WorldWideScience

Sample records for learning impairments induced

  1. Sleep disturbance induces neuroinflammation and impairment of learning and memory.

    Science.gov (United States)

    Zhu, Biao; Dong, Yuanlin; Xu, Zhipeng; Gompf, Heinrich S; Ward, Sarah A P; Xue, Zhanggang; Miao, Changhong; Zhang, Yiying; Chamberlin, Nancy L; Xie, Zhongcong

    2012-12-01

    Hospitalized patients can develop cognitive function decline, the mechanisms of which remain largely to be determined. Sleep disturbance often occurs in hospitalized patients, and neuroinflammation can induce learning and memory impairment. We therefore set out to determine whether sleep disturbance can induce neuroinflammation and impairment of learning and memory in rodents. Five to 6-month-old wild-type C57BL/6J male mice were used in the studies. The mice were placed in rocking cages for 24 h, and two rolling balls were present in each cage. The mice were tested for learning and memory function using the Fear Conditioning Test one and 7 days post-sleep disturbance. Neuroinflammation in the mouse brain tissues was also determined. Of the Fear Conditioning studies at one day and 7 days after sleep disturbance, twenty-four hour sleep disturbance decreased freezing time in the context test, which assesses hippocampus-dependent learning and memory; but not the tone test, which assesses hippocampus-independent learning and memory. Sleep disturbance increased pro-inflammatory cytokine IL-6 levels and induced microglia activation in the mouse hippocampus, but not the cortex. These results suggest that sleep disturbance induces neuroinflammation in the mouse hippocampus, and impairs hippocampus-dependent learning and memory in mice. Pending further studies, these findings suggest that sleep disturbance-induced neuroinflammation and impairment of learning and memory may contribute to the development of cognitive function decline in hospitalized patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Toxin-Induced Experimental Models of Learning and Memory Impairment.

    Science.gov (United States)

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-09-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.

  3. Proinflammatory Factors Mediate Paclitaxel-Induced Impairment of Learning and Memory

    Directory of Open Access Journals (Sweden)

    Zhao Li

    2018-01-01

    Full Text Available The chemotherapeutic agent paclitaxel is widely used for cancer treatment. Paclitaxel treatment impairs learning and memory function, a side effect that reduces the quality of life of cancer survivors. However, the neural mechanisms underlying paclitaxel-induced impairment of learning and memory remain unclear. Paclitaxel treatment leads to proinflammatory factor release and neuronal apoptosis. Thus, we hypothesized that paclitaxel impairs learning and memory function through proinflammatory factor-induced neuronal apoptosis. Neuronal apoptosis was assessed by TUNEL assay in the hippocampus. Protein expression levels of tumor necrosis factor-α (TNF-α and interleukin-1β (IL-1β in the hippocampus tissue were analyzed by Western blot assay. Spatial learning and memory function were determined by using the Morris water maze (MWM test. Paclitaxel treatment significantly increased the escape latencies and decreased the number of crossing in the MWM test. Furthermore, paclitaxel significantly increased the number of TUNEL-positive neurons in the hippocampus. Also, paclitaxel treatment increased the expression levels of TNF-α and IL-1β in the hippocampus tissue. In addition, the TNF-α synthesis inhibitor thalidomide significantly attenuated the number of paclitaxel-induced TUNEL-positive neurons in the hippocampus and restored the impaired spatial learning and memory function in paclitaxel-treated rats. These data suggest that TNF-α is critically involved in the paclitaxel-induced impairment of learning and memory function.

  4. Impairment of the spatial learning and memory induced by learned helplessness and chronic mild stress.

    Science.gov (United States)

    Song, Li; Che, Wang; Min-Wei, Wang; Murakami, Yukihisa; Matsumoto, Kinzo

    2006-02-01

    Increasing evidences indicate the concurrence and interrelationship of depression and cognitive impairments. The present study was undertaken to investigate the effects of two depressive animal models, learned helplessness (LH) and chronic mild stress (CMS), on the cognitive functions of mice in the Morris water maze task. Our results demonstrated that both LH and CMS significantly decreased the cognitive performance of stressed mice in the water maze task. The escaping latency to the platform was prolonged and the probe test percentage in the platform quadrant was reduced. These two models also increased the plasma corticosterone concentration and decreased the brain derived neurotrophic factor (BDNF) and cAMP-response element-biding protein (CREB) messenger ribonucleic acid (mRNA) levels in hippocampus, which might cause the spatial cognition deficits. Repeated treatment with antidepressant drugs, imipramine (Imi) and fluoxetine (Flu), significantly reduced the plasma corticosterone concentration and enhanced the BDNF and CREB levels. Furthermore, antidepressant treated animals showed an ameliorated cognitive performance compared with the vehicle treated stressed animals. These data suggest that both LH and CMS impair the spatial cognitive function and repeated treatment with antidepressant drugs decreases the prevalence of cognitive impairments induced by these two animal models. Those might in part be attributed to the reduced plasma corticosterone and enhanced hippocampal BDNF and CREB expressions. This study provided a better understanding of molecular mechanisms underlying interactions of depression and cognitive impairments, although animal models used in this study can mimic only some aspects of depression or cognition of human.

  5. Crocin Improved Learning and Memory Impairments in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Esmaeal Tamaddonfard

    2013-01-01

    Full Text Available Objective(s: Crocin influences many biological functions including memory and learning. The present study was aimed to investigate the effects of crocin on learning and memory impairments in streptozotocine-induced diabetic rats. Materials and Methods: Diabetes was induced by intraperitoneal (IP injection of streptozotocin (STZ, 45 mg/kg. Transfer latency (TL paradigm in elevated plus-maze (EPM was used as an index of learning and memory. Plasma levels of total antioxidant capacity (TAC and malondialdehyde (MDA, blood levels of glucose, and serum concentrations of insulin were measured. The number of hippocampal neurons was also counted. Results: STZ increased acquisition transfer latency (TL1 and retention transfer latency (TL2, and MDA, decreased transfer latency shortening (TLs and TCA, produced hyperglycemia and hypoinsulinemia, and reduced the number of neurons in the hippocampus. Learning and memory impairments and blood TCA, MDA, glucose, and insulin changes induced by streptozotocin were improved with long-term IP injection of crocin at doses of 15 and 30 mg/kg. Crocin prevented hippocampal neurons number loss in diabetic rats. Conclusion: The results indicate that oxidative stress, hyperglycemia, hypoinsulinemia, and reduction of hippocampal neurons may be involved in learning and memory impairments in STZ-induced diabetic rats. Antioxidant, antihyperglycemic, antihypoinsulinemic, and neuroprotective activities of crocin might be involved in improving learning and memory impairments.

  6. Puerarin attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice.

    Science.gov (United States)

    Zhao, Shan-shan; Yang, Wei-na; Jin, Hui; Ma, Kai-ge; Feng, Gai-feng

    2015-12-01

    Puerarin (PUE), an isoflavone purified from the root of Pueraria lobata (Chinese herb), has been reported to attenuate learning and memory impairments in the transgenic mouse model of Alzheimer's disease (AD). In the present study, we tested PUE in a sporadic AD (SAD) mouse model which was induced by the intracerebroventricular injection of streptozotocin (STZ). The mice were administrated PUE (25, 50, or 100mg/kg/d) for 28 days. Learning and memory abilities were assessed by the Morris water maze test. After behavioral test, the biochemical parameters of oxidative stress (glutathione peroxidase (GSH-Px), superoxide dismutases (SOD), and malondialdehyde (MDA)) were measured in the cerebral cortex and hippocampus. The SAD mice exhibited significantly decreased learning and memory ability, while PUE attenuated these impairments. The activities of GSH-Px and SOD were decreased while MDA was increased in the SAD animals. After PUE treatment, the activities of GSH-Px and SOD were elevated, and the level of MDA was decreased. The middle dose PUE was more effective than others. These results indicate that PUE attenuates learning and memory impairments and inhibits oxidative stress in STZ-induced SAD mice. PUE may be a promising therapeutic agent for SAD. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Effect of vitamin E on lead exposure-induced learning and memory impairment in rats.

    Science.gov (United States)

    Khodamoradi, Nasrin; Komaki, Alireza; Salehi, Iraj; Shahidi, Siamak; Sarihi, Abdolrahman

    2015-05-15

    Chronic lead (Pb(2+)) exposure has been associated with learning and memory impairments, whereas vitamin E improves cognitive deficits. In this study, using a passive avoidance learning model in rats, we investigated the effects of vitamin E on Pb(2+) exposure-induced learning and memory impairments in rats. In the present study, 56 Wistar male rats (weighting 230-250g) were divided into eight groups (n=7). The Pb(2+) exposure involved gavages of lead acetate solution using three different doses (0.05%, 0.1%, and 0.2%) and the vitamin E consisted of three different doses (10, 25, 50μg/rat) for 30days. After the 30-day period, the rats were tested using a passive avoidance task (acquisition test). In a retrieval test conducted 48h after the training, step through latency (STL) and time in the dark compartment (TDC) were recorded. The statistical analysis of data was performed using ANOVA followed by Tukey's post hoc analysis. In all cases, differences were considered significant if plearning and the TDC, whereas it decreased the STL in the passive avoidance test. Administration of vitamin E ameliorated the effects of Pb(2+) on animal behavior in the passive avoidance learning and memory task. Our results indicate that impairments of learning and memory in Pb(2+)-exposed rats are dose dependent and can be inhibited by antioxidants such as vitamin E. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Basolateral amygdala inactivation impairs learning-induced long-term potentiation in the cerebellar cortex.

    Directory of Open Access Journals (Sweden)

    Lan Zhu

    Full Text Available Learning to fear dangerous situations requires the participation of basolateral amygdala (BLA. In the present study, we provide evidence that BLA is necessary for the synaptic strengthening occurring during memory formation in the cerebellum in rats. In the cerebellar vermis the parallel fibers (PF to Purkinje cell (PC synapse is potentiated one day following fear learning. Pretraining BLA inactivation impaired such a learning-induced long-term potentiation (LTP. Similarly, cerebellar LTP is affected when BLA is blocked shortly, but not 6 h, after training. The latter result shows that the effects of BLA inactivation on cerebellar plasticity, when present, are specifically related to memory processes and not due to an interference with sensory or motor functions. These data indicate that fear memory induces cerebellar LTP provided that a heterosynaptic input coming from BLA sets the proper local conditions. Therefore, in the cerebellum, learning-induced plasticity is a heterosynaptic phenomenon that requires inputs from other regions. Studies employing the electrically-induced LTP in order to clarify the cellular mechanisms of memory should therefore take into account the inputs arriving from other brain sites, considering them as integrative units. Based on previous and the present findings, we proposed that BLA enables learning-related plasticity to be formed in the cerebellum in order to respond appropriately to new stimuli or situations.

  9. Neurotoxicity induced by alkyl nitrites: Impairment in learning/memory and motor coordination.

    Science.gov (United States)

    Cha, Hye Jin; Kim, Yun Ji; Jeon, Seo Young; Kim, Young-Hoon; Shin, Jisoon; Yun, Jaesuk; Han, Kyoungmoon; Park, Hye-Kyung; Kim, Hyung Soo

    2016-04-21

    Although alkyl nitrites are used as recreational drugs, there is only little research data regarding their effects on the central nervous system including their neurotoxicity. This study investigated the neurotoxicity of three representative alkyl nitrites (isobutyl nitrite, isoamyl nitrite, and butyl nitrite), and whether it affected learning/memory function and motor coordination in rodents. Morris water maze test was performed in mice after administrating the mice with varying doses of the substances in two different injection schedules of memory acquisition and memory retention. A rota-rod test was then performed in rats. All tested alkyl nitrites lowered the rodents' capacity for learning and memory, as assessed by both the acquisition and retention tests. The results of the rota-rod test showed that isobutyl nitrite in particular impaired motor coordination in chronically treated rats. The mice chronically injected with isoamyl nitrite also showed impaired function, while butyl nitrite had no significant effect. The results of the water maze test suggest that alkyl nitrites may impair learning and memory. Additionally, isoamyl nitrite affected the rodents' motor coordination ability. Collectively, our findings suggest that alkyl nitrites may induce neurotoxicity, especially on the aspect of learning and memory function. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Moringa oleifera Seed Extract Alleviates Scopolamine-Induced Learning and Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Juan Zhou

    2018-04-01

    Full Text Available The extract of Moringa oleifera seeds has been shown to possess various pharmacological properties. In the present study, we assessed the neuropharmacological effects of 70% ethanolic M. oleifera seed extract (MSE on cognitive impairment caused by scopolamine injection in mice using the passive avoidance and Morris water maze (MWM tests. MSE (250 or 500 mg/kg was administered to mice by oral gavage for 7 or 14 days, and cognitive impairment was induced by intraperitoneal injection of scopolamine (4 mg/kg for 1 or 6 days. Mice that received scopolamine alone showed impaired learning and memory retention and considerably decreased cholinergic system reactivity and neurogenesis in the hippocampus. MSE pretreatment significantly ameliorated scopolamine-induced cognitive impairment and enhanced cholinergic system reactivity and neurogenesis in the hippocampus. Additionally, the protein expressions of phosphorylated Akt, ERK1/2, and CREB in the hippocampus were significantly decreased by scopolamine, but these decreases were reversed by MSE treatment. These results suggest that MSE-induced ameliorative cognitive effects are mediated by enhancement of the cholinergic neurotransmission system and neurogenesis via activation of the Akt, ERK1/2, and CREB signaling pathways. These findings suggest that MSE could be a potent neuropharmacological drug against amnesia, and its mechanism might be modulation of cholinergic activity via the Akt, ERK1/2, and CREB signaling pathways.

  11. Protective Effect of Vitamin E Against Lead-induced Memory and Learning Impairment in Male Rats

    Directory of Open Access Journals (Sweden)

    Salehi

    2015-02-01

    Full Text Available Background Lead (Pb2+ is a neurotoxin substance that has been known for its adverse effects on central nervous system and memory. Previous studies reported the potential effect of vitamin E as a memory enhancer. Objectives The purpose of the present study was to assess the protective effects of vitamin E against Pb-induced amnesia. Materials and Methods Forty-eight male Wistar rats (200-250 g were divided equally into the saline, Pb, Pb + vitamin E, and vitamin E alone groups. To induce Pb toxicity, rats received water that contained 0.2% Pb instead of regular water for 1 month. Rats pretreated, treated or post treated with vitamin E (150 mg/kg for 2 months. Passive avoidance learning was assessed using Shuttle-Box after two months. Retention was tested 24 and 48 hours after training. Results The results showed that Pb caused impairment in acquisition and retrieval processes in passive avoidance learning. Vitamin E reversed learning and memory deficits in pre, post or co- exposure with Pb (P < 0.001. Conclusions According to the results of this study, administration of vitamin E to rats counteracts the negative effects of Pb on learning and memory. To more precisely extrapolate these findings to humans, future clinical studies are warranted.

  12. Whole brain radiation-induced impairments in learning and memory are time-sensitive and reversible by systemic hypoxia.

    Directory of Open Access Journals (Sweden)

    Junie P Warrington

    Full Text Available Whole brain radiation therapy (WBRT is commonly used for treatment of primary and metastatic brain tumors; however, cognitive impairment occurs in 40-50% of brain tumor survivors. The etiology of the cognitive impairment following WBRT remains elusive. We recently reported that radiation-induced cerebrovascular rarefaction within hippocampal subregions could be completely reversed by systemic hypoxia. However, the effects of this intervention on learning and memory have not been reported. In this study, we assessed the time-course for WBRT-induced impairments in contextual and spatial learning and the capacity of systemic hypoxia to reverse WBRT-induced deficits in spatial memory. A clinical fractionated series of 4.5Gy WBRT was administered to mice twice weekly for 4 weeks, and after various periods of recovery, behavioral analyses were performed. To study the effects of systemic hypoxia, mice were subjected to 11% (hypoxia or 21% oxygen (normoxia for 28 days, initiated 1 month after the completion of WBRT. Our results indicate that WBRT induces a transient deficit in contextual learning, disruption of working memory, and progressive impairment of spatial learning. Additionally, systemic hypoxia completely reversed WBRT-induced impairments in learning and these behavioral effects as well as increased vessel density persisted for at least 2 months following hypoxia treatment. Our results provide critical support for the hypothesis that cerebrovascular rarefaction is a key component of cognitive impairment post-WBRT and indicate that processes of learning and memory, once thought to be permanently impaired after WBRT, can be restored.

  13. Tetrahydropalmatine protects against methamphetamine-induced spatial learning and memory impairment in mice

    Institute of Scientific and Technical Information of China (English)

    Yan-Jiong Chen; Teng Chen; Yan-Ling Liu; Qing Zhong; Yan-Fang Yu; Hong-Liang Su; Haroldo A.Toque; Yong-Hui Dang; Feng Chen; Ming Xu

    2012-01-01

    [Objective] The purpose of this study was to investigate the effect of methamphetamine (MA) on spatial learning and memory and the role of tetrahydropalmatine (THP) in MA-induced changes in these phenomena in mice.[Methods]Male C57BL/6 mice were randomly divided into eight groups,according to different doses of MA,different doses of THP,treatment with both MA and THP,and saline controls.Spatial learning and memory were assessed using the Morris water maze.Western blot was used to detect the expression of extracellular signal-regulated protein kinase (ERK) in the mouse prefrontal cortex (PFC) and hippocampus.[Results] Repeated MA treatment significantly increased the escape latency in the learning phase and decreased the number of platform site crossings in the memory-test phase.ERK1/2 expression was decreased in the PFC but not in the hippocampus of the MA-treated mice.Repeated THP treatment alone did not affect the escape latency,the number of platform site crossings or the total ERK1/2 expression in the brain.Statistically significantly shorter escape latencies and more platform site crossings occurred in MA+THP-trcatcd mice than in MA-treated mice.[Conclusion]Repeated MA administration impairs spatial learning and memory in mice,and its co-administration with THP prevents this impairment,which is probably attributable to changed ERK1/2 expression in the PFC.This study contributes to uncovering the mechanism underlying MA abuse,and to exploring potential therapies.

  14. Isorhynchophylline improves learning and memory impairments induced by D-galactose in mice.

    Science.gov (United States)

    Xian, Yan-Fang; Su, Zi-Ren; Chen, Jian-Nan; Lai, Xiao-Ping; Mao, Qing-Qiu; Cheng, Christopher H K; Ip, Siu-Po; Lin, Zhi-Xiu

    2014-10-01

    Isorhynchophylline (IRN), an alkaloid isolated from Uncaria rhynchophylla, has been reported to improve cognitive impairment induced by beta-amyloid in rats. However, whether IRN could also ameliorate the D-galactose (D-gal)-induced mouse memory deficits is still not clear. In the present study, we aimed to investigate whether IRN had potential protective effect against the D-gal-induced cognitive deficits in mice. Mice were given a subcutaneous injection of D-gal (100mg/kg) and orally administered IRN (20 or 40mg/kg) daily for 8weeks, followed by assessing spatial learning and memory function by the Morris water maze test. The results showed that IRN significantly improved spatial learning and memory function in the D-gal-treated mice. In the mechanistic studies, IRN significantly increased the level of glutathione (GSH) and the activities of superoxide dismutase (SOD) and catalase (CAT), while decreased the level of malondialdehyde (MDA) in the brain tissues of the D-gal-treated mice. Moreover, IRN (20 or 40mg/kg) significantly inhibited the production of prostaglandin E 2 (PGE2) and nitric oxide (NO), and the mRNA expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), as well as the activation of nuclear factor kappa B (NF-κB) in the brain tissues of D-gal-treated mice. Our results amply demonstrated that IRN was able to ameliorate cognitive deficits induced by D-gal in mice, and the observed cognition-improving action may be mediated, at least in part, through enhancing the antioxidant status and anti-inflammatory effect of brain tissues via NFκB signaling. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Selective activation of M4 muscarinic acetylcholine receptors reverses MK-801-induced behavioral impairments and enhances associative learning in rodents

    DEFF Research Database (Denmark)

    Bubser, Michael; Bridges, Thomas M; Dencker, Ditte

    2014-01-01

    PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801....... VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant...

  16. DPP6 Loss Impacts Hippocampal Synaptic Development and Induces Behavioral Impairments in Recognition, Learning and Memory

    Directory of Open Access Journals (Sweden)

    Lin Lin

    2018-03-01

    Full Text Available DPP6 is well known as an auxiliary subunit of Kv4-containing, A-type K+ channels which regulate dendritic excitability in hippocampal CA1 pyramidal neurons. We have recently reported, however, a novel role for DPP6 in regulating dendritic filopodia formation and stability, affecting synaptic development and function. These results are notable considering recent clinical findings associating DPP6 with neurodevelopmental and intellectual disorders. Here we assessed the behavioral consequences of DPP6 loss. We found that DPP6 knockout (DPP6-KO mice are impaired in hippocampus-dependent learning and memory. Results from the Morris water maze and T-maze tasks showed that DPP6-KO mice exhibit slower learning and reduced memory performance. DPP6 mouse brain weight is reduced throughout development compared with WT, and in vitro imaging results indicated that DPP6 loss affects synaptic structure and motility. Taken together, these results show impaired synaptic development along with spatial learning and memory deficiencies in DPP6-KO mice.

  17. Maternal chewing during prenatal stress ameliorates stress-induced hypomyelination, synaptic alterations, and learning impairment in mouse offspring.

    Science.gov (United States)

    Suzuki, Ayumi; Iinuma, Mitsuo; Hayashi, Sakurako; Sato, Yuichi; Azuma, Kagaku; Kubo, Kin-Ya

    2016-11-15

    Maternal chewing during prenatal stress attenuates both the development of stress-induced learning deficits and decreased cell proliferation in mouse hippocampal dentate gyrus. Hippocampal myelination affects spatial memory and the synaptic structure is a key mediator of neuronal communication. We investigated whether maternal chewing during prenatal stress ameliorates stress-induced alterations of hippocampal myelin and synapses, and impaired development of spatial memory in adult offspring. Pregnant mice were divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube, and was initiated on day 12 of pregnancy and continued until delivery. Mice in the stress/chewing group were given a wooden stick to chew during restraint. In 1-month-old pups, spatial memory was assessed in the Morris water maze, and hippocampal oligodendrocytes and synapses in CA1 were assayed by immunohistochemistry and electron microscopy. Prenatal stress led to impaired learning ability, and decreased immunoreactivity of myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) in the hippocampal CA1 in adult offspring. Numerous myelin sheath abnormalities were observed. The G-ratio [axonal diameter to axonal fiber diameter (axon plus myelin sheath)] was increased and postsynaptic density length was decreased in the hippocampal CA1 region. Maternal chewing during stress attenuated the prenatal stress-induced impairment of spatial memory, and the decreased MBP and CNPase immunoreactivity, increased G-ratios, and decreased postsynaptic-density length in the hippocampal CA1 region. These findings suggest that chewing during prenatal stress in dams could be an effective coping strategy to prevent hippocampal behavioral and morphologic impairments in their offspring. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Neuroprotection and mechanisms of atractylenolide III in preventing learning and memory impairment induced by chronic high-dose homocysteine administration in rats.

    Science.gov (United States)

    Zhao, H; Ji, Z-H; Liu, C; Yu, X-Y

    2015-04-02

    Studies demonstrated that chronic high-dose homocysteine administration induced learning and memory impairment in animals. Atractylenolide III (Aen-III), a neuroprotective constituent of Atractylodis macrocephalae Koidz, was isolated in our previous study. In this study, we investigated potential benefits of Aen-III in preventing learning and memory impairment following chronic high-dose homocysteine administration in rats. Results showed that administration of Aen-III significantly ameliorated learning and memory impairment induced by chronic high-dose homocysteine administration in rats, decreased homocysteine-induced reactive oxygen species (ROS) formation and restored homocysteine-induced decrease of phosphorylated protein kinase C expression level. Moreover, Aen-III protected primary cultured neurons from apoptotic death induced by homocysteine treatment. This study provides the first evidence for the neuroprotective effect of Aen-III in preventing learning and impairment induced by chronic administration of homocysteine. Aen-III may have therapeutic potential in treating homocysteine-mediated cognitive impairment and neuronal injury. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  19. Lead (Pb+2) impairs long-term memory and blocks learning-induced increases in hippocampal protein kinase C activity

    International Nuclear Information System (INIS)

    Vazquez, Adrinel; Pena de Ortiz, Sandra

    2004-01-01

    The long-term storage of information in the brain known as long-term memory (LTM) depends on a variety of intracellular signaling cascades utilizing calcium (Ca 2+ ) and cyclic adenosine monophosphate as second messengers. In particular, Ca +2 /phospholipid-dependent protein kinase C (PKC) activity has been proposed to be necessary for the transition from short-term memory to LTM. Because the neurobehavioral toxicity of lead (Pb +2 ) has been associated to its interference with normal Ca +2 signaling in neurons, we studied its effects on spatial learning and memory using a hippocampal-dependent discrimination task. Adult rats received microinfusions of either Na + or Pb +2 acetate in the CA1 hippocampal subregion before each one of four training sessions. A retention test was given 7 days later to examine LTM. Results suggest that intrahippocampal Pb +2 did not affect learning of the task, but significantly impaired retention. The effects of Pb +2 selectively impaired reference memory measured in the retention test, but had no effect on the general performance because it did not affect the latency to complete the task during the test. Finally, we examined the effects of Pb +2 on the induction of hippocampal Ca +2 /phospholipid-dependent PKC activity during acquisition training. The results showed that Pb +2 interfered with the learning-induced activation of Ca +2 /phospholipid-dependent PKC on day 3 of acquisition. Overall, our results indicate that Pb +2 causes cognitive impairments in adult rats and that such effects might be subserved by interference with Ca +2 -related signaling mechanisms required for normal LTM

  20. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory.

    Science.gov (United States)

    Lee, Vallent; MacKenzie, Georgina; Hooper, Andrew; Maguire, Jamie

    2016-10-01

    It is well established that stress impacts the underlying processes of learning and memory. The effects of stress on memory are thought to involve, at least in part, effects on the hippocampus, which is particularly vulnerable to stress. Chronic stress induces hippocampal alterations, including but not limited to dendritic atrophy and decreased neurogenesis, which are thought to contribute to chronic stress-induced hippocampal dysfunction and deficits in learning and memory. Changes in synaptic transmission, including changes in GABAergic inhibition, have been documented following chronic stress. Recently, our laboratory demonstrated shifts in EGABA in CA1 pyramidal neurons following chronic stress, compromising GABAergic transmission and increasing excitability of these neurons. Interestingly, here we demonstrate that these alterations are unique to CA1 pyramidal neurons, since we do not observe shifts in EGABA following chronic stress in dentate gyrus granule cells. Following chronic stress, there is a decrease in the expression of the GABAA receptor (GABAA R) δ subunit and tonic GABAergic inhibition in dentate gyrus granule cells, whereas there is an increase in the phasic component of GABAergic inhibition, evident by an increase in the peak amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the numerous changes observed in the hippocampus following stress, it is difficult to pinpoint the pertinent contributing pathophysiological factors. Here we directly assess the impact of a reduction in tonic GABAergic inhibition of dentate gyrus granule cells on learning and memory using a mouse model with a decrease in GABAA R δ subunit expression specifically in dentate gyrus granule cells (Gabrd/Pomc mice). Reduced GABAA R δ subunit expression and function in dentate gyrus granule cells is sufficient to induce deficits in learning and memory. Collectively, these findings suggest that the reduction in GABAA R δ subunit-mediated tonic inhibition

  1. Reduced tonic inhibition in the dentate gyrus contributes to chronic stress-induced impairments in learning and memory

    Science.gov (United States)

    Hooper, Andrew; Maguire, Jamie

    2016-01-01

    It is well established that stress impacts the underlying processes of learning and memory. The effects of stress on memory are thought to involve, at least in part, effects on the hippocampus, which is particularly vulnerable to stress. Chronic stress induces hippocampal alterations, including but not limited to dendritic atrophy and decreased neurogenesis, which are thought to contribute to chronic stress-induced hippocampal dysfunction and deficits in learning and memory. Changes in synaptic transmission, including changes in GABAergic inhibition, have been documented following chronic stress. Recently, our laboratory demonstrated shifts in EGABA in CA1 pyramidal neurons following chronic stress, compromising GABAergic transmission and increasing excitability of these neurons. Interestingly, here we demonstrate that these alterations are unique to CA1 pyramidal neurons, since we do not observe shifts in EGABA following chronic stress in dentate gyrus granule cells. Following chronic stress, there is a decrease in the expression of the GABAA receptor (GABAAR) δ subunit and tonic GABAergic inhibition in dentate gyrus granule cells; whereas, there is an increase in the phasic component of GABAergic inhibition, evident by an increase in the peak amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). Given the numerous changes observed in the hippocampus following stress, it is difficult to pinpoint the pertinent contributing pathophysiological factors. Here we directly assess the impact of a reduction in tonic GABAergic inhibition of dentate gyrus granule cells on learning and memory using a mouse model with a decrease in GABAAR δ subunit expression specifically in dentate gyrus granule cells (Gabrd/Pomc mice). Reduced GABAAR δ subunit expression and function in dentate gyrus granule cells is sufficient to induce deficits in learning and memory. Collectively, these findings suggest that the reduction in GABAAR δ subunit-mediated tonic inhibition in

  2. Synaptophysin and the dopaminergic system in hippocampus are involved in the protective effect of rutin against trimethyltin-induced learning and memory impairment.

    Science.gov (United States)

    Zhang, Lei; Zhao, Qi; Chen, Chun-Hai; Qin, Qi-Zhong; Zhou, Zhou; Yu, Zheng-Ping

    2014-09-01

    This study aimed to investigate the protective effect of rutin against trimethyltin-induced spatial learning and memory impairment in mice. This study focused on the role of synaptophysin, growth-associated protein 43 and the action of the dopaminergic system in mechanisms associated with rutin protection and trimethyltin-induced spatial learning and memory impairment. Cognitive learning and memory was measured by Morris Water Maze. The expression of synaptophysin and growth-associated protein 43 in hippocampus was analyzed by western blot. The concentrations of dopamine, homovanillic acid, and dihyroxyphenylacetic acid in hippocampus were detected using reversed phase high-performance liquid chromatography with electrochemical detection. Trimethyltin-induced spatial learning impairment showed a dose-dependent mode. Synaptophysin but not growth-associated protein 43 was decreased in the hippocampus after trimethyltin administration. The concentration of dopamine decreased, while homovanillic acid increased in the hippocampus after trimethyltin administration. Mice pretreated with 20 mg/kg of rutin for 7 consecutive days exhibited improved water maze performance. Moreover, rutin pretreatment reversed the decrease of synaptophysin expression and dopamine alteration. These results suggest that rutin may protect against spatial memory impairment induced by trimethyltin. Synaptophysin and the dopaminergic system may be involved in trimethyltin-induced neuronal damage in hippocampus.

  3. [MK-801 or DNQX reduces electroconvulsive shock-induced impairment of learning-memory and hyperphosphorylation of Tau in rats].

    Science.gov (United States)

    Liu, Chao; Min, Su; Wei, Ke; Liu, Dong; Dong, Jun; Luo, Jie; Liu, Xiao-Bin

    2012-08-25

    This study explored the effect of the excitatory amino acid receptor antagonists on the impairment of learning-memory and the hyperphosphorylation of Tau protein induced by electroconvulsive shock (ECT) in depressed rats, in order to provide experimental evidence for the study on neuropsychological mechanisms improving learning and memory impairment and the clinical intervention treatment. The analysis of variance of factorial design set up two intervention factors which were the electroconvulsive shock (two level: no disposition; a course of ECT) and the excitatory amino acid receptor antagonists (three level: iv saline; iv NMDA receptor antagonist MK-801; iv AMPA receptor antagonist DNQX). Forty-eight adult Wistar-Kyoto (WKY) rats (an animal model for depressive behavior) were randomly divided into six experimental groups (n = 8 in each group): saline (iv 2 mL saline through the tail veins of WKY rats ); MK-801 (iv 2 mL 5 mg/kg MK-801 through the tail veins of WKY rats) ; DNQX (iv 2 mL 5 mg/kg DNQX through the tail veins of WKY rats ); saline + ECT (iv 2 mL saline through the tail veins of WKY rats and giving a course of ECT); MK-801 + ECT (iv 2 mL 5 mg/kg MK-801 through the tail veins of WKY rats and giving a course of ECT); DNQX + ECT (iv 2 mL 5 mg/kg DNQX through the tail veins of WKY rats and giving a course of ECT). The Morris water maze test started within 1 day after the finish of the course of ECT to evaluate learning and memory. The hippocampus was removed from rats within 1 day after the finish of Morris water maze test. The content of glutamate in the hippocampus of rats was detected by high performance liquid chromatography. The contents of Tau protein which included Tau5 (total Tau protein), p-PHF1(Ser396/404), p-AT8(Ser199/202) and p-12E8(Ser262) in the hippocampus of rats were detected by immunohistochemistry staining (SP) and Western blot. The results showed that ECT and the glutamate ionic receptor blockers (NMDA receptor antagonist MK-801 and

  4. p-Coumaric acid enhances long-term potentiation and recovers scopolamine-induced learning and memory impairments.

    Science.gov (United States)

    Kim, Hyun-Bum; Lee, Seok; Hwang, Eun-Sang; Maeng, Sungho; Park, Ji-Ho

    2017-10-21

    Due to the improvement of medical level, life expectancy increased. But the increased incidence of cognitive disorders is an emerging social problem. Current drugs for dementia treatment can only delay the progress rather than cure. p-Coumaric acid is a phenylpropanoic acid derived from aromatic amino acids and known as a precursor for flavonoids such as resveratrol and naringenin. It was shown to reduce oxidative stress, inhibit genotoxicity and exert neuroprotection. Based on these findings, we evaluated whether p-coumaric acid can protect scopolamine induced learning and memory impairment by measuring LTP in organotypic hippocampal slice and cognitive behaviors in rats. p-Coumaric acid dose-dependently increased the total activity of fEPSP after high frequency stimulation and attenuated scopolamine-induced blockade of fEPSP in the hippocampal CA1 area. In addition, while scopolamine shortened the step-through latency in the passive avoidance test and prolonged the latency as well as reduced the latency in the target quadrant in the Morris water maze test, co-treatment of p-coumaric acid improved avoidance memory and long-term retention of spatial memory in behavioral tests. Since p-coumaric acid improved electrophysiological and cognitive functional deterioration by scopolamine, it may have regulatory effects on central cholinergic synapses and is expected to improve cognitive problems caused by abnormality of the cholinergic nervous system. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Selective Activation of M4 Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents

    Science.gov (United States)

    2015-01-01

    Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central nervous system. Prior to this study, the M1 mAChR subtype was viewed as the primary candidate for these actions relative to the other mAChR subtypes. Here we describe the discovery of a novel M4 PAM, VU0467154, with enhanced in vitro potency and improved pharmacokinetic properties relative to other M4 PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801. VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated with schizophrenia and other neuropsychiatric disorders. PMID:25137629

  6. Cannabis-induced impairment of learning and memory: effect of different nootropic drugs

    Science.gov (United States)

    Abdel-Salam, Omar M.E.; Salem, Neveen A.; El-Sayed El-Shamarka, Marwa; Al-Said Ahmed, Noha; Seid Hussein, Jihan; El-Khyat, Zakaria A.

    2013-01-01

    Cannabis sativa preparations are the most commonly used illicit drugs worldwide. The present study aimed to investigate the effect of Cannabis sativa extract in the working memory version of the Morris water maze (MWM; Morris, 1984[43]) test and determine the effect of standard memory enhancing drugs. Cannabis sativa was given at doses of 5, 10 or 20 mg/kg (expressed as Δ9-tetrahydrocannabinol) alone or co-administered with donepezil (1 mg/kg), piracetam (150 mg/ kg), vinpocetine (1.5 mg/kg) or ginkgo biloba (25 mg/kg) once daily subcutaneously (s.c.) for one month. Mice were examined three times weekly for their ability to locate a submerged platform. Mice were euthanized 30 days after starting cannabis injection when biochemical assays were carried out. Malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide, glucose and brain monoamines were determined. Cannabis resulted in a significant increase in the time taken to locate the platform and enhanced the memory impairment produced by scopolamine. This effect of cannabis decreased by memory enhancing drugs with piracetam resulting in the most-shorter latency compared with the cannabis. Biochemically, cannabis altered the oxidative status of the brain with decreased MDA, increased GSH, but decreased nitric oxide and glucose. In cannabis-treated rats, the level of GSH in brain was increased after vinpocetine and donepezil and was markedly elevated after Ginkgo biloba. Piracetam restored the decrease in glucose and nitric oxide by cannabis. Cannabis caused dose-dependent increases of brain serotonin, noradrenaline and dopamine. After cannabis treatment, noradrenaline is restored to its normal value by donepezil, vinpocetine or Ginkgo biloba, but increased by piracetam. The level of dopamine was significantly reduced by piracetam, vinpocetine or Ginkgo biloba. These data indicate that cannabis administration is associated with impaired memory performance which is likely to involve decreased brain glucose

  7. PKA-CREB-BDNF signaling pathway mediates propofol-induced long-term learning and memory impairment in hippocampus of rats.

    Science.gov (United States)

    Zhong, Yu; Chen, Jing; Li, Li; Qin, Yi; Wei, Yi; Pan, Shining; Jiang, Yage; Chen, Jialin; Xie, Yubo

    2018-04-20

    Studies have found that propofol can induce widespread neuroapoptosis in developing brains, which leads to cause long-term learning and memory abnormalities. However, the specific cellular and molecular mechanisms underlying propofol-induced neuroapoptosis remain elusive. The aim of the present study was to explore the role of PKA-CREB-BDNF signaling pathway in propofol-induced long-term learning and memory impairment during brain development. Seven-day-old rats were randomly assigned to control, intralipid and three treatment groups (n = 5). Rats in control group received no treatment. Intralipid (10%, 10 mL/kg) for vehicle control and different dosage of propofol for three treatment groups (50, 100 and 200 mg/kg) were administered intraperitoneally. FJB staining, immunohistochemistry analysis for neuronal nuclei antigen and transmission electron microscopy were used to detect neuronal apoptosis and structure changes. MWM test examines the long-term spatial learning and memory impairment. The expression of PKA, pCREB and BDNF was quantified using western blots. Propofol induced significant increase of FJB-positive cells and decrease of PKA, pCREB and BDNF protein levels in the immature brain of P7 rats. Using the MWM test, propofol-treated rats demonstrated long-term spatial learning and memory impairment. Moreover, hippocampal NeuN-positive cell loss, long-lasting ultrastructural abnormalities of the neurons and synapses, and long-term down-regulation of PKA, pCREB and BDNF protein expression in adult hippocampus were also found. Our results indicated that neonatal propofol exposure can significantly result in long-term learning and memory impairment in adulthood. The possible mechanism involved in the propofol-induced neuroapoptosis was related to down-regulation of PKA-CREB-BDNF signaling pathway. Copyright © 2018. Published by Elsevier B.V.

  8. Effect of Diethyldithiocarbamate on Radiation-induced Learning and Memory Impairment in Mouse

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Jong Sik [Faculty of Animal Science and Biotechnology, Kyungpook National University, Daegu (Korea, Republic of); Kim, Jong Choon; Moon, Chang Jong; Kim, Ho Sung [College of Veterinary Medicine, Animal Medical Center, Chonnam National University, Kwangju (Korea, Republic of); Jung, Uhee; Jo, Sung Kee [Advanced Radiation Technology Institute, Seoul (Korea, Republic of)

    2012-09-15

    Evidence suggests that even low-dose irradiation can lead to progressive cognitive decline and memory deficits, which implicates, in part, hippocampal dysfunction in both humans and experimental animals. This study examined whether diethyldithiocarbamate (DDC) could attenuate memory impairment, using passive avoidance and object recognition test, and suppression of hippocampal neurogenesis, using the TUNEL assay and immunohistochemical detection with markers of neurogenesis (Kiel 67 (Ki-67) and doublecortin (DCX)) in adult mice treated with gamma radiation (0.5 or 2 Gy). DDC was administered intraperitonially at a dosage of 1,000 mg{center_dot}kg{sup -1} of body weight at 30 min. before irradiation. In passive avoidance and object recognition memory test, the mice, trained for 1 day after acute irradiation (2 Gy) showed significant memory deficits compared with the sham controls. The number of TUNEL-positive apoptotic nuclei in the dentate gyrus (DG) was increased 12 h after irradiation. In addition, the number of Ki-67- and DCX-positive cells were significantly decreased. DDC treatment prior to irradiation attenuated the memory defect, and blocked the apoptotic death. DDC may attenuate memory defect in a relatively low-dose exposure of radiation in adult mice, possibly by inhibiting a detrimental effect of irradiation on hippocampal neurogenesis.

  9. Effect of Diethyldithiocarbamate on Radiation-induced Learning and Memory Impairment in Mouse

    International Nuclear Information System (INIS)

    Jang, Jong Sik; Kim, Jong Choon; Moon, Chang Jong; Kim, Ho Sung; Jung, Uhee; Jo, Sung Kee

    2012-01-01

    Evidence suggests that even low-dose irradiation can lead to progressive cognitive decline and memory deficits, which implicates, in part, hippocampal dysfunction in both humans and experimental animals. This study examined whether diethyldithiocarbamate (DDC) could attenuate memory impairment, using passive avoidance and object recognition test, and suppression of hippocampal neurogenesis, using the TUNEL assay and immunohistochemical detection with markers of neurogenesis (Kiel 67 (Ki-67) and doublecortin (DCX)) in adult mice treated with gamma radiation (0.5 or 2 Gy). DDC was administered intraperitonially at a dosage of 1,000 mg·kg -1 of body weight at 30 min. before irradiation. In passive avoidance and object recognition memory test, the mice, trained for 1 day after acute irradiation (2 Gy) showed significant memory deficits compared with the sham controls. The number of TUNEL-positive apoptotic nuclei in the dentate gyrus (DG) was increased 12 h after irradiation. In addition, the number of Ki-67- and DCX-positive cells were significantly decreased. DDC treatment prior to irradiation attenuated the memory defect, and blocked the apoptotic death. DDC may attenuate memory defect in a relatively low-dose exposure of radiation in adult mice, possibly by inhibiting a detrimental effect of irradiation on hippocampal neurogenesis.

  10. Ego depletion impairs implicit learning.

    Science.gov (United States)

    Thompson, Kelsey R; Sanchez, Daniel J; Wesley, Abigail H; Reber, Paul J

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  11. Protective effects of compound FLZ on β-amyloid peptide-(25-35)-induced mouse hippocampal injury and learning and memory impairment

    Institute of Scientific and Technical Information of China (English)

    Fang FANG; Geng-tao LIU

    2006-01-01

    Aim: To study the protective effects of compound FLZ, a novel synthetic analogue of natural squamosamide, on learning and memory impairment and lesions of the hippocampus caused by icv injection of β-amyloid25-35 (Aβ25-35) in mice. Methods: Mice were icv injected with the Aβ25-35 (15 nmol/mouse), and then treated with oral administration of 75 mg/kg or 150 mg/kg of FLZ once daily for 16 consecutive days. The impairment of learning and memory in mice were tested using step-down test and Morris water maze test. The content of malondialdehyde (MDA) and the expressions of acetylcholinesterase (AChE), Bax, and Bcl-2 in the CA1 region of the mouse hippocampus were measured by biochemical and immu-nohistochemical analysis, respectively. The pathological damages of hippocampus were observed using a microscope. Results: FLZ (75 mg/kg, 150 mg/kg) significantly attenuated Aβ25-35-induced impairment of learning and memory in the step-down test and Morris water maze test. FLZ also reduced pathological damages to the hippocampus induced by Aβ25-35 Furthermore, FLZ prevented the increase of AChE and Bax, and the decrease of Bcl-2 immunoreactive cells in the CA1 region of the hippocampus, and reduced the increase of MDA content in the hippocampus in mice injected with Aβ25-35. Conclusion: FLZ has protective action against the impairment of learning and memory and pathological damage to the hippocampus induced by icv injection of Aβ25-35 in mice.

  12. Effect of low frequency electrical stimulation on seizure-induced short- and long-term impairments in learning and memory in rats.

    Science.gov (United States)

    Esmaeilpour, Khadijeh; Sheibani, Vahid; Shabani, Mohammad; Mirnajafi-Zadeh, Javad

    2017-01-01

    Kindled seizures can impair learning and memory. In the present study the effect of low-frequency electrical stimulation (LFS) on kindled seizure-induced impairment in spatial learning and memory was investigated and followed up to one month. Animals were kindled by electrical stimulation of hippocampal CA1 area in a semi-rapid manner (12 stimulations per day). One group of animals received four trials of LFS at 30s, 6h, 24h, and 30h following the last kindling stimulation. Each LFS trial was consisted of 4 packages at 5min intervals. Each package contained 200 monophasic square wave pulses of 0.1ms duration at 1Hz. The Open field, Morris water maze, and novel object recognition tests were done 48h, 1week, 2weeks, and one month after the last kindling stimulation respectively. Kindled animals showed a significant impairment in learning and memory compared to control rats. LFS decreased the kindling-induced learning and memory impairments at 24h and one week following its application, but not at 2week or 1month after kindling. In the group of animals that received the same 4 trials of LFS again one week following the last kindling stimulation, the improving effect of LFS was observed even after one month. Obtained results showed that application of LFS in fully kindled animals has a long-term improving effect on spatial learning and memory. This effect can remain for a long duration (one month in this study) by increasing the number of applied LFS. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Attenuation of ketamine-induced impairment in verbal learning and memory in healthy volunteers by the AMPA receptor potentiator PF-04958242.

    Science.gov (United States)

    Ranganathan, M; DeMartinis, N; Huguenel, B; Gaudreault, F; Bednar, M M; Shaffer, C L; Gupta, S; Cahill, J; Sherif, M A; Mancuso, J; Zumpano, L; D'Souza, D C

    2017-11-01

    There is a need to develop treatments for cognitive impairment associated with schizophrenia (CIAS). The significant role played by N-methyl-d-aspartate receptors (NMDARs) in both the pathophysiology of schizophrenia and in neuronal plasticity suggests that facilitation of NMDAR function might ameliorate CIAS. One strategy to correct NMDAR hypofunction is to stimulate α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) as AMPAR and NMDAR functioning are coupled and interdependent. In rats and nonhuman primates (NHP), AMPAR potentiators reduce spatial working memory deficits caused by the nonselective NMDAR antagonist ketamine. The current study assessed whether the AMPAR potentiator PF-04958242 would attenuate ketamine-induced deficits in verbal learning and memory in humans. Healthy male subjects (n=29) participated in two randomized treatment periods of daily placebo or PF-04958242 for 5 days separated by a washout period. On day 5 of each treatment period, subjects underwent a ketamine infusion for 75 min during which the effects of PF-04958242/placebo were assessed on ketamine-induced: (1) impairments in verbal learning and recall measured by the Hopkins Verbal Learning Test; (2) impairments in working memory on a CogState battery; and (3) psychotomimetic effects measured by the Positive and Negative Syndrome Scale and Clinician-Administered Dissociative Symptoms Scale. PF-04958242 significantly reduced ketamine-induced impairments in immediate recall and the 2-Back and spatial working memory tasks (CogState Battery), without significantly attenuating ketamine-induced psychotomimetic effects. There were no pharmacokinetic interactions between PF-04958242 and ketamine. Furthermore, PF-04958242 was well tolerated. 'High-impact' AMPAR potentiators like PF-04958242 may have a role in the treatment of the cognitive symptoms, but not the positive or negative symptoms, associated with schizophrenia. The excellent concordance between the

  14. The role of trigeminal nucleus caudalis orexin 1 receptors in orofacial pain transmission and in orofacial pain-induced learning and memory impairment in rats.

    Science.gov (United States)

    Kooshki, Razieh; Abbasnejad, Mehdi; Esmaeili-Mahani, Saeed; Raoof, Maryam

    2016-04-01

    It is widely accepted that the spinal trigeminal nuclear complex, especially the subnucleus caudalis (Vc), receives input from orofacial structures. The neuropeptides orexin-A and -B are expressed in multiple neuronal systems. Orexin signaling has been implicated in pain-modulating system as well as learning and memory processes. Orexin 1 receptor (OX1R) has been reported in trigeminal nucleus caudalis. However, its roles in trigeminal pain modulation have not been elucidated so far. This study was designed to investigate the role of Vc OX1R in the modulation of orofacial pain as well as pain-induced learning and memory deficits. Orofacial pain was induced by subcutaneous injection of capsaicin in the right upper lip of the rats. OX1R agonist (orexin-A) and antagonist (SB-334867-A) were microinjected into Vc prior capsaicin administration. After recording nociceptive times, learning and memory was investigated using Morris water maze (MWM) test. The results indicated that, orexin-A (150 pM/rat) significantly reduced the nociceptive times, while SB334867-A (80 nM/rat) exaggerated nociceptive behavior in response to capsaicin injection. In MWM test, capsaicin-treated rats showed a significant learning and memory impairment. Moreover, SB-334867-A (80 nM/rat) significantly exaggerated learning and memory impairment in capsaicin-treated rats. However, administration of orexin-A (100 pM/rat) prevented learning and memory deficits. Taken together, these results indicate that Vc OX1R was at least in part involved in orofacial pain transmission and orexin-A has also a beneficial inhibitory effect on orofacial pain-induced deficits in abilities of spatial learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Ego Depletion Impairs Implicit Learning

    Science.gov (United States)

    Thompson, Kelsey R.; Sanchez, Daniel J.; Wesley, Abigail H.; Reber, Paul J.

    2014-01-01

    Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing) can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL) task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent. PMID:25275517

  16. Ego depletion impairs implicit learning.

    Directory of Open Access Journals (Sweden)

    Kelsey R Thompson

    Full Text Available Implicit skill learning occurs incidentally and without conscious awareness of what is learned. However, the rate and effectiveness of learning may still be affected by decreased availability of central processing resources. Dual-task experiments have generally found impairments in implicit learning, however, these studies have also shown that certain characteristics of the secondary task (e.g., timing can complicate the interpretation of these results. To avoid this problem, the current experiments used a novel method to impose resource constraints prior to engaging in skill learning. Ego depletion theory states that humans possess a limited store of cognitive resources that, when depleted, results in deficits in self-regulation and cognitive control. In a first experiment, we used a standard ego depletion manipulation prior to performance of the Serial Interception Sequence Learning (SISL task. Depleted participants exhibited poorer test performance than did non-depleted controls, indicating that reducing available executive resources may adversely affect implicit sequence learning, expression of sequence knowledge, or both. In a second experiment, depletion was administered either prior to or after training. Participants who reported higher levels of depletion before or after training again showed less sequence-specific knowledge on the post-training assessment. However, the results did not allow for clear separation of ego depletion effects on learning versus subsequent sequence-specific performance. These results indicate that performance on an implicitly learned sequence can be impaired by a reduction in executive resources, in spite of learning taking place outside of awareness and without conscious intent.

  17. Exendin-4, a glucagon-like peptide 1 receptor agonist, protects against amyloid-β peptide-induced impairment of spatial learning and memory in rats.

    Science.gov (United States)

    Jia, Xiao-Tao; Ye-Tian; Yuan-Li; Zhang, Ge-Juan; Liu, Zhi-Qin; Di, Zheng-Li; Ying, Xiao-Ping; Fang, Yan; Song, Er-Fei; Qi, Jin-Shun; Pan, Yan-Fang

    2016-05-15

    Type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share specific molecular mechanisms, and agents with proven efficacy in one may be useful against the other. The glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 has similar properties to GLP-1 and is currently in clinical use for T2DM treatment. Thus, this study was designed to characterize the effects of exendin-4 on the impairment of learning and memory induced by amyloid protein (Aβ) and its probable molecular underlying mechanisms. The results showed that (1) intracerebroventricular (i.c.v.) injection of Aβ1-42 resulted in a significant decline of spatial learning and memory of rats in water maze tests; (2) pretreatment with exendin-4 effectively and dose-dependently protected against the Aβ1-42-induced impairment of spatial learning and memory; (3) exendin-4 treatment significantly decreased the expression of Bax and cleaved caspase-3 and increased the expression of Bcl2 in Aβ1-42-induced Alzheimer's rats. The vision and swimming speed of the rats among all groups in the visible platform tests did not show any difference. These findings indicate that systemic pretreatment with exendin-4 can effectively prevent the behavioral impairment induced by neurotoxic Aβ1-42, and the underlying protective mechanism of exendin-4 may be involved in the Bcl2, Bax and caspase-3 pathways. Thus, the application of exendin-4 or the activation of its signaling pathways may be a promising strategy to ameliorate the degenerative processes observed in AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Clozapine blockade of MK-801-induced learning/memory impairment in the mEPM: Role of 5-HT1A receptors and hippocampal BDNF levels.

    Science.gov (United States)

    López Hill, Ximena; Richeri, Analía; Scorza, María Cecilia

    2017-10-01

    Cognitive impairment associated with schizophrenia (CIAS) is highly prevalent and affects the overall functioning of patients. Clozapine (Clz), an atypical antipsychotic drug, significantly improves CIAS although the underlying mechanisms remain under study. The role of the 5-HT 1A receptor (5-HT 1A -R) in the ability of Clz to prevent the learning/memory impairment induced by MK-801 was investigated using the modified elevated plus-maze (mEPM) considering the Transfer latency (TL) as an index of spatial memory. We also investigated if changes in hippocampal brain-derived neurotrophic factor (BDNF) levels underlie the behavioral prevention induced by Clz. Clz (0.5 and 1mg/kg)- or vehicle-pretreated Wistar rats were injected with MK-801 (0.05mg/kg) or saline. TL was evaluated 35min later (TL1, acquisition session) while learning/memory performance was measured 24h (TL2, retention session) and 48h later (TL3, long-lasting effect). WAY-100635, a 5-HT 1A -R antagonist, was pre-injected (0.3mg/kg) to examine the presumed 5-HT 1A -R involvement in Clz action. At TL2, another experimental group treated with Clz and MK-801 and its respective control groups were added to measure BDNF protein levels by ELISA. TL1 and TL3 were not significantly modified by the different treatments. MK-801 increased TL2 compared to control group leading a disruption of spatial memory processing which was markedly attenuated by Clz. WAY-100635 suppressed this action supporting a relevant role of 5-HT 1A -R in the Clz mechanism of action to improve spatial memory dysfunction. Although a significant decrease of hippocampal BDNF levels underlies the learning/memory impairment induced by MK-801, this effect was not significantly prevented by Clz. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Antiamnesic Effect of Broccoli (Brassica oleracea var. italica) Leaves on Amyloid Beta (Aβ)1-42-Induced Learning and Memory Impairment.

    Science.gov (United States)

    Park, Seon Kyeong; Ha, Jeong Su; Kim, Jong Min; Kang, Jin Yong; Lee, Du Sang; Guo, Tian Jiao; Lee, Uk; Kim, Dae-Ok; Heo, Ho Jin

    2016-05-04

    To examine the antiamnesic effects of broccoli (Brassica oleracea var. italica) leaves, we performed in vitro and in vivo tests on amyloid beta (Aβ)-induced neurotoxicity. The chloroform fraction from broccoli leaves (CBL) showed a remarkable neuronal cell-protective effect and an inhibition against acetylcholinesterase (AChE). The ameliorating effect of CBL on Aβ1-42-induced learning and memory impairment was evaluated by Y-maze, passive avoidance, and Morris water maze tests. The results indicated improving cognitive function in the CBL group. After the behavioral tests, antioxidant effects were detected by superoxide dismutase (SOD), oxidized glutathione (GSH)/total GSH, and malondialdehyde (MDA) assays, and inhibition against AChE was also presented in the brain. Finally, oxo-dihydroxy-octadecenoic acid (oxo-DHODE) and trihydroxy-octadecenoic acid (THODE) as main compounds were identified by quadrupole time-of-flight ultraperformance liquid chromatography (Q-TOF UPLC-MS) analysis. Therefore, our studies suggest that CBL could be used as a natural resource for ameliorating Aβ1-42-induced learning and memory impairment.

  20. Extract of Fructus Cannabis Ameliorates Learning and Memory Impairment Induced by D-Galactose in an Aging Rats Model

    Directory of Open Access Journals (Sweden)

    Ning-Yuan Chen

    2017-01-01

    Full Text Available Hempseed (Cannabis sativa L. has been used as a health food and folk medicine in China for centuries. In the present study, we sought to define the underlying mechanism by which the extract of Fructus Cannabis (EFC protects against memory impairment induced by D-galactose in rats. To accelerate aging and induce memory impairment in rats, D-galactose (400 mg/kg was injected intraperitoneally once daily for 14 weeks. EFC (200 and 400 mg/kg was simultaneously administered intragastrically once daily in an attempt to slow the aging process. We found that EFC significantly increased the activity of superoxide dismutase, while lowering levels of malondialdehyde in the hippocampus. Moreover, EFC dramatically elevated the organ indices of some organs, including the heart, the liver, the thymus, and the spleen. In addition, EFC improved the behavioral performance of rats treated with D-galactose in the Morris water maze. Furthermore, EFC inhibited the activation of astrocytes and remarkably attenuated phosphorylated tau and suppressed the expression of presenilin 1 in the brain of D-galactose-treated rats. These findings suggested that EFC exhibits beneficial effects on the cognition of aging rats probably by enhancing antioxidant capacity and anti-neuroinflammation, improving immune function, and modulating tau phosphorylation and presenilin expression.

  1. Role of synaptic structural plasticity in impairments of spatial learning and memory induced by developmental lead exposure in Wistar rats.

    Directory of Open Access Journals (Sweden)

    Yongmei Xiao

    Full Text Available Lead (Pb is found to impair cognitive function. Synaptic structural plasticity is considered to be the physiological basis of synaptic functional plasticity and has been recently found to play important roles in learning and memory. To study the effect of Pb on spatial learning and memory at different developmental stages, and its relationship with alterations of synaptic structural plasticity, postnatal rats were randomly divided into three groups: Control; Pre-weaning Pb (Parents were exposed to 2 mM PbCl2 3 weeks before mating until weaning of pups; Post-weaning Pb (Weaned pups were exposed to 2 mM PbCl2 for 9 weeks. The spatial learning and memory of rats was measured by Morris water maze (MWM on PND 85-90. Rat pups in Pre-weaning Pb and Post-weaning Pb groups performed significantly worse than those in Control group (p<0.05. However, there was no significant difference in the performance of MWM between the two Pb-exposure groups. Before MWM (PND 84, the number of neurons and synapses significantly decreased in Pre-weaning Pb group, but not in Post-weaning Pb group. After MWM (PND 91, the number of synapses in Pre-weaning Pb group increased significantly, but it was still less than that of Control group (p<0.05; the number of synapses in Post-weaning Pb group was also less than that of Control group (p<0.05, although the number of synapses has no differences between Post-weaning Pb and Control groups before MWM. In both Pre-weaning Pb and Post-weaning Pb groups, synaptic structural parameters such as thickness of postsynaptic density (PSD, length of synaptic active zone and synaptic curvature increased significantly while width of synaptic cleft decreased significantly compared to Control group (p<0.05. Our data demonstrated that both early and late developmental Pb exposure impaired spatial learning and memory as well as synaptic structural plasticity in Wistar rats.

  2. Propofol can Protect Against the Impairment of Learning-memory Induced by Electroconvulsive Shock via Tau Protein Hyperphosphorylation in Depressed Rats

    Institute of Scientific and Technical Information of China (English)

    Wan-fu Liu; Chao Liu

    2015-01-01

    Objective To explore the possible neurophysiologic mechanisms of propofol and N-methyl-D-aspartate (NMDA) receptor antagonist against learning-memory impairment of depressed rats without olfactory bulbs. Methods Models of depressed rats without olfactory bulbs were established. For the factorial design in analysis of variance, two intervention factors were included: electroconvulsive shock groups (with and without a course of electroconvulsive shock) and drug intervention groups [intraperotoneal (ip) injection of saline, NMDA receptor antagonist MK-801 and propofol. A total of 60 adult depressed rats without olfactory bulbs were randomly divided into 6 experimental groups (n=10 per group):ip injection of 5 ml saline;ip injection of 5 ml of 10 mg/kg MK-801;ip injection of 5 ml of 10 mg/kg MK-801 and a course of electroconvulsive shock;ip injection of 5 ml of 200 mg/kg propofol;ip injection of 5 ml of 200 mg/kg propofol and a course of electroconvulsive shock;and ip injection of 5 ml saline and a course of electroconvulsive shock. The learning-memory abilities of the rats was evaluated by the Morris water maze test. The content of glutamic acid in the hippocampus was detected by high-performance liquid chromatography. The expressions of p-AT8Ser202 in the hippocampus were determined by Western blot analysis. Results Propofol, MK-801 or electroconvulsive shock alone induced learning-memory impairment in depressed rats, as proven by extended evasive latency time and shortened space probe time. Glutamic acid content in the hippocampus of depressed rats was significantly up-regulated by electroconvulsive shock and down-regulated by propofol, but MK-801 had no significant effect on glutamic acid content. Levels of phosphorylated Tau protein p-AT8Ser202 in the hippocampus was up-regulated by electroconvulsive shock but was reduced by propofol and MK-801 alone. Propofol prevented learning-memory impairment and reduced glutamic acid content and p-AT8Ser202 levels induced by

  3. Impairment of learning and memory performances induced by BPA: Evidences from the literature of a MoA mediated through an ED.

    Science.gov (United States)

    Mhaouty-Kodja, Sakina; Belzunces, Luc P; Canivenc, Marie-Chantal; Schroeder, Henri; Chevrier, Cécile; Pasquier, Elodie

    2018-03-29

    Many rodent studies and a few non-human primate data report impairments of spatial and non-spatial memory induced by exposure to bisphenol A (BPA), which are associated with neural modifications, particularly in processes involved in synaptic plasticity. BPA-induced alterations involve disruption of the estrogenic pathway as established by reversal of BPA-induced effects with estrogenic receptor antagonist or by interference of BPA with administered estradiol in ovariectomised animals. Sex differences in hormonal impregnation during critical periods of development and their influence on maturation of learning and memory processes may explain the sexual dimorphism observed in BPA-induced effects in some studies. Altogether, these data highly support the plausibility that alteration of learning and memory and synaptic plasticity by BPA is essentially mediated by disturbance of the estrogenic pathways. As memory function in humans involves similar signaling pathways, this mode of action of BPA has the potential to alter human cognitive abilities. Copyright © 2018. Published by Elsevier B.V.

  4. Communication Skills and Learning in Impaired Individuals

    Science.gov (United States)

    Eliöz, Murat

    2016-01-01

    The purpose of this study is to compare the communication skills of individuals with different disabilities with athletes and sedentary people and to examine their learning abilities which influence the development of communication. A total of 159 male subjects 31 sedentary, 30 visually impaired, 27 hearing impaired, 40 physically impaired and 31…

  5. SSP-002392, a new 5-HT4 receptor agonist, dose-dependently reverses scopolamine-induced learning and memory impairments in C57Bl/6 mice.

    Science.gov (United States)

    Lo, Adrian C; De Maeyer, Joris H; Vermaercke, Ben; Callaerts-Vegh, Zsuzsanna; Schuurkes, Jan A J; D'Hooge, Rudi

    2014-10-01

    5-HT4 receptors (5-HT4R) are suggested to affect learning and memory processes. Earlier studies have shown that animals treated with 5-HT4R agonists, often with limited selectivity, show improved learning and memory with retention memory often being assessed immediately after or within 24 h after the last training session. In this study, we characterized the effect of pre-training treatment with the selective 5-HT4R agonist SSP-002392 on memory acquisition and the associated long-term memory retrieval in animal models of impaired cognition. Pre-training treatment with SSP-002392 (0.3 mg/kg, 1.5 mg/kg and 7.5 mg/kg p.o.) dose-dependently inhibited the cognitive deficits induced by scopolamine (0.5 mg/kg s.c.) in two different behavioral tasks: passive avoidance and Morris water maze. In the Morris water maze, spatial learning was significantly improved after treatment with SSP-002392 translating in an accelerated and more efficient localization of the hidden platform compared to scopolamine-treated controls. Moreover, retention memory was assessed 24 h (passive avoidance) and 72 h (Morris water maze) after the last training session of cognitive-impaired animals and this was significantly improved in animals treated with SSP-002392 prior to the training sessions. Furthermore, the effects of SSP-002392 were comparable to galanthamine hydrobromide. We conclude that SSP-002392 has potential as a memory-enhancing compound. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Portulaca oleracea L. prevents lipopolysaccharide-induced passive avoidance learning and memory and TNF-α impairments in hippocampus of rat.

    Science.gov (United States)

    Noorbakhshnia, Maryam; Karimi-Zandi, Leila

    2017-02-01

    There is a growing body of evidence that neuroinflammation can impair memory. It has been indicated that Portulaca oleracea Linn. (POL), possess anti-inflammatory activity and might improve memory disruption caused by inflammation. In this study the effect of pre-treatment with the hydro-alcoholic extract of POL on memory retrieval investigated in lipopolysaccharide (LPS) treated rats. Male Wistar rats (200-220g) received either a control diet or a diet containing of POL (400mg/kg, p.o.) for 14days. Then, they received injections of either saline or LPS (1mg/kg, i.p.). In all the experimental groups, 4h following the last injection, passive avoidance learning (PAL) and memory test was performed. The retention test was done 24h after the training and then the animals were sacrificed. Hippocampal TNF-α levels measured using ELISA as one criteria of LPS-induced neuroinflammation. The results indicated that LPS significantly impaired PAL and memory and increased TNF-α levels in hippocampus tissue. Pre-treatment with POL improved memory in control rats and prevented memory and TNF-α deterioration in LPS treated rats. Taken together, the results of this study suggest that the hydro-alcoholic extract of POL may improve memory deficits in LPS treated rats, possibly via inhibition of TNF-α and anti-inflammatory activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. The Effects of Different Compatibilities of Qing'e Formula on Scopolamine?induced Learning and Memory Impairment in the Mouse

    Institute of Scientific and Technical Information of China (English)

    Xiao‑Ping Zheng; Fang‑Di Hu; Li Yang; Yu‑Ling Ma; Bo‑Lu Sun; Chang‑Hong Wang; Zheng‑Tao Wang

    2017-01-01

    Background: The Qing'e formula (QEF) is a well?known traditional Chinese prescription that has been clinically employed for treatment of bone disease for hundreds of years. Objective: The present study aims to observe the effects of different compatibilities of QEF on the scopolamine?induced learning and memory impairment in the mouse, and further to explore its action mechanisms and compatibility rationality. Materials and Methods: The learning and memory alterations in the mouse were evaluated using the step?down test and Morris water maze (MWM) test; the acetylcholinesterase (AChE) activity and brain?derived neurotrophic factor (BDNF) expression in the hippocampus were measured using colorimetric method or immunohistochemistry. Results: The results showed that different compatibilities of QEF significantly prolonged latency in the step?down test, shortened escape latency in the navigation test, increased the percentage of residence time, and the percentage of swimming distance in the target quadrant in the probe trial session. In addition, our results also found that different compatibilities of QEF remarkably inhibited AChE activity and increased BDNF expression in the hippocampus of mice. What's more, the group after being treated with whole recipe (QF) showed the highest level of improvement. Conclusions: These findings not only suggest that QEF may effectively ameliorate cognitive deficits through inhibiting AChE activity and increasing BDNF expression in the hippocampus but also elucidate the rationality of QEF.

  8. Transmission of stress-induced learning impairment and associated brain gene expression from parents to offspring in chickens.

    Directory of Open Access Journals (Sweden)

    Christina Lindqvist

    Full Text Available BACKGROUND: Stress influences many aspects of animal behaviour and is a major factor driving populations to adapt to changing living conditions, such as during domestication. Stress can affect offspring through non-genetic mechanisms, but recent research indicates that inherited epigenetic modifications of the genome could possibly also be involved. METHODOLOGY/PRINCIPAL FINDINGS: Red junglefowl (RJF, ancestors of modern chickens and domesticated White Leghorn (WL chickens were raised in a stressful environment (unpredictable light-dark rhythm and control animals in similar pens, but on a 12/12 h light-dark rhythm. WL in both treatments had poorer spatial learning ability than RJF, and in both populations, stress caused a reduced ability to solve a spatial learning task. Offspring of stressed WL, but not RJF, raised without parental contact, had a reduced spatial learning ability compared to offspring of non-stressed animals in a similar test as that used for their parents. Offspring of stressed WL were also more competitive and grew faster than offspring of non-stressed parents. Using a whole-genome cDNA microarray, we found that in WL, the same changes in hypothalamic gene expression profile caused by stress in the parents were also found in the offspring. In offspring of stressed WL, at least 31 genes were up- or down-regulated in the hypothalamus and pituitary compared to offspring of non-stressed parents. CONCLUSIONS/SIGNIFICANCE: Our results suggest that, in WL the gene expression response to stress, as well as some behavioural stress responses, were transmitted across generations. The ability to transmit epigenetic information and behaviour modifications between generations may therefore have been favoured by domestication. The mechanisms involved remain to be investigated; epigenetic modifications could either have been inherited or acquired de novo in the specific egg environment. In both cases, this would offer a novel explanation to

  9. Effects of ginseol k-g3, an Rg3-enriched fraction, on scopolamine-induced memory impairment and learning deficit in mice

    Directory of Open Access Journals (Sweden)

    Ike dela Peña

    2014-01-01

    Conclusion: The effects of ginseol k-g3 in ameliorating scopolamine-induced memory impairment in the passive avoidance and Morris water maze tests indicate its specific influence on reference or long-term memory. The mechanism underlying the reversal of scopolamine-induced amnesia by ginseol k-g3 is not yet known, but is not related to anticholinesterase-like activity.

  10. Postnatal TLR2 activation impairs learning and memory in adulthood.

    Science.gov (United States)

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The chemotherapeutic agent paclitaxel selectively impairs reversal learning while sparing prior learning, new learning and episodic memory.

