score other than pretest score.

  20. Semantics in Teaching Introductory Physics.

    Science.gov (United States)

    Williams, H. Thomas

    1999-01-01

    Contends that the large vocabulary used for precise purposes in physics contains many words that have related but potentially confusing meanings in everyday usage. Analyzes the treatment of Newton's Laws of Motion in several well-known introductory textbooks for evidence of inconsistent language use. Makes teaching suggestions. (Contains 11…

  1. Using Categorization of Problems as an Instructional Tool to Help Introductory Students Learn Physics

    Science.gov (United States)

    Mason, Andrew; Singh, Chandralekha

    2016-01-01

    The ability to categorize problems based upon underlying principles, rather than contexts, is considered a hallmark of expertise in physics problem solving. With inspiration from a classic study by Chi, Feltovich, and Glaser, we compared the categorization of 25 introductory mechanics problems based upon similarity of solution by students in large…

  2. Lessons learned: A case study of an integrated way of teaching introductory physics to at-risk students at Rutgers University

    Science.gov (United States)

    Etkina, E.; Gibbons, K.; Holton, B. L.; Horton, G. K.

    1999-09-01

    In order to provide a physics instructional environment in which at-risk students (particularly women and minorities) can successfully learn and enjoy introductory physics, we have introduced Extended General Physics as an option for science, science teaching, and pre-health professions majors at Rutgers University. We have taught the course for the last five years. In this new course, we have used many elements that have been proven to be successful in physics instruction. We have added a new component, the minilab, stressing qualitative experiments performed by the students. By integrating all the elements, and structuring the time the students invest in the course, we have created a successful program for students-at-risk, indeed for all students. Our aim was not only to foster successful mastery of the traditional physics syllabus by the students, but to create a sense of community through the cooperation of students with each other and their instructors. We present a template for implementation of our program elsewhere.

  3. Physics Education: Desired outcomes, minds, and learning systems

    Science.gov (United States)

    van Heuvelen, Alan

    2000-11-01

    Recent studies and surveys indicate that the workplace is looking for different outcomes than are emphasized in traditional physics instruction. Cognitive science has learned much about the operation of our minds. Physicists have now systematically studied student learning in physics for about 30 years. What has been learned from these different studies that can help us achieve the desired outcomes in our large (and small) introductory physics courses? The talk will focus on these three ideas: the desired outcomes, student minds (very brief), and pedagogical strategies and activities that help achieve these outcomes.

  4. MRI experiments for introductory physics

    Science.gov (United States)

    Taghizadeh, Sanaz; Lincoln, James

    2018-04-01

    The introductory physics classroom has long educated students about the properties of the atom and the nucleus. But absent from these lessons has been an informed discussion of magnetic resonance imaging (MRI) and its parent science nuclear magnetic resonance (NMR). Physics teachers should not miss the opportunity to instruct upon this highly relevant application of modern physics, especially with so many of our students planning to pursue a career in medicine. This article provides an overview of the physics of MRI and gives advice on how physics teachers can introduce this topic. Also included are some demonstration activities and a discussion of a desktop MRI apparatus that may be used by students in the lab or as a demo.

  5. From F = ma to flying squirrels: curricular change in an introductory physics course.

    Science.gov (United States)

    O'Shea, Brian; Terry, Laura; Benenson, Walter

    2013-06-01

    We present outcomes from curricular changes made to an introductory calculus-based physics course whose audience is primarily life sciences majors, the majority of whom plan to pursue postbaccalaureate studies in medical and scientific fields. During the 2011-2012 academic year, we implemented a Physics of the Life Sciences curriculum centered on a draft textbook that takes a novel approach to teaching physics to life sciences majors. In addition, substantial revisions were made to the homework and hands-on components of the course to emphasize the relationship between physics and the life sciences and to help the students learn to apply physical intuition to life sciences-oriented problems. Student learning and attitudinal outcomes were assessed both quantitatively, using standard physics education research instruments, and qualitatively, using student surveys and a series of postsemester interviews. Students experienced high conceptual learning gains, comparable to other active learning-based physics courses. Qualitatively, a substantial fraction of interviewed students reported an increased interest in physics relative to the beginning of the semester. Furthermore, more than half of students self-reported that they could now relate physics topics to their majors and future careers, with interviewed subjects demonstrating a high level of ability to come up with examples of how physics affects living organisms and how it helped them to better understand content presented in courses in their major.

  6. Academic Performance in Introductory Accounting: Do Learning Styles Matter?

    Science.gov (United States)

    Tan, Lin Mei; Laswad, Fawzi

    2015-01-01

    This study examines the impact of learning styles on academic performance using major assessment methods (examinations and assignments including multiple-choice and constructed response questions (CRQs)) in an introductory accounting course. Students' learning styles were assessed using Kolb's Learning Style Inventory Version 3.1. The results…

  7. Designing flexible instructional space for teaching introductory physics with emphasis on inquiry and collaborative active learning

    Science.gov (United States)

    Bykov, Tikhon

    2010-03-01

    In recent years McMurry University's introductory physics curriculum has gone through a series of significant changes to achieve better integration of traditional course components (lecture/lab/discussion) by means of instructional design and technology. A system of flexible curriculum modules with emphasis on inquiry-based teaching and collaborative active learning has been introduced. To unify module elements, a technology suite has been used that consists of Tablet PC's and software applications including Physlets, tablet-adapted personal response system, PASCO data acquisition systems, and MS One-note collaborative writing software. Adoption of the new teaching model resulted in reevaluation of existing instructional spaces. The new teaching space will be created during the renovation of the McMurry Science Building. This space will allow for easy transitions between lecture and laboratory modes. Movable partitions will be used to accommodate student groups of different sizes. The space will be supportive of small peer-group activities with easy-to-reconfigure furniture, multiple white and black board surfaces and multiple projection screens. The new space will be highly flexible to account for different teaching functions, different teaching modes and learning styles.

  8. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    Science.gov (United States)

    Li, Jing; Singh, Chandralekha

    2017-03-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper-pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  9. Developing and validating a conceptual survey to assess introductory physics students’ understanding of magnetism

    International Nuclear Information System (INIS)

    Li, Jing; Singh, Chandralekha

    2017-01-01

    Development of validated physics surveys on various topics is important for investigating the extent to which students master those concepts after traditional instruction and for assessing innovative curricula and pedagogies that can improve student understanding significantly. Here, we discuss the development and validation of a conceptual multiple-choice survey related to magnetism suitable for introductory physics courses. The survey was developed taking into account common students’ difficulties with magnetism concepts covered in introductory physics courses found in our investigation and the incorrect choices to the multiple-choice questions were designed based upon those common student difficulties. After the development and validation of the survey, it was administered to introductory physics students in various classes in paper–pencil format before and after traditional lecture-based instruction in relevant concepts. We compared the performance of students on the survey in the algebra-based and calculus-based introductory physics courses before and after traditional lecture-based instruction in relevant magnetism concepts. We discuss the common difficulties of introductory physics students with magnetism concepts we found via the survey. We also administered the survey to upper-level undergraduates majoring in physics and PhD students to benchmark the survey and compared their performance with those of traditionally taught introductory physics students for whom the survey is intended. A comparison with the base line data on the validated magnetism survey from traditionally taught introductory physics courses and upper-level undergraduate and PhD students discussed in this paper can help instructors assess the effectiveness of curricula and pedagogies which is especially designed to help students integrate conceptual and quantitative understanding and develop a good grasp of the concepts. In particular, if introductory physics students’ average

  10. Personality types and student performance in an introductory physics course

    Science.gov (United States)

    Harlow, Jason J. B.; Harrison, David M.; Justason, Michael; Meyertholen, Andrew; Wilson, Brian

    2017-12-01

    We measured the personality type of the students in a large introductory physics course of mostly life science students using the True Colors instrument. We found large correlations of personality type with performance on the precourse Force Concept Inventory (FCI), both term tests, the postcourse FCI, and the final examination. We also saw correlations with the normalized gain on the FCI. The personality profile of the students in this course is very different from the profile of the physics faculty and graduate students, and also very different from the profile of students taking the introductory physics course intended for physics majors and specialists.

  11. Effect of scaffolding on helping introductory physics students solve quantitative problems involving strong alternative conceptions

    Science.gov (United States)

    Lin, Shih-Yin; Singh, Chandralekha

    2015-12-01

    It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong alternative conceptions correctly, appropriate scaffolding support can be helpful. The goal of this study is to examine how different scaffolding supports involving analogical problem-solving influence introductory physics students' performance on a target quantitative problem in a situation where many students' solution process is derailed due to alternative conceptions. Three different scaffolding supports were designed and implemented in calculus-based and algebra-based introductory physics courses involving 410 students to evaluate the level of scaffolding needed to help students learn from an analogical problem that is similar in the underlying principles involved but for which the problem-solving process is not derailed by alternative conceptions. We found that for the quantitative problem involving strong alternative conceptions, simply guiding students to work through the solution of the analogical problem first was not enough to help most students discern the similarity between the two problems. However, if additional scaffolding supports that directly helped students examine and repair their knowledge elements involving alternative conceptions were provided, e.g., by guiding students to contemplate related issues and asking them to solve the targeted problem on their own first before learning from the analogical problem provided, students were more likely to discern the underlying similarities between the problems and avoid getting derailed by alternative conceptions when solving the targeted problem. We also found that some scaffolding supports were more effective in the calculus-based course than in the algebra

  12. First order error corrections in common introductory physics experiments

    Science.gov (United States)

    Beckey, Jacob; Baker, Andrew; Aravind, Vasudeva; Clarion Team

    As a part of introductory physics courses, students perform different standard lab experiments. Almost all of these experiments are prone to errors owing to factors like friction, misalignment of equipment, air drag, etc. Usually these types of errors are ignored by students and not much thought is paid to the source of these errors. However, paying attention to these factors that give rise to errors help students make better physics models and understand physical phenomena behind experiments in more detail. In this work, we explore common causes of errors in introductory physics experiment and suggest changes that will mitigate the errors, or suggest models that take the sources of these errors into consideration. This work helps students build better and refined physical models and understand physics concepts in greater detail. We thank Clarion University undergraduate student grant for financial support involving this project.

  13. A guided problem solving approach for teaching quantum physics in secondary school and physics introductory courses

    Directory of Open Access Journals (Sweden)

    Francisco Savall Alemany

    2017-01-01

    Full Text Available The effectiveness of the problem based teaching on the science learning has been highlighted by the didactic research. This teaching model is characterized by organizing the units around problems and by proposing a research plan to find a solution which requires concepts and models to be introduced in a functional way, as possible solutions to the problem. In this article we present a problem based unit for teaching quantum physics  in  introductory  physics  courses  and  we  analyze  in  detail  the  teaching  strategy  that  we  follow  to build a model to explain the emission and absorption of radiation.

  14. Social network analysis of a project-based introductory physics course

    Science.gov (United States)

    Oakley, Christopher

    2016-03-01

    Research suggests that students benefit from peer interaction and active engagement in the classroom. The quality, nature, effect of these interactions is currently being explored by Physics Education Researchers. Spelman College offers an introductory physics sequence that addresses content and research skills by engaging students in open-ended research projects, a form of Project-Based Learning. Students have been surveyed at regular intervals during the second semester of trigonometry-based course to determine the frequency of interactions in and out of class. These interactions can be with current or past students, tutors, and instructors. This line of inquiry focuses on metrics of Social Network analysis, such as centrality of participants as well as segmentation of groups. Further research will refine and highlight deeper questions regarding student performance in this pedagogy and course sequence.

  15. Transversality of Electromagnetic Waves in the Calculus--Based Introductory Physics Course

    Science.gov (United States)

    Burko, Lior M.

    2009-05-01

    Introductory calculus--based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation), and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes. We have successfully integrated this approach in the calculus--based introductory physics course at the University of Alabama in Huntsville.

  16. Consideration of Learning Orientations as an Application of Achievement Goals in Evaluating Life Science Majors in Introductory Physics

    Science.gov (United States)

    Mason, Andrew J.; Bertram, Charles A.

    2018-01-01

    When considering performing an Introductory Physics for Life Sciences course transformation for one's own institution, life science majors' achievement goals are a necessary consideration to ensure the pedagogical transformation will be effective. However, achievement goals are rarely an explicit consideration in physics education research topics…

  17. Making Introductory Quantum Physics Understandable and Interesting

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 1. Making Introductory Quantum Physics Understandable and Interesting. Ranjana Y Abhang. Classroom Volume 10 Issue 1 January 2005 pp 63-73. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Costs of success: Financial implications of implementation of active learning in introductory physics courses for students and administrators

    Science.gov (United States)

    Brewe, Eric; Dou, Remy; Shand, Robert

    2018-02-01

    Although active learning is supported by strong evidence of efficacy in undergraduate science instruction, institutions of higher education have yet to embrace comprehensive change. Costs of transforming instruction are regularly cited as a key factor in not adopting active-learning instructional practices. Some cite that alternative methods to stadium-style, lecture-based education are not financially viable to an academic department. This paper examines that argument by presenting an ingredients approach to estimating costs of two instructional methods used in introductory university physics courses at a large public U.S. university. We use a metric common in educational economics, cost effectiveness (CE), which is the total cost per student passing the class. We then compare the CE of traditional, passive-learning lecture courses to those of a well-studied, active-learning curriculum (Modeling Instruction) as a way of evaluating the claim that active learning is cost prohibitive. Our findings are that the Modeling Instruction approach has a higher cost per passing student (MI = 1 ,030 /passing student vs Trad = 790 /passing student). These results are discussed from perspectives of university administrators, students, and taxpayers. We consider how MI would need to adapt in order to make the benefits of active learning (particularly higher pass rates and gains on multiple measured student outcomes) available in a cost-neutral setting. This approach aims to provide a methodology to better inform decision makers balancing financial, personnel, and curricular considerations.

  19. Costs of success: Financial implications of implementation of active learning in introductory physics courses for students and administrators

    Directory of Open Access Journals (Sweden)

    Eric Brewe

    2018-02-01

    Full Text Available Although active learning is supported by strong evidence of efficacy in undergraduate science instruction, institutions of higher education have yet to embrace comprehensive change. Costs of transforming instruction are regularly cited as a key factor in not adopting active-learning instructional practices. Some cite that alternative methods to stadium-style, lecture-based education are not financially viable to an academic department. This paper examines that argument by presenting an ingredients approach to estimating costs of two instructional methods used in introductory university physics courses at a large public U.S. university. We use a metric common in educational economics, cost effectiveness (CE, which is the total cost per student passing the class. We then compare the CE of traditional, passive-learning lecture courses to those of a well-studied, active-learning curriculum (Modeling Instruction as a way of evaluating the claim that active learning is cost prohibitive. Our findings are that the Modeling Instruction approach has a higher cost per passing student (MI=$1,030/passing student vs Trad=$790/passing student. These results are discussed from perspectives of university administrators, students, and taxpayers. We consider how MI would need to adapt in order to make the benefits of active learning (particularly higher pass rates and gains on multiple measured student outcomes available in a cost-neutral setting. This approach aims to provide a methodology to better inform decision makers balancing financial, personnel, and curricular considerations.

  20. A 21st century perspective as a primer to introductory physics

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, Lorenzo J, E-mail: ljc@physics.utoledo.edu [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

    2011-09-15

    Much effort over many years has been devoted to the reform of the teaching of physics. This has led to many new and imaginative approaches in the content and delivery of material. Great strides have been made in the delivery, and the content has been continually supplemented. However, attempts to modernize the basic structure of the presentation have faced resistance, and the majority of introductory physics textbooks in wide adoption today have a general structure that has changed little in over 60 years. Thus, in comparison to biology, chemistry, geology, etc, physics is unique in that its introductory course is not a survey of the current status of the field. In an attempt to circumvent this problem in a tractable way, we have developed a qualitative front-end course designed to create a 21st century perspective that can be embedded into the beginning of a standard introductory physics sequence.

  1. A 21st century perspective as a primer to introductory physics

    International Nuclear Information System (INIS)

    Curtis, Lorenzo J

    2011-01-01

    Much effort over many years has been devoted to the reform of the teaching of physics. This has led to many new and imaginative approaches in the content and delivery of material. Great strides have been made in the delivery, and the content has been continually supplemented. However, attempts to modernize the basic structure of the presentation have faced resistance, and the majority of introductory physics textbooks in wide adoption today have a general structure that has changed little in over 60 years. Thus, in comparison to biology, chemistry, geology, etc, physics is unique in that its introductory course is not a survey of the current status of the field. In an attempt to circumvent this problem in a tractable way, we have developed a qualitative front-end course designed to create a 21st century perspective that can be embedded into the beginning of a standard introductory physics sequence.

  2. Do Active Learning Approaches in Recitation Sections Improve Student Performance? A Case Study from an Introductory Mechanics Course

    Science.gov (United States)

    Tobin, R. G.

    2018-01-01

    Abundant research leaves little question that pedagogical approaches involving active student engagement with the material, and opportunities for student-to-student discussions, lead to much better learning outcomes than traditional instructor-led, expository instructional formats, in physics and in many other fields. In introductory college…

  3. Mediating relationship of differential products in understanding integration in introductory physics

    Science.gov (United States)

    Amos, Nathaniel; Heckler, Andrew F.

    2018-01-01

    In the context of introductory physics, we study student conceptual understanding of differentials, differential products, and integrals and possible pathways to understanding these quantities. We developed a multiple choice conceptual assessment employing a variety of physical contexts probing physical understanding of these three quantities and administered the instrument to over 1000 students in first and second semester introductory physics courses. Using a regression-based mediation analysis with conceptual understanding of integration as the dependent variable, we found evidence consistent with a simple mediation model: the relationship between differentials scores and integral scores may be mediated by the understanding of differential products. The indirect effect (a quantifiable metric of mediation) was estimated as a b =0.29 , 95% CI [0.25, 0.33] for N =1102 Physics 1 students, and a b =0.27 , 95% CI [0.14, 0.48] for N =65 Physics 2 students. We also find evidence that the physical context of the questions can be an important factor. These results imply that for introductory physics courses, instructional emphasis first on differentials then on differential products in a variety of contexts may in turn promote better integral understanding.

  4. Preliminary investigation of instructor effects on gender gap in introductory physics

    Directory of Open Access Journals (Sweden)

    Kimberley Kreutzer1

    2012-05-01

    Full Text Available Gender differences in student learning in the introductory, calculus-based electricity and magnetism course were assessed by administering the Conceptual Survey of Electricity and Magnetism pre- and postcourse. As expected, male students outgained females in traditionally taught sections as well as sections that incorporated interactive engagement (IE techniques. In two of the IE course sections, however, the gains of female students were comparable to those of male students. Classroom observations of the course sections involved were made over an extended period. In this paper, we characterize the observed instructor-student interactions using a framework from educational psychology referred to as wise schooling. Results suggest that instructor practices affect differential learning, and that wise schooling techniques may constitute an effective strategy for promoting gender equity in the physics classroom.

  5. Preliminary investigation of instructor effects on gender gap in introductory physics

    Science.gov (United States)

    Kreutzer, Kimberley; Boudreaux, Andrew

    2012-06-01

    Gender differences in student learning in the introductory, calculus-based electricity and magnetism course were assessed by administering the Conceptual Survey of Electricity and Magnetism pre- and postcourse. As expected, male students outgained females in traditionally taught sections as well as sections that incorporated interactive engagement (IE) techniques. In two of the IE course sections, however, the gains of female students were comparable to those of male students. Classroom observations of the course sections involved were made over an extended period. In this paper, we characterize the observed instructor-student interactions using a framework from educational psychology referred to as wise schooling. Results suggest that instructor practices affect differential learning, and that wise schooling techniques may constitute an effective strategy for promoting gender equity in the physics classroom.

  6. Gender-based performance differences in an introductory physics course

    Science.gov (United States)

    McKinnon, Mark Lee

    Cognitive research has indicated that the difference between males and females is negligible. Paradoxically, in traditionally-taught college level introductory physics courses, males have outperformed females. UC Davis' Physics 7A (the first class of a three-quarter Introduction to Physics sequence for Life-Science students), however, counters this trend since females perform similarly to males. The gender-based performance difference within the other two quarters (Physics 7B & 7C) of the radically restructured, active-learning physics sequence still echo the traditionally-taught courses. In one experiment, I modified the laboratory activity instructions of the Physics 7C course to encourage further group interaction. These modifications did not affect the gender-based performance difference. In a later experiment, I compared students' performance on different forms of assessment for certain physics concepts during the Physics 7C course. Over 500 students took weekly quizzes at different times. The students were given different quiz questions on the same topics. Several quiz questions seemed to favor males while others were more gender equitable. I highlighted comparisons between a few pairs of questions that assessed students' understanding of the same physical concept. Males tended to perform better in responding to questions that seemed to require spatial visualization. Questions that required greater understanding of the physical concept or scientific model were more gender neutral.

  7. Holistic Approach to Learning and Teaching Introductory Object-Oriented Programming

    Science.gov (United States)

    Thota, Neena; Whitfield, Richard

    2010-01-01

    This article describes a holistic approach to designing an introductory, object-oriented programming course. The design is grounded in constructivism and pedagogy of phenomenography. We use constructive alignment as the framework to align assessments, learning, and teaching with planned learning outcomes. We plan learning and teaching activities,…

  8. Comparing the Attitudes of Pre-Health Professional and Engineering Students in Introductory Physics Courses

    Science.gov (United States)

    McKinney, Meghan

    2015-04-01

    This talk will discuss using the Colorado Learning Attitudes about Science Survey (CLASS) to compare student attitudes towards the study of physics of two different groups. Northern Illinois University has two levels of introductory mechanics courses, one geared towards biology majors and pre-health professionals, and one for engineering and physics majors. The course for pre-health professionals is an algebra based course, while the course for engineering and physics majors is a calculus based course. We've adapted the CLASS into a twenty question survey that measures student attitudes towards the practice of and conceptions about physics. The survey is administered as a pre and post assessment to look at student attitudes before and after their first course in physics.

  9. Analysis of the Impact of Introductory Physics on Engineering Students at Texas A&M University

    Science.gov (United States)

    Perry, Jonathan; Bassichis, William

    Introductory physics forms a major part of the foundational knowledge of engineering majors, independent of discipline and institution. While the content of introductory physics courses is consistent from institution to institution, the manner in which it is taught can vary greatly due to professor, textbook, instructional method, and overall course design. This work attempts to examine variations in student success, as measured by overall academic performance in an engineering major, and matriculation rates, based on the type of introductory physics a student took while enrolled in an engineering degree at Texas A&M University. Specific options for introductory physics at Texas A&M University include two calculus based physics courses, one traditional (UP), and one more mathematically rigorous (DP), transfer credit, and high school (AP or dual) credit. In order to examine the impact of introductory physics on a student's degree progression, data mining analyses are performed on a data set of relatively comprehensive academic records for all students enrolled as an engineering major for a minimum of one academic term. Student data has been collected for years of entering freshman beginning in 1990 and ending in 2010. Correlations will be examined between freshman level courses, including introductory physics, and follow on engineering courses, matriculation rates, and time to graduation.

  10. Case of Two Electrostatics Problems: Can Providing a Diagram Adversely Impact Introductory Physics Students' Problem Solving Performance?

    Science.gov (United States)

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an…

  11. Blended Learning Versus Traditional Lecture in Introductory Nursing Pathophysiology Courses.

    Science.gov (United States)

    Blissitt, Andrea Marie

    2016-04-01

    Currently, many undergraduate nursing courses use blended-learning course formats with success; however, little evidence exists that supports the use of blended formats in introductory pathophysiology courses. The purpose of this study was to compare the scores on pre- and posttests and course satisfaction between traditional and blended course formats in an introductory nursing pathophysiology course. This study used a quantitative, quasi-experimental, nonrandomized control group, pretest-posttest design. Analysis of covariance compared pre- and posttest scores, and a t test for independent samples compared students' reported course satisfaction of the traditional and blended course formats. Results indicated that the differences in posttest scores were not statistically significant between groups. Students in the traditional group reported statistically significantly higher satisfaction ratings than students in the blended group. The results of this study support the need for further research of using blended learning in introductory pathophysiology courses in undergraduate baccalaureate nursing programs. Further investigation into how satisfaction is affected by course formats is needed. Copyright 2016, SLACK Incorporated.

  12. Scaffolding vector representations for student learning inside a physics game

    Science.gov (United States)

    D'Angelo, Cynthia

    Vectors and vector addition are difficult concepts for many introductory physics students and traditional instruction does not usually sufficiently address these difficulties. Vectors play a major role in most topics in introductory physics and without a complete understanding of them many students are unable to make sense of the physics topics covered in their classes. Video games present a unique opportunity to help students develop an intuitive understanding of motion, forces, and vectors while immersed in an enjoyable and interactive environment. This study examines two dimensions of design decisions to help students learn while playing a physics-based game. The representational complexity dimension looked at two ways of presenting dynamic information about the velocity of the game object on the screen. The scaffolding context dimension looked at two different contexts for presenting vector addition problems that were related to the game. While all students made significant learning games from the pre to the post test, there were virtually no differences between students along the representational complexity dimension and small differences between students along the scaffolding context dimension. A context that directly connects to students' game playing experience was in most cases more productive to learning than an abstract context.

  13. Implementing Inclusive Design for Learning in an introductory geology laboratory

    Science.gov (United States)

    Robert, G.; Merriman, J. D.; Ceylan, G. M.

    2013-12-01

    As an expansion of universal design for learning, IDL provides a framework for opening up and adapting classroom interaction systems, minimizing barriers through promoting perception, engagement, expression, and accommodation for diverse learners. We implemented an introductory-level laboratory for communicating the concept of magma viscosity using the guidelines and principles of IDL. We developed the lab as a mini-implementation project for an IDL course offered by the University of Missouri (MU) Graduate School. The laboratory was subsequently taught during the summer session of Principles of Geology in our Department of Geological Sciences. Traditional geology laboratories rely heavily on visual aids, either physical (rocks and minerals) or representative (idealized cartoons of processes, videos), with very few alternative representations and descriptions made available to the students. Our main focus for this new lab was to diversify the means of representation available to the students (and instructor) to make the lab as equitable and flexible as possible. We considered potential barriers to learning arising from the physical lab environment, from the means of representation, engagement and expression, and tried to minimize them upfront. We centred the laboratory on the link between volcano shape and viscosity as an applied way to convey that viscosity is the resistance to flow. The learning goal was to have the students observe that more viscous eruptives resulted in steeper-sided volcanoes through experimentation. Students built their own volcanoes by erupting lava (foods of various viscosities) onto the Earth's surface (a piece of sturdy cardboard with a hole for the 'vent') through a conduit (pastry bag). Such a hands on lab exercise allows students to gain a tactile and visual, i.e., physical representation of an abstract concept. This specific exercise was supported by other, more traditional, means of representation (e.g., lecture, videos, cartoons, 3D

  14. The Physics Learning Center at the University of Wisconsin-Madison

    Science.gov (United States)

    Nossal, S. M.; Watson, L. E.; Hooper, E.; Huesmann, A.; Schenker, B.; Timbie, P.; Rzchowski, M.

    2013-03-01

    The Physics Learning Center at the University of Wisconsin-Madison provides academic support and small-group supplemental instruction to students studying introductory algebra-based and calculus-based physics. These classes are gateway courses for majors in the biological and physical sciences, pre-health fields, engineering, and secondary science education. The Physics Learning Center offers supplemental instruction groups twice weekly where students can discuss concepts and practice with problem-solving techniques. The Center also provides students with access on-line resources that stress conceptual understanding, and to exam review sessions. Participants in our program include returning adults, people from historically underrepresented racial/ethnic groups, students from families in lower-income circumstances, students in the first generation of their family to attend college, transfer students, veterans, and people with disabilities, all of whom might feel isolated in their large introductory course and thus have a more difficult time finding study partners. We also work with students potentially at-risk for having academic difficulty (due to factors academic probation, weak math background, low first exam score, or no high school physics). A second mission of the Physics Learning Center is to provide teacher training and leadership experience for undergraduate Peer Mentor Tutors. These Peer Tutors lead the majority of the weekly group sessions in close supervision by PLC staff members. We will describe our work to support students in the Physics Learning Center, including our teacher-training program for our undergraduate Peer Mentor Tutors

  15. Automated analysis of short responses in an interactive synthetic tutoring system for introductory physics

    Science.gov (United States)

    Nakamura, Christopher M.; Murphy, Sytil K.; Christel, Michael G.; Stevens, Scott M.; Zollman, Dean A.

    2016-06-01

    Computer-automated assessment of students' text responses to short-answer questions represents an important enabling technology for online learning environments. We have investigated the use of machine learning to train computer models capable of automatically classifying short-answer responses and assessed the results. Our investigations are part of a project to develop and test an interactive learning environment designed to help students learn introductory physics concepts. The system is designed around an interactive video tutoring interface. We have analyzed 9 with about 150 responses or less. We observe for 4 of the 9 automated assessment with interrater agreement of 70% or better with the human rater. This level of agreement may represent a baseline for practical utility in instruction and indicates that the method warrants further investigation for use in this type of application. Our results also suggest strategies that may be useful for writing activities and questions that are more appropriate for automated assessment. These strategies include building activities that have relatively few conceptually distinct ways of perceiving the physical behavior of relatively few physical objects. Further success in this direction may allow us to promote interactivity and better provide feedback in online learning systems. These capabilities could enable our system to function more like a real tutor.

  16. Automated analysis of short responses in an interactive synthetic tutoring system for introductory physics

    Directory of Open Access Journals (Sweden)

    Christopher M. Nakamura

    2016-03-01

    Full Text Available Computer-automated assessment of students’ text responses to short-answer questions represents an important enabling technology for online learning environments. We have investigated the use of machine learning to train computer models capable of automatically classifying short-answer responses and assessed the results. Our investigations are part of a project to develop and test an interactive learning environment designed to help students learn introductory physics concepts. The system is designed around an interactive video tutoring interface. We have analyzed 9 with about 150 responses or less. We observe for 4 of the 9 automated assessment with interrater agreement of 70% or better with the human rater. This level of agreement may represent a baseline for practical utility in instruction and indicates that the method warrants further investigation for use in this type of application. Our results also suggest strategies that may be useful for writing activities and questions that are more appropriate for automated assessment. These strategies include building activities that have relatively few conceptually distinct ways of perceiving the physical behavior of relatively few physical objects. Further success in this direction may allow us to promote interactivity and better provide feedback in online learning systems. These capabilities could enable our system to function more like a real tutor.

  17. Exploring student learning profiles in algebra-based studio physics: A person-centered approach

    Science.gov (United States)

    Pond, Jarrad W. T.; Chini, Jacquelyn J.

    2017-06-01

    In this study, we explore the strategic self-regulatory and motivational characteristics of students in studio-mode physics courses at three universities with varying student populations and varying levels of success in their studio-mode courses. We survey students using questions compiled from several existing questionnaires designed to measure students' study strategies, attitudes toward and motivations for learning physics, organization of scientific knowledge, experiences outside the classroom, and demographics. Using a person-centered approach, we utilize cluster analysis methods to group students into learning profiles based on their individual responses to better understand the strategies and motives of algebra-based studio physics students. Previous studies have identified five distinct learning profiles across several student populations using similar methods. We present results from first-semester and second-semester studio-mode introductory physics courses across three universities. We identify these five distinct learning profiles found in previous studies to be present within our population of introductory physics students. In addition, we investigate interactions between these learning profiles and student demographics. We find significant interactions between a student's learning profile and their experience with high school physics, major, gender, grade expectation, and institution. Ultimately, we aim to use this method of analysis to take the characteristics of students into account in the investigation of successful strategies for using studio methods of physics instruction within and across institutions.

  18. An Analysis of Learning Objectives and Content Coverage in Introductory Psychology Syllabi

    Science.gov (United States)

    Homa, Natalie; Hackathorn, Jana; Brown, Carrie M.; Garczynski, Amy; Solomon, Erin D.; Tennial, Rachel; Sanborn, Ursula A.; Gurung, Regan A. R.

    2013-01-01

    Introductory psychology is one of the most popular undergraduate courses and often serves as the gateway to choosing psychology as an academic major. However, little research has examined the typical structure of introductory psychology courses. The current study examined student learning objectives (SLOs) and course content in introductory…

  19. Interactive video tutorials for enhancing problem solving, reasoning, and meta-cognitive skills of introductory physics students

    OpenAIRE

    Singh, Chandralekha

    2016-01-01

    We discuss the development of interactive video tutorial-based problems to help introductory physics students learn effective problem solving heuristics. The video tutorials present problem solving strategies using concrete examples in an interactive environment. They force students to follow a systematic approach to problem solving and students are required to solve sub-problems (research-guided multiple choice questions) to show their level of understanding at every stage of prob lem solvin...

  20. Building Concepts through Writing-to-Learn in College Physics Classrooms

    Science.gov (United States)

    Bullock, Shawn

    2006-01-01

    This paper draws on an action research inquiry into my teaching practice featuring careful analysis of the experiences of some of the students in my college-level introductory college physics course. Specifically, the research describes and interprets the role of Writing-to-Learn pedagogies in a physics classroom with a view to exploring how such…

  1. Deep-Elaborative Learning of Introductory Management Accounting for Business Students

    Science.gov (United States)

    Choo, Freddie; Tan, Kim B.

    2005-01-01

    Research by Choo and Tan (1990; 1995) suggests that accounting students, who engage in deep-elaborative learning, have a better understanding of the course materials. The purposes of this paper are: (1) to describe a deep-elaborative instructional approach (hereafter DEIA) that promotes deep-elaborative learning of introductory management…

  2. Introductory Physics Gender Gaps: Pre- and Post-Studio Transition

    Science.gov (United States)

    Kohl, Patrick B.; Kuo, H. Vincent

    2009-11-01

    Prior work has characterized the gender gaps present in college-level introductory physics courses. Such work has also shown that research-based interactive engagement techniques can reduce or eliminate these gender gaps. In this paper, we study the gender gaps (and lack thereof) in the introductory calculus-based electricity and magnetism course at the Colorado School of Mines. We present eight semesters' worth of data, totaling 2577 students, with four semesters preceding a transition to Studio physics, and four following. We examine gender gaps in course grades, DFW (D grade, fail, or withdrawal) rates, and normalized gains on the Conceptual Survey of Electricity and Magnetism (CSEM), and consider factors such as student ACT scores and grades in prior math classes. We find little or no gap in male/female course grades and DFW rates, but substantial gaps in CSEM gains that are reduced somewhat by the transition to Studio physics.

  3. Contrasting Grading Approaches in Introductory Physics and Quantum Mechanics: The Case of Graduate Teaching Assistants

    Science.gov (United States)

    Marshman, Emily; Sayer, Ryan; Henderson, Charles; Singh, Chandralekha

    2017-01-01

    At large research universities, physics graduate teaching assistants (TAs) are often responsible for grading in courses at all levels. However, few studies have focused on TAs' grading practices in introductory and advanced physics courses. This study was designed to investigate whether physics graduate TAs grade students in introductory physics…

  4. Black Holes and Pulsars in the Introductory Physics Course

    Science.gov (United States)

    Orear, Jay; Salpeter, E. E.

    1973-01-01

    Discusses the phenomenon of formation of white dwarfs, neutron stars, and black holes from dying stars for the purpose of providing college teachers with materials usable in the introductory physics course. (CC)

  5. Using a dual safeguard web-based interactive teaching approach in an introductory physics class

    Directory of Open Access Journals (Sweden)

    Lie-Ming Li

    2015-03-01

    Full Text Available We modified the Just-in-Time Teaching approach and developed a dual safeguard web-based interactive (DGWI teaching system for an introductory physics course. The system consists of four instructional components that improve student learning by including warm-up assignments and online homework. Student and instructor activities involve activities both in the classroom and on a designated web site. An experimental study with control groups evaluated the effectiveness of the DGWI teaching method. The results indicate that the DGWI method is an effective way to improve students’ understanding of physics concepts, develop students’ problem-solving abilities through instructor-student interactions, and identify students’ misconceptions through a safeguard framework based on questions that satisfy teaching requirements and cover all of the course material. The empirical study and a follow-up survey found that the DGWI method increased student-teacher interaction and improved student learning outcomes.

  6. Active Learning in a Large General Physics Classroom.

    Science.gov (United States)

    Trousil, Rebecca

    2008-04-01

    In 2004, we launched a new calculus-based, introductory physics sequence at Washington University. Designed as an alternative to our traditional lecture-based sequence, the primary objectives for this new course were to actively engage students in the learning process, to significantly strengthen students' conceptual reasoning skills, to help students develop higher level quantitative problem solving skills necessary for analyzing ``real world'' problems, and to integrate modern physics into the curriculum. This talk will describe our approach, using The Six Ideas That Shaped Physics text by Thomas Moore, to creating an active learning environment in large classes as well as share our perspective on key elements for success and challenges that we face in the large class environment.

  7. Illustrations and supporting texts for sound standing waves of air columns in pipes in introductory physics textbooks

    Directory of Open Access Journals (Sweden)

    Liang Zeng

    2014-07-01

    Full Text Available In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on the construct of meaningful learning from cognitive psychology and semiotics, a quasiexperimental study was conducted to investigate the comparative effectiveness of two alternative approaches to student understanding: a traditional textbook illustration approach versus a newly designed air molecule motion illustration approach. Thirty volunteer students from introductory physics classes were randomly assigned to two groups of 15 each. Both groups were administered a presurvey. Then, group A read the air molecule motion illustration handout, and group B read a traditional textbook illustration handout; both groups were administered postsurveys. Subsequently, the procedure was reversed: group B read the air molecule motion illustration handout and group A read the traditional textbook illustration handout. This was followed by a second postsurvey along with an exit research questionnaire. The study found that the majority of students experienced meaningful learning and stated that they understood sound standing wave phenomena significantly better using the air molecule motion illustration approach. This finding provides a method for physics education researchers to design illustrations for abstract sound standing wave concepts, for publishers to improve their illustrations with supporting text, and for instructors to facilitate deeper learning in their students on sound standing waves.

  8. Assessing the flexibility of research-based instructional strategies: Implementing tutorials in introductory physics in the lecture environment

    Science.gov (United States)

    Kryjevskaia, Mila; Boudreaux, Andrew; Heins, Dustin

    2014-03-01

    Materials from Tutorials in Introductory Physics, originally designed and implemented by the Physics Education Group at the University of Washington, were used in modified form as interactive lectures under conditions significantly different from those suggested by the curriculum developers. Student learning was assessed using tasks drawn from the physics education research literature. Use of tutorials in the interactive lecture format yielded gains in student understanding comparable to those obtained through the canonical tutorial implementation at the University of Washington, suggesting that student engagement with the intellectual steps laid out in the tutorials, rather than the specific strategies used in facilitating such engagement, plays the central role in promoting student learning. We describe the implementation details and assessment of student learning for two different tutorials: one focused on mechanical waves, used at North Dakota State University, and one on Galilean relativity, used at Western Washington University. Also discussed are factors that may limit the generalizability of the results.

  9. Persistence of physics and engineering students via peer mentoring, active learning, and intentional advising

    Science.gov (United States)

    McCavit, K.; Zellner, N. E. B.

    2016-11-01

    Albion College, a private, undergraduate-only, liberal arts college in Michigan, USA, has developed and implemented a low-cost peer-mentoring programme that blends personal and academic support to help students achieve academic success in the introductory courses required for the Physics Major or the Dual-Degree Program in Engineering. This enhanced mentoring programme provides much-needed assistance for undergraduate students to master introductory physics and mathematics coursework, to normalise the struggle of learning hard material, and to accept their identity as physics or engineering students (among other goals). Importantly, this programme has increased retention among entering science, technology, engineering and mathematics students at Albion College as they move through the introductory classes, as shown by a 20% increase in retention from first-semester to third-semester physics courses compared to years when this programme was not in place.

  10. Themes of nanoscience for the introductory physics course

    International Nuclear Information System (INIS)

    Planinsic, Gorazd; Lindell, Anssi; Remskar, Maja

    2009-01-01

    We present three experimental themes and one discussion theme that proved to be suitable for introducing nanoscience through topics that can be integrated into the existing introductory physics or teacher training courses. The experimental themes include two teaching models of an atomic force microscope (AFM) and an experiment with an elastic optical grating. They are all based on simple experiments that give also quantitative results and can be explained using basic physics theory.

  11. Themes of nanoscience for the introductory physics course

    Energy Technology Data Exchange (ETDEWEB)

    Planinsic, Gorazd [Faculty for Mathematics and Physics, University of Ljubljana (Slovenia); Lindell, Anssi [Department of Teacher Education, University of Jyvaskyla (Finland); Remskar, Maja [Josef Stefan Institute, Ljubljana (Slovenia)

    2009-07-15

    We present three experimental themes and one discussion theme that proved to be suitable for introducing nanoscience through topics that can be integrated into the existing introductory physics or teacher training courses. The experimental themes include two teaching models of an atomic force microscope (AFM) and an experiment with an elastic optical grating. They are all based on simple experiments that give also quantitative results and can be explained using basic physics theory.

  12. Mediating Relationship of Differential Products in Understanding Integration in Introductory Physics

    Science.gov (United States)

    Amos, Nathaniel; Heckler, Andrew F.

    2018-01-01

    In the context of introductory physics, we study student conceptual understanding of differentials, differential products, and integrals and possible pathways to understanding these quantities. We developed a multiple choice conceptual assessment employing a variety of physical contexts probing physical understanding of these three quantities and…

  13. Peer Learning as a Tool to Strengthen Math Skills in Introductory Chemistry Laboratories

    Science.gov (United States)

    Srougi, Melissa C.; Miller, Heather B.

    2018-01-01

    Math skills vary greatly among students enrolled in introductory chemistry courses. Students with weak math skills (algebra and below) tend to perform poorly in introductory chemistry courses, which is correlated with increased attrition rates. Previous research has shown that retention of main ideas in a peer learning environment is greater when…

  14. Writing to Learn and Learning to Write across the Disciplines: Peer-to-Peer Writing in Introductory-Level MOOCs

    Directory of Open Access Journals (Sweden)

    Denise K. Comer

    2014-11-01

    Full Text Available This study aimed to evaluate how peer-to-peer interactions through writing impact student learning in introductory-level massive open online courses (MOOCs across disciplines. This article presents the results of a qualitative coding analysis of peer-to-peer interactions in two introductory level MOOCs: English Composition I: Achieving Expertise and Introduction to Chemistry. Results indicate that peer-to-peer interactions in writing through the forums and through peer assessment enhance learner understanding, link to course learning objectives, and generally contribute positively to the learning environment. Moreover, because forum interactions and peer review occur in written form, our research contributes to open distance learning (ODL scholarship by highlighting the importance of writing to learn as a significant pedagogical practice that should be encouraged more in MOOCs across disciplines.