    Science.gov (United States)

    Panoz-Brown, Danielle; Carey, Lawrence M; Smith, Alexandra E; Gentry, Meredith; Sluka, Christina M; Corbin, Hannah E; Wu, Jie-En; Hohmann, Andrea G; Crystal, Jonathon D

    2017-10-01

    Chemotherapy is widely used to treat patients with systemic cancer. The efficacy of cancer therapies is frequently undermined by adverse side effects that have a negative impact on the quality of life of cancer survivors. Cancer patients who receive chemotherapy often experience chemotherapy-induced cognitive impairment across a variety of domains including memory, learning, and attention. In the current study, the impact of paclitaxel, a taxane derived chemotherapeutic agent, on episodic memory, prior learning, new learning, and reversal learning were evaluated in rats. Neurogenesis was quantified post-treatment in the dentate gyrus of the same rats using immunostaining for 5-Bromo-2'-deoxyuridine (BrdU) and Ki67. Paclitaxel treatment selectively impaired reversal learning while sparing episodic memory, prior learning, and new learning. Furthermore, paclitaxel-treated rats showed decreases in markers of hippocampal cell proliferation, as measured by markers of cell proliferation assessed using immunostaining for Ki67 and BrdU. This work highlights the importance of using multiple measures of learning and memory to identify the pattern of impaired and spared aspects of chemotherapy-induced cognitive impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Comparison of the neuropsychological mechanisms of 2,6-diisopropylphenol and N-methyl-D-aspartate receptor antagonist against electroconvulsive therapy-induced learning and memory impairment in depressed rats.

    Science.gov (United States)

    Liu, Gang; Liu, Chao; Zhang, Xue-Ning

    2015-09-01

    The present study aimed to examine the neurophysiological mechanisms of the 2,6-diisopropylphenol and N-methyl-D-aspartate (NMDA) receptor antagonist against learning and memory impairment, induced by electroconvulsive therapy (ECT). A total of 48 adult depressed rats without olfactory bulbs were randomly divided into six experimental groups: i) saline; ii) 10 mg/kg MK‑801; iii) 10 mg/kg MK‑801 and a course of ECT; iv) 200 mg/kg 2,6‑diisopropylphenol; v) 200 mg/kg 2,6‑diisopropylphenol and a course of ECT; and vi) saline and a course of ECT. The learning and memory abilities of the rats were assessed using a Morris water maze 1 day after a course of ECT. The hippocampus was removed 1 day after assessment using the Morris water maze assessment. The content of glutamate in the hippocampus was detected using high‑performance liquid chromatography. The expression levels of p‑AT8Ser202 and GSK‑3β1H8 in the hippocampus were determined using immunohistochemical staining and western blot analysis. The results demonstrated that the 2,6‑diisopropylphenol NMDA receptor antagonist, MK‑801 and ECT induced learning and memory impairment in the depressed rats. The glutamate content was significantly upregulated by ECT, reduced by 2,6‑diisopropylphenol, and was unaffected by the NMDA receptor antagonist in the hippocampus of the depressed rats. Tau protein hyperphosphorylation in the hippocampus was upregulated by ECT, but was reduced by 2,6‑diisopropylphenol and the MK‑801 NMDA receptor antagonist. It was also demonstrated that 2,6‑diisopropylphenol prevented learning and memory impairment and reduced the hyperphosphorylation of the Tau protein, which was induced by eECT. GSK‑3β was found to be the key protein involved in this signaling pathway. The ECT reduced the learning and memory impairment, caused by hyperphosphorylation of the Tau protein, in the depressed rats by upregulating the glutamate content.

  13. Experimentally-induced dissociation impairs visual memory.

    Science.gov (United States)

    Brewin, Chris R; Mersaditabari, Niloufar

    2013-12-01

    Dissociation is a phenomenon common in a number of psychological disorders and has been frequently suggested to impair memory for traumatic events. In this study we explored the effects of dissociation on visual memory. A dissociative state was induced experimentally using a mirror-gazing task and its short-term effects on memory performance were investigated. Sixty healthy individuals took part in the experiment. Induced dissociation impaired visual memory performance relative to a control condition; however, the degree of dissociation was not associated with lower memory scores in the experimental group. The results have theoretical and practical implications for individuals who experience frequent dissociative states such as patients with posttraumatic stress disorder (PTSD). Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Spirulina maxima Extract Ameliorates Learning and Memory Impairments via Inhibiting GSK-3β Phosphorylation Induced by Intracerebroventricular Injection of Amyloid-β 1-42 in Mice.

    Science.gov (United States)

    Koh, Eun-Jeong; Kim, Kui-Jin; Song, Ji-Hyeon; Choi, Jia; Lee, Hyeon Yong; Kang, Do-Hyung; Heo, Ho Jin; Lee, Boo-Yong

    2017-11-13

    Spirulina maxima , a microalga containing high levels of protein and many polyphenols, including chlorophyll a and C-phycocyanin, has antioxidant and anti-inflammatory therapeutic effects. However, the mechanisms where by Spirulina maxima ameliorates cognitive disorders induced by amyloid-β 1-42 (Aβ 1-42 ) are not fully understood. In this study, we investigated whether a 70% ethanol extract of Spirulina maxima (SM70EE) ameliorated cognitive impairments induced by an intracerebroventricular injection of Aβ 1-42 in mice. SM70EE increased the step-through latency time in the passive avoidance test and decreased the escape latency time in the Morris water maze test in Aβ 1-42 -injected mice. SM70EE reduced hippocampal Aβ 1-42 levels and inhibited amyloid precursor protein processing-associated factors in Aβ 1-42 -injected mice. Additionally, acetylcholinesterase activity was suppressed by SM70EE in Aβ 1-42 -injected mice. Hippocampal glutathione levels were examined to determine the effects of SM70EE on oxidative stress in Aβ 1-42 -injected mice. SM70EE increased the levels of glutathione and its associated factors that were reduced in Aβ 1-42 -injected mice. SM70EE also promoted activation of the brain-derived neurotrophic factor/phosphatidylinositol-3 kinase/serine/threonine protein kinase signaling pathway and inhibited glycogen synthase kinase-3β phosphorylation. These findings suggested that SM70EE ameliorated Aβ 1-42 -induced cognitive impairments by inhibiting the increased phosphorylation of glycogen synthase kinase-3β caused by intracerebroventricular injection of Aβ 1-42 in mice.

  15. The relationship between NMDA receptors and microwave-induced learning and memory impairment: a long-term observation on Wistar rats.

    Science.gov (United States)

    Wang, Hui; Peng, Ruiyun; Zhao, Li; Wang, Shuiming; Gao, Yabing; Wang, Lifeng; Zuo, Hongyan; Dong, Ji; Xu, Xinping; Zhou, Hongmei; Su, Zhentao

    2015-03-01

    Abstract Purpose: To investigate whether high power microwave could cause continuous disorders to learning and memory in Wistar rats and to explore the underlying mechanisms. Eighty Wistar rats were exposed to a 2.856 GHz pulsed microwave source at a power density of 0 mW/cm(2) and 50 mW/cm(2) microwave for 6 min. The spatial memory ability, the structure of the hippocampus, contents of amino acids neurotransmitters in hippocampus and the expression of N-methyl-D-aspartic acid receptors (NMDAR) subunit 1, 2A and 2B (NR1, NR2A and NR2B) were detected at 1, 3, 6, 9, 12 and 18 months after microwave exposure. Our results showed that the microwave-exposed rats showed consistent deficiencies in spatial learning and memory. The level of amino acid neurotransmitters also decreased after microwave radiation. The ratio of glutamate (Glu) and gammaaminobutyric acid (GABA) significantly decreased at 6 months. Besides, the hippocampus showed varying degrees of degeneration of neurons, increased postsynaptic density and blurred synaptic clefts in the exposure group. The NR1 and NR2B expression showed a significant decrease, especially the NR2B expression. This study indicated that the content of amino acids neurotransmitters, the expression of NMDAR subunits and the variation of hippocampal structure might contribute to the long-term cognitive impairment after microwave exposure.

  16. Learning impairment in honey bees caused by agricultural spray adjuvants.

    Directory of Open Access Journals (Sweden)

    Timothy J Ciarlo

    Full Text Available BACKGROUND: Spray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s. The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior. METHODOLOGY/PRINCIPAL FINDINGS: An improved, automated version of the proboscis extension reflex (PER assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment. CONCLUSIONS/SIGNIFICANCE: A decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many

  17. Different MK-801 administration schedules induce mild to severe learning impairments in an operant conditioning task: role of buspirone and risperidone in ameliorating these cognitive deficits.

    Science.gov (United States)

    Rapanelli, Maximiliano; Frick, Luciana Romina; Bernardez-Vidal, Micaela; Zanutto, Bonifacio Silvano

    2013-11-15

    Blockade of N-methyl-d-aspartate receptor (NMDA) by the noncompetitive NMDA receptor (NMDAR) antagonist MK-801 produces behavioral abnormalities and alterations in prefrontal cortex (PFC) functioning. Due to the critical role of the PFC in operant conditioning task learning, we evaluated the effects of acute, repeated postnatal injections of MK-801 (0.1mg/kg) on learning performance. We injected Long-Evans rats i.p. with MK-801 (0.1mg/kg) using three different administration schedules: injection 40 min before beginning the task (during) (n=12); injection twice daily for six consecutive days prior to beginning the experimental procedures (prior) (n=12); or twice daily subcutaneous injections from postnatal day 7 to 11 (postnatal) (n=12). Next, we orally administered risperidone (serotonin receptor 2A and dopamine receptor 2 antagonist, 1mg/kg) or buspirone (serotonin receptor 1A partial agonist, 10mg/kg) to animals treated with the MK-801 schedule described above. The postnatal and prior administration schedules produced severe learning deficits, whereas injection of MK-801 just before training sessions had only mild effects on acquisition of an operant conditioning. Risperidone was able to reverse the detrimental effect of MK-801 in the animals that were treated with MK-801 during and prior training sessions. In contrast, buspirone was only effective at mitigating the cognitive deficits induced by MK-801 when administered during the training procedures. The data demonstrates that NMDA antagonism disrupts basic mechanisms of learning in a simple PFC-mediated operant conditioning task, and that buspirone and risperidone failed to attenuate the learning deficits when NMDA neurotransmission was blocked in the early stages of the postnatal period. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Sodium p-Aminosalicylic Acid Reverses Sub-Chronic Manganese-Induced Impairments of Spatial Learning and Memory Abilities in Rats, but Fails to Restore γ-Aminobutyric Acid Levels

    Science.gov (United States)

    Li, Shao-Jun; Ou, Chao-Yan; He, Sheng-Nan; Huang, Xiao-Wei; Luo, Hai-Lan; Meng, Hao-Yang; Lu, Guo-Dong; Jiang, Yue-Ming; Vieira Peres, Tanara; Luo, Yi-Ni; Deng, Xiang-Fa

    2017-01-01

    Excessive manganese (Mn) exposure is not only a health risk for occupational workers, but also for the general population. Sodium para-aminosalicylic acid (PAS-Na) has been successfully used in the treatment of manganism, but the involved molecular mechanisms have yet to be determined. The present study aimed to investigate the effects of PAS-Na on sub-chronic Mn exposure-induced impairments of spatial learning and memory, and determine the possible involvements of γ-aminobutyric acid (GABA) metabolism in vivo. Sprague-Dawley male rats received daily intraperitoneal injections MnCl2 (as 6.55 mg/kg Mn body weight, five days per week for 12 weeks), followed by daily subcutaneous injections of 100, 200, or 300 mg/kg PAS-Na for an additional six weeks. Mn exposure significantly impaired spatial learning and memory ability, as noted in the Morris water maze test, and the following PAS-Na treatment successfully restored these adverse effects to levels indistinguishable from controls. Unexpectedly, PAS-Na failed to recover the Mn-induced decrease in the overall GABA levels, although PAS-Na treatment reversed Mn-induced alterations in the enzyme activities directly responsible for the synthesis and degradation of GABA (glutamate decarboxylase and GABA-transaminase, respectively). Moreover, Mn exposure caused an increase of GABA transporter 1 (GAT-1) and decrease of GABA A receptor (GABAA) in transcriptional levels, which could be reverted by the highest dose of 300 mg/kg PAS-Na treatment. In conclusion, the GABA metabolism was interrupted by sub-chronic Mn exposure. However, the PAS-Na treatment mediated protection from sub-chronic Mn exposure-induced neurotoxicity, which may not be dependent on the GABA metabolism. PMID:28394286

  19. Impairments in Learning Due to Motivational Conflict: Situation Really Matters

    Science.gov (United States)

    Brassler, Nina K.; Grund, Axel; Hilckmann, Kristina; Fries, Stefan

    2016-01-01

    Although many theories mention distractions by conflicting alternatives as a problem for self-regulation, motivational conflicts are rarely considered when explaining impairments in learning. In two studies, we investigate the assumption of motivational interference theory that students show different amounts of impairments in learning depending…

  20. Pridopidine Reverses Phencyclidine-Induced Memory Impairment.

    Science.gov (United States)

    Sahlholm, Kristoffer; Valle-León, Marta; Fernández-Dueñas, Víctor; Ciruela, Francisco

    2018-01-01

    Pridopidine is in clinical trials for Huntington's disease treatment. Originally developed as a dopamine D 2 receptor (D 2 R) ligand, pridopidine displays about 100-fold higher affinity for the sigma-1 receptor (sigma-1R). Interestingly, pridopidine slows disease progression and improves motor function in Huntington's disease model mice and, in preliminarily reports, Huntington's disease patients. The present study examined the anti-amnesic potential of pridopidine. Thus, memory impairment was produced in mice by administration of phencyclidine (PCP, 10 mg/kg/day) for 10 days, followed by 14 days' treatment with pridopidine (6 mg/kg/day), or saline. Finally, novel object recognition performance was assessed in the animals. Mice receiving PCP and saline exhibited deficits in novel object recognition, as expected, while pridopidine treatment counteracted PCP-induced memory impairment. The effect of pridopidine was attenuated by co-administration of the sigma receptor antagonist, NE-100 (10 mg/kg). Our results suggest that pridopidine exerts anti-amnesic and potentially neuroprotective actions. These data provide new insights into the therapeutic potential of pridopidine as a pro-cognitive drug.

  1. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Science.gov (United States)

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Public Computer Assisted Learning Facilities for Children with Visual Impairment: Universal Design for Inclusive Learning

    Science.gov (United States)

    Siu, Kin Wai Michael; Lam, Mei Seung

    2012-01-01

    Although computer assisted learning (CAL) is becoming increasingly popular, people with visual impairment face greater difficulty in accessing computer-assisted learning facilities. This is primarily because most of the current CAL facilities are not visually impaired friendly. People with visual impairment also do not normally have access to…

  3. PROPYLTHIOURACIL (PTU)-INDUCED HYPOTHYROIDISM REDUCES FIELD POTENTIAL AMPLITUDE BUT DOES NOT IMPAIR DENTATE GYRUS LTP IN VIVO.

    Science.gov (United States)

    Developmental exposure to hypothyroid-inducing agents leads to reductions in body weight, alterations in hippocampal structure, and impaired performance on a variety of behavioral learning tasks. Electrophysiological properties of the hippocampus in hypothyroid animals, however...

  4. The Learning Disabled, Hearing Impaired Students: Reality, Myth, or Overextension?

    Science.gov (United States)

    Laughton, Joan

    1989-01-01

    This paper focuses on definitions, incidence, and characteristics of the multihandicapping condition known as "learning disabled, hearing impaired," in order to provide a means of identifying these children and determining whether or not they require different teaching strategies. (JDD)

  5. Caffeine attenuates scopolamine-induced memory impairment in humans.

    Science.gov (United States)

    Riedel, W; Hogervorst, E; Leboux, R; Verhey, F; van Praag, H; Jolles, J

    1995-11-01

    Caffeine consumption can be beneficial for cognitive functioning. Although caffeine is widely recognized as a mild CNS stimulant drug, the most important consequence of its adenosine antagonism is cholinergic stimulation, which might lead to improvement of higher cognitive functions, particularly memory. In this study, the scopolamine model of amnesia was used to test the cholinergic effects of caffeine, administered as three cups of coffee. Subjects were 16 healthy volunteers who received 250 mg caffeine and 2 mg nicotine separately, in a placebo-controlled double-blind cross-over design. Compared to placebo, nicotine attenuated the scopolamine-induced impairment of storage in short-term memory and attenuated the scopolamine-induced slowing of speed of short-term memory scanning. Nicotine also attenuated the scopolamine-induced slowing of reaction time in a response competition task. Caffeine attenuated the scopolamine-induced impairment of free recall from short- and long-term memory, quality and speed of retrieval from long-term memory in a word learning task, and other cognitive and non-cognitive measures, such as perceptual sensitivity in visual search, reading speed, and rate of finger-tapping. On the basis of these results it was concluded that caffeine possesses cholinergic cognition enhancing properties. Caffeine could be used as a control drug in studies using the scopolamine paradigm and possibly also in other experimental studies of cognitive enhancers, as the effects of a newly developed cognition enhancing drug should at least be superior to the effects of three cups of coffee.

  6. Impaired associative learning with food rewards in obese women.

    Science.gov (United States)

    Zhang, Zhihao; Manson, Kirk F; Schiller, Daniela; Levy, Ifat

    2014-08-04

    Obesity is a major epidemic in many parts of the world. One of the main factors contributing to obesity is overconsumption of high-fat and high-calorie food, which is driven by the rewarding properties of these types of food. Previous studies have suggested that dysfunction in reward circuits may be associated with overeating and obesity. The nature of this dysfunction, however, is still unknown. Here, we demonstrate impairment in reward-based associative learning specific to food in obese women. Normal-weight and obese participants performed an appetitive reversal learning task in which they had to learn and modify cue-reward associations. To test whether any learning deficits were specific to food reward or were more general, we used a between-subject design in which half of the participants received food reward and the other half received money reward. Our results reveal a marked difference in associative learning between normal-weight and obese women when food was used as reward. Importantly, no learning deficits were observed with money reward. Multiple regression analyses also established a robust negative association between body mass index and learning performance in the food domain in female participants. Interestingly, such impairment was not observed in obese men. These findings suggest that obesity may be linked to impaired reward-based associative learning and that this impairment may be specific to the food domain. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Incidental Learning of Sound Categories is Impaired in Developmental Dyslexia

    Science.gov (United States)

    Gabay, Yafit; Holt, Lori L.

    2015-01-01

    Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. PMID:26409017

  8. Incidental learning of sound categories is impaired in developmental dyslexia.

    Science.gov (United States)

    Gabay, Yafit; Holt, Lori L

    2015-12-01

    Developmental dyslexia is commonly thought to arise from specific phonological impairments. However, recent evidence is consistent with the possibility that phonological impairments arise as symptoms of an underlying dysfunction of procedural learning. The nature of the link between impaired procedural learning and phonological dysfunction is unresolved. Motivated by the observation that speech processing involves the acquisition of procedural category knowledge, the present study investigates the possibility that procedural learning impairment may affect phonological processing by interfering with the typical course of phonetic category learning. The present study tests this hypothesis while controlling for linguistic experience and possible speech-specific deficits by comparing auditory category learning across artificial, nonlinguistic sounds among dyslexic adults and matched controls in a specialized first-person shooter videogame that has been shown to engage procedural learning. Nonspeech auditory category learning was assessed online via within-game measures and also with a post-training task involving overt categorization of familiar and novel sound exemplars. Each measure reveals that dyslexic participants do not acquire procedural category knowledge as effectively as age- and cognitive-ability matched controls. This difference cannot be explained by differences in perceptual acuity for the sounds. Moreover, poor nonspeech category learning is associated with slower phonological processing. Whereas phonological processing impairments have been emphasized as the cause of dyslexia, the current results suggest that impaired auditory category learning, general in nature and not specific to speech signals, could contribute to phonological deficits in dyslexia with subsequent negative effects on language acquisition and reading. Implications for the neuro-cognitive mechanisms of developmental dyslexia are discussed. Copyright © 2015 Elsevier Ltd. All rights

  9. Working memory and reward association learning impairments in obesity.

    Science.gov (United States)

    Coppin, Géraldine; Nolan-Poupart, Sarah; Jones-Gotman, Marilyn; Small, Dana M

    2014-12-01

    Obesity has been associated with impaired executive functions including working memory. Less explored is the influence of obesity on learning and memory. In the current study we assessed stimulus reward association learning, explicit learning and memory and working memory in healthy weight, overweight and obese individuals. Explicit learning and memory did not differ as a function of group. In contrast, working memory was significantly and similarly impaired in both overweight and obese individuals compared to the healthy weight group. In the first reward association learning task the obese, but not healthy weight or overweight participants consistently formed paradoxical preferences for a pattern associated with a negative outcome (fewer food rewards). To determine if the deficit was specific to food reward a second experiment was conducted using money. Consistent with Experiment 1, obese individuals selected the pattern associated with a negative outcome (fewer monetary rewards) more frequently than healthy weight individuals and thus failed to develop a significant preference for the most rewarded patterns as was observed in the healthy weight group. Finally, on a probabilistic learning task, obese compared to healthy weight individuals showed deficits in negative, but not positive outcome learning. Taken together, our results demonstrate deficits in working memory and stimulus reward learning in obesity and suggest that obese individuals are impaired in learning to avoid negative outcomes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Resource Guide for Persons with Learning Impairments.

    Science.gov (United States)

    IBM, Atlanta, GA. National Support Center for Persons with Disabilities.

    The resource guide identifies products which assist learning disabled and mentally retarded individuals in accessing IBM (International Business Machine) Personal Computers or the IBM Personal System/2 family of products. An introduction provides a general overview of ways computers can help learning disabled or retarded persons. The document then…

  11. Impairment of probabilistic reward-based learning in schizophrenia.

    Science.gov (United States)

    Weiler, Julia A; Bellebaum, Christian; Brüne, Martin; Juckel, Georg; Daum, Irene

    2009-09-01

    Recent models assume that some symptoms of schizophrenia originate from defective reward processing mechanisms. Understanding the precise nature of reward-based learning impairments might thus make an important contribution to the understanding of schizophrenia and the development of treatment strategies. The present study investigated several features of probabilistic reward-based stimulus association learning, namely the acquisition of initial contingencies, reversal learning, generalization abilities, and the effects of reward magnitude. Compared to healthy controls, individuals with schizophrenia exhibited attenuated overall performance during acquisition, whereas learning rates across blocks were similar to the rates of controls. On the group level, persons with schizophrenia were, however, unable to learn the reversal of the initial reward contingencies. Exploratory analysis of only the subgroup of individuals with schizophrenia who showed significant learning during acquisition yielded deficits in reversal learning with low reward magnitudes only. There was further evidence of a mild generalization impairment of the persons with schizophrenia in an acquired equivalence task. In summary, although there was evidence of intact basic processing of reward magnitudes, individuals with schizophrenia were impaired at using this feedback for the adaptive guidance of behavior.

  12. The chemotherapeutic agent paclitaxel selectively impairs learning while sparing source memory and spatial memory.

    Science.gov (United States)

    Smith, Alexandra E; Slivicki, Richard A; Hohmann, Andrea G; Crystal, Jonathon D

    2017-03-01

    Chemotherapeutic agents are widely used to treat patients with systemic cancer. The efficacy of these therapies is undermined by their adverse side-effect profiles such as cognitive deficits that have a negative impact on the quality of life of cancer survivors. Cognitive side effects occur across a variety of domains, including memory, executive function, and processing speed. Such impairments are exacerbated under cognitive challenges and a subgroup of patients experience long-term impairments. Episodic memory in rats can be examined using a source memory task. In the current study, rats received paclitaxel, a taxane-derived chemotherapeutic agent, and learning and memory functioning was examined using the source memory task. Treatment with paclitaxel did not impair spatial and episodic memory, and paclitaxel treated rats were not more susceptible to cognitive challenges. Under conditions in which memory was not impaired, paclitaxel treatment impaired learning of new rules, documenting a decreased sensitivity to changes in experimental contingencies. These findings provide new information on the nature of cancer chemotherapy-induced cognitive impairments, particularly regarding the incongruent vulnerability of episodic memory and new learning following treatment with paclitaxel. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. L-carnitine prevents memory impairment induced by chronic REM-sleep deprivation.

    Science.gov (United States)

    Alzoubi, Karem H; Rababa'h, Abeer M; Owaisi, Amani; Khabour, Omar F

    2017-05-01

    Sleep deprivation (SD) negatively impacts memory, which was related to oxidative stress induced damage. L-carnitine is a naturally occurring compound, synthesized endogenously in mammalian species and known to possess antioxidant properties. In this study, the effect of L-carnitine on learning and memory impairment induced by rapid eye movement sleep (REM-sleep) deprivation was investigated. REM-sleep deprivation was induced using modified multiple platform model (8h/day, for 6 weeks). Simultaneously, L-carnitine was administered (300mg/kg/day) intraperitoneally for 6 weeks. Thereafter, the radial arm water maze (RAWM) was used to assess spatial learning and memory. Additionally, the hippocampus levels of antioxidant biomarkers/enzymes: reduced glutathione (GSH), oxidized glutathione (GSSG), GSH/GSSG ratio, glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD) and thiobarbituric acid reactive substance (TBARS) were assessed. The results showed that chronic REM-sleep deprivation impaired both short- and long-term memory (Psleep deprivation induced reduction in the hippocampus ratio of GSH/GSSG, activity of catalase, GPx, and SOD. No change was observed in TBARS among tested groups (P>0.05). In conclusion, chronic REM-sleep deprivation induced memory impairment, and treatment with L-carnitine prevented this impairment through normalizing antioxidant mechanisms in the hippocampus. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Impaired implicit learning and feedback processing after stroke.

    Science.gov (United States)

    Lam, J M; Globas, C; Hosp, J A; Karnath, H-O; Wächter, T; Luft, A R

    2016-02-09

    The ability to learn is assumed to support successful recovery and rehabilitation therapy after stroke. Hence, learning impairments may reduce the recovery potential. Here, the hypothesis is tested that stroke survivors have deficits in feedback-driven implicit learning. Stroke survivors (n=30) and healthy age-matched control subjects (n=21) learned a probabilistic classification task with brain activation measured using functional magnetic resonance imaging in a subset of these individuals (17 stroke and 10 controls). Stroke subjects learned slower than controls to classify cues. After being rewarded with a smiley face, they were less likely to give the same response when the cue was repeated. Stroke subjects showed reduced brain activation in putamen, pallidum, thalamus, frontal and prefrontal cortices and cerebellum when compared with controls. Lesion analysis identified those stroke survivors as learning-impaired who had lesions in frontal areas, putamen, thalamus, caudate and insula. Lesion laterality had no effect on learning efficacy or brain activation. These findings suggest that stroke survivors have deficits in reinforcement learning that may be related to dysfunctional processing of feedback-based decision-making, reward signals and working memory. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Multiple Learning Strategies Project. Small Engine Repair. Visually Impaired.

    Science.gov (United States)

    Foster, Don; And Others

    This instructional package designed for visually impaired students, focuses on the vocational area of small engine repair. Contained in this document are forty learning modules organized into fourteen units: engine block; starters; fuel tank, lines, filters and pumps; carburetors; electrical; test equipment; motorcycle; machining; tune-ups; short…

  16. Multiple Learning Strategies Project. Building Maintenance & Engineering. Visually Impaired.

    Science.gov (United States)

    Smith, Dwight; And Others

    This instructional package is designed for visually impaired students in the vocational area of building maintenance and engineering. The twenty-eight learning modules are organized into six units: floor care, general maintenance tasks; restrooms; carpet care; power and hand tools; and cabinet construction. Each module, printed in large block…

  17. Impairments in action-outcome learning in schizophrenia.

    Science.gov (United States)

    Morris, Richard W; Cyrzon, Chad; Green, Melissa J; Le Pelley, Mike E; Balleine, Bernard W

    2018-03-03

    Learning the causal relation between actions and their outcomes (AO learning) is critical for goal-directed behavior when actions are guided by desire for the outcome. This can be contrasted with habits that are acquired by reinforcement and primed by prevailing stimuli, in which causal learning plays no part. Recently, we demonstrated that goal-directed actions are impaired in schizophrenia; however, whether this deficit exists alongside impairments in habit or reinforcement learning is unknown. The present study distinguished deficits in causal learning from reinforcement learning in schizophrenia. We tested people with schizophrenia (SZ, n = 25) and healthy adults (HA, n = 25) in a vending machine task. Participants learned two action-outcome contingencies (e.g., push left to get a chocolate M&M, push right to get a cracker), and they also learned one contingency was degraded by delivery of noncontingent outcomes (e.g., free M&Ms), as well as changes in value by outcome devaluation. Both groups learned the best action to obtain rewards; however, SZ did not distinguish the more causal action when one AO contingency was degraded. Moreover, action selection in SZ was insensitive to changes in outcome value unless feedback was provided, and this was related to the deficit in AO learning. The failure to encode the causal relation between action and outcome in schizophrenia occurred without any apparent deficit in reinforcement learning. This implies that poor goal-directed behavior in schizophrenia cannot be explained by a more primary deficit in reward learning such as insensitivity to reward value or reward prediction errors.

  18. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang, E-mail: puthmzk@163.com

    2015-05-15

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment.

  19. Isoflurane induced cognitive impairment in aged rats through hippocampal calcineurin/NFAT signaling

    International Nuclear Information System (INIS)

    Ni, Cheng; Li, Zhengqian; Qian, Min; Zhou, Yang; Wang, Jun; Guo, Xiangyang

    2015-01-01

    Calcineurin (CaN) over-activation constrains synaptic plasticity and memory formation. Upon CaN activation, NFAT imports into the nucleus and guides its downstream genes, which also affect neuronal and synaptic function. Aberrant CaN/NFAT signaling involves in neurotoxicity and cognitive impairment in neurological disorders such as Alzheimer's disease, but its role in postoperative cognitive dysfunction (POCD) remains uninvestigated. Inhaled anesthetic isoflurane facilitates the development of POCD, and the present study investigated the role of CaN/NFAT signaling in isoflurane induced cognitive impairment of aged rats, and the therapeutic effects of CaN inhibitor cyclosporine A (CsA). The results indicated that hippocampal CaN activity increased and peaked at 6 h after isoflurane exposure, and NFAT, especially NFATc4, imported into the nucleus following CaN activation. Furthermore, phamacological inhibition of CaN by CsA markedly attenuated isoflurane induced aberrant CaN/NFATc4 signaling in the hippocampus, and rescued relevant spatial learning and memory impairment of aged rats. Overall, the study suggests hippocampal CaN/NFAT signaling as the upstream mechanism of isoflurane induced cognitive impairment, and provides potential therapeutic target and possible treatment methods for POCD. - Highlights: • Isoflurane induces hippocampal calcineurin activation. • Isoflurane induces hippocampal NFAT, especially NFATc4, nuclear import. • Cyclosporine A attenuates isoflurane induced aberrant calcineurin/NFAT signaling. • Cyclosporine A rescues isoflurane induced cognitive impairment. • Calcineurin/NFAT signaling is the upstream mechanism of isoflurane induced synaptic dysfunction and cognitive impairment

  20. Omega-3 deficiency impairs honey bee learning

    Science.gov (United States)

    Arien, Yael; Dag, Arnon; Zarchin, Shlomi; Masci, Tania

    2015-01-01

    Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3–poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3–rich diets, or omega-3–rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal. PMID:26644556

  1. Acute psychophysiological stress impairs human associative learning.

    Science.gov (United States)

    Ehlers, M R; Todd, R M

    2017-11-01

    Addiction is increasingly discussed asa disorder of associative learning processes, with both operant and classical conditioning contributing to the development of maladaptive habits. Stress has long been known to promote drug taking and relapse and has further been shown to shift behavior from goal-directed actions towards more habitual ones. However, it remains to be investigated how acute stress may influence simple associative learning processes that occur before a habit can be established. In the present study, healthy young adults were exposed to either acute stress or a control condition half an hour before performing simple classical and operant conditioning tasks. Psychophysiological measures confirmed successful stress induction. Results of the operant conditioning task revealed reduced instrumental responding under delayed acute stress that resembled behavioral responses to lower levels of reward. The classical conditioning experiment revealed successful conditioning in both experimental groups; however, explicit knowledge of conditioning as indicated by stimulus ratings differentiated the stress and control groups. These findings suggest that operant and classical conditioning are differentially influenced by the delayed effects of acute stress with important implications for the understanding of how new habitual behaviors are initially established. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Edaravone attenuates intracerebroventricular streptozotocin-induced cognitive impairment in rats.

    Science.gov (United States)

    Reeta, K H; Singh, Devendra; Gupta, Yogendra K

    2017-04-01

    Alzheimer's disease is a major cause of dementia worldwide. Edaravone, a potent free radical scavenger, is reported to be neuroprotective. The present study was designed to investigate the effect of chronic edaravone administration on intracerebroventricular-streptozotocin (ICV-STZ) induced cognitive impairment in male Wistar rats. Cognitive impairment was developed by single ICV-STZ (3 mg/kg) injection bilaterally on day 1. Edaravone (1, 3 and 10 mg/kg, orally, once daily) was administered for 28 days. Morris water maze and passive avoidance tests were used to assess cognitive functions at baseline and on days 14 and 28. ICV-STZ caused cognitive impairment as evidenced by increased escape latency and decreased time spent in target quadrant in the Morris water maze test and reduced retention latency in the passive avoidance test. STZ caused increase in oxidative stress, cholinesterases, inflammatory cytokines and protein expression of ROCK-II and decrease in protein expression of ChAT. Edaravone ameliorated the STZ-induced cognitive impairment. STZ-induced increase in oxidative stress and increased levels of pro-inflammatory cytokines (TNF-α, IL-1β) were mitigated by edaravone. Edaravone also prevented STZ-induced increased protein expression of ROCK-II. Moreover, edaravone significantly prevented STZ-induced increased activity of cholinesterases in the cortex and hippocampus. The decreased expression of ChAT caused by STZ was brought towards normal by edaravone in the hippocampus. The results thus show that edaravone is protective against STZ-induced cognitive impairment, oxidative stress, cholinergic dysfunction and altered protein expressions. This study thus suggests the potential of edaravone as an adjuvant in the treatment of Alzheimer's disease. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Innovative intelligent technology of distance learning for visually impaired people

    Science.gov (United States)

    Samigulina, Galina; Shayakhmetova, Assem; Nuysuppov, Adlet

    2017-12-01

    The aim of the study is to develop innovative intelligent technology and information systems of distance education for people with impaired vision (PIV). To solve this problem a comprehensive approach has been proposed, which consists in the aggregate of the application of artificial intelligence methods and statistical analysis. Creating an accessible learning environment, identifying the intellectual, physiological, psychophysiological characteristics of perception and information awareness by this category of people is based on cognitive approach. On the basis of fuzzy logic the individually-oriented learning path of PIV is con- structed with the aim of obtaining high-quality engineering education with modern equipment in the joint use laboratories.

  4. Innovative intelligent technology of distance learning for visually impaired people

    Directory of Open Access Journals (Sweden)

    Samigulina Galina

    2017-12-01

    Full Text Available The aim of the study is to develop innovative intelligent technology and information systems of distance education for people with impaired vision (PIV. To solve this problem a comprehensive approach has been proposed, which consists in the aggregate of the application of artificial intelligence methods and statistical analysis. Creating an accessible learning environment, identifying the intellectual, physiological, psychophysiological characteristics of perception and information awareness by this category of people is based on cognitive approach. On the basis of fuzzy logic the individually-oriented learning path of PIV is con- structed with the aim of obtaining high-quality engineering education with modern equipment in the joint use laboratories.

  5. Caffeine prevents cognitive impairment induced by chronic psychosocial stress and/or high fat-high carbohydrate diet.

    Science.gov (United States)

    Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A

    2013-01-15

    Caffeine alleviates cognitive impairment associated with a variety of health conditions. In this study, we examined the effect of caffeine treatment on chronic stress- and/or high fat-high carbohydrate Western diet (WD)-induced impairment of learning and memory in rats. Chronic psychosocial stress, WD and caffeine (0.3 g/L in drinking water) were simultaneously administered for 3 months to adult male Wistar rats. At the conclusion of the 3 months, and while the previous treatments continued, rats were tested in the radial arm water maze (RAWM) for learning, short-term and long-term memory. This procedure was applied on a daily basis to all animals for 5 consecutive days or until the animal reaches days to criterion (DTC) in the 12th learning trial and memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Chronic stress and/or WD groups caused impaired learning, which was prevented by chronic caffeine administration. In the memory tests, chronic caffeine administration also prevented memory impairment during chronic stress conditions and/or WD. Furthermore, DTC value for caffeine treated stress, WD, and stress/WD groups indicated that caffeine normalizes memory impairment in these groups. These results showed that chronic caffeine administration prevented stress and/or WD-induced impairment of spatial learning and memory. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Inactivation of basolateral amygdala prevents chronic immobilization stress-induced memory impairment and associated changes in corticosterone levels.

    Science.gov (United States)

    Tripathi, Sunil Jamuna; Chakraborty, Suwarna; Srikumar, B N; Raju, T R; Shankaranarayana Rao, B S

    2017-07-01

    Chronic stress causes detrimental effects on various forms of learning and memory. The basolateral amygdala (BLA) not only plays a crucial role in mediating certain forms of memory, but also in the modulation of the effects of stress. Chronic immobilization stress (CIS) results in hypertrophy of the BLA, which is believed to be one of the underlying causes for stress' effects on learning. Thus, it is plausible that preventing the effects of CIS on amygdala would preclude its deleterious cognitive effects. Accordingly, in the first part, we evaluated the effect of excitotoxic lesion of the BLA on chronic stress-induced hippocampal-dependent spatial learning using a partially baited radial arm maze task. The BLA was ablated bilaterally using ibotenic acid prior to CIS. Chronically stressed rats showed impairment in spatial learning with decreased percentage correct choice and increased reference memory errors. Excitotoxic lesion of the BLA prevented the impairment in spatial learning and reference memory. In the retention test, lesion of the BLA was able to rescue the chronic stress-induced impairment. Interestingly, stress-induced enhanced plasma corticosterone levels were partially prevented by the lesion of BLA. These results motivated us to evaluate if the same effects can be observed with temporary inactivation of BLA, only during stress. We found that chronic stress-induced spatial learning deficits were also prevented by temporary inactivation of the BLA. Additionally, temporary inactivation of BLA partially precluded the stress-induced increase in plasma corticosterone levels. Thus, inactivation of BLA precludes stress-induced spatial learning deficits, and enhanced plasma corticosterone levels. It is speculated that BLA inactivation-induced reduction in corticosterone levels during stress, might be crucial in restoring spatial learning impairments. Our study provides evidence that amygdalar modulation during stress might be beneficial for strategic

  7. Minocycline protects against lipopolysaccharide-induced cognitive impairment in mice.

    Science.gov (United States)

    Hou, Yue; Xie, Guanbo; Liu, Xia; Li, Guoxun; Jia, Congcong; Xu, Jinghua; Wang, Bing

    2016-03-01

    The role of glial cells, especially microglia and astrocytes, in neuroinflammation and cognition has been studied intensively. Lipopolysaccharide (LPS), a commonly used inducer of neuroinflammation, can cause cognitive impairment. Minocycline is known to possess potent neuroprotective activity, but its effect on LPS-induced cognitive impairment is unknown. This study aims to investigate the effects of minocycline on LPS-induced cognitive impairment and glial cell activation in mice. Behavioral tests were conducted for cognitive function, immunohistochemistry for microglial and astrocyte response, and quantitative PCR for mRNA expression of proinflammatory cytokines. Minocycline significantly reversed the decreased spontaneous alternation induced by intrahippocampal administration of LPS in the Y-maze task. In the Morris water maze place navigation test, minocycline decreased the escape latency and distance traveled compared to LPS-treated mice. In the probe test, minocycline-treated mice spent more time in the target quadrant and crossed the platform area more frequently than animals in the LPS-treated group. Minocycline produced a significant decrease in the number of Iba-1- and GFAP-positive hippocampal cells compared to the LPS-treated group. Minocycline-treated mice had significantly reduced hippocampal TNF-α and IL-1β mRNA levels compared with LPS-treated animals. Minocycline caused a significant increase in hippocampal BDNF expression compared to the LPS-treated group. Minocycline can attenuate LPS-induced cognitive impairments in mice. This effect may be associated with its action to suppress the activation of microglia and astrocytes and to normalize BDNF expression. Since neuroinflammatory processes and cognitive impairments are implicated in neurodegenerative disorders, minocycline may be a promising candidate for treating such diseases.

  8. Later learning stages in procedural memory are impaired in children with Specific Language Impairment.

    Science.gov (United States)

    Desmottes, Lise; Meulemans, Thierry; Maillart, Christelle

    2016-01-01

    According to the Procedural Deficit Hypothesis (PDH), difficulties in the procedural memory system may contribute to the language difficulties encountered by children with Specific Language Impairment (SLI). Most studies investigating the PDH have used the sequence learning paradigm; however these studies have principally focused on initial sequence learning in a single practice session. The present study sought to extend these investigations by assessing the consolidation stage and longer-term retention of implicit sequence-specific knowledge in 42 children with or without SLI. Both groups of children completed a serial reaction time task and were tested 24h and one week after practice. Results showed that children with SLI succeeded as well as children with typical development (TD) in the early acquisition stage of the sequence learning task. However, as training blocks progressed, only TD children improved their sequence knowledge while children with SLI did not appear to evolve any more. Moreover, children with SLI showed a lack of the consolidation gains in sequence knowledge displayed by the TD children. Overall, these results were in line with the predictions of the PDH and suggest that later learning stages in procedural memory are impaired in SLI. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Histone deacetylase inhibition abolishes stress-induced spatial memory impairment.

    Science.gov (United States)

    Vargas-López, Viviana; Lamprea, Marisol R; Múnera, Alejandro

    2016-10-01

    Acute stress induced before spatial training impairs memory consolidation. Although non-epigenetic underpinning of such effect has been described, the epigenetic mechanisms involved have not yet been studied. Since spatial training and intense stress have opposite effects on histone acetylation balance, it is conceivable that disruption of such balance may underlie acute stress-induced spatial memory consolidation impairment and that inhibiting histone deacetylases prevents such effect. Trichostatin-A (TSA, a histone deacetylase inhibitor) was used to test its effectiveness in preventing stress' deleterious effect on memory. Male Wistar rats were trained in a spatial task in the Barnes maze; 1-h movement restraint was applied to half of them before training. Immediately after training, stressed and non-stressed animals were randomly assigned to receive either TSA (1mg/kg) or vehicle intraperitoneal injection. Twenty-four hours after training, long-term spatial memory was tested; plasma and brain tissue were collected immediately after the memory test to evaluate corticosterone levels and histone H3 acetylation in several brain areas. Stressed animals receiving vehicle displayed memory impairment, increased plasma corticosterone levels and markedly reduced histone H3 acetylation in prelimbic cortex and hippocampus. Such effects did not occur in stressed animals treated with TSA. The aforementioned results support the hypothesis that acute stress induced-memory impairment is related to histone deacetylation. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Short Communication: Protective Effects of Cyperus Rotundus Extract on Amyloid β-Peptide (1-40-Induced Memory Impairment in Male Rats: A Behavioral Study

    Directory of Open Access Journals (Sweden)

    Mehdi Mehdizadeh

    2017-05-01

    Conclusion: The current study findings showed that C. Rotundus could improve the learning impairment, following the Aβ treatment, and it may lead to an improvement of AD-induced cognitive dysfunction.

  11. Cannabidiol prevents motor and cognitive impairments induced by reserpine in rats

    Directory of Open Access Journals (Sweden)

    Fernanda Fiel Peres

    2016-09-01

    Full Text Available Cannabidiol (CBD is a non-psychotomimetic compound from Cannabis sativa that presents antipsychotic, anxiolytic, anti-inflammatory and neuroprotective effects. In Parkinson’s disease patients, CBD is able to attenuate the psychotic symptoms induced by L-DOPA and to improve quality of life. Repeated administration of reserpine in rodents induces motor impairments that are accompanied by cognitive deficits, and has been applied to model both tardive dyskinesia and Parkinson’s disease. The present study investigated whether CBD administration would attenuate reserpine-induced motor and cognitive impairments in rats. Male Wistar rats received four injections of CBD (0.5 or 5 mg/kg or vehicle (days 2-5. On days 3 and 5, animals received also one injection of 1 mg/kg reserpine or vehicle. Locomotor activity, vacuous chewing movements and catalepsy were assessed from day 1 to day 7. On days 8 and 9, we evaluated animals’ performance on the plus-maze discriminative avoidance task, for learning/memory assessment. CBD (0.5 and 5 mg/kg attenuated the increase in catalepsy behavior and in oral movements – but not the decrease in locomotion – induced by reserpine. CBD (0.5 mg/kg also ameliorated the reserpine-induced memory deficit in the discriminative avoidance task. Our data show that CBD is able to attenuate motor and cognitive impairments induced by reserpine, suggesting the use of this compound in the pharmacotherapy of Parkinson’s disease and tardive dyskinesia.

  12. Deleting Both PHLPP1 and CANP1 Rescues Impairments in Long-Term Potentiation and Learning in Both Single Knockout Mice

    Science.gov (United States)

    Liu, Yan; Sun, Jiandong; Wang, Yubin; Lopez, Dulce; Tran, Jennifer; Bi, Xiaoning; Baudry, Michel

    2016-01-01

    Calpain-1 (CANP1) has been shown to play a critical role in synaptic plasticity and learning and memory, as its deletion in mice results in impairment in theta-burst stimulation (TBS)-induced LTP and various forms of learning and memory. Likewise, PHLPP1 (aka SCOP) has also been found to participate in learning and memory, as PHLPP1 overexpression…

  13. Evidence of impaired learning during whole-body vibration

    Science.gov (United States)

    Sherwood, N.; Griffin, M. J.

    1992-01-01

    A study of the effects of whole-body vibration on learning and memory was conducted, in which a context-dependent experimental design was used. Forty subjects completed a simple associative learning task, half during exposure to 16 Hz whole-body sinusoidal vertical vibration at 2.0 m s -2 r.m.s. and half while static. The results show that the rates of learning of the two groups differed, with that of the vibrated subjects significantly impaired. A second session, one week later, indicated that information learnt in one vibration environment could be recalled equally well in a different environment, suggesting no context-dependent effects on memory processes.

  14. High intraocular pressure produces learning and memory impairments in rats.

    Science.gov (United States)

    Yuan, Yuxiang; Chen, Zhiqi; Li, Lu; Li, Xing; Xia, Qian; Zhang, Hong; Duan, Qiming; Zhao, Yin

    2017-11-15

    Primary open angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Previous MRI studies have revealed that POAG can be associated with alterations in hippocampal function. Thus, the aim of this study was to investigate a relationship between chronic high intraocular pressure (IOP) and hippocampal changes in a rat model. We used behavioural tests to assess learning and memory ability, and additionally investigated the hippocampal expression of pathological amyloid beta (Aβ), phospho-tau, and related pathway proteins. Chronic high IOP impaired learning and memory in rats and concurrently increased Aβ and phospho-tau expression in the hippocampus by altering the activation of different kinase (GSK-3β, BACE1) and phosphatase (PP2A) proteins in the hippocampus. This study provides novel evidence for the relationship between high IOP and hippocampal alterations, especially in the context of learning and memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Chronic caffeine treatment prevents sleep deprivation-induced impairment of cognitive function and synaptic plasticity.

    Science.gov (United States)

    Alhaider, Ibrahim A; Aleisa, Abdulaziz M; Tran, Trinh T; Alzoubi, Karem H; Alkadhi, Karim A

    2010-04-01

    This study was undertaken to provide a detailed account of the effect of chronic treatment with a small dose of caffeine on the deleterious effects of sleep loss on brain function in rats. We investigated the effects of chronic (4 weeks) caffeine treatment (0.3 g/L in drinking water) on memory impairment in acutely (24 h) sleep-deprived adult male Wistar rats. Sleep deprivation was induced using the modified multiple platform model. The effects of caffeine on sleep deprivation-induced hippocampus-dependent learning and memory deficits were studied by 3 approaches: learning and memory performance in the radial arm water maze task, electrophysiological recording of early long-term potentiation (E-LTP) in area CA1 of the hippocampus, and levels of memory- and synaptic plasticity-related signaling molecules after E-LTP induction. The results showed that chronic caffeine treatment prevented impairment of hippocampus-dependent learning, shortterm memory and E-LTP of area CA1 in the sleep-deprived rats. In correlation, chronic caffeine treatment prevented sleep deprivation-associated decrease in the levels of phosphorylated calcium/calmodulin-dependent protein kinase II (P-CaMKII) during expression of E-LTP. The results suggest that long-term use of a low dose of caffeine prevents impairment of short-term memory and E-LTP in acutely sleep-deprived rats.

  16. Working memory and novel word learning in children with hearing impairment and children with specific language impairment.

    Science.gov (United States)

    Hansson, K; Forsberg, J; Löfqvist, A; Mäki-Torkko, E; Sahlén, B

    2004-01-01

    Working memory is considered to influence a range of linguistic skills, i.e. vocabulary acquisition, sentence comprehension and reading. Several studies have pointed to limitations of working memory in children with specific language impairment. Few studies, however, have explored the role of working memory for language deficits in children with hearing impairment. The first aim was to compare children with mild-to-moderate bilateral sensorineural hearing impairment, children with a preschool diagnosis of specific language impairment and children with normal language development, aged 9-12 years, for language and working memory. The special focus was on the role of working memory in learning new words for primary school age children. The assessment of working memory included tests of phonological short-term memory and complex working memory. Novel word learning was assessed according to the methods of. In addition, a range of language tests was used to assess language comprehension, output phonology and reading. Children with hearing impairment performed significantly better than children with a preschool diagnosis of specific language impairment on tasks assessing novel word learning, complex working memory, sentence comprehension and reading accuracy. No significant correlation was found between phonological short-term memory and novel word learning in any group. The best predictor of novel word learning in children with specific language impairment and in children with hearing impairment was complex working memory. Furthermore, there was a close relationship between complex working memory and language in children with a preschool diagnosis of specific language impairment but not in children with hearing impairment. Complex working memory seems to play a significant role in vocabulary acquisition in primary school age children. The interpretation is that the results support theories suggesting a weakened influence of phonological short-term memory on novel word

  17. Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP

    DEFF Research Database (Denmark)

    Sørensen, Andreas T; Nikitidou, Litsa; Ledri, Marco

    2009-01-01

    (TLE). However, our previous studies show that recombinant adeno-associated viral (rAAV)-NPY treatment in naive rats attenuates long-term potentiation (LTP) and transiently impairs hippocampal learning process, indicating that negative effect on memory function could be a potential side effect of NPY...... is significantly attenuated in vitro. Importantly, transgene NPY overexpression has no effect on short-term synaptic plasticity, and does not further compromise LTP in kindled animals. These data suggest that epileptic seizure-induced impairment of memory function in the hippocampus may not be further affected...... injected with rAAV-NPY, we show that rapid kindling-induced hippocampal seizures in vivo are effectively suppressed as compared to rAAV-empty injected (control) rats. Six to nine weeks later, basal synaptic transmission and short-term synaptic plasticity are unchanged after rapid kindling, while LTP...

  18. Impairments of astrocytes are involved in the D-galactose-induced brain aging

    International Nuclear Information System (INIS)

    Lei Ming; Hua Xiangdong; Xiao Ming; Ding Jiong; Han Qunying; Hu Gang

    2008-01-01

    Astrocyte dysfunction is implicated in course of various age-related neurodegenerative diseases. Chronic injection of D-galactose can cause a progressive deterioration in learning and memory capacity and serve as an animal model of aging. To investigate the involvement of astrocytes in this model, oxidative stress biomarkers, biochemical and pathological changes of astrocytes were examined in the hippocampus of the rats with six weeks of D-galactose injection. D-galactose-injected rats displayed impaired antioxidant systems, an increase in nitric oxide levels, and a decrease in reduced glutathione levels. Consistently, western blotting and immunostaining of glial fibrillary acidic protein showed extensive activation of astrocytes. Double-immunofluorescent staining further showed activated astrocytes highly expressed inducible nitric oxide synthase. Electron microscopy demonstrated the degeneration of astrocytes, especially in the aggregated area of synapse and brain microvessels. These findings indicate that impairments of astrocytes are involved in oxidative stress-induced brain aging by chronic injection of D-galactose

  19. Magnetic stimulation of visual cortex impairs perceptual learning.

    Science.gov (United States)

    Baldassarre, Antonello; Capotosto, Paolo; Committeri, Giorgia; Corbetta, Maurizio

    2016-12-01

    The ability to learn and process visual stimuli more efficiently is important for survival. Previous neuroimaging studies have shown that perceptual learning on a shape identification task differently modulates activity in both frontal-parietal cortical regions and visual cortex (Sigman et al., 2005;Lewis et al., 2009). Specifically, fronto-parietal regions (i.e. intra parietal sulcus, pIPS) became less activated for trained as compared to untrained stimuli, while visual regions (i.e. V2d/V3 and LO) exhibited higher activation for familiar shape. Here, after the intensive training, we employed transcranial magnetic stimulation over both visual occipital and parietal regions, previously shown to be modulated, to investigate their causal role in learning the shape identification task. We report that interference with V2d/V3 and LO increased reaction times to learned stimuli as compared to pIPS and Sham control condition. Moreover, the impairment observed after stimulation over the two visual regions was positive correlated. These results strongly support the causal role of the visual network in the control of the perceptual learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Glucocorticoids mediate stress-induced impairment of retrieval of stimulus-response memory.

    Science.gov (United States)

    Atsak, Piray; Guenzel, Friederike M; Kantar-Gok, Deniz; Zalachoras, Ioannis; Yargicoglu, Piraye; Meijer, Onno C; Quirarte, Gina L; Wolf, Oliver T; Schwabe, Lars; Roozendaal, Benno

    2016-05-01

    Acute stress and elevated glucocorticoid hormone levels are well known to impair the retrieval of hippocampus-dependent 'declarative' memory. Recent findings suggest that stress might also impair the retrieval of non-hippocampal memories. In particular, stress shortly before retention testing was shown to impair the retrieval of striatal stimulus-response associations in humans. However, the mechanism underlying this stress-induced retrieval impairment of non-hippocampal stimulus-response memory remains elusive. In the present study, we investigated whether an acute elevation in glucocorticoid levels mediates the impairing effects of stress on retrieval of stimulus-response memory. Male Sprague-Dawley rats were trained on a stimulus-response task in an eight-arm radial maze until they learned to associate a stimulus, i.e., cue, with a food reward in one of the arms. Twenty-four hours after successful acquisition, they received a systemic injection of vehicle, corticosterone (1mg/kg), the corticosterone-synthesis inhibitor metyrapone (35mg/kg) or were left untreated 1h before retention testing. We found that the corticosterone injection impaired the retrieval of stimulus-response memory. We further found that the systemic injection procedure per se was stressful as the vehicle administration also increased plasma corticosterone levels and impaired the retrieval of stimulus-response memory. However, memory retrieval was not impaired when rats were tested 2min after the systemic vehicle injection, before any stress-induced elevation in corticosterone levels had occurred. Moreover, metyrapone treatment blocked the effect of injection stress on both plasma corticosterone levels and memory retrieval impairment, indicating that the endogenous corticosterone response mediates the stress-induced memory retrieval impairment. None of the treatments affected rats' locomotor activity or motivation to search for the food reward within the maze. These findings show that stress

  1. Involvement of microglia activation in the lead induced long-term potentiation impairment.

    Directory of Open Access Journals (Sweden)

    Ming-Chao Liu

    Full Text Available Exposure of Lead (Pb, a known neurotoxicant, can impair spatial learning and memory probably via impairing the hippocampal long-term potentiation (LTP as well as hippocampal neuronal injury. Activation of hippocampal microglia also impairs spatial learning and memory. Thus, we raised the hypothesis that activation of microglia is involved in the Pb exposure induced hippocampal LTP impairment and neuronal injury. To test this hypothesis and clarify its underlying mechanisms, we investigated the Pb-exposure on the microglia activation, cytokine release, hippocampal LTP level as well as neuronal injury in in vivo or in vitro model. The changes of these parameters were also observed after pretreatment with minocycline, a microglia activation inhibitor. Long-term low dose Pb exposure (100 ppm for 8 weeks caused significant reduction of LTP in acute slice preparations, meanwhile, such treatment also significantly increased hippocampal microglia activation as well as neuronal injury. In vitro Pb-exposure also induced significantly increase of microglia activation, up-regulate the release of cytokines including tumor necrosis factor-alpha (TNF-α, interleukin-1β (IL-1β and inducible nitric oxide synthase (iNOS in microglia culture alone as well as neuronal injury in the co-culture with hippocampal neurons. Inhibiting the microglia activation with minocycline significantly reversed the above-mentioned Pb-exposure induced changes. Our results showed that Pb can cause microglia activation, which can up-regulate the level of IL-1β, TNF-α and iNOS, these proinflammatory factors may cause hippocampal neuronal injury as well as LTP deficits.

  2. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    Science.gov (United States)

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-03

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (Plycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (Plycopene helps to protect HFD induced cognitive dysfunction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  3. Overweight in elderly people induces impaired autophagy in skeletal muscle.

    Science.gov (United States)

    Potes, Yaiza; de Luxán-Delgado, Beatriz; Rodriguez-González, Susana; Guimarães, Marcela Rodrigues Moreira; Solano, Juan J; Fernández-Fernández, María; Bermúdez, Manuel; Boga, Jose A; Vega-Naredo, Ignacio; Coto-Montes, Ana

    2017-09-01

    Sarcopenia is the gradual loss of skeletal muscle mass, strength and quality associated with aging. Changes in body composition, especially in skeletal muscle and fat mass are crucial steps in the development of chronic diseases. We studied the effect of overweight on skeletal muscle tissue in elderly people without reaching obesity to prevent this extreme situation. Overweight induces a progressive protein breakdown reflected as a progressive withdrawal of anabolism against the promoted catabolic state leading to muscle wasting. Protein turnover is regulated by a network of signaling pathways. Muscle damage derived from overweight displayed by oxidative and endoplasmic reticulum (ER) stress induces inflammation and insulin resistance and forces the muscle to increase requirements from autophagy mechanisms. Our findings showed that failure of autophagy in the elderly deprives it to deal with the cell damage caused by overweight. This insufficiently efficient autophagy leads to an accumulation of p62 and NBR1, which are robust markers of protein aggregations. This impaired autophagy affects myogenesis activity. Depletion of myogenic regulatory factors (MRFs) without links to variations in myostatin levels in overweight patients suggest a possible reduction of satellite cells in muscle tissue, which contributes to declined muscle quality. This discovery has important implications that improve the understanding of aged-related atrophy caused by overweight and demonstrates how impaired autophagy is one of the main responsible mechanisms that aggravate muscle wasting. Therefore, autophagy could be an interesting target for therapeutic interventions in humans against muscle impairment diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Cordyceps militaris extract attenuates D-galactose-induced memory impairment in mice.

    Science.gov (United States)

    Li, Zaixin; Zhang, Zhi; Zhang, Jinshan; Jia, Jing; Ding, Jie; Luo, Rongzhen; Liu, Zhangqin

    2012-12-01

    Memory impairment is one of main clinical symptoms of brain senescence. To address the effects of Cordyceps militaris Link extract (CE) on memory impairment, a D-galactose (D-Gal)-induced aging mouse model was employed. Mice injected with D-Gal showed a significant learning and memory impairment that was rescued by CE treatment. The mechanism was further investigated by analyzing the protein level and activity of oxidant and antioxidant molecules, including malondialdehyde (MDA), monoamine oxidase (MAO), total super-oxide dismutase (T-SOD), total antioxidant capacity (T-AOC), glutathione (GSH), and glutathione peroxidase (GSH-px), which played critical roles in the development of brain senescence. The results showed that CE treatment resulted in a significant decrease in the oxidative activity of MAO and the level of MDA, and significantly increased the antioxidant activities of T-SOD and T-AOC in the cerebral cortices. Moreover, the level of GSH and the activity of antioxidant enzymes GSH-px in serum were significantly upregulated after CE treatment. Taken together, our results suggest that Cordyceps militaris extract could ameliorate experimental memory impairment in mice with D-Gal-induced aging through its potent antioxidant activities.

  5. Impaired glucose-induced glucagon suppression after partial pancreatectomy

    DEFF Research Database (Denmark)

    Schrader, Henning; Menge, Bjoern A; Breuer, Thomas G K

    2009-01-01

    INTRODUCTION: The glucose-induced decline in glucagon levels is often lost in patients with type 2 diabetes. It is unclear whether this is due to an independent defect in alpha-cell function or secondary to the impairment in insulin secretion. We examined whether a partial pancreatectomy in humans...... would also impair postchallenge glucagon concentrations and, if so, whether this could be attributed to the reduction in insulin levels. PATIENTS AND METHODS: Thirty-six patients with pancreatic tumours or chronic pancreatitis were studied before and after approximately 50% pancreatectomy with a 240-min...... oral glucose challenge, and the plasma concentrations of glucose, insulin, C-peptide, and glucagon were determined. RESULTS: Fasting and postchallenge insulin and C-peptide levels were significantly lower after partial pancreatectomy (P

  6. Intermittent fasting attenuates lipopolysaccharide-induced neuroinflammation and memory impairment.

    Science.gov (United States)

    Vasconcelos, Andrea R; Yshii, Lidia M; Viel, Tania A; Buck, Hudson S; Mattson, Mark P; Scavone, Cristoforo; Kawamoto, Elisa M

    2014-05-06

    Systemic bacterial infections often result in enduring cognitive impairment and are a risk factor for dementia. There are currently no effective treatments for infection-induced cognitive impairment. Previous studies have shown that intermittent fasting (IF) can increase the resistance of neurons to injury and disease by stimulating adaptive cellular stress responses. However, the impact of IF on the cognitive sequelae of systemic and brain inflammation is unknown. Rats on IF for 30 days received 1 mg/kg of lipopolysaccharide (LPS) or saline intravenously. Half of the rats were subjected to behavioral tests and the other half were euthanized two hours after LPS administration and the hippocampus was dissected and frozen for analyses. Here, we report that IF ameliorates cognitive deficits in a rat model of sepsis by a mechanism involving NF-κB activation, suppression of the expression of pro-inflammatory cytokines, and enhancement of neurotrophic support. Treatment of rats with LPS resulted in deficits in cognitive performance in the Barnes maze and inhibitory avoidance tests, without changing locomotor activity, that were ameliorated in rats that had been maintained on the IF diet. IF also resulted in reduced levels of mRNAs encoding the LPS receptor TLR4 and inducible nitric oxide synthase (iNOS) in the hippocampus. Moreover, IF prevented LPS-induced elevation of IL-1α, IL-1β and TNF-α levels, and prevented the LPS-induced reduction of BDNF levels in the hippocampus. IF also significantly attenuated LPS-induced elevations of serum IL-1β, IFN-γ, RANTES, TNF-α and IL-6 levels. Taken together, our results suggest that IF induces adaptive responses in the brain and periphery that can suppress inflammation and preserve cognitive function in an animal model of systemic bacterial infection.

  7. Protective effects of physical exercise on MDMA-induced cognitive and mitochondrial impairment.

    Science.gov (United States)

    Taghizadeh, Ghorban; Pourahmad, Jalal; Mehdizadeh, Hajar; Foroumadi, Alireza; Torkaman-Boutorabi, Anahita; Hassani, Shokoufeh; Naserzadeh, Parvaneh; Shariatmadari, Reyhaneh; Gholami, Mahdi; Rouini, Mohammad Reza; Sharifzadeh, Mohammad

    2016-10-01

    Debate continues about the effect of 3, 4-methylenedioxymethamphetamine (MDMA) on cognitive and mitochondrial function through the CNS. It has been shown that physical exercise has an important protective effect on cellular damage and death. Therefore, we investigated the effect of physical exercise on MDMA-induced impairments of spatial learning and memory as well as MDMA effects on brain mitochondrial function in rats. Male wistar rats underwent short-term (2 weeks) or long-term (4 weeks) treadmill exercise. After completion of exercise duration, acquisition and retention of spatial memory were evaluated by Morris water maze (MWM) test. Rats were intraperitoneally (I.P) injected with MDMA (5, 10, and 15mg/kg) 30min before the first training trial in 4 training days of MWM. Different parameters of brain mitochondrial function were measured including the level of ROS production, mitochondrial membrane potential (MMP), mitochondrial swelling, mitochondrial outermembrane damage, the amount of cytochrome c release from the mitochondria, and ADP/ATP ratio. MDMA damaged the spatial learning and memory in a dose-dependent manner. Brain mitochondria isolated from the rats treated with MDMA showed significant increase in ROS formation, collapse of MMP, mitochondrial swelling, and outer membrane damage, cytochrome c release from the mitochondria, and finally increased ADP/ATP ratio. This study also found that physical exercise significantly decreased the MDMA-induced impairments of spatial learning and memory and also mitochondrial dysfunction. The results indicated that MDMA-induced neurotoxicity leads to brain mitochondrial dysfunction and subsequent oxidative stress is followed by cognitive impairments. However, physical exercise could reduce these deleterious effects of MDMA through protective effects on brain mitochondrial function. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Kefir protective effects against nicotine cessation-induced anxiety and cognition impairments in rats.

    Science.gov (United States)

    Noori, Negin; Bangash, Mohammad Yasan; Motaghinejad, Majid; Hosseini, Pantea; Noudoost, Behshad

    2014-01-01

    Nicotine as one of the potent psychostimulant drugs is characterized by its parasympathomimetic activity. Upon the abrupt discontinuation of nicotine intake, a number of symptoms such as anxiety, depression and cognition impairment develop. Kefir as a food supplement is rich in tryptophan. In this study, we have evaluated the effects of Kefir on nicotine cessation-induced anxiety, depression and cognition impairment. Forty adult male rats were divided into four groups. All the groups received 6 mg/kg/day of nicotine for 17 days and then the negative control groups got 5 mg/kg/day of normal saline. The positive control groups were given 40 mg/kg/day of Sertraline HCl for 7 days. The group treated with Cow Milk Kefir (CMK) and Soy Milk Kefir (SMK) received 5 mg/kg/day for 7 days. On the 25(th) day, Elevated Plus Maze (EPM), Open Field Test (OFT) and Forced Swim Test (FST) were used to investigate anxiety and depression. In addition, Moris Water Maze was applied to evaluate learning and memory in the animals between the 20(th) and 25(th) days. The results showed that administration of CMK, SMK and Sertraline had higher anti-depression and anxiolytic effects on nicotine withdrawal-induced depression and anxiety in rats (P Kefir had a potential effect on the treatment of nicotine cessation-induced depression, anxiety and cognition impairment in the animal model. Kefir may be useful for adjunct therapy for nicotine abandonment treatment protocols.

  9. Minocycline attenuates cognitive impairment induced by isoflurane anesthesia in aged rats.

    Directory of Open Access Journals (Sweden)

    Feijuan Kong

    Full Text Available Postoperative cognitive dysfunction (POCD is a clinical phenomenon characterized by cognitive deficits in patients after anesthesia and surgery, especially in geriatric surgical patients. Although it has been documented that isoflurane exposure impaired cognitive function in several aged animal models, there are few clinical interventions and treatments available to prevent this disorder. Minocycline has been well established to exert neuroprotective effects in various experimental animal models and neurodegenerative diseases. Therefore, we hypothesized that pretreatment with minocycline attenuates isoflurane-induced cognitive decline in aged rats. In the present study, twenty-month-old rats were administered minocycline or an equal volume of saline by intraperitoneal injection 12 h before exposure to isoflurane. Then the rats were exposed to 1.3% isoflurane for 4 h. Two weeks later, spatial learning and memory of the rats were examined using the Morris Water Maze. We found that pretreatment with minocycline mitigated isoflurane-induced cognitive deficits and suppressed the isoflurane-induced excessive release of IL-1β and caspase-3 in the hippocampal CA1 region at 4 h after isoflurane exposure, as well as the number of TUNEL-positive nuclei. In addition, minocycline treatment also prevented the changes of synaptic ultrastructure in the hippocampal CA1 region induced by isoflurane. In conclusion, pretreatment with minocycline attenuated isoflurane-induced cognitive impairment in aged rats.

  10. Caffeine antagonism of alcohol-induced driving impairment.

    Science.gov (United States)

    Liguori, A; Robinson, J H

    2001-07-01

    The extent to which caffeine antagonizes alcohol-induced impairment of simulated automobile driving at the current lowest legal American limit (0.08% BrAC) was the focus of this study. Fifteen adults swallowed a capsule (0, 200, or 400 mg caffeine) then drank a beverage (0.0 or 0.6 g/kg ethanol) in a within-subject, double-blind, randomized procedure. Forty-five minutes later, participants completed a test battery of subjective effects scales, dynamic posturography, critical flicker fusion (CFF), choice reaction time (CRT), divided attention (Stroop test), and simulated driving. Alcohol alone increased ratings of 'dizzy', 'drug effect', and 'high', slowed CRT and brake latency, and increased body sway. Caffeine alone increased ratings of 'alert' and 'jittery', but did not significantly affect body sway or psychomotor performance. Both caffeine doses comparably counteracted alcohol impairment of brake latency but not CRT or body sway. Brake latency with either alcohol-caffeine combination remained significantly longer than that with placebo. Stroop and CFF performance were unaffected by any drug condition. The results suggest that caffeine may increase alertness and improve reaction time after alcohol use but will not completely counteract alcohol impairment in a driver.

  11. Dammarane Sapogenins Ameliorates Neurocognitive Functional Impairment Induced by Simulated Long-Duration Spaceflight

    Directory of Open Access Journals (Sweden)

    Xiaorui Wu

    2017-05-01

    Full Text Available Increasing evidence indicates the occurrence of cognitive impairment in astronauts under spaceflight compound conditions, but the underlying mechanisms and countermeasures need to be explored. In this study, we found that learning and memory abilities were significantly reduced in rats under a simulated long-duration spaceflight environment (SLSE, which includes microgravity, isolation confinement, noises, and altered circadian rhythms. Dammarane sapogenins (DS, alkaline hydrolyzed products of ginsenosides, can enhance cognition function by regulating brain neurotransmitter levels and inhibiting SLSE-induced neuronal injury. Bioinformatics combined with experimental verification identified that the PI3K-Akt-mTOR pathway was inhibited and the MAPK pathway was activated during SLSE-induced cognition dysfunction, whereas DS substantially ameliorated the changes in brain. These findings defined the characteristics of SLSE-induced cognitive decline and the mechanisms by which DS improves it. The results provide an effective candidate for improving cognitive function in spaceflight missions.

  12. Ripple-Triggered Stimulation of the Locus Coeruleus during Post-Learning Sleep Disrupts Ripple/Spindle Coupling and Impairs Memory Consolidation

    Science.gov (United States)

    Novitskaya, Yulia; Sara, Susan J.; Logothetis, Nikos K.; Eschenko, Oxana

    2016-01-01

    Experience-induced replay of neuronal ensembles occurs during hippocampal high-frequency oscillations, or ripples. Post-learning increase in ripple rate is predictive of memory recall, while ripple disruption impairs learning. Ripples may thus present a fundamental component of a neurophysiological mechanism of memory consolidation. In addition to…

  13. Diet-induced obesity impairs endometrial stromal cell decidualization: a potential role for impaired autophagy.

    Science.gov (United States)

    Rhee, Julie S; Saben, Jessica L; Mayer, Allyson L; Schulte, Maureen B; Asghar, Zeenat; Stephens, Claire; Chi, Maggie M-Y; Moley, Kelle H

    2016-06-01

    What effect does diet-induced obesity have on endometrial stromal cell (ESC) decidualization? Diet-induced obesity impairs ESC decidualization. Decidualization is important for successful implantation and subsequent health of the pregnancy. Compared with normal-weight women, obese women have lower pregnancy rates (both spontaneous and by assisted reproductive technology), higher rates of early pregnancy loss and poorer oocyte quality. Beginning at 6 weeks of age, female C57Bl/6J mice were fed either a high-fat/high-sugar diet (HF/HS; 58% Fat Energy/Sucrose) or a diet of standard mouse chow (CON; 13% Fat) for 12 weeks. At this point, metabolic parameters were measured. Some of the mice (n = 9 HF/HS and 9 CON) were mated with reproductively competent males, and implantation sites were assessed. Other mice (n = 11 HF/HS and 10 CON) were mated with vasectomized males, and artificial decidualization was induced. For in vitro human studies of primary ESCs, endometrial tissue was obtained via biopsy from normo-ovulatory patients without history of infertility (obese = BMI > 30 kg/m(2), n = 11 and lean = BMI treatment with cAMP and medroxyprogesterone. The level of expression of decidualization markers was assessed by RT-qPCR (mRNA) and western blotting (protein). ATP content of ESCs was measured, and levels of autophagy were assessed by western blotting of the autophagy regulators acetyl coa carboxylase (ACC) and ULK1 (Ser 317). Autophagic flux was measured by western blot of the marker LC3b-II. Mice exposed to an HF/HS diet became obese and metabolically impaired. HF/HS-exposed mice mated to reproductively competent males had smaller implantation sites in early pregnancy (P obese women than in those of normal-weight women (Ptreatment abrogated this increase. Many aspects of obesity and metabolic impairment could contribute to the decidualization defects observed in the HF/HS-exposed mice. Although our findings suggest that both autophagy and decidualization are impaired

  14. Smart-system of distance learning of visually impaired people based on approaches of artificial intelligence

    Science.gov (United States)

    Samigulina, Galina A.; Shayakhmetova, Assem S.

    2016-11-01

    Research objective is the creation of intellectual innovative technology and information Smart-system of distance learning for visually impaired people. The organization of the available environment for receiving quality education for visually impaired people, their social adaptation in society are important and topical issues of modern education.The proposed Smart-system of distance learning for visually impaired people can significantly improve the efficiency and quality of education of this category of people. The scientific novelty of proposed Smart-system is using intelligent and statistical methods of processing multi-dimensional data, and taking into account psycho-physiological characteristics of perception and awareness learning information by visually impaired people.

  15. Basolateral amygdala GABA-A receptors mediate stress-induced memory retrieval impairment in rats.

    Science.gov (United States)

    Sardari, Maryam; Rezayof, Ameneh; Khodagholi, Fariba; Zarrindast, Mohammad-Reza

    2014-04-01

    The present study was designed to investigate the involvement of GABA-A receptors of the basolateral amygdala (BLA) in the impairing effect of acute stress on memory retrieval. The BLAs of adult male Wistar rats were bilaterally cannulated and memory retrieval was measured in a step-through type passive avoidance apparatus. Acute stress was evoked by placing the animals on an elevated platform for 10, 20 and 30 min. The results indicated that exposure to 20 and 30 min stress, but not 10 min, before memory retrieval testing (pre-test exposure to stress) decreased the step-through latency, indicating stress-induced memory retrieval impairment. Intra-BLA microinjection of a GABA-A receptor agonist, muscimol (0.005-0.02 μg/rat), 5 min before exposure to an ineffective stress (10 min exposure to stress) induced memory retrieval impairment. It is important to note that pre-test intra-BLA microinjection of the same doses of muscimol had no effect on memory retrieval in the rats unexposed to 10 min stress. The blockade of GABA-A receptors of the BLA by injecting an antagonist, bicuculline (0.4-0.5 μg/rat), 5 min before 20 min exposure to stress, prevented stress-induced memory retrieval. Pre-test intra-BLA microinjection of the same doses of bicuculline (0.4-0.5 μg/rat) in rats unexposed to 20 min stress had no effect on memory retrieval. In addition, pre-treatment with bicuculline (0.1-0.4 μg/rat, intra-BLA) reversed muscimol (0.02 μg/rat, intra-BLA)-induced potentiation on the effect of stress in passive avoidance learning. It can be concluded that pre-test exposure to stress can induce memory retrieval impairment and the BLA GABA-A receptors may be involved in stress-induced memory retrieval impairment.

  16. Hypercaloric diet prevents sexual impairment induced by maternal food restriction.

    Science.gov (United States)

    Bernardi, M M; Macrini, D J; Teodorov, E; Bonamin, L V; Dalboni, L C; Coelho, C P; Chaves-Kirsten, G P; Florio, J C; Queiroz-Hazarbassanov, N; Bondan, E F; Kirsten, T B

    2017-05-01

    Prenatal undernutrition impairs copulatory behavior and increases the tendency to become obese/overweight, which also reduces sexual behavior. Re-feeding rats prenatally undernourished with a normocaloric diet can restore their physiological conditions and copulatory behavior. Thus, the present study investigated whether a hypercaloric diet that is administered in rats during the juvenile period prevents sexual impairments that are caused by maternal food restriction and the tendency to become overweight/obese. Female rats were prenatally fed a 40% restricted diet from gestational day 2 to 18. The pups received a hypercaloric diet from postnatal day (PND) 23 to PND65 (food restricted hypercaloric [FRH] group) or laboratory chow (food restricted control [FRC] group). Pups from non-food-restricted dams received laboratory chow during the entire experiment (non-food-restricted [NFR] group). During the juvenile period and adulthood, body weight gain was evaluated weekly. The day of balanopreputial separation, sexual behavior, sexual organ weight, hypodermal adiposity, striatal dopamine and serotonin, serum testosterone, and tumor necrosis factor α (TNF-α) were evaluated. The FRH group exhibited an increase in body weight on PND58 and PND65. The FRC group exhibited an increase in the latency to the first mount and intromission and an increase in serum TNF-α levels but a reduction of dopaminergic activity. The hypercaloric diet reversed all of these effects but increased adiposity. We concluded that the hypercaloric diet administered during the juvenile period attenuated reproductive impairments that were induced by maternal food restriction through increases in the energy expenditure but not the tendency to become overweight/obese. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Dexamethasone impairs hypoxia-inducible factor-1 function

    International Nuclear Information System (INIS)

    Wagner, A.E.; Huck, G.; Stiehl, D.P.; Jelkmann, W.; Hellwig-Buergel, T.

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription-factor composed of α- and β-subunits. HIF-1 is not only necessary for the cellular adaptation to hypoxia, but it is also involved in inflammatory processes and wound healing. Glucocorticoids (GC) are therapeutically used to suppress inflammatory responses. Herein, we investigated whether GC modulate HIF-1 function using GC receptor (GR) possessing (HepG2) and GR deficient (Hep3B) human hepatoma cell cultures as model systems. Dexamethasone (DEX) treatment increased HIF-1α levels in the cytosol of HepG2 cells, while nuclear HIF-1α levels and HIF-1 DNA-binding was reduced. In addition, DEX dose-dependently lowered the hypoxia-induced luciferase activity in a reporter gene system. DEX suppressed the hypoxic stimulation of the expression of the HIF-1 target gene VEGF (vascular endothelial growth factor) in HepG2 cultures. DEX did not reduce hypoxically induced luciferase activity in HRB5 cells, a Hep3B derivative lacking GR. Transient expression of the GR in HRB5 cells restored the susceptibility to DEX. Our study discloses the inhibitory action of GC on HIF-1 dependent gene expression, which may be important with respect to the impaired wound healing in DEX-treated patients

  18. Phytoceramide Shows Neuroprotection and Ameliorates Scopolamine-Induced Memory Impairment

    Directory of Open Access Journals (Sweden)

    Seikwan Oh

    2011-10-01

    Full Text Available The function and the role phytoceramide (PCER and phytosphingosine (PSO in the central nervous system has not been well studied. This study was aimed at investigating the possible roles of PCER and PSO in glutamate-induced neurotoxicity in cultured neuronal cells and memory function in mice. Phytoceramide showed neuro-protective activity in the glutamate-induced toxicity in cultured cortical neuronal cells. Neither phytosphingosine nor tetraacetylphytosphingosine (TAPS showed neuroproective effects in neuronal cells. PCER (50 mg/kg, p.o. recovered the scopolamine-induced reduction in step-through latency in the passive avoidance test; however, PSO did not modulate memory function on this task. The ameliorating effects of PCER on spatial memory were confirmed by the Morris water maze test. In conclusion, through behavioral and neurochemical experimental results, it was demonstrated that central administration of PCER produces amelioration of memory impairment. These results suggest that PCER plays an important role in neuroprotection and memory enhancement and PCER could be a potential new therapeutic agent for the treatment of neurodegenerative diseases such as Alzheimer’s disease.

  19. Impaired receptivity and decidualization in DHEA-induced PCOS mice.

    Science.gov (United States)

    Li, Shu-Yun; Song, Zhuo; Song, Min-Jie; Qin, Jia-Wen; Zhao, Meng-Long; Yang, Zeng-Ming

    2016-12-07

    Polycystic ovary syndrome (PCOS), a complex endocrine disorder, is a leading cause of female infertility. An obvious reason for infertility in PCOS women is anovulation. However, success rate with high quality embryos selected by assisted reproduction techniques in PCOS patients still remain low with a high rate of early clinical pregnancy loss, suggesting a problem in uterine receptivity. Using a dehydroepiandrosterone-induced mouse model of PCOS, some potential causes of decreased fertility in PCOS patients were explored. In our study, ovulation problem also causes sterility in PCOS mice. After blastocysts from normal mice are transferred into uterine lumen of pseudopregnant PCOS mice, the rate of embryo implantation was reduced. In PCOS mouse uteri, the implantation-related genes are also dysregulated. Additionally, artificial decidualization is severely impaired in PCOS mice. The serum estrogen level is significantly higher in PCOS mice than vehicle control. The high level of estrogen and potentially impaired LIF-STAT3 pathway may lead to embryo implantation failure in PCOS mice. Although there are many studies about effects of PCOS on endometrium, both embryo transfer and artificial decidualization are applied to exclude the effects from ovulation and embryos in our study.

  20. Effects of Early Chemotherapeutic Treatment on Learning in Adolescent Mice: Implications for Cognitive Impairment and Remediation in Childhood Cancer Survivors

    Science.gov (United States)

    Bisen-Hersh, Emily B.; Hineline, Philip N.; Walker, Ellen A.

    2013-01-01

    Purpose Among children diagnosed with acute lymphoblastic leukemia (ALL) and given chemotherapy-only treatment, 40-70% of survivors experience neurocognitive impairment. The present study used a preclinical mouse model to investigate the effects of early exposure to common ALL chemotherapeutics methotrexate (MTX) and cytarabine (Ara-C) on learning and memory. Experimental Design Pre-weanling mouse pups were treated on postnatal day (PND) 14, 15, and 16 with saline, MTX, Ara-C, or a combination of MTX and Ara-C. Nineteen days following treatment (PND 35), behavioral tasks measuring different aspects of learning and memory were administered. Results Significant impairment in acquisition and retention over both short (1h) and long (24h) intervals, as measured by autoshaping and novel object recognition tasks, were found following treatment with MTX and Ara-C. Similarly, a novel conditional discrimination task revealed impairment in acquisition for chemotherapy-treated mice. No significant group differences were found following the extensive training component of this task, with impairment following the rapid training component occurring only for the highest MTX and Ara-C combination group. Conclusions Findings are consistent with clinical studies suggesting that childhood cancer survivors are slower at learning new information and primarily exhibit deficits in memory years after successful completion of chemotherapy treatment. The occurrence of mild deficits on a novel conditional discrimination task suggests that chemotherapy-induced cognitive impairment may be ameliorated through extensive training or practice. PMID:23596103

  1. Effects of early chemotherapeutic treatment on learning in adolescent mice: implications for cognitive impairment and remediation in childhood cancer survivors.

    Science.gov (United States)

    Bisen-Hersh, Emily B; Hineline, Philip N; Walker, Ellen A

    2013-06-01

    Among children diagnosed with acute lymphoblastic leukemia (ALL) and given chemotherapy-only treatment, 40% to 70% of survivors experience neurocognitive impairment. The present study used a preclinical mouse model to investigate the effects of early exposure to common ALL chemotherapeutics methotrexate (MTX) and cytarabine (Ara-C) on learning and memory. Preweanling mouse pups were treated on postnatal day (PND) 14, 15, and 16 with saline, MTX, Ara-C, or a combination of MTX and Ara-C. Nineteen days after treatment (PND 35), behavioral tasks measuring different aspects of learning and memory were administered. Significant impairment in acquisition and retention over both short (1 hour) and long (24 hours) intervals, as measured by autoshaping and novel object recognition tasks, was found following treatment with MTX and Ara-C. Similarly, a novel conditional discrimination task revealed impairment in acquisition for chemotherapy-treated mice. No significant group differences were found following the extensive training component of this task, with impairment following the rapid training component occurring only for the highest MTX and Ara-C combination group. Findings are consistent with those from clinical studies suggesting that childhood cancer survivors are slower at learning new information and primarily exhibit deficits in memory years after successful completion of chemotherapy. The occurrence of mild deficits on a novel conditional discrimination task suggests that chemotherapy-induced cognitive impairment may be ameliorated through extensive training or practice. ©2013 AACR

  2. Addiction-like Synaptic Impairments in Diet-Induced Obesity.

    Science.gov (United States)

    Brown, Robyn Mary; Kupchik, Yonatan Michael; Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2017-05-01

    There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core considered hallmarks of addiction. Sprague Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO-prone and DIO-resistant subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed ratio 1, 3, and 5 and progressive ratio schedules. Subsequently, nucleus accumbens brain slices were prepared, and we tested for changes in the ratio between α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate currents and the ability to exhibit long-term depression. We found that propensity to develop DIO is linked to deficits in the ability to induce long-term depression in the nucleus accumbens, as well as increased potentiation at these synapses as measured by AMPA/N-methyl-D-aspartate currents. Consistent with these impairments, we observed addictive-like behavior in DIO-prone rats, including 1) heightened motivation for palatable food; 2) excessive intake; and 3) increased food seeking when food was unavailable. Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.

  3. Addiction-like synaptic impairments in diet-induced obesity

    Science.gov (United States)

    Spencer, Sade; Garcia-Keller, Constanza; Spanswick, David C; Lawrence, Andrew John; Simonds, Stephanie Elise; Schwartz, Danielle Joy; Jordan, Kelsey Ann; Jhou, Thomas Clayton; Kalivas, Peter William

    2016-01-01

    Background There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature, and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core (NAcore) considered hallmarks of addiction. Methods Sprague-Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO prone (OP) and resistant (OR) subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed (FR1, 3 and 5) and progressive ratio (PR) schedules. Subsequently, NAcore brain slices were prepared and we tested for changes in the ratio between AMPA and NMDA currents (AMPA/NMDA) and the ability to exhibit long-term depression (LTD). Results We found that propensity to develop DIO is linked to deficits in the ability to induce LTD in the NAcore, as well as increased potentiation at these synapses as measured by AMPA/NMDA currents. Consistent with these impairments, we observed addictive-like behavior in OP rats, including i) heightened motivation for palatable food (ii) excessive intake and (iii) increased food-seeking when food was unavailable. Conclusions Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction. PMID:26826876

  4. Effect of an NCAM mimetic peptide FGL on impairment in spatial learning and memory after neonatal phencyclidine treatment in rats

    DEFF Research Database (Denmark)

    Secher, Thomas; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    treatment regimen where FGL was administered throughout development. Rats were tested as adults for spatial reference memory, reversal learning, and working memory in the Morris water maze. The PCP-treated rats demonstrated a robust impairment in working memory and reversal learning. However, the long-term......The FGL peptide is a neural cell adhesion molecule-derived fibroblast growth factor receptor agonist. FGL has both neurotrophic and memory enhancing properties. Neonatal phencyclidine (PCP) treatment on postnatal days 7, 9, and 11 has been shown to result in long-lasting behavioral abnormalities......, including cognitive impairment relevant to schizophrenia. The present study investigated the effect of FGL on spatial learning and memory deficits induced by neonatal PCP treatment. Rat pups were treated with 30mg/kg PCP on postnatal days 7, 9, and 11. Additionally, the rats were subjected to a chronic FGL...

  5. Analysing the physics learning environment of visually impaired students in high schools

    Science.gov (United States)

    Toenders, Frank G. C.; de Putter-Smits, Lesley G. A.; Sanders, Wendy T. M.; den Brok, Perry

    2017-07-01

    Although visually impaired students attend regular high school, their enrolment in advanced science classes is dramatically low. In our research we evaluated the physics learning environment of a blind high school student in a regular Dutch high school. For visually impaired students to grasp physics concepts, time and additional materials to support the learning process are key. Time for teachers to develop teaching methods for such students is scarce. Suggestions for changes to the learning environment and of materials used are given.

  6. Ameliorating effects of aged garlic extracts against Aβ-induced neurotoxicity and cognitive impairment

    Science.gov (United States)

    2013-01-01

    Background In vitro antioxidant activities and neuron-like PC12 cell protective effects of solvent fractions from aged garlic extracts were investigated to evaluate their anti-amnesic functions. Ethyl acetate fractions of aged garlic had higher total phenolics than other fractions. Methods Antioxidant activities of ethyl acetate fractions from aged garlic were examined using 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) diammonium salt (ABTS) and malondialdehyde (MDA) inhibitory effect using mouse whole brain homogenates. Levels of cellular oxidative stress as reactive oxygen species (ROS) accumulation were measured using 2',7'-dichlorofluorescein diacetate (DCF-DA). PC12 cell viability was investigated by 3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydtrogenase (LDH) assay. The learning and memory impairment in institute of cancer research (ICR) mice was induced by neurotoxic amyloid beta protein (Aβ) to investigate in vivo anti-amnesic effects of aged garlic extracts by using Y-maze and passive avoidance tests. Results We discovered that ethyl acetate fractions showed the highest ABTS radical scavenging activity and MDA inhibitory effect. Intracellular ROS accumulation resulting from Aβ treatment in PC12 cells was significantly reduced when ethyl acetate fractions were presented in the medium compare to PC12 cells which was only treated with Aβ only. Ethyl acetate fractions from aged garlic extracts showed protection against Aβ-induced neurotoxicity. Pre-administration with aged garlic extracts attenuated Aβ-induced learning and memory deficits in both in vivo tests. Conclusions Our findings suggest that aged garlic extracts with antioxidant activities may improve cognitive impairment against Aβ-induced neuronal deficit, and possess a wide range of beneficial activities for neurodegenerative disorders, notably Alzheimer's disease (AD). PMID:24134394

  7. SPATIAL MEMORY IMPAIRMENT AND HIPPOCAMPAL CELL LOSS INDUCED BY OKADAIC ACID (EXPERIMENTAL STUDY).

    Science.gov (United States)

    Chighladze, M; Dashniani, M; Beselia, G; Kruashvili, L; Naneishvili, T

    2016-01-01

    In the present study, we evaluated and compared effect of intracerebroventricular (ICV) and intrahippocampal bilateral microinjection of okadaic acid (OA) on spatial memory function assessed in one day water maze paradigm and hippocampal structure in rats. Rats were divided in following groups: Control(icv) - rats injected with ICV and aCSF; Control(hipp) - rats injected intrahippocampally with aCSF; OAicv - rats injected with ICV and OA; OAhipp - rats injected intrahippocampally with OA. Nissl staining of hippocampal sections showed that the pyramidal cell loss in OAhipp group is significantly higher than that in the OAicv. The results of behavioral experiments showed that ICV or intrahippocampal bilateral microinjection of OA did not affect learning process and short-term spatial memory but induced impairment in spatial long-term memory assessed in probe test performance 24 h after training. OA-induced spatial memory impairment may be attributed to the hippocampal cell death. Based on these results OA induced memory deficit and hippocampal cell loss in rat may be considered as a potential animal model for preclinical evaluation of antidementic drug activity.

  8. Using ICT at an Open Distance Learning (ODL) Institution in South Africa: The Learning Experiences of Students with Visual Impairments

    Science.gov (United States)

    Mokiwa, S. A.; Phasha, T. N.

    2012-01-01

    For students with visual impairments, Information and Communication Technology (ICT) has become an important means through which they can learn and access learning materials at various levels of education. However, their learning experiences in using such form of technologies have been rarely documented, thus suggests society's lack of…

  9. Cannabinoids ameliorate impairments induced by chronic stress to synaptic plasticity and short-term memory.

    Science.gov (United States)

    Abush, Hila; Akirav, Irit

    2013-07-01

    Repeated stress is one of the environmental factors that precipitates and exacerbates mental illnesses like depression and anxiety as well as cognitive impairments. We have previously shown that cannabinoids can prevent the effects of acute stress on learning and memory. Here we aimed to find whether chronic cannabinoid treatment would alleviate the long-term effects of exposure to chronic restraint stress on memory and plasticity as well as on behavioral and neuroendocrine measures of anxiety and depression. Late adolescent rats were exposed to chronic restraint stress for 2 weeks followed each day by systemic treatment with vehicle or with the CB1/2 receptor agonist WIN55,212-2 (1.2 mg/kg). Thirty days after the last exposure to stress, rats demonstrated impaired long-term potentiation (LTP) in the ventral subiculum-nucleus accumbens (NAc) pathway, impaired performance in the prefrontal cortex (PFC)-dependent object-recognition task and the hippocampal-dependent spatial version of this task, increased anxiety levels, and significantly reduced expression of glucocorticoid receptors (GRs) in the amygdala, hippocampus, PFC, and NAc. Chronic WIN55,212-2 administration prevented the stress-induced impairment in LTP levels and in the spatial task, with no effect on stress-induced alterations in unconditioned anxiety levels or GR levels. The CB1 antagonist AM251 (0.3 mg/kg) prevented the ameliorating effects of WIN55,212-2 on LTP and short-term memory. Hence, the beneficial effects of WIN55,212-2 on memory and plasticity are mediated by CB1 receptors and are not mediated by alterations in GR levels in the brain areas tested. Our findings suggest that cannabinoid receptor activation could represent a novel approach to the treatment of cognitive deficits that accompany a variety of stress-related neuropsychiatric disorders.

  10. Loss of FMRP Impaired Hippocampal Long-Term Plasticity and Spatial Learning in Rats

    Directory of Open Access Journals (Sweden)

    Yonglu Tian

    2017-08-01

    Full Text Available Fragile X syndrome (FXS is a neurodevelopmental disorder caused by mutations in the FMR1 gene that inactivate expression of the gene product, the fragile X mental retardation 1 protein (FMRP. In this study, we used clustered regularly interspaced short palindromic repeats (CRISPR/CRISPR-associated protein 9 (Cas9 technology to generate Fmr1 knockout (KO rats by disruption of the fourth exon of the Fmr1 gene. Western blotting analysis confirmed that the FMRP was absent from the brains of the Fmr1 KO rats (Fmr1exon4-KO. Electrophysiological analysis revealed that the theta-burst stimulation (TBS–induced long-term potentiation (LTP and the low-frequency stimulus (LFS–induced long-term depression (LTD were decreased in the hippocampal Schaffer collateral pathway of the Fmr1exon4-KO rats. Short-term plasticity, measured as the paired-pulse ratio, remained normal in the KO rats. The synaptic strength mediated by the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR was also impaired. Consistent with previous reports, the Fmr1exon4-KO rats demonstrated an enhanced 3,5-dihydroxyphenylglycine (DHPG–induced LTD in the present study, and this enhancement is insensitive to protein translation. In addition, the Fmr1exon4-KO rats showed deficits in the probe trial in the Morris water maze test. These results demonstrate that deletion of the Fmr1 gene in rats specifically impairs long-term synaptic plasticity and hippocampus-dependent learning in a manner resembling the key symptoms of FXS. Furthermore, the Fmr1exon4-KO rats displayed impaired social interaction and macroorchidism, the results consistent with those observed in patients with FXS. Thus, Fmr1exon4-KO rats constitute a novel rat model of FXS that complements existing mouse models.

  11. Exenatide Induces Impairment of Autophagy Flux to Damage Rat Pancreas.

    Science.gov (United States)

    Li, Zhiqiang; Huang, Lihua; Yu, Xiao; Yu, Can; Zhu, Hongwei; Li, Xia; Han, Duo; Huang, Hui

    2017-01-01

    The study aimed to explore the alteration of autophagy in rat pancreas treated with exenatide. Normal Sprague-Dawley rats and diabetes-model rats induced by 2-month high-sugar and high-fat diet and streptozotocin injection were subcutaneously injected with exenatide, respectively, for 10 weeks, with homologous rats treated with saline as control. Meanwhile, AR42J cells, pancreatic acinar cell line, were cultured with exenatide at doses of 5 pM for 3 days. The pancreas was disposed, and several sections were stained with hematoxylin-eosin. Immunohistochemistry was used to measure the expressions of glucagon-like peptide 1 receptor (GLP-1R) and cysteine-aspartic acid protease-3 in rat pancreas, and Western blot was used to test the expressions of GLP-1R, light chain 3B-I and -II, and p62 in rat pancreas and AR42J cells. The data were expressed as mean (standard deviation) and analyzed by unpaired Student's t-test. Exenatide can induce pathological changes in rat pancreas. The GLP-1R, p62, light chain 3B-II, and cysteine-aspartic acid protease-3 in rat pancreas and AR42J cells treated with exenatide were significantly overexpressed. Exenatide can activate and upregulate its receptor, GLP-1R, then impair autophagy flux and activate apoptosis in the pancreatic acinar cell, thus damaging rat pancreas.

  12. Chronic mitragynine (kratom) enhances punishment resistance in natural reward seeking and impairs place learning in mice.

    Science.gov (United States)

    Ismail, Nurul Iman W; Jayabalan, Nanthini; Mansor, Sharif Mahsufi; Müller, Christian P; Muzaimi, Mustapha

    2017-07-01

    Kratom (Mitragyna speciosa) is a widely abused herbal drug preparation in Southeast Asia. It is often consumed as a substitute for heroin, but imposing itself unknown harms and addictive burdens. Mitragynine is the major psychostimulant constituent of kratom that has recently been reported to induce morphine-like behavioural and cognitive effects in rodents. The effects of chronic consumption on non-drug related behaviours are still unclear. In the present study, we investigated the effects of chronic mitragynine treatment on spontaneous activity, reward-related behaviour and cognition in mice in an IntelliCage® system, and compared them with those of morphine and Δ-9-tetrahydrocannabinol (THC). We found that chronic mitragynine treatment significantly potentiated horizontal exploratory activity. It enhanced spontaneous sucrose preference and also its persistence when the preference had aversive consequences. Furthermore, mitragynine impaired place learning and its reversal. Thereby, mitragynine effects closely resembled that of morphine and THC sensitisation. These findings suggest that chronic mitragynine exposure enhances spontaneous locomotor activity and the preference for natural rewards, but impairs learning and memory. These findings confirm pleiotropic effects of mitragynine (kratom) on human lifestyle, but may also support the recognition of the drug's harm potential. © 2016 Society for the Study of Addiction.

  13. Dissociation between learning and memory impairment and other sickness behaviours during simulated Mycoplasma infection in rats.

    Science.gov (United States)

    Swanepoel, Tanya; Harvey, Brian H; Harden, Lois M; Laburn, Helen P; Mitchell, Duncan

    2011-11-01

    To investigate potential consequences for learning and memory, we have simulated the effects of Mycoplasma infection, in rats, by administering fibroblast-stimulating lipopepide-1 (FSL-1), a pyrogenic moiety of Mycoplasma salivarium. We measured the effects on body temperature, cage activity, food intake, and on spatial learning and memory in a Morris Water Maze. Male Sprague-Dawley rats had radio transponders implanted to measure abdominal temperature and cage activity. After recovery, rats were assigned randomly to receive intraperitoneal (I.P.) injections of FSL-1 (500 or 1000 μg kg(-1) in 1 ml kg(-1) phosphate-buffered saline; PBS) or vehicle (PBS, 1 ml kg(-1)). Body mass and food intake were measured daily. Training in the Maze commenced 18 h after injections and continued daily for four days. Spatial memory was assessed on the fifth day. In other rats, we measured concentrations of brain pro-inflammatory cytokines, interleukin (IL)-1β and IL-6, at 3 and 18 h after injections. FSL-1 administration induced a dose-dependent fever (∼1°C) for two days, lethargy (∼78%) for four days, anorexia (∼65%) for three days and body mass stunting (∼6%) for at least four days. Eighteen hours after FSL-1 administration, when concentrations of IL-1β, but not that of IL-6, were elevated in both the hypothalamus and the hippocampus, and when rats were febrile, lethargic and anorexic, learning in the Maze was unaffected. There also was no memory impairment. Our results support emerging evidence that impaired learning and memory is not inevitable during simulated infection. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Implicit and explicit learning: applications from basic research to sports for individuals with impaired movement dynamics

    NARCIS (Netherlands)

    Steenbergen, B.; van der Kamp, J.; Verneau, M.M.N.; Jongbloed-Pereboom, M.; Masters, R.S.

    2010-01-01

    Purpose. Motor skills can be learned in an explicit or an implicit manner. Explicit learning places high demands on working memory capacity, but engagement of working memory is largely circumvented when skills are learned implicitly. We propose that individuals with impaired movement dynamics may

  15. Implicit and explicit learning: applications from basic research to sports for individuals with impaired movement dynamics.

    NARCIS (Netherlands)

    Steenbergen, B.; Kamp, J. van der; Verneau, M.; Jongbloed-Pereboom, M.; Masters, R.S.

    2010-01-01

    PURPOSE: Motor skills can be learned in an explicit or an implicit manner. Explicit learning places high demands on working memory capacity, but engagement of working memory is largely circumvented when skills are learned implicitly. We propose that individuals with impaired movement dynamics may

  16. Implicit and explicit learning: applications from basic research to sports for individuals with impaired movement dynamics

    NARCIS (Netherlands)

    Steenbergen, B.; Kamp, J. van der; Verneau, M.; Jongbloed-Pereboom, M.; Masters, R.S.W.

    2010-01-01

    Purpose - Motor skills can be learned in an explicit or an implicit manner. Explicit learning places high demands on working memory capacity, but engagement of working memory is largely circumvented when skills are learned implicitly. We propose that individuals with impaired movement dynamics may

  17. The Effect of an NCAM Mimetic on Learning and Memory Impairment in an Animal Model of Schizophrenia

    DEFF Research Database (Denmark)

    Secher, Thomas

    2009-01-01

    by immunohistochemical investigation of neurodegeneration and NMDA receptor activation in relevant brain regions. The results show that neonatal PCP treatment induces long-term impairment in spatial learning and memory. The higher PCP dose produced more robust deficits in all three tasks of the water maze, whereas...... for schizophrenia. Neonatal treatment with the N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine (PCP) on postnatal days 7, 9, and 11 has been shown to induce acute neurodegeneration and long-term cognitive deficits and other behavioral abnormalities relevant to schizophrenia. To evaluate the effect...... results indicated that FGL treatment was able to reduce apoptotic cell death in the frontal cortex in pups and to increase NMDA receptor activation in the hippocampus in adults In the present project, further evidence was obtained that neonatal PCP treatment induces long-term impairment in spatial...

  18. Hippocampal infusions of apolipoprotein E peptides induce long-lasting cognitive impairment.

    Science.gov (United States)

    Eddins, Donnie; Klein, Rebecca C; Yakel, Jerrel L; Levin, Edward D

    2009-04-29

    The inheritance of the varepsilon4 allele of apolipoprotein E (ApoE4) and cholinergic system dysfunction have long been associated with the pathology of Alzheimer's disease (AD). Recently, in vitro studies have established a direct link between ApoE and cholinergic function in that synthetic peptides containing segments of the ApoE protein (ApoE(133-149) and ApoE(141-148)) interact with alpha7 nicotinic acetylcholine receptors (nAChRs) in the hippocampus. This raises the possibility that ApoE peptides may contribute to cognitive impairment in AD in that the hippocampus plays a key role in cognitive functioning. To test this, we acutely infused ApoE peptides into the ventral hippocampus of female Sprague-Dawley rats and assessed the resultant effects on radial-arm maze choice accuracy over a period of weeks after the infusion. Local ventral hippocampal infusion of ApoE peptides caused significant cognitive impairment in radial-arm maze learning that persisted several weeks after the acute infusion. This persisting deficit may be an important model for understanding the relationship between ApoE protein-induced neurotoxicity and cognitive impairment as well as serve as a platform for the development of new therapies to avoid neurotoxicity and cognitive decline.

  19. Antioxidant hydrolysed peptides from Manchurian walnut (Juglansmandshurica Maxim.) attenuate scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Ren, Dayong; Zhao, Fanrui; Liu, Chunlei; Wang, Ji; Guo, Yong; Liu, Jingsheng; Min, Weihong

    2018-04-13

    Walnut protein, which is obtained as a by-product of oil expression, has not been used efficiently. Although walnuts are beneficial for cognitive functioning, the potential of their protein composition in strengthening learning and memory functions remains unknown. In this research, the inhibition of memory impairment by the Manchurian walnut hydrolyzed peptide (MWHP) was evaluated. Small-molecular-weight MWHP (<3 kDa) achieved the optimal antioxidative activity. Therefore, MWHP (<3 kDa) was subjected to the following mice trials to evaluate its attenuation effect on memory impairment. In the Morris water maze test, MWHP shortened the total path for searching the platform, reduced the escape latency, and increased the dwelling distance and time in the coverage zone. MWHP also prolonged the latency and diminished errors in the passive avoidance response tests. These behavioral tests demonstrated that MWHP could inhibit scopolamine-induced memory impairment. MWHP improved memory by reducing oxidative stress, inhibiting apoptosis, regulating neurotransmitter functions, maintaining hippocampal CA3 pyramidal neurons, and increasing p-CaMK II levels in brain tissues. Experimental results proved that MWHP exhibits potential in improving memory and should be used to develop novel functional food. This article is protected by copyright. All rights reserved.

  20. Inhibitory effect of Thymus vulgaris extract on memory impairment induced by scopolamine in rat简

    Institute of Scientific and Technical Information of China (English)

    Zahra; Rabiei; Shiva; Mokhtari; Samira; Asgharzade; Mostafa; Gholami; Samira; Rahnama; Mahmoud; Rafieian-kopaei

    2015-01-01

    Objective: To investigate the effect of Thymus vulgaris(T. vulgaris) on learning and memory functions in scopolamine-induced memory deficit in rats. Memory enhancing activity in scopolamine-induced amnesic rats was investigated by assessing the Morris water maze and passive avoidance paradigm.Methods: A total of 42 male Wistar rats were divided into 6 equal groups as follow:control group: received water, scopolamine treated group: received scopolamine 1 mg/kg for 15 days, two scopolamine + T. vulgaris treated groups: received scopolamine and T. vulgaris extract 50 and 100 mg/kg body weight per day for 15 days, two intact groups:received T. vulgaris extract 50 and 100 mg/kg body weight per day for 15 days.Results: Administration of T. vulgaris extract significantly restored memory and learning impairments induced by scopolamine in the passive avoidance test and Morris water maze test.Conclusions: T. vulgaris extract has repairing effects on memory and behavioral disorders produced by scopolamine and may have beneficial effects in the treatment of Alzheimer’s disease.

  1. Perceptual learning in children with visual impairment improves near visual acuity.

    Science.gov (United States)

    Huurneman, Bianca; Boonstra, F Nienke; Cox, Ralf F A; van Rens, Ger; Cillessen, Antonius H N

    2013-09-17

    This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. Participants were 45 children with visual impairment and 29 children with normal vision. Children with visual impairment were divided into three groups: a magnifier group (n = 12), a crowded perceptual learning group (n = 18), and an uncrowded perceptual learning group (n = 15). Children with normal vision also were divided in three groups, but were measured only at baseline. Dependent variables were single near visual acuity (NVA), crowded NVA, LH line 50% crowding NVA, number of trials, accuracy, performance time, amount of small errors, and amount of large errors. Children with visual impairment trained during six weeks, two times per week, for 30 minutes (12 training sessions). After training, children showed significant improvement of NVA in addition to specific improvements on the training task. The crowded perceptual learning group showed the largest acuity improvements (1.7 logMAR lines on the crowded chart, P children in the crowded perceptual learning group showed improvements on all NVA charts. Children with visual impairment benefit from perceptual training. While task-specific improvements were observed in all training groups, transfer to crowded NVA was largest in the crowded perceptual learning group. To our knowledge, this is the first study to provide evidence for the improvement of NVA by perceptual learning in children with visual impairment. (http://www.trialregister.nl number, NTR2537.).

  2. The perilipin homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep loss.

    Directory of Open Access Journals (Sweden)

    Matthew S Thimgan

    2010-08-01

    Full Text Available Extended periods of waking result in physiological impairments in humans, rats, and flies. Sleep homeostasis, the increase in sleep observed following sleep loss, is believed to counter the negative effects of prolonged waking by restoring vital biological processes that are degraded during sleep deprivation. Sleep homeostasis, as with other behaviors, is influenced by both genes and environment. We report here that during periods of starvation, flies remain spontaneously awake but, in contrast to sleep deprivation, do not accrue any of the negative consequences of prolonged waking. Specifically, the homeostatic response and learning impairments that are a characteristic of sleep loss are not observed following prolonged waking induced by starvation. Recently, two genes, brummer (bmm and Lipid storage droplet 2 (Lsd2, have been shown to modulate the response to starvation. bmm mutants have excess fat and are resistant to starvation, whereas Lsd2 mutants are lean and sensitive to starvation. Thus, we hypothesized that bmm and Lsd2 may play a role in sleep regulation. Indeed, bmm mutant flies display a large homeostatic response following sleep deprivation. In contrast, Lsd2 mutant flies, which phenocopy aspects of starvation as measured by low triglyceride stores, do not exhibit a homeostatic response following sleep loss. Importantly, Lsd2 mutant flies are not learning impaired after sleep deprivation. These results provide the first genetic evidence, to our knowledge, that lipid metabolism plays an important role in regulating the homeostatic response and can protect against neuronal impairments induced by prolonged waking.

  3. Manifestations of Renal Impairment in Fructose-induced Metabolic Syndrome.

    Science.gov (United States)

    Bratoeva, Kameliya; Stoyanov, George S; Merdzhanova, Albena; Radanova, Mariya

    2017-11-07

    Introduction International studies show an increased incidence of chronic kidney disease (CKD) in patients with metabolic syndrome (MS). It is assumed that the major components of MS - obesity, insulin resistance, dyslipidemia, and hypertension - are linked to renal damage through the systemic release of several pro-inflammatory mediators, such as uric acid (UA), C-reactive protein (CRP), and generalized oxidative stress. The aim of the present study was to investigate the extent of kidney impairment and manifestations of dysfunction in rats with fructose-induced MS. Methods We used a model of high-fructose diet in male Wistar rats with 35% glucose-fructose corn syrup in drinking water over a duration of 16 weeks. The experimental animals were divided into two groups: control and high-fructose drinking (HFD). Serum samples were obtained from both groups for laboratory study, and the kidneys were extracted for observation via light microscopy examination. Results All HFD rats developed obesity, hyperglycemia, hypertriglyceridemia, increased levels of CRP and UA (when compared to the control group), and oxidative stress with high levels of malondialdehyde and low levels of reduced glutathione. The kidneys of the HFD group revealed a significant increase in kidney weight in the absence of evidence of renal dysfunction and electrolyte disturbances. Under light microscopy, the kidneys of the HFD group revealed amyloid deposits in Kimmelstiel-Wilson-like nodules and the walls of the large caliber blood vessels, early-stage atherosclerosis with visible ruptures and scarring, hydropic change (vacuolar degeneration) in the epithelial cells covering the proximal tubules, and increased eosinophilia in the distant tubules when compared to the control group. Conclusion Under the conditions of a fructose-induced metabolic syndrome, high serum UA and CRP correlate to the development of early renal disorders without a clinical manifestation of renal dysfunction. These

  4. Impairment of Procedural Learning and Motor Intracortical Inhibition in Neurofibromatosis Type 1 Patients

    Directory of Open Access Journals (Sweden)

    Máximo Zimerman

    2015-10-01

    Interpretations: Collectively, the present results provide evidence that learning of a motor skill is impaired even in clinically intact NF1 patients based, at least partially, on a GABAergic-cortical dysfunctioning as suggested in previous animal work.

  5. Working Memory and Learning in Children with Developmental Coordination Disorder and Specific Language Impairment

    Science.gov (United States)

    Alloway, Tracy Packiam; Archibald, Lisa

    2008-01-01

    The authors compared 6- to 11-year-olds with developmental coordination disorder (DCD) and those with specific language impairment (SLI) on measures of memory (verbal and visuospatial short-term and working memory) and learning (reading and mathematics). Children with DCD with typical language skills were impaired in all four areas of memory…

  6. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, Bianca; Boonstra, F. Nienke; Cox, Ralf F. A.; van Rens, Ger; Cillessen, Antonius H. N.

    PURPOSE. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four-to nine-year-old children with visual impairment. METHODS. Participants were 45 children with visual impairment and 29 children with normal vision. Children

  7. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.A.; van Rens, G.H.M.B.; Cillessen, A.H.N.

    2013-01-01

    Purpose. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. Methods. Participants were 45 children with visual impairment and 29 children with normal vision. Children

  8. Perceptual learning in children with visual impairment improves near visual acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.; Rens, G. van; Cillessen, A.H.

    2013-01-01

    PURPOSE: This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four- to nine-year-old children with visual impairment. METHODS: Participants were 45 children with visual impairment and 29 children with normal vision. Children

  9. Perceptual Learning in Children With Visual Impairment Improves Near Visual Acuity

    NARCIS (Netherlands)

    Huurneman, B.; Boonstra, F.N.; Cox, R.F.A.; Rens, G.H.M.B. van; Cillessen, A.H.N.

    2013-01-01

    PURPOSE. This study investigated whether visual perceptual learning can improve near visual acuity and reduce foveal crowding effects in four-to nine-year-old children with visual impairment. METHODS. Participants were 45 children with visual impairment and 29 children with normal vision. Children

  10. Analysing the physics learning environment of visually impaired students in high schools

    NARCIS (Netherlands)

    Toenders, F.G.C.; de Putter - Smits, L.G.A.; Sanders, W.T.M.; den Brok, P.J.

    2017-01-01

    Although visually impaired students attend regular high school, their enrolment in advanced science classes is dramatically low. In our research we evaluated the physics learning environment of a blind high school student in a regular Dutch high school. For visually impaired students to grasp

  11. Learning-Dependent Plasticity of the Barrel Cortex Is Impaired by Restricting GABA-Ergic Transmission.

    Science.gov (United States)

    Posluszny, Anna; Liguz-Lecznar, Monika; Turzynska, Danuta; Zakrzewska, Renata; Bielecki, Maksymilian; Kossut, Malgorzata

    2015-01-01

    Experience-induced plastic changes in the cerebral cortex are accompanied by alterations in excitatory and inhibitory transmission. Increased excitatory drive, necessary for plasticity, precedes the occurrence of plastic change, while decreased inhibitory signaling often facilitates plasticity. However, an increase of inhibitory interactions was noted in some instances of experience-dependent changes. We previously reported an increase in the number of inhibitory markers in the barrel cortex of mice after fear conditioning engaging vibrissae, observed concurrently with enlargement of the cortical representational area of the row of vibrissae receiving conditioned stimulus (CS). We also observed that an increase of GABA level accompanied the conditioning. Here, to find whether unaltered GABAergic signaling is necessary for learning-dependent rewiring in the murine barrel cortex, we locally decreased GABA production in the barrel cortex or reduced transmission through GABAA receptors (GABAARs) at the time of the conditioning. Injections of 3-mercaptopropionic acid (3-MPA), an inhibitor of glutamic acid decarboxylase (GAD), into the barrel cortex prevented learning-induced enlargement of the conditioned vibrissae representation. A similar effect was observed after injection of gabazine, an antagonist of GABAARs. At the behavioral level, consistent conditioned response (cessation of head movements in response to CS) was impaired. These results show that appropriate functioning of the GABAergic system is required for both manifestation of functional cortical representation plasticity and for the development of a conditioned response.

  12. Imidacloprid impairs shorter-term and longer-term learning in honey bees (Apis mellifera)

    OpenAIRE

    Zhang, Erica

    2014-01-01

    Even at sublethal doses, neonicotinoids, commonly used insecticides can affect neurons involved in learning and memory, cognitive features that play a key role in colony fitness because they facilitate foraging. The commonly used neonicotinoid, imidacloprid, impairs the ability of bees to associate floral odors with a nectar reward. However, no studies, to date, have examined how if imidacloprid impairs negative associative learning. Sit- and-wait predators like spiders can attack foraging be...

  13. Contribution Of Brain Tissue Oxidative Damage In Hypothyroidism-associated Learning and Memory Impairments

    Directory of Open Access Journals (Sweden)

    Yousef Baghcheghi

    2017-01-01

    Full Text Available The brain is a critical target organ for thyroid hormones, and modifications in memory and cognition happen with thyroid dysfunction. The exact mechanisms underlying learning and memory impairments due to hypothyroidism have not been understood yet. Therefore, this review was aimed to compress the results of previous studies which have examined the contribution of brain tissues oxidative damage in hypothyroidism-associated learning and memory impairments.

  14. Learning and memory impairments in a neuroendocrine mouse model of anxiety/depression

    Directory of Open Access Journals (Sweden)

    Flavie eDarcet

    2014-05-01

    Full Text Available Cognitive disturbances are often reported as serious incapacitating symptoms by patients suffering from major depressive disorders. Such deficits have been observed in various animal models based on environmental stress.Here, we performed a complete characterization of cognitive functions in a neuroendocrine mouse model of depression based on a chronic (4 weeks corticosterone administration (CORT. Cognitive performances were assessed using behavioral tests measuring episodic (novel object recognition test, NORT, associative (one-trial contextual fear conditioning, CFC and visuo-spatial (Morris water maze, MWM; Barnes maze, BM learning/memory. Altered emotional phenotype after chronic corticosterone treatment was confirmed in mice using tests predictive of anxiety or depression-related behaviors.In the NORT, CORT-treated mice showed a decrease in time exploring the novel object during the test session and a lower discrimination index compared to control mice, characteristic of recognition memory impairment. Associative memory was also impaired, as observed with a decrease in freezing duration in CORT-treated mice in the CFC, thus pointing out the cognitive alterations in this model. In the MWM and in the BM, spatial learning performance but also short-term spatial memory were altered in CORT-treated mice. In the MWM, unlike control animals, CORT-treated animals failed to learn a new location during the reversal phase, suggesting a loss of cognitive flexibility. Finally, in the BM, the lack of preference for the target quadrant during the recall probe trial in animals receiving corticosterone regimen demonstrates that long-term retention was also affected in this paradigm. Taken together, our results highlight that CORT-induced anxio-depressive-like phenotype is associated with a cognitive deficit affecting all aspects of memory tested.

  15. Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations.

    Science.gov (United States)

    Norris, Scott A; Hathaway, Emily N; Taylor, Jordan A; Thach, W Thomas

    2011-05-01

    Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20-30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation.

  16. Behavioral Impairment and Oxidative Damage Induced by Chronic Application of Nonylphenol

    Directory of Open Access Journals (Sweden)

    Zhen Mao

    2010-12-01

    Full Text Available Nonylphenol (NP is a degradation product of nonylphenol polyethoxylates, which are widely used in the production of industrial and consumer surfactants. The aim of the present study was to evaluate the effect of NP on the antioxidant capacity and cognitive ability of mice. NP was given orally by gavages at doses of 0, 50, 100, and 200 mg kg−1 d−1 for 90 days. The results showed that NP significantly decreased the activity of superoxide dismutases (SOD, catalase (CAT, glutathione peroxidase (GPx, and glutathione reductase (GR and at the same time increased malondialdehyde (MDA levels in mice brains. Exploration, memory function and ability to learn a novel task were significantly decreased in NP fed mice. These results indicate that chronic high dose of NP exposure has the potential to generate oxidative stress and induce the cognitive impairment in male mice.

  17. Neuroprotective effect and mechanism of daucosterol palmitate in ameliorating learning and memory impairment in a rat model of Alzheimer's disease.

    Science.gov (United States)

    Ji, Zhi-Hong; Xu, Zhong-Qi; Zhao, Hong; Yu, Xin-Yu

    2017-03-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by progressive memory decline and cognitive impairment. Amyloid beta (Aβ) has been proposed as the causative role for the pathogenesis of AD. Accumulating evidence demonstrates that Aβ neurotoxicity is mediated by glutamate excitotoxicity. Daucosterol palmitate (DSP), a plant steroid with anti-glutamate excitotoxicity effect, was isolated from the anti-aging traditional Chinese medicinal herb Alpinia oxyphylla Miq. in our previous study. Based on the anti-glutamate excitotoxicity effect of DSP, in this study we investigated potential benefit and mechanism of DSP in ameliorating learning and memory impairment in AD model rats. Results from this study showed that DSP administration effectively ameliorated Aβ-induced learning and memory impairment in rats, markedly inhibited Aβ-induced hippocampal ROS production, effectively prevented Aβ-induced hippocampal neuronal damage and significantly restored hippocampal synaptophysin expression level. This study suggests that DSP may be a potential candidate for development as a therapeutic agent for AD cognitive decline. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson's disease.

    Science.gov (United States)

    Gobel, Eric W; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandra; Reber, Paul J

    2013-05-01

    Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation as to whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n = 11) and patients with PD (n = 15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n = 20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system.

  19. Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: implication in diabetes.

    Science.gov (United States)

    Chapouly, Candice; Yao, Qinyu; Vandierdonck, Soizic; Larrieu-Lahargue, Frederic; Mariani, John N; Gadeau, Alain-Pierre; Renault, Marie-Ange

    2016-02-01

    Microangiopathy, i.e. endothelial dysfunction, has long been suggested to contribute to the development of diabetic neuropathy, although this has never been fully verified. In the present paper, we have identified the role of Hedgehog (Hh) signalling in endoneurial microvessel integrity and evaluated the impact of impaired Hh signalling in endothelial cells (ECs) on nerve function. By using Desert Hedgehog (Dhh)-deficient mice, we have revealed, that in the absence of Dhh, endoneurial capillaries are abnormally dense and permeable. Furthermore, Smoothened (Smo) conditional KO mice clarified that this increased vessel permeability is specifically due to impaired Hh signalling in ECs and is associated with a down-regulation of Claudin5 (Cldn5). Moreover, impairment of Hh signalling in ECs was sufficient to induce hypoalgesia and neuropathic pain. Finally in Lepr(db/db) type 2 diabetic mice, the loss of Dhh expression observed in the nerve was shown to be associated with increased endoneurial capillary permeability and decreased Cldn5 expression. Conversely, systemic administration of the Smo agonist SAG increased Cldn5 expression, decreased endoneurial capillary permeability, and restored thermal algesia to diabetic mice, demonstrating that loss of Dhh expression is crucial in the development of diabetic neuropathy. The present work demonstrates the critical role of Dhh in maintaining blood nerve barrier integrity and demonstrates for the first time that endothelial dysfunction is sufficient to induce neuropathy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  20. Statistical Learning in Specific Language Impairment and Autism Spectrum Disorder: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Rita Obeid

    2016-08-01

    Full Text Available Impairments in statistical learning might be a common deficit among individuals with Specific Language Impairment (SLI and Autism Spectrum Disorder (ASD. Using meta-analysis, we examined statistical learning in SLI (14 studies, 15 comparisons and ASD (13 studies, 20 comparisons to evaluate this hypothesis. Effect sizes were examined as a function of diagnosis across multiple statistical learning tasks (Serial Reaction Time, Contextual Cueing, Artificial Grammar Learning, Speech Stream, Observational Learning, Probabilistic Classification. Individuals with SLI showed deficits in statistical learning relative to age-matched controls g = .47, 95% CI [.28, .66], p < .001. In contrast, statistical learning was intact in individuals with ASD relative to controls, g = –.13, 95% CI [–.34, .08], p = .22. Effect sizes did not vary as a function of task modality or participant age. Our findings inform debates about overlapping social-communicative difficulties in children with SLI and ASD by suggesting distinct underlying mechanisms. In line with the procedural deficit hypothesis (Ullman & Pierpont, 2005, impaired statistical learning may account for phonological and syntactic difficulties associated with SLI. In contrast, impaired statistical learning fails to account for the social-pragmatic difficulties associated with ASD.

  1. Fatigue-induced balance impairment in young soccer players.

    Science.gov (United States)

    Pau, Massimiliano; Ibba, Gianfranco; Attene, Giuseppe

    2014-01-01

    Although balance is generally recognized to be an important feature in ensuring good performance in soccer, its link with functional performance remains mostly unexplored, especially in young athletes. To investigate changes in balance induced by fatigue for unipedal and bipedal static stances in young soccer players. Crossover study. Biomechanics laboratory and outdoor soccer field. Twenty-one male soccer players (age = 14.5 ± 0.2 years, height = 164.5 ± 5.6 cm, mass = 56.8 ± 6.8 kg). Static balance was assessed with postural-sway analysis in unipedal and bipedal upright stance before and after a fatigue protocol consisting of a repeated sprint ability (RSA) test (2 × 15-m shuttle sprint interspersed with 20 seconds of passive recovery, repeated 6 times). On the basis of the center-of-pressure (COP) time series acquired during the experimental tests, we measured sway area, COP path length, and COP maximum displacement and velocity in the anteroposterior and mediolateral directions. Fatigue increased all sway values in bipedal stance and all values except COP velocity in the mediolateral direction in unipedal stance. Fatigue index (calculated on the basis of RSA performance) was positively correlated with fatigue/rest sway ratio for COP path length and COP velocity in the anteroposterior and mediolateral directions for nondominant single-legged stance. Fatigued players exhibited reduced performance of the postural-control system. Participants with better performance in the RSA test appeared less affected by balance impairment, especially in single-legged stance.

  2. Mice lacking collapsin response mediator protein 1 manifest hyperactivity, impaired learning and memory, and impaired prepulse inhibition

    Directory of Open Access Journals (Sweden)

    Naoya eYamashita

    2013-12-01

    Full Text Available Collapsin response mediator protein 1 (CRMP1 is one of the CRMP family members that are involved in various aspects of neuronal development such as axonal guidance and neuronal migration. Here we provide evidence that crmp1-/- mice exhibited behavioral abnormalities related to schizophrenia. The crmp1-/- mice exhibited hyperactivity and/or impaired emotional behavioral phenotype. These mice also exhibited impaired context-dependent memory and long-term memory retention. Furthermore, crmp1-/- mice exhibited decreased prepulse inhibition, and this phenotype was rescued by administration of chlorpromazine, a typical antipsychotic drug. In addition, in vivo microdialysis revealed that the methamphetamine-induced release of dopamine in prefrontal cortex was exaggerated in crmp1-/- mice, suggesting that enhanced mesocortical dopaminergic transmission contributes to their hyperactivity phenotype. These observations suggest that impairment of CRMP1 function may be involved in the pathogenesis of schizophrenia. We propose that crmp1-/- mouse may model endophenotypes present in this neuropsychiatric disorder.

  3. Statistical word learning in children with autism spectrum disorder and specific language impairment.

    Science.gov (United States)

    Haebig, Eileen; Saffran, Jenny R; Ellis Weismer, Susan

    2017-11-01

    Word learning is an important component of language development that influences child outcomes across multiple domains. Despite the importance of word knowledge, word-learning mechanisms are poorly understood in children with specific language impairment (SLI) and children with autism spectrum disorder (ASD). This study examined underlying mechanisms of word learning, specifically, statistical learning and fast-mapping, in school-aged children with typical and atypical development. Statistical learning was assessed through a word segmentation task and fast-mapping was examined in an object-label association task. We also examined children's ability to map meaning onto newly segmented words in a third task that combined exposure to an artificial language and a fast-mapping task. Children with SLI had poorer performance on the word segmentation and fast-mapping tasks relative to the typically developing and ASD groups, who did not differ from one another. However, when children with SLI were exposed to an artificial language with phonemes used in the subsequent fast-mapping task, they successfully learned more words than in the isolated fast-mapping task. There was some evidence that word segmentation abilities are associated with word learning in school-aged children with typical development and ASD, but not SLI. Follow-up analyses also examined performance in children with ASD who did and did not have a language impairment. Children with ASD with language impairment evidenced intact statistical learning abilities, but subtle weaknesses in fast-mapping abilities. As the Procedural Deficit Hypothesis (PDH) predicts, children with SLI have impairments in statistical learning. However, children with SLI also have impairments in fast-mapping. Nonetheless, they are able to take advantage of additional phonological exposure to boost subsequent word-learning performance. In contrast to the PDH, children with ASD appear to have intact statistical learning, regardless of

  4. Working Memory Functioning in Children with Learning Disorders and Specific Language Impairment

    Science.gov (United States)

    Schuchardt, Kirsten; Bockmann, Ann-Katrin; Bornemann, Galina; Maehler, Claudia

    2013-01-01

    Purpose: On the basis of Baddeley's working memory model (1986), we examined working memory functioning in children with learning disorders with and without specific language impairment (SLI). We pursued the question whether children with learning disorders exhibit similar working memory deficits as children with additional SLI. Method: In…

  5. Resveratrol Improves Cognitive Impairment by Regulating Apoptosis and Synaptic Plasticity in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Zhiyan Tian

    2016-12-01

    Full Text Available Aims: To investigate the effects of resveratrol on cognitive impairment in streptozotocin (STZ-induced diabetic rats and to explore the mechanisms of that phenomenon. Methods: Sixty healthy male Sprague Dawley rats were randomly divided into four groups: normal control group (Con group, n = 15, Res group (normal Sprague Dawley rats treated with resveratrol, n = 15, diabetes mellitus group (DM group, n = 15 and DM + Res group (diabetic rats treat with resveratrol, n = 15. Streptozotocin (STZ was injected intraperitoneally to establish the diabetic model. One week after diabetic model induction, the animals in the Res group and the DM + Res group received resveratrol intraperitoneally once a day for consecutive 4 weeks. The Morris water maze test was applied to assess the effect of resveratrol on learning and memory. To explore the mechanisms of resveratrol on cognition, we detected the protein expression levels of Caspase-3, Bcl-2, Bax, NMDAR1 (N-Methyl-d-Aspartate receptor and BDNF (Brain Derived Neurotrophic Factor via western blotting analysis. Results: Resveratrol has no obvious effect on normal SD rats. Compared to Con group, cognitive ability was significantly impaired with increased expression of Caspase-3, Bax and down-regulation of Bcl-2, NMDAR1 and BDNF in diabetic rats. By contrast, resveratrol treatment improved the cognitive decline. Evidently, resveratrol treatment reversed diabetes-induced changes of protein expression. Conclusions: Resveratrol significantly ameliorates cognitive decline in STZ-induced diabetic model rats. The potential mechanism underlying the protective effect could be attributed to the inhibition of hippocampal apoptosis through the Bcl-2, Bax and Caspase-3 signaling pathways and improvement of synaptic dysfunction. BDNF may also play an indispensable role in this mechanism.

  6. Lithium prevents REM sleep deprivation-induced impairments on memory consolidation.

    Science.gov (United States)

    Ota, Simone M; Moreira, Karin Di Monteiro; Suchecki, Deborah; Oliveira, Maria Gabriela M; Tiba, Paula A

    2013-11-01

    Pre-training rapid eye movement sleep (REMS) deprivation affects memory acquisition and/or consolidation. It also produces major REMS rebound at the cost of waking and slow wave sleep (SWS). Given that both SWS and REMS appear to be important for memory processes, REMS rebound after training may disrupt the organization of sleep cycles, i.e., excessive amount of REMS and/or little SWS after training could be harmful for memory formation. To examine whether lithium, a drug known to increase SWS and reduce REMS, could prevent the memory impairment induced by pre-training sleep deprivation. Animals were divided in 2 groups: cage control (CC) and REMS-deprived (REMSDep), and then subdivided into 4 subgroups, treated either with vehicle or 1 of 3 doses of lithium (50, 100, and 150 mg/kg) 2 h before training on the multiple trial inhibitory avoidance task. Animals were tested 48 h later to make sure that the drug had been already metabolized and eliminated. Another set of animals was implanted with electrodes and submitted to the same experimental protocol for assessment of drug-induced sleep-wake changes. Wistar male rats weighing 300-400 g. Sleep deprived rats required more trials to learn the task and still showed a performance deficit during test, except from those treated with 150 mg/kg of lithium, which also reduced the time spent in REM sleep during sleep recovery. Lithium reduced rapid eye movement sleep and prevented memory impairment induced by sleep deprivation. These results indicate that these phenomena may be related, but cause-effect relationship cannot be ascertained.

  7. Gift from statistical learning: Visual statistical learning enhances memory for sequence elements and impairs memory for items that disrupt regularities.

    Science.gov (United States)

    Otsuka, Sachio; Saiki, Jun

    2016-02-01

    Prior studies have shown that visual statistical learning (VSL) enhances familiarity (a type of memory) of sequences. How do statistical regularities influence the processing of each triplet element and inserted distractors that disrupt the regularity? Given that increased attention to triplets induced by VSL and inhibition of unattended triplets, we predicted that VSL would promote memory for each triplet constituent, and degrade memory for inserted stimuli. Across the first two experiments, we found that objects from structured sequences were more likely to be remembered than objects from random sequences, and that letters (Experiment 1) or objects (Experiment 2) inserted into structured sequences were less likely to be remembered than those inserted into random sequences. In the subsequent two experiments, we examined an alternative account for our results, whereby the difference in memory for inserted items between structured and random conditions is due to individuation of items within random sequences. Our findings replicated even when control letters (Experiment 3A) or objects (Experiment 3B) were presented before or after, rather than inserted into, random sequences. Our findings suggest that statistical learning enhances memory for each item in a regular set and impairs memory for items that disrupt the regularity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Low-dose tryptophan depletion in recovered depressed women induces impairments in autobiographical memory specificity.

    Science.gov (United States)

    Haddad, Anneke D M; Williams, J Mark G; McTavish, Sarah F B; Harmer, Catherine J

    2009-12-01

    Depressed patients perform poorly on tests of autobiographical memory specificity (AMS); this may have negative consequences for other important cognitive abilities, delays recovery from mood episodes, and, in recovered patients, may mediate vulnerability to future episodes. Although the cognitive mechanisms underlying AMS deficits are beginning to be understood, the neurobiological mechanisms remain unclear. Serotonin is implicated in both depression and long-term memory; therefore, temporary lowering of brain serotonin function via acute tryptophan depletion (ATD) offers a means of studying the role of serotonin in autobiographical memory specificity. In this study, 24 previously depressed women underwent low-dose ATD or sham depletion and completed tests of initial and delayed memory, recollection- and familiarity-based recognition, and AMS. ATD did not differentially affect state mood. Compared with sham depletion, ATD impaired immediate recall on the Auditory Verbal Learning Test. Although ATD did not differentially impair recollection- and familiarity-based recognition, it did slow recognition of positive words. ATD also reduced autobiographical memory specificity in response to negative cue words. The results confirm previous findings that low-dose ATD can reinstate depression-congruent biases in cognition without causing depressive mood in vulnerable populations. The ATD-induced reduction in memory specificity suggests that serotonergic dysfunction may mediate depressive deficits in autobiographical memory; the interaction of cognitive and neurobiological vulnerability mechanisms is discussed.

  9. Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats.

    Science.gov (United States)

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2016-02-01

    Evidence suggests that dextromethorphan (DM), an NMDA receptor antagonist, induces memory impairment. Considering that DM is widely used in cough-treating medications, and the co-abuse of DM with morphine has recently been reported, the aims of the present study was (1) to investigate whether there is a functional interaction between morphine and DM in passive avoidance learning and (2) to assess the possible role of the hippocampal and prefrontal cortical (PFC) signaling pathways in the effects of the drugs on memory formation. Our findings indicated that post-training or pre-test administration of morphine (2 and 6 mg/kg) or DM (10-30 mg/kg) impaired memory consolidation and retrieval which was associated with the attenuation of the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CAMKII) and cAMP responsive element-binding protein (p-CREB) in the targeted sites. Moreover, the memory impairment induced by post-training administration of morphine was reversed by pre-test administration of the same dose of morphine or DM (30 mg/kg), indicating state-dependent learning (SDL) and a cross-SDL between the drugs. It is important to note that the levels of p-CAMKII/CAMKII and p-CREB/CREB in the hippocampus and the PFC increased in drugs-induced SDL. In addition, DM administration potentiated morphine-induced SDL which was related to the enhanced levels of hippocampal and PFC CAMKII-CREB signaling pathways. It can be concluded that there is a relationship between the hippocampus and the PFC in the effect of DM and/or morphine on memory retrieval. Moreover, a cross SDL can be induced between the co-administration of DM and morphine. Interestingly, CAMKII-CREB signaling pathways also mediate the drugs-induced SDL. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Repeated mild closed head injury impairs short-term visuospatial memory and complex learning.

    Science.gov (United States)

    Hylin, Michael J; Orsi, Sara A; Rozas, Natalia S; Hill, Julia L; Zhao, Jing; Redell, John B; Moore, Anthony N; Dash, Pramod K

    2013-05-01

    Concussive force can cause neurocognitive and neurobehavioral dysfunction by inducing functional, electrophysiological, and/or ultrastructural changes within the brain. Although concussion-triggered symptoms typically subside within days to weeks in most people, in 15%-20% of the cases, symptomology can continue beyond this time point. Problems with memory, attention, processing speed, and cognitive flexibility (e.g., problem solving, conflict resolution) are some of the prominent post-concussive cognitive symptoms. Repeated concussions (with loss or altered consciousness), which are common to many contact sports, can exacerbate these symptoms. The pathophysiology of repeated concussions is not well understood, nor is an effective treatment available. In order to facilitate drug discovery to treat post-concussive symptoms (PCSs), there is a need to determine if animal models of repeated mild closed head injury (mCHI) can mimic the neurocognitive and histopathological consequences of repeated concussions. To this end, we employed a controlled cortical impact (CCI) device to deliver a mCHI directly to the skull of mice daily for 4 days, and examined the ensuing neurological and neurocognitive functions using beam balance, foot-fault, an abbreviated Morris water maze test, context discrimination, and active place avoidance tasks. Repeated mCHI exacerbated vestibulomotor, motor, short-term memory and conflict learning impairments as compared to a single mCHI. Learning and memory impairments were still observed in repeated mCHI mice when tested 3 months post-injury. Repeated mCHI also reduced cerebral perfusion, prolonged the inflammatory response, and in some animals, caused hippocampal neuronal loss. Our results show that repeated mCHI can reproduce some of the deficits seen after repeated concussions in humans and may be suitable for drug discovery studies and translational research.

  11. Minocycline ameliorates cognitive impairment induced by whole-brain irradiation: an animal study

    International Nuclear Information System (INIS)

    Zhang, Liyuan; Li, Kun; Sun, Rui; Zhang, Yuan; Ji, JianFeng; Huang, Peigeng; Yang, Hongying; Tian, Ye

    2014-01-01

    It has been long recognized that cranial irradiation used for the treatment of primary and metastatic brain tumor often causes neurological side-effects such as intellectual impairment, memory loss and dementia, especially in children patients. Our previous study has demonstrated that whole-brain irradiation (WBI) can cause cognitive decline in rats. Minocycline is an antibiotic that has shown neuroprotective properties in a variety of experimental models of neurological diseases. However, whether minocycline can ameliorate cognitive impairment induced by ionizing radiation (IR) has not been tested. Thus this study aimed to demonstrate the potential implication of minocycline in the treatment of WBI-induced cognitive deficits by using a rat model. Sprague Dawley rats were cranial irradiated with electron beams delivered by a linear accelerator with a single dose of 20 Gy. Minocycline was administered via oral gavages directly into the stomach before and after irradiation. The open field test was used to assess the anxiety level of rats. The Morris water maze (MWM) was used to assess the spatial learning and memory of rats. The level of apoptosis in hippocampal neurons was measured using immunohistochemistry for caspase-3 and relative markers for mature neurons (NeuN) or for newborn neurons (Doublecortin (DCX)). Neurogenesis was determined by BrdU incorporation method. Neither WBI nor minocycline affected the locomotor activity and anxiety level of rats. However, compared with the sham-irradiated controls, WBI caused a significant loss of learning and memory manifest as longer latency to reach the hidden platform in the MWM task. Minocycline intervention significantly improved the memory retention of irradiated rats. Although minocycline did not rescue neurogenesis deficit caused by WBI 2 months post-IR, it did significantly decreased WBI-induced apoptosis in the DCX positive neurons, thereby resulting in less newborn neuron depletion 12 h after irradiation

  12. Chronic Stress During Adolescence Impairs and Improves Learning and Memory in Adulthood

    OpenAIRE

    Chaby, Lauren E.; Cavigelli, Sonia A.; Hirrlinger, Amy M.; Lim, James; Warg, Kendall M.; Braithwaite, Victoria A.

    2015-01-01

    HIGHLIGHTS This study tested the effects of adolescent-stress on adult learning and memory. Adolescent-stressed rats had enhanced reversal learning compared to unstressed rats. Adolescent-stress exposure made working memory more vulnerable to disturbance. Adolescent-stress did not affect adult associative learning or reference memory. Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they ag...