  15. Assessing Expertise in Introductory Physics Using Categorization Task

    Science.gov (United States)

    Mason, Andrew; Singh, Chandralekha

    2011-01-01

    The ability to categorize problems based upon underlying principles, rather than surface features or contexts, is considered one of several proxy predictors of expertise in problem solving. With inspiration from the classic study by Chi, Feltovich, and Glaser, we assess the distribution of expertise among introductory physics students by asking…

  16. Success in Introductory College Physics: The Role of High School Preparation.

    Science.gov (United States)

    Sadler, Philip M.; Tai, Robert H.

    2001-01-01

    Examines the extent to which a high school physics course prepares students for college physics success. In this study of 1,933 introductory college physics students, demographic and schooling factors account for a large fraction of the variation in college physics grades at 18 colleges and universities from around the nation. (Author/SAH)

  17. Transversality of electromagnetic waves in the calculus-based introductory physics course

    International Nuclear Information System (INIS)

    Burko, Lior M

    2008-01-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes

  18. Transversality of electromagnetic waves in the calculus-based introductory physics course

    Science.gov (United States)

    Burko, Lior M.

    2008-11-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by instructors of such courses. Here, we discuss two physical arguments (based on polarization experiments and on lack of monopole electromagnetic radiation) and the full argument for the transversality of (plane) electromagnetic waves based on the integral Maxwell equations. We also show, at a level appropriate for the introductory course, why the electric and magnetic fields in a wave are in phase and the relation of their magnitudes.

  19. Developing Web-oriented Homework System to Assess Students’ Introductory Physics Course Performance and Compare to Paper-based Peer Homework

    Directory of Open Access Journals (Sweden)

    Neset DEMIRCI

    2006-07-01

    Full Text Available The World Wide Web influences education and our lives in many ways. Nowadays, Web-based homework has been becoming widespread practice in physics courses and some other courses as well. Although are some disputes whether this is an encouraging or risky development for student learning, there is limited research assessing the pedagogical effect of changing the medium from written, hand-graded homework to online oriented, computer-graded homework. In this study, web-oriented homework system is developed to assess students’ introductory physics course performance. Later on, these results are compared with paper-based (peer homework performance for mid enrollment physics courses. One of two identical sections of introductory physics course students received paper-based, hand graded group homework while the other received the individual web-based homework. Then two groups’ on conceptual and problem-solving performance measures are compared. No significant differences were found in students’ Force Concept Inventory (FCI test scores; however, average homework performance scores were significant that could be attributed to the homework method used in favor of paper-based peer homework group.

  20. Assessing the impact of a tutorial intervention when teaching the ray model of light in introductory physics

    International Nuclear Information System (INIS)

    Kesonen, M H P; Asikainen, M A; Hirvonen, P E

    2013-01-01

    This paper presents a 90 min tutorial intervention which permits the use of the Tutorials in Introductory Physics curriculum in a conventional physics course. In addition, the paper describes the impact of the intervention on students' understanding of the ray model of light in the context of geometrical images. In 2011 and 2012 a total of 79 introductory students participated in the intervention, where they worked with the Light and Shadow tutorial after having received lecture-based instruction in a conventional physics course. The impact of the intervention on the students' learning was assessed by means of paper-and-pencil test questions at the beginning and end of the intervention. The results showed that the proportion of correct or nearly correct answers increased by 17 percentage points during the intervention. Thus, it can be claimed that the intervention was a useful supplement to a conventional physics course by helping students to improve their understanding of the ray model of light. In addition, the intervention may serve as an intermediate step towards adopting the tutorials, since it permits the curriculum of a conventional physics course to be tested without large changes being made to the course. This type of information is needed in support of institutional changes towards more research-based instructional practices. (paper)

  1. The Proposed Model of Collaborative Virtual Learning Environment for Introductory Programming Course

    Science.gov (United States)

    Othman, Mahfudzah; Othman, Muhaini

    2012-01-01

    This paper discusses the proposed model of the collaborative virtual learning system for the introductory computer programming course which uses one of the collaborative learning techniques known as the "Think-Pair-Share". The main objective of this study is to design a model for an online learning system that facilitates the…

  2. The Application of VARK Learning Styles in Introductory Level Economics Units

    Science.gov (United States)

    Wright, Sarah; Stokes, Anthony

    2015-01-01

    The issues of developing strategies and approaches to teaching introductory level economics courses at university have been long standing. With the development of economics learning standards in Australia, this is a time to consider teaching and learning approaches to engage students and develop skills in economics. This paper considers that to…

  3. Three pedagogical approaches to introductory physics labs and their effects on student learning outcomes

    Science.gov (United States)

    Chambers, Timothy

    This dissertation presents the results of an experiment that measured the learning outcomes associated with three different pedagogical approaches to introductory physics labs. These three pedagogical approaches presented students with the same apparatus and covered the same physics content, but used different lab manuals to guide students through distinct cognitive processes in conducting their laboratory investigations. We administered post-tests containing multiple-choice conceptual questions and free-response quantitative problems one week after students completed these laboratory investigations. In addition, we collected data from the laboratory practical exam taken by students at the end of the semester. Using these data sets, we compared the learning outcomes for the three curricula in three dimensions of ability: conceptual understanding, quantitative problem-solving skill, and laboratory skills. Our three pedagogical approaches are as follows. Guided labs lead students through their investigations via a combination of Socratic-style questioning and direct instruction, while students record their data and answers to written questions in the manual during the experiment. Traditional labs provide detailed written instructions, which students follow to complete the lab objectives. Open labs provide students with a set of apparatus and a question to be answered, and leave students to devise and execute an experiment to answer the question. In general, we find that students performing Guided labs perform better on some conceptual assessment items, and that students performing Open labs perform significantly better on experimental tasks. Combining a classical test theory analysis of post-test results with in-lab classroom observations allows us to identify individual components of the laboratory manuals and investigations that are likely to have influenced the observed differences in learning outcomes associated with the different pedagogical approaches. Due to

  4. Life science students' attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    Science.gov (United States)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-06-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students' skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students' attitudes toward and their interest in physics. Whereas the same students' attitudes declined during the standard first semester course, we found that students' attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students' interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  5. Life science students’ attitudes, interest, and performance in introductory physics for life sciences: An exploratory study

    Directory of Open Access Journals (Sweden)

    Catherine H. Crouch

    2018-03-01

    Full Text Available In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students’ attitudes, interest, and performance. The IPLS course studied was the second semester of introductory physics, following a standard first semester course, allowing the outcomes of the same students in a standard course and in an IPLS course to be compared. In the IPLS course, each physics topic was introduced and elaborated in the context of a life science example, and developing students’ skills in applying physics to life science situations was an explicitly stated course goal. Items from the Colorado Learning about Science Survey were used to assess change in students’ attitudes toward and their interest in physics. Whereas the same students’ attitudes declined during the standard first semester course, we found that students’ attitudes toward physics hold steady or improve in the IPLS course. In particular, students with low initial interest in physics displayed greater increases in both attitudes and interest during the IPLS course than in the preceding standard course. We also find that in the IPLS course, students’ interest in the life science examples is a better predictor of their performance than their pre-IPLS interest in physics. Our work suggests that the life science examples in the IPLS course can support the development of student interest in physics and positively influence their performance.

  6. Characterizing interactive engagement activities in a flipped introductory physics class

    Directory of Open Access Journals (Sweden)

    Anna K. Wood

    2016-06-01

    Full Text Available Interactive engagement activities are increasingly common in undergraduate physics teaching. As research efforts move beyond simply showing that interactive engagement pedagogies work towards developing an understanding of how they lead to improved learning outcomes, a detailed analysis of the way in which these activities are used in practice is needed. Our aim in this paper is to present a characterization of the type and duration of interactions, as experienced by students, that took place during two introductory physics courses (1A and 1B at a university in the United Kingdom. Through this work, a simple framework for analyzing lectures—the framework for interactive learning in lectures (FILL, which focuses on student interactions (with the lecturer, with each other, and with the material is proposed. The pedagogical approach is based on Peer Instruction (PI and both courses are taught by the same lecturer. We find lecture activities can be categorized into three types: interactive (25%, vicarious interactive (20% (involving questions to and from the lecturer, and noninteractive (55%. As expected, the majority of both interactive and vicarious interactive activities took place during PI. However, the way that interactive activities were used during non-PI sections of the lecture varied significantly between the two courses. Differences were also found in the average time spent on lecturer-student interactions (28% for 1A and 12% for 1B, although not on student-student interactions (12% and 12% or on individual learning (10% and 7%. These results are explored in detail and the implications for future research are discussed.

  7. Effectiveness of Tutorials for Introductory Physics in Argentinean high schools

    Directory of Open Access Journals (Sweden)

    J. Benegas

    2014-03-01

    Full Text Available This longitudinal study reports the results of a replication of Tutorials in Introductory Physics in high schools of a Latin-American country. The main objective of this study was to examine the suitability of Tutorials for local science education reform. Conceptual learning of simple resistive electric circuits was determined by the application of the single-response multiple-choice test “Determining and Interpreting Resistive Electric Circuits Concepts Test” (DIRECT to high school classes taught with Tutorials and traditional instruction. The study included state and privately run schools of different socioeconomic profiles, without formal laboratory space and equipment, in classes of mixed-gender and female-only students, taught by novice and experienced instructors. Results systematically show that student learning is significantly higher in the Tutorials classes compared with traditional teaching for all of the studied conditions. The results also show that long-term learning (one year after instruction in the Tutorials classes is highly satisfactory, very similar to the performance of the samples of college students used to develop the test DIRECT. On the contrary, students following traditional instruction returned one year after instruction to the poor performance (<20% shown before instruction, a result compatible with the very low level of conceptual knowledge of basic physics recently determined by a systematic study of first-year students attending seven universities in Spain and four Latin-American countries. Some replication and adaptation problems and difficulties of this experience are noted, as well as recommendations for successful use of Tutorials in high schools of similar educational systems.

  8. Active and Collaborative Learning in an Introductory Electrical and Computer Engineering Course

    Science.gov (United States)

    Kotru, Sushma; Burkett, Susan L.; Jackson, David Jeff

    2010-01-01

    Active and collaborative learning instruments were introduced into an introductory electrical and computer engineering course. These instruments were designed to assess specific learning objectives and program outcomes. Results show that students developed an understanding comparable to that of more advanced students assessed later in the…

  9. A Reactive Blended Learning Proposal for an Introductory Control Engineering Course

    Science.gov (United States)

    Mendez, Juan A.; Gonzalez, Evelio J.

    2010-01-01

    As it happens in other fields of engineering, blended learning is widely used to teach process control topics. In this paper, the inclusion of a reactive element--a Fuzzy Logic based controller--is proposed for a blended learning approach in an introductory control engineering course. This controller has been designed in order to regulate the…

  10. Unpacking Gender Differences in Students' Perceived Experiences in Introductory Physics

    Science.gov (United States)

    Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.

    2009-11-01

    Prior research has shown, at our institution: 1) males outperform females on conceptual assessments (a gender gap), 2) the gender gap persists despite the use of research-based reforms, and 3) the gender gap is correlated with students' physics and mathematics background and prior attitudes and beliefs [Kost, et al. PRST-PER, 5, 010101]. Our follow-up work begins to explore how males and females experience the introductory course differently and how these differences relate to the gender gap. We gave a survey to students in the introductory course in which we investigated students' physics identity and self-efficacy. We find there are significant gender differences in each of these three areas, and further find that these measures are weakly correlated with student conceptual performance, and moderately correlated with course grade.

  11. The physical basis of electronics an introductory course

    CERN Document Server

    Harris, D J; Hammond, P

    1975-01-01

    The Physical Basis of Electronics: An Introductory Course, Second Edition is an 11-chapter text that discusses the physical concepts of electronic devices. This edition deals with the considerable advances in electronic techniques, from the introduction of field effect transistors to the development of integrated circuits. The opening chapters discuss the fundamentals of vacuum electronics and solid-state electronics. The subsequent chapters deal with the other components of electronic devices and their functions, including semiconductor diode and transistor as an amplifier and a switch. The d

  12. Research and Teaching: Instructor Use of Group Active Learning in an Introductory Biology Sequence

    Science.gov (United States)

    Auerbach, Anna Jo; Schussler, Elisabeth E.

    2016-01-01

    Active learning (or learner-centered) pedagogies have been shown to enhance student learning in introductory biology courses. Student collaboration has also been shown to enhance student learning and may be a critical part of effective active learning practices. This study focused on documenting the use of individual active learning and group…

  13. Peer Instruction in introductory physics: A method to bring about positive changes in students’ attitudes and beliefs

    Directory of Open Access Journals (Sweden)

    Ping Zhang

    2017-01-01

    Full Text Available This paper analyzes pre-post matched gains in the epistemological views of science students taking the introductory physics course at Beijing Normal University (BNU in China. In this study we examined the attitudes and beliefs of science majors (n=441 in four classes, one taught using traditional (lecture teaching methods, and the other three taught with Peer Instruction (PI. In two of the PI classes, student peer groups were constantly changing throughout the semester, while in the other PI class student groups remained fixed for the duration of the semester. The results of the pre- and post-test using the Colorado Learning Attitudes about Science Survey showed that students in traditional lecture settings became significantly more novicelike in their beliefs about physics and learning physics over the course of a semester, a result consistent with what was reported in the literature. However, all three of the classes taught using the PI method improved student attitudes and beliefs about physics and learning physics. In the PI class with fixed peer groups, students exhibited a greater positive shift in attitudes and beliefs than in the other PI class with changing peer groups. The study also looked at gender differences in student learning attitudes. Gender results revealed that female science majors in the PI classes achieved a greater positive shift in attitudes and beliefs after instruction than did male students.

  14. Internet computer coaches for introductory physics problem solving

    Science.gov (United States)

    Xu Ryan, Qing

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the educational system, national studies have shown that the majority of students emerge from such courses having made little progress toward developing good problem-solving skills. The Physics Education Research Group at the University of Minnesota has been developing Internet computer coaches to help students become more expert-like problem solvers. During the Fall 2011 and Spring 2013 semesters, the coaches were introduced into large sections (200+ students) of the calculus based introductory mechanics course at the University of Minnesota. This dissertation, will address the research background of the project, including the pedagogical design of the coaches and the assessment of problem solving. The methodological framework of conducting experiments will be explained. The data collected from the large-scale experimental studies will be discussed from the following aspects: the usage and usability of these coaches; the usefulness perceived by students; and the usefulness measured by final exam and problem solving rubric. It will also address the implications drawn from this study, including using this data to direct future coach design and difficulties in conducting authentic assessment of problem-solving.

  15. The Use of Facebook in an Introductory MIS Course: Social Constructivist Learning Environment

    Science.gov (United States)

    Ractham, Peter; Kaewkitipong, Laddawan; Firpo, Daniel

    2012-01-01

    The major objective of this article is to evaluate via a Design Science Research Methodology (DSRM) the implementation of a Social Constructivist learning framework for an introductory Management Information System (MIS) course. Facebook was used as a learning artifact to build and foster a learning environment, and a series of features and…

  16. Exploring the Relationship between Self-Efficacy and Retention in Introductory Physics

    Science.gov (United States)

    Sawtelle, Vashti; Brewe, Eric; Kramer, Laird H.

    2012-01-01

    The quantitative results of Sources of Self-Efficacy in Science Courses-Physics (SOSESC-P) are presented as a logistic regression predicting the passing of students in introductory Physics with Calculus I, overall as well as disaggregated by gender. Self-efficacy as a theory to explain human behavior change [Bandura [1977] "Psychological…

  17. Instructors' Support of Student Autonomy in an Introductory Physics Course

    Science.gov (United States)

    Hall, Nicholas; Webb, David

    2014-12-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a self-determination theory perspective. A correlational study investigated whether certain aspects of the student experience correlated with how autonomy supportive (versus controlling) students perceived their instructors to be. An autonomy-supportive instructor acknowledges students' perspectives and feelings and provides students with information and opportunities for choice while minimizing external pressures (e.g., incentives or deadlines). It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (β =0.31***) and negatively correlated with student anxiety about taking physics (β =-0.23**). It was also positively correlated with how autonomous (versus controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to versus had to; β =0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (β =0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (β =0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable motivational, affective, and performance experience in the course. The findings of the present study are consistent with experimental studies in other contexts that argue for autonomy-supportive instructor behaviors as the cause of a more favorable student experience.

  18. Use of AECC Directives and Cooperative Learning Theory in Introductory Accounting Classes.

    Science.gov (United States)

    Holt, Doris L.; Swanson, Janice Goodnow

    1995-01-01

    Explores how colleges and universities are responding to the directives of the Accounting Education Change Commission for introductory accounting classes and whether these classrooms use cooperative learning techniques. (Author/JOW)

  19. Effectiveness of Tutorials for Introductory Physics in Argentinean high schools

    Science.gov (United States)

    Benegas, J.; Flores, J. Sirur

    2014-06-01

    This longitudinal study reports the results of a replication of Tutorials in Introductory Physics in high schools of a Latin-American country. The main objective of this study was to examine the suitability of Tutorials for local science education reform. Conceptual learning of simple resistive electric circuits was determined by the application of the single-response multiple-choice test "Determining and Interpreting Resistive Electric Circuits Concepts Test" (DIRECT) to high school classes taught with Tutorials and traditional instruction. The study included state and privately run schools of different socioeconomic profiles, without formal laboratory space and equipment, in classes of mixed-gender and female-only students, taught by novice and experienced instructors. Results systematically show that student learning is significantly higher in the Tutorials classes compared with traditional teaching for all of the studied conditions. The results also show that long-term learning (one year after instruction) in the Tutorials classes is highly satisfactory, very similar to the performance of the samples of college students used to develop the test DIRECT. On the contrary, students following traditional instruction returned one year after instruction to the poor performance (students attending seven universities in Spain and four Latin-American countries. Some replication and adaptation problems and difficulties of this experience are noted, as well as recommendations for successful use of Tutorials in high schools of similar educational systems.

  20. From Random Walks to Brownian Motion, from Diffusion to Entropy: Statistical Principles in Introductory Physics

    Science.gov (United States)

    Reeves, Mark

    2014-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is dominant contribution of the entropy in driving important biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy) that enable students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce seemingly complex biological processes and structures to be described by tractable models that include deterministic processes and simple probabilistic inference. The students test these models in simulations and in laboratory experiments that are biologically relevant. The students are challenged to bridge the gap between statistical parameterization of their data (mean and standard deviation) and simple model-building by inference. This allows the students to quantitatively describe realistic cellular processes such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront ``random'' forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk

  1. Preliminary Investigation of Instructor Effects on Gender Gap in Introductory Physics

    Science.gov (United States)

    Kreutzer, Kimberley; Boudreaux, Andrew

    2012-01-01

    Gender differences in student learning in the introductory, calculus-based electricity and magnetism course were assessed by administering the Conceptual Survey of Electricity and Magnetism pre- and postcourse. As expected, male students outgained females in traditionally taught sections as well as sections that incorporated interactive engagement…

  2. Interesting Guided-Inquiry Labs for a Large-Enrollment, Active Learning Physics II Course

    Science.gov (United States)

    Wagoner, Kasey; Hynes, K. Mairin; Flanagan, Daniel

    2018-04-01

    Introductory physics labs often focus on a series of common experiments intending to teach the student the measurement side of physics. While these experiments have the potential to be quite instructive, we observed that our students often consider them to be boring and monotonous, which often leads to them being uninstructive. To combat this, we have designed a series of labs with two major goals: the experiments should be relevant to the students' world, and the labs should gently guide the students to develop the experimental process on their own. Meeting these goals is difficult, particularly in a course with large enrollment where labs are instructed by graduate students. We have had success meeting these goals in our classroom, where over the last decade our introductory physics course has transformed from a traditional, lecture-learning class to a flipped class based on the textbook Six Ideas that Shaped Physics. Here we describe the structure of the new labs we have designed to capitalize on our classroom success while overcoming the aforementioned difficulties. These new labs are more engaging and instructive for our introductory physics students.

  3. Learning, Retention, and Forgetting of Newton's Third Law throughout University Physics

    Science.gov (United States)

    Sayre, Eleanor C.; Franklin, Scott V.; Dymek, Stephanie; Clark, Jessica; Sun, Yifei

    2012-01-01

    We present data from a between-student study on student response to questions on Newton's third law given in two introductory calculus-based physics classes (Mechanics and Electromagnetism) at a large northeastern university. Construction of a response curve reveals subtle dynamics in student learning not capturable by pretesting and post-testing.…

  4. Transversality of Electromagnetic Waves in the Calculus-Based Introductory Physics Course

    Science.gov (United States)

    Burko, Lior M.

    2008-01-01

    Introductory calculus-based physics textbooks state that electromagnetic waves are transverse and list many of their properties, but most such textbooks do not bring forth arguments why this is so. Both physical and theoretical arguments are at a level appropriate for students of courses based on such books, and could be readily used by…

  5. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Science.gov (United States)

    Docktor, Jennifer L.; Dornfeld, Jay; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Jackson, Koblar Alan; Mason, Andrew; Ryan, Qing X.; Yang, Jie

    2016-06-01

    Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach), applying those principles to the specific conditions in the problem (Specific Application of Physics), using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression).

  6. Understanding Computational Thinking before Programming: Developing Guidelines for the Design of Games to Learn Introductory Programming through Game-Play

    Science.gov (United States)

    Kazimoglu, Cagin; Kiernan, Mary; Bacon, Liz; MacKinnon, Lachlan

    2011-01-01

    This paper outlines an innovative game-based approach to learning introductory programming that is grounded in the development of computational thinking at an abstract conceptual level, but also provides a direct contextual relationship between game-play and learning traditional introductory programming. The paper proposes a possible model for,…

  7. Learner-Centered Teaching and Improving Learning by Writing Down the Statement of Problems in an Introductory Physics Course

    Science.gov (United States)

    Aurora, Tarlok

    2005-04-01

    In a calculus-based introductory physics course, students were assigned to write the statements of word problems (along with the accompanying diagrams if any), analyze these, identify important concepts/equations and try to solve these end-of- chapter homework problems. They were required to bring to class their written assignment until the chapter was completed in lecture. These were quickly checked at the beginning of the class. In addition, re-doing selected solved examples in the textbook were assigned as homework. Where possible, students were asked to look for similarities between the solved-examples and the end-of-the-chapter problems, or occasionally these were brought to the students' attention. It was observed that many students were able to solve several of the solved-examples on the test even though the instructor had not solved these in class. This was seen as an improvement over the previous years. It made the students more responsible for their learning. Another benefit was that it alleviated the problems previously created by many students not bringing the textbooks to class. It allowed more time for problem solving/discussions in class.

  8. Effectiveness of Workshop Style Teaching in Students' Learning of Introductory Electricity and Magnetism

    Science.gov (United States)

    Mehta, Nirav; Cheng, Kelvin

    2012-10-01

    We have developed an interactive workshop-style course for our introductory calculus-based physics sequence at Trinity University. Lecture is limited to approximately 15 min. at the beginning of class, and the remainder of the 50-min. class is devoted to inquiry-based activities and problem solving. So far, lab is done separately and we have not incorporated the lab component into the workshop model. We use the Brief Electricity and Magnetism Assessment (BEMA) to compare learning gains between the workshop and traditional lecture-based course for the Spring 2012 semester. Both the workshop and lecture courses shared the same inquiry-based lab component that involved pre-labs, prediction-observation and post-lab activities. Our BEMA results indicate statistically significant improvement in overall learning gains compared to the traditional course. We compare our workshop BEMA scores both to traditional lecture scores here at Trinity and to those from other institutions.

  9. Creativity and Introductory Physics

    Science.gov (United States)

    Guilaran, Ildefonso (Fonsie) J.

    2012-01-01

    When I was an undergraduate physics major, I would often stay up late with my physics major roommate as we would digest the physics content we were learning in our courses and explore our respective imaginations armed with our new knowledge. Such activity during my undergraduate years was confined to informal settings, and the first formal creativity assignment in my physics education did not come until well into my graduate years when my graduate advisor demanded that I write a prospectus for my dissertation. I have often lamented the fact that the first formal assignment in which I was required to be creative, take responsibility for my own learning and research objectives, and see them to completion during my physics education came so late, considering the degree to which creative attributes are celebrated in the personalities of great physicists. In this essay I will apply some of the basic concepts as defined by creativity-related psychology literature to physics pedagogy, relate these concepts to the exchanges in this journal concerning Michael Sobel's paper "Physics for the Non-Scientist: A Middle Way," and provide the framework for a low-overhead creativity assignment that can easily be implemented at all levels of physics education.

  10. Introductory Physics Experiments Using the Wiimote

    Science.gov (United States)

    Somers, William; Rooney, Frank; Ochoa, Romulo

    2009-03-01

    The Wii, a video game console, is a very popular device with millions of units sold worldwide over the past two years. Although computationally it is not a powerful machine, to a physics educator its most important components can be its controllers. The Wiimote (or remote) controller contains three accelerometers, an infrared detector, and Bluetooth connectivity at a relatively low price. Thanks to available open source code, any PC with Bluetooth capability can detect the information sent out by the Wiimote. We have designed several experiments for introductory physics courses that make use of the accelerometers and Bluetooth connectivity. We have adapted the Wiimote to measure the: variable acceleration in simple harmonic motion, centripetal and tangential accelerations in circular motion, and the accelerations generated when students lift weights. We present the results of our experiments and compare them with those obtained when using motion and/or force sensors.

  11. Determining Which Introductory Physics Topics Pre-Service Physics Teachers Have Difficulty Understanding and What Accounts for These Difficulties

    Science.gov (United States)

    Sahin, Esin; Yagbasan, Rahmi

    2012-01-01

    This study aims at diagnosing which subjects pre-service physics teachers have difficulty understanding in introductory physics courses and what accounts for these difficulties. A questionnaire consisting of two qualitative questions was used to collect data for this study. The questionnaire was administered to 101 pre-service physics teachers who…

  12. THE PROPOSED MODEL OF COLLABORATIVE VIRTUAL LEARNING ENVIRONMENT FOR INTRODUCTORY PROGRAMMING COURSE

    Directory of Open Access Journals (Sweden)

    Mahfudzah OTHMAN

    2012-01-01

    Full Text Available This paper discusses the proposed model of the collaborative virtual learning system for the introductory computer programming course which uses one of the collaborative learning techniques known as the “Think-Pair-Share”. The main objective of this study is to design a model for an online learning system that facilitates the collaborative learning activities in a virtual environment such as online communications and pair or small group discussions. In order to model the virtual learning environment, the RUP methodology has been used where it involves the data collection phase and the analysis and design phase. Fifty respondents have been randomly selected to participate in the data collection phase to investigate the students’ interest and learning styles as well as their learning preferences. The results have shown the needs for the development of online small group discussions that can be used as an alternative learning style for programming courses. The proposed design of the virtual learning system named as the Online Collaborative Learning System or OCLS is being depicted using the object-oriented models which are the use-case model and class diagram in order to show the concise processes of virtual “Think-Pair-Share” collaborative activities. The “Think-Pair-Share” collaborative learning technique that is being used in this model has been chosen because of its simplicity and relatively low-risk. This paper also presents the proposed model of the system’s architecture that will become the guidelines for the physical development of OCLS using the web-based applications.

  13. Talking and learning physics

    DEFF Research Database (Denmark)

    Bruun, Jesper; Brewe, Eric

    2013-01-01

    how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly...... administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1) communication about how to solve physics problems...... in the course (called the PS category), (2) communications about the nature of physics concepts (called the CD category), and (3) social interactions that are not strictly related to the content of the physics classes (called the ICS category) in the introductory mechanics course, we use the survey data...

  14. Evaluating and redesigning teaching learning sequences at the introductory physics level

    Science.gov (United States)

    Guisasola, Jenaro; Zuza, Kristina; Ametller, Jaume; Gutierrez-Berraondo, José

    2017-12-01

    In this paper we put forward a proposal for the design and evaluation of teaching and learning sequences in upper secondary school and university. We will connect our proposal with relevant contributions on the design of teaching sequences, ground it on the design-based research methodology, and discuss how teaching and learning sequences designed according to our proposal relate to learning progressions. An iterative methodology for evaluating and redesigning the teaching and learning sequence (TLS) is presented. The proposed assessment strategy focuses on three aspects: (a) evaluation of the activities of the TLS, (b) evaluation of learning achieved by students in relation to the intended objectives, and (c) a document for gathering the difficulties found when implementing the TLS to serve as a guide to teachers. Discussion of this guide with external teachers provides feedback used for the TLS redesign. The context of our implementation and evaluation is an innovative calculus-based physics course for first-year engineering and science degree students at the University of the Basque Country.

  15. BOOK REVIEW: Introductory Nanoscience: Physical and Chemical Concepts Introductory Nanoscience: Physical and Chemical Concepts

    Science.gov (United States)

    Bich Ha, Nguyen

    2011-12-01

    Having grown rapidly during the last two decades, and successfully synthesized the achievements of physics, chemistry, life science as well as information and computational science and technology, nanoscience and nanotechnology have emerged as interdisciplinary fields of modern science and technology with various prospective applications towards environmental protection and the sustainable development of industry, agriculture, public health etc. At the present time, there exist many textbooks, monographs and encyclopedias on nanoscience and nanotechnology. They present to readers the whole process of development from the emergence of new scientific ideas to comprehensive studies of concrete subjects. They are useful for experienced scientists in nanoscience and nanotechnology as well as related scientific disciplines. However, there are very few textbooks on nanoscience and nanotechnology for beginners—senior undergraduate and junior graduate students. Published by Garland Science in August 2011, Introductory Nanoscience: Physical and Chemical Concepts by Masaru Kuno is one of these rare textbooks. The purpose of this book is twofold. In a pedagogical manner the author presents the basic physical and chemical concepts of nanoscience and nanotechnology. Students with a background knowledge in general chemistry and semiclassical quantum physics can easily understand these concepts. On the other hand, by carefully studying the content of this textbook, readers can learn how to derive a large number of formulae and expressions which they will often use in their study as well as in their future research work. A distinguishing feature of the book is the inclusion of a large number of thought problems at the end of each chapter for demonstrating how to calculate the numerical values of almost all physical quantities involved in the theoretical and experimental studies of all subjects of nanoscience and nanotechnology. The author has successfully achieved both of the

  16. Activity-Based Introductory Physics Reform *

    Science.gov (United States)

    Thornton, Ronald

    2004-05-01

    Physics education research has shown that learning environments that engage students and allow them to take an active part in their learning can lead to large conceptual gains compared to those of good traditional instruction. Examples of successful curricula and methods include Peer Instruction, Just in Time Teaching, RealTime Physics, Workshop Physics, Scale-Up, and Interactive Lecture Demonstrations (ILDs). RealTime Physics promotes interaction among students in a laboratory setting and makes use of powerful real-time data logging tools to teach concepts as well as quantitative relationships. An active learning environment is often difficult to achieve in large lecture sessions and Workshop Physics and Scale-Up largely eliminate lectures in favor of collaborative student activities. Peer Instruction, Just in Time Teaching, and Interactive Lecture Demonstrations (ILDs) make lectures more interactive in complementary ways. This presentation will introduce these reforms and use Interactive Lecture Demonstrations (ILDs) with the audience to illustrate the types of curricula and tools used in the curricula above. ILDs make use real experiments, real-time data logging tools and student interaction to create an active learning environment in large lecture classes. A short video of students involved in interactive lecture demonstrations will be shown. The results of research studies at various institutions to measure the effectiveness of these methods will be presented.

  17. Learning Statistics at the Farmers Market? A Comparison of Academic Service Learning and Case Studies in an Introductory Statistics Course

    Science.gov (United States)

    Hiedemann, Bridget; Jones, Stacey M.

    2010-01-01

    We compare the effectiveness of academic service learning to that of case studies in an undergraduate introductory business statistics course. Students in six sections of the course were assigned either an academic service learning project (ASL) or business case studies (CS). We examine two learning outcomes: students' performance on the final…

  18. Conceptual Mobility and Entrenchment in Introductory Geoscience Courses: New Questions Regarding Physics' and Chemistry's Role in Learning Earth Science Concepts

    Science.gov (United States)

    Anderson, Steven W.; Libarkin, Julie C.

    2016-01-01

    Nationwide pre- and posttesting of introductory courses with the Geoscience Concept Inventory (GCI) shows little gain for many of its questions. Analysis of more than 3,500 tests shows that 22 of the 73 GCI questions had gains of <0.03, and nearly half of these focused on basic physics and chemistry. We also discovered through an assessment of…

  19. Understanding physics

    CERN Document Server

    Mansfield, Michael

    2011-01-01

    Understanding Physics - Second edition is a comprehensive, yet compact, introductory physics textbook aimed at physics undergraduates and also at engineers and other scientists taking a general physics course. Written with today's students in mind, this text covers the core material required by an introductory course in a clear and refreshing way. A second colour is used throughout to enhance learning and understanding. Each topic is introduced from first principles so that the text is suitable for students without a prior background in physics. At the same time the book is designed to enable

  20. High School Pedagogy: The Influence of High School In-class Activities and Events On Introductory College Physics Success

    OpenAIRE

    Carter, Brooke

    2014-01-01

    This study explores how students’ grades in introductory college physics are influenced by the pedagogy used in their high school physics classes. The success of college science professors is often judged on the basis of the success of their students. This disregards the 18+ years of experiences with which students come into their physics classroom. This study aims to answer the question of what pedagogy best prepares students for introductory college physics. This quantitative study analyzes...

  1. Toward a Neurobiological Basis for Understanding Learning in University Modeling Instruction Physics Courses

    Directory of Open Access Journals (Sweden)

    Eric Brewe

    2018-05-01

    Full Text Available Modeling Instruction (MI for University Physics is a curricular and pedagogical approach to active learning in introductory physics. A basic tenet of science is that it is a model-driven endeavor that involves building models, then validating, deploying, and ultimately revising them in an iterative fashion. MI was developed to provide students a facsimile in the university classroom of this foundational scientific practice. As a curriculum, MI employs conceptual scientific models as the basis for the course content, and thus learning in a MI classroom involves students appropriating scientific models for their own use. Over the last 10 years, substantial evidence has accumulated supporting MI's efficacy, including gains in conceptual understanding, odds of success, attitudes toward learning, self-efficacy, and social networks centered around physics learning. However, we still do not fully understand the mechanisms of how students learn physics and develop mental models of physical phenomena. Herein, we explore the hypothesis that the MI curriculum and pedagogy promotes student engagement via conceptual model building. This emphasis on conceptual model building, in turn, leads to improved knowledge organization and problem solving abilities that manifest as quantifiable functional brain changes that can be assessed with functional magnetic resonance imaging (fMRI. We conducted a neuroeducation study wherein students completed a physics reasoning task while undergoing fMRI scanning before (pre and after (post completing a MI introductory physics course. Preliminary results indicated that performance of the physics reasoning task was linked with increased brain activity notably in lateral prefrontal and parietal cortices that previously have been associated with attention, working memory, and problem solving, and are collectively referred to as the central executive network. Critically, assessment of changes in brain activity during the physics

  2. Assessing student written problem solutions: A problem-solving rubric with application to introductory physics

    Directory of Open Access Journals (Sweden)

    Jennifer L. Docktor

    2016-05-01

    Full Text Available Problem solving is a complex process valuable in everyday life and crucial for learning in the STEM fields. To support the development of problem-solving skills it is important for researchers and curriculum developers to have practical tools that can measure the difference between novice and expert problem-solving performance in authentic classroom work. It is also useful if such tools can be employed by instructors to guide their pedagogy. We describe the design, development, and testing of a simple rubric to assess written solutions to problems given in undergraduate introductory physics courses. In particular, we present evidence for the validity, reliability, and utility of the instrument. The rubric identifies five general problem-solving processes and defines the criteria to attain a score in each: organizing problem information into a Useful Description, selecting appropriate principles (Physics Approach, applying those principles to the specific conditions in the problem (Specific Application of Physics, using Mathematical Procedures appropriately, and displaying evidence of an organized reasoning pattern (Logical Progression.

  3. College physics students' epistemological self-reflection and its relationship to conceptual learning

    Science.gov (United States)

    May, David B.; Etkina, Eugenia

    2002-12-01

    Students should develop self-reflection skills and appropriate views about knowledge and learning, both for their own sake and because these skills and views may be related to improvements in conceptual understanding. We explored the latter issue in the context of an introductory physics course for first-year engineering honors students. As part of the course, students submitted weekly reports, in which they reflected on how they learned specific physics content. The reports by 12 students were analyzed for the quality of reflection and some of the epistemological beliefs they exhibited. Students' conceptual learning gains were measured with standard survey instruments. We found that students with high conceptual gains tend to show reflection on learning that is more articulate and epistemologically sophisticated than students with lower conceptual gains. Some implications for instruction are suggested.

  4. Course Format Effects on Learning Outcomes in an Introductory Statistics Course

    Science.gov (United States)

    Sami, Fary

    2011-01-01

    The purpose of this study was to determine if course format significantly impacted student learning and course completion rates in an introductory statistics course taught at Harford Community College. In addition to the traditional lecture format, the College offers an online, and a hybrid (blend of traditional and online) version of this class.…

  5. Autonomy and the Student Experience in Introductory Physics

    Science.gov (United States)

    Hall, Nicholas Ron

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a Self-Determination Theory perspective with two studies. Study I, a correlational study, investigated whether certain aspects of the student experience correlated with how autonomy supportive (vs. controlling) students perceived their instructors to be. An autonomy supportive instructor acknowledges students' perspectives, feelings, and perceptions and provides students with information and opportunities for choice, while minimizing external pressures. It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (beta=0.31***) and negatively correlated with student anxiety about taking physics (beta=-0.23**). It was also positively correlated with how autonomous (vs. controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to vs. had to; beta=0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (beta=0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (beta=0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable experience in the course. If greater autonomy support was in fact the cause of a more favorable student experience, as suggested by Self-determination Theory and experimental studies in other contexts, these results would have implications for instruction and instructor professional development in similar contexts. I discuss these implications. Study II, an experimental study, investigated the effect

  6. Sensors an introductory course

    CERN Document Server

    Kalantar-zadeh, Kourosh

    2013-01-01

    Sensors: An Introductory Course provides an essential reference on the fundamentals of sensors. The book is designed to help readers in developing skills and the understanding required in order to implement a wide range of sensors that are commonly used in our daily lives. This book covers the basic concepts in the sensors field, including definitions and terminologies. The physical sensing effects are described, and devices which utilize these effects are presented. The most frequently used organic and inorganic sensors are introduced and the techniques for implementing them are discussed. This book: Provides a comprehensive representation of the most common sensors and can be used as a reference in relevant fields Presents learning materials in a concise and easy to understand manner Includes examples of how sensors are incorporated in real life measurements Contains detailed figures and schematics to assist in understanding the sensor performance Sensors: An Introductory Course is ideal for university stu...

  7. Examining the development of knowledge for teaching a novel introductory physics curriculum

    Science.gov (United States)

    Seung, Eulsun

    The purpose of this study was to investigate how graduate physics teaching assistants (TAs) develop professional knowledge for teaching a new undergraduate introductory physics curriculum, Matter and Interactions (M&I ). M&I has recently been adopted as a novel introductory physics course that focuses on the application of a small number of fundamental physical principles on the atomic and molecular nature of matter. In this study, I examined the process of five TAs' development of knowledge for implementing the M&I course---from the time they engaged in an M&I content and methods workshop through their first semester as TAs for the course. Through a qualitative, multiple case study research design, data was collected from multiple sources: non-participant observations, digitally recorded video, semi-structured interviews, TAs' written reflections, and field notes. The data were analyzed using the constant comparative method. The TAs' knowledge for teaching M&I was identified in three domains: pedagogical content knowledge, pedagogical knowledge, and subject matter knowledge. First, the three components of TAs' pedagogical content knowledge were identified: knowledge of the goals of M&I, knowledge of instructional strategies, and knowledge of students' learning. Second, pedagogical knowledge that the TAs demonstrated during the study fell predominantly into the category of classroom management and organization. The knowledge of classroom management and organization was categorized into two components: time management skills and group composition. Last, the TAs' subject matter knowledge that they developed through their M&I teaching experience was described in terms of the conceptual structure of the M&I curriculum, the new approach of the M&I curriculum, and specific topic knowledge. The TAs' knowledge for teaching developed from propositional knowledge to personal practical knowledge, and the process of knowledge development consisted of three phases: accepting

  8. Do Active Learning Approaches in Recitation Sections Improve Student Performance? A Case Study from an Introductory Mechanics Course

    Science.gov (United States)

    Tobin, R. G.

    2018-01-01

    Abundant research leaves little question that pedagogical approaches involving active student engagement with the material, and opportunities for student-to-student discussions, lead to much better learning outcomes than traditional instructor-led, expository instructional formats, in physics and in many other fields. In introductory college physics classes, some departments have departed radically from conventional lecture-recitation-laboratory course structures, but many, including my own, retain the basic format of large-group classroom sessions (lectures) supplemented by smaller-group meetings focused on problem solving (recitations) and separate laboratory meetings. Active student engagement in the lectures is encouraged through approaches such as Peer Instruction and Interactive Lecture Demonstrations, and these approaches have been demonstrably successful.

  9. Active Learning outside the Classroom: Implementation and Outcomes of Peer-Led Team-Learning Workshops in Introductory Biology

    Science.gov (United States)

    Kudish, Philip; Shores, Robin; McClung, Alex; Smulyan, Lisa; Vallen, Elizabeth A.; Siwicki, Kathleen K.

    2016-01-01

    Study group meetings (SGMs) are voluntary-attendance peer-led team-learning workshops that supplement introductory biology lectures at a selective liberal arts college. While supporting all students' engagement with lecture material, specific aims are to improve the success of underrepresented minority (URM) students and those with weaker…

  10. An Empirical Evaluation of Puzzle-Based Learning as an Interest Approach for Teaching Introductory Computer Science

    Science.gov (United States)

    Merrick, K. E.