  13. Feedback-based probabilistic category learning is selectively impaired in attention/hyperactivity deficit disorder.

    Science.gov (United States)

    Gabay, Yafit; Goldfarb, Liat

    2017-07-01

    Although Attention-Deficit Hyperactivity Disorder (ADHD) is closely linked to executive function deficits, it has recently been attributed to procedural learning impairments that are quite distinct from the former. These observations challenge the ability of the executive function framework solely to account for the diverse range of symptoms observed in ADHD. A recent neurocomputational model emphasizes the role of striatal dopamine (DA) in explaining ADHD's broad range of deficits, but the link between this model and procedural learning impairments remains unclear. Significantly, feedback-based procedural learning is hypothesized to be disrupted in ADHD because of the involvement of striatal DA in this type of learning. In order to test this assumption, we employed two variants of a probabilistic category learning task known from the neuropsychological literature. Feedback-based (FB) and paired associate-based (PA) probabilistic category learning were employed in a non-medicated sample of ADHD participants and neurotypical participants. In the FB task, participants learned associations between cues and outcomes initially by guessing and subsequently through feedback indicating the correctness of the response. In the PA learning task, participants viewed the cue and its associated outcome simultaneously without receiving an overt response or corrective feedback. In both tasks, participants were trained across 150 trials. Learning was assessed in a subsequent test without a presentation of the outcome or corrective feedback. Results revealed an interesting disassociation in which ADHD participants performed as well as control participants in the PA task, but were impaired compared with the controls in the FB task. The learning curve during FB training differed between the two groups. Taken together, these results suggest that the ability to incrementally learn by feedback is selectively disrupted in ADHD participants. These results are discussed in relation to both

  14. Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice.

    Science.gov (United States)

    Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je

    2016-05-01

    Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer's disease.

  15. Relation of Symptom-Induced Impairment with Other Illness Parameters in Clinic-Referred Youth

    Science.gov (United States)

    Gadow, Kenneth D.; Kaat, Aaron J.; Lecavalier, Luc

    2013-01-01

    Objective: To examine the relation of caregiver ratings of psychiatric symptom-induced impairment with number and severity of symptoms and informant agreement in consecutive child psychiatry outpatient referrals. Methods: Parents and teachers completed a broadband "DSM-IV"-referenced rating scale with disorder-specific impairment for 636…

  16. Cranial irradiation of young rats impairs later learning and growth

    International Nuclear Information System (INIS)

    Overmier, J.B.; Carroll, M.E.; Patten, R.; Krivit, W.; Kim, T.H.

    1979-01-01

    Young rats (26 days) were exposed to ionizing radiation of the head of 0, 1200, 2400 or 3000 rads total in 200 rads/day doses. The subsequent growth of irradiated rats was permanently impaired: such impairment was positively related to amount of irradiation. Beginning in adolescence, rats were trained on a horizontal/vertical visual discrimination in a runway task and although all four groups mastered the discrimination, they differed in their patterns of acquisition. These results indicated long term effects and are associated with a cranial irradiation regimen similar to that given to children suffering acute lymphocytic leukemia (ALL). (author)

  17. Instrumental learning and cognitive flexibility processes are impaired in children exposed to early life stress.

    Science.gov (United States)

    Harms, Madeline B; Shannon Bowen, Katherine E; Hanson, Jamie L; Pollak, Seth D

    2017-10-19

    Children who experience severe early life stress show persistent deficits in many aspects of cognitive and social adaptation. Early stress might be associated with these broad changes in functioning because it impairs general learning mechanisms. To explore this possibility, we examined whether individuals who experienced abusive caregiving in childhood had difficulties with instrumental learning and/or cognitive flexibility as adolescents. Fifty-three 14-17-year-old adolescents (31 exposed to high levels of childhood stress, 22 control) completed an fMRI task that required them to first learn associations in the environment and then update those pairings. Adolescents with histories of early life stress eventually learned to pair stimuli with both positive and negative outcomes, but did so more slowly than their peers. Furthermore, these stress-exposed adolescents showed markedly impaired cognitive flexibility; they were less able than their peers to update those pairings when the contingencies changed. These learning problems were reflected in abnormal activity in learning- and attention-related brain circuitry. Both altered patterns of learning and neural activation were associated with the severity of lifetime stress that the adolescents had experienced. Taken together, the results of this experiment suggest that basic learning processes are impaired in adolescents exposed to early life stress. These general learning mechanisms may help explain the emergence of social problems observed in these individuals. © 2017 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  18. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity.

    Science.gov (United States)

    Hasegawa, Yasushi; Inoue, Tatsuro; Kawaminami, Satoshi; Fujita, Miho

    2016-07-01

    To evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801). Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test. Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test. Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex. Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine. Scallop shell extract also suppressed the increase in locomotor activity induced by MK801. Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  19. Kefir protective effects against nicotine cessation-induced anxiety and cognition impairments in rats

    Directory of Open Access Journals (Sweden)

    Negin Noori

    2014-01-01

    Conclusion: This study revealed that Kefir had a potential effect on the treatment of nicotine cessation-induced depression, anxiety and cognition impairment in the animal model. Kefir may be useful for adjunct therapy for nicotine abandonment treatment protocols.

  20. Punishment Insensitivity and Impaired Reinforcement Learning in Preschoolers

    Science.gov (United States)

    Briggs-Gowan, Margaret J.; Nichols, Sara R.; Voss, Joel; Zobel, Elvira; Carter, Alice S.; McCarthy, Kimberly J.; Pine, Daniel S.; Blair, James; Wakschlag, Lauren S.

    2014-01-01

    Background: Youth and adults with psychopathic traits display disrupted reinforcement learning. Advances in measurement now enable examination of this association in preschoolers. The current study examines relations between reinforcement learning in preschoolers and parent ratings of reduced responsiveness to socialization, conceptualized as a…

  1. Do Children with Developmental Dyslexia Have Impairments in Implicit Learning?

    Science.gov (United States)

    Pavlidou, Elpis V.; Kelly, M. Louise; Williams, Joanne M.

    2010-01-01

    We explored implicit learning in a group of typically developing and developmental dyslexic primary school children (9-12y) using a modified artificial grammar learning task. Performance was calculated using two measures of performance: a perfect free recall (PFR) score and a grammaticality judgment score. Both groups of children required the same…

  2. Medication Impairs Probabilistic Classification Learning in Parkinson's Disease

    Science.gov (United States)

    Jahanshahi, Marjan; Wilkinson, Leonora; Gahir, Harpreet; Dharminda, Angeline; Lagnado, David A.

    2010-01-01

    In Parkinson's disease (PD), it is possible that tonic increase of dopamine associated with levodopa medication overshadows phasic release of dopamine, which is essential for learning. Thus while the motor symptoms of PD are improved with levodopa medication, learning would be disrupted. To test this hypothesis, we investigated the effect of…

  3. Grammar predicts procedural learning and consolidation deficits in children with Specific Language Impairment.

    Science.gov (United States)

    Hedenius, Martina; Persson, Jonas; Tremblay, Antoine; Adi-Japha, Esther; Veríssimo, João; Dye, Cristina D; Alm, Per; Jennische, Margareta; Bruce Tomblin, J; Ullman, Michael T

    2011-01-01

    The Procedural Deficit Hypothesis (PDH) posits that Specific Language Impairment (SLI) can be largely explained by abnormalities of brain structures that subserve procedural memory. The PDH predicts impairments of procedural memory itself, and that such impairments underlie the grammatical deficits observed in the disorder. Previous studies have indeed reported procedural learning impairments in SLI, and have found that these are associated with grammatical difficulties. The present study extends this research by examining consolidation and longer-term procedural sequence learning in children with SLI. The Alternating Serial Reaction Time (ASRT) task was given to children with SLI and typically developing (TD) children in an initial learning session and an average of three days later to test for consolidation and longer-term learning. Although both groups showed evidence of initial sequence learning, only the TD children showed clear signs of consolidation, even though the two groups did not differ in longer-term learning. When the children were re-categorized on the basis of grammar deficits rather than broader language deficits, a clearer pattern emerged. Whereas both the grammar impaired and normal grammar groups showed evidence of initial sequence learning, only those with normal grammar showed consolidation and longer-term learning. Indeed, the grammar-impaired group appeared to lose any sequence knowledge gained during the initial testing session. These findings held even when controlling for vocabulary or a broad non-grammatical language measure, neither of which were associated with procedural memory. When grammar was examined as a continuous variable over all children, the same relationships between procedural memory and grammar, but not vocabulary or the broader language measure, were observed. Overall, the findings support and further specify the PDH. They suggest that consolidation and longer-term procedural learning are impaired in SLI, but that these

  4. Grammar Predicts Procedural Learning and Consolidation Deficits in Children with Specific Language Impairment

    Science.gov (United States)

    Hedenius, Martina; Persson, Jonas; Tremblay, Antoine; Adi-Japha, Esther; Veríssimo, João; Dye, Cristina D.; Alm, Per; Jennische, Margareta; Tomblin, J. Bruce; Ullman, Michael T.

    2011-01-01

    The Procedural Deficit Hypothesis (PDH) posits that Specific Language Impairment (SLI) can be largely explained by abnormalities of brain structures that subserve procedural memory. The PDH predicts impairments of procedural memory itself, and that such impairments underlie the grammatical deficits observed in the disorder. Previous studies have indeed reported procedural learning impairments in SLI, and have found that these are associated with grammatical difficulties. The present study extends this research by examining the consolidation and longer-term procedural sequence learning in children with SLI. The Alternating Serial Reaction Time (ASRT) task was given to children with SLI and typically-developing (TD) children in an initial learning session and an average of three days later to test for consolidation and longer-term learning. Although both groups showed evidence of initial sequence learning, only the TD children showed clear signs of consolidation, even though the two groups did not differ in longer-term learning. When the children were re-categorized on the basis of grammar deficits rather than broader language deficits, a clearer pattern emerged. Whereas both the grammar impaired and normal grammar groups showed evidence of initial sequence learning, only those with normal grammar showed consolidation and longer-term learning. Indeed, the grammar-impaired group appeared to lose any sequence knowledge gained during the initial testing session. These findings held even when controlling for vocabulary or a broad non-grammatical language measure, neither of which were associated with procedural memory. When grammar was examined as a continuous variable over all children, the same relationships between procedural memory and grammar, but not vocabulary or the broader language measure, were observed. Overall, the findings support and further specify the PDH. They suggest that consolidation and longer-term procedural learning are impaired in SLI, but that

  5. Short-term exposure to enriched environment rescues chronic stress-induced impaired hippocampal synaptic plasticity, anxiety, and memory deficits.

    Science.gov (United States)

    Bhagya, Venkanna Rao; Srikumar, Bettadapura N; Veena, Jayagopalan; Shankaranarayana Rao, Byrathnahalli S

    2017-08-01

    Exposure to prolonged stress results in structural and functional alterations in the hippocampus including reduced long-term potentiation (LTP), neurogenesis, spatial learning and working memory impairments, and enhanced anxiety-like behavior. On the other hand, enriched environment (EE) has beneficial effects on hippocampal structure and function, such as improved memory, increased hippocampal neurogenesis, and progressive synaptic plasticity. It is unclear whether exposure to short-term EE for 10 days can overcome restraint stress-induced cognitive deficits and impaired hippocampal plasticity. Consequently, the present study explored the beneficial effects of short-term EE on chronic stress-induced impaired LTP, working memory, and anxiety-like behavior. Male Wistar rats were subjected to chronic restraint stress (6 hr/day) over a period of 21 days, and then they were exposed to EE (6 hr/day) for 10 days. Restraint stress reduced hippocampal CA1-LTP, increased anxiety-like symptoms in elevated plus maze, and impaired working memory in T-maze task. Remarkably, EE facilitated hippocampal LTP, improved working memory performance, and completely overcame the effect of chronic stress on anxiety behavior. In conclusion, exposure to EE can bring out positive effects on synaptic plasticity in the hippocampus and thereby elicit its beneficial effects on cognitive functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Science.gov (United States)

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  7. Aqueous Extract of Black Maca (Lepidium meyenii on Memory Impairment Induced by Ovariectomy in Mice

    Directory of Open Access Journals (Sweden)

    Julio Rubio

    2011-01-01

    Full Text Available The present study aims to test two different doses of aqueous extract of black maca on learning and memory in ovariectomized (OVX mice and their relation with malonalehyde (MDA, acetylcholinesterase (Ache and monoamine oxidase (MAO brain levels. Female mice were divided into five groups: (i naive (control, (ii sham, (iii OVX mice and OVX mice treated with (iv 0.50 g kg−1 and (v 2.00 g kg−1 black maca. Mice were orally treated with distilled water or black maca during 35 days starting 7 days after surgery. Memory and learning were assessed using the water Morris maze (from day 23–27 and the step-down avoidance test (days 34 and 35. At the end of each treatment, mice were sacrificed by decapitation and brains were dissected out for MDA, Ache and MAO determinations. Black maca (0.5 and 2.0 g/kg increased step-down latency when compared to OVX control mice. Black maca decreased MDA and Ache levels in OVX mice; whereas, no differences were observed in MAO levels. Finally, black maca improved experimental memory impairment induced by ovariectomy, due in part, by its antioxidant and Ache inhibitory activities.

  8. Aqueous Extract of Black Maca (Lepidium meyenii) on Memory Impairment Induced by Ovariectomy in Mice.

    Science.gov (United States)

    Rubio, Julio; Qiong, Wang; Liu, Xinmin; Jiang, Zhen; Dang, Haixia; Chen, Shi-Lin; Gonzales, Gustavo F

    2011-01-01

    The present study aims to test two different doses of aqueous extract of black maca on learning and memory in ovariectomized (OVX) mice and their relation with malonalehyde (MDA), acetylcholinesterase (Ache) and monoamine oxidase (MAO) brain levels. Female mice were divided into five groups: (i) naive (control), (ii) sham, (iii) OVX mice and OVX mice treated with (iv) 0.50 g kg(-1) and (v) 2.00 g kg(-1) black maca. Mice were orally treated with distilled water or black maca during 35 days starting 7 days after surgery. Memory and learning were assessed using the water Morris maze (from day 23-27) and the step-down avoidance test (days 34 and 35). At the end of each treatment, mice were sacrificed by decapitation and brains were dissected out for MDA, Ache and MAO determinations. Black maca (0.5 and 2.0 g/kg) increased step-down latency when compared to OVX control mice. Black maca decreased MDA and Ache levels in OVX mice; whereas, no differences were observed in MAO levels. Finally, black maca improved experimental memory impairment induced by ovariectomy, due in part, by its antioxidant and Ache inhibitory activities.

  9. Emotion-induced impairments in speeded word recognition tasks.

    Science.gov (United States)

    Zeelenberg, René; Bocanegra, Bruno R; Pecher, Diane

    2011-01-01

    Recent studies show that emotional stimuli impair the identification of subsequently presented, briefly flashed stimuli. In the present study, we investigated whether emotional distractors (primes) impaired target processing when presentation of the target stimulus was not impoverished. In lexical decision, animacy decision, rhyme decision, and nonword naming, targets were presented in such a manner that they were clearly visible (i.e., targets were not masked and presented until participants responded). In all tasks taboo-sexual distractors caused a slowdown in responding to the subsequent neutral target. Our results indicate that the detrimental effects of emotional distractors are not confined to paradigms in which visibility of the target is limited. Moreover, impairments were obtained even when semantic processing of stimuli was not required.

  10. Spatial short-term memory in children with nonverbal learning disabilities: impairment in encoding spatial configuration.

    Science.gov (United States)

    Narimoto, Tadamasa; Matsuura, Naomi; Takezawa, Tomohiro; Mitsuhashi, Yoshinori; Hiratani, Michio

    2013-01-01

    The authors investigated whether impaired spatial short-term memory exhibited by children with nonverbal learning disabilities is due to a problem in the encoding process. Children with or without nonverbal learning disabilities performed a simple spatial test that required them to remember 3, 5, or 7 spatial items presented simultaneously in random positions (i.e., spatial configuration) and to decide if a target item was changed or all items including the target were in the same position. The results showed that, even when the spatial positions in the encoding and probe phases were similar, the mean proportion correct of children with nonverbal learning disabilities was 0.58 while that of children without nonverbal learning disabilities was 0.84. The authors argue with the results that children with nonverbal learning disabilities have difficulty encoding relational information between spatial items, and that this difficulty is responsible for their impaired spatial short-term memory.

  11. A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity

    Science.gov (United States)

    Nguyen-Vu, TD Barbara; Zhao, Grace Q; Lahiri, Subhaneil; Kimpo, Rhea R; Lee, Hanmi; Ganguli, Surya; Shatz, Carla J; Raymond, Jennifer L

    2017-01-01

    Across many studies, animals with enhanced synaptic plasticity exhibit either enhanced or impaired learning, raising a conceptual puzzle: how enhanced plasticity can yield opposite learning outcomes? Here, we show that the recent history of experience can determine whether mice with enhanced plasticity exhibit enhanced or impaired learning in response to the same training. Mice with enhanced cerebellar LTD, due to double knockout (DKO) of MHCI H2-Kb/H2-Db (KbDb−/−), exhibited oculomotor learning deficits. However, the same mice exhibited enhanced learning after appropriate pre-training. Theoretical analysis revealed that synapses with history-dependent learning rules could recapitulate the data, and suggested that saturation may be a key factor limiting the ability of enhanced plasticity to enhance learning. Optogenetic stimulation designed to saturate LTD produced the same impairment in WT as observed in DKO mice. Overall, our results suggest that the recent history of activity and the threshold for synaptic plasticity conspire to effect divergent learning outcomes. DOI: http://dx.doi.org/10.7554/eLife.20147.001 PMID:28234229

  12. Tooth loss early in life suppresses neurogenesis and synaptophysin expression in the hippocampus and impairs learning in mice.

    Science.gov (United States)

    Kubo, Kin-Ya; Murabayashi, Chika; Kotachi, Mika; Suzuki, Ayumi; Mori, Daisuke; Sato, Yuichi; Onozuka, Minoru; Azuma, Kagaku; Iinuma, Mitsuo

    2017-02-01

    Tooth loss induced neurological alterations through activation of a stress hormone, corticosterone. Age-related hippocampal morphological and functional changes were accelerated by early tooth loss in senescence-accelerated mouse prone 8 (SAMP8). In order to explore the mechanism underlying the impaired hippocampal function resulting from early masticatory dysfunction due to tooth loss, we investigated the effects of early tooth loss on plasma corticosterone levels, learning ability, neurogenesis, and synaptophysin expression in the hippocampus later in life of SAMP8 mice. We examined the effects of tooth loss soon after tooth eruption (1 month of age) on plasma corticosterone levels, learning ability in the Morris water maze, newborn cell proliferation, survival and differentiation in the hippocampal dentate gyrus, and synaptophysin expression in the hippocampus of aged (8 months of age) SAMP8 mice. Aged mice with early tooth loss exhibited increased plasma corticosterone levels, hippocampus-dependent learning deficits in the Morris water maze, decreased cell proliferation, and cell survival in the dentate gyrus, and suppressed synaptophysin expression in the hippocampus. Newborn cell differentiation in the hippocampal dentate gyrus, however, was not affected by early tooth loss. These findings suggest that learning deficits in aged SAMP8 mice with tooth loss soon after tooth eruption are associated with suppressed neurogenesis and decreased synaptophysin expression resulting from increased plasma corticosterone levels, and that long-term tooth loss leads to impaired cognitive function in older age. Copyright © 2016. Published by Elsevier Ltd.

  13. DEVELOPMENTAL HYPOTHYROIDISM IMPAIRS HIPPOCAMPAL LEARNING AND SYNAPTIC TRANSMISSION IN VIVO.

    Science.gov (United States)

    A number of environmental chemicals have been reported to alter thyroid hormone (TH) function. It is well established that severe hypothyroidism during critical periods of brain development leads to alterations in hippocampal structure and learning deficits, yet evaluation of ...

  14. Flos Puerariae Extract Ameliorates Cognitive Impairment in Streptozotocin-Induced Diabetic Mice

    Directory of Open Access Journals (Sweden)

    Zhong-he Liu

    2015-01-01

    Full Text Available Objective. The effects of Flos Puerariae extract (FPE on cognitive impairment associated with diabetes were assessed in C57BL/6J mice. Methods. Experimental diabetic mice model was induced by one injection of 50 mg/kg streptozotocin (STZ for 5 days consecutively. FPE was orally administrated at the dosages of 50, 100, or 200 mg/kg/day, respectively. The learning and memory ability was assessed by Morris water maze test. Body weight, blood glucose, free fatty acid (FFA and total cholesterol (TCH in serum, malondialdehyde (MDA, superoxide dismutase (SOD, catalase (CAT, glutathione peroxidase (GSH-Px, and acetylcholinesterase (AChE activities in cerebral cortex and hippocampus were also measured. Results. Oral administration of FPE significantly improved cognitive deficits in STZ-induced diabetic mice. FPE treatment also maintained body weight and ameliorated hyperglycemia and dyslipidemia in diabetic mice. Additionally, decreased MDA level, enhanced CAT, and GSH-Px activities in cerebral cortex or hippocampus, as well as alleviated AChE activity in cerebral cortex, were found in diabetic mice supplemented with FPE. Conclusion. This study suggests that FPE ameliorates memory deficits in experimental diabetic mice, at least partly through the normalization of metabolic abnormalities, ameliorated oxidative stress, and AChE activity in brain.

  15. Noise-Induced Hearing Impairment As An Occupational Risk Factor ...

    African Journals Online (AJOL)

    Noise pollution in workplaces poses serious health risks including that of cardiovascular disturbances and impairment of hearing. The objective of this study was to assess the effects of occupational noise on hearing among selected industrial workers in Benin City, Nigeria. Male and female workers (n=150) in sawmills, ...

  16. Does early ischemic lesion induce cognitive impairment and epilepsy?

    Czech Academy of Sciences Publication Activity Database

    Kubová, Hana; Máttéffyová, Adéla; Tsenov, Grygoriy; Otáhal, Jakub

    -, - (2005), s. 30-30 [Conference of the Czech Neuroscience Society /5./, The Annual Meeting of the Network of European Neuroscience Institutes. 19.11.2005-21.11.2005, Prague] R&D Projects: GA MŠk(CZ) LC554 Institutional research plan: CEZ:AV0Z50110509 Keywords : focal ischemia * cognitive impairment * development of epilepsy Subject RIV: ED - Physiology

  17. Insulin protects against Aβ-induced spatial memory impairment, hippocampal apoptosis and MAPKs signaling disruption.

    Science.gov (United States)

    Ghasemi, Rasoul; Zarifkar, Asadollah; Rastegar, Karim; maghsoudi, Nader; Moosavi, Maryam

    2014-10-01

    Alzheimer disease (AD) is a progressive neurodegenerative disease characterized by extracellular deposits of beta amyloid (Aβ) and neuronal loss particularly in the hippocampus. Accumulating evidences have implied that insulin signaling impairment plays a key role in the pathology of AD; as much as it is considered as type 3 Diabetes. MAPKs are a group of signaling molecules which are involved in pathobiology of AD. Therefore this study was designed to investigate if intrahippocampal insulin hinders Aβ-related memory deterioration, hippocampal apoptosis and MAPKs signaling alteration induced by Aβ. Adult male Sprague-Dawely rats weighing 250-300 g were used in this study. The canules were implanted bilaterally into CA1 region. Aβ25-35 was administered during first 4 days after surgery (5 μg/2.5 μL/daily). Insulin treatment (0.5 or 6 mU) was done during days 4-9. The animal's learning and memory capability was assessed on days 10-13 using Morris water maze. After finishing of behavioral studies the hippocampi was isolated and the amount of hippocampal cleaved caspase 3 (the landmark of apoptosis) and the phosphorylated (activated) forms of P38, JNK and ERK was analyzed by western blot. The results showed that insulin in 6 but not 0.5 mU reversed the memory loss induced by Aβ25-35. Western blot analysis revealed that Aβ25-35 induced elevation of caspase-3 and all 3 MAPks subfamily activity, while insulin in 6 mu restored ERK and P38 activation but has no effect on JNK. This study disclosed that intrahippocampal insulin treatment averts not only Aβ-induced memory deterioration but also hippocampal caspase-3, ERK and P38 activation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Age-related impairments in active learning and strategic visual exploration.

    Science.gov (United States)

    Brandstatt, Kelly L; Voss, Joel L

    2014-01-01

    Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.

  19. Impaired learning of punishments in Parkinson's disease with and without impulse control disorder.

    Science.gov (United States)

    Leplow, Bernd; Sepke, Maria; Schönfeld, Robby; Pohl, Johannes; Oelsner, Henriette; Latzko, Lea; Ebersbach, Georg

    2017-02-01

    To document specific learning mechanisms in patients with Parkinson's disease (PD) with and without impulse control disorder (ICD). Thirty-two PD patients receiving dopamine replacement therapy (DRT) were investigated. Sixteen were diagnosed with ICD (ICD + ) and 16 PD patients matched for levodopa equivalence dosage, and DRT duration and severity of disease did not show impulsive behavior (non-ICD). Short-term learning of inhibitory control was assessed by an experimental procedure which was intended to mimic everyday life. Correct inhibition especially, had to be learned without reward (passive avoidance), and the failure to inhibit a response was punished (punishment learning). Results were compared to 16 healthy controls (HC) matched for age and sex. In ICD + patients within-session learning of non-rewarded inhibition was at chance levels. Whereas healthy controls rapidly developed behavioral inhibition, non-ICD patients were also significantly impaired compared to HC, but gradually developed some degree of control. Both patient groups showed significantly decreased learning if the failure to withhold a response was punished. PD patients receiving DRT show impaired ability to acquire both punishment learning and passive avoidance learning, irrespective of whether or not ICD was developed. In ICD + PD patients, behavioral inhibition is nearly absent. Results demonstrate that by means of subtle learning paradigms it is possible to identify PD-DRT patients who show subtle alterations of punishment learning. This may be a behavioral measure for the identification of PD patients who are prone to develop ICD if DRT is continued.

  20. Age-related impairments in active learning and strategic visual exploration

    Directory of Open Access Journals (Sweden)

    Kelly L Brandstatt

    2014-02-01

    Full Text Available Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.

  1. Curcumin exerts neuroprotective effects against homocysteine intracerebroventricular injection-induced cognitive impairment and oxidative stress in rat brain.

    Science.gov (United States)

    Ataie, Amin; Sabetkasaei, Masoumeh; Haghparast, Abbas; Moghaddam, Akbar Hajizadeh; Ataee, Ramin; Moghaddam, Shiva Nasiraei

    2010-08-01

    Aging is the major risk factor for neurodegenerative diseases and oxidative stress and is involved in their pathophysiology. Oxidative stress can induce neuronal damage and modulate intracellular signaling, ultimately leading to neuronal death by apoptosis or necrosis. In this study we investigated the neuroprotective properties of the natural polyphenolic antioxidant compound, curcumin, against homocysteine (Hcy) neurotoxicity. Curcumin (5, 15, or 45 mg/kg) was injected intraperitoneally once daily for a period of 10 days beginning 5 days prior to Hcy (0.2 micromol/microl) intracerebroventricular injection in rats. Biochemical and behavioral studies, including passive avoidance learning and locomotor activity tests, were evaluated 24 hours after the last injection of curcumin or vehicle. Results indicated that Hcy induces lipid peroxidation and increases malondialdehyde (MDA) and superoxide anion (SOA) levels in whole rat brain. In addition, Hcy impaired memory retention in the passive avoidance learning test. However, curcumin treatment significantly decreased MDA and SOA levels and improved learning and memory in rats. These results suggest that Hcy may induce lipid peroxidation in rat brain and that polyphenol treatment (curcumin) improves learning and memory deficits by protecting the nervous system against oxidative stress.

  2. Aqueous and hydroalcoholic extracts of Black Maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Rubio, Julio; Dang, Haixia; Gong, Mengjuan; Liu, Xinmin; Chen, Shi-Lin; Gonzales, Gustavo F

    2007-10-01

    Lepidium meyenii Walp. (Brassicaceae), known as Maca, is a Peruvian hypocotyl growing exclusively between 4,000 and 4,500 m altitude in the central Peruvian Andes, particularly in Junin plateau. Previously, Black variety of Maca showed to be more beneficial than other varieties of Maca on learning and memory in ovariectomized mice on the water finding test. The present study aimed to test two different doses of aqueous (0.50 and 2.00 g/kg) and hydroalcoholic (0.25 and 1.00 g/kg) extracts of Black Maca administered for 35 days on memory impairment induced by scopolamine (1mg/kg body weight i.p.) in male mice. Memory and learning were evaluated using the water Morris maze and the step-down avoidance test. Brain acetylcholinesterase (AChE) and monoamine oxidase (MAO) activities in brain were also determined. Both extracts of Black Maca significantly ameliorated the scopolamine-induced memory impairment as measured in both the water Morris maze and the step-down avoidance tests. Black Maca extracts inhibited AChE activity, whereas MAO activity was not affected. These results indicate that Black Maca improves scopolamine-induced memory deficits.

  3. Treatment with Akebia Saponin D Ameliorates Aβ1–42-Induced Memory Impairment and Neurotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Yongde Chen

    2016-03-01

    Full Text Available Amyloid-β peptide (Aβ is known to be directly associated with the progressive neuronal death observed in Alzheimer’s disease (AD. However, effective neuroprotective approaches against Aβ neurotoxicity are still unavailable. In the present study, we investigated the protective effects of Akebia saponin D (ASD, a typical compound isolated from the rhizome of Dipsacus asper Wall, on Aβ1–42-induced impairment of learning and memory formation and explored the probable underlying molecular mechanisms. We found that treatment with ASD (30, 90 or 270 mg/kg significantly ameliorated impaired spatial learning and memory in intracerebroventricularly (ICV Aβ1–42-injected rats, as evidenced by a decrease tendency in escape latency during acquisition trials and improvement in exploratory activities in the probe trial in Morris water maze (MWM. Further study showed that ASD reversed Aβ1–42-induced accumulation of Aβ1–42 and Aβ1–40 in the hippocampus through down-regulating the expression of BACE and Presenilin 2 accompanied with increased the expression of TACE, IDE and LRP-1. Taken together, our findings suggested that ASD exerted therapeutic effects on Aβ-induced cognitive deficits via amyloidogenic pathway.

  4. Gait disorder as a predictor of spatial learning and memory impairment in aged mice

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2017-01-01

    Full Text Available Objective To investigate whether gait dysfunction is a predictor of severe spatial learning and memory impairment in aged mice. Methods A total of 100 12-month-old male mice that had no obvious abnormal motor ability and whose Morris water maze performances were not significantly different from those of two-month-old male mice were selected for the study. The selected aged mice were then divided into abnormal or normal gait groups according to the results from the quantitative gait assessment. Gaits of aged mice were defined as abnormal when the values of quantitative gait parameters were two standard deviations (SD lower or higher than those of 2-month-old male mice. Gait parameters included stride length, variability of stride length, base of support, cadence, and average speed. After nine months, mice exhibiting severe spatial learning and memory impairment were separated from mice with mild or no cognitive dysfunction. The rate of severe spatial learning and memory impairment in the abnormal and normal gait groups was tested by a chi-square test and the correlation between gait dysfunction and decline in cognitive function was tested using a diagnostic test. Results The 12-month-old aged mice were divided into a normal gait group (n = 75 and an abnormal gait group (n = 25. Nine months later, three mice in the normal gait group and two mice in the abnormal gait group had died. The remaining mice were subjected to the Morris water maze again, and 17 out of 23 mice in the abnormal gait group had developed severe spatial learning and memory impairment, including six with stride length deficits, 15 with coefficient of variation (CV in stride length, two with base of support (BOS deficits, five with cadence dysfunction, and six with average speed deficits. In contrast, only 15 out of 72 mice in the normal gait group developed severe spatial learning and memory impairment. The rate of severe spatial learning and memory impairment was

  5. Using principles of learning to inform language therapy design for children with specific language impairment.

    Science.gov (United States)

    Alt, Mary; Meyers, Christina; Ancharski, Alexandra

    2012-01-01

    Language treatment for children with specific language impairment (SLI) often takes months to achieve moderate results. Interventions often do not incorporate the principles that are known to affect learning in unimpaired learners. To outline some key findings about learning in typical populations and to suggest a model of how they might be applied to language treatment design as a catalyst for further research and discussion. Three main principles of implicit learning are reviewed: variability, complexity and sleep-dependent consolidation. After explaining these principles, evidence is provided as to how they influence learning tasks in unimpaired learners. Information is reviewed on principles of learning as they apply to impaired populations, current treatment designs are also reviewed that conform to the principles, and ways in which principles of learning might be incorporated into language treatment design are demonstrated. This paper provides an outline for how theoretical knowledge might be applied to clinical practice in an effort to promote discussion. Although the authors look forward to more specific details on how the principles of learning relate to impaired populations, there is ample evidence to suggest that these principles should be considered during treatment design. © 2012 Royal College of Speech and Language Therapists.

  6. Functional aging impairs the role of feedback in motor learning.

    Science.gov (United States)

    Liu, Yu; Cao, Chunmei; Yan, Jin H

    2013-10-01

    Optimal motor skill acquisition frequently requires augmented feedback or knowledge of results (KR). However, the effect of functional declines on the benefits of KR remains to be determined. The objective of this research was to examine how cognitive and motor deficits of older adults influence the use of KR for motor skill learning. A total of 57 older adults (mean 73.1 years; SD 4.2) received both cognitive and eye-hand coordination assessments, whereas 55 young controls (mean 25.8 years; SD 3.8) took only the eye-hand coordination test. All young and older participants learned a time-constrained arm movement through KR in three pre-KR and post-KR intervals. In the subsequent no-KR skill retests, absolute and variable time errors were not significantly reduced for the older learners who had KR during skill practice, especially for those with cognitive and motor dysfunctions. The finding suggests that KR results in no measureable improvement for older adults with cognitive and motor functional deficiencies. More importantly, for the older adults, longer post-KR intervals showed greater detrimental effects on feedback-based motor learning than shorter pauses after KR delivery. The findings support the hypothesis about the effects of cognitive and motor deficits on KR in motor skill learning of older adults. The dynamics of cognitive and motor aging, external feedback and internal control mechanisms collectively explain the deterioration in the sensory-motor learning of older adults. The theoretical implications and practical relevance of functional aging for motor skill learning are discussed. © 2013 Japan Geriatrics Society.

  7. High-fat diet induces hepatic insulin resistance and impairment of synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Zhigang Liu

    Full Text Available High-fat diet (HFD-induced obesity is associated with insulin resistance, which may affect brain synaptic plasticity through impairment of insulin-sensitive processes underlying neuronal survival, learning, and memory. The experimental model consisted of 3 month-old C57BL/6J mice fed either a normal chow diet (control group or a HFD (60% of calorie from fat; HFD group for 12 weeks. This model was characterized as a function of time in terms of body weight, fasting blood glucose and insulin levels, HOMA-IR values, and plasma triglycerides. IRS-1/Akt pathway was assessed in primary hepatocytes and brain homogenates. The effect of HFD in brain was assessed by electrophysiology, input/output responses and long-term potentiation. HFD-fed mice exhibited a significant increase in body weight, higher fasting glucose- and insulin levels in plasma, lower glucose tolerance, and higher HOMA-IR values. In liver, HFD elicited (a a significant decrease of insulin receptor substrate (IRS-1 phosphorylation on Tyr608 and increase of Ser307 phosphorylation, indicative of IRS-1 inactivation; (b these changes were accompanied by inflammatory responses in terms of increases in the expression of NFκB and iNOS and activation of the MAP kinases p38 and JNK; (c primary hepatocytes from mice fed a HFD showed decreased cellular oxygen consumption rates (indicative of mitochondrial functional impairment; this can be ascribed partly to a decreased expression of PGC1α and mitochondrial biogenesis. In brain, HFD feeding elicited (a an inactivation of the IRS-1 and, consequentially, (b a decreased expression and plasma membrane localization of the insulin-sensitive neuronal glucose transporters GLUT3/GLUT4; (c a suppression of the ERK/CREB pathway, and (d a substantial decrease in long-term potentiation in the CA1 region of hippocampus (indicative of impaired synaptic plasticity. It may be surmised that 12 weeks fed with HFD induce a systemic insulin resistance that impacts

  8. High fat diet intake during pre and periadolescence impairs learning of a conditioned place preference in adulthood

    Directory of Open Access Journals (Sweden)

    Sanabria Federico

    2011-06-01

    Full Text Available Abstract Background Brain regions that mediate learning of a conditioned place preference (CPP undergo significant development in pre and periadolescence. Consuming a high fat (HF diet during this developmental period and into adulthood can lead to learning impairments in rodents. The present study tested whether HF diet intake, consumed only in pre and periadolescence, would be sufficient to cause impairments using a CPP procedure. Methods Rats were randomly assigned to consume a HF or a low fat (LF diet during postnatal days (PD 21-40 and were then placed back on a standard lab chow diet. A 20-day CPP procedure, using HF Cheetos® as the unconditioned stimulus (US, began either the next day (PD 41 or 40 days later (PD 81. A separate group of adult rats were given the HF diet for 20 days beginning on PD 61, and then immediately underwent the 20-day CPP procedure beginning on PD 81. Results Pre and periadolescent exposure to a LF diet or adult exposure to a HF diet did not interfere with the development of a HF food-induced CPP, as these groups exhibited robust preferences for the HF Cheetos® food-paired compartment. However, pre and periadolescent exposure to the HF diet impaired the development of a HF food-induced CPP regardless of whether it was assessed immediately or 40 days after the exposure to the HF diet, and despite showing increased consumption of the HF Cheetos® in conditioning. Conclusions Intake of a HF diet, consumed only in pre and periadolescence, has long-lasting effects on learning that persist into adulthood.

  9. Chronic restraint stress promotes learning and memory impairment due to enhanced neuronal endoplasmic reticulum stress in the frontal cortex and hippocampus in male mice.

    Science.gov (United States)

    Huang, Rong-Rong; Hu, Wen; Yin, Yan-Yan; Wang, Yu-Chan; Li, Wei-Ping; Li, Wei-Zu

    2015-02-01

    Chronic stress has been implicated in many types of neurodegenerative diseases, such as Alzheimer's disease (AD). In our previous study, we demonstrated that chronic restraint stress (CRS) induced reactive oxygen species (ROS) overproduction and oxidative damage in the frontal cortex and hippocampus in mice. In the present study, we investigated the effects of CRS (over a period of 8 weeks) on learning and memory impairment and endoplasmic reticulum (ER) stress in the frontal cortex and hippocampus in male mice. The Morris water maze was used to investigate the effects of CRS on learning and memory impairment. Immunohistochemistry and immunoblot analysis were also used to determine the expression levels of protein kinase C α (PKCα), 78 kDa glucose-regulated protein (GRP78), C/EBP-homologous protein (CHOP) and mesencephalic astrocyte-derived neurotrophic factor (MANF). The results revealed that CRS significantly accelerated learning and memory impairment, and induced neuronal damage in the frontal cortex and hippocampus CA1 region. Moreover, CRS significantly increased the expression of PKCα, CHOP and MANF, and decreased that of GRP78 in the frontal cortex and hippocampus. Our data suggest that exposure to CRS (for 8 weeks) significantly accelerates learning and memory impairment, and the mechanisms involved may be related to ER stress in the frontal cortex and hippocampus.

  10. Intracerebroventricular administration of taurine impairs learning and memory in rats.

    Science.gov (United States)

    Ito, Koichi; Arko, Matevž; Kawaguchi, Tomohiro; Kikusui, Takefumi; Kuwahara, Masayoshi; Tsubone, Hirokazu

    2012-03-01

    Taurine is a semi-essential amino acid widely distributed in the body and we take in it from a wide range of nutritive-tonic drinks to improve health. To date, we have elucidated that oral supplementation of taurine does not affect learning and memory in the rat. However, there are few studies concerning the direct effects of taurine in the brain at the behavior level. In this study, we intracerebroventricularly administered taurine to rats and aimed to elucidate the acute effects on learning and memory using the Morris water maze method. Escape latency, swim distance, and distance to zone, which is the integral of the distance between the rats and the platform for every 0.16 seconds, were adopted as parameters of the ability of learning and memory. We also tried to evaluate the effect of intraperitoneal taurine administration. Escape latency, swim distance, and distance to zone were significantly longer in the intracerebroventricularly taurine-administered rats than in the saline-administered rats. Mean swimming velocity was comparable between these two groups, although the physical performance was improved by taurine administration. Probe trials showed that the manner of the rats in finding the platform was comparable. In contrast, no significant differences were found between the intraperitoneally taurine-administered rats and the saline-administered rats. These results indicate that taurine administered directly into the brain ventricle suppresses and delays the ability of learning and memory in rats. In contrast, it is implied that taurine administered peripherally was not involved in learning and memory.

  11. Impaired Expected Value Computations Coupled With Overreliance on Stimulus-Response Learning in Schizophrenia.

    Science.gov (United States)

    Hernaus, Dennis; Gold, James M; Waltz, James A; Frank, Michael J

    2018-04-03

    While many have emphasized impaired reward prediction error signaling in schizophrenia, multiple studies suggest that some decision-making deficits may arise from overreliance on stimulus-response systems together with a compromised ability to represent expected value. Guided by computational frameworks, we formulated and tested two scenarios in which maladaptive representations of expected value should be most evident, thereby delineating conditions that may evoke decision-making impairments in schizophrenia. In a modified reinforcement learning paradigm, 42 medicated people with schizophrenia and 36 healthy volunteers learned to select the most frequently rewarded option in a 75-25 pair: once when presented with a more deterministic (90-10) pair and once when presented with a more probabilistic (60-40) pair. Novel and old combinations of choice options were presented in a subsequent transfer phase. Computational modeling was employed to elucidate contributions from stimulus-response systems (actor-critic) and expected value (Q-learning). People with schizophrenia showed robust performance impairments with increasing value difference between two competing options, which strongly correlated with decreased contributions from expected value-based learning (Q-learning). Moreover, a subtle yet consistent contextual choice bias for the probabilistic 75 option was present in people with schizophrenia, which could be accounted for by a context-dependent reward prediction error in the actor-critic. We provide evidence that decision-making impairments in schizophrenia increase monotonically with demands placed on expected value computations. A contextual choice bias is consistent with overreliance on stimulus-response learning, which may signify a deficit secondary to the maladaptive representation of expected value. These results shed new light on conditions under which decision-making impairments may arise. Copyright © 2018 Society of Biological Psychiatry. Published by

  12. Comparison of explicit and incidental learning strategies in memory-impaired patients.

    Science.gov (United States)

    Smith, Christine N; Urgolites, Zhisen J; Hopkins, Ramona O; Squire, Larry R

    2014-01-07

    Declarative memory for rapidly learned, novel associations is thought to depend on structures in the medial temporal lobe (MTL), whereas associations learned more gradually can sometimes be supported by nondeclarative memory and by structures outside the MTL. A recent study suggested that even rapidly learned associations can be supported by structures outside the MTL when an incidental encoding procedure termed "fast mapping" (FM) is used. We tested six memory-impaired patients with bilateral damage to hippocampus and one patient with large bilateral lesions of the MTL. Participants saw photographs and names of animals, plants, and foods that were previously unfamiliar (e.g., mangosteen). Instead of asking participants to study name-object pairings for a later memory test (as with traditional memory instructions), participants answered questions that allowed them to infer which object corresponded to a particular name. In a second condition, participants learned name-object associations of unfamiliar items by using standard, explicit encoding instructions (e.g., remember the mangosteen). In FM and explicit encoding conditions, patients were impaired (and performed no better than a group that was given the same tests but had not previously studied the material). The same results were obtained in a second experiment that used the same procedures with modifications to allow for more robust learning and more reliable measures of performance. Thus, our results with the FM procedure and memory-impaired patients yielded the same deficits in learning and memory that have been obtained by using other more traditional paradigms.

  13. Chronic Fluoxetine Induces Activity Changes in Recovery From Poststroke Anxiety, Depression, and Cognitive Impairment.

    Science.gov (United States)

    Vahid-Ansari, Faranak; Albert, Paul R

    2018-01-01

    Poststroke depression (PSD) is a common outcome of stroke that limits recovery and is only partially responsive to chronic antidepressant treatment. In order to elucidate changes in the cortical-limbic circuitry associated with PSD and its treatment, we examined a novel mouse model of persistent PSD. Focal endothelin-1-induced ischemia of the left medial prefrontal cortex (mPFC) in male C57BL6 mice resulted in a chronic anxiety and depression phenotype. Here, we show severe cognitive impairment in spatial learning and memory in the stroke mice. The behavioral and cognitive phenotypes were reversed by chronic (4-week) treatment with fluoxetine, alone or with voluntary exercise (free-running wheel), but not by exercise alone. To assess chronic cellular activation, FosB + cells were co-labeled for markers of glutamate/pyramidal (VGluT1-3/CaMKIIα), γ-aminobutyric acid (GAD67), and serotonin (TPH). At 6 weeks poststroke versus sham (or 4 days poststroke), left mPFC stroke induced widespread FosB activation, more on the right (contralesional) than on the left side. Stroke activated glutamate cells of the mPFC, nucleus accumbens, amygdala, hippocampus, and raphe serotonin neurons. Chronic fluoxetine balanced bilateral neuronal activity, reducing total FosB and FosB/CamKII + cells (mPFC, nucleus accumbens), and unlike exercise, increasing FosB/GAD67 + cells (septum, amygdala) or both (hippocampus, raphe). In summary, chronic antidepressant but not exercise mediates recovery in this unilateral ischemic PSD model that is associated with region-specific reversal of stroke-induced pyramidal cell hyperactivity and increase in γ-aminobutyric acidergic activity. Targeted brain stimulation to restore brain activity could provide a rational approach for treating clinical PSD.

  14. Verbal learning and memory impairments in posttraumatic stress disorder: the role of encoding strategies.

    Science.gov (United States)

    Johnsen, Grethe E; Asbjørnsen, Arve E

    2009-01-30

    The present study examined mechanisms underlying verbal memory impairments in patients with posttraumatic stress disorder (PTSD). Earlier studies have reported that the verbal learning and memory alterations in PTSD are related to impaired encoding, but the use of encoding and organizational strategies in patients with PTSD has not been fully explored. This study examined organizational strategies in 21 refugees/immigrants exposed to war and political violence who fulfilled DSM-IV criteria for chronic PTSD compared with a control sample of 21 refugees/immigrants with similar exposure, but without PTSD. The California Verbal Learning Test was administered to examine differences in organizational strategies and memory. The semantic clustering score was slightly reduced in both groups, but the serial cluster score was significantly impaired in the PTSD group and they also reported more items from the recency region of the list. In addition, intrusive errors were significantly increased in the PTSD group. The data support an assumption of changed memory strategies in patients with PTSD associated with a specific impairment in executive control. However, memory impairment and the use of ineffective learning strategies may not be related to PTSD symptomatology only, but also to self-reported symptoms of depression and general distress.

  15. Maternal DHA supplementation protects rat offspring against impairment of learning and memory following prenatal exposure to valproic acid.

    Science.gov (United States)

    Gao, Jingquan; Wu, Hongmei; Cao, Yonggang; Liang, Shuang; Sun, Caihong; Wang, Peng; Wang, Ji; Sun, Hongli; Wu, Lijie

    2016-09-01

    Docosahexaenoic acid (22:6n-3; DHA) is known to play a critical role in postnatal brain development. However, there have been no studies investigating the preventive effect of DHA on prenatal valproic acid (VPA)-induced behavioral and molecular alterations in offspring. The present study was to evaluate the neuroprotective effects in offspring using maternal feeding of DHA to rats exposed to VPA in pregnancy. In the present study, rats were exposed to VPA on day 12.5 of pregnancy; DHA was administered at the dosages of 100, 300 and 500 mg/kg/day for 3 weeks from day 1 to 21 of pregnancy. The results showed that maternal feeding of DHA to the prenatal exposed to VPA (1) prevented VPA-induced learning and memory impairment but did not change social-related behavior, (2) increased total DHA content in offspring plasma and hippocampus, (3) rescued VPA-induced neuronal loss and apoptosis of pyramidal cells in hippocampal CA1, (4) influenced the content of malondialdehyde and glutathione and the activities of superoxide dismutase and glutathione in the hippocampus, (5) altered levels of apoptosis-related proteins (Bcl-2, Bax and caspase-3) and inhibited the activity of caspase-3 in offspring hippocampus and (6) enhanced relative levels of p-CaMKII and p-CREB proteins in the hippocampus. These findings suggest that maternal feeding with DHA may prevent prenatal VPA-induced impairment of learning and memory, normalize several different molecules associated with oxidative stress and apoptosis in the hippocampus of offspring, and exert preventive effects on prenatal VPA-induced brain dysfunction. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Effects of thioperamide on seizure development and memory impairment induced by pentylenetetrazole-kindling epilepsy in rats

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-san; CHEN Jie-fang; CHEN Guan-feng; HU Xing-yue; DING Mei-ping

    2013-01-01

    Background Histamine H3 receptor antagonists have been considered as potential drugs to treat central nervous system diseases.However,whether these drugs can inhibit epileptogenesis remains unclear.This study aimed to investigate the effects of thioperamide,a selective and potent histamine H3 receptor antagonist,on the seizure development and memory impairment induced by pentylenetetrazole (PTZ)-kindling epilepsy in rats.Methods Chemical kindling was elicited by repeated intraperitoneal (ip) injections of a subconvulsant dose of PTZ (35 mg/kg) once every 48 hours for 12 times,and seizure activity of kindling was recorded for 30 minutes.Control rats were ip injected with saline instead of PTZ.Morris water maze was used to evaluate the spatial memory.Phosphorylated cyclic adenosine monophosphate response element binding protein (p-CREB) was tested by Western blotting in hippocampus.Results Intracerebroventricular (icv) injections with thioperamide (10 μg,20 μg) 30 minutes before every PTZ injections,significantly prolonged the onset of PTZ-kindling and inhibited the seizure stages.PTZ-kindling seizures led to the impairment of spatial memory in rats,and thioperamide ameliorated the impairment of spatial learning and memory.Compared to non-kindling rats,there was a significant decrease in p-CREB level in hippocampus of the PTZ-kindling rats,which was reversed by thioperamide.Conclusions Thioperamide plays a protective role in seizure development and cognitive impairment of PTZ-induced kindling in rats.The protection of thioperamide in cognitive impairment is possibly associated with the enhancement of CREB-dependent transcription.

  17. Communicating Science Concepts to Individuals with Visual Impairments Using Short Learning Modules

    Science.gov (United States)

    Stender, Anthony S.; Newell, Ryan; Villarreal, Eduardo; Swearer, Dayne F.; Bianco, Elisabeth; Ringe, Emilie

    2016-01-01

    Of the 6.7 million individuals in the United States who are visually impaired, 63% are unemployed, and 59% have not attained an education beyond a high school diploma. Providing a basic science education to children and adults with visual disabilities can be challenging because most scientific learning relies on visual demonstrations. Creating…

  18. Meeting the Needs of Students with Coexisting Visual Impairments and Learning Disabilities

    Science.gov (United States)

    Jones, Beth A.; Hensley-Maloney, Lauren

    2015-01-01

    The coexistence of visual impairments and learning disabilities presents unique challenges. It is imperative that teachers be apprised of the characteristics of this population as well as instructional strategies targeted at meeting their unique needs. The authors highlight typical patterns of performance and provide suggestions for effective…

  19. Using electronic storybooks to support word learning in children with severe language impairments

    NARCIS (Netherlands)

    Smeets, Daisy J. H.; van Dijken, Marianne J.; Bus, Adriana G

    2012-01-01

    Novel word learning is reported to be problematic for children with severe language impairments (SLI). In this study, we tested electronic storybooks as a tool to support vocabulary acquisition in SLI children. In Experiment 1, 29 kindergarten SLI children heard four e-books each four times: (a) two

  20. Multiple Learning Strategies Project. Building Maintenance & Engineering. Educable Mentally Impaired. [Vol. 2.

    Science.gov (United States)

    Constantini, Debra; And Others

    This instructional package is one of three designed for educable mentally impaired students in the vocational area of building maintenance and engineering. The thirty-four learning modules are organized into six units: general maintenance tasks; restrooms; chalkboards; carpet care; office cleaning; and grounds. Each module includes these elements:…

  1. Multiple Learning Strategies Project. Building Maintenance & Engineering. Educable Mentally Impaired. [Vol. 1.

    Science.gov (United States)

    Smith, Dwight; And Others

    This instructional package is one of three designed for educable mentally impaired students in the vocational area of building maintenance and engineering. The thirty learning modules are organized into two units: floor care and general maintenance tasks. Each module includes these elements: a performance objective page which tells the student…

  2. Brain Substrates of Learning and Retention in Mild Cognitive Impairment Diagnosis and Progression to Alzheimer's Disease

    Science.gov (United States)

    Chang, Yu-Ling; Bondi, Mark W.; Fennema-Notestine, Christine; McEvoy, Linda K.; Hagler, Donald J., Jr.; Jacobson, Mark W.; Dale, Anders M.

    2010-01-01

    Understanding the underlying qualitative features of memory deficits in mild cognitive impairment (MCI) can provide critical information for early detection of Alzheimer's disease (AD). This study sought to investigate the utility of both learning and retention measures in (a) the diagnosis of MCI, (b) predicting progression to AD, and (c)…

  3. Using Discrete Trial Training to Identify Specific Learning Impairments in Boys with Fragile X Syndrome

    Science.gov (United States)

    Hall, Scott S.; Hustyi, Kristin M.; Hammond, Jennifer L.; Hirt, Melissa; Reiss, Allan L.

    2014-01-01

    We examined whether "discrete trial training" (DTT) could be used to identify learning impairments in mathematical reasoning in boys with fragile X syndrome (FXS). Boys with FXS, aged 10-23 years, and age and IQ-matched controls, were trained to match fractions to pie-charts and pie-charts to decimals either on a computer or with a…

  4. APOE epsilon4 is associated with impaired verbal learning in patients with MS.

    Science.gov (United States)

    Koutsis, G; Panas, M; Giogkaraki, E; Potagas, C; Karadima, G; Sfagos, C; Vassilopoulos, D

    2007-02-20

    To investigate the effect of APOE epsilon4 on different cognitive domains in a population of Greek patients with multiple sclerosis (MS). A total of 125 patients with MS and 43 controls were included in this study and underwent neuropsychological assessment with Rao's Brief Repeatable Battery. All patients with MS were genotyped for APOE. The effect of APOE epsilon4 on different cognitive domains was investigated. Fifty-one percent of patients with MS were cognitively impaired. E4 carriers had a sixfold increase in the relative risk of impairment in verbal learning vs noncarriers (OR 6.28, 95% CI 1.74 to 22.69). This effect was domain-specific and was not observed in other cognitive domains assessed by the battery. We found an association of APOE epsilon4 with impaired verbal learning in patients with multiple sclerosis.

  5. The effect of resveratrol on beta amyloid-induced memory impairment involves inhibition of phosphodiesterase-4 related signaling.

    Science.gov (United States)

    Wang, Gang; Chen, Ling; Pan, Xiaoyu; Chen, Jiechun; Wang, Liqun; Wang, Weijie; Cheng, Ruochuan; Wu, Fan; Feng, Xiaoqing; Yu, Yingcong; Zhang, Han-Ting; O'Donnell, James M; Xu, Ying

    2016-04-05

    Resveratrol, a natural polyphenol found in red wine, has wide spectrum of pharmacological properties including antioxidative and antiaging activities. Beta amyloid peptides (Aβ) are known to involve cognitive impairment, neuroinflammatory and apoptotic processes in Alzheimer's disease (AD). Activation of cAMP and/or cGMP activities can improve memory performance and decrease the neuroinflammation and apoptosis. However, it remains unknown whether the memory enhancing effect of resveratrol on AD associated cognitive disorders is related to the inhibition of phosphodiesterase 4 (PDE4) subtypes and subsequent increases in intracellular cAMP and/or cGMP activities. This study investigated the effect of resveratrol on Aβ1-42-induced cognitive impairment and the participation of PDE4 subtypes related cAMP or cGMP signaling. Mice microinfused with Aβ1-42 into bilateral CA1 subregions displayed learning and memory impairment, as evidenced by reduced memory acquisition and retrieval in the water maze and retention in the passive avoidance tasks; it was also significant that neuroinflammatory and pro-apoptotic factors were increased in Aβ1-42-treated mice. Aβ1-42-treated mice also increased in PDE4A, 4B and 4D expression, and decreased in PKA level. However, PKA inhibitor H89, but not PKG inhibitor KT5823, prevented resveratrol's effects on these parameters. Resveratrol also reversed Aβ1-42-induced decreases in phosphorylated cAMP response-element binding protein (pCREB), brain derived neurotrophic factor (BDNF) and anti-apoptotic factor BCl-2 expression, which were reversed by H89. These findings suggest that resveratrol reversing Aβ-induced learning and memory disorder may involve the regulation of neuronal inflammation and apoptosis via PDE4 subtypes related cAMP-CREB-BDNF signaling.

  6. Piracetam prevents scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities.

    Science.gov (United States)

    Marisco, Patricia C; Carvalho, Fabiano B; Rosa, Michelle M; Girardi, Bruna A; Gutierres, Jessié M; Jaques, Jeandre A S; Salla, Ana P S; Pimentel, Víctor C; Schetinger, Maria Rosa C; Leal, Daniela B R; Mello, Carlos F; Rubin, Maribel A

    2013-08-01

    Piracetam improves cognitive function in animals and in human beings, but its mechanism of action is still not completely known. In the present study, we investigated whether enzymes involved in extracellular adenine nucleotide metabolism, adenosine triphosphate diphosphohydrolase (NTPDase), 5'-nucleotidase and adenosine deaminase (ADA) are affected by piracetam in the hippocampus and cerebral cortex of animals subjected to scopolamine-induced memory impairment. Piracetam (0.02 μmol/5 μL, intracerebroventricular, 60 min pre-training) prevented memory impairment induced by scopolamine (1 mg/kg, intraperitoneal, immediately post-training) in the inhibitory avoidance learning and in the object recognition task. Scopolamine reduced the activity of NTPDase in hippocampus (53 % for ATP and 53 % for ADP hydrolysis) and cerebral cortex (28 % for ATP hydrolysis). Scopolamine also decreased the activity of 5'-nucleotidase (43 %) and ADA (91 %) in hippocampus. The same effect was observed in the cerebral cortex for 5'-nucleotidase (38 %) and ADA (68 %) activities. Piracetam fully prevented scopolamine-induced memory impairment and decrease of NTPDase, 5'-nucleotidase and adenosine deaminase activities in synaptosomes from cerebral cortex and hippocampus. In vitro experiments show that piracetam and scopolamine did not alter enzymatic activity in cerebral cortex synaptosomes. Moreover, piracetam prevented scopolamine-induced increase of TBARS levels in hippocampus and cerebral cortex. These results suggest that piracetam-induced improvement of memory is associated with protection against oxidative stress and maintenance of NTPDase, 5'-nucleotidase and ADA activities, and suggest the purinergic system as a putative target of piracetam.

  7. Peripheral surgical wounding may induce cognitive impairment through interlukin-6-dependent mechanisms in aged mice

    OpenAIRE

    Dong, Yuanlin; Xu, Zhipeng; Huang, Lining; Zhang, Yiying; Xie, Zhongcong

    2016-01-01

    Post-operative cognitive dysfunction (POCD) is associated with morbidity, mortality and increased cost of medical care. However, the neuropathogenesis and targeted interventions of POCD remain largely to be determined. We have found that the peripheral surgical wounding induces an age-dependent A? accumulation, neuroinflammation and cognitive impairment in aged mice. Pro-inflammatory cytokine interlukin-6 (IL-6) has been reported to be associated with cognitive impairment in rodents and human...

  8. Novelty exposure overcomes foot shock-induced spatial-memory impairment by processes of synaptic-tagging in rats.

    Science.gov (United States)

    Almaguer-Melian, William; Bergado-Rosado, Jorge; Pavón-Fuentes, Nancy; Alberti-Amador, Esteban; Mercerón-Martínez, Daymara; Frey, Julietta U

    2012-01-17

    Novelty processing can transform short-term into long-term memory. We propose that this memory-reinforcing effect of novelty could be explained by mechanisms outlined in the "synaptic tagging hypothesis." Initial short-term memory is sustained by a transient plasticity change at activated synapses and sets synaptic tags. These tags are later able to capture and process the plasticity-related proteins (PRPs), which are required to transform a short-term synaptic change into a long-term one. Novelty is involved in inducing the synthesis of PRPs [Moncada D, et al. (2011) Proc Natl Acad Sci USA 108:12937-12936], which are then captured by the tagged synapses, consolidating memory. In contrast to novelty, stress can impair learning, memory, and synaptic plasticity. Here, we address questions as to whether novelty-induced PRPs are able to prevent the loss of memory caused by stress and if the latter would not interact with the tag-setting process. We used water-maze (WM) training as a spatial learning paradigm to test our hypothesis. Stress was induced by a strong foot shock (FS; 5 × 1 mA, 2 s) applied 5 min after WM training. Our data show that FS reduced long-term but not short-term memory in the WM paradigm. This negative effect on memory consolidation was time- and training-dependent. Interestingly, novelty exposure prevented the stress-induced memory loss of the spatial task and increased BDNF and Arc expression. This rescuing effect was blocked by anisomycin, suggesting that WM-tagged synapses were not reset by FS and were thus able to capture the novelty-induced PRPs, re-establishing FS-impaired long-term memory.

  9. Neuroprotective effects of the polyphenolic antioxidant agent, Curcumin, against homocysteine-induced cognitive impairment and oxidative stress in the rat.

    Science.gov (United States)

    Ataie, Amin; Sabetkasaei, Masoumeh; Haghparast, Abbas; Moghaddam, Akbar Hajizadeh; Kazeminejad, Behrang

    2010-10-01

    Aging is the major risk factor for neurodegenerative diseases and oxidative stress is involved in the pathophysiology of these diseases. In this study, the possible antioxidant and neuroprotective properties of the polyphenolic antioxidant compound, Curcumin against homocysteine (Hcy) neurotoxicity was investigated. Curcumin (5 and 50mg/kg) was injected intraperitoneally once daily for a period of 10 days beginning 5 days prior to Hcy (0.2 micromol/microl) intrahippocampal injection in rats. Biochemical and behavioral studies, including passive avoidance learning and locomotor activity tests were studied 24h after the last Curcumin or its vehicle injection. We detected Malondialdehyde (MDA) and Super oxide anion (SOA) in rats' hippocampi. Results indicated that Hcy could induce lipid peroxidation and increase MDA and SOA levels in rats' hippocampi. Additionally, Hcy impaired memory retention in passive avoidance learning test. However, Curcumin treatment decreased MDA and SOA levels significantly as well as improved learning and memory in rats. Histopathological analysis also indicated that Hcy could decrease hippocampus cell count and Curcumin inhibited this toxic effect. These results suggest that Hcy may induce lipid peroxidation in rats' hippocampi and polyphenol treatment (Curcumin) improved learning and memory deficits by protecting the nervous system against Hcy toxicity. (c) 2010 Elsevier Inc. All rights reserved.

  10. Intracerebroventricular administration of adiponectin attenuates streptozotocin-induced memory impairment in rats.

    Science.gov (United States)

    Mazrooie, R; Rohampour, K; Zamani, M; Hosseinmardi, N; Zeraati, M

    2017-06-01

    Alzheimer's disease (AD) has been reported to be linked with diabetes mellitus and insulin resistance. Adiponectin (ADN), an adipocytokine secreted from adipose tissue, is involved in the regulation of insulin sensitivity, energy homeostasis, and mitochondrial dysfunction. In this study, we examined the effect of ADN on passive avoidance memory in animal model of sporadic AD (sAD). On days 1 and 3 after cannulation, rats received intracerebroventricular (icv) injection of streptozotocin (STZ) (3 mg/kg). Thirty minutes before the learning process, animals received saline or ADN in different doses (6, 60, and 600 µg). The step-through latency (STL) and total time spent in the dark compartment (TDC) were recorded and analyzed. In STZ-treated rats, STL was significantly decreased, whereas TDC showed a dramatic increase. In ADN-treated rats, STL was significantly increased (P ADN (P ADN is useful to improve the STZ-induced memory impairment. This study showed, for the first time, that icv administration of ADN could improve the memory acquisition in animal model of sAD.

  11. The Effects of Online Interactions on the Relationship between Learning-Related Anxiety and Intention to Persist among E-Learning Students with Visual Impairment

    Science.gov (United States)

    Oh, Yunjin; Lee, Soon Min

    2016-01-01

    This study explored whether learning-related anxiety would negatively affect intention to persist with e-learning among students with visual impairment, and examined the roles of three online interactions in the relationship between learning-related anxiety and intention to persist with e-learning. For this study, a convenience sample of…

  12. Deletion of PEA-15 in mice is associated with specific impairments of spatial learning abilities

    Directory of Open Access Journals (Sweden)

    Hale Gregory

    2009-11-01

    Full Text Available Abstract Background PEA-15 is a phosphoprotein that binds and regulates ERK MAP kinase and RSK2 and is highly expressed throughout the brain. PEA-15 alters c-Fos and CREB-mediated transcription as a result of these interactions. To determine if PEA-15 contributes to the function of the nervous system we tested mice lacking PEA-15 in a series of experiments designed to measure learning, sensory/motor function, and stress reactivity. Results We report that PEA-15 null mice exhibited impaired learning in three distinct spatial tasks, while they exhibited normal fear conditioning, passive avoidance, egocentric navigation, and odor discrimination. PEA-15 null mice also had deficient forepaw strength and in limited instances, heightened stress reactivity and/or anxiety. However, these non-cognitive variables did not appear to account for the observed spatial learning impairments. The null mice maintained normal weight, pain sensitivity, and coordination when compared to wild type controls. Conclusion We found that PEA-15 null mice have spatial learning disabilities that are similar to those of mice where ERK or RSK2 function is impaired. We suggest PEA-15 may be an essential regulator of ERK-dependent spatial learning.

  13. Prenatal exposure to nanosized zinc oxide in rats: neurotoxicity and postnatal impaired learning and memory ability.

    Science.gov (United States)

    Xiaoli, Feng; Junrong, Wu; Xuan, Lai; Yanli, Zhang; Limin, Wei; Jia, Liu; Longquan, Shao

    2017-04-01

    To examine the neurotoxicity of prenatal exposure to ZnO nanoparticles on rat offspring. Pregnant Sprague-Dawley rats were exposed to ZnO nanoparticles (NPs) by gavage. Toxicity was assessed including zinc biodistribution, cerebral histopathology, antioxidant status and learning and memory capability. A significantly elevated concentration of zinc was detected in offspring brains. Transmission electron microscope observations showed abnormal neuron ultrastructures. Histopathologic changes such as decreased proliferation and higher apoptotic death were observed. An obvious imbalanced antioxidant status occurred in brains. Adult experimental offspring exhibited impaired learning and memory behavior in the Morris water maze test compared with control groups. These adverse effects on offspring brain may cause impaired learning and memory capabilities in adulthood, particularly in female rats.

  14. Nicotine Significantly Improves Chronic Stress-Induced Impairments of Cognition and Synaptic Plasticity in Mice.

    Science.gov (United States)

    Shang, Xueliang; Shang, Yingchun; Fu, Jingxuan; Zhang, Tao

    2017-08-01

    The aim of this study was to examine if nicotine was able to improve cognition deficits in a mouse model of chronic mild stress. Twenty-four male C57BL/6 mice were divided into three groups: control, stress, and stress with nicotine treatment. The animal model was established by combining chronic unpredictable mild stress (CUMS) and isolated feeding. Mice were exposed to CUMS continued for 28 days, while nicotine (0.2 mg/kg) was also administrated for 28 days. Weight and sucrose consumption were measured during model establishing period. The anxiety and behavioral despair were analyzed using the forced swim test (FST) and open-field test (OFT). Spatial cognition was evaluated using Morris water maze (MWM) test. Following behavioral assessment, both long-term potentiation (LTP) and depotentiation (DEP) were recorded in the hippocampal dentate gyrus (DG) region. Both synaptic and Notch1 proteins were measured by Western. Nicotine increased stressed mouse's sucrose consumption. The MWM test showed that spatial learning and reversal learning in stressed animals were remarkably affected relative to controls, whereas nicotine partially rescued cognitive functions. Additionally, nicotine considerably alleviated the level of anxiety and the degree of behavioral despair in stressed mice. It effectively mitigated the depression-induced impairment of hippocampal synaptic plasticity, in which both the LTP and DEP were significantly inhibited in stressed mice. Moreover, nicotine enhanced the expression of synaptic and Notch1 proteins in stressed animals. The results suggest that nicotine ameliorates the depression-like symptoms and improves the hippocampal synaptic plasticity closely associated with activating transmembrane ion channel receptors and Notch signaling components. Graphical Abstract ᅟ.

  15. Ameliorating Effects of Ethanol Extract of Fructus mume on Scopolamine-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Min-Soo Kim

    2015-01-01

    Full Text Available We previously reported that Fructus mume (F. mume extract shows protective effects on memory impairments and anti-inflammatory effects induced by chronic cerebral hypoperfusion. Neurodegeneration of basal cholinergic neurons is also observed in the brain with chronic cerebral hypoperfusion. Therefore, the present study was conducted to examine whether F. mume extracts enhance cognitive function via the action of cholinergic neuron using a scopolamine-induced animal model of memory impairments. F. mume (50, 100, or 200 mg/kg was administered to C57BL/6 mice for 14 days (days 1–14 and memory impairment was induced by scopolamine (1 mg/kg, a muscarinic receptor antagonist for 7 days (days 8–14. Spatial memory was assessed using Morris water maze and hippocampal level of acetylcholinesterase (AChE and choline acetyltransferase (ChAT was examined by ELISA and immunoblotting. Mice that received scopolamine alone showed impairments in acquisition and retention in Morris water maze task and increased activity of AChE in the hippocampus. Mice that received F. mume and scopolamine showed no scopolamine-induced memory impairment and increased activity of AChE. In addition, treatments of F. mume increased ChAT expression in the hippocampus. These results indicated that F. mume might enhance cognitive function via action of cholinergic neurons.