    2010-01-01

    This correspondence describes an adaptation of puzzle-based learning to teaching an introductory computer programming course. Students from two offerings of the course--with and without the puzzle-based learning--were surveyed over a two-year period. Empirical results show that the synthesis of puzzle-based learning concepts with existing course…

  11. An Empirical Consideration of a Balanced Amalgamation of Learning Strategies in Graduate Introductory Statistics Classes

    Science.gov (United States)

    Vaughn, Brandon K.

    2009-01-01

    This study considers the effectiveness of a "balanced amalgamated" approach to teaching graduate level introductory statistics. Although some research stresses replacing traditional lectures with more active learning methods, the approach of this study is to combine effective lecturing with active learning and team projects. The results of this…

  12. Evaluating multiple-choice exams in large introductory physics courses

    OpenAIRE

    Gary Gladding; Tim Stelzer; Michael Scott

    2006-01-01

    The reliability and validity of professionally written multiple-choice exams have been extensively studied for exams such as the SAT, graduate record examination, and the force concept inventory. Much of the success of these multiple-choice exams is attributed to the careful construction of each question, as well as each response. In this study, the reliability and validity of scores from multiple-choice exams written for and administered in the large introductory physics courses at the Unive...

  13. Exoplanet Peer-Learning Exercises for Introductory Astronomy Courses

    Science.gov (United States)

    Wisniewski, John P.; Larson, A.

    2010-01-01

    While exoplanet research has witnessed explosive growth over the past decade with over 350 exoplanets identified to date (http://exoplanet.eu), few education and public outreach tools capable of bringing the techniques and results of exoplanet science into the classroom have been developed. To help reduce this shortcoming, we have been developing and implementing a series of exoplanet-related active-learning exercises to be used in non-astronomy major introductory settings, including think-pair-share questions and peer-learning activities. We discuss some of these activities which we have field tested in undergraduate classes at the University of Washington. We also discuss our efforts to engage students in these classes in obtaining and analyzing astronomical observations of exoplanet host stars to identify and characterize exoplanet transit events. JPW acknowledges support from NSF Astronomy & Astrophysics Postdoctoral Fellowship AST 08-02230.

  14. Student Selection of the Textbook for an Introductory Physics Course

    Science.gov (United States)

    Dake, L. S.

    2007-01-01

    Several years ago I had to select a new textbook for my calculus-based introductory physics class. I subscribe to Just-in-Time Teaching methods,1 which require students to read the book before the material is covered in class. Thus, the readability of the text by the students is critical. However, I did not feel that I was the best judge of this…

  15. Why do they not answer and do they really learn? A case study in analysing student response flows in introductory physics using an audience response system

    International Nuclear Information System (INIS)

    Jääskeläinen, Markku; Lagerkvist, Andreas

    2017-01-01

    In this paper we investigate teaching with a classroom response system in introductory physics with emphasis on two issues. First, we discuss retention between question rounds and the reasons why students avoid answering the question a second time. A question with declining response rate was followed by a question addressing the student reasons for not answering. We find that there appear to be several reasons for the observed decline, and that the students need to be reminded. We argue that small drops are unimportant as the process appears to work despite the drops. Second, we discuss the dynamics of learning in a concept-sequence in electromagnetism, where a majority of the students, despite poor statistics in a first round, manage to answer a followup question correctly. In addition, we analyse the response times for both situations to connect with research on student reasoning on situations with misconception-like answers. From the combination of the answer flows and response time behaviours we find it plausible that conceptual learning occurred during the discussion phase. (paper)

  16. Using active learning strategies to investigate student learning and attitudes in a large enrollment, introductory geology course

    Science.gov (United States)

    Berry, Stacy Jane

    There has been an increased emphasis for college instruction to incorporate more active and collaborative involvement of students in the learning process. These views have been asserted by The Association of American Colleges (AAC), the National Science Foundation (NSF), and The National Research Counsel (NRC), which are advocating for the modification of traditional instructional techniques to allow students the opportunity to be more cooperative (Task Group on General Education, 1988). This has guided educators and facilitators into shifting teaching paradigms from a teacher centered to a more student-centered curriculum. The present study investigated achievement outcomes and attitudes of learners in a large enrollment (n ~ 200), introductory geology course using a student centered learning cycle format of instruction versus another similar section that used a traditional lecture format. Although the course is a recruiting class for majors, over 95% of the students that enroll are non-majors. Measurements of academic evaluation were through four unit exams, classroom communication systems, weekly web-based homework, in-class activities, and a thematic collaborative poster/paper project and presentation. The qualitative methods to investigate the effectiveness of the teaching design included: direct observation, self-reporting about learning, and open-ended interviews. By disaggregating emerging data, we tried to concentrate on patterns and causal relationships between achievement performance and attitudes regarding learning geology. Statistical analyses revealed positive relationships between student engagement in supplemental activities and achievement mean scores within and between the two sections. Completing weekly online homework had the most robust relationship with overall achievement performance. Contrary to expectations, a thematic group project only led to modest gains in achievement performance, although the social and professional gains could be

  17. Characterizing the epistemological development of physics majors

    Directory of Open Access Journals (Sweden)

    Elizabeth Gire

    2009-02-01

    Full Text Available Students in introductory physics courses are likely to have views about physics that differ from those of experts. However, students who continue to study physics eventually become experts themselves. Presumably these students either possess or develop more expertlike views. To investigate this process, the views of introductory physics students majoring in physics are compared with the views of introductory physics students majoring in engineering. In addition, the views of physics majors are assessed at various stages of degree progress. The Colorado learning attitudes about science survey is used to evaluate students’ views about physics, and students’ overall survey scores and responses to individual survey items are analyzed. Beginning physics majors are significantly more expertlike than nonmajors in introductory physics courses, and this high level of sophistication is consistent for most of undergraduate study.

  18. SIGKit: a New Data-based Software for Learning Introductory Geophysics

    Science.gov (United States)

    Zhang, Y.; Kruse, S.; George, O.; Esmaeili, S.; Papadimitrios, K. S.; Bank, C. G.; Cadmus, A.; Kenneally, N.; Patton, K.; Brusher, J.

    2016-12-01

    Students of diverse academic backgrounds take introductory geophysics courses to learn the theory of a variety of measurement and analysis methods with the expectation to be able to apply their basic knowledge to real data. Ideally, such data is collected in field courses and also used in lecture-based courses because they provide a critical context for better learning and understanding of geophysical methods. Each method requires a separate software package for the data processing steps, and the complexity and variety of professional software makes the path through data processing to data interpretation a strenuous learning process for students and a challenging teaching task for instructors. SIGKit (Student Investigation of Geophysics Toolkit) being developed as a collaboration between the University of South Florida, the University of Toronto, and MathWorks intends to address these shortcomings by showing the most essential processing steps and allowing students to visualize the underlying physics of the various methods. It is based on MATLAB software and offered as an easy-to-use graphical user interface and packaged so it can run as an executable in the classroom and the field even on computers without MATLAB licenses. An evaluation of the software based on student feedback from focus-group interviews and think-aloud observations helps drive its development and refinement. The toolkit provides a logical gateway into the more sophisticated and costly software students will encounter later in their training and careers by combining essential visualization, modeling, processing, and analysis steps for seismic, GPR, magnetics, gravity, resistivity, and electromagnetic data.

  19. Use of Interactive Live Digital Imaging to Enhance Histology Learning in Introductory Level Anatomy and Physiology Classes

    Science.gov (United States)

    Higazi, Tarig B.

    2011-01-01

    Histology is one of the main subjects in introductory college-level Human Anatomy and Physiology classes. Institutions are moving toward the replacement of traditional microscope-based histology learning with virtual microscopy learning amid concerns of losing the valuable learning experience of traditional microscopy. This study used live digital…

  20. Innovative Training of In-Service Teachers for Active Learning: A Short Teacher Development Course Based on Physics Education Research

    Science.gov (United States)

    Zavala, Genaro; Alarcon, Hugo; Benegas, Julio

    2007-01-01

    In this contribution we describe a short development course for in-service physics teachers. The course structure and materials are based on the results of educational research, and its main objective is to provide in-service teachers with a first contact with the active learning strategy "Tutorials in Introductory Physics," developed by…

  1. Learning-style preferences of Latino/Hispanic community college students enrolled in an introductory biology course

    Science.gov (United States)

    Sarantopoulos, Helen D.

    Purpose. The purpose of this study was to identify, according to the Productivity Environment Preference Survey (PEPS) instrument, which learning-style domains (environmental, emotional, sociological, and physiological) were favored among Latino/Hispanic community college students enrolled in introductory biology classes in a large, urban community college. An additional purpose of this study was to determine whether statistically significant differences existed between the learning-style preferences and the demographic variables of age, gender, number of prior science courses, second language learner status, and earlier exposure to scientific information. Methodology. The study design was descriptive and ex post facto. The sample consisted of a total of 332 Latino/Hispanic students enrolled in General Biology 3. Major findings. The study revealed that Latino/Hispanic students enrolled in introductory biology at a large urban community college scored higher for the learning preference element of structure. Students twenty-five years and older scored higher for the learning preference elements of light, design, persistence, responsibility, and morning time (p learning-style preferences were found between second English language learners and those who learned English as their primary language (p tactile (p learning-style model and instruments and on recent learning-style research articles on ethnically diverse groups of adult learners; and (2) Instructors should plan their instruction to incorporate the learning-style preferences of their students.

  2. How Instructional Strategies Impact Students' Learning, Motivation, and Learning Strategies in Introductory Geology Courses

    Science.gov (United States)

    Perkins, D.; Budd, D. A.; Stempien, J. A.; Kraft, K.; Matheney, R. K.; McConnell, D.; Wirth, K. R.; Bykerk-Kauffman, A.

    2010-12-01

    learning strategies at the end of a term (less value on memorization strategies; more value on help seeking strategies). The data indicate that using constructivist teaching strategies and interactive engagement promotes learning in introductory physical geology, but also result in students’ becoming less motivated to learn and believing they have less control over their learning. We hypothesize that this contrast arises from students not understanding how to regulate their learning in non-traditional classrooms. Students, particularly those who perform poorly relative to their expectations, lose confidence in their abilities, lose motivation, and believe they are not in control of their learning.

  3. Using 'How People Learn' as a Blueprint for Developing Teaching Strategies in an Introductory Geology Course

    Science.gov (United States)

    Debari, S. M.; Bachmann, J.; Dougan, B.; Fackler-Adams, B.; Kratz, R.; Linneman, S.; Plake, T.; Smith, B.

    2008-12-01

    A new curriculum for an introductory geology course, Geology and Everyday Thinking (GET), incorporates the key research findings of How People Learn (NAS, 1999), and is based on the pedagogical approach of Physics and Everyday Thinking (PET; http://petproject.sdsu.edu/). These key findings have profound implications for developing teaching strategies that promote student learning. They suggest that for learning to occur: 1) students' preconceptions must be engaged, 2) students must be able to build their own conceptual framework, and 3) students must be given an opportunity to reflect on their learning (metacognition). Our curriculum has been carefully constructed into cycles that apply these key findings while exploring a key geologic concept. Each cycle engages students' 'Initial Ideas' about these concepts (and continuously revisits those Initial Ideas), sequentially builds upon concepts in a logical framework, and requires reflective writing. The curriculum employs questioning, small group work, and small and large class discussions. Students construct concepts by doing inquiry lab activities, but embedded group discussions that promote discourse and questioning among students is a crucial tool in the sense-making and solidification of those concepts. The questioning and discourse occur throughout each module so that students' preconceptions about a particular concept are brought out early on, and are revisited and challenged again as students construct their new understanding. Whiteboarding, or the process of sharing small-group ideas to a larger group, is the primary method of generating discussion. The instructor's role as facilitator and questioner is the cornerstone in this process. The primary audience for this course is future elementary teachers, who are required take a year-long science sequence. The year-long sequence includes physics (PET), geology (GET), and a correlative new curriculum in biology (BET). Class size is limited to 24 students, and the

  4. Gender, Experience, and Self-Efficacy in Introductory Physics

    Science.gov (United States)

    Nissen, Jayson M.; Shemwell, Jonathan T.

    2016-01-01

    There is growing evidence of persistent gender achievement gaps in university physics instruction, not only for learning physics content, but also for developing productive attitudes and beliefs about learning physics. These gaps occur in both traditional and interactive-engagement (IE) styles of physics instruction. We investigated one gender gap…

  5. Effectiveness of a GUM-compliant course for teaching measurement in the introductory physics laboratory

    International Nuclear Information System (INIS)

    Pillay, Seshini; Buffler, Andy; Lubben, Fred; Allie, Saalih

    2008-01-01

    An evaluation of a course aimed at developing university students' understanding of the nature of scientific measurement and uncertainty is described. The course materials follow the framework for metrology as recommended in the Guide to the Expression of Uncertainty in Measurement (GUM). The evaluation of the course is based on responses to written questionnaires administered to a cohort of 76 first year physics students both pre- and post-instruction, which were interpreted in terms of 'point' or 'set' reasoning. These findings are compared with responses from a control group of 70 students who completed a similar laboratory course apart from the use of traditional approaches to measurement and data analysis. The results suggest that the GUM framework, together with the specific teaching strategies described, provides opportunities for more effective learning of measurement and uncertainty in the introductory laboratory

  6. A Study on Contingency Learning in Introductory Physics Concepts

    Science.gov (United States)

    Scaife, Thomas M.

    Instructors of physics often use examples to illustrate new or complex physical concepts to students. For any particular concept, there are an infinite number of examples, thus presenting instructors with a difficult question whenever they wish to use one in their teaching: which example will most effectively illustrate the concept so that student learning is maximized? The choice is typically made by an intuitive assumption about which exact example will result in the most lucid illustration and the greatest student improvement. By questioning 583 students in four experiments, I examined a more principled approach to example selection. By controlling the manner in which physical dimensions vary, the parameter space of each concept can be divided into a discrete number of example categories. The effects of training with members of each of category was explored in two different physical contexts: projectile motion and torque. In the first context, students were shown two trajectories and asked to determine which represented the longer time of flight. Height, range, and time of flight were the physical dimensions that were used to categorize the examples. In the second context, students were shown a balance-scale with loads of differing masses placed at differing positions along either side of the balance-arm. Mass, lever-arm length, and torque were the physical dimensions used to categorize these examples. For both contexts, examples were chosen so that one or two independent dimensions were varied. After receiving training with examples from specific categories, students were tested with questions from all question categories. Successful training or instruction can be measured either as producing correct, expert-like behavior (as observed through answers to the questions) or as explicitly instilling an understanding of the underlying rule that governs a physical phenomenon. A student's behavior might not be consistent with their explicit rule, so following the

  7. A Comparison of Traditional and Blended Learning in Introductory Principles of Accounting Course

    Science.gov (United States)

    Du, Chan

    2011-01-01

    This paper examines whether a blended course that introduces lower-level education online learned by students before they come into class and after class online assignments and online discussions enhances student performance for an introductory principles of accounting course over the period 2009-2010. The blended course design includes (1)…

  8. Promoting Metacognition in Introductory Calculus-based Physics Labs

    Science.gov (United States)

    Grennell, Drew; Boudreaux, Andrew

    2010-10-01

    In the Western Washington University physics department, a project is underway to develop research-based laboratory curriculum for the introductory calculus-based course. Instructional goals not only include supporting students' conceptual understanding and reasoning ability, but also providing students with opportunities to engage in metacognition. For the latter, our approach has been to scaffold reflective thinking with guided questions. Specific instructional strategies include analysis of alternate reasoning presented in fictitious dialogues and comparison of students' initial ideas with their lab group's final, consensus understanding. Assessment of student metacognition includes pre- and post- course data from selected questions on the CLASS survey, analysis of written lab worksheets, and student opinion surveys. CLASS results are similar to a traditional physics course and analysis of lab sheets show that students struggle to engage in a metacognitive process. Future directions include video studies, as well as use of additional written assessments adapted from educational psychology.

  9. Learning Styles, Online Content Usage and Exam Performance in a Mixed-Format Introductory Computer Information Systems Course

    Science.gov (United States)

    Lang, Guido; O'Connell, Stephen D.

    2015-01-01

    We investigate the relationship between learning styles, online content usage and exam performance in an undergraduate introductory Computer Information Systems class comprised of both online video tutorials and in-person classes. Our findings suggest that, across students, (1) traditional learning style classification methodologies do not predict…

  10. A Case Study of Prior Knowledge, Learning Approach and Conceptual Change in an Introductory College Chemistry Tutorial Program.

    Science.gov (United States)

    Braathen, Per Christian; Hewson, Peter W.

    This paper presents a case study involving a small group of students enrolled in a tutorial program learning introductory college chemistry. The underlying theoretical framework of this investigation was a constructivist view of learning, but more specifically it was based on Ausubel's theory of meaningful learning. The findings of this…

  11. Active Learning by Design: An Undergraduate Introductory Public Health Course

    Directory of Open Access Journals (Sweden)

    Karin eYeatts

    2014-12-01

    Full Text Available Principles of active learning were used to design and implement an introductory public health course. Students were introduced to the breadth and practice of public health through team and individual-based activities. Team assignments covered topics in epidemiology, biostatistics, health behavior, nutrition, maternal and child health, environment, and health policy. Students developed an appreciation of the population perspective through an experience trip and related intervention project in a public health area of their choice. Students experienced several key critical component elements of a public health undergraduate major; they cover key public health domains, experience public health practice, and integrated concepts with their assignments. In this paper, course assignments, lessons learned, and student successes are described. Given the increased growth in the undergraduate public health major, these active learning assignments may be of interest to undergraduate public health programs at both liberal arts colleges and research universities.

  12. Evolving Roles For Teaching Assistants In Introductory Courses

    Science.gov (United States)

    Dunbar, R. W.; Egger, A. E.; Schwartz, J. K.

    2008-12-01

    As we bring new research-based learning approaches, curricular innovations, and student engagement practices into the introductory science classroom, expectations of teaching assistants (TAs) should have, and have, changed. Similarly, the 21st century teaching assistant has different expectations of us. Maintaining relevance in this context means bringing TAs into an integrated teaching team that supports effective learning for students and provides structured professional development opportunities for TAs. A number of support efforts on our campus, with counterparts at many other universities, seek to optimize the instructional impact of faculty and teaching assistants, thus opening the door to enhanced student engagement (e.g. the quality of effort students put forth, their persistence in science and/or engineering courses, and their perception of scientific relevance in everyday life). Among these efforts, School of Earth Sciences course development TAs work 1:1 in advance of the term with introductory course faculty to design exercises and course materials that meet clearly articulated student learning goals or pedagogical challenges. Throughout the process, TAs are mentored by the faculty as well as science pedagogy experts. Initially funded by a major teaching award, the School is now moving to institutionalize this successful program which has broadened the definition of the TA role. Another area of optimization, reflecting Shulman's concept of pedagogical content knowledge, is our campus mandate that TA development take place within a departmental, as well as general, context. Both Chemistry and Physics expect introductory course TAs to lead interactive, guided-inquiry or tutorial-style sections. Integrating these sections with lecture and positively reinforcing course goals requires TA buy-in and a set of pedagogical facilitation skills cultivated through course-specific training and active mentoring while teaching. To better support the mentoring process

  13. Implementation and Results of a Learning Assistant Program

    Science.gov (United States)

    Bogue, Thomas B.; Seeley, L.; Vokos, S.

    2006-12-01

    The Physics Department at Seattle Pacific University has recently completed a three-year CCLI grant to integrate Tutorials in Introductory Physics , Activity Based Physics , and Real Time Physics into our one-year introductory curriculum. One of the difficulties encountered in doing this at a small undergraduate university was the need for additional instructors. This need is met through the use of undergraduate learning assistants. The development of recruitment and implementation methods will be discussed, along with the advantages to physics education, and the challenges encountered. We will also discuss several strategies we have identified as critical to a successful learning assistant program.

  14. Teaching Introductory Business Statistics Using the DCOVA Framework

    Science.gov (United States)

    Levine, David M.; Stephan, David F.

    2011-01-01

    Introductory business statistics students often receive little guidance on how to apply the methods they learn to further business objectives they may one day face. And those students may fail to see the continuity among the topics taught in an introductory course if they learn those methods outside a context that provides a unifying framework.…

  15. Data analysis and graphing in an introductory physics laboratory: spreadsheet versus statistics suite

    International Nuclear Information System (INIS)

    Peterlin, Primoz

    2010-01-01

    Two methods of data analysis are compared: spreadsheet software and a statistics software suite. Their use is compared analysing data collected in three selected experiments taken from an introductory physics laboratory, which include a linear dependence, a nonlinear dependence and a histogram. The merits of each method are compared.

  16. Particle in a Box: An Experiential Environment for Learning Introductory Quantum Mechanics

    Science.gov (United States)

    Anupam, Aditya; Gupta, Ridhima; Naeemi, Azad; JafariNaimi, Nassim

    2018-01-01

    Quantum mechanics (QMs) is a foundational subject in many science and engineering fields. It is difficult to teach, however, as it requires a fundamental revision of the assumptions and laws of classical physics and probability. Furthermore, introductory QM courses and texts predominantly focus on the mathematical formulations of the subject and…

  17. Sleep and Final Exam Performance in Introductory Physics

    Science.gov (United States)

    Coletta, Vincent; Wikholm, Colin; Pascoe, Daniel

    2018-03-01

    Most physics instructors believe that adequate sleep is important in order for students to perform well on problem solving, and many instructors advise students to get plenty of sleep the night before an exam. After years of giving such advice to students at Loyola Marymount University (LMU), one of us decided to find out how many hours students actually do sleep the night before an exam, and how that would relate to their performance. The effect of inadequate sleep on exam performance was explored in a second-semester introductory physics course. At the end of the final exam, students reported the number of hours they slept the night before. Sleep deprivation corresponded to lower final exam scores. The main purpose of this study is to provide evidence that instructors can provide to their students to convince them that their time is better spent sleeping rather than studying all night before an exam.

  18. Promoting Physical Understanding through Peer Mentoring

    Science.gov (United States)

    Nossal, S. M.; Huesmann, A.; Hooper, E.; Moore, C.; Watson, L.; Trestrail, A.; Weber, J.; Timbie, P.; Jacob, A.

    2015-12-01

    The Physics Learning Center at the University of Wisconsin-Madison provides a supportive learning community for students studying introductory physics, as well as teaching and leadership experience for undergraduate Peer Mentor Tutors who receive extensive training and supervision. Many of our Peer Tutors were former Physics Learning Center participants. A central goal of the Physics Learning Center is to address achievement/equity gaps (e.g. race, gender, socio-economic status, disability, age, transfer status, etc.) for undergraduate students pursuing majors and coursework in STEM fields. Students meet twice a week in small learning teams of 3-8 students, facilitated by a trained Peer Mentor Tutor or staff member. These active learning teams focus on discussing core physical concepts and practicing problem-solving. The weekly training of the tutors addresses both teaching and mentoring issues in science education such as helping students to build confidence, strategies for assessing student understanding, and fostering a growth mindset. A second weekly training meeting addresses common misconceptions and strategies for teaching specific physics topics. For non-science majors we have a small Peer Mentor Tutor program for Physics in the Arts. We will discuss the Physics Learning Center's approaches to promoting inclusion, understanding, and confidence for both our participants and Peer Mentor Tutors, as well as examples from the geosciences that can be used to illustrate introductory physics concepts.

  19. Active Learning in Introductory Economics: Do MyEconLab and Aplia Make Any Difference?

    Science.gov (United States)

    Nguyen, Trien; Trimarchi, Angela

    2010-01-01

    This paper reports experiment results of teaching large classes of introductory economics with modern learning technology such as MyEconLab or Aplia. This new technology emerges partially in response to the enrollment pressure currently facing many institutions of higher education. Among other things, the technology provides an integrated online…

  20. Learning the Brain in Introductory Psychology: Examining the Generation Effect for Mnemonics and Examples

    Science.gov (United States)

    McCabe, Jennifer A.

    2015-01-01

    The goal of this research was to determine whether there is a generation effect for learner-created keyword mnemonics and real-life examples, compared to instructor-provided materials, when learning neurophysiological terms and definitions in introductory psychology. Students participated in an individual (Study 1) or small-group (Study 2)…

  1. Implementing Motivational Features in Reactive Blended Learning: Application to an Introductory Control Engineering Course

    Science.gov (United States)

    Mendez, J. A.; Gonzalez, E. J.

    2011-01-01

    This paper presents a significant advance in a reactive blended learning methodology applied to an introductory control engineering course. This proposal was based on the inclusion of a reactive element (a fuzzy-logic-based controller) designed to regulate the workload for each student according to his/her activity and performance. The…

  2. Interpreting Assessments of Student Learning in the Introductory Physics Classroom and Laboratory

    Science.gov (United States)

    Dowd, Jason Edward

    Assessment is the primary means of feedback between students and instructors. However, to effectively use assessment, the ability to interpret collected information is essential. We present insights into three unique, important avenues of assessment in the physics classroom and laboratory. First, we examine students' performance on conceptual surveys. The goal of this research project is to better utilize the information collected by instructors when they administer the Force Concept Inventory (FCI) to students as a pre-test and post-test of their conceptual understanding of Newtonian mechanics. We find that ambiguities in the use of the normalized gain, g, may influence comparisons among individual classes. Therefore, we propose using stratagrams, graphical summaries of the fraction of students who exhibit "Newtonian thinking," as a clearer, more informative method of both assessing a single class and comparing performance among classes. Next, we examine students' expressions of confusion when they initially encounter new material. The goal of this research project is to better understand what such confusion actually conveys to instructors about students' performance and engagement. We investigate the relationship between students' self-assessment of their confusion over material and their performance, confidence in reasoning, pre-course self-efficacy and several other measurable characteristics of engagement. We find that students' expressions of confusion are negatively related to initial performance, confidence and self-efficacy, but positively related to final performance when all factors are considered together. Finally, we examine students' exhibition of scientific reasoning abilities in the instructional laboratory. The goal of this research project is to explore two inquiry-based curricula, each of which proposes a different degree of scaffolding. Students engage in sequences of these laboratory activities during one semester of an introductory physics

  3. Video-based problems in introductory mechanics physics courses

    International Nuclear Information System (INIS)

    Gröber, Sebastian; Klein, Pascal; Kuhn, Jochen

    2014-01-01

    Introductory mechanics physics courses at the transition from school to university are a challenge for students. They are faced with an abrupt and necessary increase of theoretical content and requirements on their conceptual understanding of phyiscs. In order to support this transition we replaced part of the mandatory weekly theory-based paper-and-pencil problems with video analysis problems of equal content and level of difficulty. Video-based problems (VBP) are a new problem format for teaching physics from a linked sequence of theoretical and video-based experimental tasks. Experimental tasks are related to the well-known concept of video motion analysis. This introduction of an experimental part in recitations allows the establishment of theory–experiment interplay as well as connections between physical content and context fields such as nature, technique, everyday life and applied physics by conducting model-and context-related experiments. Furthermore, laws and formulas as predominantly representative forms are extended by the use of diagrams and vectors. In this paper we give general reasons for this approach, describe the structure and added values of VBP, and show that they cover a relevant part of mechanics courses at university. Emphasis is put on theory–experiment interplay as a structural added value of VBP to promote students' construction of knowledge and conceptual understanding. (paper)

  4. Learning problem-solving skills in a distance education physics course

    Science.gov (United States)

    Rampho, G. J.; Ramorola, M. Z.

    2017-10-01

    In this paper we present the results of a study on the effectiveness of combinations of delivery modes of distance education in learning problem-solving skills in a distance education introductory physics course. A problem-solving instruction with the explicit teaching of a problem-solving strategy and worked-out examples were implemented in the course. The study used the ex post facto research design with stratified sampling to investigate the effect of the learning of a problem-solving strategy on the problem-solving performance. The number of problems attempted and the mean frequency of using a strategy in solving problems in the three course presentation modes were compared. The finding of the study indicated that combining the different course presentation modes had no statistically significant effect in the learning of problem-solving skills in the distance education course.

  5. Data Analysis and Graphing in an Introductory Physics Laboratory: Spreadsheet versus Statistics Suite

    Science.gov (United States)

    Peterlin, Primoz

    2010-01-01

    Two methods of data analysis are compared: spreadsheet software and a statistics software suite. Their use is compared analysing data collected in three selected experiments taken from an introductory physics laboratory, which include a linear dependence, a nonlinear dependence and a histogram. The merits of each method are compared. (Contains 7…

  6. Teaching assistants’ performance at identifying common introductory student difficulties in mechanics revealed by the Force Concept Inventory

    Directory of Open Access Journals (Sweden)

    Alexandru Maries

    2016-05-01

    Full Text Available The Force Concept Inventory (FCI has been widely used to assess student understanding of introductory mechanics concepts by a variety of educators and physics education researchers. One reason for this extensive use is that many of the items on the FCI have strong distractor choices which correspond to students’ alternate conceptions in mechanics. Instruction is unlikely to be effective if instructors do not know the common alternate conceptions of introductory physics students and explicitly take into account students’ initial knowledge states in their instructional design. Here, we discuss research involving the FCI to evaluate one aspect of the pedagogical content knowledge of teaching assistants (TAs: knowledge of introductory student alternate conceptions in mechanics as revealed by the FCI. For each item on the FCI, the TAs were asked to identify the most common incorrect answer choice of introductory physics students. This exercise was followed by a class discussion with the TAs related to this task, including the importance of knowing student difficulties in teaching and learning. Then, we used FCI pretest and post-test data from a large population (∼900 of introductory physics students to assess the extent to which TAs were able to identify alternate conceptions of introductory students related to force and motion. In addition, we carried out think-aloud interviews with graduate students who had more than two semesters of teaching experience in recitations to examine how they reason about the task. We find that while the TAs, on average, performed better than random guessing at identifying introductory students’ difficulties with FCI content, they did not identify many common difficulties that introductory physics students have after traditional instruction. We discuss specific alternate conceptions, the extent to which TAs are able to identify them, and results from the think-aloud interviews that provided valuable information

  7. Active Learning Outside the Classroom: Implementation and Outcomes of Peer-Led Team-Learning Workshops in Introductory Biology

    OpenAIRE

    Kudish, Philip; Shores, Robin; McClung, Alex; Smulyan, Lisa; Vallen, Elizabeth A.; Siwicki, Kathleen K.

    2016-01-01

    Study group meetings (SGMs) are voluntary-attendance peer-led team-learning workshops that supplement introductory biology lectures at a selective liberal arts college. While supporting all students? engagement with lecture material, specific aims are to improve the success of underrepresented minority (URM) students and those with weaker backgrounds in biology. Peer leaders with experience in biology courses and training in science pedagogy facilitate work on faculty-generated challenge prob...

  8. A Qualitative Assessment of the Learning Outcomes of Teaching Introductory American Politics in Comparative Perspective

    Science.gov (United States)

    Gelbman, Shamira M.

    2011-01-01

    This article discusses the findings of an ethnographic content analysis of students' written reflections as a means for assessing the learning outcomes of teaching introductory American politics in comparative perspective. It focuses especially on determining whether and how this approach enhanced students' understanding and retention of knowledge…

  9. History-Infused Lessons in Introductory Calculus at the Secondary Level: Students' Learning and Perceptions

    Science.gov (United States)

    Poh, Wei Beng; Dindyal, Jaguthsing

    2016-01-01

    A history-infused lesson package developed by a team of teachers in a professional learning community was used to teach introductory calculus in a secondary school. First, we report a quasi-experimental design that showed that students in the experimental group performed significantly better than students in the control group. Second, we report on…

  10. Observations Of General Learning Patterns In An Upper-Level Thermal Physics Course

    Science.gov (United States)

    Meltzer, David E.

    2009-11-01

    I discuss some observations from using interactive-engagement instructional methods in an upper-level thermal physics course over a two-year period. From the standpoint of the subject matter knowledge of the upper-level students, there was a striking persistence of common learning difficulties previously observed in students enrolled in the introductory course, accompanied, however, by some notable contrasts between the groups. More broadly, I comment on comparisons and contrasts regarding general pedagogical issues among different student sub-populations, for example: differences in the receptivity of lower- and upper-level students to diagrammatic representations; varying receptivity to tutorial-style instructional approach within the upper-level population; and contrasting approaches to learning among physics and engineering sub-populations in the upper-level course with regard to use of symbolic notation, mathematical equations, and readiness to employ verbal explanations.

  11. Student anxiety in introductory biology classrooms: Perceptions about active learning and persistence in the major

    Science.gov (United States)

    2017-01-01

    Many researchers have called for implementation of active learning practices in undergraduate science classrooms as one method to increase retention and persistence in STEM, yet there has been little research on the potential increases in student anxiety that may accompany these practices. This is of concern because excessive anxiety can decrease student performance. Levels and sources of student anxiety in three introductory biology lecture classes were investigated via an online survey and student interviews. The survey (n = 327) data revealed that 16% of students had moderately high classroom anxiety, which differed among the three classes. All five active learning classroom practices that were investigated caused student anxiety, with students voluntarily answering a question or being called on to answer a question causing higher anxiety than working in groups, completing worksheets, or answering clicker questions. Interviews revealed that student anxiety seemed to align with communication apprehension, social anxiety, and test anxiety. Additionally, students with higher general anxiety were more likely to self-report lower course grade and the intention to leave the major. These data suggest that a subset of students in introductory biology experience anxiety in response to active learning, and its potential impacts should be investigated. PMID:28771564

  12. The Effects of Online Homework on First Year Pre-Service Science Teachers' Learning Achievements of Introductory Organic Chemistry

    Science.gov (United States)

    Ratniyom, Jadsada; Boonphadung, Suttipong; Unnanantn, Thassanant

    2016-01-01

    This study examined the effects of the introductory organic chemistry online homework on first year pre-service science teachers' learning achievements. The online homework was created using a web-based Google form in order to enhance the pre-service science teachers' learning achievements. The steps for constructing online homework were…

  13. Cultivating the Capacity for Formal Reasoning: Objectives and Procedures in an Introductory Physical Science Course

    Science.gov (United States)

    Arons, A. B.

    1976-01-01

    Describes special factors and procedures which are utilized in an introductory physical science course for nonscience majors. It is designed to enable students who are at a concrete or transitional stage to attain the formal operational level of development. (Author/SL)

  14. Determining which introductory physics topics pre-service physics teachers have difficulty understanding and what accounts for these difficulties

    International Nuclear Information System (INIS)

    Şahin, Esin; Yağbasan, Rahmi

    2012-01-01

    This study aims at diagnosing which subjects pre-service physics teachers have difficulty understanding in introductory physics courses and what accounts for these difficulties. A questionnaire consisting of two qualitative questions was used to collect data for this study. The questionnaire was administered to 101 pre-service physics teachers who have completed the courses Physics 1 (Mechanics 1), Physics 2 (Mechanics 2), Physics 3 (Electricity) and Physics 4 (Magnetism). Of the pre-service physics teachers 28 were second year, 26 were third year, 27 were fourth year and 20 were fifth year students. The results of the data analysis indicated that the percentage of students who think that Magnetism has the most difficult subjects is the highest compared to the others. The reasons why the pre-service physics teachers experience difficulty in understanding the subjects have been grouped into four categories. (paper)

  15. Self-directed learning: A heretical experiment in teaching physics

    Science.gov (United States)

    Silverman, M. P.

    1995-06-01

    An account is given of the instruction of university-level introductory physics courses according to an educational framework in which (1) curiosity-driven inquiry is recognized as an essential activity of both science and science teaching; (2) the principal role of the instructor is to provide students the incentive to learn science through their pursuit of personally meaningful questions; (3) the commission of errors is regarded as a natural concomitant to learning and is not penalized; (4) emphasis is placed on laboratory investigations that foster minimally restrictive free exploration rather than prescriptive adherence to formal procedure; (5) research skills are developed through out-of-class projects that involve literature search, experiment, and the modeling of real-world physical phenomena: (6) the precise and articulate use of language is regarded as seminal to communication in science (as it is in the humanities) and is promoted through activities that help develop written and oral language skills; (7) the evaluation of student performance is based on a portfolio of accomplished work rather than on the outcome of formal testing.

  16. Can Personalized Nudges Improve Learning in Hybrid Classes? Experimental Evidence from an Introductory Undergraduate Course

    Science.gov (United States)

    O'Connell, Stephen D.; Lang, Guido

    2018-01-01

    A field experiment was conducted to investigate whether personalized e-mail reminders can improve study consistency and learning outcomes in an introductory-level undergraduate course. By randomly assigning whether nearly 300 students would receive occasional e-mail messages encouraging out-of-class study, we find that these reminders increased…

  17. Implementation of Inquiry-Based Tutorials in AN Introductory Physics Course: the Role of the Graduate Teaching Assistant.

    Science.gov (United States)

    Thoresen, Carol Wiggins

    1994-01-01

    This study determined if the training provided physics teaching assistants was sufficient to accomplish the objectives of inquiry-based tutorials for an introductory physics course. Qualitative research methods were used: (1) to determine if the Physics by Inquiry method was modeled; (2) to describe the process from the teaching assistant perspective; (3) to determine TA opinions on training methods; (4) to develop a frame of reference to better understand the role of TA's as instructional support staff. The study determined that the teaching assistants verbalized appropriate instructional actions, but were observed to use a predominantly didactic teaching style. TA's held a variety of perceptions and beliefs about inquiry -based learning and how science is learned. They felt comfortable in the role of tutorial instructor. They were satisfied with the training methods provided and had few suggestions to change or improve training for future tutorial instructors. A concurrent theme of teacher action dependent on teacher beliefs was sustained throughout the study. The TA's actions, as tutorial instructors, reflected their educational beliefs, student background and learning experiences. TA's performance as tutorial instructors depended on what they think and believe about learning science. Practical implications exist for training teaching assistants to be tutorial instructors. Some recommendations may be appropriate for TA's required to use instructional methods that they have not experienced as students. Interview prospective teaching assistants to determine educational experience and beliefs. Employ inexperienced teaching assistants whose perspectives match the proposed instructional role and who might be more receptive to modeling. Incorporate training into staff meetings. Provide time for TA's to experience the instructional model with simulation or role play as students and as instructors, accompanied by conference discussion. Use strategies known to enhance

  18. Qualitative Analysis of Collaborative Learning Groups in Large Enrollment Introductory Astronomy

    Science.gov (United States)

    Skala, Chija; Slater, Timothy F.; Adams, Jeffrey P.

    2000-08-01

    Large-lecture introductory astronomy courses for undergraduate, non-science majors present numerous problems for faculty. As part of a systematic effort to improve the course learning environment, a series of small-group, collaborative learning activities were implemented in an otherwise conventional lecture astronomy survey course. These activities were used once each week during the regularly scheduled lecture period. After eight weeks, ten focus group interviews were conducted to qualitatively assess the impact and dynamics of these small group learning activities. Overall, the data strongly suggest that students enjoy participating in the in-class learning activities in learning teams of three to four students. These students firmly believe that they are learning more than they would from lectures alone. Inductive analysis of the transcripts revealed five major themes prevalent among the students' perspectives: (1) self-formed, cooperative group composition and formation should be more regulated by the instructor; (2) team members' assigned rolls should be less formally structured by the instructors; (3) cooperative groups helped in learning the course content; (4) time constraints on lectures and activities need to be more carefully aligned; and (5) gender issues can exist within the groups. These themes serve as a guide for instructors who are developing instructional interventions for large lecture courses.

  19. Developing ICT based Learningware for Physics

    NARCIS (Netherlands)

    J. Lenaerts; W. Wieme

    2004-01-01

    textabstractAs part of an ongoing investigation into digital learning environments and into organizing higher education for the knowledge society, a learning environment has been developed. The learningware has been specifically implemented for an introductory Quantum Physics course in a traditional

  20. Life Science Students' Attitudes, Interest, and Performance in Introductory Physics for Life Sciences: An Exploratory Study

    Science.gov (United States)

    Crouch, Catherine H.; Wisittanawat, Panchompoo; Cai, Ming; Renninger, K. Ann

    2018-01-01

    In response to national calls for improved physical sciences education for students pursuing careers in the life sciences and medicine, reformed introductory physics for life sciences (IPLS) courses are being developed. This exploratory study is among the first to assess the effect of an IPLS course on students' attitudes, interest, and…

  1. Relationships between Undergraduates' Argumentation Skills, Conceptual Quality of Problem Solutions, and Problem Solving Strategies in Introductory Physics

    Science.gov (United States)

    Rebello, Carina M.

    2012-01-01

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well…

  2. Agriscience Teachers' Implementation of Digital Game-based Learning in an Introductory Animal Science Course

    Science.gov (United States)

    Webb, Angela W.; Bunch, J. C.; Wallace, Maria F. G.

    2015-12-01

    In today's technological age, visions for technology integration in the classroom continue to be explored and examined. Digital game-based learning is one way to purposefully integrate technology while maintaining a focus on learning objectives. This case study sought to understand agriscience teachers' experiences implementing digital game-based learning in an introductory animal science course. From interviews with agriscience teachers on their experiences with the game, three themes emerged: (1) the constraints of inadequate and inappropriate technologies, and time to game implementation; (2) the shift in teacher and student roles necessitated by implementing the game; and (3) the inherent competitive nature of learning through the game. Based on these findings, we recommend that pre-service and in-service professional development opportunities be developed for teachers to learn how to implement digital game-based learning effectively. Additionally, with the potential for simulations that address cross-cutting concepts in the next generation science standards, digital game-based learning should be explored in various science teaching and learning contexts.

  3. Using Biomedically Relevant Multimedia Content in an Introductory Physics Course for Life Science and Pre-Health Students

    Science.gov (United States)

    Mylott, Elliot; Kutschera, Ellynne; Dunlap, Justin C.; Christensen, Warren; Widenhorn, Ralf

    2016-01-01

    We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia…

  4. Creation and Assessment of an Active e-Learning Introductory Geology Course

    Science.gov (United States)

    Sit, Stefany M.; Brudzinski, Michael R.