  16. Nucleus incertus inactivation impairs spatial learning and memory in rats.

    Science.gov (United States)

    Nategh, Mohsen; Nikseresht, Sara; Khodagholi, Fariba; Motamedi, Fereshteh

    2015-02-01

    Nucleus incertus (NI) is a pontine nucleus which releases mainly GABA and relaxin-3 in rats. Its suggested functions include response to stress, arousal, and modulation of hippocampal theta rhythm. Since the role of NI in learning and memory has not been well characterized, therefore the involvement of this nucleus in spatial learning and memory and the aftermath hippocampal levels of c-fos and pCREB were evaluated. NI was targeted by implanting cannula in male rats. For reference memory, NI was inactivated by lidocaine (0.4 μl, 4%) at three stages of acquisition, consolidation and retrieval in Morris water maze paradigm. For working memory, NI was inactivated in acquisition and retrieval phases. Injection of lidocaine prior to the first training session of reference memory significantly increased the distance moved, suggesting that inactivation of NI delays acquisition in this spatial task. Inactivation also interfered with the retrieval phase of spatial reference memory, as the time in target quadrant for lidocaine group was less, and the escape latency was higher compared to the control group. However, no difference was observed in the consolidation phase. In the working memory task, with inter-trial intervals of 75 min, the escape latency was higher when NI was inactivated in the retrieval phase. In addition, c-fos and pCREB/CREB levels decreased in NI-inhibited rats. This study suggests that nucleus incertus might participate in acquisition of spatial reference, and retrieval of both spatial reference and working memory. Further studies should investigate possible roles of NI in the hippocampal plasticity. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Why segmentation matters: experience-driven segmentation errors impair “morpheme” learning

    Science.gov (United States)

    Finn, Amy S.; Hudson Kam, Carla L.

    2015-01-01

    We ask whether an adult learner’s knowledge of their native language impedes statistical learning in a new language beyond just word segmentation (as previously shown). In particular, we examine the impact of native-language word-form phonotactics on learners’ ability to segment words into their component morphemes and learn phonologically triggered variation of morphemes. We find that learning is impaired when words and component morphemes are structured to conflict with a learner’s native-language phonotactic system, but not when native-language phonotactics do not conflict with morpheme boundaries in the artificial language. A learner’s native-language knowledge can therefore have a cascading impact affecting word segmentation and the morphological variation that relies upon proper segmentation. These results show that getting word segmentation right early in learning is deeply important for learning other aspects of language, even those (morphology) that are known to pose a great difficulty for adult language learners. PMID:25730305

  18. Why segmentation matters: Experience-driven segmentation errors impair "morpheme" learning.

    Science.gov (United States)

    Finn, Amy S; Hudson Kam, Carla L

    2015-09-01

    We ask whether an adult learner's knowledge of their native language impedes statistical learning in a new language beyond just word segmentation (as previously shown). In particular, we examine the impact of native-language word-form phonotactics on learners' ability to segment words into their component morphemes and learn phonologically triggered variation of morphemes. We find that learning is impaired when words and component morphemes are structured to conflict with a learner's native-language phonotactic system, but not when native-language phonotactics do not conflict with morpheme boundaries in the artificial language. A learner's native-language knowledge can therefore have a cascading impact affecting word segmentation and the morphological variation that relies upon proper segmentation. These results show that getting word segmentation right early in learning is deeply important for learning other aspects of language, even those (morphology) that are known to pose a great difficulty for adult language learners. (c) 2015 APA, all rights reserved).

  19. Involvement of nitric oxide in granisetron improving effect on scopolamine-induced memory impairment in mice.

    Science.gov (United States)

    Javadi-Paydar, Mehrak; Zakeri, Marjan; Norouzi, Abbas; Rastegar, Hossein; Mirazi, Naser; Dehpour, Ahmad Reza

    2012-01-06

    Granisetron, a serotonin 5-HT(3) receptor antagonist, widely used as an antiemetic drug following chemotherapy, has been found to improve learning and memory. In this study, effects of granisetron on spatial recognition memory and fear memory and the involvement of nitric oxide (NO) have been determined in a Y-maze and passive avoidance test. Granisetron (3, 10mg/kg, intraperitoneally) was administered to scopolamine-induced memory-impaired mice prior to acquisition, consolidation and retrieval phases, either in the presence or in the absence of a non-specific NO synthase inhibitor, l-NAME (3, 10mg/kg, intraperitoneally); a specific inducible NO synthase (iNOS) inhibitor, aminoguanidine (100mg/kg); and a NO precursor, l-arginine (750 mg/kg). It is demonstrated that granisetron improved memory acquisition in a dose-dependent manner, but it was ineffective on consolidation and retrieval phases of memory. The beneficial effect of granisetron (10mg/kg) on memory acquisition was significantly reversed by l-NAME (10mg/kg) and aminoguanidine (100mg/kg); however, l-arginine (750 mg/kg) did not potentiate the effect of sub-effective dose of granisetron (3mg/kg) in memory acquisition phase. It is concluded that nitric oxide is probably involved in improvement of memory acquisition by granisetron in both spatial recognition memory and fear memory. This article is part of a Special Issue entitled The Cognitive Neuroscience. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. NMDA or 5-HT receptor antagonists impair memory reconsolidation and induce various types of amnesia.

    Science.gov (United States)

    Nikitin, V P; Solntseva, S V; Kozyrev, S A; Nikitin, P V; Shevelkin, A V

    2018-06-01

    Elucidation of amnesia mechanisms is one of the central problems in neuroscience with immense practical application. Previously, we found that conditioned food presentation combined with injection of a neurotransmitter receptor antagonist or protein synthesis inhibitor led to amnesia induction. In the present study, we investigated the time course and features of two amnesias: induced by impairment of memory reconsolidation using an NMDA glutamate receptor antagonist (MK-801) and a serotonin receptor antagonist (methiothepin, MET) on snails trained with food aversion conditioning. During the early period of amnesia (types of amnesia. Retraining an on 1st or 3rd day of amnesia induction facilitated memory formation, i.e. the number of CS + US pairings was lower than at initial training. On the 10th or 30th day after the MET/reminder, the number of CS + US pairings did not change between initial training and retraining. Retraining on the 10th or 30th day following the MK-801/reminder in the same or a new context of learning resulted in short, but not long-term, memory, and the number of CS + US pairings was higher than at the initial training. This type of amnesia was specific to the CS we used at initial training, since long-term memory for another kind of CS could be formed in the same snails. The attained results suggest that disruption of memory reconsolidation using antagonists of serotonin or NMDA glutamate receptors induced amnesias with different abilities to form long-term memory during the late period of development. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Communication between hearing impaired and normal hearing students: a facilitative proposal of learning in higher education

    Directory of Open Access Journals (Sweden)

    Krysne Kelly de França Oliveira

    2014-09-01

    Full Text Available Introduction: There has been an increase in the number of hearing impaired people with access to higher education. Most of them are young people from a different culture who present difficulties in communication, inter-relationship, and learning in a culture of normal hearing people, because they use a different language, the Brazilian Sign Language - LIBRAS. Objective: The present study aimed to identify the forms of communication used between hearing impaired and normal hearing students, verifying how they can interfere with the learning process of the first. Methods: A qualitative study that used the space of a private university in the city of Fortaleza, Ceará state, Brazil, from February to April 2009. We carried out semi-structured interviews with three hearing impaired students, three teachers, three interpreters, and three normal hearing students. The content of the speeches was categorized and organized by the method of thematic analysis. Results: We verified that the forms of communication used ranged from mime and gestures to writing and drawing, but the most accepted by the hearing impaired students was LIBRAS. As a method of communication, it supports the learning of hearing impaired students, and with the mediation of interpreters, it gives them conditions to settle in their zones of development, according to the precepts of Vygotsky. Conclusion: Thus, we recognize the importance of LIBRAS as predominant language, essential to the full academic achievement of hearing impaired students; however, their efforts and dedication, as well as the interest of institutions and teachers on the deaf culture, are also important for preparing future professionals.

  2. Impaired receptivity and decidualization in DHEA-induced PCOS mice

    OpenAIRE

    Li, Shu-Yun; Song, Zhuo; Song, Min-Jie; Qin, Jia-Wen; Zhao, Meng-Long; Yang, Zeng-Ming

    2016-01-01

    Polycystic ovary syndrome (PCOS), a complex endocrine disorder, is a leading cause of female infertility. An obvious reason for infertility in PCOS women is anovulation. However, success rate with high quality embryos selected by assisted reproduction techniques in PCOS patients still remain low with a high rate of early clinical pregnancy loss, suggesting a problem in uterine receptivity. Using a dehydroepiandrosterone-induced mouse model of PCOS, some potential causes of decreased fertility...

  3. Steamed and Fermented Ethanolic Extract from Codonopsis lanceolata Attenuates Amyloid-β-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    Jin Bae Weon

    2016-01-01

    Full Text Available Codonopsis lanceolata (C. lanceolata is a traditional medicinal plant used for the treatment of certain inflammatory diseases such as asthma, tonsillitis, and pharyngitis. We evaluated whether steamed and fermented C. lanceolata (SFC extract improves amyloid-β- (Aβ- induced learning and memory impairment in mice. The Morris water maze and passive avoidance tests were used to evaluate the effect of SFC extract. Moreover, we investigated acetylcholinesterase (AChE activity and brain-derived neurotrophic factor (BDNF, cyclic AMP response element-binding protein (CREB, and extracellular signal-regulated kinase (ERK signaling in the hippocampus of mice to determine a possible mechanism for the cognitive-enhancing effect. Saponin compounds in SFC were identified by Ultra Performance Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry (UPLC-Q-TOF-MS. SFC extract ameliorated amyloid-β-induced memory impairment in the Morris water maze and passive avoidance tests. SFC extract inhibited AChE activity and also significantly increased the level of CREB phosphorylation, BDNF expression, and ERK activation in hippocampal tissue of amyloid-β-treated mice. Lancemasides A, B, C, D, E, and G and foetidissimoside A compounds present in SFC were determined by UPLC-Q-TOF-MS. These results indicate that SFC extract improves Aβ-induced memory deficits and that AChE inhibition and CREB/BDNF/ERK expression is important for the effect of the SFC extract. In addition, lancemaside A specifically may be responsible for efficacious effect of SFC.

  4. Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain

    OpenAIRE

    Hefner, Kathryn; Whittle, Nigel; Juhasz, Jaynann; Norcross, Maxine; Karlsson, Rose-Marie; Saksida, Lisa M.; Bussey, Timothy J.; Singewald, Nicolas; Holmes, Andrew

    2008-01-01

    Fear extinction is a form of new learning that results in the inhibition of conditioned fear. Trait deficits in fear extinction are a risk factor for anxiety disorders. There are few examples of naturally-occurring animal models of impaired extinction. The present study compared fear extinction in a panel of inbred mouse strains. This strain survey revealed an impairment in fear extinction in 129/SvImJ (129S1). The phenotypic specificity of this deficit was evaluated by comparing 129S1 and C5...

  5. Impaired masturbation-induced erections: a new cardiovascular risk factor for male subjects with sexual dysfunction.

    Science.gov (United States)

    Rastrelli, Giulia; Boddi, Valentina; Corona, Giovanni; Mannucci, Edoardo; Maggi, Mario

    2013-04-01

    Erectile dysfunction (ED) is considered an early surrogate marker of silent, or even overt, cardiovascular diseases (CVD). However, epidemiological studies take into account only sexual intercourse-related erections. Although autoeroticism is a very common practice, data on masturbation-induced erections as a possible predictor of major adverse cardiovascular events (MACE) are lacking. To evaluate the clinical correlates of impaired masturbation-induced erections and to verify the importance of this sexual aspect in predicting MACE. A consecutive series of 4,031 male patients attending the Outpatient Clinic for sexual dysfunction for the first time was retrospectively studied. Among these subjects, 64% reported autoeroticism during the last 3 months, and only this subset was considered in the following analyses. In the longitudinal study, 862 subjects reporting autoeroticism were enrolled. Several clinical, biochemical, and instrumental (Prostaglandin E1 [PGE1 ] test and penile color Doppler ultrasound) parameters were studied. Subjects with an impaired erection during masturbation (46% of those reporting autoeroticism) had more often a positive personal or family history of CVD, a higher risk of reduced intercourse- and sleep-related erections, hypoactive sexual desire and perceived reduced ejaculate volume, and impaired PGE1 test response. Prolactin levels were lower in those having impaired erection during masturbation. In the longitudinal study, unadjusted incidence of MACE was significantly associated with impaired masturbation-induced erections. When dividing the population according to the median age and diagnosis of diabetes, the association between impaired masturbation-induced erections and incidence of MACE was maintained only in the youngest (masturbation-induced erections, can provide further insights on forthcoming MACE in particular in "low risk" subjects. © 2013 International Society for Sexual Medicine.

  6. First-order and higher order sequence learning in specific language impairment.

    Science.gov (United States)

    Clark, Gillian M; Lum, Jarrad A G

    2017-02-01

    A core claim of the procedural deficit hypothesis of specific language impairment (SLI) is that the disorder is associated with poor implicit sequence learning. This study investigated whether implicit sequence learning problems in SLI are present for first-order conditional (FOC) and higher order conditional (HOC) sequences. Twenty-five children with SLI and 27 age-matched, nonlanguage-impaired children completed 2 serial reaction time tasks. On 1 version, the sequence to be implicitly learnt comprised a FOC sequence and on the other a HOC sequence. Results showed that the SLI group learned the HOC sequence (η p ² = .285, p = .005) but not the FOC sequence (η p ² = .099, p = .118). The control group learned both sequences (FOC η p ² = .497, HOC η p 2= .465, ps < .001). The SLI group's difficulty learning the FOC sequence is consistent with the procedural deficit hypothesis. However, the study provides new evidence that multiple mechanisms may underpin the learning of FOC and HOC sequences. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Learning Building Layouts with Non-geometric Visual Information: The Effects of Visual Impairment and Age

    Science.gov (United States)

    Kalia, Amy A.; Legge, Gordon E.; Giudice, Nicholas A.

    2009-01-01

    Previous studies suggest that humans rely on geometric visual information (hallway structure) rather than non-geometric visual information (e.g., doors, signs and lighting) for acquiring cognitive maps of novel indoor layouts. This study asked whether visual impairment and age affect reliance on non-geometric visual information for layout learning. We tested three groups of participants—younger (sighted, older (50–70 years) normally sighted, and low vision (people with heterogeneous forms of visual impairment ranging in age from 18–67). Participants learned target locations in building layouts using four presentation modes: a desktop virtual environment (VE) displaying only geometric cues (Sparse VE), a VE displaying both geometric and non-geometric cues (Photorealistic VE), a Map, and a Real building. Layout knowledge was assessed by map drawing and by asking participants to walk to specified targets in the real space. Results indicate that low-vision and older normally-sighted participants relied on additional non-geometric information to accurately learn layouts. In conclusion, visual impairment and age may result in reduced perceptual and/or memory processing that makes it difficult to learn layouts without non-geometric visual information. PMID:19189732

  8. A low concentration of ethanol impairs learning but not motor and sensory behavior in Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Brooks G Robinson

    Full Text Available Drosophila melanogaster has proven to be a useful model system for the genetic analysis of ethanol-associated behaviors. However, past studies have focused on the response of the adult fly to large, and often sedating, doses of ethanol. The pharmacological effects of low and moderate quantities of ethanol have remained understudied. In this study, we tested the acute effects of low doses of ethanol (∼7 mM internal concentration on Drosophila larvae. While ethanol did not affect locomotion or the response to an odorant, we observed that ethanol impaired associative olfactory learning when the heat shock unconditioned stimulus (US intensity was low but not when the heat shock US intensity was high. We determined that the reduction in learning at low US intensity was not a result of ethanol anesthesia since ethanol-treated larvae responded to the heat shock in the same manner as untreated animals. Instead, low doses of ethanol likely impair the neuronal plasticity that underlies olfactory associative learning. This impairment in learning was reversible indicating that exposure to low doses of ethanol does not leave any long lasting behavioral or physiological effects.

  9. Severity of explicit memory impairment due to Alzheimer's disease improves effectiveness of implicit learning.

    Science.gov (United States)

    Klimkowicz-Mrowiec, Aleksandra; Slowik, Agnieszka; Krzywoszanski, Lukasz; Herzog-Krzywoszanska, Radosława; Szczudlik, Andrzej

    2008-04-01

    Consistent evidence from human and experimental animals studies indicates that memory is organized into two relatively independent systems with different functions and brain mechanisms. The explicit memory system, dependent on the hippocampus and adjacent medial temporal lobe structures, refers to conscious knowledge acquisition and intentional recollection of previous experiences. The implicit memory system, dependent on the striatum, refers to learning of complex information without awareness or intention. The functioning of implicit memory can be observed in progressive, gradual improvement across many trials in performance on implicit learning tasks. The influence of explicit memory on implicit memory has not been precisely identified yet. According to data from some studies, explicit memory seems to exhibit no influence on implicit memory,whereas the other studies indicate that explicit memory may inhibit or facilitate implicit memory. The analysis of performance on implicit learning tasks in patients with different severity of explicit memory impairment due to Alzheimer's disease allows one to identify the potential influence of the explicit memory system on the implicit memory system. 51 patients with explicit memory impairment due to Alzheimer's disease (AD) and 36 healthy controls were tested. Explicit memory was examined by means of a battery of neuropsychological tests. Implicit habit learning was examined on probabilistic classification task (weather prediction task). Patients with moderate explicit memory impairment performed the implicit task significantly better than those with mild AD and controls. Results of our study support the hypothesis of competition between the implicit and explicit memory systems in humans.

  10. Impairment induced by chronic occupational cadmium exposure during brazing process

    International Nuclear Information System (INIS)

    Anwar, S.M.; Aly, M.M.

    2002-01-01

    Cadmium (CD) is considered a metal of the 20 th century to which all inhabitants of develop societies are exposed. Long-term occupational and environmental exposure to CD often results in renal dysfunction as the kidney is considered the critical target organ. The aim of this work was to evalutate both resporatory and renal manifestations induced by occupational exposure to CD compounds during brazing process, and suggesting a protocol for prevention and control for CD- induced health effects. This study was conducted on 20 males occupationally exposed workers. They are divided into two groups: Group-1 included (10) exposed smokers and group-2 included (10) exposed non-smokers. Results of both groups were compared with those of 10 healthy age and sex matched non-smokers. All subjects were subjected to detailed history taking and laboratory investigations including blood and urinary CD, liver profile (SGOT, SGPT and alkline phosphates), kindey function tests (blood urea, creatinine and urinary beta 2 - microglobulin). The level of Cd in the atmosphere of the work plase air was also assessed to detect the degree of exposure as it was about 6 times greater than thesave level (1 mu /m 3 ). (1) This study demonstrated elevation levels of blood CD, urea, creatinine and urinary CD and beta 2 -microglobulin for both exposed worker groups than the controls. In additions no appreciable were noted for liver function tests, although the levels fell within normal range

  11. In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory Impairment

    Science.gov (United States)

    2015-06-01

    of JP-8 and a Fischer- Tropsch synthetic jet fuel following subacute inhalation exposure in rats. Toxicol Sci 116(1): 239-248. Gallinat, J...AFRL-RH-WP-TR-2015-0084 IN VITRO STUDIES AND PRELIMINARY MATHEMATICAL MODEL FOR JET FUEL AND NOISE INDUCED AUDITORY IMPAIRMENT...April 2014 – September 2014 4. TITLE AND SUBTITLE In Vitro Studies and Preliminary Mathematical Model for Jet Fuel and Noise Induced Auditory

  12. Gender dimorphism in aspartame-induced impairment of spatial cognition and insulin sensitivity.

    Directory of Open Access Journals (Sweden)

    Kate S Collison

    Full Text Available Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (P<0.05. Females were less affected, but had significantly raised fasting glucose levels. During spatial learning trials in the MWM (acquisition training, the escape latencies of male aspartame-fed mice were consistently higher than controls, indicative of learning impairment. Thigmotactic behavior and time spent floating directionless was increased in aspartame mice, who also spent less time searching in the target quadrant of the maze (P<0.05. Spatial learning of female aspartame-fed mice was not significantly different from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime

  13. Azasterols impair Giardia lamblia proliferation and induces encystation

    International Nuclear Information System (INIS)

    Maia, Claudia; Attias, Marcia; Urbina, Julio; Gilbert, Ian; Magaraci, Filippo; Souza, Wanderley de

    2007-01-01

    The effects of sterol biosynthesis inhibitors on growth and fine structure of Giardia lamblia P1 strain cultures were analyzed. Azasterols demonstrated high efficacy in killing cells. The IC 50 values for 22,26-azasterol and 24(R,S),25-epiminolanosterol were 7 μM and 170 nM, respectively. Morphological analysis showed that azasterols induced changes in G. lamblia ultrastructure. The most significant alterations were: (a) considerable increase of the size of the peripheral vesicles, which are part of the parasite endosomal-lysosomal system; (b) appearance of autophagosomal structures; and (c) induction of differentiation, followed by an abnormal enlargement of encystation secretory vesicles. We propose that azasterols are effective chemotherapeutic drugs against Giardia lamblia in vitro and may have another target in cells besides sterol biosynthesis

  14. Locomotion Characteristics and Match-Induced Impairments in Physical Performance in Male Elite Team Handball Players

    DEFF Research Database (Denmark)

    Michalsik, L B; Aagaard, Per; Madsen, K

    2013-01-01

    The purpose of this study was to determine the physical demands and match-induced impairments in physical performance in male elite Team Handball (TH) players in relation to playing position. Male elite TH field players were closely observed during 6 competitive seasons. Each player (wing players...

  15. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains.

    Science.gov (United States)

    van Boxelaere, Michiel; Clements, Jason; Callaerts, Patrick; D'Hooge, Rudi; Callaerts-Vegh, Zsuzsanna

    2017-01-01

    Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD), anxiety, conduct disorder, and posttraumatic stress disorder (PTSD). Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC) and prefrontal cortex (PFC) might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS) on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J) that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF) in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.

  16. Unpredictable chronic mild stress differentially impairs social and contextual discrimination learning in two inbred mouse strains.

    Directory of Open Access Journals (Sweden)

    Michiel van Boxelaere

    Full Text Available Alterations in the social and cognitive domain are considered important indicators for increased disability in many stress-related disorders. Similar impairments have been observed in rodents chronically exposed to stress, mimicking potential endophenotypes of stress-related psychopathologies such as major depression disorder (MDD, anxiety, conduct disorder, and posttraumatic stress disorder (PTSD. Data from numerous studies suggest that deficient plasticity mechanisms in hippocampus (HC and prefrontal cortex (PFC might underlie these social and cognitive deficits. Specifically, stress-induced deficiencies in neural plasticity have been associated with a hypodopaminergic state and reduced neural plasticity persistence. Here we assessed the effects of unpredictable chronic mild stress (UCMS on exploratory, social and cognitive behavior of females of two inbred mouse strains (C57BL/6J and DBA/2J that differ in their dopaminergic profile. Exposure to chronic stress resulted in impaired circadian rhythmicity, sociability and social cognition in both inbred strains, but differentially affected activity patterns and contextual discrimination performance. These stress-induced behavioral impairments were accompanied by reduced expression levels of brain derived neurotrophic factor (BDNF in the prefrontal cortex. The strain-specific cognitive impairment was coexistent with enhanced plasma corticosterone levels and reduced expression of genes related to dopamine signaling in hippocampus. These results underline the importance of assessing different strains with multiple test batteries to elucidate the neural and genetic basis of social and cognitive impairments related to chronic stress.

  17. Learning trajectories for speech motor performance in children with specific language impairment.

    Science.gov (United States)

    Richtsmeier, Peter T; Goffman, Lisa

    2015-01-01

    Children with specific language impairment (SLI) often perform below expected levels, including on tests of motor skill and in learning tasks, particularly procedural learning. In this experiment we examined the possibility that children with SLI might also have a motor learning deficit. Twelve children with SLI and thirteen children with typical development (TD) produced complex nonwords in an imitation task. Productions were collected across three blocks, with the first and second blocks on the same day and the third block one week later. Children's lip movements while producing the nonwords were recorded using an Optotrak camera system. Movements were then analyzed for production duration and stability. Movement analyses indicated that both groups of children produced shorter productions in later blocks (corroborated by an acoustic analysis), and the rate of change was comparable for the TD and SLI groups. A nonsignificant trend for more stable productions was also observed in both groups. SLI is regularly accompanied by a motor deficit, and this study does not dispute that. However, children with SLI learned to make more efficient productions at a rate similar to their peers with TD, revealing some modification of the motor deficit associated with SLI. The reader will learn about deficits commonly associated with specific language impairment (SLI) that often occur alongside the hallmark language deficit. The authors present an experiment showing that children with SLI improved speech motor performance at a similar rate compared to typically developing children. The implication is that speech motor learning is not impaired in children with SLI. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Reduced autobiographical memory specificity is associated with impaired discrimination learning in anxiety disorder patients

    Science.gov (United States)

    Lenaert, Bert; Boddez, Yannick; Vervliet, Bram; Schruers, Koen; Hermans, Dirk

    2015-01-01

    Associative learning plays an important role in the development of anxiety disorders, but a thorough understanding of the variables that impact such learning is still lacking. We investigated whether individual differences in autobiographical memory specificity are related to discrimination learning and generalization. In an associative learning task, participants learned the association between two pictures of female faces and a non-aversive outcome. Subsequently, six morphed pictures functioning as generalization stimuli (GSs) were introduced. In a sample of healthy participants (Study 1), we did not find evidence for differences in discrimination learning as a function of memory specificity. In a sample of anxiety disorder patients (Study 2), individuals who were characterized by low memory specificity showed deficient discrimination learning relative to high specific individuals. In contrast to previous findings, results revealed no effect of memory specificity on generalization. These results indicate that impaired discrimination learning, previously shown in patients suffering from an anxiety disorder, may be—in part—due to limited memory specificity. Together, these studies emphasize the importance of incorporating cognitive variables in associative learning theories and their implications for the development of anxiety disorders. In addition, re-analyses of the data (Study 3) showed that patients suffering from panic disorder showed higher outcome expectancies in the presence of the stimulus that was never followed by an outcome during discrimination training, relative to patients suffering from other anxiety disorders and healthy participants. Because we used a neutral, non-aversive outcome (i.e., drawing of a lightning bolt), these data suggest that learning abnormalities in panic disorder may not be restricted to fear learning, but rather reflect a more general associative learning deficit that also manifests in fear irrelevant contexts. PMID

  19. Age, duration of work, noise and vibration in inducing hearing and balance impairments

    Directory of Open Access Journals (Sweden)

    Jenny Bashiruddin

    2005-06-01

    Full Text Available Noisy and vibrating bajaj, a public transportation in Jakarta, is a potential risk in inducing hearing and balance problems. Bajaj drivers in the Jakarta area were chosen by consecutive sampling and examined medically in the Neurotological Subdivision of the ENT Department of the Cipto Mangunkusumo Hospital, Jakarta. Hearing and balance impairments were then diagnosed from audiometric and posturographic tests. The study was carried out from March 2000 until October 2001. A number of 350 bajaj drivers participated in this study. There were 97 subjects without hearing and balance impairments, and 96 subjects suffered from hearing and balance impairments. Compared to drivers aged less than 40 years, those aged 41 years or more had a four-fold increased risk of developing hearing and balance impairments [adjusted odds ratio (OR = 3.90; 95% confidence interval (CI = 1.67-9.01. Drivers working 9 hours or more a day had an increased risk 2.3 times of developing hearing and balance impairments compared those working less than 9 hours a day (adjusted OR = 2.32; 95% CI=I.22-4.41. Furthermore, when compared to those who had been working for 1-5 years, those who had been working for 5 years had an increased tendency of developing hearing and balance impairments. Those who had been working 21-30 years had a seven-fold increased risk of developing hearing and balance impairments (adjusted OR = 7.11; 95% CI = 1.88-26.92. To minimize hearing and balance impairments bajaj drivers are recommended to work less than 8 hours a day. (Med J Indones 2005; 14: 101-6Keywords: noise, vibration, hearing, balance impairments, driver

  20. Sequence-specific procedural learning deficits in children with specific language impairment.

    Science.gov (United States)

    Hsu, Hsinjen Julie; Bishop, Dorothy V M

    2014-05-01

    This study tested the procedural deficit hypothesis of specific language impairment (SLI) by comparing children's performance in two motor procedural learning tasks and an implicit verbal sequence learning task. Participants were 7- to 11-year-old children with SLI (n = 48), typically developing age-matched children (n = 20) and younger typically developing children matched for receptive grammar (n = 28). In a serial reaction time task, the children with SLI performed at the same level as the grammar-matched children, but poorer than age-matched controls in learning motor sequences. When tested with a motor procedural learning task that did not involve learning sequential relationships between discrete elements (i.e. pursuit rotor), the children with SLI performed comparably with age-matched children and better than younger grammar-matched controls. In addition, poor implicit learning of word sequences in a verbal memory task (the Hebb effect) was found in the children with SLI. Together, these findings suggest that SLI might be characterized by deficits in learning sequence-specific information, rather than generally weak procedural learning. © 2014 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  1. Enhanced Assessment Technology and Neurocognitive Aspects of Specific Learning Disorder with Impairment in Mathematics.

    Directory of Open Access Journals (Sweden)

    Marios A. Pappas

    2018-02-01

    Full Text Available Specific Learning Disorder with impairment in Mathematics (Developmental Dyscalculia is a complex learning disorder which affects arithmetic skills, symbolic magnitude processing, alertness, flexibility in problem solving and maintained attention. Neuro-cognitive studies revealed that such difficulties in children with DD could be related to poor Working Memory and attention deficits. Furthermore, neuroimaging studies indicate that brain structure differences in children with DD compared to typically developing children could affect mathematical performance. In this study we present the cognitive profile of Dyscalculia, as well as the neuropsychological aspects of the deficit, with special reference to the utilization of enhanced assessment technology such as computerized neuropsychological tools and neuroimaging techniques.

  2. Serial-order learning impairment and hypersensitivity-to-interference in dyscalculia.

    Science.gov (United States)

    De Visscher, Alice; Szmalec, Arnaud; Van Der Linden, Lize; Noël, Marie-Pascale

    2015-11-01

    In the context of heterogeneity, the different profiles of dyscalculia are still hypothetical. This study aims to link features of mathematical difficulties to certain potential etiologies. First, we wanted to test the hypothesis of a serial-order learning deficit in adults with dyscalculia. For this purpose we used a Hebb repetition learning task. Second, we wanted to explore a recent hypothesis according to which hypersensitivity-to-interference hampers the storage of arithmetic facts and leads to a particular profile of dyscalculia. We therefore used interfering and non-interfering repeated sequences in the Hebb paradigm. A final test was used to assess the memory trace of the non-interfering sequence and the capacity to manipulate it. In line with our predictions, we observed that people with dyscalculia who show good conceptual knowledge in mathematics but impaired arithmetic fluency suffer from increased sensitivity-to-interference compared to controls. Secondly, people with dyscalculia who show a deficit in a global mathematical test suffer from a serial-order learning deficit characterized by a slow learning and a quick degradation of the memory trace of the repeated sequence. A serial-order learning impairment could be one of the explanations for a basic numerical deficit, since it is necessary for the number-word sequence acquisition. Among the different profiles of dyscalculia, this study provides new evidence and refinement for two particular profiles. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Spatial learning impairment in prepubertal guinea pigs prenatally exposed to the organophosphorus pesticide chlorpyrifos: Toxicological implications

    Science.gov (United States)

    Mamczarz, Jacek; Pescrille, Joseph D.; Gavrushenko, Lisa; Burke, Richard D.; Fawcett, William P.; DeTolla, Louis J.; Chen, Hegang; Pereira, Edna F.R.; Albuquerque, Edson X.

    2017-01-01

    Exposure of the developing brain to chlorpyrifos (CPF), an organophosphorus (OP) pesticide used extensively in agriculture worldwide, has been associated with increased prevalence of cognitive deficits in children, particularly boys. The present study was designed to test the hypothesis that cognitive deficits induced by prenatal exposure to sub-acute doses of CPF can be reproduced in precocial small species. To address this hypothesis, pregnant guinea pigs were injected daily with CPF (25 mg/kg, s.c.) or vehicle (peanut oil) for 10 days starting on presumed gestation day (GD) 53–55. Offspring were born around GD 65, weaned on postnatal day (PND) 20, and subjected to behavioral tests starting around PND 30. On the day of birth, butyrylcholinesterase (BuChE), an OP bioscavenger used as a biomarker of OP exposures, and acetylcholinesterase (AChE), a major molecular target of OP compounds, were significantly inhibited in the blood of CPF-exposed offspring. In their brains, BuChE, but not AChE, was significantly inhibited. Prenatal CPF exposure had no significant effect on locomotor activity or on locomotor habituation, a form of non-associative memory assessed in open fields. Spatial navigation in the Morris water maze (MWM) was found to be sexually dimorphic among guinea pigs, with males outperforming females. Prenatal CPF exposure impaired spatial learning more significantly among male than female guinea pigs and, consequently, reduced the sexual dimorphism of the task. The results presented here, which strongly support the test hypothesis, reveal that the guinea pig is a valuable animal model for preclinical assessment of the developmental neurotoxicity of OP pesticides. These findings are far reaching as they lay the groundwork for future studies aimed at identifying therapeutic interventions to treat and/or prevent the neurotoxic effects of CPF in the developing brain. PMID:27296654

  4. Inferior frontal gyrus preserves working memory and emotional learning under conditions of impaired noradrenergic signaling

    Directory of Open Access Journals (Sweden)

    Benjamin eBecker

    2013-12-01

    Full Text Available Compensation has been widely applied to explain neuroimaging findings in neuropsychiatric patients. Functional compensation is often invoked when patients display equal performance and increased neural activity in comparison to healthy controls. According to the compensatory hypothesis increased activity allows the brain to maintain cognitive performance despite underlying neuropathological changes. Due to methodological and pathology-related issues, however, the functional relevance of the increased activity and the specific brain regions involved in the compensatory response remain unclear. An experimental approach that allows a transient induction of compensatory responses in the healthy brain could help to overcome these issues. To this end we used the nonselective beta-blocker propranolol to pharmacologically induce sub-optimal noradrenergic signaling in healthy participants. In two independent fMRI experiments participants received either placebo or propranolol before they underwent a cognitive challenge (experiment 1: working memory; experiment 2: emotional learning: Pavlovian fear conditioning. In experiment 1 propranolol had no effects on working memory performance, but evoked stronger activity in the left inferior frontal gyrus (IFG. In experiment 2 propranolol produced no effects on emotional memory formation, but evoked stronger activity in the right IFG. The present finding that sub-optimal beta-adrenergic signaling did not disrupt performance and concomitantly increased IFG activity is consistent with, and extends, current perspectives on functional compensation. Together, our findings suggest that under conditions of impaired noradrenergic signaling, heightened activity in brain regions located within the cognitive control network, particularly the IFG, may reflect compensatory operations subserving the maintenance of behavioral performance.

  5. Impaired Value Learning for Faces in Preschoolers With Autism Spectrum Disorder.

    Science.gov (United States)

    Wang, Quan; DiNicola, Lauren; Heymann, Perrine; Hampson, Michelle; Chawarska, Katarzyna

    2018-01-01

    One of the common findings in autism spectrum disorder (ASD) is limited selective attention toward social objects, such as faces. Evidence from both human and nonhuman primate studies suggests that selection of objects for processing is guided by the appraisal of object values. We hypothesized that impairments in selective attention in ASD may reflect a disruption of a system supporting learning about object values in the social domain. We examined value learning in social (faces) and nonsocial (fractals) domains in preschoolers with ASD (n = 25) and typically developing (TD) controls (n = 28), using a novel value learning task implemented on a gaze-contingent eye-tracking platform consisting of value learning and a selective attention choice test. Children with ASD performed more poorly than TD controls on the social value learning task, but both groups performed similarly on the nonsocial task. Within-group comparisons indicated that value learning in TD children was enhanced on the social compared to the nonsocial task, but no such enhancement was seen in children with ASD. Performance in the social and nonsocial conditions was correlated in the ASD but not in the TD group. The study provides support for a domain-specific impairment in value learning for faces in ASD, and suggests that, in ASD, value learning in social and nonsocial domains may rely on a shared mechanism. These findings have implications both for models of selective social attention deficits in autism and for identification of novel treatment targets. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Exposure to activity-based anorexia impairs contextual learning in weight-restored rats without affecting spatial learning, taste, anxiety, or dietary-fat preference.

    Science.gov (United States)

    Boersma, Gretha J; Treesukosol, Yada; Cordner, Zachary A; Kastelein, Anneke; Choi, Pique; Moran, Timothy H; Tamashiro, Kellie L

    2016-02-01

    Relapse rates are high amongst cases of anorexia nervosa (AN) suggesting that some alterations induced by AN may remain after weight restoration. To study the consequences of AN without confounds of environmental variability, a rodent model of activity-based anorexia (ABA) can be employed. We hypothesized that exposure to ABA during adolescence may have long-term consequences in taste function, cognition, and anxiety-like behavior after weight restoration. To test this hypothesis, we exposed adolescent female rats to ABA (1.5 h food access, combined with voluntary running wheel access) and compared their behavior to that of control rats after weight restoration was achieved. The rats were tested for learning/memory, anxiety, food preference, and taste in a set of behavioral tests performed during the light period. Our data show that ABA exposure leads to reduced performance during the novel object recognition task, a test for contextual learning, without altering performance in the novel place recognition task or the Barnes maze, both tasks that test spatial learning. Furthermore, we do not observe alterations in unconditioned lick responses to sucrose nor quinine (described by humans as "sweet" and "bitter," respectively). Nor Do we find alterations in anxiety-like behavior during an elevated plus maze or an open field test. Finally, preference for a diet high in fat is not altered. Overall, our data suggest that ABA exposure during adolescence impairs contextual learning in adulthood without altering spatial leaning, taste, anxiety, or fat preference. © 2015 Wiley Periodicals, Inc.

  7. Rhynchophylline suppresses soluble Aβ1-42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B-containing NMDA receptors.

    Science.gov (United States)

    Yang, Yang; Ji, Wei-Gang; Zhu, Zhi-Ru; Wu, Yu-Ling; Zhang, Zhi-Yang; Qu, Shao-Chen

    2018-06-01

    Rhynchophylline (RIN) is a significant active component isolated from the Chinese herbal medicine Uncaria rhynchophylla. The overproduction of soluble amyloid β protein (Aβ) oligomers in the hippocampus is closely involved in impairments in cognitive function at the early stage of Alzheimer's disease (AD). Growing evidences show that RIN possesses neuroprotective effects against Aβ-induced neurotoxicity. However, whether RIN can prevent soluble Aβ 1-42 -induced impairments in spatial cognitive function and synaptic plasticity is still unclear. Using the combined methods of behavioral tests, immunofluorescence and electrophysiological recordings, we characterized the key neuroprotective properties of RIN and its possible cellular and molecular mechanisms against soluble Aβ 1-42 -related impairments in rats. Our findings are as follows: (1) RIN efficiently rescued the soluble Aβ 1-42 -induced spatial learning and memory deficits in the Morris water maze test and prevented soluble Aβ 1-42 -induced suppression in long term potentiation (LTP) in the entorhinal cortex (EC)-dentate gyrus (DG) circuit. (2) Excessive activation of extrasynaptic GluN2B-NMDAR and subsequent Ca 2+ overload contributed to the soluble Aβ 1-42 -induced impairments in spatial cognitive function and synaptic plasticity. (3) RIN prevented Aβ 1-42 -induced excessive activation of extrasynaptic NMDARs by reducing extrasynaptic NMDARs -mediated excitatory postsynaptic currents and down regulating GluN2B-NMDAR expression in the DG region, which inhibited Aβ 1-42 -induced Ca 2+ overload mediated by extrasynanptic NMDARs. The results suggest that RIN could be an effective therapeutic candidate for cognitive impairment in AD. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effects of intra-hippocampal microinjection of vitamin B12 on the orofacial pain and memory impairments induced by scopolamine and orofacial pain in rats.

    Science.gov (United States)

    Erfanparast, Amir; Tamaddonfard, Esmaeal; Nemati, Shaghayegh

    2017-03-01

    In the present study, we investigated the effects of microinjection of vitamin B 12 into the hippocampus on the orofacial pain and memory impairments induced by scopolamine and orofacial pain. In ketamine-xylazine anesthetized rats, the right and left sides of the dorsal hippocampus (CA1) were implanted with two guide cannulas. Orofacial pain was induced by subcutaneous injection of formalin (1.5%, 50μl) into the right vibrissa pad, and the durations of face rubbing were recorded at 3-min blocks for 45min. Morris water maze (MWM) was used for evaluation of learning and memory. Finally, locomotor activity was assessed using an open-field test. Vitamin B 12 attenuated both phases of formalin-induced orofacial pain. Prior administration of naloxone and naloxonazine, but not naltrindole and nor-binaltorphimine, prevented this effect. Vitamin B 12 and physostigmine decreased latency time as well as traveled distance in Morris water maze. In addition, these chemicals improved scopolamine-induced memory impairment. The memory impairment induced by orofacial pain was improved by vitamin B 12 and physostigmine used alone. Naloxone prevented, whereas physostigmine enhanced the memory improving effect of vitamin B 12 in the pain-induced memory impairment. All the above-mentioned chemicals did not alter locomotor activity. The results of the present study showed that at the level of the dorsal hippocampus, vitamin B 12 modulated orofacial pain through a mu-opioid receptor mechanism. In addition, vitamin B 12 contributed to hippocampal cholinergic system in processing of memory. Moreover, cholinergic and opioid systems may be involved in improving effect of vitamin B 12 on pain-induced memory impairment. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity

    OpenAIRE

    HASEGAWA, Yasushi; INOUE, Tatsuro; KAWAMINAMI, Satoshi; FUJITA, Miho

    2016-01-01

    ObjectiveTo evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801).MethodsEffect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test.ResultsScallop shell extract significantly reduced scopolami...

  10. Amorphous silica nanoparticles impair vascular homeostasis and induce systemic inflammation

    Directory of Open Access Journals (Sweden)

    Nemmar A

    2014-06-01

    Full Text Available Abderrahim Nemmar,1 Sulayma Albarwani,2 Sumaya Beegam,1 Priya Yuvaraju,1 Javed Yasin,3 Samir Attoub,4 Badreldin H Ali5 1Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 2Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman; 3Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 4Department of Pharmacology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; 5Department of Pharmacology, College of Medicine and Health Sciences, Sultan Qaboos University, Al-Khod, Sultanate of Oman Abstract: Amorphous silica nanoparticles (SiNPs are being used in biomedical, pharmaceutical, and many other industrial applications entailing human exposure. However, their potential vascular and systemic pathophysiologic effects are not fully understood. Here, we investigated the acute (24 hours systemic toxicity of intraperitoneally administered 50 nm and 500 nm SiNPs in mice (0.5 mg/kg. Both sizes of SiNPs induced a platelet proaggregatory effect in pial venules and increased plasma concentration of plasminogen activator inhibitor-1. Elevated plasma levels of von Willebrand factor and fibrinogen and a decrease in the number of circulating platelets were only seen following the administration of 50 nm SiNPs. The direct addition of SiNPs to untreated mouse blood significantly induced in vitro platelet aggregation in a dose-dependent fashion, and these effects were more pronounced with 50 nm SiNPs. Both sizes of SiNPs increased lactate dehydrogenase activity and interleukin 1β concentration. However, tumor necrosis factor α concentration was only increased after the administration of 50 nm SiNPs. Nevertheless, plasma markers of oxidative stress, including 8-isoprostane

  11. Isoflurane-induced spatial memory impairment in mice is prevented by the acetylcholinesterase inhibitor donepezil.

    Directory of Open Access Journals (Sweden)

    Diansan Su

    Full Text Available Although many studies have shown that isoflurane exposure impairs spatial memory in aged animals, there are no clinical treatments available to prevent this memory deficit. The anticholinergic properties of volatile anesthetics are a biologically plausible cause of cognitive dysfunction in elderly subjects. We hypothesized that pretreatment with the acetylcholinesterase inhibitor donepezil, which has been approved by the Food and Drug Administration (FDA for the treatment of Alzheimer's disease, prevents isoflurane-induced spatial memory impairment in aged mice. In present study, eighteen-month-old mice were administered donepezil (5 mg/kg or an equal volume of saline by oral gavage with a feeding needle for four weeks. Then the mice were exposed to isoflurane (1.2% for six hours. Two weeks later, mice were subjected to the Morris water maze to examine the impairment of spatial memory after exposure to isoflurane. After the behavioral test, the mice were sacrificed, and the protein expression level of acetylcholinesterase (AChE, choline acetylase (ChAT and α7 nicotinic receptor (α7-nAChR were measured in the brain. Each group consisted of 12 mice. We found that isoflurane exposure for six hours impaired the spatial memory of the mice. Compared with the control group, isoflurane exposure dramatically decreased the protein level of ChAT, but not AChE or α7-nAChR. Donepezil prevented isoflurane-induced spatial memory impairments and increased ChAT levels, which were downregulated by isoflurane. In conclusions, pretreatment with the AChE inhibitor donepezil prevented isoflurane-induced spatial memory impairment in aged mice. The mechanism was associated with the upregulation of ChAT, which was decreased by isoflurane.

  12. Neuroprotective effect of curcumin on okadaic acid induced memory impairment in mice.

    Science.gov (United States)

    Rajasekar, N; Dwivedi, Subhash; Tota, Santosh Kumar; Kamat, Pradeep Kumar; Hanif, Kashif; Nath, Chandishwar; Shukla, Rakesh

    2013-09-05

    Okadaic acid (OKA) has been observed to cause memory impairment in human subjects having seafood contaminated with dinoflagellate (Helicondria okadai). OKA induces tau hyperphosphorylation and oxidative stress leading to memory impairment as our previous study has shown. Curcumin a natural antioxidant has demonstrated neuroprotection in various models of neurodegeneration. However, the effect of curcumin has not been explored in OKA induced memory impairment. Therefore, present study evaluated the effect of curcumin on OKA (100ng, intracerebrally) induced memory impairment in male Swiss albino mice as evaluated in Morris water maze (MWM) and passive avoidance tests (PAT). OKA administration resulted in memory impairment with a decreased cerebral blood flow (CBF) (measured by laser doppler flowmetry), ATP level and increased mitochondrial (Ca(2+))i, neuroinflammation (increased TNF-α, IL-1β, COX-2 and GFAP), oxidative-nitrosative stress, increased Caspase-9 and cholinergic dysfunction (decreased AChE activity/expression and α7 nicotinic acetylcholine receptor expression) in cerebral cortex and hippocampus of mice brain. Oral administration of curcumin (50mg/kg) for 13 days significantly improved memory function in both MWM and PAT along with brain energy metabolism, CBF and cholinergic function. It decreased mitochondrial (Ca(2+))i, and ameliorated neuroinflammation and oxidative-nitrostative stress in different brain regions of OKA treated mice. Curcumin also inhibited astrocyte activation as evidenced by decreased GFAP expression. This neuroprotective effect of curcumin is due to its potent anti-oxidant action thus confirming previous studies. Therefore, use of curcumin should be encouraged in people consuming sea food (contaminated with dinoflagellates) to prevent cognitive impairment. © 2013 Elsevier B.V. All rights reserved.

  13. Dietary Fat and Sugar Induce Obesity and Impair Glucose Tolerance in Prepubertal Pigs

    OpenAIRE

    van Eyk, Gregory Ryan

    2012-01-01

    Dietary Fat and Sugar Induce Obesity and Impair Glucose Tolerance in Prepubertal Pigs Abstract A pig model of childhood obesity was used to study the effects of dietary energy on body adiposity, and blood parameters associated with impaired glucose clearance. Prepubertal female pigs weaned at 21 d of age were fed control (CON), refined sugar (SUG), fat (FAT), and sugar-fat (SUGFAT) diets in a completely randomized arrangement for 16 wk. Calories from fat were 8.9% for CON, 5.6% for SU...

  14. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage

    Institute of Scientific and Technical Information of China (English)

    Yifan He; Jihong Zhu; Fang Huang; Liu Qin; Wenguo Fan; Hongwen He

    2014-01-01

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory be-haviors and structural changes in related brain regions, in a mouse model of Alzheimer’s disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learn-ing and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltrans-ferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic ifbers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no signiifcant differences in histology or be-havior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present ifndings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer’s disease, and

  15. Alcohol-Induced Impairment of Balance is Antagonized by Energy Drinks.

    Science.gov (United States)

    Marczinski, Cecile A; Fillmore, Mark T; Stamates, Amy L; Maloney, Sarah F

    2018-01-01

    The acute administration of alcohol reliably impairs balance and motor coordination. While it is common for consumers to ingest alcohol with other stimulant drugs (e.g., caffeine, nicotine), little is known whether prototypical alcohol-induced balance impairments are altered by stimulant drugs. The purpose of this study was to examine whether the coadministration of a high-caffeine energy drink with alcohol can antagonize expected alcohol-induced increases in body sway. Sixteen social drinkers (of equal gender) participated in 4 separate double-blind dose administration sessions that involved consumption of alcohol and energy drinks, alone and in combination. Following dose administration, participants completed automated assessments of balance stability (both eyes open and eyes closed) measured using the Biosway Portable Balance System. Participants completed several subjective measures including self-reported ratings of sedation, stimulation, fatigue, and impairment. Blood pressure and pulse rate were recorded repeatedly. The acute administration of alcohol increased body sway, and the coadministration of energy drinks antagonized this impairment. When participants closed their eyes, alcohol-induced body sway was similar whether or not energy drinks were ingested. While alcohol administration increased ratings of sedation and fatigue, energy drink administration increased ratings of stimulation and reduced ratings of fatigue. Modest increases in systolic and diastolic blood pressure following energy drink administration were also observed. Visual assessment of balance impairment is frequently used to indicate that an individual has consumed too much alcohol (e.g., as part of police-standardized field sobriety testing or by a bartender assessing when someone should no longer be served more alcohol). The current findings suggest that energy drinks can antagonize alcohol-induced increases in body sway, indicating that future work is needed to determine whether this

  16. Pump RIN-induced impairments in unrepeatered transmission systems using distributed Raman amplifier.

    Science.gov (United States)

    Cheng, Jingchi; Tang, Ming; Lau, Alan Pak Tao; Lu, Chao; Wang, Liang; Dong, Zhenhua; Bilal, Syed Muhammad; Fu, Songnian; Shum, Perry Ping; Liu, Deming

    2015-05-04

    High spectral efficiency modulation format based unrepeatered transmission systems using distributed Raman amplifier (DRA) have attracted much attention recently. To enhance the reach and optimize system performance, careful design of DRA is required based on the analysis of various types of impairments and their balance. In this paper, we study various pump RIN induced distortions on high spectral efficiency modulation formats. The vector theory of both 1st and higher-order stimulated Raman scattering (SRS) effect using Jones-matrix formalism is presented. The pump RIN will induce three types of distortion on high spectral efficiency signals: intensity noise stemming from SRS, phase noise stemming from cross phase modulation (XPM), and polarization crosstalk stemming from cross polarization modulation (XPolM). An analytical model for the statistical property of relative phase noise (RPN) in higher order DRA without dealing with complex vector theory is derived. The impact of pump RIN induced impairments are analyzed in polarization-multiplexed (PM)-QPSK and PM-16QAM-based unrepeatered systems simulations using 1st, 2nd and 3rd-order forward pumped Raman amplifier. It is shown that at realistic RIN levels, negligible impairments will be induced to PM-QPSK signals in 1st and 2nd order DRA, while non-negligible impairments will occur in 3rd order case. PM-16QAM signals suffer more penalties compared to PM-QPSK with the same on-off gain where both 2nd and 3rd order DRA will cause non-negligible performance degradations. We also investigate the performance of digital signal processing (DSP) algorithms to mitigate such impairments.

  17. Cognitive deficits are a matter of emotional context: inflexible strategy use mediates context-specific learning impairments in OCD.

    Science.gov (United States)

    Zetsche, Ulrike; Rief, Winfried; Westermann, Stefan; Exner, Cornelia

    2015-01-01

    The present study examines the interplay between cognitive deficits and emotional context in obsessive-compulsive disorder (OCD) and social phobia (SP). Specifically, this study examines whether the inflexible use of efficient learning strategies in an emotional context underlies impairments in probabilistic classification learning (PCL) in OCD, and whether PCL impairments are specific to OCD. Twenty-three participants with OCD, 30 participants with SP and 30 healthy controls completed a neutral and an OCD-specific PCL task. OCD participants failed to adopt efficient learning strategies and showed fewer beneficial strategy switches than controls only in an OCD-specific context, but not in a neutral context. Additionally, OCD participants did not show any explicit memory impairments. Number of beneficial strategy switches in the OCD-specific task mediated the difference in PCL performance between OCD and control participants. Individuals with SP were impaired in both PCL tasks. In contrast to neuropsychological models postulating general cognitive impairments in OCD, the present findings suggest that it is the interaction between cognition and emotion that is impaired in OCD. Specifically, activated disorder-specific fears may impair the flexible adoption of efficient learning strategies and compromise otherwise unimpaired PCL. Impairments in PCL are not specific to OCD.

  18. The impairment of learning and memory and synaptic loss in mouse after chronic nitrite exposure.

    Science.gov (United States)

    Chen, Yongfang; Cui, Zhanjun; Wang, Lai; Liu, Hongliang; Fan, Wenjuan; Deng, Jinbo; Deng, Jiexin

    2016-12-01

    The objective of this study is to understand the impairment of learning and memory in mouse after chronic nitrite exposure. The animal model of nitrite exposure in mouse was created with the daily intubation of nitrite in adult healthy male mice for 3 months. Furthermore, the mouse's learning and memory abilities were tested with Morris water maze, and the expression of Synaptophysin and γ-Synuclein was visualized with immunocytochemistry and Western blot. Our results showed that nitrite exposure significantly prolonged the escape latency period (ELP) and decreased the values of the frequency across platform (FAP) as well as the accumulative time in target quadrant (ATITQ) compared to control, in dose-dependent manner. In addition, after nitrite exposure, synaptophysin (SYN) positive buttons in the visual cortex was reduced, in contrast the increase of γ-synuclein positive cells. The results above were supported by Western blot as well. We conclude that nitrite exposure could lead to a decline in mice's learning and memory. The overexpression of γ-synuclein contributed to the synaptic loss, which is most likely the cause of learning and memory impairment. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1720-1730, 2016. © 2015 Wiley Periodicals, Inc.

  19. Learning to predict is spared in mild cognitive impairment due to Alzheimer's disease.

    Science.gov (United States)

    Baker, Rosalind; Bentham, Peter; Kourtzi, Zoe

    2015-10-01

    Learning the statistics of the environment is critical for predicting upcoming events. However, little is known about how we translate previous knowledge about scene regularities to sensory predictions. Here, we ask whether patients with mild cognitive impairment due to Alzheimer's disease (MCI-AD) that are known to have spared implicit but impaired explicit recognition memory are able to learn temporal regularities and predict upcoming events. We tested the ability of MCI-AD patients and age-matched controls to predict the orientation of a test stimulus following exposure to sequences of leftwards or rightwards oriented gratings. Our results demonstrate that exposure to temporal sequences without feedback facilitates the ability to predict an upcoming stimulus in both MCI-AD patients and controls. Further, we show that executive cognitive control may account for individual variability in predictive learning. That is, we observed significant positive correlations of performance in attentional and working memory tasks with post-training performance in the prediction task. Taken together, these results suggest a mediating role of circuits involved in cognitive control (i.e. frontal circuits) that may support the ability for predictive learning in MCI-AD.

  20. Pre- and/or postnatal protein restriction in rats impairs learning and motivation in male offspring.

    Science.gov (United States)

    Reyes-Castro, L A; Rodriguez, J S; Rodríguez-González, G L; Wimmer, R D; McDonald, T J; Larrea, F; Nathanielsz, P W; Zambrano, E

    2011-04-01

    Suboptimal developmental environments program offspring to lifelong health complications including affective and cognitive disorders. Little is known about the effects of suboptimal intra-uterine environments on associative learning and motivational behavior. We hypothesized that maternal isocaloric low protein diet during pregnancy and lactation would impair offspring associative learning and motivation as measured by operant conditioning and the progressive ratio task, respectively. Control mothers were fed 20% casein (C) and restricted mothers (R) 10% casein to provide four groups: CC, RR, CR, and RC (first letter pregnancy diet and second letter lactation diet), to evaluate effects of maternal diet on male offspring behavior. Impaired learning was observed during fixed ratio-1 operant conditioning in RC offspring that required more sessions to learn vs. the CC offspring (9.4±0.8 and 3.8±0.3 sessions, respectively, pmotivational effects during the progressive ratio test revealed less responding in the RR (48.1±17), CR (74.7±8.4), and RC (65.9±11.2) for positive reinforcement vs. the CC offspring (131.5±7.5, plearning and motivation behavior with the nutritional challenge in the prenatal period showing more vulnerability in offspring behavior. Copyright © 2010 ISDN. Published by Elsevier Ltd. All rights reserved.

  1. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Ignacio Negrón-Oyarzo

    2016-01-01

    Full Text Available Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders.

  2. GESTATIONAL AND LACTATIONAL EXPOSURE TO PROPYLTHIOURACIL INDUCES HYPOTHYROIDISM AND IMPAIRS SYNAPTIC TRANSMISSION AND PLASTICITY IN AREA CA1 OF HIPPOCAMPUS.

    Science.gov (United States)

    Although severe developmental hypothyroidism leads to stunted growth, alterations in hippocampal structure, and impaired performance on a variety of behavioral learning tasks, the impact of milder forms of hypothyroidism has not been adequately assessed. Preliminary reports of ...

  3. Sevoflurane exposure during the neonatal period induces long-term memory impairment but not autism-like behaviors.

    Science.gov (United States)

    Chung, Woosuk; Park, Saegeun; Hong, Jiso; Park, Sangil; Lee, Soomin; Heo, Junyoung; Kim, Daesoo; Ko, Youngkwon

    2015-10-01

    To examine whether neonatal exposure to sevoflurane induces autism-like behaviors in mice. There are continuing reports regarding the potential negative effects of anesthesia on the developing brain. Recently, several studies suggest that neurotoxicity caused by anesthesia may lead to neurodevelopmental impairments. However, unlike reports focusing on learning and memory, there are only a few animal studies focusing on neurodevelopmental disorders after general anesthesia. Therefore, we have focused on autism, a representative neurodevelopmental disorder. Neonatal mice (P6-7) were exposed to a titrated dose of sevoflurane for 6 h. Apoptosis was evaluated by assessing the expression level of cleaved (activated) caspase-3. Autism-like behaviors, general activity, anxiety level, and long-term memory were evaluated with multiple behavioral assays. Western blotting confirmed that neonatal exposure to sevoflurane increased the expression level of activated caspase-3, indicative of apoptosis. Mice exposed to sevoflurane also showed impaired long-term memory in fear tests. However, sevoflurane-exposed mice did not exhibit autism-like features in all of the following assays: social interaction (three-chamber test, caged social interaction), social communication (ultrasonic vocalization test), or repetitive behavior (self-grooming test, digging). There were also no differences in general activity (open field test, home cage activity) and anxiety (open field test, light-dark box) after sevoflurane exposure. Our results confirm previous studies that neonatal sevoflurane exposure causes neurodegeneration and long-term memory impairment in mice. However, sevoflurane did not induce autism-like features. Our study suggests that mice are more vulnerable to long-term memory deficits than autism-like behaviors after exposure to sevoflurane. © 2015 John Wiley & Sons Ltd.

  4. Sleep Restriction Impairs Vocabulary Learning when Adolescents Cram for Exams: The Need for Sleep Study

    Science.gov (United States)

    Huang, Sha; Deshpande, Aadya; Yeo, Sing-Chen; Lo, June C.; Chee, Michael W.L.; Gooley, Joshua J.

    2016-01-01

    Study Objectives: The ability to recall facts is improved when learning takes place at spaced intervals, or when sleep follows shortly after learning. However, many students cram for exams and trade sleep for other activities. The aim of this study was to examine the interaction of study spacing and time in bed (TIB) for sleep on vocabulary learning in adolescents. Methods: In the Need for Sleep Study, which used a parallel-group design, 56 adolescents aged 15–19 years were randomly assigned to a week of either 5 h or 9 h of TIB for sleep each night as part of a 14-day protocol conducted at a boarding school. During the sleep manipulation period, participants studied 40 Graduate Record Examination (GRE)-type English words using digital flashcards. Word pairs were presented over 4 consecutive days (spaced items), or all at once during single study sessions (massed items), with total study time kept constant across conditions. Recall performance was examined 0 h, 24 h, and 120 h after all items were studied. Results: For all retention intervals examined, recall of massed items was impaired by a greater amount in adolescents exposed to sleep restriction. In contrast, cued recall performance on spaced items was similar between sleep groups. Conclusions: Spaced learning conferred strong protection against the effects of sleep restriction on recall performance, whereas students who had insufficient sleep were more likely to forget items studied over short time intervals. These findings in adolescents demonstrate the importance of combining good study habits and good sleep habits to optimize learning outcomes. Citation: Huang S, Deshpande A, Yeo SC, Lo JC, Chee MW, Gooley JJ. Sleep restriction impairs vocabulary learning when adolescents cram for exams: the Need for Sleep Study. SLEEP 2016;39(9):1681–1690. PMID:27253768

  5. Development of an Android-based Learning Media Application for Visually Impaired Students

    Directory of Open Access Journals (Sweden)

    Nurul Azmi

    2017-06-01

    Full Text Available This research aims to develop the English for Disability (EFORD application, on Android-based learning english media for Visually Impaired students and determine its based this on assessment of matter expert, media expert, special needs teacher and students. The research method adopted in this research is Research and Development (R&D. The development of this application through five phases: (1 Analysis of problems, through observation and interviews. (2 Collecting information as product planning / analysis of the needs of the media as required of blind children. (3 The design phase of products such as the manufacture of flow and storyboard navigation map.(4 Design validation phase form of an expert assessment of the media is developed. (5 testing products phase, such as assessment of the application by blind students. The results of this research is EFORD application which is feasible to be used as English learning media for visual impairment application based on assessment: 1Media expert it's obtained a percentage scored 95%, include for very worthy category, 2Subject matter, expert its obtained percentage scored 75% include for worthy category and 3 Special needs teacher it's obtained a percentage scored 83% include for very worthy category. Upon demonstration, students indicated the positive response of ≥ 70% in each indicator. Therefore English learning media with Android based application English for Disability (EFORD is very feasible to be used as an English learning media especially grammar and speaking English content for students of visual impairment for a number of reasons. This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  6. "I know your name, but not your number"--Patients with verbal short-term memory deficits are impaired in learning sequences of digits.

    Science.gov (United States)

    Bormann, Tobias; Seyboth, Margret; Umarova, Roza; Weiller, Cornelius

    2015-06-01

    Studies on verbal learning in patients with impaired verbal short-term memory (vSTM) have revealed dissociations among types of verbal information. Patients with impaired vSTM are able to learn lists of known words but fail to acquire new word forms. This suggests that vSTM is involved in new word learning. The present study assessed both new word learning and the learning of digit sequences in two patients with impaired vSTM. In two experiments, participants were required to learn people's names, ages and professions, or their four digit 'phone numbers'. The STM patients were impaired on learning unknown family names and phone numbers, but managed to acquire other verbal information. In contrast, a patient with a severe verbal episodic memory impairment was impaired across information types. These results indicate verbal STM involvement in the learning of digit sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Gender dimorphism in aspartame-induced impairment of spatial cognition and insulin sensitivity.

    Science.gov (United States)

    Collison, Kate S; Makhoul, Nadine J; Zaidi, Marya Z; Saleh, Soad M; Andres, Bernard; Inglis, Angela; Al-Rabiah, Rana; Al-Mohanna, Futwan A

    2012-01-01

    Previous studies have linked aspartame consumption to impaired retention of learned behavior in rodents. Prenatal exposure to aspartame has also been shown to impair odor-associative learning in guinea pigs; and recently, aspartame-fed hyperlipidemic zebrafish exhibited weight gain, hyperglycemia and acute swimming defects. We therefore investigated the effects of chronic lifetime exposure to aspartame, commencing in utero, on changes in blood glucose parameters, spatial learning and memory in C57BL/6J mice. Morris Water Maze (MWM) testing was used to assess learning and memory, and a random-fed insulin tolerance test was performed to assess glucose homeostasis. Pearson correlation analysis was used to investigate the associations between body characteristics and MWM performance outcome variables. At 17 weeks of age, male aspartame-fed mice exhibited weight gain, elevated fasting glucose levels and decreased insulin sensitivity compared to controls (Pdifferent from controls. Reference memory during a probe test was affected in both genders, with the aspartame-fed mice spending significantly less time searching for the former location of the platform. Interestingly, the extent of visceral fat deposition correlated positively with non-spatial search strategies such as floating and thigmotaxis, and negatively with time spent in the target quadrant and swimming across the location of the escape platform. These data suggest that lifetime exposure to aspartame, commencing in utero, may affect spatial cognition and glucose homeostasis in C57BL/6J mice, particularly in males.

  8. Cognitive decision modelling of emotion-based learning impairment in schizophrenia: the role of awareness.

    Science.gov (United States)

    Cella, Matteo; Dymond, Simon; Cooper, Andrew; Turnbull, Oliver H

    2012-03-30

    Individuals with schizophrenia often lack insight or awareness. Resulting impairment has been observed in various cognitive domains and, recently, linked to problems in emotion-based learning. The Iowa Gambling Task (IGT) has been used to assess emotion-based decision-making in patients with schizophrenia, but results have been inconclusive. The current study further investigates emotion-based decision-making in schizophrenia by elucidating the unique contribution of awareness. Twenty-five patients with schizophrenia and 24 healthy controls were assessed with a modified version of the IGT recording awareness at regular intervals. Symptom assessment, medication and medical history were recorded for the clinical group. Patients with schizophrenia underperformed on the IGT compared to controls. Subjective awareness levels were significantly lower in the schizophrenia group and were associated with hallucination severity. Cognitive decision modelling further indicated that patients with schizophrenia had impaired attention to losses, compared to controls. This parameter was positively correlated with awareness. We also found that positive symptoms altered awareness levels and suggest that this disruption may contribute to sub-optimal decision-making. Overall, a lack of awareness may be an important aspect in understanding impaired social cognitive functioning and emotion-based learning observed in schizophrenia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Early exposure to volatile anesthetics impairs long-term associative learning and recognition memory.

    Directory of Open Access Journals (Sweden)

    Bradley H Lee

    Full Text Available Anesthetic exposure early in life affects neural development and long-term cognitive function, but our understanding of the types of memory that are altered is incomplete. Specific cognitive tests in rodents that isolate different memory processes provide a useful approach for gaining insight into this issue.Postnatal day 7 (P7 rats were exposed to either desflurane or isoflurane at 1 Minimum Alveolar Concentration for 4 h. Acute neuronal death was assessed 12 h later in the thalamus, CA1-3 regions of hippocampus, and dentate gyrus. In separate behavioral experiments, beginning at P48, subjects were evaluated in a series of object recognition tests relying on associative learning, as well as social recognition.Exposure to either anesthetic led to a significant increase in neuroapoptosis in each brain region. The extent of neuronal death did not differ between groups. Subjects were unaffected in simple tasks of novel object and object-location recognition. However, anesthetized animals from both groups were impaired in allocentric object-location memory and a more complex task requiring subjects to associate an object with its location and contextual setting. Isoflurane exposure led to additional impairment in object-context association and social memory.Isoflurane and desflurane exposure during development result in deficits in tasks relying on associative learning and recognition memory. Isoflurane may potentially cause worse impairment than desflurane.

  10. Propofol exposure during late stages of pregnancy impairs learning and memory in rat offspring via the BDNF-TrkB signalling pathway.

    Science.gov (United States)

    Zhong, Liang; Luo, Foquan; Zhao, Weilu; Feng, Yunlin; Wu, Liuqin; Lin, Jiamei; Liu, Tianyin; Wang, Shengqiang; You, Xuexue; Zhang, Wei

    2016-10-01

    The brain-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) (BDNF-TrkB) signalling pathway plays a crucial role in regulating learning and memory. Synaptophysin provides the structural basis for synaptic plasticity and depends on BDNF processing and subsequent TrkB signalling. Our previous studies demonstrated that maternal exposure to propofol during late stages of pregnancy impaired learning and memory in rat offspring. The purpose of this study is to investigate whether the BDNF-TrkB signalling pathway is involved in propofol-induced learning and memory impairments. Propofol was intravenously infused into pregnant rats for 4 hrs on gestational day 18 (E18). Thirty days after birth, learning and memory of offspring was assessed by the Morris water maze (MWM) test. After the MWM test, BDNF and TrkB transcript and protein levels were measured in rat offspring hippocampus tissues using real-time PCR (RT-PCR) and immunohistochemistry (IHC), respectively. The levels of phosphorylated-TrkB (phospho-TrkB) and synaptophysin were measured by western blot. It was discovered that maternal exposure to propofol on day E18 impaired spatial learning and memory of rat offspring, decreased mRNA and protein levels of BDNF and TrkB, and decreased the levels of both phospho-TrkB and synaptophysin in the hippocampus. Furthermore, the TrkB agonist 7,8-dihydroxyflavone (7,8-DHF) reversed all of the observed changes. Treatment with 7,8-DHF had no significant effects on the offspring that were not exposed to propofol. The results herein indicate that maternal exposure to propofol during the late stages of pregnancy impairs spatial learning and memory of offspring by disturbing the BDNF-TrkB signalling pathway. The TrkB agonist 7,8-DHF might be a potential therapy for learning and memory impairments induced by maternal propofol exposure. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular

  11. 5-HT1A receptor blockade targeting the basolateral amygdala improved stress-induced impairment of memory consolidation and retrieval in rats.