    2017-12-01

    The recent emphasis in higher education on both student engagement and online learning encouraged the authors to develop an active e-learning environment for an introductory geohazards course, which enrolls 70+ undergraduate students per semester. Instructors focused on replicating the achievements and addressing the challenges within an already established face-to-face student-centered class (Brudzinski and Sikorski 2010; Sit 2013). Through the use of a learning management system (LMS) and other available technologies, a wide range of course components were developed including online homework assignments with automatic grading and tailored feedback, video tutorials of software programs like Google Earth and Microsoft Excel, and more realistic scientific investigations using authentic and freely available data downloaded from the internet. The different course components designed to engage students and improve overall student learning and development were evaluated using student surveys and instructor reflection. Each component can be used independently and intertwined into a face-to-face course. Results suggest that significant opportunities are available in an online environment including the potential for improved student performance and new datasets for educational research. Specifically, results from pre and post-semester Geoscience Concept Inventory (GCI) testing in an active e-learning course show enhanced student learning gains compared to face-to-face lecture-based and student-centered courses.

  5. Learning physics: A comparative analysis between instructional design methods

    Science.gov (United States)

    Mathew, Easow

    The purpose of this research was to determine if there were differences in academic performance between students who participated in traditional versus collaborative problem-based learning (PBL) instructional design approaches to physics curricula. This study utilized a quantitative quasi-experimental design methodology to determine the significance of differences in pre- and posttest introductory physics exam performance between students who participated in traditional (i.e., control group) versus collaborative problem solving (PBL) instructional design (i.e., experimental group) approaches to physics curricula over a college semester in 2008. There were 42 student participants (N = 42) enrolled in an introductory physics course at the research site in the Spring 2008 semester who agreed to participate in this study after reading and signing informed consent documents. A total of 22 participants were assigned to the experimental group (n = 22) who participated in a PBL based teaching methodology along with traditional lecture methods. The other 20 students were assigned to the control group (n = 20) who participated in the traditional lecture teaching methodology. Both the courses were taught by experienced professors who have qualifications at the doctoral level. The results indicated statistically significant differences (p traditional (i.e., lower physics posttest scores and lower differences between pre- and posttest scores) versus collaborative (i.e., higher physics posttest scores, and higher differences between pre- and posttest scores) instructional design approaches to physics curricula. Despite some slight differences in control group and experimental group demographic characteristics (gender, ethnicity, and age) there were statistically significant (p = .04) differences between female average academic improvement which was much higher than male average academic improvement (˜63%) in the control group which may indicate that traditional teaching methods

  6. Prism foil from an LCD monitor as a tool for teaching introductory optics

    International Nuclear Information System (INIS)

    Planinsic, Gorazd; Gojkosek, Mihael

    2011-01-01

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and image formation in a nontrivial way and are therefore particularly useful for active learning strategies.

  7. Prism foil from an LCD monitor as a tool for teaching introductory optics

    Energy Technology Data Exchange (ETDEWEB)

    Planinsic, Gorazd; Gojkosek, Mihael, E-mail: gorazd.planinsic@fmf.uni-lj.si [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19 (Slovenia)

    2011-03-15

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and image formation in a nontrivial way and are therefore particularly useful for active learning strategies.

  8. Making the Introductory Meteorology Class Relevant in a Minority Serving Community College

    Science.gov (United States)

    Marchese, P. J.; Tremberger, G.; Bluestone, C.

    2008-12-01

    Queensborough Community College (QCC), a constituent campus of the City University of New York (CUNY), has modified the introductory Meteorology Class lecture and lab to include active learning activities and discovery based learning. The modules were developed at QCC and other 4 year colleges and designed to introduce basic physical concepts important in meteorology. The modules consisted of either interactive lecture demonstrations or discovery-based activities. The discovery based activities are intended to have students become familiar with scientific investigation. Students engage in formulating hypotheses, developing and carrying out experiments, and analyzing scientific data. These activities differ from traditional lab experiments in that they avoid "cookbook" procedures and emphasize having the students learn about physical concepts by applying the scientific method. During the interactive lecture demonstrations the instructor describes an experiment/phenomenon that is to be demonstrated in class. Students discuss the phenomenon based on their experiences and make a prediction about the outcome. The class then runs the experiment, makes observations, and compares the expected results to the actual outcome. As a result of these activities students in the introductory Meteorology class scored higher in exams questions measuring conceptual understanding, as well as factual knowledge. Lower scoring students demonstrated the greatest benefit, while the better students had little (or no) changes. All students also had higher self-efficacy scores after the intervention, compared to an unmodified class.

  9. A Severe Weather Laboratory Exercise for an Introductory Weather and Climate Class Using Active Learning Techniques

    Science.gov (United States)

    Grundstein, Andrew; Durkee, Joshua; Frye, John; Andersen, Theresa; Lieberman, Jordan

    2011-01-01

    This paper describes a new severe weather laboratory exercise for an Introductory Weather and Climate class, appropriate for first and second year college students (including nonscience majors), that incorporates inquiry-based learning techniques. In the lab, students play the role of meteorologists making forecasts for severe weather. The…

  10. How Should I Study for the Exam? Self-Regulated Learning Strategies and Achievement in Introductory Biology.

    Science.gov (United States)

    Sebesta, Amanda J; Bray Speth, Elena

    2017-01-01

    In college introductory science courses, students are challenged with mastering large amounts of disciplinary content while developing as autonomous and effective learners. Self-regulated learning (SRL) is the process of setting learning goals, monitoring progress toward them, and applying appropriate study strategies. SRL characterizes successful, "expert" learners, and develops with time and practice. In a large, undergraduate introductory biology course, we investigated: 1) what SRL strategies students reported using the most when studying for exams, 2) which strategies were associated with higher achievement and with grade improvement on exams, and 3) what study approaches students proposed to use for future exams. Higher-achieving students, and students whose exam grades improved in the first half of the semester, reported using specific cognitive and metacognitive strategies significantly more frequently than their lower-achieving peers. Lower-achieving students more frequently reported that they did not implement their planned strategies or, if they did, still did not improve their outcomes. These results suggest that many students entering introductory biology have limited knowledge of SRL strategies and/or limited ability to implement them, which can impact their achievement. Course-specific interventions that promote SRL development should be considered as integral pedagogical tools, aimed at fostering development of students' lifelong learning skills. © 2017 A. J. Sebesta and E. Bray Speth. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. The Robotic Decathlon: Project-Based Learning Labs and Curriculum Design for an Introductory Robotics Course

    Science.gov (United States)

    Cappelleri, D. J.; Vitoroulis, N.

    2013-01-01

    This paper presents a series of novel project-based learning labs for an introductory robotics course that are developed into a semester-long Robotic Decathlon. The last three events of the Robotic Decathlon are used as three final one-week-long project tasks; these replace a previous course project that was a semester-long robotics competition.…

  12. Relationships between undergraduates' argumentation skills, conceptual quality of problem solutions, and problem solving strategies in introductory physics

    Science.gov (United States)

    Rebello, Carina M.

    This study explored the effects of alternative forms of argumentation on undergraduates' physics solutions in introductory calculus-based physics. A two-phase concurrent mixed methods design was employed to investigate relationships between undergraduates' written argumentation abilities, conceptual quality of problem solutions, as well as approaches and strategies for solving argumentative physics problems across multiple physics topics. Participants were assigned via stratified sampling to one of three conditions (control, guided construct, or guided evaluate) based on gender and pre-test scores on a conceptual instrument. The guided construct and guided evaluate groups received tasks and prompts drawn from literature to facilitate argument construction or evaluation. Using a multiple case study design, with each condition serving as a case, interviews were conducted consisting of a think-aloud problem solving session paired with a semi-structured interview. The analysis of problem solving strategies was guided by the theoretical framework on epistemic games adapted by Tuminaro and Redish (2007). This study provides empirical evidence that integration of written argumentation into physics problems can potentially improve the conceptual quality of solutions, expand their repertoire of problem solving strategies and show promise for addressing the gender gap in physics. The study suggests further avenues for research in this area and implications for designing and implementing argumentation tasks in introductory college physics.

  13. Instructional Practices in Introductory Geoscience Courses: Results of a National Faculty Survey

    Science.gov (United States)

    MacDonald, R.; Manduca, C. A.; Mogk, D. W.; Tewksbury, B. J.

    2004-12-01

    The NAGT professional development program "On the Cutting Edge" recently surveyed 7000 geoscience faculty in the United States to develop a snapshot of current instructional practices in undergraduate geoscience courses, faculty strategies for learning new content and new teaching approaches, and faculty involvement in the geoscience education community. Over 2200 faculty responded to the survey which was conducted by the American Institute of Physics. Results for introductory courses (814 responses) indicate that lecture is the most common teaching strategy used in courses of all sizes. Many faculty incorporate some interactive activities in their courses. Most commonly, they use questioning, demonstrations, discussions, and in-class exercises. Less common, but not rare, are small group discussion or think-pair-share and classroom debates or role-playing. Activities involving problem solving, using quantitative skills, working with data and primarily literature, and structured collaboration are incorporated by many faculty in introductory courses, suggesting efforts to teach the process of science. Activities in which students address a problem of national or local interest, analyze their own data, or address problems of their own design are less common but not rare. Field experiences are common but not ubiquitous for students in introductory courses. A wide variety of assessment strategies are used in introductory courses of all sizes, including exams, quizzes, problem sets, papers, oral presentations, and portfolios. While papers are used for assessment more extensively in small classes, a significant number of faculty use papers in large classes (greater than 81 students). A majority of faculty use rubrics in grading. Faculty report that in the past two years, approximately one-third have made changes in the content of their introductory courses while just under half have changed the teaching methods they use. While faculty learn about both new content and

  14. Assessing the Effectiveness of Studio Physics in Introductory-Level Courses at Georgia State University

    Science.gov (United States)

    Upton, Brianna; Evans, John; Morrow, Cherilynn; Thoms, Brian

    2009-11-01

    Previous studies have shown that many students have misconceptions about basic concepts in physics. Moreover, it has been concluded that one of the challenges lies in the teaching methodology. To address this, Georgia State University has begun teaching studio algebra-based physics. Although many institutions have implemented studio physics, most have done so in calculus-based sequences. The effectiveness of the studio approach in an algebra-based introductory physics course needs further investigation. A 3-semester study assessing the effectiveness of studio physics in an algebra-based physics sequence has been performed. This study compares the results of student pre- and post-tests using the Force Concept Inventory. Using the results from this assessment tool, we will discuss the effectiveness of the studio approach to teaching physics at GSU.

  15. Student Selection of the Textbook for an Introductory Physics Course

    Science.gov (United States)

    Dake, L. S.

    2007-10-01

    Several years ago I had to select a new textbook for my calculus-based introductory physics class. I subscribe to Just-in-Time Teaching methods, which require students to read the book before the material is covered in class. Thus, the readability of the text by the students is critical. However, I did not feel that I was the best judge of this factor, so I turned the textbook selection into a class project. The students unanimously chose one textbook, which I have now successfully used for three years. The project was decidedly worthwhile, and I gained considerable insight into what students prefer in a textbook.

  16. Incorporating Service Learning into the Introductory Astronomy Course

    Science.gov (United States)

    Mukherjee, K.

    2002-05-01

    The introductory Astronomy course can be enriched by adding a service learning component to it. This enables students to interact with and educate the general public about matters of outer space. At Slippery Rock University we have incorporated this idea into our Astronomy and Space Science courses. Working in groups, the students do a presentation which is often interdisciplinary. Frequently the department gets requests from schools to do a show specifically tailored to a topic like the solar system or constellations. Such projects are beneficial to students in many ways. They demand a thorough knowledge of the subject matter so as to communicate to the audience in a clear and nontechnical manner. The students also experience first hand the difficulties involved in coordinating a group effort. They learn to take responsibility for their allocated part and how to combine effectively to make the entire show a success. Interacting with various age groups demands a versatility in planning content and public speaking skills not easily available elsewhere in a traditional education. Our planetarium facilities help in attracting diverse audiences from preschoolers to senior citizens. Performance in these shows constitutes twenty five percent of course grade. Feedback from audience groups helps refine future shows by subsequent student cohorts.

  17. Differentiating case-based learning from problem-based learning after a twoday introductory workshop on case-based learning

    Directory of Open Access Journals (Sweden)

    Aqil Mohammad Daher

    2017-12-01

    Full Text Available Background Considerable overlap exists between case-based learning (CBL and problem-based learning (PBL and differentiating between the two can be difficult for a lot of the academicians. Aims This study gauged the ability of members of medical school, familiar with a problem-based learning (PBL curriculum, to differentiate between case-based learning (CBL and PBL after a two-day workshop on CBL. Methods A questionnaire was distributed to all participants, attending the introductory course on CBL. It was designed to document the basic characteristics of the respondents, their preference for either CBL or PBL, their ability to recognize differences between CBL and PBL, and their overall perception of the course. Results Of the total workshop participants, 80.5 per cent returned the completed questionnaire. The mean age of the respondents was 44.12±12.31 years and women made up a slight majority. Majority favoured CBL over PBL and felt it was more clinical, emphasizes on self-directed learning, provides more opportunities for learning, permits in-depth exploration of cases, has structured environment and encourages the use of all learning resources. On the respondents’ ability to discriminate CBL from PBL, a weighted score of 39.9 per cent indicated a failure on the part of the respondents to correctly identify differences between CBL and PBL. Less than half opined that CBL was a worthwhile progression from PBL and about third would recommend CBL over PBL. Conclusion It seems that majority of the respondents failed to adequately differentiate between CBL and PBL and didn’t favour CBL over PBL.

  18. Case of two electrostatics problems: Can providing a diagram adversely impact introductory physics students’ problem solving performance?

    Directory of Open Access Journals (Sweden)

    Alexandru Maries

    2018-03-01

    Full Text Available Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an investigation in which two different interventions were implemented during recitation quizzes in a large enrollment algebra-based introductory physics course. Students were either (i asked to solve problems in which the diagrams were drawn for them or (ii explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed rubrics to score the problem solving performance of students in different intervention groups and investigated ten problems. We found that students who were provided diagrams never performed better and actually performed worse than the other students on three problems, one involving standing sound waves in a tube (discussed elsewhere and two problems in electricity which we focus on here. These two problems were the only problems in electricity that involved considerations of initial and final conditions, which may partly account for why students provided with diagrams performed significantly worse than students who were not provided with diagrams. In order to explore potential reasons for this finding, we conducted interviews with students and found that some students provided with diagrams may have spent less time on the conceptual analysis and planning stage of the problem solving process. In particular, those provided with the diagram were more likely to jump into the implementation stage of problem solving early without fully analyzing and understanding the problem, which can increase the likelihood of mistakes in solutions.

  19. Case of two electrostatics problems: Can providing a diagram adversely impact introductory physics students' problem solving performance?

    Science.gov (United States)

    Maries, Alexandru; Singh, Chandralekha

    2018-06-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an investigation in which two different interventions were implemented during recitation quizzes in a large enrollment algebra-based introductory physics course. Students were either (i) asked to solve problems in which the diagrams were drawn for them or (ii) explicitly told to draw a diagram. A comparison group was not given any instruction regarding diagrams. We developed rubrics to score the problem solving performance of students in different intervention groups and investigated ten problems. We found that students who were provided diagrams never performed better and actually performed worse than the other students on three problems, one involving standing sound waves in a tube (discussed elsewhere) and two problems in electricity which we focus on here. These two problems were the only problems in electricity that involved considerations of initial and final conditions, which may partly account for why students provided with diagrams performed significantly worse than students who were not provided with diagrams. In order to explore potential reasons for this finding, we conducted interviews with students and found that some students provided with diagrams may have spent less time on the conceptual analysis and planning stage of the problem solving process. In particular, those provided with the diagram were more likely to jump into the implementation stage of problem solving early without fully analyzing and understanding the problem, which can increase the likelihood of mistakes in solutions.

  20. Learning From Where Students Look While Observing Simulated Physical Phenomena

    Science.gov (United States)

    Demaree, Dedra

    2005-04-01

    The Physics Education Research (PER) Group at the Ohio State University (OSU) has developed Virtual Reality (VR) programs for teaching introductory physics concepts. Winter 2005, the PER group worked with OSU's cognitive science eye-tracking lab to probe what features students look at while using our VR programs. We see distinct differences in the features students fixate on depending upon whether or not they have formally studied the related physics. Students who first make predictions seem to fixate more on the relevant features of the simulation than those who do not, regardless of their level of education. It is known that students sometimes perform an experiment and report results consistent with their misconceptions but inconsistent with the experimental outcome. We see direct evidence of one student holding onto misconceptions despite fixating frequently on the information needed to understand the correct answer. Future studies using these technologies may prove valuable for tackling difficult questions regarding student learning.

  1. Introductory Physics Experiments Using the Wii Balance Board

    Science.gov (United States)

    Starr, Julian; Sobczak, Robert; Iqbal, Zohaib; Ochoa, Romulo

    2010-02-01

    The Wii, a video game console by Nintendo, utilizes several different controllers, such as the Wii remote (Wiimote) and the balance board, for game-playing. The balance board was introduced in early 2008. It contains four strain gauges and has Bluetooth connectivity at a relatively low price. Thanks to available open source code, such as GlovePie, any PC with Bluetooth capability can detect the information sent out by the balance board. Based on the ease with which the forces measured by each strain gauge can be obtained, we have designed several experiments for introductory physics courses that make use of this device. We present experiments to measure the forces generated when students lift their arms with and without added weights, distribution of forces on an extended object when weights are repositioned, and other normal forces cases. The results of our experiments are compared with those predicted by Newtonian mechanics. )

  2. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    Directory of Open Access Journals (Sweden)

    Jesper Bruun

    2013-07-01

    Full Text Available The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1 communication about how to solve physics problems in the course (called the PS category, (2 communications about the nature of physics concepts (called the CD category, and (3 social interactions that are not strictly related to the content of the physics classes (called the ICS category in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI scores. We find highly significant correlations (p<0.001 between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network, the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively with future grades. In the CD network, the network measure target entropy shows the highest correlation

  3. Development and analysis of spectroscopic learning tools and the light and spectroscopy concept inventory for introductory college astronomy

    Science.gov (United States)

    Bardar, Erin M.

    Electromagnetic radiation is the fundamental carrier of astronomical information. Spectral features serve as the fingerprints of the universe, revealing many important properties of objects in the cosmos such as temperature, elemental compositions, and relative motion. Because of its importance to astronomical research, the nature of light and the electromagnetic spectrum is by far the most universally covered topic in astronomy education. Yet, to the surprise and disappointment of instructors, many students struggle to understand underlying fundamental concepts related to light and spectroscopic phenomena. This dissertation describes research into introductory college astronomy students' understanding of light and spectroscopy concepts, through the development and analysis of both instructional materials and an assessment instrument. The purpose of this research was two-fold: (1) to develop a novel suite of spectroscopic learning tools that enhance student understanding of light and spectroscopy and (2) to design and validate a Light and Spectroscopy Concept Inventory (LSCI) with the sensitivity to distinguish the relative effectiveness of various teaching interventions within the context of introductory college astronomy. Through a systematic investigation that included multiple rounds of clinical interviews, open-ended written surveys, and multiple-choice testing, introductory college astronomy students' commonly held misconceptions and reasoning difficulties were explored for concepts relating to: (1) The nature of the electromagnetic spectrum, including the interrelationships of wavelength, frequency, energy, and speed; (2) interpretation of Doppler shift; (3) properties of blackbody radiation; and (4) the connection between spectral features and underlying physical processes. These difficulties guided the development of instructional materials including six unique "homelab" exercises, a binocular spectrometer, a spectral analysis software tool, and the 26

  4. Faraday's Principle and Air Travel in the Introductory Labs

    Science.gov (United States)

    Abdul-Razzaq, Wathiq; Thakur, Saikat Chakraborty

    2017-01-01

    We all know that we must improve the quality of teaching in science at all levels. Not only physicists but also many students from other areas of study take the introductory physics courses in college. Physics introductory laboratories (labs) can be one of the best tools to help these students understand applications of scientific principles that…

  5. Student Perceptions of Learning Data-Creation and Data-Analysis Skills in an Introductory College-Level Chemistry Course

    Science.gov (United States)

    Glazer, Nirit

    2015-01-01

    This study examines how students perceive their learning of creating and analyzing data in an introductory inquiry chemistry course at a college level that features oral presentations in student-centered discussions. A student Participant Perception Indicator (PPI) survey was administered in order to obtain data on student perceptions with respect…

  6. Crossing the Threshold in Introductory Women's and Gender Studies Courses: An Assessment of Student Learning

    Science.gov (United States)

    Hassel, Holly; Launius, Christie

    2017-01-01

    This article reports on a scholarship of teaching and learning (SoTL) project in the introductory women's and gender studies course, occasioned by a curricular redesign to focus the course on four threshold concepts within the field: the social construction of gender, privilege and oppression, intersectionality, and feminist praxis. The authors…

  7. Geodesics without differential equations: general relativistic calculations for introductory modern physics classes

    International Nuclear Information System (INIS)

    Rowland, D R

    2006-01-01

    Introductory courses covering modern physics sometimes introduce some elementary ideas from general relativity, though the idea of a geodesic is generally limited to shortest Euclidean length on a curved surface of two spatial dimensions rather than extremal aging in spacetime. It is shown that Epstein charts provide a simple geometric picture of geodesics in one space and one time dimension and that for a hypothetical uniform gravitational field, geodesics are straight lines on a planar diagram. This means that the properties of geodesics in a uniform field can be calculated with only a knowledge of elementary geometry and trigonometry, thus making the calculation of some basic results of general relativity accessible to students even in an algebra-based survey course on physics

  8. Investigating the use of mastery-style online homework exercises in introductory algebra-based mechanics in a controlled clinical study

    Science.gov (United States)

    Evans, William R.; Selen, Mats A.

    2017-12-01

    Homework in introductory physics represents an important part of a student's learning experience; therefore, choosing the manner in which homework is presented merits investigation. We performed three rounds of clinical trials comparing the effects of mastery-style homework vs traditional-style homework with students in both algebra-based and calculus-based introductory mechanics. Results indicate a benefit from mastery-style over traditional-style homework, principally for weaker students who are less familiar with the material being covered and on questions that are nearer transfer to the study materials.

  9. An evaluation of teaching methods in the introductory physics classroom

    Science.gov (United States)

    Savage, Lauren Michelle Williams

    The introductory physics mechanics course at the University of North Carolina at Charlotte has a history of relatively high DFW rates. In 2011, the course was redesigned from the traditional lecture format to the inverted classroom format (flipped). This format inverts the classroom by introducing material in a video assigned as homework while the instructor conducts problem solving activities and guides discussions during the regular meetings. This format focuses on student-centered learning and is more interactive and engaging. To evaluate the effectiveness of the new method, final exam data over the past 10 years was mined and the pass rates examined. A normalization condition was developed to evaluate semesters equally. The two teaching methods were compared using a grade distribution across multiple semesters. Students in the inverted class outperformed those in the traditional class: "A"s increased by 22% and "B"s increased by 38%. The final exam pass rate increased by 12% under the inverted classroom approach. The same analysis was used to compare the written and online final exam formats. Surprisingly, no students scored "A"s on the online final. However, the percent of "B"s increased by 136%. Combining documented best practices from a literature review with personal observations of student performance and attitudes from first hand classroom experience as a teaching assistant in both teaching methods, reasons are given to support the continued use of the inverted classroom approach as well as the online final. Finally, specific recommendations are given to improve the course structure where weaknesses have been identified.

  10. Introductory quantum mechanics for applied nanotechnology

    CERN Document Server

    Kim, Dae Mann

    2015-01-01

    This introductory textbook covers fundamental quantum mechanics from an application perspective, considering optoelectronic devices, biological sensors and molecular imagers as well as solar cells and field effect transistors. The book provides a brief review of classical and statistical mechanics and electromagnetism, and then turns to the quantum treatment of atoms, molecules, and chemical bonds. Aiming at senior undergraduate and graduate students in nanotechnology related areas like physics, materials science, and engineering, the book could be used at schools that offer interdisciplinary but focused training for future workers in the semiconductor industry and for the increasing number of related nanotechnology firms, and even practicing people could use it when they need to learn related concepts. The author is Professor Dae Mann Kim from the Korea Institute for Advanced Study who has been teaching Quantum Mechanics to engineering, material science and physics students for over 25 years in USA and Asia.

  11. Enhancing the Teaching of Introductory Economics with a Team-Based, Multi-Section Competition

    Science.gov (United States)

    Beaudin, Laura; Berdiev, Aziz N.; Kaminaga, Allison Shwachman; Mirmirani, Sam; Tebaldi, Edinaldo

    2017-01-01

    The authors describe a unique approach to enhancing student learning at the introductory economics level that utilizes a multi-section, team-based competition. The competition is structured to supplement learning throughout the entire introductory course. Student teams are presented with current economic issues, trends, or events, and use economic…

  12. Sustaining the Progress to Improve Physics Education

    Science.gov (United States)

    Abdul-Razzaq, Wathiq

    2010-01-01

    One of the problems we face in teaching introductory physics courses at the college level is that about 2/3 of students never had physics prior coming to college. Thus, many students find it very difficult to learn physics for the first time at the relatively fast-paced teaching of college physics courses. Sometimes the drop/failure/withdrawal…

  13. Verification of causal influences of reasoning skills and epistemology on physics conceptual learning

    Directory of Open Access Journals (Sweden)

    Lin Ding

    2014-07-01

    Full Text Available This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills measured by the Classroom Test of Scientific Reasoning, pre- and postepistemological views measured by the Colorado Learning Attitudes about Science Survey, and pre- and postperformance on Newtonian concepts measured by the Force Concept Inventory. Students from a traditionally taught calculus-based introductory mechanics course at a research university participated in the study. Results largely support the postulated causal model and reveal strong influences of reasoning skills and preinstructional epistemology on student conceptual learning gains. Interestingly enough, postinstructional epistemology does not appear to have a significant influence on student learning gains. Moreover, pre- and postinstructional epistemology, although barely different from each other on average, have little causal connection between them.

  14. Python and Roles of Variables in Introductory Programming: Experiences from Three Educational Institutions

    Science.gov (United States)

    Nikula, Uolevi; Sajaniemi, Jorma; Tedre, Matti; Wray, Stuart

    2007-01-01

    Students often find that learning to program is hard. Introductory programming courses have high drop-out rates and students do not learn to program well. This paper presents experiences from three educational institutions where introductory programming courses were improved by adopting Python as the first programming language and roles of…

  15. Introductory Statistics in the Garden

    Science.gov (United States)

    Wagaman, John C.

    2017-01-01

    This article describes four semesters of introductory statistics courses that incorporate service learning and gardening into the curriculum with applications of the binomial distribution, least squares regression and hypothesis testing. The activities span multiple semesters and are iterative in nature.

  16. The Influence of Learning and Teaching Styles on Student Attitudes and Achievement in the Introductory Economics Course: A Case Study.

    Science.gov (United States)

    Wetzel, James N.; And Others

    1982-01-01

    Reports the results of a study that examined the influence of learning and teaching styles on changes in student achievement in economics and attitude toward economics among undergraduates enrolled in an introductory economics course. (AM)

  17. The Influence of Collaborative Learning on Student Attitudes and Performance in an Introductory Chemistry Laboratory

    Science.gov (United States)

    Shibley, Ivan A., Jr.; Zimmaro, Dawn M.

    2002-06-01

    This study was designed to determine the effect of collaborative learning on student attitudes and performance in an introductory chemistry laboratory. Two sections per semester for three semesters were randomly designated as either a control section or an experimental section. Students in the control section performed most labs individually, while those in the experimental section performed all labs in groups of four. Both quantitative and qualitative measures were used to evaluate the impact of collaborative learning on student achievement and attitudes. Grades did not differ between the two sections, indicating that collaborative learning did not affect short-term student achievement. Students seemed to develop a more positive attitude about the laboratory and about chemistry in the collaborative learning sections as judged from their classroom evaluations of the teacher, the course, and the collaborative learning experience. The use of collaborative learning in the laboratory as described in this paper therefore may provide a means of improving student attitudes toward chemistry.

  18. Piaget and Organic Chemistry: Teaching Introductory Organic Chemistry through Learning Cycles

    Science.gov (United States)

    Libby, R. Daniel

    1995-07-01

    This paper describes the first application of the Piaget-based learning cycle technique (Atkin & Karplus, Sci. Teach. 1962, 29, 45-51) to an introductory organic chemistry course. It also presents the step-by-step process used to convert a lecture course into a discussion-based active learning course. The course is taught in a series of learning cycles. A learning cycle is a three phase process that provides opportunities for students to explore new material and work with an instructor to recognize logical patterns in data, and devise and test hypotheses. In this application, the first phase, exploration, involves out-of-class student evaluation of data in attempts to identify significant trends and develop hypotheses that might explain the trends in terms of fundamental scientific principles. In the second phase, concept invention, the students and instructor work together in-class to evaluate student hypotheses and find concepts that work best in explaining the data. The third phase, application, is an out-of-class application of the concept to new situations. The development of learning cycles from lecture notes is presented as an 8 step procedure. The process involves revaluation and restructuring of the course material to maintain a continuity of concept development according to the instructor's logic, dividing topics into individual concepts or techniques, and refocusing the presentation in terms of large numbers of examples that can serve as data for students in their exploration and application activities. A sample learning cycle and suggestions for ways of limited implementation of learning cycles into existing courses are also provided.

  19. The Use of Group Activities in Introductory Biology Supports Learning Gains and Uniquely Benefits High-Achieving Students

    Directory of Open Access Journals (Sweden)

    Gili Marbach-Ad

    2016-12-01

    Full Text Available This study describes the implementation and effectiveness of small-group active engagement (GAE exercises in an introductory biology course (BSCI207 taught in a large auditorium setting. BSCI207 (Principles of Biology III—Organismal Biology is the third introductory core course for Biological Sciences majors. In fall 2014, the instructors redesigned one section to include GAE activities to supplement lecture content. One section (n = 198 employed three lectures per week. The other section (n = 136 replaced one lecture per week with a GAE class. We explored the benefits and challenges associated with implementing GAE exercises and their relative effectiveness for unique student groups (e.g., minority students, high- and low-grade point average [GPA] students. Our findings show that undergraduates in the GAE class exhibited greater improvement in learning outcomes than undergraduates in the traditional class. Findings also indicate that high-achieving students experienced the greatest benefit from GAE activities. Some at-risk student groups (e.g., two-year transfer students showed comparably low learning gains in the course, despite the additional support that may have been afforded by active learning. Collectively, these findings provide valuable feedback that may assist other instructors who wish to revise their courses and recommendations for institutions regarding prerequisite coursework approval policies.

  20. Do evidence-based active-engagement courses reduce the gender gap in introductory physics?

    Science.gov (United States)

    Karim, Nafis I.; Maries, Alexandru; Singh, Chandralekha

    2018-03-01

    Prior research suggests that using evidence-based pedagogies can not only improve learning for all students, it can also reduce the gender gap. We describe the impact of physics education research-based pedagogical techniques in flipped and active-engagement non-flipped courses on the gender gap observed with validated conceptual surveys. We compare male and female students’ performance in courses which make significant use of evidence-based active-engagement (EBAE) strategies with courses that primarily use lecture-based (LB) instruction. All courses had large enrolment and often had more than 100 students. The analysis of data for validated conceptual surveys presented here includes data from two-semester sequences of algebra-based and calculus-based introductory physics courses. The conceptual surveys used to assess student learning in the first and second semester courses were the force concept inventory and the conceptual survey of electricity and magnetism, respectively. In the research discussed here, the performance of male and female students in EBAE courses at a particular level is compared with LB courses in two situations: (I) the same instructor taught two courses, one of which was an EBAE course and the other an LB course, while the homework, recitations and final exams were kept the same; (II) student performance in all of the EBAE courses taught by different instructors was averaged and compared with LB courses of the same type also averaged over different instructors. In all cases, on conceptual surveys we find that students in courses which make significant use of active-engagement strategies, on average, outperformed students in courses of the same type using primarily lecture-based instruction even though there was no statistically significant difference on the pre-test before instruction. However, the gender gap persisted even in courses using EBAE methods. We also discuss correlations between the performance of male and female students on

  1. Active Learning Strategies for Introductory Light and Optics

    Science.gov (United States)

    Sokoloff, David R.

    2016-01-01

    There is considerable evidence that traditional approaches are ineffective in teaching physics concepts, including light and optics concepts. A major focus of the work of the Activity Based Physics Group has been on the development of active learning curricula like RealTime Physics (RTP) labs and Interactive Lecture Demonstrations (ILDs). Among…

  2. Impact of Guided Reflection with Peers on the Development of Effective Problem Solving Strategies and Physics Learning

    Science.gov (United States)

    Mason, Andrew J.; Singh, Chandralekha

    2016-05-01

    Students must learn effective problem solving strategies in order to develop expertise in physics. Effective problem solving strategies include a conceptual analysis of the problem followed by planning of the solution, and then implementation, evaluation, and reflection upon the process. Research suggests that converting a problem from the initial verbal representation to other suitable representation, e.g., diagrammatic representation, during the initial conceptual analysis can facilitate further analysis of the problem. But without guidance, many introductory physics students solve problems using superficial clues and cues and do not perceive problem solving as an opportunity for learning. Here, we describe a study that suggests that engaging students in reflection with peers about effective problem solving strategies while effective approaches are modeled for them and prompt feedback is provided may enhance desirable skills.

  3. Investigating Flipped Learning: Student Self-Regulated Learning, Perceptions, and Achievement in an Introductory Biology Course

    Science.gov (United States)

    Sletten, Sarah Rae

    2017-06-01

    In flipped classrooms, lectures, which are normally delivered in-class, are assigned as homework in the form of videos, and assignments that were traditionally assigned as homework, are done as learning activities in class. It was hypothesized that the effectiveness of the flipped model hinges on a student's desire and ability to adopt a self-directed learning style. The purpose of this study was twofold; it aimed at examining the relationship between two variables—students' perceptions of the flipped model and their self-regulated learning (SRL) behaviors—and the impact that these variables have on achievement in a flipped class. For the study, 76 participants from a flipped introductory biology course were asked about their SRL strategy use and perceptions of the flipped model. SRL strategy use was measured using a modified version of the Motivated Strategies for Learning Questionnaire (MSLQ; Wolters et al. 2005), while the flipped perceptions survey was newly derived. Student letter grades were collected as a measure of achievement. Through regression analysis, it was found that students' perceptions of the flipped model positively predict students' use of several types of SRL strategies. However, the data did not indicate a relationship between student perceptions and achievement, neither directly nor indirectly, through SRL strategy use. Results suggest that flipped classrooms demonstrate their successes in the active learning sessions through constructivist teaching methods. Video lectures hold an important role in flipped classes, however, students may need to practice SRL skills to become more self-directed and effectively learn from them.

  4. Learning, retention, and forgetting of Newton’s third law throughout university physics

    Directory of Open Access Journals (Sweden)

    Eleanor C. Sayre

    2012-04-01

    Full Text Available We present data from a between-student study on student response to questions on Newton’s third law given in two introductory calculus-based physics classes (Mechanics and Electromagnetism at a large northeastern university. Construction of a response curve reveals subtle dynamics in student learning not capturable by pretesting and post-testing. We find a significant positive effect of instruction that diminishes by the end of the quarter. Two quarters later, a significant dip in correct response occurs when instruction changes from the vector quantities of electric forces and fields to the scalar quantity of electric potential. When instruction returns to vector topics, performance rebounds to initial values.

  5. Becoming physics people: Development of physics identity in self-concept and practice through the Learning Assistant experience

    Science.gov (United States)

    Close, Eleanor

    2016-03-01

    The physics department at Texas State University has implemented a Learning Assistant (LA) program with reform-based instructional changes in our introductory course sequences. We are interested in how participation in the LA program influences LAs' identity both as physics students and as physics teachers; in particular, how being part of the LA community changes participants' self-concepts and their day-to-day practice. We analyze video of weekly LA preparation sessions and interviews with LAs as well as written artifacts from program applications, pedagogy course reflections, and evaluations. Our analysis of self-concepts is informed by the identity framework developed by Hazari et al., and our analysis of practice is informed by Lave and Wenger's theory of Communities of Practice. Regression models from quantitative studies show that the physics identity construct strongly predicts intended choice of a career in physics; the goal of our current project is to understand the details of the impacts of participation in the LA experience on participants' practice and self-concept, in order to identify critical elements of LA program structure that positively influence physics identity and physics career intentions for students. Our analysis suggests that participation in the LA program impacts LAs in ways that support both stronger ``physics student'' identity and stronger ``physics instructor'' identity, and that these identities are reconciled into a coherent integrated physics identity. In addition to becoming more confident and competent in physics, LAs perceive themselves to have increased competence in communication and a stronger sense of belonging to a supportive and collaborative community; participation in the LA program also changes their ways of learning and of being students, both within and beyond physics. This research and the TXST LA program are supported by NSF DUE-1240036, NSF DUE-1431578, and the Halliburton Foundation.

  6. First-Year and Non-First-Year Student Expectations Regarding In-Class and Out-of-Class Learning Activities in Introductory Biology †

    Science.gov (United States)

    Brown, Tanya L.; Brazeal, Kathleen R.; Couch, Brian A.

    2017-01-01

    National calls for teaching transformation build on a constructivist learning theory and propose that students learn by actively engaging in course activities and interacting with other students. While interactive pedagogies can improve learning, they also have the potential to challenge traditional norms regarding class participation and learning strategies. To better understand the potential openness of students to interactive teaching practices, we administered a survey during the first week of two sections of an introductory biology course to characterize how students envisioned spending time during class as well as what activities they expected to complete outside of class during non-exam weeks and in preparation for exams. Additionally, we sought to test the hypothesis that the expectations of first-year students differed from those of non-first-year students. Analyses of closed-ended and open-ended questions revealed that students held a wide range of expectations and that most students expressed expectations consistent with some degree of transformed teaching. Furthermore, first-year students expected more active learning in class, more out-of-class coursework during non-exam weeks, and more social learning strategies than non-first-year students. We discuss how instructor awareness of incoming student expectations might be used to promote success in introductory science courses. PMID:28512514

  7. Teaching Health Care in Introductory Economics

    Science.gov (United States)

    Cutler, David M.

    2017-01-01

    Health care is one of the economy's biggest industries, so it is natural that the health care industry should play some role in the teaching of introductory economics. There are many ways that health care can appear in such a context: in the teaching of microeconomics, as a macroeconomic issue, to learn about social welfare, and even to learn how…

  8. Examining Student Attitudes in Introductory Physics via the Math Attitude and Expectations Survey (MAX)

    Science.gov (United States)

    Hemingway, Deborah; Eichenlaub, Mark; Losert, Wolfgang; Redish, Edward F.

    2017-01-01

    Student often face difficulties with using math in science, and this exploratory project seeks to address the underlying mechanisms that lead to these difficulties. This mixed-methods project includes the creation of two novel assessment surveys, the Mathematical Epistemic Games Survey (MEGS) and the Math Attitude and Expectations Survey (MAX). The MAX, a 30-question Likert-scale survey, focuses on the attitudes towards using mathematics of the students in a reformed introductory physics course for the life sciences (IPLS) which is part of the National Experiment in Undergraduate Education (NEXUS/Physics) developed at the University of Maryland (UMD). Preliminary results from the MAX are discussed with specific attention given to students' attitudes towards math and physics, opinions about interdisciplinarity, and the usefulness of physics in academic settings as well as in professional biological research and modern medicine settings.

  9. Activity Development for Intersection Operations The National Transportation Curriculum Project : Developing Activity-Based Learning Modules for the Introductory Transportation Engineering Course

    Science.gov (United States)

    2012-05-01

    The goal of this work was to develop activity-based learning materials for the introductory transportation engineering course : with the purpose of increasing student understanding and concept retention. These materials were to cover intersection : o...

  10. The Interactions of Relationships, Interest, and Self-Efficacy in Undergraduate Physics

    Science.gov (United States)

    Dou, Remy

    This collected papers dissertation explores students' academic interactions in an active learning, introductory physics settings as they relate to the development of physics self-efficacy and interest. The motivation for this work extends from the national call to increase participation of students in the pursuit of science, technology, engineering, and mathematics (STEM) careers. Self-efficacy and interest are factors that play prominent roles in popular, evidence-based, career theories, including the Social cognitive career theory (SCCT) and the identity framework. Understanding how these constructs develop in light of the most pervasive characteristic of the active learning introductory physics classroom (i.e., peer-to-peer interactions) has implications on how students learn in a variety of introductory STEM classrooms and settings structured after constructivist and sociocultural learning theories. I collected data related to students' in-class interactions using the tools of social network analysis (SNA). Social network analysis has recently been shown to be an effective and useful way to examine the structure of student relationships that develop in and out of STEM classrooms. This set of studies furthers the implementation of SNA as a tool to examine self-efficacy and interest formation in the active learning physics classroom. Here I represent a variety of statistical applications of SNA, including bootstrapped linear regression (Chapter 2), structural equation modeling (Chapter 3), and hierarchical linear modeling for longitudinal analyses (Chapter 4). Self-efficacy data were collected using the Sources of Self-Efficacy for Science Courses - Physics survey (SOSESC-P), and interest data were collected using the physics identity survey. Data for these studies came from the Modeling Instruction sections of Introductory Physics with Calculus offered at Florida International University in the fall of 2014 and 2015. Analyses support the idea that students

  11. Ready to learn physics: a team-based learning model for first year university

    Science.gov (United States)

    Parappilly, Maria; Schmidt, Lisa; De Ritter, Samantha

    2015-09-01

    Team-based learning (TBL) is an established model of group work which aims to improve students' ability to apply discipline-related content. TBL consists of a readiness assurance process (RAP), student groups and application activities. While TBL has not been implemented widely in science, technology, engineering and mathematics disciplines, it has been effective in improving student learning in other disciplines. This paper describes the incorporation of TBL activities into a non-calculus based introductory level physics topic—Physics for the Modern World. Students were given pre-class preparation materials and an individual RAP online test before the workshops. The pre-workshop individual RAP test ensured that all students were exposed to concept-based questions before their workshops and motivated them to use the preparatory materials in readiness for the workshop. The students were placed into random teams and during the first part of the workshop, the teams went through a subset of the quiz questions (team RAP test) and in the remaining time, teams completed an in-class assignment. After the workshop students were allowed another attempt at the individual RAP test to see if their knowledge had improved. The ability of TBL to promote student learning of key concepts was evaluated by experiment using pre- and post- testing. The students’ perception of TBL was monitored by discussion posts and survey responses. Finally, the ability of TBL to support peer-peer interaction was evaluated by video analysis of the class. We found that the TBL process improved student learning; students did interact with each other in class; and the students had a positive view of TBL. To assess the transferability of this model to other topics, we conducted a comparison study with an environmental science topic which produced similar results. Our study supports the use of this TBL model in science topics.

  12. Enabling students to learn: Design, implementation and assessment of a supplemental study strategies course for an introductory undergraduate biology course

    Science.gov (United States)

    Sriram, Jayanthi Sanjeevi

    Attrition in the STEM disciplines is a national problem and one of the important reasons for this is student experiences in introductory courses. A myriad of factors influence students' experiences in those courses; inadequate student preparation is one of the most cited reasons. Incoming freshmen often lack the learning strategies required to meaningfully learn and succeed in college courses. Unfortunately, the instructors have limited time and/or have little experience in teaching learning strategies. In this paper, the design, implementation, and evaluation of a Supplemental Course (SC) model that emphasizes learning strategies is presented. SC was offered concurrently with the introductory biology courses for four consecutive semesters (fall 2011 to spring 2013); for 10 weeks in fall 2012 and 7 weeks in the other semesters at Miami University. 10 weeks SC began earlier in the semester than the shorter SC. This study evaluated the effects of the SC on students' (1) performance in the introductory biology course, (2) perceived changes in self-regulation and social support, and (3) experiences in the introductory biology course before, during, and after participation in the SC. A mixed methods approach was used to address these goals. A pre-post survey was administered to obtain students' use of self-regulation strategies and social-support data. Quantitative methods were utilized to analyze content exam grades and changes in self-regulation strategies and social-support. To explore the experiences of the students, semi-structured interviews were conducted, followed by analysis using grounded theory. The findings reveal that participants of the longer duration SC (with an earlier start date) significantly improved in content exam performance, perceived use of self-regulation strategies, and social support compared to the non-participants. Participants of the shorter duration SC (with a later start date) did not significantly improve in content exam performance

  13. Introductory speeches

    International Nuclear Information System (INIS)

    2001-01-01

    This CD is multimedia presentation of programme safety upgrading of Bohunice V1 NPP. This chapter consist of introductory commentary and 4 introductory speeches (video records): (1) Introductory speech of Vincent Pillar, Board chairman and director general of Slovak electric, Plc. (SE); (2) Introductory speech of Stefan Schmidt, director of SE - Bohunice Nuclear power plants; (3) Introductory speech of Jan Korec, Board chairman and director general of VUJE Trnava, Inc. - Engineering, Design and Research Organisation, Trnava; Introductory speech of Dietrich Kuschel, Senior vice-president of FRAMATOME ANP Project and Engineering

  14. Evaluating multiple-choice exams in large introductory physics courses

    Directory of Open Access Journals (Sweden)

    Gary Gladding

    2006-07-01

    Full Text Available The reliability and validity of professionally written multiple-choice exams have been extensively studied for exams such as the SAT, graduate record examination, and the force concept inventory. Much of the success of these multiple-choice exams is attributed to the careful construction of each question, as well as each response. In this study, the reliability and validity of scores from multiple-choice exams written for and administered in the large introductory physics courses at the University of Illinois, Urbana-Champaign were investigated. The reliability of exam scores over the course of a semester results in approximately a 3% uncertainty in students’ total semester exam score. This semester test score uncertainty yields an uncertainty in the students’ assigned letter grade that is less than 1 / 3 of a letter grade. To study the validity of exam scores, a subset of students were ranked independently based on their multiple-choice score, graded explanations, and student interviews. The ranking of these students based on their multiple-choice score was found to be consistent with the ranking assigned by physics instructors based on the students’ written explanations ( r>0.94 at the 95% confidence level and oral interviews (r=0.94−0.09+0.06 .

  15. Adding Resistances and Capacitances in Introductory Electricity

    Science.gov (United States)

    Efthimiou, C. J.; Llewellyn, R. A.

    2005-09-01

    All introductory physics textbooks, with or without calculus, cover the addition of both resistances and capacitances in series and in parallel as discrete summations. However, none includes problems that involve continuous versions of resistors in parallel or capacitors in series. This paper introduces a method for solving the continuous problems that is logical, straightforward, and within the mathematical preparation of students at the introductory level.

  16. A cognitive framework for analyzing and describing introductory students' use and understanding of mathematics in physics

    Science.gov (United States)

    Tuminaro, Jonathan

    Many introductory, algebra-based physics students perform poorly on mathematical problem solving tasks in physics. There are at least two possible, distinct reasons for this poor performance: (1) students simply lack the mathematical skills needed to solve problems in physics, or (2) students do not know how to apply the mathematical skills they have to particular problem situations in physics. While many students do lack the requisite mathematical skills, a major finding from this work is that the majority of students possess the requisite mathematical skills, yet fail to use or interpret them in the context of physics. In this thesis I propose a theoretical framework to analyze and describe students' mathematical thinking in physics. In particular, I attempt to answer two questions. What are the cognitive tools involved in formal mathematical thinking in physics? And, why do students make the kinds of mistakes they do when using mathematics in physics? According to the proposed theoretical framework there are three major theoretical constructs: mathematical resources, which are the knowledge elements that are activated in mathematical thinking and problem solving; epistemic games, which are patterns of activities that use particular kinds of knowledge to create new knowledge or solve a problem; and frames, which are structures of expectations that determine how individuals interpret situations or events. The empirical basis for this study comes from videotaped sessions of college students solving homework problems. The students are enrolled in an algebra-based introductory physics course. The videotapes were transcribed and analyzed using the aforementioned theoretical framework. Two important results from this work are: (1) the construction of a theoretical framework that offers researchers a vocabulary (ontological classification of cognitive structures) and grammar (relationship between the cognitive structures) for understanding the nature and origin of

  17. Peer Instruction in Introductory Physics: A Method to Bring about Positive Changes in Students' Attitudes and Beliefs

    Science.gov (United States)

    Zhang, Ping; Ding, Lin; Mazur, Eric

    2017-01-01

    This paper analyzes pre-post matched gains in the epistemological views of science students taking the introductory physics course at Beijing Normal University (BNU) in China. In this study we examined the attitudes and beliefs of science majors (n = 441) in four classes, one taught using traditional (lecture) teaching methods, and the other three…

  18. Machine learning in radiation oncology theory and applications

    CERN Document Server

    El Naqa, Issam; Murphy, Martin J

    2015-01-01

    ​This book provides a complete overview of the role of machine learning in radiation oncology and medical physics, covering basic theory, methods, and a variety of applications in medical physics and radiotherapy. An introductory section explains machine learning, reviews supervised and unsupervised learning methods, discusses performance evaluation, and summarizes potential applications in radiation oncology. Detailed individual sections are then devoted to the use of machine learning in quality assurance; computer-aided detection, including treatment planning and contouring; image-guided rad

  19. Concepts in Physical Education with Laboratories and Experiments. Second Edition.

    Science.gov (United States)

    Corbin, Charles B.; And Others

    This text is designed for student use in introductory course of physical education at the college level and deals with the specific areas of physical activity, exercise, health, physical fitness, skill learning, and body mechanics. Twenty concepts and thirty accompanying laboratory exercises suitable for both men and women are presented. Two…

  20. Deconstructing Constructivism: Modeling Causal Relationships Among Constructivist Learning Environment Factors and Student Outcomes in Introductory Chemistry

    Science.gov (United States)

    Komperda, Regis

    The purpose of this dissertation is to test a model of relationships among factors characterizing aspects of a student-centered constructivist learning environment and student outcomes of satisfaction and academic achievement in introductory undergraduate chemistry courses. Constructivism was chosen as the theoretical foundation for this research because of its widespread use in chemical education research and practice. In a constructivist learning environment the role of the teacher shifts from delivering content towards facilitating active student engagement in activities that encourage individual knowledge construction through discussion and application of content. Constructivist approaches to teaching introductory chemistry courses have been adopted by some instructors as a way to improve student outcomes, but little research has been done on the causal relationships among particular aspects of the learning environment and student outcomes. This makes it difficult for classroom teachers to know which aspects of a constructivist teaching approach are critical to adopt and which may be modified to better suit a particular learning environment while still improving student outcomes. To investigate a model of these relationships, a survey designed to measure student perceptions of three factors characterizing a constructivist learning environment in online courses was adapted for use in face-to-face chemistry courses. These three factors, teaching presence, social presence, and cognitive presence, were measured using a slightly modified version of the Community of Inquiry (CoI) instrument. The student outcomes investigated in this research were satisfaction and academic achievement, as measured by standardized American Chemical Society (ACS) exam scores and course grades. Structural equation modeling (SEM) was used to statistically model relationships among the three presence factors and student outcome variables for 391 students enrolled in six sections of a

  1. Investigating the Relationship between Instructors' Use of Active-Learning Strategies and Students' Conceptual Understanding and Affective Changes in Introductory Biology: A Comparison of Two Active-Learning Environments

    Science.gov (United States)

    Cleveland, Lacy M.; Olimpo, Jeffrey T.; DeChenne-Peters, Sue Ellen

    2017-01-01

    In response to calls for reform in undergraduate biology education, we conducted research examining how varying active-learning strategies impacted students' conceptual understanding, attitudes, and motivation in two sections of a large-lecture introductory cell and molecular biology course. Using a quasi-experimental design, we collected…

  2. Active learning and student-centered pedagogy improve student attitudes and performance in introductory biology.

    Science.gov (United States)

    Armbruster, Peter; Patel, Maya; Johnson, Erika; Weiss, Martha

    2009-01-01

    We describe the development and implementation of an instructional design that focused on bringing multiple forms of active learning and student-centered pedagogies to a one-semester, undergraduate introductory biology course for both majors and nonmajors. Our course redesign consisted of three major elements: 1) reordering the presentation of the course content in an attempt to teach specific content within the context of broad conceptual themes, 2) incorporating active and problem-based learning into every lecture, and 3) adopting strategies to create a more student-centered learning environment. Assessment of our instructional design consisted of a student survey and comparison of final exam performance across 3 years-1 year before our course redesign was implemented (2006) and during two successive years of implementation (2007 and 2008). The course restructuring led to significant improvement of self-reported student engagement and satisfaction and increased academic performance. We discuss the successes and ongoing challenges of our course restructuring and consider issues relevant to institutional change.

  3. Is the P-Value Really Dead? Assessing Inference Learning Outcomes for Social Science Students in an Introductory Statistics Course

    Science.gov (United States)

    Lane-Getaz, Sharon

    2017-01-01

    In reaction to misuses and misinterpretations of p-values and confidence intervals, a social science journal editor banned p-values from its pages. This study aimed to show that education could address misuse and abuse. This study examines inference-related learning outcomes for social science students in an introductory course supplemented with…

  4. Undergraduate physics course innovations and their impact on student learning

    Science.gov (United States)

    Iverson, Heidi Louise

    Over the last several decades, the efficacy of the traditional lecture-based instructional model for undergraduate physics courses has been challenged. As a result, a large number of reform-oriented instructional innovations have been developed, enacted, and studied in undergraduate physics courses around the globe---all with the intended purpose of improving student learning. This thesis satisfies the need for a comprehensive synthesis of the effectiveness of these course innovations by analyzing: (1) the types of innovations that have been enacted, (2) the impact of these innovations on student learning, and (3) the common features of effective innovations. An exhaustive literature search for studies published after 1990 on undergraduate physics course innovations yielded 432 articles which were then coded with respect to the characteristics of the innovations used as well as the methodological characteristics of the studies. These codes facilitated a descriptive analysis which characterized the features of the pool of studies. These studies were then meta-analyzed in order to evaluate the effect of innovations on student learning. Finally, a case-study analysis was conducted in order to identify the critical characteristics of effective innovations. Results indicate that most innovations focus on introductory mechanics and use some combination of conceptually oriented tasks, collaborative learning, and technology. The overall effect of course innovations has been positive, but with the caveat that a large number of studies suffer from poor methodological designs and potential threats to validity. In addition, over half of the studies had to be eliminated from the meta-analysis because they did not report the data necessary for an effect size to be calculated. Despite these limitations the results of the meta-analysis indicated that there was one innovation which had particularly high effect sizes---Workshop/Studio Physics---an innovation which involves an

  5. Benefits of completing homework for students with different aptitudes in an introductory electricity and magnetism course

    OpenAIRE

    F. J. Kontur; K. de La Harpe; N. B. Terry

    2015-01-01

    We examine how student aptitudes impact how much students learn from doing graded online and written homework in an introductory electricity and magnetism course. Our analysis examines the correlation between successful homework completion rates and exam performance as well as how changes in homework completion correlate with changes in exam scores for students with different physics aptitudes. On average, successfully completing many homework problems correlated to better exam scores only fo...

  6. What Computational Approaches Should be Taught for Physics?

    Science.gov (United States)

    Landau, Rubin

    2005-03-01

    The standard Computational Physics courses are designed for upper-level physics majors who already have some computational skills. We believe that it is important for first-year physics students to learn modern computing techniques that will be useful throughout their college careers, even before they have learned the math and science required for Computational Physics. To teach such Introductory Scientific Computing courses requires that some choices be made as to what subjects and computer languages wil be taught. Our survey of colleagues active in Computational Physics and Physics Education show no predominant choice, with strong positions taken for the compiled languages Java, C, C++ and Fortran90, as well as for problem-solving environments like Maple and Mathematica. Over the last seven years we have developed an Introductory course and have written up those courses as text books for others to use. We will describe our model of using both a problem-solving environment and a compiled language. The developed materials are available in both Maple and Mathaematica, and Java and Fortran90ootnotetextPrinceton University Press, to be published; www.physics.orst.edu/˜rubin/IntroBook/.

  7. The Impact of NSF-funded Physics Education Research at the University of Washington

    Science.gov (United States)

    Heron, Paula

    2015-03-01

    It is now well known that many students who complete introductory physics courses are unable to apply fundamental concepts in situations that involve qualitative reasoning. Systematic investigations have helped researchers understand why so many students fail to develop robust and coherent conceptual frameworks, and have led to the development of new teaching practices and materials that are far more effective than conventional ones. The Physics Education Group at the University of Washington has played a leading role in raising awareness of the need to improve instruction, and in supporting physics faculty in their efforts to do so. With support from the National Science Foundation, the group has helped build a research base that instructors can draw on, and has produced practical, flexible instructional materials that promote deeper learning in physics classrooms. Both ``Tutorials in Introductory Physics'' (Pearson, 2002) and ``Physics by Inquiry'' (Wiley, 1996) have been developed in an iterative process in which ongoing assessment of student learning plays an integral role. These materials have had a widespread and significant impact on physics teaching and on student learning from kindergarten through graduate school. In this talk I will describe the role of research in curriculum development, and speculate on the next generation of tools and resources to support physics teaching and learning.

  8. An exciting experiment for pre-engineering and introductory physics students: creating a DC motor using the Lorentz force

    International Nuclear Information System (INIS)

    Abdul-Razzaq, Wathiq N; Boehm, Manfred H; Bushey, Ryan K

    2008-01-01

    Introductory physics laboratories have been demonstrated in some instances to be difficult or uninteresting to students at the collegiate level. We have developed a laboratory that introduces the concept of the Lorentz force and allows students to build a non-traditional DC motor out of easily acquired materials. Basic electricity and magnetism concepts are joined together in a simple and enjoyable experiment that allows the students to demonstrate physics at first hand and without the use of complex materials

  9. Learning Physics

    International Nuclear Information System (INIS)

    Cohen, E.

    2005-01-01

    Full Text:The issue of Teaching physics vs Learning physics in our institutions of higher learning will be discussed. Physics is taught mainly by frontal lectures an old (and proven) method. The great advancements of the Information Age are introduced by exposing the students to vast amounts of computerized information and directing them to numerical problem solving by interacting with the computer. These modern methods have several drawbacks: 1. Students get the impression of easy material acquisition while in fact it becomes superficial. 2. There is little integration of topics that are taught in different courses. 3. Insufficient interest is built among undergraduate students to pursue studies that involve deeper thinking and independent research (namely, studies towards a doctoral degree). Learning physics is a formative process in the education of physicists, natural scientists and engineers. It must be based on discussions and exchange of ideas among the students, since understanding the studied material means being able to explain it to a colleague. Some universities in the US initiated programs of learning physics by creating an environment in which small groups of students are engaged in discussing material, jointly solving problems and jointly conducting simulated experiments. This is done under the supervision of a mentor. Suggestions for implementing this method in Israel will be discussed

  10. Geosystems: An Introduction to Physical Geography

    DEFF Research Database (Denmark)

    Christopherson, Robert, W.; Birkeland, Ginger

    Among the most highly regarded in physical geography, Robert Christopherson’s best-selling texts are known for their meticulous attention to detail, currency, accuracy, and rich integration of climate change science. Geosystems: An Introduction to Physical Geography,Ninth Edition is uniquely...... an interactive and engaging learning experience for your students. Here’s how: Personalize learning with Mastering Geography: Mastering Geography provides students with engaging and interactive experiences that coach them through introductory physical geography with specific wrong-answer feedback, hints......, and a wide variety of educationally effective content. Teach with current and relevant content. An emphasis on currency includes a new chapter on global climate change and provides students and instructors with the most significant and current information and applications for learning physical geography...

  11. An Exciting Experiment for Pre-Engineering and Introductory Physics Students: Creating a DC Motor Using the Lorentz Force

    Science.gov (United States)

    Abdul-Razzaq, Wathiq N.; Boehm, Manfred H.; Bushey, Ryan K.

    2008-01-01

    Introductory physics laboratories have been demonstrated in some instances to be difficult or uninteresting to students at the collegiate level. We have developed a laboratory that introduces the concept of the Lorentz force and allows students to build a non-traditional DC motor out of easily acquired materials. Basic electricity and magnetism…

  12. Enabling Field Experiences in Introductory Geoscience Classes through the Use of Immersive Virtual Reality

    Science.gov (United States)

    Moysey, S. M.; Smith, E.; Sellers, V.; Wyant, P.; Boyer, D. M.; Mobley, C.; Brame, S.

    2015-12-01

    Although field experiences are an important aspect of geoscience education, the opportunity to provide physical world experiences to large groups of introductory students is often limited by access, logistical, and financial constraints. Our project (NSF IUSE 1504619) is investigating the use of immersive virtual reality (VR) technologies as a surrogate for real field experiences in introductory geosciences classes. We are developing a toolbox that leverages innovations in the field of VR, including the Oculus Rift and Google Cardboard, to enable every student in an introductory geology classroom the opportunity to have a first-person virtual field experience in the Grand Canyon. We have opted to structure our VR experience as an interactive game where students must explore the Canyon to accomplish a series of tasks designed to emphasize key aspects of geoscience learning. So far we have produced two demo products for the virtual field trip. The first is a standalone "Rock Box" app developed for the iPhone, which allows students to select different rock samples, examine them in 3D, and obtain basic information about the properties of each sample. The app can act as a supplement to the traditional rock box used in physical geology labs. The second product is a fully functioning VR environment for the Grand Canyon developed using satellite-based topographic and imagery data to retain real geologic features within the experience. Players can freely navigate to explore anywhere they desire within the Canyon, but are guided to points of interest where they are able to complete exercises that will be aligned with specific learning goals. To this point we have integrated elements of the "Rock Box" app within the VR environment, allowing players to examine 3D details of rock samples they encounter within the Grand Canyon. We plan to provide demos of both products and obtain user feedback during our presentation.

  13. Evaluation of an Adaptive Learning Technology in a First-year Extended Curriculum Programme Physics course

    Directory of Open Access Journals (Sweden)

    Moses Mushe Basitere

    2017-12-01

    Full Text Available Personalised, adaptive online learning platforms that form part of web-based proficiency tests play a major role in the improvement of the quality of learning in physics and assist learners in building proficiency, preparing for tests and using their time more effectively. In this study, the effectiveness of an adaptive learning platform, Wiley Plus ORION, was evaluated using proficiency test scores compared to paper-based test scores in a first-year introductory engineering physics course. Learners’ performance activities on the adaptive learning platform as well as their performance on the proficiency tests and their impact on the paper-based midterm averaged test were investigated using both qualitative and quantitative methods of data collection. A comparison between learners’ performance on the proficiency tests and a paper-based midterm test was done to evaluate whether there was a correlation between their performance on the proficiency tests and the midterm test. Focus group interviews were carried out with three categories of learners to elicit their experiences. Results showed that there was a positive relationship between high-performing learners’ proficiency score in the midterm averaged test and that the proficiency test enhanced learners’ performance in the paper-based midterm averaged test.

  14. Computer problem-solving coaches for introductory physics: Design and usability studies

    Science.gov (United States)

    Ryan, Qing X.; Frodermann, Evan; Heller, Kenneth; Hsu, Leonardo; Mason, Andrew

    2016-06-01

    The combination of modern computing power, the interactivity of web applications, and the flexibility of object-oriented programming may finally be sufficient to create computer coaches that can help students develop metacognitive problem-solving skills, an important competence in our rapidly changing technological society. However, no matter how effective such coaches might be, they will only be useful if they are attractive to students. We describe the design and testing of a set of web-based computer programs that act as personal coaches to students while they practice solving problems from introductory physics. The coaches are designed to supplement regular human instruction, giving students access to effective forms of practice outside class. We present results from large-scale usability tests of the computer coaches and discuss their implications for future versions of the coaches.

  15. Plasma medicine: an introductory review

    NARCIS (Netherlands)

    Kong, M.G.; Kroesen, G.M.W.; Morfill, G.; Nosenko, T.; Shimizu, T.; Dijk, van J.; Zimmermann, J.L.

    2009-01-01

    This introductory review on plasma health care is intended to provide the interested reader with a summary of the current status of this emerging field, its scope, and its broad interdisciplinary approach, ranging from plasma physics, chemistry and technology, to microbiology, biochemistry,

  16. Item Analysis in Introductory Economics Testing.

    Science.gov (United States)

    Tinari, Frank D.

    1979-01-01

    Computerized analysis of multiple choice test items is explained. Examples of item analysis applications in the introductory economics course are discussed with respect to three objectives: to evaluate learning; to improve test items; and to help improve classroom instruction. Problems, costs and benefits of the procedures are identified. (JMD)

  17. CAS Introductory Course in Italy

    CERN Multimedia

    2008-01-01

    The CERN Accelerator School’s introductory course is a great success. This year the CERN Accelerator School held its "Introduction to Accelerator Physics" course in Frascati, Italy, from 2-14 November in collaboration with the University of Rome "La Sapienza" and the INFN Frascati National Laboratory. The Introductory level course is particularly important since, for the majority of participants, it is the first opportunity to discover the various aspects of accelerator physics. For this school the programme had been significantly revised in order to take into account the new trends currently being developed in the field, thus putting more emphasis on linacs, synchrotron light sources and free-electron lasers. The school was a resounding success with 115 participants of more than 23 nationalities. Feedback from the students praised the expertise of the lecturers, the high standard of the lectures as well as the excellent organizati...

  18. Learning style and concept acquisition of community college students in introductory biology

    Science.gov (United States)

    Bobick, Sandra Burin

    This study investigated the influence of learning style on concept acquisition within a sample of community college students in a general biology course. There are two subproblems within the larger problem: (1) the influence of demographic variables (age, gender, number of college credits, prior exposure to scientific information) on learning style, and (2) the correlations between prior scientific knowledge, learning style and student understanding of the concept of the gene. The sample included all students enrolled in an introductory general biology course during two consecutive semesters at an urban community college. Initial data was gathered during the first week of the semester, at which time students filled in a short questionnaire (age, gender, number of college credits, prior exposure to science information either through reading/visual sources or a prior biology course). Subjects were then given the Inventory of Learning Processes-Revised (ILP-R) which measures general preferences in five learning styles; Deep Learning; Elaborative Learning, Agentic Learning, Methodical Learning and Literal Memorization. Subjects were then given the Gene Conceptual Knowledge pretest: a 15 question objective section and an essay section. Subjects were exposed to specific concepts during lecture and laboratory exercises. At the last lab, students were given the Genetics Conceptual Knowledge Posttest. Pretest/posttest gains were correlated with demographic variables and learning styles were analyzed for significant correlations. Learning styles, as the independent variable in a simultaneous multiple regression, were significant predictors of results on the gene assessment tests, including pretest, posttest and gain. Of the learning styles, Deep Learning accounted for the greatest positive predictive value of pretest essay and pretest objective results. Literal Memorization was a significant negative predictor for posttest essay, essay gain and objective gain. Simultaneous

  19. Does Participation in a Computer-Based Learning Program in Introductory Financial Accounting Course Lead to Choosing Accounting as a Major?

    Science.gov (United States)

    Owhoso, Vincent; Malgwi, Charles A.; Akpomi, Margaret

    2014-01-01

    The authors examine whether students who completed a computer-based intervention program, designed to help them develop abilities and skills in introductory accounting, later declared accounting as a major. A sample of 1,341 students participated in the study, of which 74 completed the intervention program (computer-based assisted learning [CBAL])…

  20. Evaluating and Redesigning Teaching Learning Sequences at the Introductory Physics Level

    Science.gov (United States)

    Guisasola, Jenaro; Zuza, Kristina; Ametller, Jaume; Gutierrez-Berraondo, José

    2017-01-01

    In this paper we put forward a proposal for the design and evaluation of teaching and learning sequences in upper secondary school and university. We will connect our proposal with relevant contributions on the design of teaching sequences, ground it on the design-based research methodology, and discuss how teaching and learning sequences designed…

  1. Modern physics for scientists and engineers

    CERN Document Server

    Morrison, John C

    2010-01-01

    Intended for a first course in modern physics, following an introductory course in physics with calculus, Modern Physics for Scientists and Engineers begins with a brief and focused account of the historical events leading to the formulation of modern quantum theory, while later chapters delve into the underlying physics. Streamlined content, chapters on semiconductors, Dirac Equation and Quantum Field Theory, and a robust pedagogy and ancillary package including an accompanying website with computer applets assists students in learning the essential material.

  2. Evaluation of a flipped classroom approach to learning introductory epidemiology.

    Science.gov (United States)

    Shiau, Stephanie; Kahn, Linda G; Platt, Jonathan; Li, Chihua; Guzman, Jason T; Kornhauser, Zachary G; Keyes, Katherine M; Martins, Silvia S

    2018-04-02

    Although the flipped classroom model has been widely adopted in medical education, reports on its use in graduate-level public health programs are limited. This study describes the design, implementation, and evaluation of a flipped classroom redesign of an introductory epidemiology course and compares it to a traditional model. One hundred fifty Masters-level students enrolled in an introductory epidemiology course with a traditional format (in-person lecture and discussion section, at-home assignment; 2015, N = 72) and a flipped classroom format (at-home lecture, in-person discussion section and assignment; 2016, N = 78). Using mixed methods, we compared student characteristics, examination scores, and end-of-course evaluations of the 2016 flipped classroom format and the 2015 traditional format. Data on the flipped classroom format, including pre- and post-course surveys, open-ended questions, self-reports of section leader teaching practices, and classroom observations, were evaluated. There were no statistically significant differences in examination scores or students' assessment of the course between 2015 (traditional) and 2016 (flipped). In 2016, 57.1% (36) of respondents to the end-of-course evaluation found watching video lectures at home to have a positive impact on their time management. Open-ended survey responses indicated a number of strengths of the flipped classroom approach, including the freedom to watch pre-recorded lectures at any time and the ability of section leaders to clarify targeted concepts. Suggestions for improvement focused on ways to increase regular interaction with lecturers. There was no significant difference in students' performance on quantitative assessments comparing the traditional format to the flipped classroom format. The flipped format did allow for greater flexibility and applied learning opportunities at home and during discussion sections.

  3. Incorporating Multiple-Choice Questions into an AACSB Assurance of Learning Process: A Course-Embedded Assessment Application to an Introductory Finance Course

    Science.gov (United States)

    Santos, Michael R.; Hu, Aidong; Jordan, Douglas

    2014-01-01

    The authors offer a classification technique to make a quantitative skills rubric more operational, with the groupings of multiple-choice questions to match the student learning levels in knowledge, calculation, quantitative reasoning, and analysis. The authors applied this classification technique to the mid-term exams of an introductory finance…

  4. The use of Multiple Representations to Enhance Student Mental Model Development of a Complex Earth System in an Introductory Geoscience Course

    Science.gov (United States)

    Sell, K. S.; Heather, M. R.; Herbert, B. E.

    2004-12-01

    Exposing earth system science (ESS) concepts into introductory geoscience courses may present new and unique cognitive learning issues for students including understanding the role of positive and negative feedbacks in system responses to perturbations, spatial heterogeneity, and temporal dynamics, especially when systems exhibit complex behavior. Implicit learning goals of typical introductory undergraduate geoscience courses are more focused on building skill-sets and didactic knowledge in learners than developing a deeper understanding of the dynamics and processes of complex earth systems through authentic inquiry. Didactic teaching coupled with summative assessment of factual knowledge tends to limit student¡¦s understanding of the nature of science, their belief in the relevancy of science to their lives, and encourages memorization and regurgitation; this is especially true among the non-science majors who compose the majority of students in introductory courses within the large university setting. Students organize scientific knowledge and reason about earth systems by manipulating internally constructed mental models. This pilot study focuses on characterizing the impact of inquiry-based learning with multiple representations to foster critical thinking and mental model development about authentic environmental issues of coastal systems in an introductory geoscience course. The research was conducted in nine introductory physical geology laboratory sections (N ˜ 150) at Texas A&M University as part of research connected with the Information Technology in Science (ITS) Center. Participants were randomly placed into experimental and control groups. Experimental groups were exposed to multiple representations including both web-based learning materials (i.e. technology-supported visualizations and analysis of multiple datasets) and physical models, whereas control groups were provided with the traditional ¡workbook style¡" laboratory assignments

  5. Creation and Assessment of an Active E-Learning Introductory Geoscience Course

    Science.gov (United States)

    Sit, S. M.; Brudzinski, M. R.

    2014-12-01

    The recent emphasis in higher education on both student engagement and online learning has encouraged us to work on the development of an active e-learning environment for our ~90 student undergraduate introductory geohazards course. To begin designing our course, we established a set of student learning outcomes (SLOs) focused on key scientific investigation skills, like analyzing data, evaluating hypotheses, and conveying information to peers. We designed these outcomes to provide students with powerful reasoning and critical thinking skills. Along with this new framework and increased student expectations, we found it beneficial to additionally establish student development outcomes (SDOs). Specifically, SDOs were constructed to address self-evaluation, student responsibility for learning, and valuing group work. Based on these new SLOs and SDOs, we developed a set of course components that engaged students in content, authentic scientific investigations, and group discussions, all within an online environment. The course includes common online learning features like video lectures and comprehension quizzes, but also uses 50% of class periods for student investigation assignments that are conducted using Google Earth and Microsoft Excel. For those assignments, students commonly utilize a short video tutorial demonstrating a new software skill and then apply that knowledge towards investigating topics such as predicting population growth in India or identifying types of volcanoes observed in Hawaii. Results from multiple semesters of teaching both a hybrid and completely online course show significant gains in the geoscience concept inventory over traditional and redesigned face-to-face courses. Additionally, student survey and evaluation data show that our online course improves on SLOs and SDOs when compared to a traditional lecture based course and achieve similar results to a redesigned face-to-face course focused on engagement. In particular, at the end of

  6. Learning physical space

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    2002-01-01

    The article argues that cultural learning is a useful concept in analysing how neophytes learn from reactions and other forms of social designation. Through the newcomers learning process a concrete physical place takes on new cultural meaning. The specific example deals with first year students...... who have to learn that certain physical places, acts and objects are imbued with a cultural significance as the act of sitting on a chair or wearing a short dress takes on a new symbolic meaning in a cultural context where inclusion and exclusion are a constant concern. By following and analysing what...... is involved in the process of becoming ? in this case the becoming of physicist students ? the moral cultural logic behind in- and exclusion from physical places are established....

  7. Utilizing the Active and Collaborative Learning Model in the Introductory Physics Course

    Science.gov (United States)

    Nam, Nguyen Hoai

    2014-01-01

    Model of active and collaborative learning (ACLM) applied in training specific subject makes clear advantage due to the goals of knowledge, skills that students got to develop successful future job. The author exploits the learning management system (LMS) of Hanoi National University of Education (HNUE) to establish a learning environment in the…

  8. Motivation, Classroom Environment, and Learning in Introductory Geology: A Hierarchical Linear Model

    Science.gov (United States)

    Gilbert, L. A.; Hilpert, J. C.; Van Der Hoeven Kraft, K.; Budd, D.; Jones, M. H.; Matheney, R.; Mcconnell, D. A.; Perkins, D.; Stempien, J. A.; Wirth, K. R.

    2013-12-01

    Prior research has indicated that highly motivated students perform better and that learning increases in innovative, reformed classrooms, but untangling the student effects from the instructor effects is essential to understanding how to best support student learning. Using a hierarchical linear model, we examine these effects separately and jointly. We use data from nearly 2,000 undergraduate students surveyed by the NSF-funded GARNET (Geoscience Affective Research NETwork) project in 65 different introductory geology classes at research universities, public masters-granting universities, liberal arts colleges and community colleges across the US. Student level effects were measured as increases in expectancy and self-regulation using the Motivated Strategies for Learning Questionnaire (MSLQ; Pintrich et al., 1991). Instructor level effects were measured using the Reformed Teaching Observation Protocol, (RTOP; Sawada et al., 2000), with higher RTOP scores indicating a more reformed, student-centered classroom environment. Learning was measured by learning gains on a Geology Concept Inventory (GCI; Libarkin and Anderson, 2005) and normalized final course grade. The hierarchical linear model yielded significant results at several levels. At the student level, increases in expectancy and self-regulation are significantly and positively related to higher grades regardless of instructor; the higher the increase, the higher the grade. At the instructor level, RTOP scores are positively related to normalized average GCI learning gains. The higher the RTOP score, the higher the average class GCI learning gains. Across both levels, average class GCI learning gains are significantly and positively related to student grades; the higher the GCI learning gain, the higher the grade. Further, the RTOP scores are significantly and negatively related to the relationship between expectancy and course grade. The lower the RTOP score, the higher the correlation between change in

  9. Development and Calibration of a Concept Inventory to Measure Introductory College Astronomy and Physics Students' Understanding of Newtonian Gravity

    Science.gov (United States)

    Williamson, Kathryn Elizabeth

    2013-01-01

    The topic of Newtonian gravity offers a unique vantage point from which to investigate and encourage conceptual change because it is something with which everyone has daily experience, and because it is taught in two courses that reach a wide variety of students--introductory-level college astronomy ("Astro 101") and physics ("Phys…

  10. Development of quantum perspectives in modern physics

    Directory of Open Access Journals (Sweden)

    Charles Baily

    2009-03-01

    Full Text Available Introductory undergraduate courses in classical physics stress a perspective that can be characterized as realist; from this perspective, all physical properties of a classical system can be simultaneously specified and thus determined at all future times. Such a perspective can be problematic for introductory quantum physics students, who must develop new perspectives in order to properly interpret what it means to have knowledge of quantum systems. We document this evolution in student thinking in part through pre- and post-instruction evaluations using the Colorado Learning Attitudes about Science Survey. We further characterize variations in student epistemic and ontological commitments by examining responses to two essay questions, coupled with responses to supplemental quantum attitude statements. We find that, after instruction in modern physics, many students are still exhibiting a realist perspective in contexts where a quantum-mechanical perspective is needed. We further find that this effect can be significantly influenced by instruction, where we observe variations for courses with differing learning goals. We also note that students generally do not employ either a realist or a quantum perspective in a consistent manner.

  11. A Physics Course for Non-Physical Science Teachers

    Science.gov (United States)

    Cottle, Paul D.

    1997-11-01

    A two semester introductory physics sequence exclusively for undergraduates and graduate students in science education who were not seeking certification in physics was taught at Florida State for the first time in 1996-97. The course emphasized building understanding in both qualitative and quantitative aspects of physics through group learning approaches to laboratories and written problem assignments, assessments which required detailed written explanations, and frequent interactions between the instructor and individual students. This talk will briefly outline the structure of the course and some of the more interesting observations made by the group of science education graduate students and faculty who evaluated aspects of the course.

  12. Surveying Turkish High School and University Students' Attitudes and Approaches to Physics Problem Solving

    Science.gov (United States)

    Balta, Nuri; Mason, Andrew J.; Singh, Chandralekha

    2016-01-01

    Students' attitudes and approaches to physics problem solving can impact how well they learn physics and how successful they are in solving physics problems. Prior research in the U.S. using a validated Attitude and Approaches to Problem Solving (AAPS) survey suggests that there are major differences between students in introductory physics and…

  13. Gender Differences in Both Force Concept Inventory and Introductory Physics Performance

    Science.gov (United States)

    Docktor, Jennifer; Heller, Kenneth

    2008-10-01

    We present data from a decade of introductory calculus-based physics courses for science and engineering students at the University of Minnesota taught using cooperative group problem solving. The data include 40 classes with more than 5500 students taught by 22 different professors. The average normalized gain for males is 0.4 for these large classes that emphasized problem solving. Female students made up approximately 20% of these classes. We present relationships between pre and post Force Concept Inventory (FCI) scores, course grades, and final exam scores for females and males. We compare our results with previous studies from Harvard [2] and the University of Colorado [3,4]. Our data show there is a significant gender gap in pre-test FCI scores that persists post-instruction although there is essentially no gender difference in course performance as determined by course grade.

  14. Inference and the Introductory Statistics Course

    Science.gov (United States)

    Pfannkuch, Maxine; Regan, Matt; Wild, Chris; Budgett, Stephanie; Forbes, Sharleen; Harraway, John; Parsonage, Ross

    2011-01-01

    This article sets out some of the rationale and arguments for making major changes to the teaching and learning of statistical inference in introductory courses at our universities by changing from a norm-based, mathematical approach to more conceptually accessible computer-based approaches. The core problem of the inferential argument with its…

  15. Using Online Interactive Physics-based Video Analysis Exercises to Enhance Learning

    Directory of Open Access Journals (Sweden)

    Priscilla W. Laws

    2017-04-01

    Full Text Available As part of our new digital video age, physics students throughout the world can use smart phones, video cameras, computers and tablets to produce and analyze videos of physical phenomena using analysis software such as Logger Pro, Tracker or Coach. For several years, LivePhoto Physics Group members have created short videos of physical phenomena. They have also developed curricular materials that enable students to make predictions and use video analysis software to verify them. In this paper a new LivePhoto Physics project that involves the creation and testing of a series of Interactive Video Vignettes (IVVs will be described. IVVs are short webbased assignments that take less than ten minutes to complete. Each vignette is designed to present a video of a phenomenon, ask for a student’s prediction about it, and then conduct on-line video observations or analyses that allow the user to compare findings with his or her initial prediction. The Vignettes are designed for web delivery as ungraded exercises to supplement textbook reading, or to serve as pre-lecture or pre-laboratory activities that span a number of topics normally introduced in introductory physics courses. A sample Vignette on the topic of Newton’s Third Law will be described, and the outcomes of preliminary research on the impact of Vignettes on student motivation, learning and attitudes will be summarized.

  16. Toward University Modeling Instruction—Biology: Adapting Curricular Frameworks from Physics to Biology

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-01-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence. PMID:23737628

  17. Toward university modeling instruction--biology: adapting curricular frameworks from physics to biology.

    Science.gov (United States)

    Manthey, Seth; Brewe, Eric

    2013-06-01

    University Modeling Instruction (UMI) is an approach to curriculum and pedagogy that focuses instruction on engaging students in building, validating, and deploying scientific models. Modeling Instruction has been successfully implemented in both high school and university physics courses. Studies within the physics education research (PER) community have identified UMI's positive impacts on learning gains, equity, attitudinal shifts, and self-efficacy. While the success of this pedagogical approach has been recognized within the physics community, the use of models and modeling practices is still being developed for biology. Drawing from the existing research on UMI in physics, we describe the theoretical foundations of UMI and how UMI can be adapted to include an emphasis on models and modeling for undergraduate introductory biology courses. In particular, we discuss our ongoing work to develop a framework for the first semester of a two-semester introductory biology course sequence by identifying the essential basic models for an introductory biology course sequence.

  18. Internet Computer Coaches for Introductory Physics Problem Solving

    Science.gov (United States)

    Xu Ryan, Qing

    2013-01-01

    The ability to solve problems in a variety of contexts is becoming increasingly important in our rapidly changing technological society. Problem-solving is a complex process that is important for everyday life and crucial for learning physics. Although there is a great deal of effort to improve student problem solving skills throughout the…

  19. Just the Facts? Introductory Undergraduate Biology Courses Focus on Low-Level Cognitive Skills

    Science.gov (United States)

    Momsen, Jennifer L.; Long, Tammy M.; Wyse, Sara A.; Ebert-May, Diane

    2010-01-01

    Introductory biology courses are widely criticized for overemphasizing details and rote memorization of facts. Data to support such claims, however, are surprisingly scarce. We sought to determine whether this claim was evidence-based. To do so we quantified the cognitive level of learning targeted by faculty in introductory-level biology courses.…

  20. Improving Introductory Astronomy Education in American Colleges and Universities: A Review of Recent Progress

    Science.gov (United States)

    Waller, William H.; Slater, Timothy F.

    2011-01-01

    Over the past 15 years, professional astronomers, their societies, and associated funding agencies have collaborated to improve astronomy teaching and learning at the introductory undergraduate level. Many nonscience majors and preservice teachers enroll in these introductory astronomy courses, thus meriting the focused attention. In this review…

  1. Distance learning for University Physics in South Africa

    Science.gov (United States)

    Cilliers, J. A.; Basson, I.

    1997-03-01

    The University of South Africa (Unisa) is one of the largest distance education universities in the world. Teaching physics at a distance is a complex and multifaceted problem which is compounded in the South African context by the diversity of educational backgrounds of the learners involved. The fact that students are distributed over a vast geographical area, presents unique problems for the incorporation of the practical component into the curriculum. Current research involves a fundamental evaluation of the aims and objectives of the introductory laboratory. The project is based on the notion that practicals, as they have been used in most physics curricula, are not particularly effective or efficient, although they are costly both financially and logistically. Design, development and delivery of efficient study material imply that there should be agreement between what the student knows and can do, and what the material offers. An in depth profile that takes into account biographic as well as cognitive characteristics of the target group, is therefore being compiled. This paper gives an overview of the specific problems and circumstances that were identified for distance education in physics in a multi-cultural society, and proposes a new model for the incorporation of the introductory laboratory into the curriculum.