    Science.gov (United States)

    Sardari, M; Rezayof, A; Zarrindast, M-R

    2015-08-06

    The aim of the present study was to investigate the possible role of basolateral amygdala (BLA) 5-HT1A receptors in memory formation under stress. We also examined whether the blockade of these receptors is involved in stress-induced state-dependent memory. Adult male Wistar rats received cannula implants that bilaterally targeted the BLA. Long-term memory was examined using the step-through type of passive avoidance task. Behavioral stress was evoked by exposure to an elevated platform (EP) for 10, 20 and 30min. Post-training exposure to acute stress (30min) impaired the memory consolidation. In addition, pre-test exposure to acute stress-(20 and 30min) induced the impairment of memory retrieval. Interestingly, the memory impairment induced by post-training exposure to stress was restored in the animals that received 20- or 30-min pre-test stress exposure, suggesting stress-induced state-dependent memory retrieval. Post-training BLA-targeted injection of a selective 5-HT1A receptor antagonist, (S)-WAY-100135 (2μg/rat), prevented the impairing effect of stress on memory consolidation. Pre-test injection of the same doses of (S)-WAY-100135 that was targeted to the BLA also reversed stress-induced memory retrieval impairment. It should be considered that post-training or pre-test BLA-targeted injection of (S)-WAY-100135 (0.5-2μg/rat) by itself had no effect on the memory formation. Moreover, pre-test injection of (S)-WAY-100135 (2μg/rat) that targeted the BLA inhibited the stress-induced state-dependent memory retrieval. Taken together, our findings suggest that post-training or pre-test exposure to acute stress induced the impairment of memory consolidation, retrieval and state-dependent learning. The BLA 5-HT1A receptors have a critical role in learning and memory under stress. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Sex differences in diet and inhaled ozone (O3) induced metabolic impairment

    Science.gov (United States)

    APS 2015 abstract Sex differences in diet and inhaled ozone (O3) induced metabolic impairment U.P. Kodavanti1, V.L. Bass2, M.C. Schladweiler1, C.J. Gordon3, K.A. Jarema1, P. Phillips1, A.D. Ledbetter1, D.B. Miller4, S. Snow5, J.E. Richards1. 1 EPHD, NHEERL, USEPA, Research Triang...

  13. THE DEVELOPMENT OF SCIENCE LEARNING MODULE FOR CHILDRENT WITH HEARING IMPAIRMENT

    Directory of Open Access Journals (Sweden)

    Ahmad Marzuqi

    2017-02-01

    Full Text Available There are the absence of teaching materials in accordance with the characteristics and conditions of a hearing impairment children in terms of learning, especially science subjects. The characteristics of hearing impairment children is poor in their vocabularies, so that, the teaching materials emphasizing the visual aspect is necessary. This study used a Research and Development (R & D adapted by the Sugiyono model in order to produce teaching materials in the form of pictorial modules and to test their effectiveness. The result of the research showed that it was a very valid criteria with a score of 97% of the materials experts, 85% of media experts, and 93% of skilled practitioners. The score of the effectiveness of the modules was 75% with the effective criteria.

  14. Methylglyoxal Induces Changes in the Glyoxalase System and Impairs Glutamate Uptake Activity in Primary Astrocytes.

    Science.gov (United States)

    Hansen, Fernanda; Galland, Fabiana; Lirio, Franciane; de Souza, Daniela Fraga; Da Ré, Carollina; Pacheco, Rafaela Ferreira; Vizuete, Adriana Fernanda; Quincozes-Santos, André; Leite, Marina Concli; Gonçalves, Carlos-Alberto

    2017-01-01

    The impairment of astrocyte functions is associated with diabetes mellitus and other neurodegenerative diseases. Astrocytes have been proposed to be essential cells for neuroprotection against elevated levels of methylglyoxal (MG), a highly reactive aldehyde derived from the glycolytic pathway. MG exposure impairs primary astrocyte viability, as evaluated by different assays, and these cells respond to MG elevation by increasing glyoxalase 1 activity and glutathione levels, which improve cell viability and survival. However, C6 glioma cells have shown strong signs of resistance against MG, without significant changes in the glyoxalase system. Results for aminoguanidine coincubation support the idea that MG toxicity is mediated by glycation. We found a significant decrease in glutamate uptake by astrocytes, without changes in the expression of the major transporters. Carbenoxolone, a nonspecific inhibitor of gap junctions, prevented the cytotoxicity induced by MG in astrocyte cultures. Thus, our data reinforce the idea that astrocyte viability depends on gap junctions and that the impairment induced by MG involves glutamate excitotoxicity. The astrocyte susceptibility to MG emphasizes the importance of this compound in neurodegenerative diseases, where the neuronal damage induced by MG may be aggravated by the commitment of the cells charged with MG clearance.

  15. Neuroprotective effect of resveratrol against scopolamine-induced cognitive impairment and oxidative stress in rats

    Directory of Open Access Journals (Sweden)

    Pushpalatha Bunadri

    2013-01-01

    Full Text Available The objective of this study was to examine the neuroprotective effect of resveratrol on cognitive impairment induced by scopolamine, a muscarinic antagonist, in rats. Memory impairment was induced by administration of scopolamine (1 mg/kg intraperitoneally. Cognitive functions were assessed using radial arm maze, an active avoidance paradigm. Oxidative stress parameters like malondialdehyde, catalase and superoxide dismutase were assessed and acetylcholinesterase activity was estimated. More working and reference memory errors in the radial arm maze test and fewer avoidances in the active avoidance test were observed with scopolamine in the 1 mg/kg i.p.-treated animals. This phenomenon is a clear indication of memory impairment. Oral administration of resveratrol (20 mg/kg inhibited the occurrence of higher working, reference memory errors and prevented the incidence of less avoidances. Resveratrol appeared to have exerted memory-enhancing effects by inhibiting acetylcholinesterase activity and prevented the rise in malondialdehyde levels and loss of antioxidant enzymes catalase and superoxide dismutase, showing antioxidant potential. Based on the above results of behavioral and biochemical studies, it can be concluded that resveratrol protected against scopolamine-induced loss of cognition. The results also indicate that resveratrol is an antioxidant and an acetylcholinesterase inhibitor, and it is likely that resveratrol’s protective effect is related to its antioxidant and cholinesterase inhibitory effects.

  16. Cigarette smoke induced autophagy-impairment regulates AMD pathogenesis mechanisms in ARPE-19 cells.

    Directory of Open Access Journals (Sweden)

    Viren Kumar Govindaraju

    Full Text Available Age related macular degeneration (AMD is one of the leading causes of blindness. Genetics, environmental insult, and age-related factors all play a key role in altering proteostasis, the homeostatic process regulating protein synthesis, degradation and processing. These factors also play a role in the pathogenesis of AMD and it has been well established that cigarette smoking (CS initiates AMD pathogenic mechanisms. The primary goal of this study is to elucidate whether CS can induce proteostasis/autophagy-impairment in retinal pigment epithelial (RPE cells. In our preliminary analysis, it was found that cigarette smoke extract (CSE induces accumulation of ubiquitinated proteins in the insoluble protein fraction (p < 0.01, which was subsequently mitigated through cysteamine (p < 0.01 or fisetin (p < 0.05 treatment. Further, it was verified that these CSE induced ubiquitinated proteins accumulated in the peri-nuclear spaces (p<0.05 that were cleared- off with cysteamine (p < 0.05 or fisetin (p < 0.05. Moreover, CSE-induced aggresome-formation (LC3B-GFP and Ub-RFP co-localization and autophagy-flux impairment was significantly (p<0.01 mitigated by cysteamine (p<0.05 or fisetin (p<0.05 treatment, indicating the restoration of CSE-mediated autophagy-impairment. CSE treatment was also found to induce intracellular reactive oxygen species (ROS, p < 0.001 while impacting cell viability (p < 0.001, which was quantified using CMH2DCFDA-dye (ROS and MTS (proliferation or propodium iodide staining (cell viability assays, respectively. Moreover, cysteamine and fisetin treatment ameliorated CS-mediated ROS production (p < 0.05 and diminished cell viability (p < 0.05. Lastly, CSE was found to induce cellular senescence (p < 0.001, which was significantly ameliorated by cysteamine (p < 0.001 or fisetin (p < 0.001. In conclusion, our study indicates that CS induced proteostasis/autophagy-impairment regulates mechanisms associated with AMD pathogenesis. Moreover

  17. Elevation of endogenous anandamide impairs LTP, learning, and memory through CB1 receptor signaling in mice.

    Science.gov (United States)

    Basavarajappa, Balapal S; Nagre, Nagaraja N; Xie, Shan; Subbanna, Shivakumar

    2014-07-01

    In rodents, many exogenous and endogenous cannabinoids, such as anandamide (AEA) and 2-arachidonyl glycerol (2-AG), have been shown to play an important role in certain hippocampal memory processes. However, the mechanisms by which endogenous AEA regulate this processes are not well understood. Here the effects of AEA on long-term potentiation (LTP), hippocampal-dependent learning and memory tasks, pERK1/2, pCaMKIV, and pCREB signaling events in both cannabinoid receptor type 1 (CB1R) wild-type (WT) and knockout (KO) mice were assessed following administration of URB597, an inhibitor of the fatty acid amide hydrolase (FAAH). Acute administration of URB597 enhanced AEA levels without affecting the levels of 2-AG or CB1R in the hippocampus and neocortex as compared to vehicle. In hippocampal slices, URB597 impaired LTP in CB1R WT but not in KO littermates. URB597 impaired object recognition, spontaneous alternation and spatial memory in the Y-maze test in CB1R WT mice but not in KO mice. Furthermore, URB597 enhanced ERK phosphorylation in WT without affecting total ERK levels in WT or KO mice. URB597 impaired CaMKIV and CREB phosphorylation in WT but not in KO mice. CB1R KO mice have a lower pCaMKIV/CaMKIV ratio and higher pCREB/CREB ratio as compared to WT littermates. Our results indicate that pharmacologically elevated AEA impair LTP, learning and memory and inhibit CaMKIV and CREB phosphorylation, via the activation of CB1Rs. Collectively, these findings also suggest that pharmacological elevation of AEA beyond normal concentrations is also detrimental for the underlying physiological responses. © 2014 Wiley Periodicals, Inc.

  18. Chronic impairments in spatial learning and memory in rats previously exposed to chlorpyrfos or diisopropylfluorophosphate.

    Science.gov (United States)

    Terry, A V; Beck, W D; Warner, S; Vandenhuerk, L; Callahan, P M

    2012-01-01

    The acute toxicity of organophosphates (OPs) has been studied extensively; however, much less attention has been given to the subject of repeated exposures that are not associated with overt signs of toxicity (i.e., subthreshold exposures). The objective of this study was to determine if the protracted spatial learning impairments we have observed previously after repeated subthreshold exposures to the insecticide chlorpyrifos (CPF) or the alkylphosphate OP, diisopropylfluorophosphate (DFP) persisted for longer periods after exposure. Male Wistar rats (beginning at two months of age) were initially injected subcutaneously with CPF (10.0 or 18.0mg/kg) or DFP (0.25 or 0.75 mg/kg) every other day for 30 days. After an extended OP-free washout period (behavioral testing begun 50 days after the last OP exposure), rats previously exposed to CPF, but not DFP, were impaired in a radial arm maze (RAM) win-shift task as well as a delayed non-match to position procedure. Later experiments (i.e., beginning 140 days after the last OP exposure) revealed impairments in the acquisition of a water maze hidden platform task associated with both OPs. However, only rats previously exposed to DFP were impaired in a second phase of testing when the platform location was changed (indicative of deficits of cognitive flexibility). These results indicate, therefore, that repeated, subthreshold exposures to CPF and DFP may lead to chronic deficits in spatial learning and memory (i.e., long after cholinesterase inhibition has abated) and that insecticide and alkylphosphate-based OPs may have differential effects depending on the cognitive domain evaluated. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Increasing Optimism Protects Against Pain-Induced Impairment in Task-Shifting Performance.

    Science.gov (United States)

    Boselie, Jantine J L M; Vancleef, Linda M G; Peters, Madelon L

    2017-04-01

    Persistent pain can lead to difficulties in executive task performance. Three core executive functions that are often postulated are inhibition, updating, and shifting. Optimism, the tendency to expect that good things happen in the future, has been shown to protect against pain-induced performance deterioration in executive function updating. This study tested whether this protective effect of a temporary optimistic state by means of a writing and visualization exercise extended to executive function shifting. A 2 (optimism: optimism vs no optimism) × 2 (pain: pain vs no pain) mixed factorial design was conducted. Participants (N = 61) completed a shifting task once with and once without concurrent painful heat stimulation after an optimism or neutral manipulation. Results showed that shifting performance was impaired when experimental heat pain was applied during task execution, and that optimism counteracted pain-induced deterioration in task-shifting performance. Experimentally-induced heat pain impairs shifting task performance and manipulated optimism or induced optimism counteracted this pain-induced performance deterioration. Identifying psychological factors that may diminish the negative effect of persistent pain on the ability to function in daily life is imperative. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.

  20. Administration of memantine during withdrawal mitigates overactivity and spatial learning impairments associated with neonatal alcohol exposure in rats.

    Science.gov (United States)

    Idrus, Nirelia M; McGough, Nancy N H; Riley, Edward P; Thomas, Jennifer D

    2014-02-01

    Prenatal alcohol exposure can disrupt central nervous system development, manifesting as behavioral deficits that include motor, emotional, and cognitive dysfunction. Both clinical and animal studies have reported binge drinking during development to be highly correlated with an increased risk of fetal alcohol spectrum disorders (FASD). We hypothesized that binge drinking may be especially damaging because it is associated with episodes of alcohol withdrawal. Specifically, we have been investigating the possibility that NMDA receptor-mediated excitotoxicity occurs during alcohol withdrawal and contributes to developmental alcohol-related neuropathology. Consistent with this hypothesis, administration of the NMDA receptor antagonists MK-801 or eliprodil during withdrawal attenuates behavioral alterations associated with early alcohol exposure. In this study, we investigated the effects of memantine, a clinically used NMDA receptor antagonist, on minimizing ethanol-induced overactivity and spatial learning deficits. Sprague-Dawley pups were exposed to 6.0 g/kg ethanol via intubation on postnatal day (PD) 6, a period of brain development that models late gestation in humans. Controls were intubated with a calorically matched maltose solution. During withdrawal, 24 and 36 hours after ethanol exposure, subjects were injected with a total of either 0, 20, or 30 mg/kg memantine. The subjects' locomotor levels were recorded in open field activity monitors on PDs 18 to 21 and on a serial spatial discrimination reversal learning task on PDs 40 to 43. Alcohol exposure induced overactivity and impaired performance in spatial learning. Memantine administration significantly attenuated the ethanol-associated behavioral alterations in a dose-dependent manner. Thus, memantine may be neuroprotective when administered during ethanol withdrawal. These data have important implications for the treatment of EtOH's neurotoxic effects and provide further support that ethanol withdrawal

  1. STUDENTS’ MISCONCEPTIONS ABOUT THE NATURE OF MATTER AND HOW IT IMPAIRS BIOCHEMISTRY LEARNING

    Directory of Open Access Journals (Sweden)

    E. Montagna

    2015-08-01

    Full Text Available Introduction: It is widely known that misconceptions impairs student’s learning. IUBMB proposed a concept inventory which defines biochemistry’s teaching scope. Even though it is known that many of them are subject of misconceptions by students, we collected informal data suggesting a deeper and most pervasive misconception related to the students’ perceptions about what is and is not a molecule through their classroom statements and tests. We hypothesize that students’ impairments on biochemistry learning possibly come from failure to assume that names are related to well defined molecules indicating lack of matter’s representative levels of integration. Objectives The present work aims to detect in freshmen students’ misconceptions about the chemical nature of main small and macromolecules which potentialy impairs biochemistry learning. Materials and methods: A list of assertions about real life situations involving and citing main biomolecules – ATP, DNA, protein, lipid, carbohydrate, enzyme, hormon, vitamin – were mixed with other containing vague common terms – toxin, transgenic, healthy, unwanted elements, chemical compound – not suggesting hazardous situations in order to capture students’ impressions. More than 150 students from five courses in three different higher education institutions answered true or false on 35 assertions. Results and discussion: More than 70% of students had more than 80% error in this task designed to be not tricky, misleading or with unpreviously studied concepts. Results suggests students do not understand compounds as molecules but as entities unrelated to real life situations; on the other hand vague terms triggers a negative perception not necessarily related to harm or hazardous situations. We suggest that it is originated by poor scientific literacy from previous scholarity as well as lack of criteria on media vehicles about the topics here cited. Conclusion: We conclude that many

  2. Exposure to multiple cholinergic pesticides impairs olfactory learning and memory in honeybees.

    Science.gov (United States)

    Williamson, Sally M; Wright, Geraldine A

    2013-05-15

    Pesticides are important agricultural tools often used in combination to avoid resistance in target pest species, but there is growing concern that their widespread use contributes to the decline of pollinator populations. Pollinators perform sophisticated behaviours while foraging that require them to learn and remember floral traits associated with food, but we know relatively little about the way that combined exposure to multiple pesticides affects neural function and behaviour. The experiments reported here show that prolonged exposure to field-realistic concentrations of the neonicotinoid imidacloprid and the organophosphate acetylcholinesterase inhibitor coumaphos and their combination impairs olfactory learning and memory formation in the honeybee. Using a method for classical conditioning of proboscis extension, honeybees were trained in either a massed or spaced conditioning protocol to examine how these pesticides affected performance during learning and short- and long-term memory tasks. We found that bees exposed to imidacloprid, coumaphos, or a combination of these compounds, were less likely to express conditioned proboscis extension towards an odor associated with reward. Bees exposed to imidacloprid were less likely to form a long-term memory, whereas bees exposed to coumaphos were only less likely to respond during the short-term memory test after massed conditioning. Imidacloprid, coumaphos and a combination of the two compounds impaired the bees' ability to differentiate the conditioned odour from a novel odour during the memory test. Our results demonstrate that exposure to sublethal doses of combined cholinergic pesticides significantly impairs important behaviours involved in foraging, implying that pollinator population decline could be the result of a failure of neural function of bees exposed to pesticides in agricultural landscapes.

  3. Using electronic storybooks to support word learning in children with severe language impairments.

    Science.gov (United States)

    Smeets, Daisy J H; van Dijken, Marianne J; Bus, Adriana G

    2014-01-01

    Novel word learning is reported to be problematic for children with severe language impairments (SLI). In this study, we tested electronic storybooks as a tool to support vocabulary acquisition in SLI children. In Experiment 1, 29 kindergarten SLI children heard four e-books each four times: (a) two stories were presented as video books with motion pictures, music, and sounds, and (b) two stories included only static illustrations without music or sounds. Two other stories served as the control condition. Both static and video books were effective in increasing knowledge of unknown words, but static books were most effective. Experiment 2 was designed to examine which elements in video books interfere with word learning: video images or music or sounds. A total of 23 kindergarten SLI children heard 8 storybooks each four times: (a) two static stories without music or sounds, (b) two static stories with music or sounds, (c) two video stories without music or sounds, and (d) two video books with music or sounds. Video images and static illustrations were equally effective, but the presence of music or sounds moderated word learning. In children with severe SLI, background music interfered with learning. Problems with speech perception in noisy conditions may be an underlying factor of SLI and should be considered in selecting teaching aids and learning environments. © Hammill Institute on Disabilities 2012.

  4. Chronic ethanol consumption impairs learning and memory after cessation of ethanol.

    Science.gov (United States)

    Farr, Susan A; Scherrer, Jeffrey F; Banks, William A; Flood, James F; Morley, John E

    2005-06-01

    Acute consumption of ethanol results in reversible changes in learning and memory whereas chronic ethanol consumption of six or more months produces permanent deficits and neural damage in rodents. The goal of the current paper was determine whether shorter durations of chronic ethanol ingestion in mice would produce long-term deficits in learning and memory after the cessation of ethanol. We first examined the effects of four and eight weeks of 20% ethanol followed by a three week withdrawal period on learning and memory in mice. We determined that three weeks after eight, but not four, weeks of 20% ethanol consumption resulted in deficits in learning and long-term memory (seven days) in T-maze footshock avoidance and Greek Cross brightness discrimination, step-down passive avoidance and shuttlebox active avoidance. Short-term memory (1 hr) was not affected. The deficit was not related to changes in thiamine status, caloric intake, or nonmnemonic factors, such as, activity or footshock sensitivity. Lastly, we examined if the mice recovered after longer durations of withdrawal. After eight weeks of ethanol, we compared mice after three and 12 weeks of withdrawal. Mice that had been off ethanol for both three and 12 weeks were impaired in T-maze footshock avoidance compared to the controls. The current results indicate that a duration of ethanol consumption as short as eight weeks produces deficits in learning and memory that are present 12 weeks after withdrawal.

  5. Chronic stress during adolescence impairs and improves learning and memory in adulthood

    Directory of Open Access Journals (Sweden)

    Lauren Evelyn Chaby

    2015-12-01

    Full Text Available Exposure to acute stress can cause a myriad of cognitive impairments, but whether negative experiences continue to hinder individual as they age is not well understood. We determined how chronic unpredictable stress during adolescence affects multiple learning and memory processes in adulthood. Using male Sprague Dawley rats, we measured learning (both associative and reversal and memory (both reference and working starting 110 days after completion of the adolescent-stress treatment. We found that adolescent stress affected adult cognitive abilities in a context-dependent way. Compared to rats reared without stress, adolescent-stressed rats exhibited enhanced reversal learning, an indicator of behavioral flexibility, but showed no change in associative learning and reference memory abilities. Working memory, which in humans is thought to underpin reasoning, mathematical skills, and reading comprehension, may be enhanced by exposure to adolescent stress. However, when adolescent-stressed animals were tested after a novel disturbance, they exhibited a 5-fold decrease in working memory performance while unstressed rats continued to exhibit a linear learning curve. These results emphasize the capacity for stress during adolescence to transform the cognitive abilities of adult animals, even after stress exposure has ceased and animals have resided in safe environments for the majority of their lifespans.

  6. Spared internal but impaired external reward prediction error signals in major depressive disorder during reinforcement learning.

    Science.gov (United States)

    Bakic, Jasmina; Pourtois, Gilles; Jepma, Marieke; Duprat, Romain; De Raedt, Rudi; Baeken, Chris

    2017-01-01

    Major depressive disorder (MDD) creates debilitating effects on a wide range of cognitive functions, including reinforcement learning (RL). In this study, we sought to assess whether reward processing as such, or alternatively the complex interplay between motivation and reward might potentially account for the abnormal reward-based learning in MDD. A total of 35 treatment resistant MDD patients and 44 age matched healthy controls (HCs) performed a standard probabilistic learning task. RL was titrated using behavioral, computational modeling and event-related brain potentials (ERPs) data. MDD patients showed comparable learning rate compared to HCs. However, they showed decreased lose-shift responses as well as blunted subjective evaluations of the reinforcers used during the task, relative to HCs. Moreover, MDD patients showed normal internal (at the level of error-related negativity, ERN) but abnormal external (at the level of feedback-related negativity, FRN) reward prediction error (RPE) signals during RL, selectively when additional efforts had to be made to establish learning. Collectively, these results lend support to the assumption that MDD does not impair reward processing per se during RL. Instead, it seems to alter the processing of the emotional value of (external) reinforcers during RL, when additional intrinsic motivational processes have to be engaged. © 2016 Wiley Periodicals, Inc.

  7. The protective effect of 20(S)-protopanaxadiol (PPD) against chronic sleep deprivation (CSD)-induced memory impairments in mice.

    Science.gov (United States)

    Lu, Cong; Lv, Jingwei; Dong, Liming; Jiang, Ning; Wang, Yan; Fan, Bei; Wang, Fengzhong; Liu, Xinmin

    2018-03-01

    Sleep deprivation (SD) is associated with oxidative stress that causes learning and memory impairment. 20(S)-Protopanaxadiol (PPD), one of the protopanaxadiol-type saponins, has antioxidant and neuroprotective effect. This study was designed to research the protective effect of PPD against cognitive deficits induced by chronic sleep deprivation (CSD) in mice. The CSD model was induced by subjecting the mice to our self-made Sleep Interruption Apparatus (SIA) continuously for 14 days. The memory enhancing effects of PPD were evaluated by behavioral tests and the related mechanism was further explored by observing the oxidative stress changes in the cortex and hippocampus of mice. The results revealed that PPD (20 and 40 μmol/kg, i.p.) administration significantly improved the cognitive performance of CSD model mice in object location recognition experiment, novel object recognition task and Morris water maze test. Furthermore, PPD effectively restored the levels/activities of antioxidant defense biomarkers in the cortex and hippocampus, including the superoxide dismutase (SOD) enzyme activity, catalase (CAT) enzyme activity, glutathione (GSH), and lipid peroxidation (LPO). In conclusion, PPD could attenuate cognitive deficits induced by CSD, and the neuroprotective effect of PPD might be mediated by alleviation of oxidative stress. It was assumed that PPD has the potential to be a neuroprotective substance for cognition dysfunction. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Spatial learning in the 5-HT1B receptor knockout mouse: selective facilitation/impairment depending on the cognitive demand.

    Science.gov (United States)

    Buhot, Marie-Christine; Wolff, Mathieu; Benhassine, Narimane; Costet, Pierre; Hen, René; Segu, Louis

    2003-01-01

    Age-related memory decline is associated with a combined dysfunction of the cholinergic and serotonergic systems in the hippocampus and frontal cortex, in particular. The 5-HT1B receptor occupies strategic cellular and subcellular locations in these structures, where it plays a role in the modulation of ACh release. In an attempt to characterize the contribution of this receptor to memory functions, 5-HT1B receptor knockout (KO) mice were submitted to various behavioral paradigms carried out in the same experimental context (water maze), which were aimed at exposing mice to various levels of memory demand. 5-HT1BKO mice exhibited a facilitation in the acquisition of a hippocampal-dependent spatial reference memory task in the Morris water maze. This facilitation was selective of task difficulty, showing thus that the genetic inactivation of the 5-HT1B receptor is associated with facilitation when the complexity of the task is increased, and reveals a protective effect on age-related hippocampal-dependent memory decline. Young-adult and aged KO and wild-type (WT) mice were equally able to learn a delayed spatial matching-to-sample working memory task in a radial-arm water maze with short (0 or 5 min) delays. However, 5-HT1BKO mice, only, exhibited a selective memory impairment at intermediate and long (15, 30, and 60 min) delays. Treatment by scopolamine induced the same pattern of performance in wild type as did the mutation for short (5 min, no impairment) and long (60 min, impairment) delays. Taken together, these studies revealed a beneficial effect of the mutation on the acquisition of a spatial reference memory task, but a deleterious effect on a working memory task for long delays. This 5-HT1BKO mouse story highlights the problem of the potential existence of "global memory enhancers."

  9. Hypertension-Induced Cerebral Small Vessel Disease Leading to Cognitive Impairment.

    Science.gov (United States)

    Liu, Yang; Dong, Yan-Hong; Lyu, Pei-Yuan; Chen, Wei-Hong; Li, Rui

    2018-03-05

    Alzheimer's disease and vascular dementia are responsible for more than 80% of dementia cases. These two conditions share common risk factors including hypertension. Cerebral small vessel disease (CSVD) is strongly associated with both hypertension and cognitive impairment. In this review, we identify the pathophysiological changes in CSVD that are caused by hypertension and further explore the relationship between CSVD and cognitive impairment. We searched and scanned the PubMed database for recently published literatures up to December 2017. We used the keywords of "hypertension", "cerebral small vessel disease", "white matter lesions", "enlarged perivascular spaces", "lacunar infarcts", "cerebral microbleeds", and "cognitive impairment" in the database of PubMed. Articles were obtained and reviewed to analyze the hypertension-induced pathophysiological changes that occur in CSVD and the correlation between CSVD and cognitive impairment. In recent years, studies have demonstrated that hypertension-related changes (e.g., small vascular lesions, inflammatory reactions, hypoperfusion, oxidative stress, damage to autoregulatory processes and the blood-brain barrier, and cerebral amyloid angiopathy) can occur over time in cerebral small vessels, potentially leading to lower cognitive function when blood pressure (BP) control is poor or lacking. Both isolated and co-occurrent CSVD can lead to cognitive deterioration, and this effect may be attributable to a dysfunction in either the cholinergic system or the functionality of cortical and subcortical tracts. We explore the currently available evidence about the hypertensive vasculopathy and inflammatory changes that occur in CSVD. Both are vital prognostic indicators of the development of cognitive impairment. Future studies should be performed to validate the relationship between BP levels and CSVD progression and between the numbers, volumes, and anatomical locations of CSVD and cognitive impairment.

  10. Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: Role of insufficient hydrogen sulfide

    Directory of Open Access Journals (Sweden)

    Zhongjian Cheng

    2018-06-01

    Full Text Available Insufficient hydrogen sulfide (H2S has been implicated in Type 2 diabetic mellitus (T2DM and hyperhomocysteinemia (HHcy-related cardiovascular complications. We investigated the role of H2S in T2DM and HHcy-induced endothelial dysfunction in small mesenteric artery (SMA of db/db mice fed a high methionine (HM diet. HM diet (8 weeks induced HHcy in both T2DM db/db mice and non-diabetic db/+ mice (total plasma Hcy: 48.4 and 31.3 µM, respectively, and aggravated the impaired endothelium-derived hyperpolarization factor (EDHF-induced endothelium-dependent relaxation to acetylcholine (ACh, determined by the presence of eNOS inhibitor N(ω-nitro-L-arginine methyl ester (L-NAME and prostacyclin (PGI2 inhibitor indomethacin (INDO, in SMA from db/db mice but not that from db/+ mice. A non-selective Ca2+-active potassium channel (KCa opener NS309 rescued T2DM/HHcy-impaired EDHF-mediated vascular relaxation to ACh. EDHF-induced relaxation to ACh was inhibited by a non-selective KCa blocker TEA and intermediate-conductance KCa blocker (IKCa Tram-34, but not by small-conductance KCa (SKCa blocker Apamin. HHcy potentiated the reduction of free sulfide, H2S and cystathionine γ-lyase protein, which converts L-cysteine to H2S, in SMA of db/db mice. Importantly, a stable H2S donor DATS diminished the enhanced O2- production in SMAs and lung endothelial cells of T2DM/HHcy mice. Antioxidant PEG-SOD and DATS improved T2DM/HHcy impaired relaxation to ACh. Moreover, HHcy increased hyperglycemia-induced IKCa tyrosine nitration in human micro-vascular endothelial cells. EDHF-induced vascular relaxation to L-cysteine was not altered, whereas such relaxation to NaHS was potentiated by HHcy in SMA of db/db mice which was abolished by ATP-sensitive potassium channel blocker Glycolamide but not by KCa blockers. Conclusions: Intermediate HHcy potentiated H2S reduction via CSE-downregulation in microvasculature of T2DM mice. H2S is justified as an EDHF. Insufficient H2S

  11. Nonadjacent Dependency Learning in Cantonese-Speaking Children With and Without a History of Specific Language Impairment.

    Science.gov (United States)

    Iao, Lai-Sang; Ng, Lai Yan; Wong, Anita Mei Yin; Lee, Oi Ting

    2017-03-01

    This study investigated nonadjacent dependency learning in Cantonese-speaking children with and without a history of specific language impairment (SLI) in an artificial linguistic context. Sixteen Cantonese-speaking children with a history of SLI and 16 Cantonese-speaking children with typical language development (TLD) were tested with a nonadjacent dependency learning task using artificial languages that mimic Cantonese. Children with TLD performed above chance and were able to discriminate between trained and untrained nonadjacent dependencies. However, children with a history of SLI performed at chance and were not able to differentiate trained versus untrained nonadjacent dependencies. These findings, together with previous findings from English-speaking adults and adolescents with language impairments, suggest that individuals with atypical language development, regardless of age, diagnostic status, language, and culture, show difficulties in learning nonadjacent dependencies. This study provides evidence for early impairments to statistical learning in individuals with atypical language development.

  12. Sleep deprivation impairs spatial retrieval but not spatial learning in the non-human primate grey mouse lemur.

    Directory of Open Access Journals (Sweden)

    Anisur Rahman

    Full Text Available A bulk of studies in rodents and humans suggest that sleep facilitates different phases of learning and memory process, while sleep deprivation (SD impairs these processes. Here we tested the hypothesis that SD could alter spatial learning and memory processing in a non-human primate, the grey mouse lemur (Microcebus murinus, which is an interesting model of aging and Alzheimer's disease (AD. Two sets of experiments were performed. In a first set of experiments, we investigated the effects of SD on spatial learning and memory retrieval after one day of training in a circular platform task. Eleven male mouse lemurs aged between 2 to 3 years were tested in three different conditions: without SD as a baseline reference, 8 h of SD before the training and 8 h of SD before the testing. The SD was confirmed by electroencephalographic recordings. Results showed no effect of SD on learning when SD was applied before the training. When the SD was applied before the testing, it induced an increase of the amount of errors and of the latency prior to reach the target. In a second set of experiments, we tested the effect of 8 h of SD on spatial memory retrieval after 3 days of training. Twenty male mouse lemurs aged between 2 to 3 years were tested in this set of experiments. In this condition, the SD did not affect memory retrieval. This is the first study that documents the disruptive effects of the SD on spatial memory retrieval in this primate which may serve as a new validated challenge to investigate the effects of new compounds along physiological and pathological aging.

  13. Repeated Sleep Restriction in Adolescent Rats Altered Sleep Patterns and Impaired Spatial Learning/Memory Ability

    Science.gov (United States)

    Yang, Su-Rong; Sun, Hui; Huang, Zhi-Li; Yao, Ming-Hui; Qu, Wei-Min

    2012-01-01

    Study Objectives: To investigate possible differences in the effect of repeated sleep restriction (RSR) during adolescence and adulthood on sleep homeostasis and spatial learning and memory ability. Design: The authors examined electroencephalograms of rats as they were subjected to 4-h daily sleep deprivation that continued for 7 consecutive days and assessed the spatial learning and memory by Morris water maze test (WMT). Participants: Adolescent and adult rats. Measurements and Results: Adolescent rats exhibited a similar amount of rapid eye movement (REM) and nonrapid eye movement (NREM) sleep with higher slow wave activity (SWA, 0.5-4 Hz) and fewer episodes and conversions with prolonged durations, indicating they have better sleep quality than adult rats. After RSR, adult rats showed strong rebound of REM sleep by 31% on sleep deprivation day 1; this value was 37% on sleep deprivation day 7 in adolescents compared with 20-h baseline level. On sleep deprivation day 7, SWA in adult and adolescent rats increased by 47% and 33%, and such elevation lasted for 5 h and 7 h, respectively. Furthermore, the authors investigated the effects of 4-h daily sleep deprivation immediately after the water maze training sessions on spatial cognitive performance. Adolescent rats sleep-restricted for 7 days traveled a longer distance to find the hidden platform during the acquisition training and had fewer numbers of platform crossings in the probe trial than those in the control group, something that did not occur in the sleep-deprived adult rats. Conclusions: Repeated sleep restriction (RSR) altered sleep profiles and mildly impaired spatial learning and memory capability in adolescent rats. Citation: Yang SR; Sun H; Huang ZL; Yao MH; Qu WM. Repeated sleep restriction in adolescent rats altered sleep patterns and impaired spatial learning/memory ability. SLEEP 2012;35(6):849-859. PMID:22654204

  14. Thujone inhibits the function of α7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm.

    Science.gov (United States)

    Sultan, Ahmed; Yang, Keun-Hang Susan; Isaev, Dmitro; Nebrisi, Eslam El; Syed, Nurulain; Khan, Nadia; Howarth, Christopher F; Sadek, Bassem; Oz, Murat

    2017-06-01

    Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α 7 subunit of the human nicotinic acetylcholine (α 7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100μM)-induced currents with an IC 50 value of 24.7μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca 2+ -dependent Cl - channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [ 125 I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α 7 nACh receptor indicated that thujone suppressed choline induced Ca 2+ transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Thujone inhibits the function of α7-nicotinic acetylcholine receptors and impairs nicotine-induced memory enhancement in one-trial passive avoidance paradigm

    International Nuclear Information System (INIS)

    Sultan, Ahmed; Yang, Keun-Hang Susan; Isaev, Dmitro; Nebrisi, Eslam El; Syed, Nurulain; Khan, Nadia; Howarth, Christopher F.; Sadek, Bassem; Oz, Murat

    2017-01-01

    Effects of thujone, a major ingredient of absinthe, wormwood oil and some herbal medicines, were tested on the function of α 7 subunit of the human nicotinic acetylcholine (α 7 nACh) receptor expressed in Xenopus oocytes using the two-electrode voltage-clamp technique. Thujone reversibly inhibited ACh (100 μM)-induced currents with an IC 50 value of 24.7 μM. The effect of thujone was not dependent on the membrane potential and did not involve Ca 2+ -dependent Cl − channels expressed endogenously in oocytes. Inhibition by thujone was not reversed by increasing ACh concentrations. Moreover, specific binding of [ 125 I] α-bungarotoxin was not altered by thujone. Further experiments in SH-EP1 cells expressing human α 7 nACh receptor indicated that thujone suppressed choline induced Ca 2+ transients in a concentration-dependent manner. In rat hippocampal CA3-dentate gyrus synapses, nicotine-induced enhancement of long-term potentiation was also inhibited by thujone. Furthermore, the results observed in in-vivo one-trial passive avoidance paradigm show that thujone (1.25 mg/kg, i.p.) significantly impaired nicotine-induced enhancement of learning and memory in Wistar rats. Collectively, our results indicate that thujone inhibits the function of the α7-nACh receptor and impairs cellular and behavioral correlates of cholinergic modulation of learning and memory.

  16. Prevention of Severe Hypoglycemia-Induced Brain Damage and Cognitive Impairment with Verapamil.

    Science.gov (United States)

    Jackson, David A; Michael, Trevin; Vieira de Abreu, Adriana; Agrawal, Rahul; Bortolato, Marco; Fisher, Simon J

    2018-05-03

    People with insulin-treated diabetes are uniquely at risk for severe hypoglycemia-induced brain damage. Since calcium influx may mediate brain damage, we tested the hypothesis that the calcium channel blocker, verapamil, would significantly reduce brain damage and cognitive impairment caused by severe hypoglycemia. Ten-week-old Sprague-Dawley rats were randomly assigned to one of three treatments; 1) control hyperinsulinemic (200 mU.kg -1 min -1 ) euglycemic (80-100mg/dl) clamps (n=14), 2) hyperinsulinemic hypoglycemic (10-15mg/dl) clamps (n=16), or 3) hyperinsulinemic hypoglycemic clamps followed by a single treatment with verapamil (20mg/kg) (n=11). As compared to euglycemic controls, hypoglycemia markedly increased dead/dying neurons in the hippocampus and cortex, by 16-fold and 14-fold, respectively. Verapamil treatment strikingly decreased hypoglycemia-induced hippocampal and cortical damage, by 87% and 94%, respectively. Morris Water Maze probe trial results demonstrated that hypoglycemia induced a retention, but not encoding, memory deficit (noted by both abolished target quadrant preference and reduced target quadrant time). Verapamil treatment significantly rescued spatial memory as noted by restoration of target quadrant preference and target quadrant time. In summary, a one-time treatment with verapamil following severe hypoglycemia prevented neural damage and memory impairment caused by severe hypoglycemia. For people with insulin treated diabetes, verapamil may be a useful drug to prevent hypoglycemia-induced brain damage. © 2018 by the American Diabetes Association.

  17. Lipid-induced insulin resistance does not impair insulin access to skeletal muscle

    Science.gov (United States)

    Richey, Joyce M.; Castro, Ana Valeria B.; Broussard, Josiane L.; Ionut, Viorica; Bergman, Richard N.

    2015-01-01

    Elevated plasma free fatty acids (FFA) induce insulin resistance in skeletal muscle. Previously, we have shown that experimental insulin resistance induced by lipid infusion prevents the dispersion of insulin through the muscle, and we hypothesized that this would lead to an impairment of insulin moving from the plasma to the muscle interstitium. Thus, we infused lipid into our anesthetized canine model and measured the appearance of insulin in the lymph as a means to sample muscle interstitium under hyperinsulinemic euglycemic clamp conditions. Although lipid infusion lowered the glucose infusion rate and induced both peripheral and hepatic insulin resistance, we were unable to detect an impairment of insulin access to the lymph. Interestingly, despite a significant, 10-fold increase in plasma FFA, we detected little to no increase in free fatty acids or triglycerides in the lymph after lipid infusion. Thus, we conclude that experimental insulin resistance induced by lipid infusion does not reduce insulin access to skeletal muscle under clamp conditions. This would suggest that the peripheral insulin resistance is likely due to reduced cellular sensitivity to insulin in this model, and yet we did not detect a change in the tissue microenvironment that could contribute to cellular insulin resistance. PMID:25852002

  18. Supplementation of pyruvate prevents palmitate-induced impairment of glucose uptake in C2 myotubes.

    Science.gov (United States)

    Jung, Jong Gab; Choi, Sung-E; Hwang, Yoon-Jung; Lee, Sang-A; Kim, Eun Kyoung; Lee, Min-Seok; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Kang, Yup; Lee, Kwan-Woo

    2011-10-15

    Elevated fatty acid levels have been thought to contribute to insulin resistance. Repression of the glucose transporter 4 (GLUT4) gene as well as impaired GLUT4 translocation may be a mediator for fatty acid-induced insulin resistance. This study was initiated to determine whether palmitate treatment repressed GLUT4 expression, whether glucose/fatty acid metabolism influenced palmitate-induced GLUT4 gene repression (PIGR), and whether attempts to prevent PIGR restored palmitate-induced impairment of glucose uptake (PIIGU) in C2 myotubes. Not only stimulators of fatty acid oxidation, such as bezafibrate, AICAR, and TOFA, but also TCA cycle substrates, such as pyruvate, leucine/glutamine, and α-ketoisocaproate/monomethyl succinate, significantly prevented PIGR. In particular, supplementing with pyruvate through methyl pyruvate resulted in nearly complete prevention of PIIGU, whereas palmitate treatment reduced the intracellular pyruvate level. These results suggest that pyruvate depletion plays a critical role in PIGR and PIIGU; thus, pyruvate supplementation may help prevent obesity-induced insulin resistance in muscle cells. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Influence of age on cognition and scopolamine induced memory impairment in rats measured in the radial maze paradigm.

    Science.gov (United States)

    Appenroth, Dorothea; Fleck, Christian

    2010-01-01

    The influence of age on (1) cognition and (2) scopolamine (CAS 51-34-3) induced memory impairment in female rats was measured in the radial maze paradigm (RAM). (1) First training trials were done with 3 and 12 months old rats. Rats were trained to find all eight food baits in the RAM without errors and within 1 min. Both 3- and 12-month old rats need about 15 trials for the first-time learning of the RAM task. After intervals of 3 6 months, respectively, initially young rats were re-trained with an age of 6 and 12 months. Surprisingly, re-trained rats successfully completed the maze runs already after one re-training trial. Thus the phenomenon of preserved spatial memory was approved for female rats. (2) Memory impairment by scopolamine in the RAM was tested for the time in rats with an age of 3 months. first rats with thesame After a control run,the rats received an i.p. injection of either scopolamine hydrochloride (0.05 mg/100 g b. wt.) or saline vehicle. The effect of scopolamine on working memory was measured 20 min after administration. Training procedure and scopolamine administration were repeated at an age of 6, 12, 18, and 24 months in the same manner. The cognition impairment after scopolamine (number of errors: control: <1; scopolamine: 5-6) remains constant between 3 and 24 months of age. The only significant difference was the increase in run time in rats older than 18 months caused by degenerative changes developing with age.

  20. Peripheral and central CB1 cannabinoid receptors control stress-induced impairment of memory consolidation.

    Science.gov (United States)

    Busquets-Garcia, Arnau; Gomis-González, Maria; Srivastava, Raj Kamal; Cutando, Laura; Ortega-Alvaro, Antonio; Ruehle, Sabine; Remmers, Floortje; Bindila, Laura; Bellocchio, Luigi; Marsicano, Giovanni; Lutz, Beat; Maldonado, Rafael; Ozaita, Andrés

    2016-08-30

    Stressful events can generate emotional memories linked to the traumatic incident, but they also can impair the formation of nonemotional memories. Although the impact of stress on emotional memories is well studied, much less is known about the influence of the emotional state on the formation of nonemotional memories. We used the novel object-recognition task as a model of nonemotional memory in mice to investigate the underlying mechanism of the deleterious effect of stress on memory consolidation. Systemic, hippocampal, and peripheral blockade of cannabinoid type-1 (CB1) receptors abolished the stress-induced memory impairment. Genetic deletion and rescue of CB1 receptors in specific cell types revealed that the CB1 receptor population specifically in dopamine β-hydroxylase (DBH)-expressing cells is both necessary and sufficient for stress-induced impairment of memory consolidation, but CB1 receptors present in other neuronal populations are not involved. Strikingly, pharmacological manipulations in mice expressing CB1 receptors exclusively in DBH(+) cells revealed that both hippocampal and peripheral receptors mediate the impact of stress on memory consolidation. Thus, CB1 receptors on adrenergic and noradrenergic cells provide previously unrecognized cross-talk between central and peripheral mechanisms in the stress-dependent regulation of nonemotional memory consolidation, suggesting new potential avenues for the treatment of cognitive aspects on stress-related disorders.

  1. Cognitive Ameliorating Effect of Acanthopanax koreanum Against Scopolamine-Induced Memory Impairment in Mice.

    Science.gov (United States)

    Lee, Sunhee; Park, Ho Jae; Jeon, Se Jin; Kim, Eunji; Lee, Hyung Eun; Kim, Haneul; Kwon, Yubeen; Zhang, Jiabao; Jung, In Ho; Ryu, Jong Hoon

    2017-03-01

    Acanthopanax koreanum Nakai (Araliaceae) is one of the most widely cultivated medicinal plants in Jeju Island, Korea, and the roots and stem bark of A. koreanum have been traditionally used as a tonic agent for general weakness. However, the use of A. koreanum for general weakness observed in the elderly, including those with declined cognitive function, has not been intensively investigated. This study was performed to investigate the effect of the ethanol extract of A. koreanum (EEAK) on cholinergic blockade-induced memory impairment in mice. To evaluate the ameliorating effects of EEAK against scopolamine-induced memory impairment, mice were orally administered EEAK (25, 50, 100, or 200 mg/kg), and several behavioral tasks, including a passive avoidance task, the Y-maze, and a novel object recognition task, were employed. Besides, western blot analysis was conducted to examine whether EEAK affected memory-associated signaling molecules, such as protein kinase B (Akt), Ca 2+ /calmodulin-dependent protein kinase II (CaMKII), and cAMP response element-binding protein (CREB). The administration of EEAK (100 or 200 mg/kg, p.o.) significantly ameliorated the scopolamine-induced cognitive impairment in the passive avoidance task, the Y-maze, and the novel object recognition task. The phosphorylation levels of both Akt and CaMKII were significantly increased by approximately two-fold compared with the control group because of the administration of EEAK (100 or 200 mg/kg) (p cognitive dysfunction induced by the cholinergic blockade, in part, via several memory-associated signaling molecules and may hold therapeutic potential against cognitive dysfunction, such as that presented in neurodegenerative diseases, for example, Alzheimer's disease. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Design of a Braille Learning Application for Visually Impaired Students in Bangladesh.

    Science.gov (United States)

    Nahar, Lutfun; Jaafar, Azizah; Ahamed, Eistiak; Kaish, A B M A

    2015-01-01

    Visually impaired students (VIS) are unable to get visual information, which has made their learning process complicated. This paper discusses the overall situation of VIS in Bangladesh and identifies major challenges that they are facing in getting education. The Braille system is followed to educate blind students in Bangladesh. However, lack of Braille based educational resources and technological solutions have made the learning process lengthy and complicated for VIS. As a developing country, Bangladesh cannot afford for the costly Braille related technological tools for VIS. Therefore, a mobile phone based Braille application, "mBRAILLE", for Android platform is designed to provide an easy Braille learning technology for VIS in Bangladesh. The proposed design is evaluated by experts in assistive technology for students with disabilities, and advanced learners of Braille. The application aims to provide a Bangla and English Braille learning platform for VIS. In this paper, we depict iterative (participatory) design of the application along with a preliminary evaluation with 5 blind subjects, and 1 sighted and 2 blind experts. The results show that the design scored an overall satisfaction level of 4.53 out of 5 by all respondents, indicating that our design is ready for the next step of development.

  3. Improvement of Learning and Memory Induced by Cordyceps Polypeptide Treatment and the Underlying Mechanism

    Directory of Open Access Journals (Sweden)

    Guangxin Yuan

    2018-01-01

    Full Text Available Our previous research revealed that Cordyceps militaris can improve the learning and memory, and although the main active ingredient should be its polypeptide complexes, the underlying mechanism of its activity remains poorly understood. In this study, we explored the mechanisms by which Cordyceps militaris improves learning and memory in a mouse model. Mice were given scopolamine hydrobromide intraperitoneally to establish a mouse model of learning and memory impairment. The effects of Cordyceps polypeptide in this model were tested using the Morris water maze test; serum superoxide dismutase activity; serum malondialdehyde levels; activities of acetyl cholinesterase, Na+-k+-ATPase, and nitric oxide synthase; and gamma aminobutyric acid and glutamate contents in brain tissue. Moreover, differentially expressed genes and the related cellular signaling pathways were screened using an mRNA expression profile chip. The results showed that the genes Pik3r5, Il-1β, and Slc18a2 were involved in the effects of Cordyceps polypeptide on the nervous system of these mice. Our findings suggest that Cordyceps polypeptide may improve learning and memory in the scopolamine-induced mouse model of learning and memory impairment by scavenging oxygen free radicals, preventing oxidative damage, and protecting the nervous system.

  4. Impaired Verbal Learning Is Associated with Larger Caudate Volumes in Early Onset Schizophrenia Spectrum Disorders.

    Directory of Open Access Journals (Sweden)

    Monica Juuhl-Langseth

    Full Text Available Both brain structural abnormalities and neurocognitive impairments are core features of schizophrenia. We have previously reported enlargements in subcortical brain structure volumes and impairment of neurocognitive functioning as measured by the MATRICS Cognitive Consensus Battery (MCCB in early onset schizophrenia spectrum disorders (EOS. To our knowledge, no previous study has investigated whether neurocognitive performance and volumetric abnormalities in subcortical brain structures are related in EOS.Twenty-four patients with EOS and 33 healthy controls (HC were included in the study. Relationships between the caudate nucleus, the lateral and fourth ventricles volumes and neurocognitive performance were investigated with multivariate linear regression analyses. Intracranial volume, age, antipsychotic medication and IQ were included as independent predictor-variables.The caudate volume was negatively correlated with verbal learning performance uniquely in the EOS group (r=-.454, p=.034. There were comparable positive correlations between the lateral ventricular volume and the processing speed, attention and reasoning and problem solving domains for both the EOS patients and the healthy controls. Antipsychotic medication was related to ventricular enlargements, but did not affect the brain structure-function relationship.Enlargement of the caudate volume was related to poorer verbal learning performance in patients with EOS. Despite a 32% enlargement of the lateral ventricles in the EOS group, associations to processing speed, attention and reasoning and problem solving were similar for both the EOS and the HC groups.

  5. A combination of high stress-induced tense and energetic arousal compensates for impairing effects of stress on memory retrieval in men.

    Science.gov (United States)

    Boehringer, Andreas; Schwabe, Lars; Schachinger, Hartmut

    2010-09-01

    Stress can both impair and enhance memory retrieval. Glucocorticoids mediate impairing effects of stress on memory retrieval. Little is known, however, about factors that facilitate post-stress memory performance. Here, we asked whether stress-induced arousal mediates facilitative stress effects on memory retrieval. Two arousal dimensions were separated: tense arousal, which is characterized by feelings ranging from tension and anxiety to calmness and quietness, and energetic arousal, which is associated with feelings ranging from energy and vigor to states of fatigue and tiredness. Fifty-one men (mean age +/- SEM: 24.57 +/- 0.61 years) learned emotional and neutral words. Memory for these words was tested 165 min later, after participants were exposed to a psychosocial stress or a non-arousing control condition. Changes in heart rate, self-reported (energetic and tense) arousal, and saliva cortisol in response to the stress/control condition were measured. Overall, stress impaired memory retrieval. However, stressed participants with large increases in both tense and energetic arousal performed comparably to controls. Neither salivary cortisol level nor autonomic arousal predicted memory performance after controlling for changes in energetic and tense arousal. The present data indicate that stress-induced concurrent changes in tense and energetic arousal can compensate for impairing effects of stress on memory retrieval. This finding could help to explain some of the discrepancies in the literature on stress and memory.

  6. Neuropsychological Test Selection for Cognitive Impairment Classification: A Machine Learning Approach

    Science.gov (United States)

    Williams, Jennifer A.; Schmitter-Edgecombe, Maureen; Cook, Diane J.

    2016-01-01

    Introduction Reducing the amount of testing required to accurately detect cognitive impairment is clinically relevant. The aim of this research was to determine the fewest number of clinical measures required to accurately classify participants as healthy older adult, mild cognitive impairment (MCI) or dementia using a suite of classification techniques. Methods Two variable selection machine learning models (i.e., naive Bayes, decision tree), a logistic regression, and two participant datasets (i.e., clinical diagnosis, clinical dementia rating; CDR) were explored. Participants classified using clinical diagnosis criteria included 52 individuals with dementia, 97 with MCI, and 161 cognitively healthy older adults. Participants classified using CDR included 154 individuals CDR = 0, 93 individuals with CDR = 0.5, and 25 individuals with CDR = 1.0+. Twenty-seven demographic, psychological, and neuropsychological variables were available for variable selection. Results No significant difference was observed between naive Bayes, decision tree, and logistic regression models for classification of both clinical diagnosis and CDR datasets. Participant classification (70.0 – 99.1%), geometric mean (60.9 – 98.1%), sensitivity (44.2 – 100%), and specificity (52.7 – 100%) were generally satisfactory. Unsurprisingly, the MCI/CDR = 0.5 participant group was the most challenging to classify. Through variable selection only 2 – 9 variables were required for classification and varied between datasets in a clinically meaningful way. Conclusions The current study results reveal that machine learning techniques can accurately classifying cognitive impairment and reduce the number of measures required for diagnosis. PMID:26332171

  7. Restoration of hippocampal growth hormone reverses stress-induced hippocampal impairment

    Directory of Open Access Journals (Sweden)

    Caitlin M. Vander Weele

    2013-06-01

    Full Text Available Though growth hormone (GH is synthesized by hippocampal neurons, where its expression is influenced by stress exposure, its function is poorly characterized. Here, we show that a regimen of chronic stress that impairs hippocampal function in rats also leads to a profound decrease in hippocampal GH levels. Restoration of hippocampal GH in the dorsal hippocampus via viral-mediated gene transfer completely reversed stress-related impairment of two hippocampus-dependent behavioral tasks, auditory trace fear conditioning and contextual fear conditioning, without affecting hippocampal function in unstressed control rats. GH overexpression reversed stress-induced decrements in both fear acquisition and long-term fear memory. These results suggest that loss of hippocampal GH contributes to hippocampal dysfunction following prolonged stress and demonstrate that restoring hippocampal GH levels following stress can promote stress resilience.

  8. D-Serine rescues the deficits of hippocampal long-term potentiation and learning and memory induced by sodium fluoroacetate.

    Science.gov (United States)

    Han, Huili; Peng, Yan; Dong, Zhifang

    2015-06-01

    It is well known that bidirectional glia-neuron interactions play important roles in the neurophysiological and neuropathological processes. It is reported that impairing glial functions with sodium fluoroacetate (FAC) impaired hippocampal long-term depression (LTD) and spatial memory retrieval. However, it remains unknown whether FAC impairs hippocampal long-term potentiation (LTP) and learning and/or memory, and if so, whether pharmacological treatment with exogenous d-serine can recuse the impairment. Here, we reported that systemic administration of FAC (3mg/kg, i.p.) before training resulted in dramatic impairments of spatial learning and memory in water maze and fear memory in contextual fear conditioning. Furthermore, the behavioral deficits were accompanied by impaired LTP induction in the hippocampal CA1 area of brain slices. More importantly, exogenous d-serine treatment succeeded in recusing the deficits of hippocampal LTP and learning and memory induced by FAC. Together, these results suggest that astrocytic d-serine may be essential for hippocampal synaptic plasticity and memory, and that alteration of its levels may be relevant to the induction and potentially treatment of psychiatric and neurological disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Polygalasaponin XXXII, a triterpenoid saponin from Polygalae Radix, attenuates scopolamine-induced cognitive impairments in mice.

    Science.gov (United States)

    Zhou, Heng; Xue, Wei; Chu, Shi-Feng; Wang, Zhen-Zhen; Li, Chuang-Jun; Jiang, Yi-Na; Luo, Lin-Ming; Luo, Piao; Li, Gang; Zhang, Dong-Ming; Chen, Nai-Hong

    2016-08-01

    Recent studies show that the extract of a Chinese herb Polygalae Radix exerts cognition-enhancing actions in rats and humans. The aim of this study was to characterize the pharmacological profiles of active compounds extracted from Polygalae Radix. Two fractions P3 and P6 and two compounds PTM-15 and polygalasaponin XXXII (PGS32) were prepared. Neuroprotective effects were evaluated in primary cortical neurons exposed to high concentration glutamate, serum deficiency or H2O2. Anti-dementia actions were assessed in scopolamine-induced amnesia in mice using step-through avoidance tests and channel water maze tests. After conducting the channel water maze tests, TrkB phosphorylation in mouse hippocampus was detected using Western blotting. Long-term potentiation (LTP) was induced in the dentate gyrus in adult rats; PGS32 (5 μL 400 μmol/L) was injected into the lateral cerebral ventricle 20 min after high frequency stimulation (HFS). Compared to the fraction P6, the fraction P3 showed more prominent neuroprotective effects in vitro and cognition-enhancing effects in scopolamine-induced amnesia in mice. One active compound PGS32 in the fraction P3 exerted potent cognition-enhancing action: oral administration of PGS32 (0.125 mg·kg(-1)·d(-1)) for 19 days abolished scopolamine-induced memory impairment in mice. Furthermore, PGS32 (0.5 and 2 mg·kg(-1)·d(-1)) significantly stimulated the phosphorylation of TrkB in the hippocampus. Intracerebroventricular injection of PGS32 significantly enhanced HFS-induced LTP in the dentate gyrus of rats. PGS32 attenuates scopolamine-induced cognitive impairments in mice, suggesting that it has a potential for the treatment of cognitive dysfunction and dementia.

  10. Neuropsychological Testing and Machine Learning Distinguish Alzheimer’s Disease from Other Causes for Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Helmut Hildebrandt

    2017-04-01

    Full Text Available With promising results in recent treatment trials for Alzheimer’s disease (AD, it becomes increasingly important to distinguish AD at early stages from other causes for cognitive impairment. However, existing diagnostic methods are either invasive (lumbar punctures, PET or inaccurate Magnetic Resonance Imaging (MRI. This study investigates the potential of neuropsychological testing (NPT to specifically identify those patients with possible AD among a sample of 158 patients with Mild Cognitive Impairment (MCI or dementia for various causes. Patients were divided into an early stage and a late stage group according to their Mini Mental State Examination (MMSE score and labeled as AD or non-AD patients based on a post-mortem validated threshold of the ratio between total tau and beta amyloid in the cerebrospinal fluid (CSF; Total tau/Aβ(1–42 ratio, TB ratio. All patients completed the established Consortium to Establish a Registry for Alzheimer’s Disease—Neuropsychological Assessment Battery (CERAD-NAB test battery and two additional newly-developed neuropsychological tests (recollection and verbal comprehension that aimed at carving out specific Alzheimer-typical deficits. Based on these test results, an underlying AD (pathologically increased TB ratio was predicted with a machine learning algorithm. To this end, the algorithm was trained in each case on all patients except the one to predict (leave-one-out validation. In the total group, 82% of the patients could be correctly identified as AD or non-AD. In the early group with small general cognitive impairment, classification accuracy was increased to 89%. NPT thus seems to be capable of discriminating between AD patients and patients with cognitive impairment due to other neurodegenerative or vascular causes with a high accuracy, and may be used for screening in clinical routine and drug studies, especially in the early course of this disease.

  11. Entrainment of prefrontal beta oscillations induces an endogenous echo and impairs memory formation.

    Science.gov (United States)

    Hanslmayr, Simon; Matuschek, Jonas; Fellner, Marie-Christin

    2014-04-14

    Brain oscillations across all frequency bands play a key role for memory formation. Specifically, desynchronization of local neuronal assemblies in the left inferior prefrontal cortex (PFC) in the beta frequency (∼18 Hz) has been shown to be central for encoding of verbal memories. However, it remains elusive whether prefrontal beta desynchronization is causally relevant for memory formation and whether these endogenous beta oscillations can be entrained by external stimulation. By using combined EEG-TMS (transcranial magnetic stimulation), we here address these fundamental questions in human participants performing a word-list learning task. Confirming our predictions, memory encoding was selectively impaired when the left inferior frontal gyrus (IFG) was driven at beta (18.7 Hz) compared to stimulation at other frequencies (6.8 Hz and 10.7 Hz) and to ineffective sham stimulation (18.7 Hz). Furthermore, a sustained oscillatory "echo" in the left IFG, which outlasted the stimulation period by approximately 1.5 s, was observed solely after beta stimulation. The strength of this beta echo was related to memory impairment on a between-subjects level. These results show endogenous oscillatory entrainment effects and behavioral impairment selectively in beta frequency for stimulation of the left IFG, demonstrating an intimate causal relationship between prefrontal beta desynchronization and memory formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Ethambutol induces impaired autophagic flux and apoptosis in the rat retina

    Directory of Open Access Journals (Sweden)

    Shun-Ping Huang

    2015-08-01

    Full Text Available Ethambutol (EMB, an effective first-line antituberculosis agent, can cause serious visual impairment or irreversible vision loss in a significant number of patients. However, the mechanism underlying this ocular cytotoxicity remains to be elucidated. In this study, we found that there were statistically significant dose- and time-dependent increases in the number of cytoplasmic vacuoles and the level of cell death in EMB-treated RGC-5 cells (retinal ganglion cells. The protein kinase C (PKCδ inhibitor rottlerin markedly reduced the EMB-induced activation of caspase-3 and the subsequent apoptosis of RGC-5 cells. Western blot analysis revealed that the expression levels of class III PI3K, Beclin-1, p62 and LC3-II were upregulated, and LC3 immunostaining results showed activation of the early phase and inhibition of the late stage of autophagy in retinas of the EMB-intraperitoneal (IP-injected rat model. We further demonstrated that exposure to EMB induces autophagosome accumulation, which results from the impaired autophagic flux that is mediated by a PKCδ-dependent pathway, inhibits the PI3K/Akt/mTOR signaling pathway and leads to apoptotic death in retina neuronal cells. These results indicate that autophagy dysregulation in retinal neuronal cells might play a substantial role in EMB-induced optic neuroretinopathy.

  13. Bacopa monniera Attenuates Scopolamine-Induced Impairment of Spatial Memory in Mice

    Directory of Open Access Journals (Sweden)

    Manish Kumar Saraf

    2011-01-01

    Full Text Available Scopolamine, an anticholinergic, is an attractive amnesic agent for discerning the action of candidate antiamnesic drugs. Bacopa monniera Linn (Syn. Brahmi is one such antiamnesic agent that is frequently used in the ancient Indian medical system. We have earlier reported the reversal of diazepam-induced amnesia with B. monniera. In this study we wanted to test if scopolamine-induced impairment of spatial memory can also be ameliorated by B. monniera using water maze mouse model. The objective of study was to study the effect of B. monniera on scopolamine-induced amnesia. We employed Morris water maze scale to test the amnesic effect of scopolamine and its reversal by B. monniera. Rotarod test was conducted to screen muscle coordination activity of mice. Scopolamine significantly impaired the acquisition and retrieval of memory producing both anterograde and retrograde amnesia. Bacopa monniera extract was able to reverse both anterograde and retrograde amnesia. We propose that B. monniera's effects on cholinergic system may be helpful for developing alternative therapeutic approaches for the treatment of Alzheimer's disease.

  14. Cocaine impairs serial-feature negative learning and blood-brain barrier integrity.

    Science.gov (United States)

    Davidson, Terry L; Hargrave, Sara L; Kearns, David N; Clasen, Matthew M; Jones, Sabrina; Wakeford, Alison G P; Sample, Camille H; Riley, Anthony L

    2018-05-10

    Previous research has shown that diets high in fat and sugar [a.k.a., Western diets (WD)] can impair performance of rats on hippocampal-dependent learning and memory problems, an effect that is accompanied by selective increases in hippocampal blood brain barrier (BBB) permeability. Based on these types of findings, it has been proposed that overeating of a WD (and its resulting obesity) may be, in part, a consequence of impairments in these anatomical substrates and cognitive processes. Given that drug use (and addiction) represents another behavioral excess, the present experiments assessed if similar outcomes might occur with drug exposure by evaluating the effects of cocaine administration on hippocampal-dependent memory and on the integrity of the BBB. Experiment 1 of the present series of studies found that systemic cocaine administration in rats also appears to have disruptive effects on the same hippocampal-dependent learning and memory mechanism that has been proposed to underlie the inhibition of food intake. Experiment 2 demonstrated that the same regimen of cocaine exposure that produced disruptions in learning and memory in Experiment 1 also produced increased BBB permeability in the hippocampus, but not in the striatum. Although the predominant focus of previous research investigating the etiologies of substance use and abuse has been on the brain circuits that underlie the motivational properties of drugs, the current investigation implicates the possible involvement of hippocampal memory systems in such behaviors. It is important to note that these positions are not mutually exclusive and that neuroadaptations in these two circuits might occur in parallel that generate dysregulated drug use in a manner similar to that of excessive eating. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. A comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced memory impairments in rats

    Directory of Open Access Journals (Sweden)

    Talha Jawaid

    2015-01-01

    Full Text Available The comparative study of neuroprotective effect of angiotensin converting enzyme inhibitors against scopolamine-induced neuroinflammation in albino Wistar rats was studied. Male albino rats were administered with scopolamine to induce memory impairment. The standard nootropic agent, piracetam (200 mg/kg b.w., [i.p.], perindopril (0.1 mg/kg b.w., [i.p.], enalapril (0.1 mg/kg b.w., [i.p.], and ramipril (0.1 mg/kg b.w., [i.p.] were administered in different group of animals for 5 days. On 5 th day, scopolamine (1 mg/kg b.w., i.p. was administered after 60 min of the last dose of test drug. Memory function was evaluated in Morris water maze (MWM test and pole climbing test (PCT. Biochemical estimations like glutathione (GSH, malondialdehyde (MDA, and acetylcholinesterase activity in the brain were estimated after completion of behavior study. All three test groups shows improvement in learning and memory in comparison to control group. Perindopril treated group showed a more effective significant decrease in escape latency time and transfer latency time compared to enalapril and ramipril treated group on day 4 in MWM test and PCT, respectively. Perindopril shows a significant reduction in MDA level and acetylcholinesterase activity and a significant rise in GSH level compared to enalapril and ramipril. The finding of this study indicates that Perindopril is more effective in memory retention compared to enalapril and ramipril.

  16. Maternal Exposure of Rats to Isoflurane during Late Pregnancy Impairs Spatial Learning and Memory in the Offspring by Up-Regulating the Expression of Histone Deacetylase 2.

    Science.gov (United States)

    Luo, Foquan; Hu, Yan; Zhao, Weilu; Zuo, Zhiyi; Yu, Qi; Liu, Zhiyi; Lin, Jiamei; Feng, Yunlin; Li, Binda; Wu, Liuqin; Xu, Lin

    2016-01-01

    Increasing evidence indicates that most general anesthetics can harm developing neurons and induce cognitive dysfunction in a dose- and time-dependent manner. Histone deacetylase 2 (HDAC2) has been implicated in synaptic plasticity and learning and memory. Our previous results showed that maternal exposure to general anesthetics during late pregnancy impaired the offspring's learning and memory, but the role of HDAC2 in it is not known yet. In the present study, pregnant rats were exposed to 1.5% isoflurane in 100% oxygen for 2, 4 or 8 hours or to 100% oxygen only for 8 hours on gestation day 18 (E18). The offspring born to each rat were randomly subdivided into 2 subgroups. Thirty days after birth, the Morris water maze (MWM) was used to assess learning and memory in the offspring. Two hours before each MWM trial, an HDAC inhibitor (SAHA) was given to the offspring in one subgroup, whereas a control solvent was given to those in the other subgroup. The results showed that maternal exposure to isoflurane impaired learning and memory of the offspring, impaired the structure of the hippocampus, increased HDAC2 mRNA and downregulated cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) mRNA, N-methyl-D-aspartate receptor 2 subunit B (NR2B) mRNA and NR2B protein in the hippocampus. These changes were proportional to the duration of the maternal exposure to isoflurane and were reversed by SAHA. These results suggest that exposure to isoflurane during late pregnancy can damage the learning and memory of the offspring rats via the HDAC2-CREB -NR2B pathway. This effect can be reversed by HDAC2 inhibition.

  17. Mismatch Negativity Encoding of Prediction Errors Predicts S-ketamine-Induced Cognitive Impairments

    Science.gov (United States)

    Schmidt, André; Bachmann, Rosilla; Kometer, Michael; Csomor, Philipp A; Stephan, Klaas E; Seifritz, Erich; Vollenweider, Franz X

    2012-01-01

    Psychotomimetics like the N-methyl--aspartate receptor (NMDAR) antagonist ketamine and the 5-hydroxytryptamine2A receptor (5-HT2AR) agonist psilocybin induce psychotic symptoms in healthy volunteers that resemble those of schizophrenia. Recent theories of psychosis posit that aberrant encoding of prediction errors (PE) may underlie the expression of psychotic symptoms. This study used a roving mismatch negativity (MMN) paradigm to investigate whether the encoding of PE is affected by pharmacological manipulation of NMDAR or 5-HT2AR, and whether the encoding of PE under placebo can be used to predict drug-induced symptoms. Using a double-blind within-subject placebo-controlled design, S-ketamine and psilocybin, respectively, were administrated to two groups of healthy subjects. Psychological alterations were assessed using a revised version of the Altered States of Consciousness (ASC-R) questionnaire. As an index of PE, we computed changes in MMN amplitudes as a function of the number of preceding standards (MMN memory trace effect) during a roving paradigm. S-ketamine, but not psilocybin, disrupted PE processing as expressed by a frontally disrupted MMN memory trace effect. Although both drugs produced positive-like symptoms, the extent of PE processing under placebo only correlated significantly with the severity of cognitive impairments induced by S-ketamine. Our results suggest that the NMDAR, but not the 5-HT2AR system, is implicated in PE processing during the MMN paradigm, and that aberrant PE signaling may contribute to the formation of cognitive impairments. The assessment of the MMN memory trace in schizophrenia may allow detecting early phases of the illness and might also serve to assess the efficacy of novel pharmacological treatments, in particular of cognitive impairments. PMID:22030715

  18. Effects of vitamin E on lead-induced impairments in hippocampal synaptic plasticity.

    Science.gov (United States)

    Salehi, Iraj; Karamian, Ruhollah; Komaki, Alireza; Tahmasebi, Lida; Taheri, Masoumeh; Nazari, Masoumeh; Shahidi, Siamak; Sarihi, Abdolrahman

    2015-12-10

    Lead (Pb) exposure during development is associated with impaired cognitive function and long-term potentiation (LTP). Vitamin E (VE) is an antioxidant that could have protective effects against Pb intoxication. In this study, we examined the protective effects of vitamin E against Pb-induced LTP impairments. Forty-six adult male Wistar rats were randomly divided into 6 treatment groups: (1) control; (2) Pb exposure; (3) VE; (4) Pb +VE; (5) Pb exposure followed by VE 2 months after exposure; (6) VE followed by Pb exposure 1 month after treatment. Rats were exposed to Pb through daily consumption of Pb-contaminated distilled water; VE was administered by daily gavage for 3 months. After this period, the population spike (PS) amplitudes and the slopes of excitatory postsynaptic potentials (EPSPs) were measured in the dentate gyrus (DG) area of the hippocampus in adult rats in response to electrical stimulation applied to the perforant pathway in vivo. Blood samples were also collected to evaluate malondialdehyde (MDA) levels, total antioxidant capacity (TAC), and total oxidant status (TOS). Biochemical analyses demonstrated significant increases in plasma MDA and TOS levels in the Pb-exposed group compared to the control group. VE-protected groups revealed significant increases in TAC levels. Our results demonstrate that Pb decreased EPSP slopes and PS amplitudes compared to the control group, whereas VE increased these parameters compared to the control group. Co-administration of VE with Pb exposure inhibited Pb-induced effects. These findings suggest that VE via its antioxidant activity reverses Pb-induced impairments of synaptic plasticity in the DG. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Reduction of the Misinformation Effect by Arousal Induced after Learning

    Science.gov (United States)

    English, Shaun M.; Nielson, Kristy A.