  2. Using assessments to investigate and compare the nature of learning in undergraduate science courses.

    Science.gov (United States)

    Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Montplaisir, Lisa; Anderson, Elizabeth; Grosz, Nate

    2013-06-01

    Assessments and student expectations can drive learning: students selectively study and learn the content and skills they believe critical to passing an exam in a given subject. Evaluating the nature of assessments in undergraduate science education can, therefore, provide substantial insight into student learning. We characterized and compared the cognitive skills routinely assessed by introductory biology and calculus-based physics sequences, using the cognitive domain of Bloom's taxonomy of educational objectives. Our results indicate that both introductory sequences overwhelmingly assess lower-order cognitive skills (e.g., knowledge recall, algorithmic problem solving), but the distribution of items across cognitive skill levels differs between introductory biology and physics, which reflects and may even reinforce student perceptions typical of those courses: biology is memorization, and physics is solving problems. We also probed the relationship between level of difficulty of exam questions, as measured by student performance and cognitive skill level as measured by Bloom's taxonomy. Our analyses of both disciplines do not indicate the presence of a strong relationship. Thus, regardless of discipline, more cognitively demanding tasks do not necessarily equate to increased difficulty. We recognize the limitations associated with this approach; however, we believe this research underscores the utility of evaluating the nature of our assessments.

  3. High School Students' Approaches to Learning Physics with Relationship to Epistemic Views on Physics and Conceptions of Learning Physics

    Science.gov (United States)

    Chiou, Guo-Li; Lee, Min-Hsien; Tsai, Chin-Chung

    2013-01-01

    Background and purpose: Knowing how students learn physics is a central goal of physics education. The major purpose of this study is to examine the strength of the predictive power of students' epistemic views and conceptions of learning in terms of their approaches to learning in physics. Sample, design and method: A total of 279 Taiwanese high…

  4. The effect of the flipped model on achievement in an introductory college physics course

    Science.gov (United States)

    Winter, Joshua Brian

    The flipped or inverted classroom model is one in which the time and place for traditional lecture and homework are reversed. Traditional lecture is replaced by online videos assigned as homework. This frees up time in class to be spent with more student centered activities such as discussion based concept questions and group problem solving. While growing in popularity, research on the effectiveness of this format is sparse. In this quasi-experimental study, two sections of an introductory algebra-based college physics course were examined over a five week period. Each section was taught with either the traditional or flipped model and physics knowledge achieved was compared using independent samples t-tests on both the instructor's unit exam and the Mechanics Baseline Test pre/posttest normalized gain. Results indicated that there was no statistically significant difference between the flipped model and the traditional lecture format. Avenues for further research are discussed.

  5. Reducing gender differences in performance in introductory college physics through values affirmation

    Science.gov (United States)

    Kost-Smith, Lauren

    2011-04-01

    Despite males and females being equally represented at the college level in several STEM disciplines (including biology, chemistry and mathematics), females continue to be under-represented in physics. Our research documents and addresses this participation gender gap in the introductory, calculus-based physics courses at the University of Colorado. We characterize gender differences in performance, psychological factors (including attitudes and beliefs) and retention that exist in Physics 1 and 2 [L. E. Kost, et al., Phys. Rev. ST Phys. Educ. Res. 5, 010101 (2009); L. E. Kost-Smith, et al., Phys. Rev. ST Phys. Educ. Res. 6, 020112 (2010)]. We find that the gender differences in performance can largely be accounted for by measurable differences in the physics and mathematics backgrounds and incoming attitudes and beliefs of males and females. But these background factors do not completely account for the gender gaps. We hypothesize, based on gender differences in responses to survey questions about students' sense of physics identity and confidence levels, that identity threat (the fear of confirming a negative characterization about one's identity) is playing a role in our courses. Working with researchers in psychology, we implemented an intervention where students either wrote about their most important values or not, twice at the beginning of the course [A. Miyake, et al., Science, 330, 1234 (2010)]. This ``values affirmation'' activity reduced the male-female performance difference substantially and elevated women's modal grades from the C to B range. Benefits were strongest for women who tended to endorse the stereotype that men do better than women in physics. This brief psychological intervention may be a promising way to address the gender gap in science performance.

  6. Research and Teaching: Implementation of Interactive Engagement Teaching Methods in a Physical Oceanography Course

    Science.gov (United States)

    Keiner, Louis E.; Gilman, Craig

    2015-01-01

    This study measures the effects of increased faculty-student engagement on student learning, success rates, and perceptions in a Physical Oceanography course. The study separately implemented two teaching methods that had been shown to be successful in a different discipline, introductory physics. These methods were the use of interactive…

  7. Special Relativity and Magnetism in an Introductory Physics Course

    Science.gov (United States)

    Piccioni, R. G.

    2007-01-01

    Too often, students in introductory courses are left with the impression that Einstein's special theory of relativity comes into play only when the relative speed of two objects is an appreciable fraction of the speed of light ("c"). In fact, relativistic length contraction, along with Coulomb's law, accounts quantitatively for the force on a…

  8. The dynamics of variability in introductory physics students' thinking: Examples from kinematics

    Science.gov (United States)

    Frank, Brian W.

    Physics education research has long emphasized the need for physics instruction to address students' existing intuitions about the physical world as an integral part of learning physics. Researchers, however, have not reached a consensus-view concerning the nature of this intuitive knowledge or the specific role that it does (or might) play in physics learning. While many early characterizations of student misconceptions cast students' intuitive thinking as largely static, unitary in structure, and counter-productive for the purpose of learning correct physics, much of contemporary research supports a conceptualization of intuitive thought as dynamic, manifold in structure, and generative in the development of expertise. This dissertation contributes to ongoing inquiry into the nature of students' intuitive thought and its role in learning physics through the pursuit of dynamic systems characterizations of student reasoning, with a particular focus on how students settle into and shift among multiple patterns of reasoning about motion. In one thread of this research, simple experimental designs are used to demonstrate how individual students can be predictably biased toward and away from different ways of thinking about the same physical situation when specific parameters of questions posed to students are varied. I qualitatively model students' thinking in terms of the activations and interactions among fine-grained intuitive knowledge and static features of the context. In a second thread of this research, case studies of more dynamic shifts in students' conceptual reasoning are developed from videos of student discussions during collaborative classroom activities. These show multiple local stabilities of students' thinking as well, with evidence of group-level dynamics shifting on the time scale of minutes. This work contributes to existing research paradigms that aim to characterize student thinking in physics education in two important ways: (1) through the

  9. Introductory Statistics Education and the National Science Foundation

    Science.gov (United States)

    Hall, Megan R.; Rowell, Ginger Holmes

    2008-01-01

    This paper describes 27 National Science Foundation supported grant projects that have innovations designed to improve teaching and learning in introductory statistics courses. The characteristics of these projects are compared with the six recommendations given in the "Guidelines for Assessment and Instruction in Statistics Education (GAISE)…

  10. Introductory graph theory

    CERN Document Server

    Chartrand, Gary

    1984-01-01

    Graph theory is used today in the physical sciences, social sciences, computer science, and other areas. Introductory Graph Theory presents a nontechnical introduction to this exciting field in a clear, lively, and informative style. Author Gary Chartrand covers the important elementary topics of graph theory and its applications. In addition, he presents a large variety of proofs designed to strengthen mathematical techniques and offers challenging opportunities to have fun with mathematics. Ten major topics - profusely illustrated - include: Mathematical Models, Elementary Concepts of Grap

  11. Students' network integration as a predictor of persistence in introductory physics courses

    Science.gov (United States)

    Zwolak, Justyna P.; Dou, Remy; Williams, Eric A.; Brewe, Eric

    2017-06-01

    Increasing student retention (successfully finishing a particular course) and persistence (continuing through a sequence of courses or the major area of study) is currently a major challenge for universities. While students' academic and social integration into an institution seems to be vital for student retention, research into the effect of interpersonal interactions is rare. We use network analysis as an approach to investigate academic and social experiences of students in the classroom. In particular, centrality measures identify patterns of interaction that contribute to integration into the university. Using these measures, we analyze how position within a social network in a Modeling Instruction (MI) course—an introductory physics course that strongly emphasizes interactive learning—predicts their persistence in taking a subsequent physics course. Students with higher centrality at the end of the first semester of MI are more likely to enroll in a second semester of MI. Moreover, we found that chances of successfully predicting individual student's persistence based on centrality measures are fairly high—up to 75%, making the centrality a good predictor of persistence. These findings suggest that increasing student social integration may help in improving persistence in science, technology, engineering, and mathematics fields.

  12. Basic Guidelines to Introduce Electric Circuit Simulation Software in a General Physics Course

    Science.gov (United States)

    Moya, A. A.

    2018-01-01

    The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and…

  13. Enhancing student performance in introductory physics in topics related to electricity and magnetism through the use of voluntary workshops

    Science.gov (United States)

    DeSilva, L. Ajith; Pullen, Adam; Hasbun, J. E.

    2018-05-01

    This article examines the effect of voluntary workshops on students’ performance in a university for algebra-based introductory physics on the topics of electricity, magnetism and related areas. A workshop is an optional one-hour-per-week session that promotes a small group’s peer instruction and co-operative learning, in order to enhance the conceptual understanding of physical principles and to improve problem-solving skills. During the workshops, a small group of students were encouraged to exchange ideas in a co-operative learning environment. Most students enrolled were poorly motivated, underprepared, and did not possess the prerequisite mathematics needed. For those who attended workshops, the result of scores on a standardized conceptual survey in electricity and magnetism showed a pre-test-post-test gain of 21% in the number of correct responses. This is to be contrasted with a 5% increase for those students who did not attend workshops. Further, we present a breakdown of the final letter grades obtained by students who attended workshops versus those who did not. Since the introduction of the workshops (out of 374 students), 95% of those who attended made a ‘C’ or better in the course. This compares to only 50% of the students who did not attend workshops and making a ‘C’ or better. The workshops have been offered since the Fall of 2010, but analyzed data includes fourteen years of student letter grades from 2001 to 2014 in order to study the effects on the workshops of the D, F, or W grades (DFW rate). We report a 7% reduction of the DFW rates, which we attribute to the incorporation of the workshops. The workshops are easy to implement and relatively inexpensive, yet appear to be an effective instructional method that enhances the success of underprepared students.

  14. Designing and Implementing Service Learning Projects in an Introductory Oceanography Course Using the ``8-Block Model''

    Science.gov (United States)

    Laine, E. P.; Field, C.

    2010-12-01

    The Campus Compact for New Hampshire (Gordon, 2003) introduced a practical model for designing service-learning exercises or components for new or existing courses. They divided the design and implementation process into eight concrete areas, the “8-Block Model”. Their goal was to demystify the design process of service learning courses by breaking it down into interconnected components. These components include: project design, community partner relations, the problem statement, building community in the classroom, building student capacity, project management, assessment of learning, and reflection and connections. The project design component of the “8-Block Model” asks that the service performed be consistent with the learning goals of the course. For science courses students carry out their work as a way of learning science and the process of science, not solely for the sake of service. Their work supports the goals of a community partner and the community partner poses research problems for the class in a letter on their letterhead. Linking student work to important problems in the community effectively engages students and encourages them to work at more sophisticated levels than usually seen in introductory science classes. Using team-building techniques, the classroom becomes a safe, secure learning environment that encourages sharing and experimentation. Targeted lectures, labs, and demonstrations build the capacity of students to do their research. Behind the scenes project management ensures student success. Learning is assessed using a variety of tools, including graded classroom presentations, poster sessions, and presentations and reports to community partners. Finally, students reflect upon their work and make connections between their research and its importance to the well being of the community. Over the past 10 years, we have used this approach to design and continually modify an introductory oceanography course for majors and non

  15. Just the facts? Introductory undergraduate biology courses focus on low-level cognitive skills.

    Science.gov (United States)

    Momsen, Jennifer L; Long, Tammy M; Wyse, Sara A; Ebert-May, Diane

    2010-01-01

    Introductory biology courses are widely criticized for overemphasizing details and rote memorization of facts. Data to support such claims, however, are surprisingly scarce. We sought to determine whether this claim was evidence-based. To do so we quantified the cognitive level of learning targeted by faculty in introductory-level biology courses. We used Bloom's Taxonomy of Educational Objectives to assign cognitive learning levels to course goals as articulated on syllabi and individual items on high-stakes assessments (i.e., exams and quizzes). Our investigation revealed the following: 1) assessment items overwhelmingly targeted lower cognitive levels, 2) the cognitive level of articulated course goals was not predictive of the cognitive level of assessment items, and 3) there was no influence of course size or institution type on the cognitive levels of assessments. These results support the claim that introductory biology courses emphasize facts more than higher-order thinking.

  16. Integrator Element as a Promoter of Active Learning in Engineering Teaching

    Science.gov (United States)

    Oliveira, Paulo C.; Oliveira, Cristina G.

    2014-01-01

    In this paper, we present a teaching proposal used in an Introductory Physics course to civil engineering students from Porto's Engineering Institute/Instituto Superior de Engenharia do Porto (ISEP). The proposal was born from the need to change students' perception and motivation for learning physics. It consists in the use of an integrator…

  17. Scientific thinking employed in tasks of introductory physics

    OpenAIRE

    Alexandre Fagundes Faria; Arnaldo de Moura Vaz

    2017-01-01

    In Science Education, notably in Physics Teaching, there are research based instructional strategies that are renown by their potential to promote conceptual development. It is likely that many of these strategies lead to more elaborate learning; promoting, for instance, scientific thinking development. Scientific thinking might be construed as the sum of domain-specific knowledge and domain-general strategies. Here is reported an investigation of domain-general strategies used by students on...

  18. Introductory Level Problems Illustrating Concepts in Pharmaceutical Engineering

    Science.gov (United States)

    McIver, Keith; Whitaker, Kathryn; De Delva, Vladimir; Farrell, Stephanie; Savelski, Mariano J.; Slater, C. Stewart

    2012-01-01

    Textbook style problems including detailed solutions introducing pharmaceutical topics at the level of an introductory chemical engineering course have been created. The problems illustrate and teach subjects which students would learn if they were to pursue a career in pharmaceutical engineering, including the unique terminology of the field,…

  19. Opportunities for learning in an introductory undergraduate human anatomy and physiology course

    Science.gov (United States)

    Montplaisir, Lisa Marie

    2003-10-01

    The purpose of this study was to explore the course conditions that support the development of meaningful student learning in an introductory undergraduate human anatomy and physiology course. The study was conducted during an 8-week summer-session at a small mid-western university. Classroom observations and taped recordings of class sessions were used to determine content episodes within the instructional unit, opportunities for learning created by the instructor, demonstrations of information processing by the students, and the ways in which the instructor used the Personal Response System (PRS). Student interviews were used to determine students' level of understanding of pre-test and post-test items. Student interviews and a questionnaire were used to determine students' perceptions of the PRS as a learning tool. Findings reveal that the instructor had different expectations of students when posing verbal questions in-class than he had when posing PRS questions. The use of verbal questions did not permit demonstrations of student understanding; however, the use of the PRS did result in demonstrations of student understanding. Questions posed via the use of the PRS were categorized according to cognitive level. The cognitive level of the questions increased with time over the instructional unit and within the content episodes. Students demonstrated deeper understanding of the topics after instruction than they did before instruction. Students reported more in-class thinking about the content, more discussion of the content with their neighbors, more regular class attendance, more opportunities for deeper learning, and a general preference for the PRS over traditional lectures. Findings of the study indicate that the instructional decisions about the use of questions influences the opportunities for students to process information and demonstrate their understanding of the content and that students valued these opportunities. A better understanding of the

  20. An Infiltration Exercise for Introductory Soil Science

    Science.gov (United States)

    Barbarick, K. A.; Ippolito, J. A.; Butters, G.; Sorge, G. M.

    2005-01-01

    One of the largest challenges in teaching introductory soil science is explaining the dynamics of soil infiltration. To aid students in understanding the concept and to further engage them in active learning in the soils laboratory course, we developed an exercise using Decagon Mini-Disk Infiltrometers with a tension head (h[subscript o]) of 2 cm.…

  1. An Introductory Calculus-Based Mechanics Investigation

    Science.gov (United States)

    Allen, Bradley

    2017-01-01

    One challenge for the introductory physics teacher is incorporating calculus techniques into the laboratory setting. It can be difficult to strike a balance between presenting an experimental task for which calculus is essential and making the mathematics accessible to learners who may be apprehensive about applying it. One-dimensional kinematics…

  2. Using Multimedia Learning Modules in a Hybrid-Online Course in Electricity and Magnetism

    Science.gov (United States)

    Sadaghiani, Homeyra R.

    2011-01-01

    We have been piloting web-based multimedia learning modules (MLMs), developed by the Physics Education Research Group at the University of Illinois at Urbana Champaign (UIUC), as a "prelecture assignment" in several introductory physics courses at California State Polytechnic University at Pomona. In this study, we report the results…

  3. Doing physical activity – not learning

    DEFF Research Database (Denmark)

    Jensen, Jens-Ole

    2017-01-01

    Introduction In recent years there have been a raising critique concerning PE as a subject which is more concerned with keeping pupils physically active than insuring that they learn something (Annerstedt, 2008). In Denmark, this issue has been actualized in a new sense. In 2014, a new school...... reform with 45 minutes of daily physical activity was introduced to enhance the pupils’ health, well-being and learning capabilities. Instead of focusing on learning bodily skills, physical activities has become an instrument to improve learning in the academic subjects. Physical activities.......g. Biesta, 2010; Standal, 2015) I will argue that the focus on learning outcome and effects on physical activity has gone too far in order to reach the objectives. If the notion of ‘keeping pupils physically active’ is understood as a representation of the core quality of physical activity, it seems...

  4. The Write Stuff: Teaching the Introductory Public Relations Writing Course.

    Science.gov (United States)

    King, Cynthia M.

    2001-01-01

    Outlines an introductory public relations writing course. Presents course topics and objectives, and assignments designed to meet them. Provides a sample grading rubric and evaluates major public relations writing textbooks. Discusses learning and assessment strategies. (SR)

  5. Characterizing the gender gap in introductory physics

    Science.gov (United States)

    Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.

    2009-06-01

    Previous research [S. J. Pollock , Phys. Rev. ST Phys. Educ. Res. 3, 1 (2007)] showed that despite the use of interactive engagement techniques, the gap in performance between males and females on a conceptual learning survey persisted from pretest to post-test at the University of Colorado at Boulder. Such findings were counter to previously published work [M. Lorenzo , Am. J. Phys. 74, 118 (2006)]. This study begins by identifying a variety of other gender differences. There is a small but significant difference in the course grades of males and females. Males and females have significantly different prior understandings of physics and mathematics. Females are less likely to take high school physics than males, although they are equally likely to take high school calculus. Males and females also differ in their incoming attitudes and beliefs about physics. This collection of background factors is analyzed to determine the extent to which each factor correlates with performance on a conceptual post-test and with gender. Binned by quintiles, we observe that males and females with similar pretest scores do not have significantly different post-test scores (p>0.2) . The post-test data are then modeled using two regression models (multiple regression and logistic regression) to estimate the gender gap in post-test scores after controlling for these important prior factors. These prior factors account for about 70% of the observed gender gap. The results indicate that the gender gap exists in interactive physics classes at our institution but is largely associated with differences in previous physics and math knowledge and incoming attitudes and beliefs.

  6. Active Learning Outside the Classroom: Implementation and Outcomes of Peer-Led Team-Learning Workshops in Introductory Biology.

    Science.gov (United States)

    Kudish, Philip; Shores, Robin; McClung, Alex; Smulyan, Lisa; Vallen, Elizabeth A; Siwicki, Kathleen K

    2016-01-01

    Study group meetings (SGMs) are voluntary-attendance peer-led team-learning workshops that supplement introductory biology lectures at a selective liberal arts college. While supporting all students' engagement with lecture material, specific aims are to improve the success of underrepresented minority (URM) students and those with weaker backgrounds in biology. Peer leaders with experience in biology courses and training in science pedagogy facilitate work on faculty-generated challenge problems. During the eight semesters assessed in this study, URM students and those with less preparation attended SGMs with equal or greater frequency than their counterparts. Most agreed that SGMs enhanced their comprehension of biology and ability to articulate solutions. The historical grade gap between URM and non-URM students narrowed slightly in Biology 2, but not in other biology and science, technology, engineering, and mathematics courses. Nonetheless, URM students taking introductory biology after program implementation have graduated with biology majors or minors at the same rates as non-URM students, and have enrolled in postcollege degree programs at equal or greater rates. These results suggest that improved performance as measured by science grade point average may not be necessary to improve the persistence of students from underrepresented groups as life sciences majors. © 2016 P. Kudish et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Quantifying the Level of Inquiry in a Reformed Introductory Geology Lab Course

    Science.gov (United States)

    Moss, Elizabeth; Cervato, Cinzia

    2016-01-01

    As part of a campus-wide effort to transform introductory science courses to be more engaging and more accurately convey the excitement of discovery in science, the curriculum of an introductory physical geology lab course was redesigned. What had been a series of ''cookbook'' lab activities was transformed into a sequence of activities based on…

  8. Conceptual Framework to Help Promote Retention and Transfer in the Introductory Chemical Engineering Course

    Science.gov (United States)

    Hanyak, Michael E., Jr.

    2015-01-01

    In an introductory chemical engineering course, the conceptual framework of a holistic problem-solving methodology in conjunction with a problem-based learning approach has been shown to create a learning environment that nurtures deep learning rather than surface learning. Based on exam scores, student grades are either the same or better than…

  9. New Pedagogy in Introductory Physics and Upper-level AMO Courses

    Science.gov (United States)

    Wieman, Carl

    2005-05-01

    In recent decades the need for science education has expanded in its scope and grown in its importance. We need to reevaluate science teaching to see how it can better meet these needs. Scientists often abandon the powerful intellectual tools they routinely use in their science when they go to teach science. They fall back on tradition and highly subjective judgments of the instructor (known in other contexts as ``superstition"). I will discuss the advantages of approaching the teaching of physics like a physics experiment. This approach includes: collecting and utilizing valid quantitative data (both one's own and those from the research of others), using quantitative statistical analysis to extract information from experiments involving imperfectly controlled degrees of freedom, and taking advantage of useful new technology. This discussion will include a review of some of the key findings of researchers about how people learn in general and how they learn physics specifically, and how these findings can be used to improve teaching practices. As time permits, I will also cover some surprising results my education research group has found on the study of how student beliefs shape and are shaped by their physics classes and the effective use of technology.

  10. The Effect of Vocabulary on Introductory Microbiology Instruction

    Science.gov (United States)

    Richter, Emily

    2011-01-01

    This study examines the effect of the translation of traditional scientific vocabulary into plain English, a process referred to as Anglicization, on student learning in the context of introductory microbiology instruction. Data from Anglicized and Classical-vocabulary lab sections were collected. Data included exam scores as well as pre and…

  11. Students' network integration vs. persistence in introductory physics courses

    Science.gov (United States)

    Zwolak, Justyna; Brewe, Eric

    2017-01-01

    Society is constantly in flux, which demands the continuous development of our educational system to meet new challenges and impart the appropriate knowledge/skills to students. In order to improve student learning, among other things, the way we are teaching has significantly changed over the past few decades. We are moving away from traditional, lecture-based teaching towards more interactive, engagement-based strategies. A current, major challenge for universities is to increase student retention. While students' academic and social integration into an institution seems to be vital for student retention, research on the effect of interpersonal interactions is rare. I use of network analysis to investigate academic and social experiences of students in and beyond the classroom. In particular, there is a compelling case that transformed physics classes, such as Modeling Instruction (MI), promote persistence by the creation of learning communities that support the integration of students into the university. I will discuss recent results on pattern development in networks of MI students' interactions throughout the semester, as well as the effect of students' position within the network on their persistence in physics.

  12. Superstrings and other things a guide to physics

    CERN Document Server

    Calle, Carlos I

    2009-01-01

    Part I Introductory ConceptsChapter 1. Physics: The Fundamental Science What Is Physics?The Scientific Method: Learning from Our Mistakes Physics and Other Sciences Sizes of Things: Measurement Fundamental Units Physics and MathematicsPart II The Laws of MechanicsChapter 2. The Description of Motion Understanding Motion Uniform Motion Average Speed Instantaneous Speed Velocity: Speed and Direction Vectors AccelerationUniformly Accelerated MotionFalling Bodies The Motion of ProjectilesChapter 3. The Laws of Mechanics: Newton's Laws of Motion The Concept of ForceThe Ancient Idea of Motion The Bi

  13. Learning Desert Geomorphology Virtually versus in the Field

    Science.gov (United States)

    Stumpf, Richard J., II; Douglass, John; Dorn, Ronald I.

    2008-01-01

    Statistical analyses of pre-test and post-test results, as well as qualitative insight obtained by essays, compared introductory physical geography college students who learned desert geomorphology only virtually, in the field and both ways. With the exception of establishing geographic context, the virtual field trip was statistically…

  14. Sources of student engagement in Introductory Physics for Life Sciences

    Science.gov (United States)

    Geller, Benjamin D.; Turpen, Chandra; Crouch, Catherine H.

    2018-06-01

    We explore the sources of student engagement with curricular content in an Introductory Physics for Life Science (IPLS) course at Swarthmore College. Do IPLS students find some life-science contexts more interesting than others, and, if so, what are the sources of these differences? We draw on three sources of student data to answer this question: (1) quantitative survey data illustrating how interested students were in particular contexts from the curriculum, (2) qualitative survey data in which students describe the source of their interest in these particular contexts, and (3) interview data in which students reflect on the contexts that were and were not of interest to them. We find that examples that make interdisciplinary connections with students' other coursework in biology and chemistry, and examples that make connections to what students perceive to be the "real world," are particularly effective at fostering interest. More generally, students describe being deeply engaged with contexts that foster a sense of coherence or have personal meaning to them. We identify various "engagement pathways" by which different life-science students engage with IPLS content, and suggest that a curriculum needs to be flexible enough to facilitate these different pathways.

  15. A study of the cognitive and affective impact of the Cockpit Physics curriculum on students at the United States Air Force Academy

    Science.gov (United States)

    Gruner, Heidi Mauk

    The standard introductory college physics course has remained stagnant for over thirty years. Course texts have had few significant revisions, and the course has typically been taught in a lecture, laboratory, and recitation format. Studies show, however, that the majority of students do not learn physics well in this environment. Cockpit Physics at the United States Air Force Academy is an innovative computer-centered introductory physics course which abandons the traditional lecture-lab format in an effort to improve the standard introductory course. Cockpit Physics uses small cooperative learning groups, the computer as an integrated learning tool, and the context of flight and Air Force applications. The purpose of this study was a control group comparison to determine if an interactive student-centered environment provides the social context and community for learning needed by students who do not traditionally purse a career in science. In light of the under-representation of women in physics, this study examines whether Cockpit Physics results in a more positive attitude toward physics for female students. Considered also are the experiences of the instructors. To address these issues research questions related to student attitudes and academic performance were formulated. Answers to the attitudinal questions were sought with survey instruments, classroom observations, analysis of journals and individual interviews. Student learning of physics was assessed through class examinations and an inventory widely used in the physics community. A comparison is made to similar innovative curricula at other universities. This study concludes that Cockpit Physics provided more peer interaction and a more hands-on environment for learning than the control classes but provided less one-on-one student teacher interaction. This lack of interaction with the teacher was a significant source of frustration for nontraditional students. Female students in particular struggled

  16. Motivation and learning physics

    Science.gov (United States)

    Fischer, Hans Ernst; Horstendahl, Michaela

    1997-09-01

    Being involved in science education we cannot avoid confronting the problem of students' waning interest in physics. Therefore, we want to focus on arguments developed by new theoretical work in the field of motivation. Especially, we are attracted by the theory of motivation featured by Deci and Ryan, because it is related to an assumptions of human development similar to our own approach. Beneath elements of cognitive development, motivation is seen as a basic concept to describe students' learning in a physics classroom. German students at lower and upper secondary level regard physics as very difficult to learn, very abstract and dominated by male students. As a result physics at school continuously loses importance and acceptance although a lot of work has been done to modernise and develop the related physics courses. We assume that knowing about the influence of motivation on learning physics may lead to new insights in the design of classroom settings. Referring to Deci and Ryan, we use a model of motivation to describe the influence of two different teaching strategies (teacher and discourse oriented) on learning. Electrostatics was taught in year 8. The outcomes of a questionnaire which is able to evaluate defined, motivational states are compared with the interpretation of the same student's interaction in the related situation of the physics classroom. The scales of the questionnaire and the categories of analysis of the video-recording are derived from the same model of motivation.

  17. Characterizing the gender gap in introductory physics

    Directory of Open Access Journals (Sweden)

    Lauren E. Kost

    2009-01-01

    Full Text Available Previous research [S. J. Pollock et al., Phys. Rev. ST Phys. Educ. Res. 3, 1 (2007] showed that despite the use of interactive engagement techniques, the gap in performance between males and females on a conceptual learning survey persisted from pretest to post-test at the University of Colorado at Boulder. Such findings were counter to previously published work [M. Lorenzo et al., Am. J. Phys. 74, 118 (2006]. This study begins by identifying a variety of other gender differences. There is a small but significant difference in the course grades of males and females. Males and females have significantly different prior understandings of physics and mathematics. Females are less likely to take high school physics than males, although they are equally likely to take high school calculus. Males and females also differ in their incoming attitudes and beliefs about physics. This collection of background factors is analyzed to determine the extent to which each factor correlates with performance on a conceptual post-test and with gender. Binned by quintiles, we observe that males and females with similar pretest scores do not have significantly different post-test scores (p>0.2. The post-test data are then modeled using two regression models (multiple regression and logistic regression to estimate the gender gap in post-test scores after controlling for these important prior factors. These prior factors account for about 70% of the observed gender gap. The results indicate that the gender gap exists in interactive physics classes at our institution but is largely associated with differences in previous physics and math knowledge and incoming attitudes and beliefs.

  18. Characterizing the gender gap in introductory physics

    Directory of Open Access Journals (Sweden)

    Steven J. Pollock

    2009-01-01

    Full Text Available Previous research [S. J. Pollock et al., Phys. Rev. ST Phys. Educ. Res. 3, 1 (2007] showed that despite the use of interactive engagement techniques, the gap in performance between males and females on a conceptual learning survey persisted from pretest to post-test at the University of Colorado at Boulder. Such findings were counter to previously published work [M. Lorenzo et al., Am. J. Phys. 74, 118 (2006]. This study begins by identifying a variety of other gender differences. There is a small but significant difference in the course grades of males and females. Males and females have significantly different prior understandings of physics and mathematics. Females are less likely to take high school physics than males, although they are equally likely to take high school calculus. Males and females also differ in their incoming attitudes and beliefs about physics. This collection of background factors is analyzed to determine the extent to which each factor correlates with performance on a conceptual post-test and with gender. Binned by quintiles, we observe that males and females with similar pretest scores do not have significantly different post-test scores (p>0.2 . The post-test data are then modeled using two regression models (multiple regression and logistic regression to estimate the gender gap in post-test scores after controlling for these important prior factors. These prior factors account for about 70% of the observed gender gap. The results indicate that the gender gap exists in interactive physics classes at our institution but is largely associated with differences in previous physics and math knowledge and incoming attitudes and beliefs.

  19. E-learning support for student's understanding of electronics

    DEFF Research Database (Denmark)

    May, Michael; Sendrup, Linda; Sparsø, Jens

    2008-01-01

    To enhance active learning and understanding of analogue and digital electronics the use of e-learning techniques will be investigated. In a redesigned course combining introductory analogue and digital electronics, students will be motivated to prepare for lectures and exercises by providing...... access to interactive simulations. Some exercises will furthermore be carried out first as simulations of electrical circuits and then with physical components, i.e. as design-build exercises. A number of didactic problems in learning electricity and electronics are discussed....

  20. Competency based teaching of college physics: The philosophy and the practice

    Directory of Open Access Journals (Sweden)

    Ajith Rajapaksha

    2017-11-01

    Full Text Available The practice of learning physics contributes to the development of many transdisciplinary skills learners are able to exercise independent of the physics discipline. However, the standard practices of physics instruction do not explicitly include the monitoring or evaluation of these skills. In a competency-based (CB learning model, the skills (competencies are clearly defined and evaluated. We envisioned that a CB approach, where the underlying competencies are highlighted within the instructional process, would be more suitable to teaching physics to learners with diversified disciplinary interests. A model CB course curriculum was developed and practiced at Purdue University to teach introductory college physics to learners who were majoring in the technology disciplines. The experiment took place from the spring semester in 2015 until the spring semester in 2017. The practice provided a means to monitor and evaluate a set of developmental transdisciplinary competencies that underlie the learning of force and motion concepts in classical physics. Additionally, the CB practice contributed to produce substantial physics learning outcomes among learners who were underprepared to learn physics in college.

  1. Competency based teaching of college physics: The philosophy and the practice

    Science.gov (United States)

    Rajapaksha, Ajith; Hirsch, Andrew S.

    2017-12-01

    The practice of learning physics contributes to the development of many transdisciplinary skills learners are able to exercise independent of the physics discipline. However, the standard practices of physics instruction do not explicitly include the monitoring or evaluation of these skills. In a competency-based (CB) learning model, the skills (competencies) are clearly defined and evaluated. We envisioned that a CB approach, where the underlying competencies are highlighted within the instructional process, would be more suitable to teaching physics to learners with diversified disciplinary interests. A model CB course curriculum was developed and practiced at Purdue University to teach introductory college physics to learners who were majoring in the technology disciplines. The experiment took place from the spring semester in 2015 until the spring semester in 2017. The practice provided a means to monitor and evaluate a set of developmental transdisciplinary competencies that underlie the learning of force and motion concepts in classical physics. Additionally, the CB practice contributed to produce substantial physics learning outcomes among learners who were underprepared to learn physics in college.

  2. Introductory Overviews

    NARCIS (Netherlands)

    Jakeman, A.J.; Hamilton, S.H.; Athanasiadis, I.N.; Pierce, S.A.

    2015-01-01

    Introductory Overview articles are designed to provide introductory level background to key themes and topics that caters to the eclectic readership of EMS. It is envisaged that these articles will help to break down barriers to shared understanding and dialogue within multidisciplinary teams, and

  3. Articulated Multimedia Physics, Lesson 3, The Arithmetic of Scientific Notation.

    Science.gov (United States)

    New York Inst. of Tech., Old Westbury.

    As the third lesson of the Articulated Multimedia Physics Course, instructional materials are presented in this study guide. An introductory description is given for scientific notation methods. The subject content is provided in scrambled form, and the use of matrix transparencies is required for students to control their learning process.…

  4. Are Virtual Labs as Effective as Hands-on Labs for Undergraduate Physics? A Comparative Study at Two Major Universities

    Science.gov (United States)

    Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John

    2014-01-01

    Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…

  5. Ideas for Use of an IPad in Introductory Physics Education

    Science.gov (United States)

    Aurora, Tarlok S.

    2014-03-01

    Mobile devices such as an IPad, tablet computers and smartphones offer an opportunity to collect information to facilitate physics teaching and learning. The data collected with built-in sensors, such as a video camera, may be analyzed on the mobile device itself or on a desktop computer. In this work, first, the circular motion of a steel ball rolling in a cereal bowl was analyzed to show that it consisted of two simple harmonic motions, in perpendicular directions. Secondly, motion of two balls-one dropped vertically down, and the other one launched as a projectile - was analyzed. Data was analyzed with Logger Pro software, and value of g was determined graphically. Details of the work, its limitations and additional examples will be described. The material so obtained may be used as a demonstration, in a classroom, to clarify physics concepts. In a school, where students are required to have such portable devices, one may assign such activities as homework, to enhance student engagement in learning physics. The author is thankful to USciences for the IPad; and Rich Cosgriff, Phyllis Blumberg and Elia Eschenazi for useful discussions.

  6. How can we help students appreciate physics education?

    Science.gov (United States)

    Lin, Jia-Ling; Zaki, Eman; Schmidt, Jason; Woolston, Don

    2004-03-01

    Helping students appreciate physics education is a formidable task, considering that many students struggle to pass introductory physics courses. Numerous efforts have been made for this undertaking because it is an important step leading to successful learning. In an out-of-classroom academic program, the Supplemental Instruction (SI) Program, we have used the approach, INSPIRE (inquiry, network, skillfulness, perseverance, intuition, reasoning, and effort), to help more students value their experiences in these courses. The method basically includes key elements outlined by experts in physics education [1]. Student responses have been encouraging. Having undergraduates as facilitators in the program is advantageous in promoting principles of physics education. Their training emphasizes tenacity, resourcefulness, understanding, support, and teamwork, i.e. TRUST. We present the organization and focus of the SI Program, and discuss how these improve learning atmosphere and facilitate learning. [1] Edward F. Redish et al, Am J. Phys. 66(3), March 1998.

  7. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  8. The Impact of the Supplemental Instruction Leader on Student Performance in Introductory Accounting

    Science.gov (United States)

    Jones, Jefferson P.

    2013-01-01

    This study explores the association between a supplemental instruction (SI) program and student performance in an introductory accounting course. SI is a proactive academic support program that is aimed at improving student learning in traditionally "high-risk" college courses by integrating learning and critical thinking strategies with…

  9. Measuring the Earth’s magnetic field dip angle using a smartphone-aided setup: a simple experiment for introductory physics laboratories

    International Nuclear Information System (INIS)

    Arabasi, Sameer; Al-Taani, Hussein

    2017-01-01

    Measurement of the Earth’s magnetic field dip angle is a widely used experiment in most introductory physics laboratories. In this paper we propose a smartphone-aided setup that takes advantage of the smartphone’s magnetometer sensor to measure the Earth’s magnetic field dip angle. This set-up will help students visualize the vector nature of the Earth’s magnetic field, especially high school and first year college students who are not quite experienced with vectors. This set-up is affordable and easy to use and could be easily produced by any high school or college physics instructor. (paper)

  10. Measuring the Earth’s magnetic field dip angle using a smartphone-aided setup: a simple experiment for introductory physics laboratories

    Science.gov (United States)

    Arabasi, Sameer; Al-Taani, Hussein

    2017-03-01

    Measurement of the Earth’s magnetic field dip angle is a widely used experiment in most introductory physics laboratories. In this paper we propose a smartphone-aided setup that takes advantage of the smartphone’s magnetometer sensor to measure the Earth’s magnetic field dip angle. This set-up will help students visualize the vector nature of the Earth’s magnetic field, especially high school and first year college students who are not quite experienced with vectors. This set-up is affordable and easy to use and could be easily produced by any high school or college physics instructor.

  11. Characterizing Interactive Engagement Activities in a Flipped Introductory Physics Class

    Science.gov (United States)

    Wood, Anna K.; Galloway, Ross K.; Donnelly, Robyn; Hardy, Judy

    2016-01-01

    Interactive engagement activities are increasingly common in undergraduate physics teaching. As research efforts move beyond simply showing that interactive engagement pedagogies work towards developing an understanding of "how" they lead to improved learning outcomes, a detailed analysis of the way in which these activities are used in…

  12. The Role of Online Homework in Low-Enrollment College Introductory Physics Courses

    Science.gov (United States)

    Lazarova, Krassi

    2015-01-01

    Studying physics for nonphysics majors at college level is usually a process of learning new problem-solving skills and sometimes seems a frustrating experience. In an attempt to provide students with more learning resources, online homework was required to supplement the instruction. This study reveals the role of the online homework assignments…

  13. Teaching About Racial Equity in Introductory Physics Courses

    Science.gov (United States)

    Daane, Abigail R.; Decker, Sierra R.; Sawtelle, Vashti

    2017-09-01

    Even after you have decided to tackle a problem like racial equity, it may seem daunting to broach the subject in a physics classroom. After all, the idea of a (typically White) instructor in power tackling a sensitive topic such as social justice can be scary in any (mostly White) classroom. Not only that, but physics is typically viewed as a "culture with no culture." The physicist's quest for objectivity, along with a general focus on a fixed set of laws and formulae, support the treatment of this subject as untouched by people. Sometimes it is easier to ignore the problem and just focus on the Conservation of Energy Principle. However, ignoring the striking underrepresentation of ethnic/racial minorities and women in both the physics classroom and the field at large is a great disservice to all our students. We take the position that the persistence of representation disparities in physics is evidence that culture plays a role in who and what is involved in physics. Instructors have an opportunity to explicitly address the absence of equitable circumstances in classrooms and highlight the obstacles that contribute to the disparity (e.g., varied access to learning opportunities and support structures, dominant cultural norms, stereotype threat, implicit bias, hidden curricula, etc.). We acknowledge that incorporating these discussions in a physics classroom is fraught with difficulty, but we also believe that trying to lead these discussions is better than ignoring the problem. Furthermore, a set of resources for teachers interested in leading these discussions has been developing in the physics teacher community. Rifkin offers resources for leading a two-week unit on equity designed for secondary science classrooms. Here we describe another possible pathway for integrating a shorter equity unit into the traditional content of a (predominantly White) university physics classroom, addressing racial inequity and sharing common student responses that may arise.

  14. Data Mining Student Answers with Moodle to Investigate Learning Pathways in an Introductory Geohazards Course

    Science.gov (United States)

    Sit, S. M.; Brudzinski, M. R.; Colella, H. V.

    2012-12-01

    The recent growth of online learning in higher education is primarily motivated by a desire to (a) increase the availability of learning experiences for learners who cannot, or choose not, to attend traditional face-to-face offerings, (b) assemble and disseminate instructional content more cost-efficiently, or (c) enable instructors to handle more students while maintaining a learning outcome quality that is equivalent to that of comparable face-to-face instruction. However, a less recognized incentive is that online learning also provides an opportunity for data mining, or efficient discovery of non-obvious valuable patterns from a large collection of data, that can be used to investigate learning pathways as opposed to focusing solely on assessing student outcomes. Course management systems that enable online courses provide a means to collect a vast amount of information to analyze students' behavior and the learning process in general. One of the most commonly used is Moodle (modular object-oriented developmental learning environment), a free learning management system that enables creation of powerful, flexible, and engaging online courses and experiences. In order to examine student learning pathways, the online learning modules we are constructing take advantage of Moodle capabilities to provide immediate formative feedback, verifying answers as correct or incorrect and elaborating on knowledge components to guide students towards the correct answer. By permitting multiple attempts in which credit is diminished for each incorrect answer, we provide opportunities to use data mining strategies to assess thousands of students' actions for evidence of problem solving strategies and mastery of concepts. We will show preliminary results from application of this approach to a ~90 student introductory geohazard course that is migrating toward online instruction. We hope more continuous assessment of students' performances will help generate cognitive models that can

  15. Introductory Raman spectroscopy

    CERN Document Server

    Ferraro, John R

    2012-01-01

    Praise for Introductory Raman Spectroscopy Highlights basic theory, which is treated in an introductory fashion Presents state-of-the-art instrumentation Discusses new applications of Raman spectroscopy in industry and research.

  16. Physics of Health Sciences

    Science.gov (United States)

    Baublitz, Millard; Goldberg, Bennett

    A one-semester algebra-based physics course is being offered to Boston University students whose major fields of study are in allied health sciences: physical therapy, athletic training, and speech, language, and hearing sciences. The classroom instruction incorporates high-engagement learning techniques including worksheets, student response devices, small group discussions, and physics demonstrations instead of traditional lectures. The use of pre-session exercises and quizzes has been implemented. The course also requires weekly laboratory experiments in mechanics or electricity. We are using standard pre- and post-course concept inventories to compare this one-semester introductory physics course to ten years of pre- and post-course data collected on students in the same majors but who completed a two-semester course.

  17. P3: a practice focused learning environment

    Science.gov (United States)

    Irving, Paul W.; Obsniuk, Michael J.; Caballero, Marcos D.

    2017-09-01

    There has been an increased focus on the integration of practices into physics curricula, with a particular emphasis on integrating computation into the undergraduate curriculum of scientists and engineers. In this paper, we present a university-level, introductory physics course for science and engineering majors at Michigan State University called P3 (projects and practices in physics) that is centred around providing introductory physics students with the opportunity to appropriate various science and engineering practices. The P3 design integrates computation with analytical problem solving and is built upon a curriculum foundation of problem-based learning, the principles of constructive alignment and the theoretical framework of community of practice. The design includes an innovative approach to computational physics instruction, instructional scaffolds, and a unique approach to assessment that enables instructors to guide students in the development of the practices of a physicist. We present the very positive student related outcomes of the design gathered via attitudinal and conceptual inventories and research interviews of students’ reflecting on their experiences in the P3 classroom.

  18. The effectiveness of collaborative problem based physics learning (CPBPL) model to improve student’s self-confidence on physics learning

    Science.gov (United States)

    Prahani, B. K.; Suprapto, N.; Suliyanah; Lestari, N. A.; Jauhariyah, M. N. R.; Admoko, S.; Wahyuni, S.

    2018-03-01

    In the previous research, Collaborative Problem Based Physic Learning (CPBPL) model has been developed to improve student’s science process skills, collaborative problem solving, and self-confidence on physics learning. This research is aimed to analyze the effectiveness of CPBPL model towards the improvement of student’s self-confidence on physics learning. This research implemented quasi experimental design on 140 senior high school students who were divided into 4 groups. Data collection was conducted through questionnaire, observation, and interview. Self-confidence measurement was conducted through Self-Confidence Evaluation Sheet (SCES). The data was analyzed using Wilcoxon test, n-gain, and Kruskal Wallis test. Result shows that: (1) There is a significant score improvement on student’s self-confidence on physics learning (α=5%), (2) n-gain value student’s self-confidence on physics learning is high, and (3) n-gain average student’s self-confidence on physics learning was consistent throughout all groups. It can be concluded that CPBPL model is effective to improve student’s self-confidence on physics learning.

  19. The Persistence of the Gender Gap in Introductory Physics

    Science.gov (United States)

    Kost, Lauren E.; Pollock, Steven J.; Finkelstein, Noah D.

    2008-10-01

    We previously showed[l] that despite teaching with interactive engagement techniques, the gap in performance between males and females on conceptual learning surveys persisted from pre- to posttest, at our institution. Such findings were counter to previously published work[2]. Our current work analyzes factors that may influence the observed gender gap in our courses. Posttest conceptual assessment data are modeled using both multiple regression and logistic regression analyses to estimate the gender gap in posttest scores after controlling for background factors that vary by gender. We find that at our institution the gender gap persists in interactive physics classes, but is largely due to differences in physics and math preparation and incoming attitudes and beliefs.

  20. The "Finding Physics" Project: Recognizing and Exploring Physics Outside the Classroom

    Science.gov (United States)

    Beck, Judith; Perkins, James

    2016-11-01

    Students in introductory physics classes often have difficulty recognizing the relevance of physics concepts outside the confines of the physics classroom, lab, and textbook. Even though textbooks and instructors often provide examples of physics applications from a wide array of areas, students have difficulty relating physics to their own lives. Encouraging students to apply physics to their own surroundings helps them develop the critical analysis skills of a scientifically literate and competent citizen. Fink, in his book Creating Significant Learning Experiences, emphasizes the importance of constructing opportunities to help students connect what they learn in their academic courses with past and current life experiences and link them to possible future life experiences. Several excellent papers in this journal have presented labs and activities that address this concern by encouraging teachers to bring real-world examples into the classroom or to take students into the field for data collection and observation. Alternatively, Smith suggests a writing exercise in which his students identify and explain an event in terms of their understanding of physics. In this paper we present a multiphase exercise that challenges students to find their own examples of physics from outside the classroom and analyze them using the conceptual understanding and quantitative skills which they are developing in the classroom. The ultimate goal of the "Finding Physics" project is to improve students' learning through enhancing their recognition that, to quote one participant's end-of-course survey, "Physics is everywhere!"

  1. Analysis of student engagement in an online annotation system in the context of a flipped introductory physics class

    Directory of Open Access Journals (Sweden)

    Kelly Miller

    2016-12-01

    Full Text Available We discuss student participation in an online social annotation forum over two semesters of a flipped, introductory physics course at Harvard University. We find that students who engage in high-level discussion online, especially by providing answers to their peers’ questions, make more gains in conceptual understanding than students who do not. This is true regardless of students’ physics background. We find that we can steer online interaction towards more productive and engaging discussion by seeding the discussion and managing the size of the sections. Seeded sections produce higher quality annotations and a greater proportion of generative threads than unseeded sections. Larger sections produce longer threads; however, beyond a certain section size, the quality of the discussion decreases.

  2. Introductory Accounting Students' Motives, Expectations and Preparedness for Higher Education: Some Portuguese Evidence

    Science.gov (United States)

    Teixeira, Cláudia; Gomes, Delfina; Borges, Janete

    2015-01-01

    In Portugal, the massive expansion and diversification of higher education has led to a large and diverse student population. This has impacted on the complexity of the higher education learning environment and has implications for the teaching and learning activities. Thus, the current study examines Portuguese introductory accounting students'…

  3. Learning Pedagogy in Physics

    Science.gov (United States)

    Harlow, Danielle B.; Swanson, Lauren H.; Dwyer, Hilary A.; Bianchini, Julie A.

    2010-10-01

    We report on an adapted version of the Physics and Everyday Thinking (PET) curriculum. A unique aspect of PET is its inclusion of special activities that focus on Learning about Learning (LAL) in which undergraduates analyze videos of children talking about science and explicitly consider the nature of science. To create a course that intentionally linked science content, children's ideas, and strategies for science instruction, we augmented the existing LAL activities with discussions about teaching, and added activities focused on LAL from companion curricula such as Physical Science and Everyday Thinking (PSET) and Learning Physical Science (LEPS). To compensate for the additional time on LAL, we reduced the content activities to only those that directly supported LAL activities. We found that students made significant gains on the CLASS and expressed beliefs about teaching consistent with the PET pedagogy.

  4. A comparative study of traditional lecture methods and interactive lecture methods in introductory geology courses for non-science majors at the college level

    Science.gov (United States)

    Hundley, Stacey A.

    In recent years there has been a national call for reform in undergraduate science education. The goal of this reform movement in science education is to develop ways to improve undergraduate student learning with an emphasis on developing more effective teaching practices. Introductory science courses at the college level are generally taught using a traditional lecture format. Recent studies have shown incorporating active learning strategies within the traditional lecture classroom has positive effects on student outcomes. This study focuses on incorporating interactive teaching methods into the traditional lecture classroom to enhance student learning for non-science majors enrolled in introductory geology courses at a private university. Students' experience and instructional preferences regarding introductory geology courses were identified from survey data analysis. The information gained from responses to the questionnaire was utilized to develop an interactive lecture introductory geology course for non-science majors. Student outcomes were examined in introductory geology courses based on two teaching methods: interactive lecture and traditional lecture. There were no significant statistical differences between the groups based on the student outcomes and teaching methods. Incorporating interactive lecture methods did not statistically improve student outcomes when compared to traditional lecture teaching methods. However, the responses to the survey revealed students have a preference for introductory geology courses taught with lecture and instructor-led discussions and students prefer to work independently or in small groups. The results of this study are useful to individuals who teach introductory geology courses and individuals who teach introductory science courses for non-science majors at the college level.

  5. Cognitive Transfer Outcomes for a Simulation-Based Introductory Statistics Curriculum

    Science.gov (United States)

    Backman, Matthew D.; Delmas, Robert C.; Garfield, Joan

    2017-01-01

    Cognitive transfer is the ability to apply learned skills and knowledge to new applications and contexts. This investigation evaluates cognitive transfer outcomes for a tertiary-level introductory statistics course using the CATALST curriculum, which exclusively used simulation-based methods to develop foundations of statistical inference. A…

  6. A guided note taking strategy supports student learning in the large lecture classes

    Science.gov (United States)

    Tanamatayarat, J.; Sujarittham, T.; Wuttiprom, S.; Hefer, E.

    2017-09-01

    In higher education, lecturing has been found to be the most prevalent teaching format for large classes. Generally, this format tends not to result in effective learning outcomes. Therefore, to support student learning in these large lecture classes, we developed guided notes containing quotations, blank spaces, pictures, and problems. A guided note taking strategy was selected and has been used in our introductory physics course for many years. In this study, we investigated the results of implementing the guided note taking strategy to promote student learning on electrostatics. The samples were three groups of first-year students from two universities: 163 and 224 science students and 147 engineering students. All of the students were enrolled in the introductory physics course in the second semester. To assess the students’ understanding, we administered pre- and post-tests to the students by using the electrostatics test. The questions were selected from the conceptual survey of electricity and magnetism (CSEM) and some leading physics textbooks. The results of the students’ understanding were analyzed by the average normalized gains (). The value of each group was 0.61, 0.55, and 0.54, respectively. Furthermore, the students’ views on learning with the guided note taking strategy were explored by using the five-point rating scale survey. Most students perceived that the strategy helped support their active learning and engagement in the lectures.

  7. Use of interactive live digital imaging to enhance histology learning in introductory level anatomy and physiology classes.

    Science.gov (United States)

    Higazi, Tarig B

    2011-01-01

    Histology is one of the main subjects in introductory college-level Human Anatomy and Physiology classes. Institutions are moving toward the replacement of traditional microscope-based histology learning with virtual microscopy learning amid concerns of losing the valuable learning experience of traditional microscopy. This study used live digital imaging (LDI) of microscopic slides on a SMART board to enhance Histology laboratory teaching. The interactive LDI system consists of a digital camera-equipped microscope that projects live images on a wall-mounted SMART board via a computer. This set-up allows real-time illustration of microscopic slides with highlighted key structural components, as well as the ability to provide the students with relevant study and review material. The impact of interactive LDI on student learning of Histology was then measured based on performance in subsequent laboratory tests before and after its implementation. Student grades increased from a mean of 76% (70.3-82.0, 95% CI) before to 92% (88.8-95.3, 95% CI) after integration of LDI indicating highly significant (P < 0.001) enhancement in students' Histology laboratory performance. In addition, student ratings of the impact of the interactive LDI on their Histology learning were strongly positive, suggesting that a majority of students who valued this learning approach also improved learning and understanding of the material as a result. The interactive LDI technique is an innovative, highly efficient and affordable tool to enhance student Histology learning, which is likely to expand knowledge and student perception of the subject and in turn enrich future science careers. Copyright © 2011 American Association of Anatomists.

  8. Students’ conceptions on white light and implications for teaching and learning about colour

    Science.gov (United States)

    Haagen-Schützenhöfer, Claudia

    2017-07-01

    The quality of learning processes is mainly determined by the extent to which students’ conceptions are addressed and thus conceptual change is triggered. Colour phenomena are a topic within initial instruction of optics which is challenging. A physically adequate concept of white light is crucial for being able to grasp the processes underlying colour formation. Our previous research suggests that misconceptions on white light may influence the conceptual understanding of colour phenomena. For the design of a learning environment on light and colours, the literature was reviewed. Then an explorative interview study with participants (N  =  32), with and without instruction in introductory optics, was carried out. In addition, the representations used for white light in Austrian physics schoolbooks were analysed. Based on the results of the literature review, the interview study and the schoolbook analysis, a learning environment was designed and tested in teaching experiments. The results indicate that learners often lack an adequate concept of white light even after instruction in introductory optics. This seems to cause learning difficulties concerning colour phenomena. On the other hand, the evaluation of our learning environment showed that students are able to gain a good conceptual understanding of colour phenomena if instruction takes these content specific learning difficulties into account.

  9. Using contrasting cases to improve self-assessment in physics learning

    Science.gov (United States)

    Jax, Jared Michael

    Accurate self-assessment (SA) is widely regarded as a valuable tool for conducting scientific work, although there is growing concern that students present difficulties in accurately assessing their own learning. For students, the challenge of accurately self-assessing their work prevents them from effectively critiquing their own knowledge and skills, and making corrections when necessary to improve their performance. An overwhelming majority of researchers have acknowledged the importance of developing and practicing the necessary reflective skills SA in science, yet it is rarely a focus of daily instruction leading to students typically overestimate their abilities. In an effort to provide a pragmatic approach to overcoming these deficiencies, this study will demonstrate the effect of using positive and negative examples of solutions (contrasting cases) on performance and accuracy of SA when compared to student who are only shown positive examples of solutions. The work described here sought, first, to establish the areas of flawed SA that introductory high school physics students experience when studying circuitry, and, second, to examine how giving students Content Knowledge in addition to Positive and Negative Examples focused on helping them self-assess might help overcome these deficiencies. In doing so, this work highlights the positive impact that these types of support have in significantly increasing student performance, SA accuracy, and the ability to evaluate solutions in physics education.

  10. Computer methods in physics 250 problems with guided solutions

    CERN Document Server

    Landau, Rubin H

    2018-01-01

    Our future scientists and professionals must be conversant in computational techniques. In order to facilitate integration of computer methods into existing physics courses, this textbook offers a large number of worked examples and problems with fully guided solutions in Python as well as other languages (Mathematica, Java, C, Fortran, and Maple). It’s also intended as a self-study guide for learning how to use computer methods in physics. The authors include an introductory chapter on numerical tools and indication of computational and physics difficulty level for each problem.

  11. A Model for Teaching an Introductory Programming Course Using ADRI

    Science.gov (United States)

    Malik, Sohail Iqbal; Coldwell-Neilson, Jo

    2017-01-01

    High failure and drop-out rates from introductory programming courses continue to be of significant concern to computer science disciplines despite extensive research attempting to address the issue. In this study, we include the three entities of the didactic triangle, instructors, students and curriculum, to explore the learning difficulties…

  12. Effect Of Inquiry Learning Model And Motivation On Physics Outcomes Learning Students

    OpenAIRE

    Pardede, Dahlia Megawati; Manurung, Sondang Rina

    2016-01-01

    The purposes of the research are: (a) to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b) to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c) to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a) there are differences in physical students learning outcomes are taugh...

  13. Baseball Physics: A New Mechanics Lab

    Science.gov (United States)

    Wagoner, Kasey; Flanagan, Daniel

    2018-05-01

    The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in The Physics Teacher, available on Professor Alan Nathan's website, and discussed in Physics of Baseball & Softball). We have developed a lab, for an introductory-level physics course, that investigates many of these phenomena. The lab uses inexpensive, readily available equipment such as wooden baseball bats, baseballs, and actual Major League Baseball data. By the end of the lab, students have revisited many concepts they learned earlier in the semester and come away with an understanding of how to put seemingly disparate ideas together to analyze a fun sport.

  14. Identifying and Remediating Student Misconceptions in Introductory Biology via Writing-to-Learn Assignments and Peer Review.

    Science.gov (United States)

    Halim, Audrey S; Finkenstaedt-Quinn, Solaire A; Olsen, Laura J; Gere, Anne Ruggles; Shultz, Ginger V

    2018-06-01

    Student misconceptions are an obstacle in science, technology, engineering, and mathematics courses and unless remediated may continue causing difficulties in learning as students advance in their studies. Writing-to-learn assignments (WTL) are characterized by their ability to promote in-depth conceptual learning by allowing students to explore their understanding of a topic. This study sought to determine whether and what types of misconceptions are elicited by WTL assignments and how the process of peer review and revision leads to remediation or propagation of misconceptions. We examined four WTL assignments in an introductory biology course in which students first wrote about content by applying it to a realistic scenario, then participated in a peer-review process before revising their work. Misconceptions were identified in all four assignments, with the greatest number pertaining to protein structure and function. Additionally, in certain contexts, students used scientific terminology incorrectly. Analysis of the drafts and peer-review comments generated six profiles by which misconceptions were addressed through the peer-review process. The prevalent mode of remediation arose through directed peer-review comments followed by correction during revision. It was also observed that additional misconceptions were elicited as students revised their writing in response to general peer-review suggestions.

  15. A Vision and Change Reform of Introductory Biology Shifts Faculty Perceptions and Use of Active Learning

    Science.gov (United States)

    Auerbach, Anna Jo; Schussler, Elisabeth

    2017-01-01

    Increasing faculty use of active-learning (AL) pedagogies in college classrooms is a persistent challenge in biology education. A large research-intensive university implemented changes to its biology majors’ two-course introductory sequence as outlined by the Vision and Change in Undergraduate Biology Education final report. One goal of the curricular reform was to integrate core biological concepts and competencies into the courses using AL pedagogical approaches. The purpose of this study was to observe the instructional practices used by faculty (N = 10) throughout the 3-year process of reform to determine whether the use of AL strategies (including student collaboration) increased, given that it can maximize student learning gains. Instructors participated in yearly interviews to track any change in their perceptions of AL instruction. Instructors increased their average use of AL by 12% (group AL by 8%) of total class time throughout the 3-year study. Interviews revealed that instructors shifted their definitions of AL and talked more about how to assess student learning over the 3 years of the project. Collaboration, feedback, and time may have been important factors in the reform, suggesting that small shifts over time can accumulate into real change in the classroom. PMID:29146663

  16. A Critical Understanding and Transformation of an Introductory Statistics Course

    Science.gov (United States)

    Magalhães, Marcos Nascimento; Magalhães, Maria Cecilia Camargo

    2014-01-01

    In this paper, we report on the impact of four activities and two interviews on the organization of an introductory statistics course attended by future mathematics teachers at the University of Sao Paulo, Brazil. The activities were designed to enhance students' learning and collaborative knowledge construction, based on Vygotsky's…

  17. The joy of stats a short guide to introductory statistics in the social sciences

    CERN Document Server

    Garner, Roberta

    2010-01-01

    "This is a great book for social science students. Clearly written, with many examples, Garner certainly makes learning and teaching introductory statistics a joy!" - Nikolaos Liodakis, Wilfrid Laurier University.

  18. Learning from peer feedback on student-generated multiple choice questions: Views of introductory physics students

    Science.gov (United States)

    Kay, Alison E.; Hardy, Judy; Galloway, Ross K.

    2018-06-01

    PeerWise is an online application where students are encouraged to generate a bank of multiple choice questions for their classmates to answer. After answering a question, students can provide feedback to the question author about the quality of the question and the question author can respond to this. Student use of, and attitudes to, this online community within PeerWise was investigated in two large first year undergraduate physics courses, across three academic years, to explore how students interact with the system and the extent to which they believe PeerWise to be useful to their learning. Most students recognized that there is value in engaging with PeerWise, and many students engaged deeply with the system, thinking critically about the quality of their submissions and reflecting on feedback provided to them. Students also valued the breadth of topics and level of difficulty offered by the questions, recognized the revision benefits afforded by the resource, and were often willing to contribute to the community by providing additional explanations and engaging in discussion.

  19. Studio Physics at the Colorado School of Mines: A model for iterative development and assessment

    Science.gov (United States)

    Kohl, Patrick; Kuo, Vincent

    2009-05-01

    The Colorado School of Mines (CSM) has taught its first-semester introductory physics course using a hybrid lecture/Studio Physics format for several years. Based on this previous success, over the past 18 months we have converted the second semester of our traditional calculus-based introductory physics course (Physics II) to a Studio Physics format. In this talk, we describe the recent history of the Physics II course and of Studio at Mines, discuss the PER-based improvements that we are implementing, and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), failure rates, and exam scores. We also report on recent attempts to involve students in the department's Senior Design program with our course. Our ultimate goal is to construct one possible model for a practical and successful transition from a lecture course to a Studio (or Studio-like) course.

  20. Learning Studios for Introductory Accounting

    Science.gov (United States)

    Yourstone, Steven A.; Tepper, Robert J.

    2014-01-01

    Although originally designed for science courses, learning studios have been introduced at over 100 college campuses in a variety of disciplines. Our study focuses on the differences between classrooms designed as lecture spaces versus classrooms designed as learning studios. The impetus is the growing number of learning studios and…

  1. A Case Study of the Introductory Psychology Blended Learning Model at McMaster University

    Directory of Open Access Journals (Sweden)

    Joseph A. Kim

    2011-09-01

    Full Text Available This paper provides a brief review of blended learning as a didactic method, and discusses the issues and challenges of using blended learning models in post-secondary education. Blended learning refers to mixed modes of instruction that combine traditional face-to-face classroom teaching methods and online learning materials. The paper will address challenges faced by large classrooms with a diverse student body, and the ways blended learning models can help alleviate those concerns (i.e. technologically savvy students, the need for course scheduling flexibility. In addition, a case study of blended learning in higher education in the context of a unique first year Introductory Psychology program at McMaster University will be discussed. Lastly, the important learning benefits offered by blended learning systems, along with the potential barriers to their implementation will be addressed.Cet article présente un bref compte rendu de l’apprentissage hybride en tant que méthode didactique. Il traite des problèmes et des enjeux relatifs à l’utilisation des modèles d’apprentissage hybride dans le domaine de l’enseignement postsecondaire. L’apprentissage hybride renvoie aux modes d’enseignement mixtes qui combinent les méthodes d’enseignement traditionnel en présentiel et l’accès à des documents d’apprentissage en ligne. L’article traite des difficultés rencontrées dans les grands groupes comprenant une diversité d’étudiants et des façons dont les modèles d’apprentissage hybride peuvent contribuer à atténuer ces préoccupations (c.-à-d. les étudiants calés en technologie, la nécessité d’une offre de cours souple. De plus, l’article traite d’une étude de cas sur l’apprentissage hybride dans l’enseignement supérieur dans le cadre de la première année d’un programme d’introduction à la psychologie à l’Université McMaster. Enfin, l’article aborde les importants avantages offerts par

  2. "Flipping" the introductory clerkship in radiology: impact on medical student performance and perceptions.

    Science.gov (United States)

    Belfi, Lily M; Bartolotta, Roger J; Giambrone, Ashley E; Davi, Caryn; Min, Robert J

    2015-06-01

    Among methods of "blended learning" (ie, combining online modules with in-class instruction), the "flipped classroom" involves student preclass review of material while reserving class time for interactive knowledge application. We integrated blended learning methodology in a "flipped" introductory clerkship in radiology, and assessed the impact of this approach on the student educational experience (performance and perception). In preparation for the "flipped clerkship," radiology faculty and residents created e-learning modules that were uploaded to an open-source website. The clerkship's 101 rising third-year medical students were exposed to different teaching methods during the course, such as blended learning, traditional lecture learning, and independent learning. Students completed precourse and postcourse knowledge assessments and surveys. Student knowledge improved overall as a result of taking the course. Blended learning achieved greater pretest to post-test improvement of high statistical significance (P value, .0060) compared to lecture learning alone. Blended learning also achieved greater pretest to post-test improvement of borderline statistical significance (P value, .0855) in comparison to independent learning alone. The difference in effectiveness of independent learning versus lecture learning was not statistically significant (P value, .2730). Student perceptions of the online modules used in blended learning portions of the course were very positive. They specifically enjoyed the self-paced interactivity and the ability to return to the modules in the future. Blended learning can be successfully applied to the introductory clerkship in radiology. This teaching method offers educators an innovative and efficient approach to medical student education in radiology. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  3. Generating a Gender Balance: making introductory information systems courses a positive experience

    Directory of Open Access Journals (Sweden)

    Rosemary Stockdale

    2007-12-01

    Full Text Available There is a growing shortfall of graduates entering the IT profession. The situation is exacerbated by the continuing decline in the number of women undertaking IT related degrees. However, there are an increasing number of students taking business degrees that have a small information systems component, although few students choose to major in IS. Using a qualitative reflective approach we identify the perceptions and experiences of female undergraduates taking introductory IS courses in two universities, one in Australia and one in New Zealand. We discuss ways of improving the delivery of introductory IS courses in order to make information systems more interesting to women undergraduates, thus enhancing their learning experiences and encouraging further uptake of IS majors. The paper concludes with some reflections on other influences that impact on the ability of IS departments to deliver appropriate introductory courses.

  4. Using R for introductory statistics

    CERN Document Server

    Verzani, John

    2014-01-01

    The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version.See What's New in the Second Edition:Increased emphasis on more idiomatic R provides a grounding in the functionality of base R.Discussions of the use of RStudio helps new

  5. Clinical Application Projects (CAPs) for Health Science Students in Introductory Microbiology.

    Science.gov (United States)

    Halyard, Rebecca A.

    Clinical Application Projects (CAPs) have been developed that allow dental hygiene and nursing students to apply introductory microbiology principles and skills learned in lecture and laboratory to a problem in an appropriate clinical situation. CAPs therefore substitute for the traditional study of "unknowns". Principles and processes emphasized…

  6. Activating Theory in the Introductory Classroom: Erving Goffman Visits Wisteria Lane

    Science.gov (United States)

    Melander, Lisa A.; Wortmann, Susan L.

    2011-01-01

    Instructors of large, general education lecture courses face a number of student engagement and learning challenges. In this article, we develop and assess an interactive lecture that introduces a theoretical perspective and three related concepts to two introductory sociology general education classrooms (n = 433). This interactive lecture…

  7. Effectively Using Discussion Boards to Engage Students in Introductory Leadership Courses

    Science.gov (United States)

    Smith, Deborah N.

    2015-01-01

    This article discusses the use of online asynchronous discussion boards as a valuable tool for connecting students to leadership concepts, theories, and models in introductory leadership survey courses. Recommendations are given for designing effective discussion boards that engage students and enhance their learning. Student outcomes include…

  8. Introduction to neutron scattering. Lecture notes of the introductory course

    International Nuclear Information System (INIS)

    Furrer, A.

    1996-01-01

    These proceedings enclose ten papers presented at the 1. European Conference on Neutron scattering (ECNS '96). The aim of the Introductory Course was fourfold: - to learn the basic principles of neutron scattering, - to get introduced into the most important classes of neutron scattering instruments, -to learn concepts and their transformation into neutron scattering experiments in various fields of condensed matter research, - to recognize the limitations of the neutron scattering technique as well as to the complementarity of other methods. figs., tabs., refs

  9. Students' views about the nature of experimental physics

    Science.gov (United States)

    Wilcox, Bethany R.; Lewandowski, H. J.

    2017-12-01

    The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive research, lab courses remain relatively under-studied. In particular, there is little, if any, data available that address the effectiveness of physics lab courses at encouraging students to recognize the nature and importance of experimental physics within the discipline as a whole. To address this gap, we present the first large-scale, national study (Ninstitutions=75 and Nstudents=7167 ) of undergraduate physics lab courses through analysis of students' responses to a research-validated assessment designed to investigate students' beliefs about the nature of experimental physics. We find that students often enter and leave physics lab courses with ideas about experimental physics as practiced in their courses that are inconsistent with the views of practicing experimental physicists, and this trend holds at both the introductory and upper-division levels. Despite this inconsistency, we find that both introductory and upper-division students are able to accurately predict the expertlike response even in cases where their views about experimentation in their lab courses disagree. These finding have implications for the recruitment, retention, and adequate preparation of students in physics.

  10. Calculus in physics classes at UFRGS: an exploratory study

    Directory of Open Access Journals (Sweden)

    Maria Cecilia Pereira Santarosa

    2011-11-01

    Full Text Available This study is part f a larger one whose general objective is to investigate and to develop a new strategy for teaching Differential and Integral Calculus I, specifically for physics majors, through a possible integration with the teaching of General and Experimental Physics I. With the specific objective of identifying physics problem-situations that may help in making sense of the mathematical concepts used in Calculus I, and languages and notations that might be used in the teaching of Calculus to favor physics learning, it was investigates, through an ethnographic study, the may mathematics is transposed to classes of General and Experimental Physics I, in classes of physics courses at the Federal University of Rio Grande do Sul (UFRGS. Some findings of this study confirmed those reported in the literature regarding the teaching and learning process in introductory college physics courses. These findings will subsidize the preparation of potentially meaningful instructional materials that will be used in a second stage of the research designed to investigate the learning of declarative and procedural knowledge in basic college physics under an approach that integrates problem-situation in physics and calculus mathematical concepts.

  11. Attitudes and Motivation of Students in an Introductory Technical Graphics Course: A Meta-Analysis Study

    Science.gov (United States)

    Ernst, Jeremy V.; Clark, Aaron C.

    2012-01-01

    Students in introductory engineering graphics courses at North Carolina State University (NCSU) were asked to complete surveys to help educators and administrators understand their attitudes toward learning and their motivation to learn. Analyses of the completed surveys provided the Graphic Communications Program at NCSU with an understanding of…

  12. Comparative Analysis of a MOOC and a Residential Community Using Introductory College Physics: Documenting How Learning Environments Are Created, Lessons Learned in the Process, and Measurable Outcomes

    Science.gov (United States)

    Olsen, Jack Ryan

    Higher education institutions, such as the University of Colorado Boulder (CU-Boulder), have as a core mission to advance their students' academic performance. On the frontier of education technologies that hold the promise to address our educational mission are Massively Open Online Courses (MOOCs) which are new enough to not be fully understood or well-researched. MOOCs, in theory, have vast potential for being cost-effective and for reaching diverse audiences across the world. This thesis examines the implementation of one MOOC, Physics 1 for Physical Science Majors, implemented in the augural round of institutionally sanctioned MOOCs in Fall 2013. While comparatively inexpensive to a brick-and-mortar course and while it initially enrolled audience of nearly 16,000 students, this MOOC was found to be time-consuming to implement, and only roughly 1.5% of those who enrolled completed the course---approximately 1/4 of those who completed the standard brick and mortar course that the MOOC was designed around. An established education technology, residential communities, contrast the MOOCs by being high-touch and highly humanized, but by being expensive and locally-based. The Andrews Hall Residential College (AHRC) on the CU campus fosters academic success and retention by engaging and networking students outside of the standard brick and mortar courses and enculturating students into an environment with vertical integration through the different classes: freshman, sophomore, junior, etc. The physics MOOC and the AHRC were studied to determine how the environments were made and what lessons were learned in the process. Also, student performance was compared for the physics MOOC, a subset of the AHRC students enrolled in a special physics course, and the standard CU Physics 1 brick and mortar course. All yielded similar learning gains for physics 1 performance, for those who completed the courses. These environments are presented together to compare and contrast their

  13. Learning Strategies of Physics Teacher Candidates: Relationships with Physics Achievement and Class Level

    Science.gov (United States)

    Selçuk, Gamze S.; Çalişkan, Serap; Erol, Mustafa

    2007-04-01

    Learning strategy concept was introduced in the education field from the development of cognitive psychology. Learning strategies are behaviors and thoughts that a learner engages in during learning which are intended to influence the learner's encoding process. Literature on learning strategies in physics field is very scarce. Participants of the research consist of teacher candidates (n=137) from 1st, 2nd, 3rd, 4th and 5th grade attending Department of Physics Education, Education Faculty of Buca, Dokuz Eylül University in Turkey. Data of this research was collected by ``Scale of Learning Strategies Usage in Physics'' (Cronbach's Alpha=0.93). Mean, Standard Deviation, Analysis of Variance were used to analyze the research data. This paper reports on teacher candidates' learning strategies used in physics education The paper investigates the relationships between learning strategies and physics achievement, class level. Some important outcomes of the research are presented, discussed and certain suggestions are made.

  14. Effect on student motivation, achievement, and learning behavior through the new homework system

    Science.gov (United States)

    Sadaghiani, Homeyra; Bao, Lei

    2002-10-01

    In our introductory physics courses, we implemented a new homework method, where students are allowed to view the solutions to their assignments before the due date. Through applying this homework system we study students' adaptation to having this type of feedback-in-advance information. In particular, we investigate their motivation in learning physics and study the effectiveness of this method in conjunction with students' motivational level.

  15. Peer Led Team Learning in Introductory Biology: Effects on Peer Leader Critical Thinking Skills

    Science.gov (United States)

    Snyder, Julia J.; Wiles, Jason R.

    2015-01-01

    This study evaluated hypothesized effects of the Peer-Led Team Learning (PLTL) instructional model on undergraduate peer leaders’ critical thinking skills. This investigation also explored peer leaders’ perceptions of their critical thinking skills. A quasi-experimental pre-test/post-test with control group design was used to determine critical thinking gains in PLTL/non-PLTL groups. Critical thinking was assessed using the California Critical Thinking Skills Test (CCTST) among participants who had previously completed and been successful in a mixed-majors introductory biology course at a large, private research university in the American Northeast. Qualitative data from open-ended questionnaires confirmed that factors thought to improve critical thinking skills such as interaction with peers, problem solving, and discussion were perceived by participants to have an impact on critical thinking gains. However, no significant quantitative differences in peer leaders’ critical thinking skills were found between pre- and post-experience CCTST measurements or between experimental and control groups. PMID:25629311

  16. Peer led team learning in introductory biology: effects on peer leader critical thinking skills.

    Directory of Open Access Journals (Sweden)

    Julia J Snyder

    Full Text Available This study evaluated hypothesized effects of the Peer-Led Team Learning (PLTL instructional model on undergraduate peer leaders' critical thinking skills. This investigation also explored peer leaders' perceptions of their critical thinking skills. A quasi-experimental pre-test/post-test with control group design was used to determine critical thinking gains in PLTL/non-PLTL groups. Critical thinking was assessed using the California Critical Thinking Skills Test (CCTST among participants who had previously completed and been successful in a mixed-majors introductory biology course at a large, private research university in the American Northeast. Qualitative data from open-ended questionnaires confirmed that factors thought to improve critical thinking skills such as interaction with peers, problem solving, and discussion were perceived by participants to have an impact on critical thinking gains. However, no significant quantitative differences in peer leaders' critical thinking skills were found between pre- and post-experience CCTST measurements or between experimental and control groups.

  17. Peer led team learning in introductory biology: effects on peer leader critical thinking skills.

    Science.gov (United States)

    Snyder, Julia J; Wiles, Jason R

    2015-01-01

    This study evaluated hypothesized effects of the Peer-Led Team Learning (PLTL) instructional model on undergraduate peer leaders' critical thinking skills. This investigation also explored peer leaders' perceptions of their critical thinking skills. A quasi-experimental pre-test/post-test with control group design was used to determine critical thinking gains in PLTL/non-PLTL groups. Critical thinking was assessed using the California Critical Thinking Skills Test (CCTST) among participants who had previously completed and been successful in a mixed-majors introductory biology course at a large, private research university in the American Northeast. Qualitative data from open-ended questionnaires confirmed that factors thought to improve critical thinking skills such as interaction with peers, problem solving, and discussion were perceived by participants to have an impact on critical thinking gains. However, no significant quantitative differences in peer leaders' critical thinking skills were found between pre- and post-experience CCTST measurements or between experimental and control groups.

  18. Challenge of Engaging All Students via Self-Paced Interactive Electronic Learning Tutorials for Introductory Physics

    Science.gov (United States)

    DeVore, Seth; Marshman, Emily; Singh, Chandralekha

    2017-01-01

    As research-based, self-paced electronic learning tools become increasingly available, a critical issue educators encounter is implementing strategies to ensure that all students engage with them as intended. Here, we first discuss the effectiveness of electronic learning tutorials as self-paced learning tools in large enrollment brick and mortar…

  19. A Peer Mentor Tutor Program in Physics

    Science.gov (United States)

    Nossal, S. M.; Jacob, A. T.; Buehlman, J. D.; Middlecamp, C. H.

    2001-05-01

    The Peer Mentor Tutor (PMT) program in the University of Wisconsin-Madison's Physics Department matches upper level undergraduate physics majors in small groups with students potentially at-risk for having academic trouble with their gateway introductory non-calculus physics course or for feeling isolated at the University. The program enhances students'learning and confidence by providing an emphasis on problem solving, a supportive environment for asking questions, and opportunities for acquiring missing math skills. The students assisted include, among others, returning adults, students of color,students with English as a second language, and students who have never taken physics in high school. The tutors acquire teaching and leadership experience with ongoing training throughout the year. The Physics PMT program is run in collaboration with a similar program in Chemistry. The peer model is also being applied to other science courses at the University of Wisconsin. We will describe the structure of the Physics PMT program and our current efforts to expand the program into a broader Physics Learning Center that may serve multiple purposes and courses.

  20. The Socratic Method in the Introductory PR Course: An Alternative Pedagogy.

    Science.gov (United States)

    Parkinson, Michael G.; Ekachai, Daradirek

    2002-01-01

    Presents the results of a study comparing student reactions to and perceptions of learning in introductory public relations courses using a traditional lecture format and a Socratic approach. Finds significant differences in the two groups showing that students who received the Socratic instruction reported more opportunities in practicing their…

  1. "Big Questions" in the Introductory Religion Classroom: Expanding the Integrative Approach

    Science.gov (United States)

    Deffenbaugh, Daniel G.

    2011-01-01

    Recent research by Barbara Walvoord suggests a perceived disparity between faculty learning objectives and students' desire to engage "big questions" in the introductory religion classroom. Faculty opinions of such questions are varied, ranging from a refusal to employ any approach that diverts attention away from critical thinking, to a…

  2. Introductory Statistics for the Behavioral Sciences

    CERN Document Server

    Cohen, Barry H; Lea, R Brooke

    2012-01-01

    A comprehensive and user-friendly introduction to statistics for behavioral science students-revised and updated Refined over seven editions by master teachers, this book gives instructors and students alike clear examples and carefully crafted exercises to support the teaching and learning of statistics for both manipulating and consuming data. One of the most popular and respected statistics texts in the behavioral sciences, the Seventh Edition of Introductory Statistics for the Behavioral Sciences has been fully revised. The new edition presents all the topics students in the behavioral s

  3. e-Learning in medical physics and engineering

    International Nuclear Information System (INIS)

    Stoeva, M.; Tabakov, S.; Lewis, C.; Tabakova, V.; Sprawls, P.; Milano, F.; Cvetkov, A.

    2012-01-01

    Full text: Introduction: e-Learning is among the contemporary methods for high quality knowledge exchange in various areas of medicine. Medical Physics/Engineering is one of the leading areas for creating e-content and practical application of e-Learning methods and curricula. Objectives: The objective of this abstract is to present the various e-Learning resources in the field of Medical Physics/Engineering and introduce some of the leading programs worldwide. Material and methods: e-Learning is applied at various levels in Medical Physics/Engineering. These versatile e-Learning methods use different approaches to deliver both general and high quality professional knowledge at virtually any point, thus increasing both the availability of the knowledge and quality of the results. Results and discussion: Medical Physics/ Engineering was among the first professions to develop and apply e-Learning - the Online Medical Physics resources, e-Encyclopaedia (www.emitel2. eu), EMERALD and EMIT materials and the Medical Physics Dictionary. An indicator for this is the first international prize in the field - EU Leonardo da Vinci Award and the increased popularity at all levels - local and international; students and professionals; medical physicists/engineers and other related specialties. Conclusion: The results so far present a solid background and show a perspective for development. Medical Physics/Engineering needs special forum to discuss regularly these questions and exchange expertise.

  4. Can Cooperative Learning Achieve the Four Learning Outcomes of Physical Education? A Review of Literature

    Science.gov (United States)

    Casey, Ashley; Goodyear, Victoria A.

    2015-01-01

    Physical learning, cognitive learning, social learning, and affective learning are positioned as the legitimate learning outcomes of physical education. It has been argued that these four learning outcomes go toward facilitating students' engagement with the physically active life (Bailey et al., 2009; Kirk, 2013). With Cooperative Learning…

  5. Advantages and challenges of using physics curricula as a model for reforming an undergraduate biology course.

    Science.gov (United States)

    Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D

    2013-06-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work.

  6. Introductory statistics and analytics a resampling perspective

    CERN Document Server

    Bruce, Peter C

    2014-01-01

    Concise, thoroughly class-tested primer that features basic statistical concepts in the concepts in the context of analytics, resampling, and the bootstrapA uniquely developed presentation of key statistical topics, Introductory Statistics and Analytics: A Resampling Perspective provides an accessible approach to statistical analytics, resampling, and the bootstrap for readers with various levels of exposure to basic probability and statistics. Originally class-tested at one of the first online learning companies in the discipline, www.statistics.com, the book primarily focuses on application

  7. Chronicling a successful secondary implementation of Studio Physics

    Science.gov (United States)

    Kohl, Patrick B.; Vincent Kuo, H.

    2012-09-01

    The Colorado School of Mines (CSM) has taught its first-semester calculus-based introductory physics course (Physics I) using a hybrid lecture/Studio Physics format since the spring of 1997. Starting in the fall of 2007, we have been converting the second semester of our calculus-based introductory physics course (Physics II) to a hybrid lecture/Studio Physics format, beginning from a traditional lecture/lab/recitation course. In this paper, we document the stages of this transformation, highlighting what has worked and what has not, and the challenges and benefits associated with the switch to Studio Physics. A major goal in this study is to develop a method for secondary implementations of Studio physics that keeps the time and resource investments manageable. We describe the history of Studio at CSM and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), exam scores, failure rates, and a variety of qualitative observations. Results suggest that Studio has increased student performance and satisfaction despite an aggressive expansion of class sizes in the past few years. Gains have been concentrated mostly in problem-solving skills and exam performance (as opposed to conceptual survey gains), in contrast to what has sometimes been seen in other studies.