    2010-01-01

    Misinformation introduced after events have already occurred causes errors in later retrieval. Based on literature showing that arousal induced after learning enhances delayed retrieval, we investigated whether post-learning arousal can reduce the misinformation effect. 251 participants viewed four short film clips, each followed by a retention…

  20. CREB Selectively Controls Learning-Induced Structural Remodeling of Neurons

    Science.gov (United States)

    Middei, Silvia; Spalloni, Alida; Longone, Patrizia; Pittenger, Christopher; O'Mara, Shane M.; Marie, Helene; Ammassari-Teule, Martine

    2012-01-01

    The modulation of synaptic strength associated with learning is post-synaptically regulated by changes in density and shape of dendritic spines. The transcription factor CREB (cAMP response element binding protein) is required for memory formation and in vitro dendritic spine rearrangements, but its role in learning-induced remodeling of neurons…

  1. Chronic Swimming Exercise Ameliorates Low-Soybean-Oil Diet-Induced Spatial Memory Impairment by Enhancing BDNF-Mediated Synaptic Potentiation in Developing Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Cheng, Mei; Cong, Jiyan; Wu, Yulong; Xie, Jiacun; Wang, Siyuan; Zhao, Yue; Zang, Xiaoying

    2018-05-01

    Exercise and low-fat diets are common lifestyle modifications used for the treatment of hypertension besides drug therapy. However, unrestrained low-fat diets may result in deficiencies of low-unsaturated fatty acids and carry contingent risks of delaying neurodevelopment. While aerobic exercise shows positive neuroprotective effects, it is still unclear whether exercise could alleviate the impairment of neurodevelopment that may be induced by certain low-fat diets. In this research, developing spontaneously hypertensive rats (SHR) were treated with chronic swimming exercise and/or a low-soybean-oil diet for 6 weeks. We found that performance in the Morris water maze was reduced and long-term potentiation in the hippocampus was suppressed by the diet, while a combination treatment of exercise and diet alleviated the impairment induced by the specific low-fat diet. Moreover, the combination treatment effectively increased the expression of brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartic acid receptor (NMDAR), which were both down-regulated by the low-soybean-oil diet in the hippocampus of developing SHR. These findings suggest that chronic swimming exercise can ameliorate the low-soybean-oil diet-induced learning and memory impairment in developing SHR through the up-regulation of BDNF and NMDAR expression.

  2. Exogenous HIV-1 Nef upsets the IFN-γ-induced impairment of human intestinal epithelial integrity.

    Directory of Open Access Journals (Sweden)

    Maria Giovanna Quaranta

    Full Text Available The mucosal tissues play a central role in the transmission of HIV-1 infection as well as in the pathogenesis of AIDS. Despite several clinical studies reported intestinal dysfunction during HIV infection, the mechanisms underlying HIV-induced impairments of mucosal epithelial barrier are still unclear. It has been postulated that HIV-1 alters enterocytic function and HIV-1 proteins have been detected in several cell types of the intestinal mucosa. In the present study, we analyzed the effect of the accessory HIV-1 Nef protein on human epithelial cell line.We used unstimulated or IFN-γ-stimulated Caco-2 cells, as a model for homeostatic and inflamed gastrointestinal tracts, respectively. We investigated the effect of exogenous recombinant Nef on monolayer integrity analyzing its uptake, transepithelial electrical resistance, permeability to FITC-dextran and the expression of tight junction proteins. Moreover, we measured the induction of proinflammatory mediators. Exogenous Nef was taken up by Caco-2 cells, increased intestinal epithelial permeability and upset the IFN-γ-induced reduction of transepithelial resistance, interfering with tight junction protein expression. Moreover, Nef inhibited IFN-γ-induced apoptosis and up-regulated TNF-α, IL-6 and MIP-3α production by Caco-2 cells while down-regulated IL-10 production. The simultaneous exposure of Caco-2 cells to Nef and IFN-γ did not affect cytokine secretion respect to untreated cells. Finally, we found that Nef counteracted the IFN-γ induced arachidonic acid cascade.Our findings suggest that exogenous Nef, perturbing the IFN-γ-induced impairment of intestinal epithelial cells, could prolong cell survival, thus allowing for accumulation of viral particles. Our results may improve the understanding of AIDS pathogenesis, supporting the discovery of new therapeutic interventions.

  3. Sleep Restriction Impairs Vocabulary Learning when Adolescents Cram for Exams: The Need for Sleep Study.

    Science.gov (United States)

    Huang, Sha; Deshpande, Aadya; Yeo, Sing-Chen; Lo, June C; Chee, Michael W L; Gooley, Joshua J

    2016-09-01

    The ability to recall facts is improved when learning takes place at spaced intervals, or when sleep follows shortly after learning. However, many students cram for exams and trade sleep for other activities. The aim of this study was to examine the interaction of study spacing and time in bed (TIB) for sleep on vocabulary learning in adolescents. In the Need for Sleep Study, which used a parallel-group design, 56 adolescents aged 15-19 years were randomly assigned to a week of either 5 h or 9 h of TIB for sleep each night as part of a 14-day protocol conducted at a boarding school. During the sleep manipulation period, participants studied 40 Graduate Record Examination (GRE)-type English words using digital flashcards. Word pairs were presented over 4 consecutive days (spaced items), or all at once during single study sessions (massed items), with total study time kept constant across conditions. Recall performance was examined 0 h, 24 h, and 120 h after all items were studied. For all retention intervals examined, recall of massed items was impaired by a greater amount in adolescents exposed to sleep restriction. In contrast, cued recall performance on spaced items was similar between sleep groups. Spaced learning conferred strong protection against the effects of sleep restriction on recall performance, whereas students who had insufficient sleep were more likely to forget items studied over short time intervals. These findings in adolescents demonstrate the importance of combining good study habits and good sleep habits to optimize learning outcomes. © 2016 Associated Professional Sleep Societies, LLC.

  4. Impaired learning from errors in cannabis users: Dorsal anterior cingulate cortex and hippocampus hypoactivity.

    Science.gov (United States)

    Carey, Susan E; Nestor, Liam; Jones, Jennifer; Garavan, Hugh; Hester, Robert

    2015-10-01

    The chronic use of cannabis has been associated with error processing dysfunction, in particular, hypoactivity in the dorsal anterior cingulate cortex (dACC) during the processing of cognitive errors. Given the role of such activity in influencing post-error adaptive behaviour, we hypothesised that chronic cannabis users would have significantly poorer learning from errors. Fifteen chronic cannabis users (four females, mean age=22.40 years, SD=4.29) and 15 control participants (two females, mean age=23.27 years, SD=3.67) were administered a paired associate learning task that enabled participants to learn from their errors, during fMRI data collection. Compared with controls, chronic cannabis users showed (i) a lower recall error-correction rate and (ii) hypoactivity in the dACC and left hippocampus during the processing of error-related feedback and re-encoding of the correct response. The difference in error-related dACC activation between cannabis users and healthy controls varied as a function of error type, with the control group showing a significantly greater difference between corrected and repeated errors than the cannabis group. The present results suggest that chronic cannabis users have poorer learning from errors, with the failure to adapt performance associated with hypoactivity in error-related dACC and hippocampal regions. The findings highlight a consequence of performance monitoring dysfunction in drug abuse and the potential consequence this cognitive impairment has for the symptom of failing to learn from negative feedback seen in cannabis and other forms of dependence. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Effect of episodic and working memory impairments on semantic and cognitive procedural learning at alcohol treatment entry.

    Science.gov (United States)

    Pitel, Anne Lise; Witkowski, Thomas; Vabret, François; Guillery-Girard, Bérengère; Desgranges, Béatrice; Eustache, Francis; Beaunieux, Hélène

    2007-02-01

    Chronic alcoholism is known to impair the functioning of episodic and working memory, which may consequently reduce the ability to learn complex novel information. Nevertheless, semantic and cognitive procedural learning have not been properly explored at alcohol treatment entry, despite its potential clinical relevance. The goal of the present study was therefore to determine whether alcoholic patients, immediately after the weaning phase, are cognitively able to acquire complex new knowledge, given their episodic and working memory deficits. Twenty alcoholic inpatients with episodic memory and working memory deficits at alcohol treatment entry and a control group of 20 healthy subjects underwent a protocol of semantic acquisition and cognitive procedural learning. The semantic learning task consisted of the acquisition of 10 novel concepts, while subjects were administered the Tower of Toronto task to measure cognitive procedural learning. Analyses showed that although alcoholic subjects were able to acquire the category and features of the semantic concepts, albeit slowly, they presented impaired label learning. In the control group, executive functions and episodic memory predicted semantic learning in the first and second halves of the protocol, respectively. In addition to the cognitive processes involved in the learning strategies invoked by controls, alcoholic subjects seem to attempt to compensate for their impaired cognitive functions, invoking capacities of short-term passive storage. Regarding cognitive procedural learning, although the patients eventually achieved the same results as the controls, they failed to automate the procedure. Contrary to the control group, the alcoholic groups' learning performance was predicted by controlled cognitive functions throughout the protocol. At alcohol treatment entry, alcoholic patients with neuropsychological deficits have difficulty acquiring novel semantic and cognitive procedural knowledge. Compared with

  6. Lactobacillus salivarius reverse diabetes-induced intestinal defense impairment in mice through non-defensin protein.

    Science.gov (United States)

    Chung, Pei-Hsuan; Wu, Ying-Ying; Chen, Pei-Hsuan; Fung, Chang-Phone; Hsu, Ching-Mei; Chen, Lee-Wei

    2016-09-01

    Altered intestinal microbiota and subsequent endotoxemia play pathogenic roles in diabetes. We aimed to study the mechanisms of intestinal defense impairment in type 1 diabetes and the effects of Lactobacillus salivarius as well as fructooligosaccharides (FOS) supplementation on diabetes-induced bacterial translocation. Alterations in the enteric microbiome, expression of mucosal antibacterial proteins and bacteria-killing activity of the intestinal mucosa in streptozotocin (STZ)-induced diabetic mice and Ins2(Akita) mice were investigated. The effects of dead L. salivarius (2×10(8)CFU/ml) and FOS (250 mg per day) supplementation for 1 week on endotoxin levels and Klebsiella pneumoniae translocation were also examined. Finally, germ-free mice were cohoused with wild-type or Ins2(Akita) mice for 2 weeks to examine the contribution of microbiota on the antibacterial protein expression. STZ-induced diabetic mice developed intestinal defense impairment as demonstrated by decreased mucosal bacteria-killing activity; reduction of non-defensin family proteins, such as Reg3β, Reg3γ, CRP-ductin and RELMβ, but not the defensin family proteins; and increased bacterial translocation. Intestinal bacteria overgrowth, enteric dysbiosis and increased intestinal bacterial translocation, particularly pathogenic K. pneumoniae in STZ-induced diabetic mice and Ins2(Akita) mice, were noted. Treating diabetic mice with dead L. salivarius or FOS reversed enteric dysbiosis, restored mucosal antibacterial protein and lessened endotoxin levels as well as K. pneumoniae translocation. Moreover, germ-free mice cohoused with wild-type mice demonstrated more intestinal Reg3β and RELMβ expression than those cohoused with Ins2(Akita) mice. These results indicate that hyperglycemia induces enteric dysbiosis, reduction of non-defensin proteins as well as bacteria-killing activity of the intestinal mucosa and intestinal defense impairment. Reversal of enteric dysbiosis with dead L. salivarius or

  7. Zinc Is Indispensable in Exercise-Induced Cardioprotection against Intermittent Hypoxia-Induced Left Ventricular Function Impairment in Rats.

    Directory of Open Access Journals (Sweden)

    Tsung-I Chen

    Full Text Available In obstructive sleep apnea (OSA, recurrent obstruction of the upper airway leads to intermittent hypoxia (IH during sleep, which can result in impairment of cardiac function. Although exercise can have beneficial effects against IH-induced cardiac dysfunction, the mechanism remains unclear. This study aimed to investigate the interactions of zinc and exercise on IH-triggered left ventricular dysfunction in a rat model that mimics IH in OSA patients. Nine-week-old male Sprague-Dawley rats were randomly assigned to either a control group (CON or to a group receiving 10 weeks of exercise training (EXE. During weeks 9 and 10, half the rats in each group were subjected to IH for 8 h per day for 14 days (IHCON, IHEXE, whereas the remainder continued to breathe room air. Rats within each of the CON, IHCON, EXE, and IHEXE groups were further randomly assigned to receive intraperitoneal injections of either zinc chloride, the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl ethylenediamine (TPEN, or injection vehicle only. IH induced a lower left ventricular fractional shortening, reduced ejection fraction, higher myocardial levels of inflammatory factors, increased levels oxidative stress, and lower levels of antioxidative capacity, all of which were abolished by zinc treatment. IHEXE rats exhibited higher levels of cardiac function and antioxidant capacity and lower levels of inflammatory factors and oxidative stress than IHCON rats; however, IHEXE rats receiving TPEN did not exhibit these better outcomes. In conclusion, zinc is required for protecting against IH-induced LV functional impairment and likely plays a critical role in exercise-induced cardioprotection by exerting a dual antioxidant and anti-inflammatory effect.

  8. Zinc Is Indispensable in Exercise-Induced Cardioprotection against Intermittent Hypoxia-Induced Left Ventricular Function Impairment in Rats

    Science.gov (United States)

    Chen, Michael Yu-Chih

    2016-01-01

    In obstructive sleep apnea (OSA), recurrent obstruction of the upper airway leads to intermittent hypoxia (IH) during sleep, which can result in impairment of cardiac function. Although exercise can have beneficial effects against IH-induced cardiac dysfunction, the mechanism remains unclear. This study aimed to investigate the interactions of zinc and exercise on IH-triggered left ventricular dysfunction in a rat model that mimics IH in OSA patients. Nine-week-old male Sprague-Dawley rats were randomly assigned to either a control group (CON) or to a group receiving 10 weeks of exercise training (EXE). During weeks 9 and 10, half the rats in each group were subjected to IH for 8 h per day for 14 days (IHCON, IHEXE), whereas the remainder continued to breathe room air. Rats within each of the CON, IHCON, EXE, and IHEXE groups were further randomly assigned to receive intraperitoneal injections of either zinc chloride, the zinc chelator N,N,N',N'-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN), or injection vehicle only. IH induced a lower left ventricular fractional shortening, reduced ejection fraction, higher myocardial levels of inflammatory factors, increased levels oxidative stress, and lower levels of antioxidative capacity, all of which were abolished by zinc treatment. IHEXE rats exhibited higher levels of cardiac function and antioxidant capacity and lower levels of inflammatory factors and oxidative stress than IHCON rats; however, IHEXE rats receiving TPEN did not exhibit these better outcomes. In conclusion, zinc is required for protecting against IH-induced LV functional impairment and likely plays a critical role in exercise-induced cardioprotection by exerting a dual antioxidant and anti-inflammatory effect. PMID:27977796

  9. The Knockout of Secretin in Cerebellar Purkinje Cells Impairs Mouse Motor Coordination and Motor Learning

    Science.gov (United States)

    Zhang, Li; Chung, Sookja Kim; Chow, Billy Kwok Chong

    2014-01-01

    Secretin (SCT) was first considered to be a gut hormone regulating gastrointestinal functions when discovered. Recently, however, central actions of SCT have drawn intense research interest and are supported by the broad distribution of SCT in specific neuronal populations and by in vivo physiological studies regarding its role in water homeostasis and food intake. The direct action of SCT on a central neuron was first discovered in cerebellar Purkinje cells in which SCT from cerebellar Purkinje cells was found to potentiate GABAergic inhibitory transmission from presynaptic basket cells. Because Purkinje neurons have a major role in motor coordination and learning functions, we hypothesize a behavioral modulatory function for SCT. In this study, we successfully generated a mouse model in which the SCT gene was deleted specifically in Purkinje cells. This mouse line was tested together with SCT knockout and SCT receptor knockout mice in a full battery of behavioral tasks. We found that the knockout of SCT in Purkinje neurons did not affect general motor ability or the anxiety level in open field tests. However, knockout mice did exhibit impairments in neuromuscular strength, motor coordination, and motor learning abilities, as shown by wire hanging, vertical climbing, and rotarod tests. In addition, SCT knockout in Purkinje cells possibly led to the delayed development of motor neurons, as supported by the later occurrence of key neural reflexes. In summary, our data suggest a role in motor coordination and motor learning for SCT expressed in cerebellar Purkinje cells. PMID:24356714

  10. Brief postnatal exposure to phenobarbital impairs passive avoidance learning and sensorimotor gating in rats.

    Science.gov (United States)

    Gutherz, Samuel B; Kulick, Catherine V; Soper, Colin; Kondratyev, Alexei; Gale, Karen; Forcelli, Patrick A

    2014-08-01

    Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. However, mounting preclinical evidence suggests that even brief exposure to phenobarbital in the neonatal period can induce neuronal apoptosis, alterations in synaptic development, and long-lasting changes in behavioral functions. In the present report, we treated neonatal rat pups with phenobarbital and evaluated behavior in adulthood. Pups were treated initially with a loading dose (80 mg/kg) on postnatal day (P)7 and with a lower dose (40 mg/kg) on P8 and P9. We examined sensorimotor gating (prepulse inhibition), passive avoidance, and conditioned place preference for cocaine when the animals reached adulthood. Consistent with our previous reports, we found that three days of neonatal exposure to phenobarbital significantly impaired prepulse inhibition compared with vehicle-exposed control animals. Using a step-though passive avoidance paradigm, we found that animals exposed to phenobarbital as neonates and tested as adults showed significant deficits in passive avoidance retention compared with matched controls, indicating impairment in associative memory and/or recall. Finally, we examined place preference conditioning in response to cocaine. Phenobarbital exposure did not alter the normal conditioned place preference associated with cocaine exposure. Our findings expand the profile of behavioral toxicity induced by phenobarbital. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Brief postnatal exposure to phenobarbital impairs passive-avoidance learning and sensorimotor gating in rats

    Science.gov (United States)

    Gutherz, Samuel B.; Kulick, Catherine V.; Soper, Colin; Kondratyev, Alexei; Gale, Karen; Forcelli, Patrick A.

    2014-01-01

    Phenobarbital is the most commonly utilized drug for the treatment of neonatal seizures. However, mounting preclinical evidence suggests that even brief exposure to phenobarbital in the neonatal period can induce neuronal apoptosis, alterations in synaptic development, and long-lasting changes in behavioral functions. In the present report, we treated neonatal rat pups with phenobarbital and evaluated behavior in adulthood. Pups were treated initially with a loading dose (80mg/kg) on postnatal day (P)7 and with a lower dose (40 mg/kg) on P8 and P9. We examined sensorimotor gating (prepulse inhibition), passive avoidance, and conditioned place preference to cocaine when the animals reached adulthood. Consistent with our previous reports, we found that three days of neonatal exposure to phenobarbital significantly impaired prepulse inhibition as compared to vehicle-exposed control animals. Using a step-though passive avoidance paradigm, we found that animals exposed to phenobarbital as neonates and tested as adults showed significant deficits in passive avoidance retention as compared to matched controls, indicating impairment in associative memory and/or recall. Finally, we examined place preference conditioning in response to cocaine. Phenobarbital exposure did not alter the normal conditioned place preference associated with cocaine exposure. Our findings expand the profile of behavioral toxicity induced by phenobarbital. PMID:25112558

  12. Effects of expression level of DNA repair-related genes involved in the NHEJ pathway on radiation-induced cognitive impairment

    International Nuclear Information System (INIS)

    Zhang Liyuan; Chen Liesong; Sun Rui; Ji Shengjun; Ding Yanyan; Wu Jia; Tian Ye

    2013-01-01

    Cranial radiation therapy can induce cognitive decline. Impairments of hippocampal neurogenesis are thought to be a paramountly important mechanism underlying radiation-induced cognitive dysfunction. In the mature nervous system, DNA double-strand breaks (DSBs) are mainly repaired by non-homologous end-joining (NHEJ) pathways. It has been demonstrated that NHEJ deficiencies are associated with impaired neurogenesis. In our study, rats were randomly divided into five groups to be irradiated by single doses of 0 (control), 0 (anesthesia control), 2, 10, and 20 Gy, respectively. The cognitive function of the irradiated rats was measured by open field, Morris water maze and passive avoidance tests. Real-time PCR was also used to detect the expression level of DNA DSB repair-related genes involved in the NHEJ pathway, such as XRCC4, XRCC5 and XRCC6, in the hippocampus. The influence of different radiation doses on cognitive function in rats was investigated. From the results of the behavior tests, we found that rats receiving 20 Gy irradiation revealed poorer learning and memory, while no significant loss of learning and memory existed in rats receiving irradiation from 0-10 Gy. The real-time PCR and Western blot results showed no significant difference in the expression level of DNA repair-related genes between the 10 and 20 Gy groups, which may help to explain the behavioral results, id est (i.e.) DNA damage caused by 0-10 Gy exposure was appropriately repaired, however, damage induced by 20 Gy exceeded the body's maximum DSB repair ability. Ionizing radiation-induced cognitive impairments depend on the radiation dose, and more directly on the body's own ability to repair DNA DSBs via the NHEJ pathway. (author)

  13. Exposure to Mozart music reduces cognitive impairment in pilocarpine-induced status epilepticus rats.

    Science.gov (United States)

    Xing, Yingshou; Qin, Yi; Jing, Wei; Zhang, Yunxiang; Wang, Yanran; Guo, Daqing; Xia, Yang; Yao, Dezhong

    2016-02-01

    Patients with temporal lobe epilepsy (TLE) often display cognitive deficits. However, current epilepsy therapeutic interventions mainly aim at how to reduce the frequency and degree of epileptic seizures. Recovery of cognitive impairment is not attended enough, resulting in the lack of effective approaches in this respect. In the pilocarpine-induced temporal lobe epilepsy rat model, memory impairment has been classically reported. Here we evaluated spatial cognition changes at different epileptogenesis stages in rats of this model and explored the effects of long-term Mozart music exposure on the recovery of cognitive ability. Our results showed that pilocarpine rats suffered persisting cognitive impairment during epileptogenesis. Interestingly, we found that Mozart music exposure can significantly enhance cognitive ability in epileptic rats, and music intervention may be more effective for improving cognitive function during the early stages after Status epilepticus. These findings strongly suggest that Mozart music may help to promote the recovery of cognitive damage due to seizure activities, which provides a novel intervention strategy to diminish cognitive deficits in TLE patients.

  14. FKBP5 polymorphisms influence pre-learning stress-induced alterations of learning and memory.

    Science.gov (United States)

    Zoladz, Phillip R; Dailey, Alison M; Nagle, Hannah E; Fiely, Miranda K; Mosley, Brianne E; Brown, Callie M; Duffy, Tessa J; Scharf, Amanda R; Earley, McKenna B; Rorabaugh, Boyd R

    2017-03-01

    FK506 binding protein 51 (FKBP5) is a co-chaperone of heat shock protein 90 and significantly influences glucocorticoid receptor sensitivity. Single nucleotide polymorphisms (SNPs) in the FKBP5 gene are associated with altered hypothalamus-pituitary-adrenal (HPA) axis function, changes in the structure and function of several cognitive brain areas, and increased susceptibility to post-traumatic stress disorder, major depression, bipolar disorder and suicidal events. The mechanisms underlying these associations are largely unknown, but it has been speculated that the influence of these SNPs on emotional memory systems may play a role. In the present study, 112 participants were exposed to the socially evaluated cold pressor test (stress) or control (no stress) conditions immediately prior to learning a list of 42 words. Participant memory was assessed immediately after learning (free recall) and 24 h later (free recall and recognition). Participants provided a saliva sample that enabled the genotyping of three FKBP5 polymorphisms: rs1360780, rs3800373 and rs9296158. Results showed that stress impaired immediate recall in risk allele carriers. More importantly, stress enhanced long-term recall and recognition memory in non-carriers of the risk alleles, effects that were completely absent in risk allele carriers. Follow-up analyses revealed that memory performance was correlated with salivary cortisol levels in non-carriers, but not in carriers. These findings suggest that FKBP5 risk allele carriers may possess a sensitized stress response system, perhaps specifically for stress-induced changes in corticosteroid levels, which might aid our understanding of how SNPs in the FKBP5 gene confer increased risk for stress-related psychological disorders and their related phenotypes. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Caffeic acid phenethyl ester prevents cadmium-induced cardiac impairment in rat

    International Nuclear Information System (INIS)

    Mollaoglu, Hakan; Gokcimen, Alpaslan; Ozguner, Fehmi; Oktem, Faruk; Koyu, Ahmet; Kocak, Ahmet; Demirin, Hilmi; Gokalp, Osman; Cicek, Ekrem

    2006-01-01

    Caffeic acid phenethyl ester (CAPE), a flavonoid like compound, is one of the major components of honeybee propolis. It was found to be a potent free radical scavenger and antioxidant recently. The aim of this study was to examine the effect of CAPE on cadmium (Cd)-induced hypertension and cardiomyopathy in rats. In particular, nitric oxide (NO) may contribute to the pathophysiology of Cd induced cardiac impairment. Malondialdehyde (MDA, an index of lipid peroxidation) levels and nitric oxide (NO, a vasodilator) levels were used as markers Cd-induced cardiac impairment and the success of CAPE treatment. Also, the findings have been supported by the histopathologic evidences. The rats were randomly divided into three experimental groups each (12), as follows: the control group, Cd-treated group (Cd) and Cd plus CAPE-treated group (Cd + CAPE). CdCl 2 in 0.9% NaCl was administrated intraperitoneally (i.p.) with a dose of 1 mg/kg/day. CAPE was co-administered i.p. a dose of 10 μM/kg for 15 days. Hypertension was found to be induced by intraperitoneal administration of Cd in a dose of 1 mg/kg/day on the measurements taken 15 days later. MDA levels were increased (p < 0.001) in cardiac tissue and NO levels were decreased (p < 0.05) in serum in the Cd group than those of the control group had. On the other hand, there was a slight difference (increase) in MDA levels in the Cd + CAPE group than the ones in the control group (p < 0.003). In addition, MDA levels were decreased and NO levels were increased in the Cd + CAPE group compared with the Cd group (p < 0.001, p < 0.0001, respectively). As a result, treatment with CAPE significantly reversed the increased lipid peroxidation (LPO) product, MDA, and decreased NO levels in Cd treated animals. In the histopathologic examination, a significant hypertrophy in atrial and ventricular myofibrils was observed in only Cd administered group, in comparison with the control group. There was no statistically significant difference

  16. Classifying cognitive profiles using machine learning with privileged information in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Hanin Hamdan Alahmadi

    2016-11-01

    Full Text Available Early diagnosis of dementia is critical for assessing disease progression and potential treatment. State-or-the-art machine learning techniques have been increasingly employed to take on this diagnostic task. In this study, we employed Generalised Matrix Learning Vector Quantization (GMLVQ classifiers to discriminate patients with Mild Cognitive Impairment (MCI from healthy controls based on their cognitive skills. Further, we adopted a ``Learning with privileged information'' approach to combine cognitive and fMRI data for the classification task. The resulting classifier operates solely on the cognitive data while it incorporates the fMRI data as privileged information (PI during training. This novel classifier is of practical use as the collection of brain imaging data is not always possible with patients and older participants.MCI patients and healthy age-matched controls were trained to extract structure from temporal sequences. We ask whether machine learning classifiers can be used to discriminate patients from controls based on the learning performance and whether differences between these groups relate to individual cognitive profiles. To this end, we tested participants in four cognitive tasks: working memory, cognitive inhibition, divided attention, and selective attention. We also collected fMRI data before and after training on the learning task and extracted fMRI responses and connectivity as features for machine learning classifiers. Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the cognitive data. In addition, we found that for the baseline classifier, divided attention is the only relevant cognitive feature. When PI was incorporated, divided attention remained the most relevant feature while cognitive inhibition became also relevant for the task. Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1 when overall fMRI signal for structured stimuli is

  17. Dual-modality impairment of implicit learning of letter-strings versus color-patterns in patients with schizophrenia.

    Science.gov (United States)

    Chiu, Ming-Jang; Liu, Kristina; Hsieh, Ming H; Hwu, Hai-Gwo

    2005-12-12

    Implicit learning was reported to be intact in schizophrenia using artificial grammar learning. However, emerging evidence indicates that artificial grammar learning is not a unitary process. The authors used dual coding stimuli and schizophrenia clinical symptom dimensions to re-evaluate the effect of schizophrenia on various components of artificial grammar learning. Letter string and color pattern artificial grammar learning performances were compared between 63 schizophrenic patients and 27 comparison subjects. Four symptom dimensions derived from a Chinese Positive and Negative Symptom Scale ratings were correlated with patients' artificial grammar implicit learning performances along the two stimulus dimensions. Patients' explicit memory performances were assessed by verbal paired associates and visual reproduction subtests of the Wechsler Memory Scales Revised Version to provide a contrast to their implicit memory function. Schizophrenia severely hindered color pattern artificial grammar learning while the disease affected lexical string artificial grammar learning to a lesser degree after correcting the influences from age, education and the performance of explicit memory function of both verbal and visual modalities. Both learning performances correlated significantly with the severity of patients' schizophrenic clinical symptom dimensions that reflect poor abstract thinking, disorganized thinking, and stereotyped thinking. The results of this study suggested that schizophrenia affects various mechanisms of artificial grammar learning differently. Implicit learning, knowledge acquisition in the absence of conscious awareness, is not entirely intact in patients with schizophrenia. Schizophrenia affects implicit learning through an impairment of the ability of making abstractions from rules and at least in part decreasing the capacity for perceptual learning.

  18. Repetitive Supra-Physiological Shear Stress Impairs Red Blood Cell Deformability and Induces Hemolysis.

    Science.gov (United States)

    Horobin, Jarod T; Sabapathy, Surendran; Simmonds, Michael J

    2017-11-01

    The supra-physiological shear stress that blood is exposed to while traversing mechanical circulatory assist devices affects the physical properties of red blood cells (RBCs), impairs RBC deformability, and may induce hemolysis. Previous studies exploring RBC damage following exposure to supra-physiological shear stress have employed durations exceeding clinical instrumentation, thus we explored changes in RBC deformability following exposure to shear stress below the reported "hemolytic threshold" using shear exposure durations per minute (i.e., duty-cycles) reflective of that employed by circulatory assist devices. Blood collected from 20 male donors, aged 18-38 years, was suspended in a viscous medium and exposed to an intermittent shear stress protocol of 1 s at 100 Pa, every 60 s for 60 duty-cycles. During the remaining 59 s/min, the cells were left at stasis until the subsequent duty-cycle commenced. At discrete time points (15/30/45/60 duty-cycles), an ektacytometer measured RBC deformability immediately after shear exposure at 100 Pa. Plasma-free hemoglobin, a measurement of hemolysis, was quantified via spectrophotometry. Supra-physiological shear stress impaired RBC properties, as indicated by: (1) decreased maximal elongation of RBCs at infinite shear stress following 15 duty-cycles (P supra-physiological shear stress protocol (100 Pa) following exposure to 1 duty-cycle (F (1.891, 32.15) = 12.21, P = 0.0001); and (3) increased plasma-free hemoglobin following 60 duty-cycles (P supra-physiological shear stress, impairs RBC deformability, with the extent of impairment exacerbated with each duty-cycle, and ultimately precipitates hemolysis. © 2017 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  19. Disease-specific monoclonal antibodies targeting glutamate decarboxylase impair GABAergic neurotransmission and affect motor learning and behavioral functions

    Directory of Open Access Journals (Sweden)

    Mario U Manto

    2015-03-01

    Full Text Available Autoantibodies to the smaller isoform of glutamate decarboxylase can be found in patients with type 1 diabetes and a number of neurological disorders, including stiff-person syndrome, cerebellar ataxia and limbic encephalitis. The detection of disease-specific autoantibody epitopes led to the hypothesis that distinct glutamate decarboxylase autoantibodies may elicit specific neurological phenotypes. We explored the in vitro/in vivo effects of well-characterized monoclonal glutamate decarboxylase antibodies. We found that glutamate decarboxylase autoantibodies present in patients with stiff person syndrome (n = 7 and cerebellar ataxia (n = 15 recognized an epitope distinct from that recognized by glutamate decarboxylase autoantibodies present in patients with type 1 diabetes mellitus (n = 10 or limbic encephalitis (n = 4. We demonstrated that the administration of a monoclonal glutamate decarboxylase antibody representing this epitope specificity (1 disrupted in vitro the association of glutamate decarboxylase with γ-Aminobutyric acid containing synaptic vesicles, (2 depressed the inhibitory synaptic transmission in cerebellar slices with a gradual time course and a lasting suppressive effect, (3 significantly decreased conditioned eyelid responses evoked in mice, with no modification of learning curves in the classical eyeblink-conditioning task, (4 markedly impaired the facilitatory effect exerted by the premotor cortex over the motor cortex in a paired-pulse stimulation paradigm, and (5 induced decreased exploratory behavior and impaired locomotor function in rats. These findings support the specific targeting of glutamate decarboxylase by its autoantibodies in the pathogenesis of stiff-person syndrome and cerebellar ataxia. Therapies of these disorders based on selective removal of such glutamate decarboxylase antibodies could be envisioned.

  20. Fast-twitch glycolytic skeletal muscle is predisposed to age-induced impairments in mitochondrial function

    DEFF Research Database (Denmark)

    Jacobs, Robert A; Díaz, Víctor; Soldini, Lavinia

    2013-01-01

    The etiology of mammalian senescence is suggested to involve the progressive impairment of mitochondrial function; however, direct observations of age-induced alterations in actual respiratory chain function are lacking. Accordingly, we assessed mitochondrial function via high-resolution respirom......The etiology of mammalian senescence is suggested to involve the progressive impairment of mitochondrial function; however, direct observations of age-induced alterations in actual respiratory chain function are lacking. Accordingly, we assessed mitochondrial function via high......-resolution respirometry and mitochondrial protein expression in soleus, quadricep, and lateral gastrocnemius skeletal muscles, which represent type 1 slow-twitch oxidative muscle (soleus) and type 2 fast-twitch glycolytic muscle (quadricep and gastrocnemius), respectively, in young (10-12 weeks) and mature (74-76 weeks......) mice. Electron transport through mitochondrial complexes I and III increases with age in quadricep and gastrocnemius, which is not observed in soleus. Mitochondrial coupling efficiency during respiration through complex I also deteriorates with age in gastrocnemius and shows a tendency (p = .085...

  1. Protective effects of myricetin on acute hypoxia-induced exercise intolerance and mitochondrial impairments in rats.

    Directory of Open Access Journals (Sweden)

    Dan Zou

    Full Text Available Exercise tolerance is impaired in hypoxia. The aim of this study was to evaluate the effects of myricetin, a dietary flavonoid compound widely found in fruits and vegetables, on acute hypoxia-induced exercise intolerance in vivo and in vitro.Male rats were administered myricetin or vehicle for 7 days and subsequently spent 24 hours at a barometric pressure equivalent to 5000 m. Exercise capacity was then assessed through the run-to-fatigue procedure, and mitochondrial morphology in skeletal muscle cells was observed by transmission electron microscopy (TEM. The enzymatic activities of electron transfer complexes were analyzed using an enzyme-linked immuno-sorbent assay (ELISA. mtDNA was quantified by real-time-PCR. Mitochondrial membrane potential was measured by JC-1 staining. Protein expression was detected through western blotting, immunohistochemistry, and immunofluorescence.Myricetin supplementation significantly prevented the decline of run-to-fatigue time of rats in hypoxia, and attenuated acute hypoxia-induced mitochondrial impairment in skeletal muscle cells in vivo and in vitro by maintaining mitochondrial structure, mtDNA content, mitochondrial membrane potential, and activities of the respiratory chain complexes. Further studies showed that myricetin maintained mitochondrial biogenesis in skeletal muscle cells under hypoxic conditions by up-regulating the expressions of mitochondrial biogenesis-related regulators, in addition, AMP-activated protein kinase(AMPK plays a crucial role in this process.Myricetin may have important applications for improving physical performance under hypoxic environment, which may be attributed to the protective effect against mitochondrial impairment by maintaining mitochondrial biogenesis.

  2. Thioredoxin and impaired spatial learning and memory in the rats exposed to intermittent hypoxia

    Institute of Scientific and Technical Information of China (English)

    YANG Xiu-hong; LIU Hui-guo; LIU Xue; CHEN Jun-nan

    2012-01-01

    Background Obstructive sleep apnea (OSA) can cause cognitive dysfunction and may be a reversible cause of cognitive loss in patients with Alzheimer's disease (AD).Chronic exposure to intermittent hypoxia (IH),such as encountered in OSA,is marked by neurodegenerative changes in rat brain.We investigated the change of thioredoxin (Trx),spatial learning and memory in rats exposed to chronic intermittent hypoxia (CIH).Methods Forty healthy male Sprague-Dawley (SD) rats were randomly divided into four groups of ten each:a CIH+normal saline (CIH+NS group),a N-acetylcystein-treated CIH (CIH+NAC) group,a sham CIH group (sham CIH+NS),and a sham NAC-treated sham CIH (CIH+NAC) group.Spatial learning and memory in each group was assessed with the Morris water maze.Real-time PCR and Western blotting were used to examine mRNA and protein expression of Trx in the hippocampus tissue.The terminal deoxynucleotidyl transferase-mediated dUTP-nick end-labeling (TUNEL) method was used to detect the apoptotic cells of the hippocampus CA1 region.Results ClH-rats showed impaired spatial learning and memory in the Morris water maze,including longer mean latencies for the target platform,reduced numbers of passes over the previous target platform and a smaller percentage of time spent in the target quadrant.Trx mRNA and protein levels were significantly decreased in the CIH-hippocampus,meanwhile,an elevated apoptotic index revealed apoptosis of hippocampal neurons of rats exposed to CIH.The rats,which acted better in the Morris water maze,showed higher levels of the Trx mRNA and protein in the hippocampus;apoptotic index of the neurons in the hippocampus of each group was negatively correlated with the Trx mRNA and protein levels.Conclusion The Trx deficit likely plays an important role in the impaired spatial learning and memory in the rats exposed to CIH and may work through the apoptosis of neurons in the hippocampus.

  3. Galantamine counteracts development of learning impairment in guinea pigs exposed to the organophosphorus poison soman: Clinical significance

    Science.gov (United States)

    Mamczarz, Jacek; Kulkarni, Girish S.; Pereira, Edna F. R.; Albuquerque, Edson X.

    2017-01-01

    Galantamine, a drug used to treat Alzheimer’s disease, protects guinea pigs against the acute toxicity and lethality of organophosphorus (OP) compounds, including soman. Here, we tested the hypothesis that a single exposure of guinea pigs to 1xLD50 soman triggers cognitive impairments that can be counteracted by galantamine. Thus, animals were injected intramuscularly with saline (0.5 ml/kg) or galantamine (8 mg/kg) and 30 min later injected subcutaneously with soman (26.3 µg/kg) or saline. Cognitive performance was analyzed in the Morris water maze (MWM) four days or three months after the soman challenge. Fifty percent of the saline-injected animals that were challenged with soman survived with mild-to-moderate signs of acute toxicity that subsided within a few hours. These animals showed no learning impairment and no memory retention deficit, when training in the MWM started four days post-soman challenge. In contrast, animals presented significant learning impairment when testing started three months post-challenge. Though the magnitude of the impairment correlated with the severity of the acute toxicity, animals that presented no or only mild signs of toxicity were also learning impaired. All guinea pigs that were treated with galantamine survived the soman challenge with no signs of acute toxicity and learned the MWM task as control animals, regardless of when testing began. Galantamine also prevented memory extinction in both saline-and soman-challenged animals. In conclusion, learning impairment develops months after a single exposure to 1xLD50 soman, and galantamine prevents both the acute toxicity and the delayed cognitive deficits triggered by this OP poison. PMID:21784098

  4. A review study on medicinal plants used in the treatment of learning and memory impairments

    Directory of Open Access Journals (Sweden)

    Nahid Jivad

    2014-10-01

    Full Text Available Alzheimer's disease (AD is a progressive brain disorder that gradually impairs the person's memory and ability to learn, reasoning, judgment, communication and daily activities. AD is characterized clinically by cognitive impairment and pathologically by the deposition of β amyloid plaques and neurofibrillary tangles, and the degeneration of the cholinergic basal forebrain. During the progression of AD patients may produce changes in personality and behavior, such as anxiety, paranoia, confusion, hallucinations and also to experience delusions and fantasies. The first neurotransmitter defect discovered in AD involved acetylcholine as cholinergic function is required for short-term memory. Oxidative stress may underlie the progressive neurodegeneration characteristic of AD. Brain structures supporting memory are uniquely sensitive to oxidative stress due to their elevated demand for oxygen. The neurodegenerative process in AD may involve β amyloid toxicity. Neurotoxicity of β amyloid appears to involve oxidative stress. Currently, there is no cure for this disease but in new treatments, reveals a new horizon on the biology of this disease. This paper reviews the effects of a number of commonly used types of herbal medicines for the treatment of AD. The objective of this article was to review evidences from controlled studies in order to determine whether herbs can be useful in the treatment of cognitive disorders in the elderly.

  5. A review study on medicinal plants used in the treatment of learning and memory impairments

    Institute of Scientific and Technical Information of China (English)

    Nahid Jivad; Zahra Rabiei

    2014-01-01

    Alzheimer's disease (AD) is a progressive brain disorder that gradually impairs the person's memory and ability to learn, reasoning, judgment, communication and daily activities. AD is characterized clinically by cognitive impairment and pathologically by the deposition of β amyloid plaques and neurofibrillary tangles, and the degeneration of the cholinergic basal forebrain. During the progression of AD patients may produce changes in personality and behavior, such as anxiety, paranoia, confusion, hallucinations and also to experience delusions and fantasies. The first neurotransmitter defect discovered in AD involved acetylcholine as cholinergic function is required for short-term memory. Oxidative stress may underlie the progressive neurodegeneration characteristic of AD. Brain structures supporting memory are uniquely sensitive to oxidative stress due to their elevated demand for oxygen. The neurodegenerative process in AD may involveβ amyloid toxicity. Neurotoxicity of β amyloid appears to involve oxidative stress. Currently, there is no cure for this disease but in new treatments, reveals a new horizon on the biology of this disease. This paper reviews the effects of a number of commonly used types of herbal medicines for the treatment of AD. The objective of this article was to review evidences from controlled studies in order to determine whether herbs can be useful in the treatment of cognitive disorders in the elderly.

  6. A review study on medicinal plants used in the treatment of learning and memory impairments

    Institute of Scientific and Technical Information of China (English)

    Nahid; Jivad; Zahra; Rabiei

    2014-01-01

    Alzheimer′s disease(AD) is a progressive brain disorder thai gradual!) impairs the person’s memory and ability to learn,reasoning.judgment,communication and daily activities.All is characterized clinically by cognitive impairment and pathologically by the deposition of β amyloid plaques and neurofibrillary tangles,and the degeneration of the cholinergic basal forebrain.During the progression of AD patients may produce changes in personality and behavior,such as anxiety,paranoia,confusion,hallucinations and also to experience delusions and lanlasies.The first neurotransmitter defect discovered in Al) involved acetylcholine as cholinergic function is required for short—term memory.Oxidative stress may underlie the progressive neurodegeneration characteristic of AD.Brain structures supporting memory are uniquely sensitive to oxidative stress due to their elevated demand for oxygen.The neurodegenerative process in AD may involveβ amyloid toxicity.Neurotoxicity of β amyloid appears to involve oxidative stress.Currently,there is no cure for this disease but in new treatments,reveals a new horizon on the biology of this disease.This paper reviews the effects of a number of commonly used types of herbal medicines for the Irealment of AD.The objective of this article was to review evidences from controlled studies in order to determine whether herbs can be useful in the treatment of cognitive disorders in the elderly.

  7. Optimizing Neuropsychological Assessments for Cognitive, Behavioral, and Functional Impairment Classification: A Machine Learning Study

    Directory of Open Access Journals (Sweden)

    Petronilla Battista

    2017-01-01

    Full Text Available Subjects with Alzheimer’s disease (AD show loss of cognitive functions and change in behavioral and functional state affecting the quality of their daily life and that of their families and caregivers. A neuropsychological assessment plays a crucial role in detecting such changes from normal conditions. However, despite the existence of clinical measures that are used to classify and diagnose AD, a large amount of subjectivity continues to exist. Our aim was to assess the potential of machine learning in quantifying this process and optimizing or even reducing the amount of neuropsychological tests used to classify AD patients, also at an early stage of impairment. We investigated the role of twelve state-of-the-art neuropsychological tests in the automatic classification of subjects with none, mild, or severe impairment as measured by the clinical dementia rating (CDR. Data were obtained from the ADNI database. In the groups of measures used as features, we included measures of both cognitive domains and subdomains. Our findings show that some tests are more frequently best predictors for the automatic classification, namely, LM, ADAS-Cog, AVLT, and FAQ, with a major role of the ADAS-Cog measures of delayed and immediate memory and the FAQ measure of financial competency.

  8. Impaired reward learning and intact motivation after serotonin depletion in rats.

    Science.gov (United States)

    Izquierdo, Alicia; Carlos, Kathleen; Ostrander, Serena; Rodriguez, Danilo; McCall-Craddolph, Aaron; Yagnik, Gargey; Zhou, Feimeng

    2012-08-01

    Aside from the well-known influence of serotonin (5-hydroxytryptamine, 5-HT) on emotional regulation, more recent investigations have revealed the importance of this monoamine in modulating cognition. Parachlorophenylalanine (PCPA) depletes 5-HT by inhibiting tryptophan hydroxylase, the enzyme required for 5-HT synthesis and, if administered at sufficiently high doses, can result in a depletion of at least 90% of the brain's 5-HT levels. The present study assessed the long-lasting effects of widespread 5-HT depletions on two tasks of cognitive flexibility in Long Evans rats: effort discounting and reversal learning. We assessed performance on these tasks after administration of either 250 or 500 mg/kg PCPA or saline (SAL) on two consecutive days. Consistent with a previous report investigating the role of 5-HT on effort discounting, pretreatment with either dose of PCPA resulted in normal effortful choice: All rats continued to climb tall barriers to obtain large rewards and were not work-averse. Additionally, rats receiving the lower dose of PCPA displayed normal reversal learning. However, despite intact motivation to work for food rewards, rats receiving the largest dose of PCPA were unexpectedly impaired relative to SAL rats on the pretraining stages leading up to reversal learning, ultimately failing to approach and respond to the stimuli associated with reward. High performance liquid chromatography (HPLC) with electrochemical detection confirmed 5-HT, and not dopamine, levels in the ventromedial frontal cortex were correlated with this measure of associative reward learning. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Impairment mitigation in noncoherent optical transmission enabled with machine learning for intra-datacenter networks

    Science.gov (United States)

    Ito, Keisuke; Niwa, Masaki; Ueda, Koh; Mori, Yojiro; Hasegawa, Hiroshi; Sato, Ken-ichi

    2017-01-01

    Ever-increasing intra-datacenter traffic will spur the introduction of high-baud rates and high-order modulation formats. Increasing symbol rates and modulation levels decreases tolerance against transmission impairment that includes chromatic dispersion. Transmission distance in warehouse-scale datacenters can be several kilometers, and then management of chromatic dispersion is necessary. Dispersion-compensating fibers are widely deployed in backbone networks, however, applying them in datacenters is not cost-effective since wavelength channels are coarsely multiplexed. In digital coherent systems, signal distortion due to chromatic dispersion can be resolved in digital domain; however, it will take long time before coherent systems can be introduced in datacenter networks because of their high cost. In this paper, we propose a novel impairment mitigation method employing machine learning. The proposed method is effective even after non-coherent detection and hence it can be applied to cost-sensitive intra-datacenter networks. The machine learns optimum symbol-decision criteria from a sequence of dispersed training signals, and it discriminates payload signals in accordance with the established decision criteria. With the scheme, the received signals can be demodulated in the presence of large chromatic dispersion. The transmission distance thus can be extended without relying on costly optical dispersion compensation. Since information of transmission links is not a priori required, the proposed scheme can easily be applied to any datacenter network. We conduct transmission experiments using 400-Gbps channels each of which comprises 8-subcarrier 28-Gbaud 4-ary pulse-amplitude-modulation (PAM-4) signals, and confirm the effectiveness of the proposed scheme.

  10. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression.

    Science.gov (United States)

    Tabrizian, Kaveh; Azami, Kian; Belaran, Maryam; Soodi, Maliheh; Abdi, Khosrou; Fanoudi, Sahar; Sanati, Mehdi; Mottaghi Dastjerdi, Negar; Soltany Rezaee-Rad, Mohammad; Sharifzadeh, Mohammad

    2016-10-01

    Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.

  11. Specificity of verbal learning impairment and recovery in a marijuana-dependent male: the effects of sustained marijuana abstinence

    OpenAIRE

    Vadhan, Nehal P.; van Gorp, Wilfred G.; Levin, Frances R.

    2011-01-01

    We present the case of a young adult in treatment for marijuana dependence, with recurrent depression and a history of possible TBI, complaining of concentration, memory and initiation problems. Testing at treatment baseline revealed performance that was generally in the High Average range on measures of reaction time and attention, with a selective impairment in verbal learning (Borderline to Extremely Low range). Following 8 weeks of abstinence from marijuana, his verbal learning recovered ...

  12. Impaired atrial electromechanical function and atrial fibrillation promotion in alloxan-induced diabetic rabbits.

    Science.gov (United States)

    Fu, Huaying; Liu, Changle; Li, Jian; Zhou, Changyu; Cheng, Lijun; Liu, Tong; Li, Guangping

    2013-01-01

    Diabetes mellitus (DM) is an independent risk factor for atrial fibrillation (AF). However, the underlying mechanisms are still not clearly elucidated. The aim of this study was to evaluate the atrial electromechanical function, atrial electrophysiological changes and AF inducibility in alloxan-induced diabetic rabbits. In 8 alloxan-induced diabetic rabbits and 8 controls, we evaluated atrial electromechanical function by tissue Doppler imaging. Isolated Langendorff-perfused rabbit hearts were prepared to measure atrial refractory effective period (AERP) and its dispersion (AERPD), interatrial conduction time (IACT) and vulnerability to AF. Atrial interstitial fibrosis was evaluated by Sirius-Red staining. Compared with controls, left atrial lateral wall Pa'-start interval (Pastart) and right atrial wall Pastart were increased in diabetic rabbits. AERPD was increased and IACT was prolonged in diabetic rabbits. Inducibility of AF in diabetic group was significant higher than controls (6/8 vs. 1/8, p TEMA); left atrial lateral wall Papeak and TEMA, left atrial posterior wall TEMA, and IACT were correlated with atrial areas of fibrosis. Atrial electromechanical function is impaired in diabetic rabbits, and is associated with atrial fibrosis and interatrial electrical conduction delay.

  13. Melatonin protects chondrocytes from impairment induced by glucocorticoids via NAD+-dependent SIRT1.

    Science.gov (United States)

    Yang, Wei; Kang, Xiaomin; Qin, Na; Li, Feng; Jin, Xinxin; Ma, Zhengmin; Qian, Zhuang; Wu, Shufang

    2017-10-01

    Intra-articular injection of glucocorticoids is used to relieve pain and inflammation in osteoarthritis patients, which is occasionally accompanied with the serious side effects of glucocorticoids in collagen-producing tissue. Melatonin is the major hormone released from the pineal gland and its beneficial effects on cartilage has been suggested. In the present study, we investigated the protective role of melatonin on matrix degeneration in chondrocytes induced by dexamethasone (Dex). The chondrocytes isolated from mice knee joint were treated with Dex, melatonin, EX527 and siRNA targeted for SIRT6, respectively. Dex treatment induced the loss of the extracellular matrix, NAD + /NADH ratio and NADPH concentration in chondrocytes. Melatonin alone have no effect on the quantity of proteoglycans and collagen type IIa1, however, the pretreatment of melatonin reversed the negative effects induced by Dex. Meanwhile, the significant decrease in NAD + /NADH ratio and NADPH concentration in Dex group were up-regulated by pretreatment of melatonin. Furthermore, it was revealed that inhibition of SIRT1 blocked the protective effects of melatonin. The enhancement of NAD + -dependent SIRT1 activity contributes to the chondroprotecfive effects of melatonin, which has a great benefit to prevent dexamethasone-induced chondrocytes impairment. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Chemotherapy-induced cognitive impairment is associated with decreases in cell proliferation and histone modifications

    Directory of Open Access Journals (Sweden)

    Briones Teresita L

    2011-12-01

    Full Text Available Abstract Background In this study, we examined the effects of cyclophosphamide, methothrexate, and 5-Fluorouracil (CMF drug combination on various aspects of learning and memory. We also examined the effects of CMF on cell proliferation and chromatin remodeling as possible underlying mechanisms to explain chemotherapy-associated cognitive dysfunction. Twenty-four adult female Wistar rats were included in the study and had minimitter implantation for continuous activity monitoring two weeks before the chemotherapy regimen was started. Once baseline activity data were collected, rats were randomly assigned to receive either CMF or saline injections given intraperitoneally. Treatments were given once a week for a total of 4 weeks. Two weeks after the last injection, rats were tested in the water maze for spatial learning and memory ability as well as discrimination learning. Bromodeoxyuridine (BrdU injection was given at 100 mg/Kg intraperitoneally 4 hours prior to euthanasia to determine hippocampal cell proliferation while histone acetylation and histone deacetylase activity was measured to determine CMF effects on chromatin remodeling. Results Our data showed learning and memory impairment following CMF administration independent of the drug effects on physical activity. In addition, CMF-treated rats showed decreased hippocampal cell proliferation, associated with increased histone acetylation and decreased histone deacetylase activity. Conclusions These results suggest the negative consequences of chemotherapy on brain function and that anti-cancer drugs can adversely affect the self-renewal potential of neural progenitor cells and also chromatin remodeling in the hippocampus. The significance of our findings lie on the possible usefulness of animal models in addressing the clinical phenomenon of 'chemobrain.'

  15. Piracetam Attenuates LPS-Induced Neuroinflammation and Cognitive Impairment in Rats.

    Science.gov (United States)

    Tripathi, Alok; Paliwal, Pankaj; Krishnamurthy, Sairam

    2017-11-01

    The present study was performed to investigate the effect of piracetam on neuroinflammation induced by lipopolysaccharide (LPS) and resulting changes in cognitive behavior. Neuroinflammation was induced by a single dose of LPS solution infused into each of the lateral cerebral ventricles in concentrations of 1 μg/μl, at a rate of 1 μl/min over a 5-min period, with a 5-min waiting period between the two infusions. Piracetam in doses of 50, 100, and 200 mg/kg i.p. was administered 30 min before LPS infusion and continued for 9 days. On ninth day, the behavioral test for memory and anxiety was done followed by blood collection and microdissection of the hippocampus (HIP) and prefrontal cortex brain regions. Piracetam attenuated the LPS-induced decrease in coping strategy to novel environment indicating anxiolytic activity. It also reversed the LPS-induced changes in the known arm and novel arm entries in the Y-maze test indicating amelioration of spatial memory impairment. Further, piracetam moderated LPS-induced decrease in the mitochondrial complex enzyme activities (I, II, IV, and V) and mitochondrial membrane potential. It ameliorated changes in hippocampal lipid peroxidation and nitrite levels including the activity of superoxide dismutase. Piracetam region specifically ameliorated LPS-induced increase in the level of IL-6 in HIP indicating anti-neuroinflammatory effect. Further, piracetam reduced HIP Aβ (1-40) and increased blood Aβ level suggesting efflux of Aβ from HIP to blood. Therefore, the present study indicates preclinical evidence for the use of piracetam in the treatment of neuroinflammatory disorders.

  16. Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice

    International Nuclear Information System (INIS)

    Viberg, Henrik; Fredriksson, Anders; Eriksson, Per

    2003-01-01

    Neonatal exposure to polybrominated diphenyl ether (PBDE 153) disrupts spontaneous behaviour, impairs learning and memory, and decreases hippocampal cholinergic receptors in adult mice. Flame retardants are used to suppress or inhibit combustion processes in an effort to reduce the risk of fire. One class of flame retardants, polybrominated diphenyl ethers (PBDEs), are present and increasing in the environment and in human milk. The present study shows that neonatal exposure to 2,2',4,4',5,5'-hexaBDE (PBDE 153), a PBDE persistent both in environment and in human milk, can induce developmental neurotoxic effects, such as changes in spontaneous behaviour (hyperactivity), impairments in learning and memory, and reduced amounts of nicotinic receptors, effects that get worse with age. Neonatal NMRI male mice were orally exposed on day 10 to 0.45, 0.9, or 9.0 mg of PBDE 153/kg of body weight. Spontaneous behaviour (locomotion, rearing, and total activity) was observed in 2-, 4-, and 6-month-old mice, Morris water maze at an age of 6 months. The behaviour tests showed that the effects were dose-response and time-response related. Animals showing defects in learning and memory also showed significantly reduced amounts of nicotinic receptors in hippocampus, using α-bungarotoxin binding assay. The observed developmental neurotoxic effects seen for PBDE 153 are similar to those seen for PBDE 99 and for certain PCBs. Furthermore, PBDEs appear to as potent as the PCBs

  17. Exercise Prevents Memory Impairment Induced by Arsenic Exposure in Mice: Implication of Hippocampal BDNF and CREB.

    Directory of Open Access Journals (Sweden)

    Bao-Fei Sun

    Full Text Available High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g. was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF and phosphorylated cAMP-response element binding protein (pCREB in the CA1 and dentate gyrus areas (DG of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.

  18. Hepatitis C virus induces a prediabetic state by directly impairing hepatic glucose metabolism in mice.

    Science.gov (United States)

    Lerat, Hervé; Imache, Mohamed Rabah; Polyte, Jacqueline; Gaudin, Aurore; Mercey, Marion; Donati, Flora; Baudesson, Camille; Higgs, Martin R; Picard, Alexandre; Magnan, Christophe; Foufelle, Fabienne; Pawlotsky, Jean-Michel

    2017-08-04

    Virus-related type 2 diabetes is commonly observed in individuals infected with the hepatitis C virus (HCV); however, the underlying molecular mechanisms remain unknown. Our aim was to unravel these mechanisms using FL-N/35 transgenic mice expressing the full HCV ORF. We observed that these mice displayed glucose intolerance and insulin resistance. We also found that Glut-2 membrane expression was reduced in FL-N/35 mice and that hepatocyte glucose uptake was perturbed, partly accounting for the HCV-induced glucose intolerance in these mice. Early steps of the hepatic insulin signaling pathway, from IRS2 to PDK1 phosphorylation, were constitutively impaired in FL-N/35 primary hepatocytes via deregulation of TNFα/SOCS3. Higher hepatic glucose production was observed in the HCV mice, despite higher fasting insulinemia, concomitant with decreased expression of hepatic gluconeogenic genes. Akt kinase activity was higher in HCV mice than in WT mice, but Akt-dependent phosphorylation of the forkhead transcription factor FoxO1 at serine 256, which triggers its nuclear exclusion, was lower in HCV mouse livers. These findings indicate an uncoupling of the canonical Akt/FoxO1 pathway in HCV protein-expressing hepatocytes. Thus, the expression of HCV proteins in the liver is sufficient to induce insulin resistance by impairing insulin signaling and glucose uptake. In conclusion, we observed a complete set of events leading to a prediabetic state in HCV-transgenic mice, providing a valuable mechanistic explanation for HCV-induced diabetes in humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Alcohol-induced retrograde memory impairment in rats: prevention by caffeine.

    Science.gov (United States)

    Spinetta, Michael J; Woodlee, Martin T; Feinberg, Leila M; Stroud, Chris; Schallert, Kellan; Cormack, Lawrence K; Schallert, Timothy

    2008-12-01

    Ethanol and caffeine are two of the most widely consumed drugs in the world, often used in the same setting. Animal models may help to understand the conditions under which incidental memories formed just before ethanol intoxication might be lost or become difficult to retrieve. Ethanol-induced retrograde amnesia was investigated using a new odor-recognition test. Rats thoroughly explored a wood bead taken from the cage of another rat, and habituated to this novel odor (N1) over three trials. Immediately following habituation, rats received saline, 25 mg/kg pentylenetetrazol (a seizure-producing agent known to cause retrograde amnesia) to validate the test, 1.0 g/kg ethanol, or 3.0 g/kg ethanol. The next day, they were presented again with N1 and also a bead from a new rat's cage (N2). Rats receiving saline or the lower dose of ethanol showed overnight memory for N1, indicated by preferential exploration of N2 over N1. Rats receiving pentylenetetrazol or the higher dose of ethanol appeared not to remember N1, in that they showed equal exploration of N1 and N2. Caffeine (5 mg/kg), delivered either 1 h after the higher dose of ethanol or 20 min prior to habituation to N1, negated ethanol-induced impairment of memory for N1. A combination of a phosphodiesterase-5 inhibitor and an adenosine A(2A) antagonist, mimicking two major mechanisms of action of caffeine, likewise prevented the memory impairment, though either drug alone had no such effect. Binge alcohol can induce retrograde, caffeine-reversible disruption of social odor memory storage or recall.

  20. Impairments of learning and memory in the rats after brain irradiation

    International Nuclear Information System (INIS)

    Takai, Nobuhiko

    2002-01-01

    Clinical trials of hadrontherapy have been carried out world wide at several facilities including National Institute of Radiological Sciences (NIRS). Cerebral dysfunction is one of the major concerns associated with radiotherapy of brain tumors. However, little is known about the neurochemical basis of brain dysfunction induced by proton irradiation. We investigated and reported here the early consequences of brain damages caused by proton beam. The animals that had memorized the location of the standard position were locally irradiated to brain with either 70 MeV protons or 290 MeV carbon ions. At 24 hr after irradiation, impairment of the long-term memory was not observed in the irradiated rats compared to control. Irradiated animals, however, required substantially longer time finding out the standard position than control rats when the standard platform displaced to a position different from memorized position. This follows that a single doses of 30 Gy, either protons or carbon ions, impairs the working memory of animals. Function of muscarinic acetylcholine receptors was analyzed by an in vivo binding assay using radioligand quinuclidinyl benzilate (QNB). Irradiated rats were intravenously injected with 5.5 MBq of 3 H-QNB 24 hr after the irradiation, and decapitated 60 min after tracer injection. The autoradiographic studies showed an transitional increase of 3 H-QNB in vivo binding in the early phase after proton irradiation, even though no change in in-vitro 3 H-QNB binding was see in brain autoradiograms of irradiated rats. The cerebral blood flow and the histrogical features of brain were also changed at 3 months post-irradiation. These results indicate that the memory impairment caused by radiation is closely related to the early change of acetylcholine receptor in vivo. (author)

  1. Impairments of learning and memory in the rats after brain irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Takai, Nobuhiko [National Inst. of Radiological Sciences, Chiba (Japan)

    2002-06-01

    Clinical trials of hadrontherapy have been carried out world wide at several facilities including National Institute of Radiological Sciences (NIRS). Cerebral dysfunction is one of the major concerns associated with radiotherapy of brain tumors. However, little is known about the neurochemical basis of brain dysfunction induced by proton irradiation. We investigated and reported here the early consequences of brain damages caused by proton beam. The animals that had memorized the location of the standard position were locally irradiated to brain with either 70 MeV protons or 290 MeV carbon ions. At 24 hr after irradiation, impairment of the long-term memory was not observed in the irradiated rats compared to control. Irradiated animals, however, required substantially longer time finding out the standard position than control rats when the standard platform displaced to a position different from memorized position. This follows that a single doses of 30 Gy, either protons or carbon ions, impairs the working memory of animals. Function of muscarinic acetylcholine receptors was analyzed by an in vivo binding assay using radioligand quinuclidinyl benzilate (QNB). Irradiated rats were intravenously injected with 5.5 MBq of {sup 3}H-QNB 24 hr after the irradiation, and decapitated 60 min after tracer injection. The autoradiographic studies showed an transitional increase of {sup 3}H-QNB in vivo binding in the early phase after proton irradiation, even though no change in in-vitro {sup 3}H-QNB binding was see in brain autoradiograms of irradiated rats. The cerebral blood flow and the histrogical features of brain were also changed at 3 months post-irradiation. These results indicate that the memory impairment caused by radiation is closely related to the early change of acetylcholine receptor in vivo. (author)

  2. Provision of Learning and Teaching Materials for Pupils with Visual Impairment: Results from a National Survey in Zambia

    Science.gov (United States)

    Akakandelwa, Akakandelwa; Munsanje, Joseph

    2012-01-01

    The aim of this study was to determine the provision of learning and teaching materials for pupils with visual impairment in basic and high schools of Zambia. A survey approach utilizing a questionnaire, interviews and a review of the literature was adopted for the study. The findings demonstrated that most schools in Zambia did not provide…

  3. Interlocking Toy Building Blocks as Hands-On Learning Modules for Blind and Visually Impaired Chemistry Students

    Science.gov (United States)

    Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.

    2016-01-01

    Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…

  4. Efficacy of Information and Communication Technology in Enhancing Learning Outcomes of Students with Hearing Impairment in Ibadan

    Science.gov (United States)

    Egaga, Patrick I.; Aderibigbe, S. Akinwumi

    2015-01-01

    The study aimed at examining the efficacy of Information and Communication Technology (ICT) in enhancing learning outcomes of students with hearing impairment in Ibadan. The study adopted a pretest, post-test, control group quasi-experimental research design. Purposive sampling techniques was used for the selection of thirty participants…

  5. Developing Teachers' Work for Improving Teaching and Learning of Children with Visual Impairment Accommodated in Ordinary Primary Schools

    Science.gov (United States)

    Mnyanyi, Cosmas B. F.

    2009-01-01

    The study investigated how to facilitate teachers in developing their work in improving the teaching and learning of children with visual impairment (CVI) accommodated in ordinary classrooms. The study takes the form of collaborative action research where the researcher works in collaboration with the teachers. The project is being conducted in…

  6. Dynamic assessment of word learning skills of pre-school children with primary language impairment.

    Science.gov (United States)

    Camilleri, Bernard; Law, James

    2014-10-01

    Dynamic assessment has been shown to have considerable theoretical and clinical significance in the assessment of socially disadvantaged and culturally and linguistically diverse children. In this study it is used to enhance assessment of pre-school children with primary language impairment. The purpose of the study was to determine whether a dynamic assessment (DA) has the potential to enhance the predictive capacity of a static measure of receptive vocabulary in pre-school children. Forty pre-school children were assessed using the static British Picture Vocabulary Scale (BPVS), a DA of word learning potential and an assessment of non-verbal cognitive ability. Thirty-seven children were followed up 6 months later and re-assessed using the BPVS. Although the predictive capacity of the static measure was found to be substantial, the DA increased this significantly especially for children with static scores below the 25th centile. The DA of children's word learning has the potential to add value to the static assessment of the child with low language skills, to predict subsequent receptive vocabulary skills and to increase the chance of correctly identifying children in need of ongoing support.

  7. Students with learning disabilities and hearing impairment: issues for the secondary and postsecondary teacher.

    Science.gov (United States)

    Roth, V

    1991-01-01

    Although the number of students with both learning disability and hearing impairment (LDHI) currently enrolled in secondary and postsecondary programs has not been precisely determined, it is clear that these students are currently receiving inadequate assessment and support in many institutions. The best route for serving these students would seem to be collaborative efforts between deaf educators and learning disabilities specialists, yet serious gaps exist between these two professions in regard to interpretation of laws governing special services, training of professionals, and locations of educational programs. The difficulties of developing collaborative work have been compounded by controversies within each field and the heterogeneity of the populations served by both disciplines. Those interested in creating good LDHI assessments should begin by considering the qualifications needed by those conducting evaluation procedures. The inadequacies of current formal assessment devices for this population need to be recognized; informal procedures, such as teacher observation and curriculum-based assessments, are still some of the best tools available for identification and educational planning.

  8. Inhibition of amygdaloid dopamine D2 receptors impairs emotional learning measured with fear-potentiated startle.

    Science.gov (United States)

    Greba, Q; Gifkins, A; Kokkinidis, L

    2001-04-27

    Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D(2) receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D(2) receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D(2) receptors in aversive emotionality, the D(2) receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D(1) receptors, D(2) receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.

  9. Pedunculopontine tegmental nucleus lesions impair stimulus--reward learning in autoshaping and conditioned reinforcement paradigms.