  8. Effect of Task Presentation on Students' Performances in Introductory Statistics Courses

    Science.gov (United States)

    Tomasetto, Carlo; Matteucci, Maria Cristina; Carugati, Felice; Selleri, Patrizia

    2009-01-01

    Research on academic learning indicates that many students experience major difficulties with introductory statistics and methodology courses. We hypothesized that students' difficulties may depend in part on the fact that statistics tasks are commonly viewed as related to the threatening domain of math. In two field experiments which we carried…

  9. Strengthening introductory psychology: A new model for teaching the introductory course.

    Science.gov (United States)

    Gurung, Regan A R; Hackathorn, Jana; Enns, Carolyn; Frantz, Susan; Cacioppo, John T; Loop, Trudy; Freeman, James E

    2016-01-01

    Introductory psychology (Intro Psych) is one of the most popular and frequently taught courses on college campuses, yet educators in psychology have limited knowledge about what is covered in classes around the nation or the extent to which class content reflects the current scope of the discipline. There is no explicit model to guide course content selection for the intro course, which poses substantial challenges for instructors. This article proposes a new model for teaching the intro course that integrates (a) scientific foundations, (b) 5 major domains or pillars of knowledge (biological, cognitive, developmental, social and personality, and mental and physical health), and (c) cross-cutting themes relevant to all domains (cultural and social diversity, ethics, variations in human functioning, and applications; American Psychological Association, 2014). We advocate for national assessment of the course, a similar introductory course for majors and nonmajors, the inclusion of experiential or laboratory components, and additional training resources for instructors of the intro course. Given the exponential growth of psychological knowledge and applications during the past decades, we caution against attempting to provide exhaustive coverage of all topic areas of psychology in a one-semester course. We conclude by discussing the challenges that lie ahead for the discipline of psychology as it launches this new model for Intro Psych. (c) 2016 APA, all rights reserved).

  10. EFFECT OF INQUIRY LEARNING MODEL AND MOTIVATION ON PHYSICS OUTCOMES LEARNING STUDENTS

    Directory of Open Access Journals (Sweden)

    Dahlia Megawati Pardede

    2016-06-01

    Full Text Available The purposes of the research are: (a to determine differences in learning outcomes of students with Inquiry Training models and conventional models, (b to determine differences in physics learning outcomes of students who have high motivation and low motivation, (c to determine the interaction between learning models with the level of motivation in improving student Physics learning outcomes. The results were found: (a there are differences in physical students learning outcomes are taught by Inquiry Training models and conventional models. (b learning outcomes of students who are taught by Inquiry Learning Model Training better than student learning outcomes are taught with conventional model. (c there is a difference in student's learning outcomes that have high motivation and low motivation. (d Student learning outcomes that have a high motivation better than student learning outcomes than have a low motivation. (e there is interaction between learning and motivation to student learning outcomes. Learning outcomes of students who are taught by the model is influenced also by the motivation, while learning outcomes of students who are taught with conventional models are not affected by motivation.

  11. Benefits of completing homework for students with different aptitudes in an introductory electricity and magnetism course

    Directory of Open Access Journals (Sweden)

    F. J. Kontur

    2015-02-01

    Full Text Available We examine how student aptitudes impact how much students learn from doing graded online and written homework in an introductory electricity and magnetism course. Our analysis examines the correlation between successful homework completion rates and exam performance as well as how changes in homework completion correlate with changes in exam scores for students with different physics aptitudes. On average, successfully completing many homework problems correlated to better exam scores only for students with high physics aptitude. On the other hand, all other students showed zero or even a negative correlation between successful homework completion and exam performance. Low- and medium-aptitude students who did more homework did no better and sometimes scored lower on exams than their low- and medium-aptitude peers who did less homework. Our work also shows that long-term changes in homework completion correlated to long-term changes in exam scores only for students with high physics aptitude, but not for students with medium or low aptitude. We offer several explanations for the disparity in homework learning gains, including cognitive load theory, ineffective homework strategies, and various mismatches between homework and exams. Several solutions are proposed to address these possible deficiencies in graded online and written homework.

  12. Benefits of completing homework for students with different aptitudes in an introductory electricity and magnetism course

    Science.gov (United States)

    Kontur, F. J.; de La Harpe, K.; Terry, N. B.

    2015-06-01

    We examine how student aptitudes impact how much students learn from doing graded online and written homework in an introductory electricity and magnetism course. Our analysis examines the correlation between successful homework completion rates and exam performance as well as how changes in homework completion correlate with changes in exam scores for students with different physics aptitudes. On average, successfully completing many homework problems correlated to better exam scores only for students with high physics aptitude. On the other hand, all other students showed zero or even a negative correlation between successful homework completion and exam performance. Low- and medium-aptitude students who did more homework did no better and sometimes scored lower on exams than their low- and medium-aptitude peers who did less homework. Our work also shows that long-term changes in homework completion correlated to long-term changes in exam scores only for students with high physics aptitude, but not for students with medium or low aptitude. We offer several explanations for the disparity in homework learning gains, including cognitive load theory, ineffective homework strategies, and various mismatches between homework and exams. Several solutions are proposed to address these possible deficiencies in graded online and written homework.

  13. Resource Letter ALIP-1: Active-Learning Instruction in Physics

    Science.gov (United States)

    Meltzer, David E.; Thornton, Ronald K.

    2012-06-01

    This Resource Letter provides a guide to the literature on research-based active-learning instruction in physics. These are instructional methods that are based on, assessed by, and validated through research on the teaching and learning of physics. They involve students in their own learning more deeply and more intensely than does traditional instruction, particularly during class time. The instructional methods and supporting body of research reviewed here offer potential for significantly improved learning in comparison to traditional lecture-based methods of college and university physics instruction. We begin with an introduction to the history of active learning in physics in the United States, and then discuss some methods for and outcomes of assessing pedagogical effectiveness. We enumerate and describe common characteristics of successful active-learning instructional strategies in physics. We then discuss a range of methods for introducing active-learning instruction in physics and provide references to those methods for which there is published documentation of student learning gains.

  14. Multiple-Choice Exams: An Obstacle for Higher-Level Thinking in Introductory Science Classes

    Science.gov (United States)

    Stanger-Hall, Kathrin F.

    2012-01-01

    Learning science requires higher-level (critical) thinking skills that need to be practiced in science classes. This study tested the effect of exam format on critical-thinking skills. Multiple-choice (MC) testing is common in introductory science courses, and students in these classes tend to associate memorization with MC questions and may not see the need to modify their study strategies for critical thinking, because the MC exam format has not changed. To test the effect of exam format, I used two sections of an introductory biology class. One section was assessed with exams in the traditional MC format, the other section was assessed with both MC and constructed-response (CR) questions. The mixed exam format was correlated with significantly more cognitively active study behaviors and a significantly better performance on the cumulative final exam (after accounting for grade point average and gender). There was also less gender-bias in the CR answers. This suggests that the MC-only exam format indeed hinders critical thinking in introductory science classes. Introducing CR questions encouraged students to learn more and to be better critical thinkers and reduced gender bias. However, student resistance increased as students adjusted their perceptions of their own critical-thinking abilities. PMID:22949426

  15. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  16. Student Performance in an Introductory Business Statistics Course: Does Delivery Mode Matter?

    Science.gov (United States)

    Haughton, Jonathan; Kelly, Alison

    2015-01-01

    Approximately 600 undergraduates completed an introductory business statistics course in 2013 in one of two learning environments at Suffolk University, a mid-sized private university in Boston, Massachusetts. The comparison group completed the course in a traditional classroom-based environment, whereas the treatment group completed the course in…

  17. PlayPhysics: An Emotional Games Learning Environment for Teaching Physics

    Science.gov (United States)

    Muñoz, Karla; Kevitt, Paul Mc; Lunney, Tom; Noguez, Julieta; Neri, Luis

    To ensure learning, game-based learning environments must incorporate assessment mechanisms, e.g. Intelligent Tutoring Systems (ITSs). ITSs are focused on recognising and influencing the learner's emotional or motivational states. This research focuses on designing and implementing an affective student model for intelligent gaming, which reasons about the learner's emotional state from cognitive and motivational variables using observable behaviour. A Probabilistic Relational Models (PRMs) approach is employed to derive Dynamic Bayesian Networks (DBNs). The model uses the Control-Value theory of 'achievement emotions' as a basis. A preliminary test was conducted to recognise the students' prospective-outcome emotions with results presented and discussed. PlayPhysics is an emotional games learning environment for teaching Physics. Once the affective student model proves effective it will be incorporated into PlayPhysics' architecture. The design, evaluation and postevaluation of PlayPhysics are also discussed. Future work will focus on evaluating the affective student model with a larger population of students, and on providing affective feedback.

  18. The Hunger Project: Exercising Civic Leadership "with" the Community "for" the Common Good in an Introductory Leadership Course

    Science.gov (United States)

    Priest, Kerry L.; Bauer, Tamara; Fine, Leigh E.

    2015-01-01

    Contemporary trends in leadership education emphasize paradigms of learning and educational practices associated with developing responsible citizens, furthering higher education's civic mission. Yet, few introductory leadership courses include an explicit civic component (Johnson & Woodard, 2014). Service-learning is a high-impact practice…

  19. Modellus: Learning Physics with Mathematical Modelling

    Science.gov (United States)

    Teodoro, Vitor

    Computers are now a major tool in research and development in almost all scientific and technological fields. Despite recent developments, this is far from true for learning environments in schools and most undergraduate studies. This thesis proposes a framework for designing curricula where computers, and computer modelling in particular, are a major tool for learning. The framework, based on research on learning science and mathematics and on computer user interface, assumes that: 1) learning is an active process of creating meaning from representations; 2) learning takes place in a community of practice where students learn both from their own effort and from external guidance; 3) learning is a process of becoming familiar with concepts, with links between concepts, and with representations; 4) direct manipulation user interfaces allow students to explore concrete-abstract objects such as those of physics and can be used by students with minimal computer knowledge. Physics is the science of constructing models and explanations about the physical world. And mathematical models are an important type of models that are difficult for many students. These difficulties can be rooted in the fact that most students do not have an environment where they can explore functions, differential equations and iterations as primary objects that model physical phenomena--as objects-to-think-with, reifying the formal objects of physics. The framework proposes that students should be introduced to modelling in a very early stage of learning physics and mathematics, two scientific areas that must be taught in very closely related way, as they were developed since Galileo and Newton until the beginning of our century, before the rise of overspecialisation in science. At an early stage, functions are the main type of objects used to model real phenomena, such as motions. At a later stage, rates of change and equations with rates of change play an important role. This type of equations

  20. Student Performance in Introductory Psychology Following Termination of the Programmed Achievement Contingency at Mid-Semester

    Science.gov (United States)

    Nation, Jack R.; And Others

    1977-01-01

    Discusses the Programmed Achievement learning system in an introductory psychology course. This system is based on an instructional system of motivation and reward in which a crucial ingredient is the testing procedure. (Author/JR)

  1. Examining students' views about validity of experiments: From introductory to Ph.D. students

    Science.gov (United States)

    Hu, Dehui; Zwickl, Benjamin M.

    2018-06-01

    We investigated physics students' epistemological views on measurements and validity of experimental results. The roles of experiments in physics have been underemphasized in previous research on students' personal epistemology, and there is a need for a broader view of personal epistemology that incorporates experiments. An epistemological framework incorporating the structure, methodology, and validity of scientific knowledge guided the development of an open-ended survey. The survey was administered to students in algebra-based and calculus-based introductory physics courses, upper-division physics labs, and physics Ph.D. students. Within our sample, we identified several differences in students' ideas about validity and uncertainty in measurement. The majority of introductory students justified the validity of results through agreement with theory or with results from others. Alternatively, Ph.D. students frequently justified the validity of results based on the quality of the experimental process and repeatability of results. When asked about the role of uncertainty analysis, introductory students tended to focus on the representational roles (e.g., describing imperfections, data variability, and human mistakes). However, advanced students focused on the inferential roles of uncertainty analysis (e.g., quantifying reliability, making comparisons, and guiding refinements). The findings suggest that lab courses could emphasize a variety of approaches to establish validity, such as by valuing documentation of the experimental process when evaluating the quality of student work. In order to emphasize the role of uncertainty in an authentic way, labs could provide opportunities to iterate, make repeated comparisons, and make decisions based on those comparisons.

  2. Documenting the conversion from traditional to Studio Physics formats at the Colorado School of Mines: Process and early results

    Science.gov (United States)

    Kohl, Patrick B.; Kuo, H. Vincent; Ruskell, Todd G.

    2008-10-01

    The Colorado School of Mines (CSM) has taught its first-semester introductory physics course using a hybrid lecture/Studio Physics format for several years. Over the past year we have converted the second semester of our calculus-based introductory physics course (Physics II) to a Studio Physics format, starting from a traditional lecture-based format. In this paper, we document the early stages of this conversion in order to better understand which features succeed and which do not, and in order to develop a model for switching to Studio that keeps the time and resource investment manageable. We describe the recent history of the Physics II course and of Studio at Mines, discuss the PER-based improvements that we are implementing, and characterize our progress via several metrics, including pre/post Conceptual Survey of Electricity and Magnetism (CSEM) scores, Colorado Learning About Science Survey scores (CLASS), solicited student comments, failure rates, and exam scores.

  3. Increasing Student Success in Large Survey Science Courses via Supplemental Instruction in Learning Centers

    Science.gov (United States)

    Hooper, Eric Jon; Nossal, S.; Watson, L.; Timbie, P.

    2010-05-01

    Large introductory astronomy and physics survey courses can be very challenging and stressful. The University of Wisconsin-Madison Physics Learning Center (PLC) reaches about 10 percent of the students in four introductory physics courses, algebra and calculus based versions of both classical mechanics and electromagnetism. Participants include those potentially most vulnerable to experiencing isolation and hence to having difficulty finding study partners as well as students struggling with the course. They receive specially written tutorials, conceptual summaries, and practice problems; exam reviews; and most importantly, membership in small groups of 3 - 8 students which meet twice per week in a hybrid of traditional teaching and tutoring. Almost all students who regularly participate in the PLC earn at least a "C,” with many earning higher grades. The PLC works closely with other campus programs which seek to increase the participation and enhance the success of underrepresented minorities, first generation college students, and students from lower-income circumstances; and it is well received by students, departmental faculty, and University administration. The PLC staff includes physics education specialists and research scientists with a passion for education. However, the bulk of the teaching is conducted by undergraduates who are majoring in physics, astronomy, mathematics, engineering, and secondary science teaching (many have multiple majors). The staff train these enthusiastic students, denoted Peer Mentor Tutors (PMTs) in general pedagogy and mentoring strategies, as well as the specifics of teaching the physics covered in the course. The PMTs are among the best undergraduates at the university. While currently there is no UW-Madison learning center for astronomy courses, establishing one is a possible future direction. The introductory astronomy courses cater to non-science majors and consequently are less quantitative. However, the basic structure

  4. Test on the Effectiveness of the Sum over Paths Approach in Favoring the Construction of an Integrated Knowledge of Quantum Physics in High School

    Science.gov (United States)

    Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna

    2017-01-01

    In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent…

  5. Introductory lectures on Chern-Simons theories

    Science.gov (United States)

    Zanelli, Jorge

    2012-02-01

    The Chern-Simons (CS) form evolved from an obstruction in mathematics into an important object in theoretical physics. In fact, the presence of CS terms in physics is more common than one may think. They are found in the studies of anomalies in quantum field theories and as Lagrangians for gauge fields, including gravity and supergravity. They seem to play an important role in high Tc superconductivity and in recently discovered topological insulators. CS forms are also the natural generalization of the minimal coupling between the electromagnetic field and a point charge when the source is not point-like but an extended fundamental object, a membrane. A cursory review of these ideas is presented at an introductory level.

  6. Evaluation of Colorado Learning Attitudes about Science Survey

    Science.gov (United States)

    Douglas, K. A.; Yale, M. S.; Bennett, D. E.; Haugan, M. P.; Bryan, L. A.

    2014-12-01

    The Colorado Learning Attitudes about Science Survey (CLASS) is a widely used instrument designed to measure student attitudes toward physics and learning physics. Previous research revealed a fairly complex factor structure. In this study, exploratory and confirmatory factor analyses were conducted on data from an undergraduate introductory physics course (n =3844 ) to determine whether a more parsimonious factor structure exists. Exploratory factor analysis results indicate that many of the items from the original CLASS have poor psychometric properties and could not be used in a revised factor structure. The cross validation showed acceptable fit statistics for a three factor model found in the exploratory factor analysis. This research suggests that a more optimum measurement of students' attitudes about physics and learning physics is obtained with a 15-item instrument, which describes the factors of personal application, personal effort, and problem solving. The proposed revised version of the CLASS offers researchers the opportunity to test a shortened version of the instrument that may be able to provide information about students' attitudes in the areas of personal application of physics, personal effort in a physics course, and approaches to problem solving.

  7. Evaluation of Colorado Learning Attitudes about Science Survey

    Directory of Open Access Journals (Sweden)

    K. A. Douglas

    2014-11-01

    Full Text Available The Colorado Learning Attitudes about Science Survey (CLASS is a widely used instrument designed to measure student attitudes toward physics and learning physics. Previous research revealed a fairly complex factor structure. In this study, exploratory and confirmatory factor analyses were conducted on data from an undergraduate introductory physics course (n=3844 to determine whether a more parsimonious factor structure exists. Exploratory factor analysis results indicate that many of the items from the original CLASS have poor psychometric properties and could not be used in a revised factor structure. The cross validation showed acceptable fit statistics for a three factor model found in the exploratory factor analysis. This research suggests that a more optimum measurement of students’ attitudes about physics and learning physics is obtained with a 15-item instrument, which describes the factors of personal application, personal effort, and problem solving. The proposed revised version of the CLASS offers researchers the opportunity to test a shortened version of the instrument that may be able to provide information about students’ attitudes in the areas of personal application of physics, personal effort in a physics course, and approaches to problem solving.

  8. Refined Characterization of Student Perspectives on Quantum Physics

    Science.gov (United States)

    Baily, Charles; Finkelstein, Noah D.

    2010-01-01

    The perspectives of introductory classical physics students can often negatively influence how those students later interpret quantum phenomena when taking an introductory course in modern physics. A detailed exploration of student perspectives on the interpretation of quantum physics is needed, both to characterize student understanding of…

  9. Can we build a more efficient airplane? Using applied questions to teach physics

    Science.gov (United States)

    Bhatia, Aatish

    2014-03-01

    For students and for the science-interested public, applied questions can serve as a hook to learn introductory physics. Can we radically improve the energy efficiency of modern day aircraft? Are solar planes like the Solar Impulse the future of travel? How do migratory birds like the alpine swift fly nonstop for nearly seven months? Using examples from aeronautical engineering and biology, I'll discuss how undergraduate physics can shed light on these questions about transport, and place fundamental constraints on the flight properties of flying machines, whether birds or planes. Education research has shown that learners are likely to forget vast content knowledge unless they get to apply this knowledge to novel and unfamiliar situations. By applying physics to real-life problems, students can learn to build and apply quantitative models, making use of skills such as order of magnitude estimates, dimensional analysis, and reasoning about uncertainty. This applied skillset allows students to transfer their knowledge outside the classroom, and helps build connections between traditionally distinct content areas. I'll also describe the results of an education experiment at Rutgers University where my colleagues and I redesigned a 100+ student introductory physics course for social science and humanities majors to address applied questions such as evaluating the energy cost of transport, and asking whether the United States could obtain all its energy from renewable sources.

  10. Operant Conditioning Concepts in Introductory Psychology Textbooks and Their Companion Web Sites

    Science.gov (United States)

    Sheldon, Jane P.

    2002-01-01

    Psychology instructors and textbook authors rate operant conditioning as one of the most essential concepts for students to learn, yet textbook writers, as well as students, can fall prey to misconceptions. This study is a content analysis of the presentation of operant conditioning in introductory psychology textbooks and their companion Web…

  11. Retention of Statistical Concepts in a Preliminary Randomization-Based Introductory Statistics Curriculum

    Science.gov (United States)

    Tintle, Nathan; Topliff, Kylie; VanderStoep, Jill; Holmes, Vicki-Lynn; Swanson, Todd

    2012-01-01

    Previous research suggests that a randomization-based introductory statistics course may improve student learning compared to the consensus curriculum. However, it is unclear whether these gains are retained by students post-course. We compared the conceptual understanding of a cohort of students who took a randomization-based curriculum (n = 76)…

  12. Using a Movie as a Capstone Activity for the Introductory Course

    Science.gov (United States)

    Blessing, Stephen B.; Blessing, Jennifer S.

    2015-01-01

    A capstone experience serves as a culminating exercise for students to assimilate the information learned in a course and to realize how to use the material and skills in different contexts. Both majors and nonmajors benefit from having the material in the introductory course consolidated in such a way, for later study in the field and to more…

  13. Service Learning in Introductory Astronomy

    Science.gov (United States)

    Orleski, Michael

    2013-01-01

    Service learning is a method of instruction where the students in a course use the course's content in a service project. The service is included as a portion of the students' course grades. During the fall semester 2010, service learning was incorporated into the Introduction to Astronomy course at Misericordia University. The class had eight…

  14. UNESCO active learning approach in optics and photonics leads to significant change in Morocco

    Science.gov (United States)

    Berrada, K.; Channa, R.; Outzourhit, A.; Azizan, M.; Oueriagli, A.

    2014-07-01

    There are many difficulties in teaching science and technology in developing countries. Several different teaching strategies have to be applied in these cases. More specifically, for developing countries competencies in teaching science in the introductory classroom has attracted much attention. As a specific example we will consider the Moroccan system. In most developing countries everything is moving so slowly that the progress stays static for development. Also, any change needs time, effort and engagement. In our case we discovered that many teachers feel uncomfortable when introducing new teaching methods and evaluation in classes at introductory physics. However, the introduction of an Active Learning in our curricula showed difficulties that students have in understanding physics and especially concepts. Students were interested in having Active Learning courses much more than passive and traditional ones. Changing believes on physical phenomena and reality of the world students become more attractive and their way of thinking Science changed. The main philosophy of fostering modern hands-on learning techniques -adapted to local needs and availability of teaching resources- is elaborated. The Active Learning program provides the teachers with a conceptual evaluation instrument, drawn from relevant physics education research, giving teachers an important tool to measure student learning. We will try to describe the UNESCO Chair project in physics created in 2010 at Cadi Ayyad University since our first experience with UNESCO ALOP program. Many efforts have been done so far and the project helps now to develop more national and international collaborations between universities and Regional Academies of Education and Training. As a new result of these actions and according to our local needs, the translation of the ALOP program into Arabic is now available under the auspice of UNESCO and encouragement of international partners SPIE, ICTP, ICO and OSA.

  15. Physical Activity and Fitness Knowledge Learning in Physical Education: Seeking a Common Ground

    Science.gov (United States)

    Chen, Senlin; Chen, Ang; Sun, Haichun; Zhu, Xihe

    2013-01-01

    Motivation to learn is a disposition developed through exposure to learning opportunities. Guided by the expectancy-value theory of Eccles and Wigfield (1995), this study examined the extent to which expectancy belief and task value influenced elementary school students' physical activity and knowledge learning in physical education (PE).…

  16. Incorporating Geoethics in Introductory Earth System Science Courses

    Science.gov (United States)

    Schmitt, J.

    2014-12-01

    The integrative nature of Earth System Science courses provides extensive opportunities to introduce students to geoethical inquiry focused on globally significant societal issues. Geoscience education has traditionally lagged in its efforts to increase student awareness of the significance of geologic knowledge to understanding and responsibly confronting causes and possible solutions for emergent, newly emerging, and future problems of anthropogenic cause and consequence. Developing an understanding of the human impact on the earth system requires early (lower division) and for geoscience majors, repeated (upper division) curricular emphasis on the interactions of the lithosphere, hydrosphere, atmosphere, biosphere, and pedosphere across space and through time. Capturing the interest of university students in globally relevant earth system issues and their ethical dimensions while first learning about the earth system is an important initial step in bringing geoethical deliberation and awareness to the next generation of geoscientists. Development of a new introductory Earth System Science course replacing a traditional introductory Physical Geology course at Montana State University has involved abandonment of concept-based content organization in favor of a place-based approach incorporating examination of the complex interactions of earth system components and emergent issues and dilemmas deriving from the unique component interactions that characterize each locale. Thirteen different place-based week-long modules (using web- and classroom-based instruction) were developed to ensure cumulative broad coverage across the earth geographically and earth system components conceptually. Each place-based instructional module contains content of societal relevance requiring synthesis, critical evaluation, and reflection by students. Examples include making linkages between deforestation driven by economics and increased seismicity in Haiti, agriculture and development

  17. Changing teaching techniques and adapting new technologies to improve student learning in an introductory meteorology and climate course

    Directory of Open Access Journals (Sweden)

    E. M. Cutrim

    2006-01-01

    Full Text Available Responding to the call for reform in science education, changes were made in an introductory meteorology and climate course offered at a large public university. These changes were a part of a larger project aimed at deepening and extending a program of science content courses that model effective teaching strategies for prospective middle school science teachers. Therefore, revisions were made to address misconceptions about meteorological phenomena, foster deeper understanding of key concepts, encourage engagement with the text, and promote inquiry-based learning. Techniques introduced include: use of a flash cards, student reflection questionnaires, writing assignments, and interactive discussions on weather and forecast data using computer technology such as Integrated Data Viewer (IDV. The revision process is described in a case study format. Preliminary results (self-reflection by the instructor, surveys of student opinion, and measurements of student achievement, suggest student learning has been positively influenced. This study is supported by three grants: NSF grant No. 0202923, the Unidata Equipment Award, and the Lucia Harrison Endowment Fund.

  18. Interactive Computer Lessons for Introductory Economics: Guided Inquiry-From Supply and Demand to Women in the Economy.

    Science.gov (United States)

    Miller, John; Weil, Gordon

    1986-01-01

    The interactive feature of computers is used to incorporate a guided inquiry method of learning introductory economics, extending the Computer Assisted Instruction (CAI) method beyond drills. (Author/JDH)

  19. Students' Use of Optional Online Reviews and Its Relationship to Summative Assessment Outcomes in Introductory Biology

    Science.gov (United States)

    Carpenter, Shana K.; Rahman, Shuhebur; Lund, Terry J. S.; Armstrong, Patrick I.; Lamm, Monica H.; Reason, Robert D.; Coffman, Clark R.

    2017-01-01

    Retrieval practice has been shown to produce significant enhancements in student learning of course information, but the extent to which students make use of retrieval to learn information on their own is unclear. In the current study, students in a large introductory biology course were provided with optional online review questions that could be…

  20. DIFFICULTIES TO LEARN AND TO TEACH MODERN PHYSICS.

    Directory of Open Access Journals (Sweden)

    R. Antonowiski

    2017-08-01

    Full Text Available Physics is engaged in scientific and technological development in several areas, however, its learning in high school has high failure rates that demonstrate a low level of use. It is a science that allows us to understand the nature of the macroscopic and atomic matter, but it is taught in a disjointed manner, upon presentation of concepts, laws and mathematical sentences, repetitive exercises that have taken the preparatory character for college entrance. Thus, the student gets stuck sentences featuring a partial knowledge and disposable. This study aimed to analyze the main difficulties that undergraduate students in Physics have in Modern Physics learning. Point out the difficulties in teaching and learning Physics is not an easy task and to identify them comes the difficulty of how to solve them. After analysis of several hypotheses we can conclude that there is no single factor responsible for the difficulty of the teaching and learning of Modern Physics. The lack of time to work and developed since middle school, stimulating the curiosity of students, adequately trained teachers, lack of structure offered by the government, parents' responsibilities and students in learning, among others, constitute a major challenge for successful teaching and learning of Modern Physics

  1. Introductory remarks on double beta decay and nuclear physics

    International Nuclear Information System (INIS)

    Rosen, S.P.

    1986-01-01

    The particle physics aspects of double beta decay and the theory of the phenomenon are briefly reviewed. The distinction between Dirac and Majorana neutrinos is drawn by comparing the neutrino that accompanies a negatively charged lepton in some hadronic decay process with that which accompanies a positively charged lepton in some other decay process. Two modes of double beta decay are examined - one emitting two neutrinos and the other emitting no neutrinos. What can be learned from the existing data on double beta decay is considered, de-emphasizing the question of bounds on neutrino mass and concentrating on the properties of the phenomenon itself. Possible future experiments are anticipated. 16 refs

  2. Particle in a Box: Software for computer-assisted learning in introductory quantum mechanics courses

    International Nuclear Information System (INIS)

    Magalhaes, A L; Vasconcelos, V P S

    2006-01-01

    Particle in a Box is a non-commercial program which was devised to help students to become familiar with typical quantum phenomena when they are introduced for the first time in a physical-chemistry course. Its name comes from the simple and well-known theoretical model on which it is based. The user can select three distinct potential wells, namely the one dimensional with two infinite walls, the one dimensional with one finite barrier and the two-dimensional infinite potential square box. In order to set the system conditions, the user may enter the values for different physical parameters, including the quantum level, mass of the particle, dimensions of the box and height of the finite potential barrier. Through a clear and attractive output, one can visualize and compare the wavefunctions and their squares for the chosen quantum levels, the corresponding energy diagrams and probabilities of tunnelling. The program was tested as a pedagogical tool in tutorials of an introductory course in atomic and molecular structure. The use of this software in the classroom increased the receptivity of the students to non-intuitive topics such as, for instance, quantization, nodes and tunnelling, which helped to improve their success in the course

  3. Primarily Statistics: Developing an Introductory Statistics Course for Pre-Service Elementary Teachers

    Science.gov (United States)

    Green, Jennifer L.; Blankenship, Erin E.

    2013-01-01

    We developed an introductory statistics course for pre-service elementary teachers. In this paper, we describe the goals and structure of the course, as well as the assessments we implemented. Additionally, we use example course work to demonstrate pre-service teachers' progress both in learning statistics and as novice teachers. Overall, the…

  4. Evaluating Two Models of Collaborative Tests in an Online Introductory Statistics Course

    Science.gov (United States)

    Björnsdóttir, Auðbjörg; Garfield, Joan; Everson, Michelle

    2015-01-01

    This study explored the use of two different types of collaborative tests in an online introductory statistics course. A study was designed and carried out to investigate three research questions: (1) What is the difference in students' learning between using consensus and non-consensus collaborative tests in the online environment?, (2) What is…

  5. Using Performance Tasks to Improve Quantitative Reasoning in an Introductory Mathematics Course

    Science.gov (United States)

    Kruse, Gerald; Drews, David

    2013-01-01

    A full-cycle assessment of our efforts to improve quantitative reasoning in an introductory math course is described. Our initial iteration substituted more open-ended performance tasks for the active learning projects than had been used. Using a quasi-experimental design, we compared multiple sections of the same course and found non-significant…

  6. Introductory analysis of Benard-Marangoni convection

    International Nuclear Information System (INIS)

    Maroto, J A; Perez-Munuzuri, V; Romero-Cano, M S

    2007-01-01

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics

  7. Introductory analysis of Benard-Marangoni convection

    Energy Technology Data Exchange (ETDEWEB)

    Maroto, J A [Group of Physics and Chemistry of Linares, Escuela Politecnica Superior, St Alfonso X El Sabio, 28, University of Jaen, E-23700 Linares, Jaen (Spain); Perez-Munuzuri, V [Group of Nonlinear Physics, University of Santiago de Compostela, E-15782 Santiago de Compostela (Spain); Romero-Cano, M S [Group of Complex Fluids Physics, Department of Applied Physics, University of Almeria, E-04120 Almeria (Spain)

    2007-03-15

    We describe experiments on Benard-Marangoni convection which permit a useful understanding of the main concepts involved in this phenomenon such as, for example, Benard cells, aspect ratio, Rayleigh and Marangoni numbers, Crispation number and critical conditions. In spite of the complexity of convection theory, we carry out a simple and introductory analysis which has the additional advantage of providing very suggestive experiments. As a consequence, we recommend our device for use as a laboratory experiment for undergraduate students of the thermodynamics of nonlinear and fluid physics.

  8. Which Introductory Programming Approach Is Most Suitable for Students: Procedural or Visual Programming?

    Science.gov (United States)

    Eid, Chaker; Millham, Richard

    2012-01-01

    In this paper, we discuss the visual programming approach to teaching introductory programming courses and then compare this approach with that of procedural programming. The involved cognitive levels of students, as beginning students are introduced to different types of programming concepts, are correlated to the learning processes of…

  9. Development of new Micro-Physics Nuclear Reactor Simulator™ and its possibility for introductory education of nuclear engineering

    International Nuclear Information System (INIS)

    Tatsumi, Masahiro; Tsujita, Kosuke; Tamari, Yohei

    2015-01-01

    This paper describes recent activity on development of the Micro-Physics Nuclear Reactor Simulator™ and its application to introductory educations of nuclear engineering at high schools and university. The simulator has been continuously improved with active feedbacks from existing and potential users through its applications to exercises in classes/seminars. A newly developed reactor core transient analysis code, RAMBO-T has been adopted in the simulator along with SIMULATE-3K by Studsvik Scandpower Inc. (Borkowski, 1994) The internal data structure has been revised so that any combinations of the target reactor type, the core transient analysis code and the display language can be established. A new graphical user interface was implemented to realize the intuitive and easy-to-understand operations by novice users. The improved version of the Micro-Physics Nuclear Reactor Simulator has been practically used at educational institutions. In order to contribute to the activities on human resource development in the field of nuclear engineering, it is planned to donate the Micro-Physics Simulator™ Lite, a variation of the simulator that supports the only transient core analysis with RAMBO-T, to IAEA, the International Atomic Energy Agency. It will be included into the “NPP Simulators suite for Education” where complimentary copies are distributed to the member states countries. (author)

  10. E-learning in the field of medical physics

    International Nuclear Information System (INIS)

    Stoeva, M.; Velkova, K.

    2006-01-01

    Full text: E-learning is an all-encompassing term referring to computer/mobile technology-enhanced learning. It may include the use of web-based teaching materials and hypermedia in general, multimedia CD-ROMs, web sites, discussion boards, collaborative software, e-mail, blogs, wikis, computer aided assessment, educational animation, simulations, learning management software and more, with possibly a combination of different methods being used. The objective of this paper is to present an overview of the e-learning solutions and applications in the field of Medical Physics, covering the most popular international and local e-learning projects and interactive e-learning environments. Medical physics and engineering is one of the areas where e-learning is widely used due to the fact that medical physic professionals are quite closely linked to different types of e-environments. The implementation of such systems improves education quality, information delivery and expert knowledge availability

  11. Inquiry based learning in physical education

    DEFF Research Database (Denmark)

    Østergaard, Lars Domino

    2014-01-01

    The present project is a case study founded on the decreasing motivation and engagement in physical education. The project suggests inquiry based learning (IBL) as an educational methodology. This may help to turn the trend as IBL has shown to engage and motivate students at different educational...... levels and within different subjects. In this pilot research project performed at a physical education teacher education program, qualitative methods were chosen to investigate students’ motivation and engagement within an IBL-unit in physical education and to accentuate challenges, advantages...... and disadvantages within the IBL-methodology in relation to students’ motivation. Instructed in guided inquiry, 32 students of physical education in a teacher training college worked with inquiry based learning in physical education over a four week period. During the IBL-unit, qualitative data such as the students...

  12. Physics Education Research and the Teaching and Learning of Physics

    OpenAIRE

    Rojas, Sergio

    2011-01-01

    A brief account of some recent controversies about the teaching and learning of physics is presented. A shorter version of this outcome was accepted by The Physics Teacher, but publication is still pending.

  13. Developing iPad-Based Physics Simulations That Can Help People Learn Newtonian Physics Concepts

    Science.gov (United States)

    Lee, Young-Jin

    2015-01-01

    The aims of this study are: (1) to develop iPad-based computer simulations called iSimPhysics that can help people learn Newtonian physics concepts; and (2) to assess its educational benefits and pedagogical usefulness. To facilitate learning, iSimPhysics visualizes abstract physics concepts, and allows for conducting a series of computer…

  14. Service Learning In Physics: The Consultant Model

    Science.gov (United States)

    Guerra, David

    2005-04-01

    Each year thousands of students across the country and across the academic disciplines participate in service learning. Unfortunately, with no clear model for integrating community service into the physics curriculum, there are very few physics students engaged in service learning. To overcome this shortfall, a consultant based service-learning program has been developed and successfully implemented at Saint Anselm College (SAC). As consultants, students in upper level physics courses apply their problem solving skills in the service of others. Most recently, SAC students provided technical and managerial support to a group from Girl's Inc., a national empowerment program for girls in high-risk, underserved areas, who were participating in the national FIRST Lego League Robotics competition. In their role as consultants the SAC students provided technical information through brainstorming sessions and helped the girls stay on task with project management techniques, like milestone charting. This consultant model of service-learning, provides technical support to groups that may not have a great deal of resources and gives physics students a way to improve their interpersonal skills, test their technical expertise, and better define the marketable skill set they are developing through the physics curriculum.

  15. Adapting research-based curricula at Seattle Pacific University: Results on student learning

    Science.gov (United States)

    Close, Eleanor; Vokos, Stamatis; Lindberg, John; Seeley, Lane

    2004-05-01

    Seattle Pacific University is the recent recipient of a NSF CCLI grant to improve student learning in introductory physics and calculus courses. This talk will outline the goals of this collaborative project and present some initial results on student performance. Results from research-based assessments will be presented as well as specific examples of successes and challenges from mechanics and electricity and magnetism.

  16. A Tutorial Design Process Applied to an Introductory Materials Engineering Course

    Science.gov (United States)

    Rosenblatt, Rebecca; Heckler, Andrew F.; Flores, Katharine

    2013-01-01

    We apply a "tutorial design process", which has proven to be successful for a number of physics topics, to design curricular materials or "tutorials" aimed at improving student understanding of important concepts in a university-level introductory materials science and engineering course. The process involves the identification…

  17. Role of Pre-Course Student Characteristics on Student Learning in Interactive Teaching Environments

    Science.gov (United States)

    Miller, Kelly Anne

    The goal of this dissertation is to broaden our understanding of interactive teaching strategies, in the context of the introductory physics classroom at the undergraduate level. The dissertation is divided into four main projects, each of which investigates a specific aspect of teaching physics interactively. All four projects look towards improving the effectiveness of interactive teaching by understanding how pre-course student characteristics affect the way students learn interactively. We first discuss lecture demonstrations in the context of an interactive classroom using Peer Instruction. We study the role of predictions in conceptual learning. We examine how students' predictions affect what they report having seen during a demonstration. We also examine how student predictions affect what they recall as the outcome of the demonstration at the end of the semester. We then analyze student response patterns to conceptual questions posed during Peer Instruction. We look at the relationship between a student's tendency to switch their answer and pre-course student characteristics like science self-efficacy. Next we elucidate response timing to conceptual questions posed over the course of the semester, in two introductory physics classes taught using Peer Instruction. We look at the relationship between student response times and student characteristics like pre-course physics knowledge, science self-efficacy and gender. We study response times as a way of gaining insight into students thinking in Peer Instruction environments as well as to improve the implementation of Peer Instruction. Finally, we present work on the role of NB, an online collaborative textbook annotation tool, in a flipped, project based, physics class. We analyze the relationship between students' level of online engagement and traditional learning metrics to understand the effectiveness of NB in the context of flipped classrooms. We also report the results of experiments conducted to

  18. Excellence in Physics Education Award Talk: Curriculum Development for Active Learning using Real Time Graphing and Data Collection Tools

    Science.gov (United States)

    Laws, Priscilla

    2010-02-01

    In June 1986 Ronald Thornton (at the Tufts University Center for Science and Mathematics Teaching) and Priscilla Laws (at Dickinson College) applied independently for grants to develop curricular materials based on both the outcomes of Physics Education Research and the use of Microcomputer Based Laboratory Tools (MBL) developed by Robert Tinker, Ron Thornton and others at Technical Education Research Centers (TERC). Thornton proposed to develop a series of Tools for Scientific Thinking (TST) laboratory exercises to address known learning difficulties using carefully sequenced MBL observations. These TST laboratories were to be beta tested at several types of institutions. Laws proposed to develop a Workshop Physics Activity Guide for a 2 semester calculus-based introductory course sequence centering on MBL-based guided inquiry. Workshop Physics was to be designed to replace traditional lectures and separate labs in relatively small classes and was to be tested at Dickinson College. In September 1986 a project officer at the Fund for Post-Secondary Education (FIPSE) awarded grants to Laws and Thornton provided that they would collaborate. David Sokoloff (at the University of Oregon) joined Thornton to develop and test the TST laboratories. This talk will describe the 23 year collaboration between Thornton, Laws, and Sokoloff that led to the development of a suite of Activity Based Physics curricular materials, new apparatus and enhanced computer tools for real time graphing, data collection and mathematical modeling. The Suite includes TST Labs, the Workshop Physics Activity Guide, RealTime Physics Laboratory Modules, and a series of Interactive Lecture Demonstrations. A textbook and a guide to using the Suite were also developed. The vital importance of obtaining continued grant support, doing continuous research on student learning, collaborating with instructors at other institutions, and forging relationships with vendors and publishers will be described. )

  19. Helping When They Are Listening: A Midterm Study Skills Intervention for "Introductory Psychology"

    Science.gov (United States)

    Cathey, Christie L.; Visio, Michelle E; Whisenhunt, Brooke L.; Hudson, Danae L.; Shoptaugh, Carol F.

    2016-01-01

    This study examined the effectiveness of a study skills training session offered at midterm to students enrolled in a large section of "Introductory Psychology." In the training session, students watched a series of five, short videos on effective learning and answered related clicker questions that encouraged them to reflect their own…

  20. Exploring Factors Related to Completion of an Online Undergraduate-Level Introductory Statistics Course

    Science.gov (United States)

    Zimmerman, Whitney Alicia; Johnson, Glenn

    2017-01-01

    Data were collected from 353 online undergraduate introductory statistics students at the beginning of a semester using the Goals and Outcomes Associated with Learning Statistics (GOALS) instrument and an abbreviated form of the Statistics Anxiety Rating Scale (STARS). Data included a survey of expected grade, expected time commitment, and the…