    Science.gov (United States)

    Inglis, W L; Olmstead, M C; Robbins, T W

    2000-04-01

    The role of the pedunculopontine tegmental nucleus (PPTg) in stimulus-reward learning was assessed by testing the effects of PPTg lesions on performance in visual autoshaping and conditioned reinforcement (CRf) paradigms. Rats with PPTg lesions were unable to learn an association between a conditioned stimulus (CS) and a primary reward in either paradigm. In the autoshaping experiment, PPTg-lesioned rats approached the CS+ and CS- with equal frequency, and the latencies to respond to the two stimuli did not differ. PPTg lesions also disrupted discriminated approaches to an appetitive CS in the CRf paradigm and completely abolished the acquisition of responding with CRf. These data are discussed in the context of a possible cognitive function of the PPTg, particularly in terms of lesion-induced disruptions of attentional processes that are mediated by the thalamus.

  10. The nature of verbal memory impairment in multiple sclerosis: a list-learning and meta-analytic study.

    Science.gov (United States)

    Lafosse, Jose M; Mitchell, Sandra M; Corboy, John R; Filley, Christopher M

    2013-10-01

    The primary purpose of this study was to test the hypothesis that multiple sclerosis (MS) patients have impaired acquisition rather than a retrieval deficit. Verbal memory impairment in MS was examined in 53 relapsing-remitting MS patients and 31 healthy controls (HC), and in a meta-analysis of studies that examined memory functioning in MS with list-learning tasks. The MS group demonstrated significantly lower acquisition and delayed recall performance than the HC group, and the meta-analysis revealed that the largest effect sizes were obtained for acquisition measures relative to delayed recall and recognition. Our data argue against a retrieval deficit as the sole explanation for verbal memory impairment in MS, and make a consistent case for the position that deficient acquisition contributes to the memory dysfunction of MS patients. Deficient acquisition may result from demyelination in relevant white matter tracts that reduces encoding efficiency as a result of impaired speed of information processing.

  11. Effects of Different Coumarin- 3-Carboxamide Agents on Scopolamine Induced Learning and Memory Deficit in Mice

    Directory of Open Access Journals (Sweden)

    Samaneh Ghanei Nasab

    2017-06-01

    Full Text Available Introduction: It has been shown that three new synthetic coumarins-3-carboxamides including 3-fluorobenzilchloride, 4-fluorobenzilchloride and 2-hidroxy-3 metoxybenzaldehyde, have acetylcholinesterase inhibitory activity. This study was performed to estimate ameliorating effect of these new coumarin-3-carboxamides on memory impairments induced by scopolamine (1 mg/kg, induced prolongation in mice. Methods: 30 male mice were divided into five groups, 6 mice in each group. Three experiment groups received coumarins-3- carboxamides (10 mg/kg body weight 30 min before scopalamin injection and two other groups considered as normal (saline-treated groups and finally one negative control (scopalamin only group. The experiment groups were treated with coumarins of 3-fluorobenzilchloride, 4-fluorobenzilchloride and 2-hidroxy-3 metoxybenzaldehyde. The passive avoidance test was performed in an automatic conventional shuttle box set-up. The stepped down latency and number of errors was recorded. Results: With reference to saline-treated group, scopolamine-treated mice demonstrated impairment of learning and memory as a reduction of latency and an increased numbers of errors in step-down testp < 0.01. Treated mice receiving these coumarins at the dose of 10 mg/kg showed an increase in the number of avoidances on the memory tests compared to the scopolamine group (p < 0.01. Conclusion: The study has demonstrated some therapeutic effects of coumarin-3-carboxamides on learning and memory deficit induced by scopolamine. Further investigation is needed to explore whether coumarin-3-carboxamides could be beneficial for memory impairment in Alzheimer’s disease in which cholinergic deficit is one of the hallmarks. 

  12. Neuroprotective and Antiamnesic Effects of Mitragyna inermis Willd (Rubiaceae on Scopolamine-Induced Memory Impairment in Mice

    Directory of Open Access Journals (Sweden)

    David Bougolla Pahaye

    2017-01-01

    Full Text Available Aim. To assess memory improvement and neuroprotective and antioxidant effects of Mitragyna inermis (M. inermis leaf decoction on the central nervous system. Methodology. Leaf decoction of M. inermis was tested on learning and memory in normal and scopolamine-induced cognitive impairment in mice using memory behavioral tests such as the Morris water maze, object recognition task, and elevated plus maze. Oxidative stress enzymes—catalase, superoxide dismutase, and the thiobarbituric acid reactive substance, a product of lipid peroxidation—were quantified. In each test, mice 18 to 25 g were divided into groups of 5. Results. The extract reversed the effects of scopolamine in mice. The extract significantly increased discrimination index in the object recognition task test and inflexion ratio in the elevated plus maze test. The times spent in target quadrant in MWM increased while the transfer latency decreased in mice treated by M. inermis at the dose of 196.5 mg/kg. The activity levels of superoxide dismutase and catalase were significantly increased, whereas the thiobarbituric acid reactive substance was significantly decreased after 8 consecutive days of treatment with M. inermis at the dose of 393 mg/kg. Conclusion. These results suggest that M. inermis leaf extract possess potential antiamnesic effects.

  13. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells.

    Directory of Open Access Journals (Sweden)

    Alexis Mougeolle

    Full Text Available Increased level of oxidative stress, a major actor of cellular aging, impairs the regenerative capacity of skeletal muscle and leads to the reduction in the number and size of muscle fibers causing sarcopenia. Caveolin 1 is the major component of caveolae, small membrane invaginations involved in signaling and endocytic trafficking. Their role has recently expanded to mechanosensing and to the regulation of oxidative stress-induced pathways. Here, we increased the amount of reactive oxidative species in myoblasts by addition of hydrogen peroxide (H2O2 at non-toxic concentrations. The expression level of caveolin 1 was significantly decreased as early as 10 min after 500 μM H2O2 treatment. This reduction was not observed in the presence of a proteasome inhibitor, suggesting that caveolin 1 was rapidly degraded by the proteasome. In spite of caveolin 1 decrease, caveolae were still able to assemble at the plasma membrane. Their functions however were significantly perturbed by oxidative stress. Endocytosis of a ceramide analog monitored by flow cytometry was significantly diminished after H2O2 treatment, indicating that oxidative stress impaired its selective internalization via caveolae. The contribution of caveolae to the plasma membrane reservoir has been monitored after osmotic cell swelling. H2O2 treatment increased membrane fragility revealing that treated cells were more sensitive to an acute mechanical stress. Altogether, our results indicate that H2O2 decreased caveolin 1 expression and impaired caveolae functions. These data give new insights on age-related deficiencies in skeletal muscle.

  14. Alcohol-induced defects in hepatic transcytosis may be explained by impaired dynein function.

    Science.gov (United States)

    Groebner, Jennifer L; Fernandez, David J; Tuma, Dean J; Tuma, Pamela L

    2014-12-01

    Alcoholic liver disease has been clinically well described, but the molecular mechanisms leading to hepatotoxicity have not been fully elucidated. Previously, we determined that microtubules are hyperacetylated and more stable in ethanol-treated WIF-B cells, VL-17A cells, liver slices, and in livers from ethanol-fed rats. From our recent studies, we believe that these modifications can explain alcohol-induced defects in microtubule motor-dependent protein trafficking including nuclear translocation of a subset of transcription factors. Since cytoplasmic dynein/dynactin is known to mediate both microtubule-dependent translocation and basolateral to apical/canalicular transcytosis, we predicted that transcytosis is impaired in ethanol-treated hepatic cells. We monitored transcytosis of three classes of newly synthesized canalicular proteins in polarized, hepatic WIF-B cells, an emerging model system for the study of liver disease. As predicted, canalicular delivery of all proteins tested was impaired in ethanol-treated cells. Unlike in control cells, transcytosing proteins were observed in discrete sub-canalicular puncta en route to the canalicular surface that aligned along acetylated microtubules. We further determined that the stalled transcytosing proteins colocalized with dynein/dynactin in treated cells. No changes in vesicle association were observed for either dynein or dynactin in ethanol-treated cells, but significantly enhanced dynein binding to microtubules was observed. From these results, we propose that enhanced dynein binding to microtubules in ethanol-treated cells leads to decreased motor processivity resulting in vesicle stalling and in impaired canalicular delivery. Our studies also importantly indicate that modulating cellular acetylation levels with clinically tolerated deacetylase agonists may be a novel therapeutic strategy for treating alcoholic liver disease.

  15. Ameliorating effect of transcutaneous electroacupuncture on impaired gastric accommodation induced by cold meal in healthy subjects.

    Science.gov (United States)

    Huang, Zhihui; Zhang, Nina; Xu, Feng; Yin, Jieyun; Dai, Ning; Chen, Jiande D Z

    2016-03-01

    Impaired gastric accommodation is recognized as one of major pathophysiologies in functional dyspepsia and gastroparesis. Electroacupuncture has been shown to improve gastric accommodation in laboratory settings. It is, however, unknown whether it exerts similar ameliorating effect in humans and whether needleless transcutaneous electroacupuncture (TEA) is also effective in improving gastric accommodation. The aim was to investigate the effects of TEA on gastric accommodation, gastric slow waves, and dyspeptic related symptoms. Thirteen healthy volunteers were studied in four randomized sessions: control, cold nutrient liquid, cold nutrient liquid + sham-TEA, and cold nutrient liquid + TEA. The subjects were requested to drink Ensure until reaching maximum satiety. The electrogastrogram (EGG) and electrocardiogram (ECG) were recorded to assess the gastric and autonomic functions respectively. 1) Gastric accommodation was reduced with the cold drink in comparison with the warm drink (P = 0.023). TEA improved the impaired gastric accommodation from 539.2 ± 133.8 ml to 731.0 ± 185.7 ml (P = 0.005). 2) The percentage of normal gastric slow waves in six subjects was significantly decreased in the cold session (P = 0.002) and improved in the TEA session (P = 0.009 vs sham; P  0.05). TEA improves impaired gastric accommodation and slow waves induced by cold drink and the effect does not seem to be mediated via the vagal mechanisms. © 2016 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  16. Sensorimotor gating impairments induced by MK-801 treatment may be reduced by tolerance effect and by familiarization in monkeys

    Science.gov (United States)

    Saletti, Patricia G.; Maior, Rafael S.; Hori, Etsuro; Nishijo, Hisao; Tomaz, Carlos

    2015-01-01

    Dizocilpine (MK-801) is a non-competitive NMDA antagonist that induces schizophreniclike effects. It is therefore widely used in experimental models of schizophrenia including prepulse inhibition (PPI) impairments in rodents. Nevertheless, MK-801 has never been tested in monkeys on a PPI paradigm. In order to evaluate MK-801 effects on monkeys’ PPI, we tested eight capuchin monkeys (Sapajus spp.) using three different doses of MK-801 (0.01; 0.02; 0.03 mg/kg). Results show PPI impairment in acute administration of the highest dose (0.03 mg/kg). PPI impairment induced by MK-801 was reversed by re-exposure to the PPI test throughout treatment trials, in contrast with rodent studies. These results indicate that tolerance effect and familiarization with PPI test may reduce the sensorimotor gating deficits induced by MK-801 in monkeys, suggesting a drug-training interaction. PMID:26441660

  17. Hyperoside protects against chronic mild stress-induced learning and memory deficits.

    Science.gov (United States)

    Gong, Yeli; Yang, Youhua; Chen, Xiaoqing; Yang, Min; Huang, Dan; Yang, Rong; Zhou, Lianying; Li, Changlei; Xiong, Qiuju; Xiong, Zhe

    2017-07-01

    Hyperoside (quercetin-3-O-b-d-galactosidepyranose) is a plant-derived flavonoid mainly found in fruits, fruit juices (most notably flavanols, flavanones, and anthocyanins) and Chinese traditional medicines. It has been applied to relieve pain and improve cardiovascular functions in clinic. However, the effects of hyperoside on cognitive impairment induced by chronic stress and the underlying molecular mechanisms remain unclear. In the current study, we used chronic mild stress (CMS) rats to investigate the effects of hyperoside on learning and memory and further explore the possible mechanisms. Our results demonstrated that hyperoside reduced the escape latency and the swimming distance of CMS rats in Morris water maze test and reversed depressive symptoms in forced swim test (FST) and sucrose preference test. In addition, hyperoside increased the expression of brain-derived neurotrophic factor (BDNF) in hippocampus of CMS rats without influencing the corticosterone (CORT) level in blood plasma. Furthermore, K252a, an inhibitor of the BDNF receptor TrkB, prevented the protective effects of hyperoside on learning and memory in CMS rats. Taken together, these results indicate that hyperoside reverses the cognitive impairment induced by CMS, which is associated with the regulation of BDNF signaling pathway. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Critical Role of Endoplasmic Reticulum Stress in Cognitive Impairment Induced by Microcystin-LR

    Directory of Open Access Journals (Sweden)

    Fei Cai

    2015-11-01

    Full Text Available Recent studies showed that cyanobacteria-derived microcystin-leucine-arginine (MCLR can cause hippocampal pathological damage and trigger cognitive impairment; but the underlying mechanisms have not been well understood. The objective of the present study was to investigate the mechanism of MCLR-induced cognitive deficit; with a focus on endoplasmic reticulum (ER stress. The Morris water maze test and electrophysiological study demonstrated that MCLR caused spatial memory injury in male Wistar rats; which could be inhibited by ER stress blocker; tauroursodeoxycholic acid (TUDCA. Meanwhile; real-time polymerase chain reaction (real-time PCR and immunohistochemistry demonstrated that the expression level of the 78-kDa glucose-regulated protein (GRP78; C/EBP homologous protein (CHOP and caspase 12 were significantly up-regulated. These effects were rescued by co-administration of TUDCA. In agreement with this; we also observed that treatment of rats with TUDCA blocked the alterations in ER ultrastructure and apoptotic cell death in CA1 neurons from rats exposed to MCLR. Taken together; the present results suggested that ER stress plays an important role in potential memory impairments in rats treated with MCLR; and amelioration of ER stress may serve as a novel strategy to alleviate damaged cognitive function triggered by MCLR.

  19. Low sodium intake does not impair renal compensation of hypoxia-induced respiratory alkalosis.

    Science.gov (United States)

    Höhne, Claudia; Boemke, Willehad; Schleyer, Nora; Francis, Roland C; Krebs, Martin O; Kaczmarczyk, Gabriele

    2002-05-01

    Acute hypoxia causes hyperventilation and respiratory alkalosis, often combined with increased diuresis and sodium, potassium, and bicarbonate excretion. With a low sodium intake, the excretion of the anion bicarbonate may be limited by the lower excretion rate of the cation sodium through activated sodium-retaining mechanisms. This study investigates whether the short-term renal compensation of hypoxia-induced respiratory alkalosis is impaired by a low sodium intake. Nine conscious, tracheotomized dogs were studied twice either on a low-sodium (LS = 0.5 mmol sodium x kg body wt-1 x day-1) or high-sodium (HS = 7.5 mmol sodium x kg body wt-1 x day-1) diet. The dogs breathed spontaneously via a ventilator circuit during the experiments: first hour, normoxia (inspiratory oxygen fraction = 0.21); second to fourth hour, hypoxia (inspiratory oxygen fraction = 0.1). During hypoxia (arterial PO2 34.4 +/- 2.1 Torr), plasma pH increased from 7.37 +/- 0.01 to 7.48 +/- 0.01 (P respiratory alkalosis was not impaired by a low sodium intake. The increased sodium excretion during hypoxia seems to be combined with a decrease in plasma aldosterone and angiotensin II in LS as well as in HS dogs. Other factors, e.g., increased mean arterial blood pressure, minute ventilation, and renal blood flow, may have contributed.

  20. Apelin-13 ameliorates cognitive impairments in 6-hydroxydopamine-induced substantia nigra lesion in rats.

    Science.gov (United States)

    Haghparast, Elham; Esmaeili-Mahani, Saeed; Abbasnejad, Mehdi; Sheibani, Vahid

    2018-04-01

    Although Parkinson's disease (PD) is well known with its motor deficits, the patients often suffer from cognitive dysfunction. Apelin, as the endogenous ligand of the APJ receptor, is found in several brain regions such as substantia nigra and mesolimbic pathway. However, the role of apelin in cognition and cognitive disorders has not been fully clarified. In this study the effects of apelin-13 were investigated on cognitive disorders in rat Parkinsonism experimental model. 6-hydroxydopamine (6-OHDA) was administrated into the substantia nigra. Apelin-13 (1, 2 and 3μg/rat) was administered into the substantia nigra one week after the 6-OHDA injection. Morris water maze (MWM), object location and novel object recognition tests were performed one month after the apelin injection. 6-OHDA-treated animals showed a significant impairment in cognitive functions which was revealed by the increased in the escape latency and traveled distance in MWM test and decreased in the exploration index in novel object recognition and object location tasks. Apelin-13 (3μg/rat) significantly attenuates the mentioned cognitive impairments in 6-OHDA-treated animals. In conclusion, the data support the pro-cognitive property of apelin-13 in 6-OHDA-induced cognitive deficit and provided a new pharmacological aspect of the neuropeptide apelin. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Differential Effects of Olanzapine and Haloperidol on MK-801-induced Memory Impairment in Mice

    Science.gov (United States)

    Song, Jae Chun; Seo, Mi Kyoung; Park, Sung Woo; Lee, Jung Goo; Kim, Young Hoon

    2016-01-01

    Objective We investigated the differential effects of the antipsychotic drugs olanzapine and haloperidol on MK-801-induced memory impairment and neurogenesis in mice. Methods MK-801 (0.1 mg/kg) was administered 20 minutes prior to behavioral testing over 9 days. Beginning on the sixth day of MK-801 treatment, either olanzapine (0.05 mg/kg) or haloperidol (0.05 mg/kg) was administered 40 minutes prior to MK-801 for the final 4 days. Spatial memory performance was measured using a Morris water maze (MWM) test for 9 days (four trials/day). Immunohistochemistry with bromodeoxyuridine (BrdU) was used to identify newborn cells labeled in tissue sections from the dentate gyrus of the hippocampus. Results MK-801 administration over 9 days significantly impaired memory performance in the MWM test compared to untreated controls (p801 also resulted in a decrease in the number of BrdU-labeled cells in the dentate gyrus (28.6%; p801 in mice via the stimulating effects of neurogenesis. PMID:27489382

  2. Stress Induces a Shift Towards Striatum-Dependent Stimulus-Response Learning via the Mineralocorticoid Receptor.

    Science.gov (United States)

    Vogel, Susanne; Klumpers, Floris; Schröder, Tobias Navarro; Oplaat, Krista T; Krugers, Harm J; Oitzl, Melly S; Joëls, Marian; Doeller, Christian F; Fernández, Guillén

    2017-05-01

    Stress is assumed to cause a shift from flexible 'cognitive' memory to more rigid 'habit' memory. In the spatial memory domain, stress impairs place learning depending on the hippocampus whereas stimulus-response learning based on the striatum appears to be improved. While the neural basis of this shift is still unclear, previous evidence in rodents points towards cortisol interacting with the mineralocorticoid receptor (MR) to affect amygdala functioning. The amygdala is in turn assumed to orchestrate the stress-induced shift in memory processing. However, an integrative study testing these mechanisms in humans is lacking. Therefore, we combined functional neuroimaging of a spatial memory task, stress-induction, and administration of an MR-antagonist in a full-factorial, randomized, placebo-controlled between-subjects design in 101 healthy males. We demonstrate that stress-induced increases in cortisol lead to enhanced stimulus-response learning, accompanied by increased amygdala activity and connectivity to the striatum. Importantly, this shift was prevented by an acute administration of the MR-antagonist spironolactone. Our findings support a model in which the MR and the amygdala play an important role in the stress-induced shift towards habit memory systems, revealing a fundamental mechanism of adaptively allocating neural resources that may have implications for stress-related mental disorders.

  3. Conceptualizing science learning as a collective social practice: changing the social pedagogical compass for a child with visual impairment

    Science.gov (United States)

    Fleer, Marilyn; March, Sue

    2015-09-01

    The international literature on science learning in inclusive settings has a long history, but it is generally very limited in scope. Few studies have been undertaken that draw upon a cultural-historical reading of inclusive pedagogy, and even less in the area of science education. In addition, we know next to nothing about the science learning of preschool children with visual impairment using cultural-historical theory. This paper seeks to fill this gap by presenting a study of one child with Albinism who participated in a unit of early childhood science where fairy tales were used for learning about the concepts of sound and growth. This paper reports upon the social and material conditions that were created to support learning in the preschool, whilst also examining how the learning of growth and sound were supported at home. The study found three new pedagogical features for inclusion: Imagination in science; Ongoing scientific narrative; and Scientific mirroring. It was found that when a dialectical reading of home and centre practices feature, greater insights into inclusive pedagogy for science learning are afforded, and a view of science as a collective enterprise emerges. It is argued that a cultural-historical conception of inclusion demands that the social conditions, rather than the biology of the child, is foregrounded, and through this greater insights into how science learning for children with visual impairment is gained.

  4. Dizocilpine (MK-801) impairs learning in the active place avoidance task but has no effect on the performance during task/context alternation.

    Science.gov (United States)

    Vojtechova, Iveta; Petrasek, Tomas; Hatalova, Hana; Pistikova, Adela; Vales, Karel; Stuchlik, Ales

    2016-05-15

    The prevention of engram interference, pattern separation, flexibility, cognitive coordination and spatial navigation are usually studied separately at the behavioral level. Impairment in executive functions is often observed in patients suffering from schizophrenia. We have designed a protocol for assessing these functions all together as behavioral separation. This protocol is based on alternated or sequential training in two tasks testing different hippocampal functions (the Morris water maze and active place avoidance), and alternated or sequential training in two similar environments of the active place avoidance task. In Experiment 1, we tested, in adult rats, whether the performance in two different spatial tasks was affected by their order in sequential learning, or by their day-to-day alternation. In Experiment 2, rats learned to solve the active place avoidance task in two environments either alternately or sequentially. We found that rats are able to acquire both tasks and to discriminate both similar contexts without obvious problems regardless of the order or the alternation. We used two groups of rats, controls and a rat model of psychosis induced by a subchronic intraperitoneal application of 0.08mg/kg of dizocilpine (MK-801), a non-competitive antagonist of NMDA receptors. Dizocilpine had no selective effect on parallel/sequential learning of tasks/contexts. However, it caused hyperlocomotion and a significant deficit in learning in the active place avoidance task regardless of the task alternation. Cognitive coordination tested by this task is probably more sensitive to dizocilpine than spatial orientation because no hyperactivity or learning impairment was observed in the Morris water maze. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Factors influencing radiation-induced impairment of rat liver mitochondrial oxidative phosphorylation

    International Nuclear Information System (INIS)

    Alexander, K.C.; Aiyar, A.S.; Sreenivasan, A.

    1975-01-01

    The influence of some experimental conditions on the radiation-induced impairment of oxidative phosphorylation in rat liver mitochondria has been studied. Shielding of the liver during whole body irradiation of the animal does not significantly alter the decreased efficiency of phosphorylation. There exists a great disparity in the in vivo and in vitro radiation doses required for the manifestation of damage to liver mitochondria. While these observations point to the abscopal nature of the radiation effects, direct involvement of the adrenals has been ruled out by studies with adrenalectomised rats. Prior administration of the well known radio-protective agents, serotonin or 2-aminoethyl isothiouronium bromide hydrobromide, is effective in preventing the derangement of mitochondrial function following radioexposure. The hypocholesterolemic drug ethyl-α-p-chlorophenoxy isobutyrate, which is known to influence hepatic mitochondrial turnover, does not afford any significant protection against either mitochondrial damage or the mortality of the animals due to whole body irradiation. (author)

  6. Impaired glucose-induced thermogenesis and arterial norepinephrine response persist after weight reduction in obese humans

    DEFF Research Database (Denmark)

    Astrup, A; Andersen, T; Christensen, N J

    1990-01-01

    A reduced thermic response and an impaired activation of the sympathetic nervous system (SNS) has been reported after oral glucose in human obesity. It is, however, not known whether the reduced SNS activity returns to normal along with weight reduction. The thermic effect of glucose was lower...... in eight obese patients than in matched control subjects (1.7% vs 9.2%, p less than 0.002). The increase in arterial norepinephrine after glucose was also blunted in the obese patients. After a 30-kg weight loss their glucose and lipid profiles were markedly improved but the thermic effect of glucose...... was still lower than that of the control subjects (4.2%, p less than 0.001). The glucose-induced arterial norepinephrine response remained diminished in the reduced obese patients whereas the changes in plasma epinephrine were similar in all three groups. The results suggest that a defective SNS may...

  7. Curcumin improves synaptic plasticity impairment induced by HIV-1gp120 V3 loop

    Directory of Open Access Journals (Sweden)

    Ling-ling Shen

    2015-01-01

    Full Text Available Curcumin has been shown to significantly improve spatial memory impairment induced by HIV-1 gp120 V3 in rats, but the electrophysiological mechanism remains unknown. Using extracellular microelectrode recording techniques, this study confirmed that the gp120 V3 loop could suppress long-term potentiation in the rat hippocampal CA1 region and synaptic plasticity, and that curcumin could antagonize these inhibitory effects. Using a Fura-2/AM calcium ion probe, we found that curcumin resisted the effects of the gp120 V3 loop on hippocampal synaptosomes and decreased Ca 2+ concentration in synaptosomes. This effect of curcumin was identical to nimodipine, suggesting that curcumin improved the inhibitory effects of gp120 on synaptic plasticity, ameliorated damage caused to the central nervous system, and might be a potential neuroprotective drug.

  8. Diabetes-induced hyperglycemia impairs male reproductive function: a systematic review.

    Science.gov (United States)

    Maresch, Constanze C; Stute, Dina C; Alves, Marco G; Oliveira, Pedro F; de Kretser, David M; Linn, Thomas

    2018-01-01

    Hyperglycemia can result from a loss of pancreatic beta-cells or a decline in their function leading to decreased insulin secretion or may arise from insulin resistance and variable degrees of inadequate insulin secretion resulting in diabetes and related comorbidities. To date several reviews have addressed the issue of diabetes-related male infertility but most have focused on how metabolic syndrome causes the decline in male fertility. However, a comprehensive overview as to how diabetes-induced hyperglycemia impairs male fertility is missing. Impaired regulation of glucose and the resultant hyperglycemia are major threats to the health of individuals in modern societies especially given the rapidly rising prevalence affecting an increasing number of men in their reproductive years. Consequently, diabetes-induced hyperglycemia is likely to contribute to a decline in global birth rates especially in those societies with a high diabetic prevalence. This systematic review addresses and summarizes the impact of hyperglycemia on male reproductive health with a particular emphasis on the molecular mechanisms that influence the testis and other parts of the male reproductive tract. A systematic search of the literature published in the MEDLINE-Pubmed database (http://www.ncbi.nlm.nih.gov/pubmed) and Cochrane Library (http://www.cochranelibrary.com) was performed, as well as hand searching reference lists, from the earliest available online indexing year until May 2017, using diabetes- and male fertility-related keywords in combination with other search phrases relevant to the topic of hyperglycemia. Inclusion criteria were: clinical studies on type 1 diabetic (T1D) men and studies on T1D animal models with a focus on reproductive parameters. Case reports/series, observational studies and clinical trials were included. Studies on patients with type 2 diabetes (T2D) or animal models of T2D were excluded to distinguish hyperglycemia from other metabolic effects. A total

  9. Rule induction performance in amnestic mild cognitive impairment and Alzheimer's dementia: examining the role of simple and biconditional rule learning processes.

    Science.gov (United States)

    Oosterman, Joukje M; Heringa, Sophie M; Kessels, Roy P C; Biessels, Geert Jan; Koek, Huiberdina L; Maes, Joseph H R; van den Berg, Esther

    2017-04-01

    Rule induction tests such as the Wisconsin Card Sorting Test require executive control processes, but also the learning and memorization of simple stimulus-response rules. In this study, we examined the contribution of diminished learning and memorization of simple rules to complex rule induction test performance in patients with amnestic mild cognitive impairment (aMCI) or Alzheimer's dementia (AD). Twenty-six aMCI patients, 39 AD patients, and 32 control participants were included. A task was used in which the memory load and the complexity of the rules were independently manipulated. This task consisted of three conditions: a simple two-rule learning condition (Condition 1), a simple four-rule learning condition (inducing an increase in memory load, Condition 2), and a complex biconditional four-rule learning condition-inducing an increase in complexity and, hence, executive control load (Condition 3). Performance of AD patients declined disproportionately when the number of simple rules that had to be memorized increased (from Condition 1 to 2). An additional increment in complexity (from Condition 2 to 3) did not, however, disproportionately affect performance of the patients. Performance of the aMCI patients did not differ from that of the control participants. In the patient group, correlation analysis showed that memory performance correlated with Condition 1 performance, whereas executive task performance correlated with Condition 2 performance. These results indicate that the reduced learning and memorization of underlying task rules explains a significant part of the diminished complex rule induction performance commonly reported in AD, although results from the correlation analysis suggest involvement of executive control functions as well. Taken together, these findings suggest that care is needed when interpreting rule induction task performance in terms of executive function deficits in these patients.

  10. The Impaired Function of Macrophages Induced by Strenuous Exercise Could Not Be Ameliorated by BCAA Supplementation.

    Science.gov (United States)

    Xiao, Weihua; Chen, Peijie; Liu, Xiaoguang; Zhao, Linlin

    2015-10-21

    The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA) supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C) Control, E) Exercise, (E1) Exercise with one week to recover, (ES) Exercise + Supplementation and (ES1) Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031), reactive oxygen species (ROS) production (decreased by 26%, p = 0.003) and MHC II mRNA (decreased by 22%, p = 0.041) of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05). Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study.

  11. The Impaired Function of Macrophages Induced by Strenuous Exercise Could Not Be Ameliorated by BCAA Supplementation

    Directory of Open Access Journals (Sweden)

    Weihua Xiao

    2015-10-01

    Full Text Available The aim of this study was to evaluate the effect of strenuous exercise on the functions of peritoneal macrophages in rats and to test the hypothesis that branched-chain amino acid (BCAA supplementation will be beneficial to the macrophages of rats from strenuous exercise. Forty male Wistar rats were randomly divided into five groups: (C Control, E Exercise, (E1 Exercise with one week to recover, (ES Exercise + Supplementation and (ES1 Exercise + Supplementation with 1 week to recover. All rats except those of the sedentary control were subjected to four weeks of strenuous exercise. Blood hemoglobin, serum testosterone and BCAA levels were tested. Peritoneal macrophages functions were also determined at the same time. The data showed that hemoglobin, testosterone, BCAA levels, and body weight in group E decreased significantly as compared with that of group C. Meanwhile, phagocytosis capacity (decreased by 17.07%, p = 0.031, reactive oxygen species (ROS production (decreased by 26%, p = 0.003 and MHC II mRNA (decreased by 22%, p = 0.041 of macrophages decreased in the strenuous exercise group as compared with group C. However, the chemotaxis of macrophages did not change significantly. In addition, BCAA supplementation could slightly increase the serum BCAA levels of rats from strenuous exercise (increased by 6.70%, p > 0.05. Moreover, the body weight, the blood hemoglobin, the serum testosterone and the function of peritoneal macrophages in group ES did not change significantly as compared with group E. These results suggest that long-term intensive exercise impairs the function of macrophages, which is essential for microbicidal capability. This may represent a novel mechanism of immunosuppression induced by strenuous exercise. Moreover, the impaired function of macrophage induced by strenuous exercise could not be ameliorated by BCAA supplementation in the dosing and timing used for this study.

  12. Hyperglycemia induces memory impairment linked to increased acetylcholinesterase activity in zebrafish (Danio rerio).

    Science.gov (United States)

    Capiotti, Katiucia Marques; De Moraes, Daiani Almeida; Menezes, Fabiano Peres; Kist, Luiza Wilges; Bogo, Maurício Reis; Da Silva, Rosane Souza

    2014-11-01

    Diabetes mellitus, which causes hyperglycemia, affects the central nervous system and can impairs cognitive functions, such as memory. The aim of this study was to investigate the effects of hyperglycemia on memory as well as on the activity of acethylcholinesterase. Hyperglycemia was induced in adult zebrafish by immersion in glucose 111mM by 14 days. The animals were divided in 4 groups: control, glucose-treated, glucose-washout 7-days and glucose-washout 14-days. We evaluated the performance in inhibitory avoidance task and locomotor activity. We also determined acethylcholinesterase activity and gene expression from whole brain. In order to counteract the effect of hyperglycemia underlined by effects on acethylcholinesterase activity, we treated the animals with galantamine (0.05ng/g), an inhibitor of this enzyme. Also we evaluated the gene expression of insulin receptor and glucose transporter from zebrafish brain. The hyperglycemia promoted memory deficit in adult zebrafish, which can be explained by increased AChE activity. The ache mRNA levels from zebrafish brain were decrease in 111mM glucose group and returned to normal levels after 7 days of glucose withdrawal. Insulin receptors (insra-1, insra-2, insrb-1 and insrb-2) and glut-3 mRNA levels were not significantly changed. Our results also demonstrated that galantamine was able to reverse the memory deficit caused by hyperglycemia, demonstrating that these effects involve modulation of AChE activity. These data suggest that the memory impairment induced by hyperglycemia is underlined by the cholinergic dysfunction caused by the mechanisms involving the control of acetylcholinesterase function and gene expression. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. In Utero and Postnatal Propylthiouracil-Induced Mild Hypothyroidism Impairs Maternal Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Miski Aghnia Khairinisa

    2018-05-01

    Full Text Available Thyroid hormones (THs play crucial roles in general and brain development. Even if the hypothyroidism is mild, it may alter brain function, resulting in irreversible behavioral alterations. Although various behavioral analyses have been conducted, the effects of propylthiouracil (PTU treatment during in utero and postnatal periods on maternal behavior have not yet been studied. The present study examined in mice whether THs insufficiency during development induce behavioral changes. Pregnant C57BL/6j mice were divided into three groups, and each group was administered different dosages of PTU (0, 5, or 50 ppm in drinking water during in utero and postnatal periods (from gestational day 14 to postnatal day 21. First, locomotor activity and cognitive function were assessed in the offspring at 10 weeks. Next, female offspring were mated with normal mice and they and their offspring were used to assess several aspects of maternal behavior (identifying first pup, returning all pups to nest, time spent nursing, and licking pups. As expected, locomotor and cognitive functions in these mice were disrupted in a PTU dose-dependent manner. On postpartum day 2, dams who had been exposed 50 ppm PTU during in utero and postnatal periods displayed a significantly longer time identifying the first pup and returning all three pups back to the nest, less time nursing, and decreased licking behavior. The decrease in maternal behavior was significantly correlated with a decrease in cognition. These results indicate that insufficiency of THs during in utero and postnatal periods impairs maternal behavior, which may be partly induced by impaired cognitive function.

  14. Methamphetamine-induced changes in the mice hippocampal neuropeptide Y system: implications for memory impairment

    DEFF Research Database (Denmark)

    Gonçalves, J; Baptista, S; Olesen, MV

    2012-01-01

    Methamphetamine (METH) is a psychostimulant drug that causes irreversible brain damage leading to several neurological and psychiatric abnormalities, including cognitive deficits. Neuropeptide Y (NPY) is abundant in the mammalian central nervous system (CNS) and has several important functions......, being involved in learning and memory processing. It has been demonstrated that METH induces significant alteration in mice striatal NPY, Y(1) and Y(2) receptor mRNA levels. However, the impact of this drug on the hippocampal NPY system and its consequences remain unknown. Thus, in this study, we...

  15. Procedural learning is impaired in dyslexia: Evidence from a meta-analysis of serial reaction time studies☆

    Science.gov (United States)

    Lum, Jarrad A.G.; Ullman, Michael T.; Conti-Ramsden, Gina

    2013-01-01

    A number of studies have investigated procedural learning in dyslexia using serial reaction time (SRT) tasks. Overall, the results have been mixed, with evidence of both impaired and intact learning reported. We undertook a systematic search of studies that examined procedural learning using SRT tasks, and synthesized the data using meta-analysis. A total of 14 studies were identified, representing data from 314 individuals with dyslexia and 317 typically developing control participants. The results indicate that, on average, individuals with dyslexia have worse procedural learning abilities than controls, as indexed by sequence learning on the SRT task. The average weighted standardized mean difference (the effect size) was found to be 0.449 (CI95: .204, .693), and was significant (p dyslexia. PMID:23920029

  16. NCAM deficiency in the mouse forebrain impairs innate and learned avoidance behaviours.

    Science.gov (United States)

    Brandewiede, J; Stork, O; Schachner, M

    2014-06-01

    The neural cell adhesion molecule (NCAM) has been implicated in the development and plasticity of neural circuits and the control of hippocampus- and amygdala-dependent learning and behaviour. Previous studies in constitutive NCAM null mutants identified emotional behaviour deficits related to disturbances of hippocampal and amygdala functions. Here, we studied these behaviours in mice conditionally deficient in NCAM in the postmigratory forebrain neurons. We report deficits in both innate and learned avoidance behaviours, as observed in elevated plus maze and passive avoidance tasks. In contrast, general locomotor activity, trait anxiety or neophobia were unaffected by the mutation. Altered avoidance behaviour of the conditional NCAM mutants was associated with a deficit in serotonergic signalling, as indicated by their reduced responsiveness to (±)-8-hydroxy-2-(dipropylamino)-tetralin-induced hypothermia. Another serotonin-dependent behaviour, namely intermale aggression that is massively increased in constitutively NCAM-deficient mice, was not affected in the forebrain-specific mutants. Our data suggest that genetically or environmentally induced changes of NCAM expression in the late postnatal and mature forebrain determine avoidance behaviour and serotonin (5-HT)1A receptor signalling. © 2014 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  17. The combination of ethanol with mephedrone increases the signs of neurotoxicity and impairs neurogenesis and learning in adolescent CD-1 mice

    International Nuclear Information System (INIS)

    Ciudad-Roberts, Andrés; Duart-Castells, Leticia; Camarasa, Jorge; Pubill, David; Escubedo, Elena

    2016-01-01

    A new family of psychostimulants, under the name of cathinones, has broken into the market in the last decade. In light of the fact that around 95% of cathinone consumers have been reported to combine them with alcoholic drinks, we sought to study the consequences of the concomitant administration of ethanol on mephedrone -induced neurotoxicity. Adolescent male Swiss-CD1 mice were administered four times in one day, every 2 h, with saline, mephedrone (25 mg/kg), ethanol (2; 1.5; 1.5; 1 g/kg) and their combination at a room temperature of 26 ± 2 °C. The combination with ethanol impaired mephedrone-induced decreases in dopamine transporter and tyrosine hydroxylase in the frontal cortex; and in serotonin transporter and tryptophan hydroxylase in the hippocampus by approximately 2-fold, 7 days post-treatment. Furthermore, these decreases correlated with a 2-fold increase in lipid peroxidation, measured as concentration of malondialdehyde (MDA), 24 h post-treatment, and were accompanied by changes in oxidative stress-related enzymes. Ethanol also notably potentiated mephedrone-induced negative effects on learning and memory, as well as hippocampal neurogenesis, measured through the Morris water maze (MWM) and 5-bromo-2′-deoxyuridine staining, respectively. These results are of special significance, since alcohol is widely co-abused with amphetamine derivatives such as mephedrone, especially during adolescence, a crucial stage in brain maturation. Given that the hippocampus is greatly involved in learning and memory processes, normal brain development in young adults could be affected with permanent behavioral consequences after this type of drug co-abuse. - Highlights: • Mice were administered a binge regimen of mephedrone plus/minus ethanol. • Ethanol exacerbated mephedrone-induced changes in 5-HT and DA function markers. • Neurochemical alterations were accompanied by an increase in oxidative stress. • Ethanol potentiated mephedrone-induced learning

  18. The combination of ethanol with mephedrone increases the signs of neurotoxicity and impairs neurogenesis and learning in adolescent CD-1 mice

    Energy Technology Data Exchange (ETDEWEB)

    Ciudad-Roberts, Andrés; Duart-Castells, Leticia; Camarasa, Jorge; Pubill, David, E-mail: d.pubill@ub.edu; Escubedo, Elena

    2016-02-15

    A new family of psychostimulants, under the name of cathinones, has broken into the market in the last decade. In light of the fact that around 95% of cathinone consumers have been reported to combine them with alcoholic drinks, we sought to study the consequences of the concomitant administration of ethanol on mephedrone -induced neurotoxicity. Adolescent male Swiss-CD1 mice were administered four times in one day, every 2 h, with saline, mephedrone (25 mg/kg), ethanol (2; 1.5; 1.5; 1 g/kg) and their combination at a room temperature of 26 ± 2 °C. The combination with ethanol impaired mephedrone-induced decreases in dopamine transporter and tyrosine hydroxylase in the frontal cortex; and in serotonin transporter and tryptophan hydroxylase in the hippocampus by approximately 2-fold, 7 days post-treatment. Furthermore, these decreases correlated with a 2-fold increase in lipid peroxidation, measured as concentration of malondialdehyde (MDA), 24 h post-treatment, and were accompanied by changes in oxidative stress-related enzymes. Ethanol also notably potentiated mephedrone-induced negative effects on learning and memory, as well as hippocampal neurogenesis, measured through the Morris water maze (MWM) and 5-bromo-2′-deoxyuridine staining, respectively. These results are of special significance, since alcohol is widely co-abused with amphetamine derivatives such as mephedrone, especially during adolescence, a crucial stage in brain maturation. Given that the hippocampus is greatly involved in learning and memory processes, normal brain development in young adults could be affected with permanent behavioral consequences after this type of drug co-abuse. - Highlights: • Mice were administered a binge regimen of mephedrone plus/minus ethanol. • Ethanol exacerbated mephedrone-induced changes in 5-HT and DA function markers. • Neurochemical alterations were accompanied by an increase in oxidative stress. • Ethanol potentiated mephedrone-induced learning

  19. Sucrose and naltrexone prevent increased pain sensitivity and impaired long-term memory induced by repetitive neonatal noxious stimulation: Role of BDNF and β-endorphin.

    Science.gov (United States)

    Nuseir, Khawla Q; Alzoubi, Karem H; Alhusban, Ahmed; Bawaane, Areej; Al-Azzani, Mohammed; Khabour, Omar F

    2017-10-01

    Pain in neonates is associated with short and long-term adverse outcomes. Data demonstrated that long-term consequences of untreated pain are linked to the plasticity of the neonate's brain. Sucrose is effective and safe for reducing painful procedures from single events. However, the mechanism of sucrose-induced analgesia is not fully understood. The role of the opioid system in this analgesia using the opioid receptor antagonist Naltrexone was investigated, plus the long-term effects on learning and memory formation during adulthood. Pain was induced in rat pups via needle pricks of the paws. Sucrose solution and/or naltrexone were administered before the pricks. All treatments started on day one of birth and continued for two weeks. At the end of 8weeks, behavioral studies were conducted to test spatial learning and memory using radial arm water maze (RAWM), and pain threshold via foot-withdrawal response to a hot plate. The hippocampus was dissected; levels of brain derived neurotrophic factor (BDNF) and endorphins were assessed using ELISA. Acute repetitive neonatal pain increased pain sensitivity later in life, while naltrexone with sucrose decreased pain sensitivity. Naltrexone and/or sucrose prevented neonatal pain induced impairment of long-term memory, while neonatal pain decreased levels of BDNF in the hippocampus; this decrease was averted by sucrose and naltrexone. Sucrose with naltrexone significantly increased β-endorphin levels in noxiously stimulated rats. In conclusion, naltrexone and sucrose can reverse increased pain sensitivity and impaired long-term memory induced by acute repetitive neonatal pain probably by normalizing BDNF expression and increasing β-endorphin levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Impairment of retrograde neuronal transport in oxaliplatin-induced neuropathy demonstrated by molecular imaging.

    Directory of Open Access Journals (Sweden)

    Dawid Schellingerhout

    Full Text Available BACKGROUND AND PURPOSE: The purpose of our study was to utilize a molecular imaging technology based on the retrograde axonal transport mechanism (neurography, to determine if oxaliplatin-induced neurotoxicity affects retrograde axonal transport in an animal model. MATERIALS AND METHODS: Mice (n = 8/group were injected with a cumulative dose of 30 mg/kg oxaliplatin (sufficient to induce neurotoxicity or dextrose control injections. Intramuscular injections of Tetanus Toxin C-fragment (TTc labeled with Alexa 790 fluorescent dye were done (15 ug/20 uL in the left calf muscles, and in vivo fluorescent imaging performed (0-60 min at baseline, and then weekly for 5 weeks, followed by 2-weekly imaging out to 9 weeks. Tissues were harvested for immunohistochemical analysis. RESULTS: With sham treatment, TTc transport causes fluorescent signal intensity over the thoracic spine to increase from 0 to 60 minutes after injection. On average, fluorescence signal increased 722%+/-117% (Mean+/-SD from 0 to 60 minutes. Oxaliplatin treated animals had comparable transport at baseline (787%+/-140%, but transport rapidly decreased through the course of the study, falling to 363%+/-88%, 269%+/-96%, 191%+/-58%, 121%+/-39%, 75%+/-21% with each successive week and stabilizing around 57% (+/-15% at 7 weeks. Statistically significant divergence occurred at approximately 3 weeks (p≤0.05, linear mixed-effects regression model. Quantitative immuno-fluorescence histology with a constant cutoff threshold showed reduced TTc in the spinal cord at 7 weeks for treated animals versus controls (5.2 Arbitrary Units +/-0.52 vs 7.1 AU +/-1.38, p0.56, T-test. CONCLUSION: We show-for the first time to our knowledge-that neurographic in vivo molecular imaging can demonstrate imaging changes in a model of oxaliplatin-induced neuropathy. Impaired retrograde neural transport is suggested to be an important part of the pathophysiology of oxaliplatin-induced neuropathy.

  1. Overload-induced skeletal muscle hypertrophy is not impaired in STZ-diabetic rats

    Science.gov (United States)

    Fortes, Marco Aurélio S; Pinheiro, Carlos Hermano J; Guimarães-Ferreira, Lucas; Vitzel, Kaio F; Vasconcelos, Diogo A A; Curi, Rui

    2015-01-01

    The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals. PMID:26197932

  2. Diet-induced obesity and low testosterone increase neuroinflammation and impair neural function.

    Science.gov (United States)

    Jayaraman, Anusha; Lent-Schochet, Daniella; Pike, Christian J

    2014-09-16

    Low testosterone and obesity are independent risk factors for dysfunction of the nervous system including neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we investigate the independent and cooperative interactions of testosterone and diet-induced obesity on metabolic, inflammatory, and neural health indices in the central and peripheral nervous systems. Male C57B6/J mice were maintained on normal or high-fat diet under varying testosterone conditions for a four-month treatment period, after which metabolic indices were measured and RNA isolated from cerebral cortex and sciatic nerve. Cortices were used to generate mixed glial cultures, upon which embryonic cerebrocortical neurons were co-cultured for assessment of neuron survival and neurite outgrowth. Peripheral nerve damage was determined using paw-withdrawal assay, myelin sheath protein expression levels, and Na+,K+-ATPase activity levels. Our results demonstrate that detrimental effects on both metabolic (blood glucose, insulin sensitivity) and proinflammatory (cytokine expression) responses caused by diet-induced obesity are exacerbated by testosterone depletion. Mixed glial cultures generated from obese mice retain elevated cytokine expression, although low testosterone effects do not persist ex vivo. Primary neurons co-cultured with glial cultures generated from high-fat fed animals exhibit reduced survival and poorer neurite outgrowth. In addition, low testosterone and diet-induced obesity combine to increase inflammation and evidence of nerve damage in the peripheral nervous system. Testosterone and diet-induced obesity independently and cooperatively regulate neuroinflammation in central and peripheral nervous systems, which may contribute to observed impairments in neural health. Together, our findings suggest that low testosterone and obesity are interactive regulators of neuroinflammation that, in combination with adipose-derived inflammatory pathways and other factors

  3. Prevention of vision loss protects against age-related impairment in learning and memory performance in DBA/2J mice.

    Science.gov (United States)

    Wong, Aimée A; Brown, Richard E

    2013-01-01

    The DBA/2J mouse is a model of pigmentary glaucoma in humans as it shows age-related increases in intraocular pressure (IOP), retinal ganglion cell death and visual impairment. Previously, we showed that visual ability declines from 9 to 12 months of age and visual impairment is correlated with poor learning and memory performance in visuo-spatial tasks but not in tasks that do not depend on visual cues. To test the "sensory impairment" hypothesis of aging, which postulates that sensory impaired individuals are disadvantaged in their performance on psychometric tests as a direct result of difficulties in sensory perception, we treated DBA/2J mice with a conventional glaucoma medication used in humans (Timoptic-XE, 0.00, 0.25, or 0.50%) daily from 9 weeks to 12 months of age to determine whether prevention of vision loss prevented the decline in visuo-spatial learning and memory performance. At all ages tested (3, 6, 9, and 12 months of age), mice treated with Timoptic-XE (0.25 and 0.50%) maintained a high level of performance, while 12 month old control mice (0.00%) exhibited impaired performance in visually-dependent, but not non-visual tasks. These results demonstrate that when sensory function is preserved, cognitive performance is normalized. Thus, as in many aging humans, DBA/2J mice show age-related decrements in performance on visually presented cognitive tests, not because of cognitive impairment but as a direct consequence of poor visual ability. Our results demonstrate that age-related impairment in performance in visuo-spatial tasks in DBA/2J mice can be prevented by the preservation of visual ability.

  4. Prevention of vision loss protects against age-related impairment in learning and memory performance in DBA/2J mice

    Directory of Open Access Journals (Sweden)

    Aimee eWong

    2013-09-01

    Full Text Available The DBA/2J mouse is a model of pigmentary glaucoma in humans as it shows age‐related increases in intraocular pressure, retinal ganglion cell death and visual impairment. Previously, we showed that visual ability declines from 9 ‐12 months of age and visual impairment is correlated with poor learning and memory performance in visuo‐spatial tasks but not in tasks that do not depend on visual cues. To test the sensory impairment hypothesis of aging, which postulates that sensory impaired individuals are disadvantaged in their performance on psychometric tests as a direct result of difficulties in sensory perception, we treated DBA/2J mice with a conventional glaucoma medication used in humans (Timoptic‐XE, 0.00, 0.25 or 0.50% daily from 9 weeks to 12 months of age to determine whether prevention of vision loss prevented the decline in visuo-spatial learning and memory performance. At all ages tested (3, 6, 9 and 12 months of age, mice treated with Timoptic-XE (0.25 and 0.50% maintained a high level of performance, while 12 month old control mice (0.00% exhibited impaired performance in visually‐dependent, but not non‐visual tasks. These results demonstrate that when sensory function is preserved, cognitive performance is normalized. Thus, as in many aging humans, DBA/2J mice show age-related decrements in performance on visually presented cognitive tests, not because of cognitive impairment but as a direct consequence of poor visual ability. Our results demonstrate that age-related impairment in performance in visuo-spatial tasks in DBA/2J mice can be prevented by the preservation of visual ability.

  5. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Ming-Huan [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Institute of Neuroscience, National Changchi University, Taipei, Taiwan (China); Chung, Shiang-Sheng [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Department of Pharmacy, Yuli Veterans Hospital, Hualien, Taiwan (China); Stoker, Astrid K.; Markou, Athina [Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA (United States); Chen, Hwei-Hsien, E-mail: hwei@nhri.org.tw [Department of Pharmacology and Toxicology, Tzu Chi University, Hualien, Taiwan (China); Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli County, Taiwan (China)

    2012-12-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene-induced

  6. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    International Nuclear Information System (INIS)

    Chan, Ming-Huan; Chung, Shiang-Sheng; Stoker, Astrid K.; Markou, Athina; Chen, Hwei-Hsien

    2012-01-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene-induced

  7. Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region.

    Science.gov (United States)

    Luo, Pan; Lu, Yun; Li, Changjun; Zhou, Mei; Chen, Cheng; Lu, Qing; Xu, Xulin; He, Zhi; Guo, Lianjun

    2015-09-01

    Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12weeks group, 2VO 4, 8 and 12weeks group. Learning and memory performance were evaluated with Morris water maze (MWM) and long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Expression of NeuN, HCN1 and HCN2 in hippocampal CA1, DG and CA3 areas was quantified by immunohistochemistry and western blotting. Our data showed that CCH induced a remarkable spatial learning and memory deficits in rats of 2VO 4, 8, and 12weeks group although neuronal loss only occurred after 4weeks of 2VO surgery in CA1. In addition, a significant reduction of HCN1 surface expression in CA1 was observed in the group that suffered 4weeks ischemia but neither 8 nor 12weeks. However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Impaired associative fear learning in mice with complete loss or haploinsufficiency of AMPA GluR1 receptors

    Directory of Open Access Journals (Sweden)

    Michael Feyder

    2007-12-01

    Full Text Available There is compelling evidence that L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA glutamate receptors containing the GluR1 subunit contribute to the molecular mechanisms associated with learning. AMPA GluR1 glutamate receptor knockout mice (KO exhibit abnormal hippocampal and amygdala plasticity, and deficits on various assays for cognition including Pavlovian fear conditioning. Here we examined associative fear learning in mice with complete absence (KO or partial loss (heterozygous mutant, HET of GluR1 on multiple fear conditioning paradigms. After multi-trial delay or trace conditioning, KO displayed impaired tone and context fear recall relative to WT, whereas HET were normal. After one-trial delay conditioning, both KO and HET showed impaired tone and context recall. HET and KO showed normal nociceptive sensitivity in the hot plate and tail flick tests. These data demonstrate that the complete absence of GluR1 subunit-containing receptors prevents the formation of associative fear memories, while GluR1 haploinsufficiency is sufficient to impair one-trial fear learning. These findings support growing evidence of a major role for GluR1-containing AMPA receptors in amygdalamediated forms of learning and memory.

  9. A high-fat high-sugar diet-induced impairment in place-recognition memory is reversible and training-dependent.

    Science.gov (United States)

    Tran, Dominic M D; Westbrook, R Frederick

    2017-03-01

    A high-fat high-sugar (HFHS) diet is associated with cognitive deficits in people and produces spatial learning and memory deficits in rodents. Notable, such diets rapidly impair place-, but not object-recognition memory in rats within one week of exposure. Three experiments examined whether this impairment was reversed by removal of the diet, or prevented by pre-diet training. Experiment 1 showed that rats switched from HFHS to chow recovered from the place-recognition impairment that they displayed while on HFHS. Experiment 2 showed that control rats ("Untrained") who were exposed to an empty testing arena while on chow, were impaired in place-recognition when switched to HFHS and tested for the first time. However, rats tested ("Trained") on the place and object task while on chow, were protected from the diet-induce deficit and maintained good place-recognition when switched to HFHS. Experiment 3 examined the conditions of this protection effect by training rats in a square arena while on chow, and testing them in a rectangular arena while on HFHS. We have previously demonstrated that chow rats, but not HFHS rats, show geometry-based reorientation on a rectangular arena place-recognition task (Tran & Westbrook, 2015). Experiment 3 assessed whether rats switched to the HFHS diet after training on the place and object tasks in a square area, would show geometry-based reorientation in a rectangular arena. The protective benefit of training was replicated in the square arena, but both Untrained and Trained HFHS failed to show geometry-based reorientation in the rectangular arena. These findings are discussed in relation to the specificity of the training effect, the role of the hippocampus in diet-induced deficits, and their implications for dietary effects on cognition in people. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Beneficial Effect of Leptin on Spatial Learning and Memory in Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mohsen Ghasemi

    2016-02-01

    Full Text Available Background: Diabetes mellitus is a chronic disease which may be accompanied by cognitive impairments. The expression of the obesity gene (ob is decreased in insulin-deficient diabetic animals and increased after the administration of insulin or leptin. Plasma leptin levels are reduced in the streptozotocin (STZ-induced diabetic rats. Therefore, the deleterious effects of diabetes on memory may be due to the reduction of leptin. Aims: Investigate the effect of subcutaneous injection of leptin on spatial learning and memory in STZ-induced diabetic rats. Study Design: Animal experimentation. Methods: The rats were divided into three groups: 1- control, 2- diabetic, and 3- diabetic-leptin. Diabetes was induced in groups 2 and 3 by STZ injection (55 mg/kg intraperitoneally (i.p. The animals received leptin (0.1 mg/kg or saline subcutaneously (s.c for 10 days before behavioral studies. Then, they were examined in the Morris water maze over 3 blocks after 3 days of the last injection of leptin. Results: The travelled path length and time spent to reach the platform significantly increased in the diabetic group (p<0.001 and decreased with leptin treatment (p<0.01 & p<0.001 respectively; also, a significant increase in path length and time was observed between the diabetic-leptin group and the diabetic group (p<0.01, p<0.001, respectively in the probe test. Conclusion: Leptin can exert positive effects on memory impairments in diabetic rats.

  11. hiPSC-derived neural stem cells from patients with schizophrenia induce an impaired angiogenesis.

    Science.gov (United States)

    Casas, Bárbara S; Vitória, Gabriela; do Costa, Marcelo N; Madeiro da Costa, Rodrigo; Trindade, Pablo; Maciel, Renata; Navarrete, Nelson; Rehen, Stevens K; Palma, Verónica

    2018-02-22

    Schizophrenia is a neurodevelopmental disease characterized by cerebral connectivity impairment and loss of gray matter. It was described in adult schizophrenia patients (SZP) that concentration of VEGFA, a master angiogenic factor, is decreased. Recent evidence suggests cerebral hypoperfusion related to a dysfunctional Blood Brain Barrier (BBB) in SZP. Since neurogenesis and blood-vessel formation occur in a coincident and coordinated fashion, a defect in neurovascular development could result in increased vascular permeability and, therefore, in poor functionality of the SZP's neurons. Here, we characterized the conditioned media (CM) of human induced Pluripotent Stem Cells (hiPSC)-derived Neural Stem Cells of SZP (SZP NSC) versus healthy subjects (Ctrl NSC), and its impact on angiogenesis. Our results reveal that SZP NSC have an imbalance in the secretion and expression of several angiogenic factors, among them non-canonical neuro-angiogenic guidance factors. SZP NSC migrated less and their CM was less effective in inducing migration and angiogenesis both in vitro and in vivo. Since SZP originates during embryonic brain development, our findings suggest a defective crosstalk between NSC and endothelial cells (EC) during the formation of the neuro-angiogenic niche.

  12. Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice

    Directory of Open Access Journals (Sweden)

    Jackson George R

    2011-06-01

    Full Text Available Abstract Background The correlation between neurofibrillary tangles of tau and disease progression in the brains of Alzheimer's disease (AD patients remains an area of contention. Innovative data are emerging from biochemical, cell-based and transgenic mouse studies that suggest that tau oligomers, a pre-filament form of tau, may be the most toxic and pathologically significant tau aggregate. Results Here we report that oligomers of recombinant full-length human tau protein are neurotoxic in vivo after subcortical stereotaxic injection into mice. Tau oligomers impaired memory consolidation, whereas tau fibrils and monomers did not. Additionally, tau oligomers induced synaptic dysfunction by reducing the levels of synaptic vesicle-associated proteins synaptophysin and septin-11. Tau oligomers produced mitochondrial dysfunction by decreasing the levels of NADH-ubiquinone oxidoreductase (electron transport chain complex I, and activated caspase-9, which is related to the apoptotic mitochondrial pathway. Conclusions This study identifies tau oligomers as an acutely toxic tau species in vivo, and suggests that tau oligomers induce neurodegeneration by affecting mitochondrial and synaptic function, both of which are early hallmarks in AD and other tauopathies. These results open new avenues for neuroprotective intervention strategies of tauopathies by targeting tau oligomers.

  13. TFEB ameliorates the impairment of the autophagy-lysosome pathway in neurons induced by doxorubicin

    Science.gov (United States)

    Moruno Manchon, Jose Felix; Uzor, Ndidi-Ese; Kesler, Shelli R.; Wefel, Jeffrey S.; Townley, Debra M.; Nagaraja, Archana Sidalaghatta; Pradeep, Sunila; Mangala, Lingegowda S.; Sood, Anil K.; Tsvetkov, Andrey S.

    2016-01-01

    Doxorubicin, a commonly used chemotherapy agent, induces severe cardio- and neurotoxicity. Molecular mechanisms of cardiotoxicity have been extensively studied, but mechanisms by which doxorubicin exhibits its neurotoxic properties remain unclear. Here, we show that doxorubicin impairs neuronal autophagy, leading to the accumulation of an autophagy substrate p62. Neurons treated with doxorubicin contained autophagosomes, damaged mitochondria, and lipid droplets. The brains from mice treated with pegylated liposomal doxorubicin exhibited autophagosomes, often with mitochondria, lipofuscin, and lipid droplets. Interestingly, lysosomes were less acidic in doxorubicin-treated neurons. Overexpression of the transcription factor EB (TFEB), which controls the autophagy-lysosome axis, increased survival of doxorubicin-treated neurons. 2-Hydroxypropyl-β-cyclodextrin (HPβCD), an activator of TFEB, also promoted neuronal survival, decreased the levels of p62, and lowered the pH in lysosomes. Taken together, substantial changes induced by doxorubicin contribute to neurotoxicity, cognitive disturbances in cancer patients and survivors, and accelerated brain aging. The TFEB pathway might be a new approach for mitigating damage of neuronal autophagy caused by doxorubicin. PMID:27992857

  14. Thymoquinone supplementation ameliorates lead-induced testis function impairment in adult rats.

    Science.gov (United States)

    Mabrouk, Aymen; Ben Cheikh, Hassen

    2016-06-01

    This study was realized to investigate the possible beneficial effect of thymoquinone (TQ), the major active component of volatile oil of Nigella sativa seeds, against lead (Pb)-induced inhibition of rat testicular functions. Adult rats were randomized into four groups: a control group receiving no treatment; a Pb group exposed to 2000 parts per million (ppm) of Pb acetate in drinking water; a Pb-TQ group co-treated with Pb (as in Pb group) plus TQ (5 mg/kg body weight (b.w.)/day, per orally (p.o.)); and a TQ group receiving TQ (5 mg/kg b.w./day, p.o.). All treatments were for 5 weeks. No significant differences were observed for the body weight gain or for relative testes weight among the four groups of animals. Testicular Pb content significantly increased in metal-intoxicated rats compared with that in control rats. TQ supplementation had no effect on this testicular Pb accumulation. Interestingly, when coadministrated with Pb, TQ significantly improved the low plasma testosterone level and the decreased epididymal sperm count caused by Pb. In conclusion, the results suggest, for the first time, that TQ protects against Pb-induced impairment of testicular steroidogenic and spermatogenic functions. This study will open new perspectives for the clinical use of TQ in Pb intoxication. © The Author(s) 2014.

  15. Neuroprotective effects of nootkatone from Alpiniae oxyphyllae Fructus against amyloid-β-induced cognitive impairment.

    Science.gov (United States)

    He, Bosai; Xu, Fanxing; Xiao, Feng; Yan, Tingxu; Wu, Bo; Bi, Kaishun; Jia, Ying

    2018-02-01

    The sesquiterpene nootkatone (NKT), isolated from Alpiniae oxyphyllae Fructus, was shown to possess protective effects on neurons. In our study, by using an Alzheimer's disease (AD) model of mice induced by intracerebroventricular (i.c.v.) injection of Aβ 1-42 oligomers, we investigated the effects of NKT on memory impairment and further evaluated the pathological changes of mice. AD mice were treated by i.c.v. injection of NKT (at a dose of 0.02 mg/kg and 0.20 mg/kg) or vehicle (PBS) into the lateral ventricle once daily for 5 consecutive days. The behavioral tasks were performed, and levels of some biochemical indicators and histopathological changes of the brain were evaluated to elucidate the mechanism of NKT in the treatment of AD. The results revealed that NKT significantly improved the neurobehavioral performance of the AD mice in the Y-maze and Morris water maze tests. More importantly, NKT treatment decreased the malondialdehyde (MDA), Aβ as well as the acetylcholin esterase (AChE) levels in the mice brain, while increased the glutathione peroxidase (GSH-Px) levels with improved histopathological changes in the hippocampus. These findings provided evidences for the beneficial role of NKT in Aβ 1-42 -induced mice AD model linking to anti-oxidative and anti-AChE activities with inhibitory effect against Aβ accumulation.

  16. Diet-induced obesity impairs endothelium-derived hyperpolarization via altered potassium channel signaling mechanisms.

    Directory of Open Access Journals (Sweden)

    Rebecca E Haddock

    Full Text Available BACKGROUND: The vascular endothelium plays a critical role in the control of blood flow. Altered endothelium-mediated vasodilator and vasoconstrictor mechanisms underlie key aspects of cardiovascular disease, including those in obesity. Whilst the mechanism of nitric oxide (NO-mediated vasodilation has been extensively studied in obesity, little is known about the impact of obesity on vasodilation to the endothelium-derived hyperpolarization (EDH mechanism; which predominates in smaller resistance vessels and is characterized in this study. METHODOLOGY/PRINCIPAL FINDINGS: Membrane potential, vessel diameter and luminal pressure were recorded in 4(th order mesenteric arteries with pressure-induced myogenic tone, in control and diet-induced obese rats. Obesity, reflecting that of human dietary etiology, was induced with a cafeteria-style diet (∼30 kJ, fat over 16-20 weeks. Age and sexed matched controls received standard chow (∼12 kJ, fat. Channel protein distribution, expression and vessel morphology were determined using immunohistochemistry, Western blotting and ultrastructural techniques. In control and obese rat vessels, acetylcholine-mediated EDH was abolished by small and intermediate conductance calcium-activated potassium channel (SK(Ca/IK(Ca inhibition; with such activity being impaired in obesity. SK(Ca-IK(Ca activation with cyclohexyl-[2-(3,5-dimethyl-pyrazol-1-yl-6-methyl-pyrimidin-4-yl]-amine (CyPPA and 1-ethyl-2-benzimidazolinone (1-EBIO, respectively, hyperpolarized and relaxed vessels from control and obese rats. IK(Ca-mediated EDH contribution was increased in obesity, and associated with altered IK(Ca distribution and elevated expression. In contrast, the SK(Ca-dependent-EDH component was reduced in obesity. Inward-rectifying potassium channel (K(ir and Na(+/K(+-ATPase inhibition by barium/ouabain, respectively, attenuated and abolished EDH in arteries from control and obese rats, respectively; reflecting differential K

  17. Zoledronate inhibits ischemia-induced neovascularization by impairing the mobilization and function of endothelial progenitor cells.

    Directory of Open Access Journals (Sweden)

    Shih-Hung Tsai

    Full Text Available BACKGROUND: Bisphosphonates are a class of pharmacologic compounds that are commonly used to treat postmenopausal osteoporosis and malignant osteolytic processes. Studies have shown that bone marrow-derived endothelial progenitor cells (EPCs play a significant role in postnatal neovascularization. Whether the nitrogen-containing bisphosphonate zoledronate inhibits ischemia-induced neovascularization by modulating EPC functions remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Unilateral hindlimb ischemia was surgically induced in wild-type mice after 2 weeks of treatment with vehicle or zoledronate (low-dose: 30 μg/kg; high-dose: 100 μg/kg. Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio was significantly lower in wild-type mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in controls 4 weeks after ischemic surgery (control vs. low-dose vs. high-dose: 87±7% vs. *61±18% vs. **49±17%, *p<0.01, **p<0.005 compared to control. Capillary densities were also significantly lower in mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in control mice. Flow cytometry analysis showed impaired mobilization of EPC-like cells (Sca-1(+/Flk-1(+ after surgical induction of ischemia in mice treated with zoledronate but normal levels of mobilization in mice treated with vehicle. In addition, ischemic tissue from mice that received zoledronate treatment exhibited significantly lower levels of the active form of MMP-9, lower levels of VEGF, and lower levels of phosphorylated eNOS and phosphorylated Akt than ischemic tissue from mice that received vehicle. Results of the in vitro studies showed that incubation with zoledronate inhibited the viability, migration, and tube-forming capacities of EPC. CONCLUSIONS/SIGNIFICANCE: Zoledronate inhibited ischemia-induced neovascularization by impairing EPC mobilization and angiogenic functions

  18. Dextran sulfate sodium-induced acute colitis impairs dermal lymphatic function in mice.

    Science.gov (United States)

    Agollah, Germaine D; Wu, Grace; Peng, Ho-Lan; Kwon, Sunkuk

    2015-12-07

    To investigate whether dermal lymphatic function and architecture are systemically altered in dextran sulfate sodium (DSS)-induced acute colitis. Balb/c mice were administered 4% DSS in lieu of drinking water ad libitum for 7 d and monitored to assess disease activity including body weight, diarrhea severity, and fecal bleeding. Control mice received standard drinking water with no DSS. Changes in mesenteric lymphatics were assessed following oral administration of a fluorescently-labelled fatty acid analogue, while dermal lymphatic function and architecture was longitudinally characterized using dynamic near-infrared fluorescence (NIRF) imaging following intradermal injection of indocyanine green (ICG) at the base of the tail or to the dorsal aspect of the left paw prior to, 4, and 7 d after DSS administration. We also measured dye clearance rate after injection of Alexa680-bovine serum albumin (BSA). NIRF imaging data was analyzed to reveal lymphatic contractile activity after selecting fixed regions of interest (ROIs) of the same size in fluorescent lymphatic vessels on fluorescence images. The averaged fluorescence intensity within the ROI of each fluorescence image was plotted as a function of imaging time and the lymphatic contraction frequency was computed by assessing the number of fluorescent pulses arriving at a ROI. Mice treated with DSS developed acute inflammation with clinical symptoms of loss of body weight, loose feces/watery diarrhea, and fecal blood, all of which were aggravated as disease progressed to 7 d. Histological examination of colons of DSS-treated mice confirmed acute inflammation, characterized by segmental to complete loss of colonic mucosa with an associated chronic inflammatory cell infiltrate that extended into the deeper layers of the wall of the colon, compared to control mice. In situ intravital imaging revealed that mice with acute colitis showed significantly fewer fluorescent mesenteric lymphatic vessels, indicating impaired

  19. Dual-modality impairment of implicit learning of letter-strings versus color-patterns in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Hwu Hai-Gwo

    2005-12-01

    Full Text Available Abstract Background Implicit learning was reported to be intact in schizophrenia using artificial grammar learning. However, emerging evidence indicates that artificial grammar learning is not a unitary process. The authors used dual coding stimuli and schizophrenia clinical symptom dimensions to re-evaluate the effect of schizophrenia on various components of artificial grammar learning. Methods Letter string and color pattern artificial grammar learning performances were compared between 63 schizophrenic patient