WorldWideScience

Sample records for learning geometric transformation

  1. Geometric Transformations in Engineering Geometry

    Directory of Open Access Journals (Sweden)

    I. F. Borovikov

    2015-01-01

    Full Text Available Recently, for business purposes, in view of current trends and world experience in training engineers, research and faculty staff there has been a need to transform traditional courses of descriptive geometry into the course of engineering geometry in which the geometrical transformations have to become its main section. On the basis of critical analysis the paper gives suggestions to improve a presentation technique of this section both in the classroom and in academic literature, extend an application scope of geometrical transformations to solve the position and metric tasks and simulation of surfaces, as well as to design complex engineering configurations, which meet a number of pre-specified conditions.The article offers to make a number of considerable amendments to the terms and definitions used in the existing courses of descriptive geometry. It draws some conclusions and makes the appropriate proposals on feasibility of coordination in teaching the movement transformation in the courses of analytical and descriptive geometry. This will provide interdisciplinary team teaching and allow students to be convinced that a combination of analytical and graphic ways to solve geometric tasks is useful and reasonable.The traditional sections of learning courses need to be added with a theory of projective and bi-rational transformations. In terms of application simplicity and convenience it is enough to consider the central transformations when solving the applied tasks. These transformations contain a beam of sub-invariant (low-invariant straight lines on which the invariant curve induces non-involution and involution projectivities. The expediency of nonlinear transformations application is shown in the article by a specific example of geometric modeling of the interfacing surface "spar-blade".Implementation of these suggestions will contribute to a real transformation of a traditional course of descriptive geometry to the engineering geometry

  2. MO-G-304-02: Knowledge Based DVH Prediction Using a Geometric Dose Transform

    International Nuclear Information System (INIS)

    Staub, D; Wang, J; Jiang, S

    2015-01-01

    Purpose: To demonstrate a novel method for predicting patient dose-volume histograms (DVHs) using a prior database of optimized radiotherapy treatment plans. Such predicted DVHs could be useful for automating treatment planning. Methods: Our initial demonstration utilized a database of 100 prostate intensity-modulated radiotherapy (IMRT) data-sets. Each data-set contained a CT image with contours of the planning target volume (PTV), rectum, and bladder, the parameters of a clinically approved IMRT plan, and a corresponding simulated dose distribution. We applied a novel geometric transformation to remove the influence of the PTV size, shape, and location on the dose distribution. We termed the transformed distribution the geometrically normalized dose distribution (GNDD). This normalization transform was applied to 80 data-sets randomly selected from the database, and a population GNDD was computed as the average. Next, the population GNDD was mapped onto each of the remaining 20 patient datasets using the reverse of the geometric normalization transform, and predicted DVHs were calculated from the reverse transformed dose distributions (GNDD-DVHs). In addition, a state of the art machine learning based method from the literature was tested for comparison. Results: DVH prediction accuracy was quantified by calculating the relative root mean squared error (rRMSE) on predicted DVHs for the 20 test patients using their known DVHs. For bladder, rectum, and PTV average rRMSEs for the GNDD method were 9.7 ± 4.2%, 13.9 ± 6.0%, and 2.3 ± 0.5% respectively. Prediction results using GNDD were roughly equivalent to that from the machine learning method. Conclusion: We developed a new method for predicting DVH curves from a database of prior patient plans. We demonstrated that our simple approach achieves accuracy comparable to a method using a complicated machine learning based approach

  3. Geometric modular action and transformation groups

    International Nuclear Information System (INIS)

    Summers, S.J.

    1996-01-01

    We study a weak form of geometric modular action, which is naturally associated with transformation groups of partially ordered sets and which provides these groups with projective representations. Under suitable conditions it is shown that these groups are implemented by point transformations of topological spaces serving as models for space-times, leading to groups which may be interpreted as symmetry groups of the space-times. As concrete examples, it is shown that the Poincare group and the de Sitter group can be derived from this condition of geometric modular action. Further consequences and examples are discussed. (orig.)

  4. Geometric Representations for Discrete Fourier Transforms

    Science.gov (United States)

    Cambell, C. W.

    1986-01-01

    Simple geometric representations show symmetry and periodicity of discrete Fourier transforms (DFT's). Help in visualizing requirements for storing and manipulating transform value in computations. Representations useful in any number of dimensions, but particularly in one-, two-, and three-dimensional cases often encountered in practice.

  5. Active Learning Environment with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  6. FRIST—flipping and rotation invariant sparsifying transform learning and applications

    International Nuclear Information System (INIS)

    Wen, Bihan; Bresler, Yoram; Ravishankar, Saiprasad

    2017-01-01

    Features based on sparse representation, especially using the synthesis dictionary model, have been heavily exploited in signal processing and computer vision. However, synthesis dictionary learning typically involves NP-hard sparse coding and expensive learning steps. Recently, sparsifying transform learning received interest for its cheap computation and its optimal updates in the alternating algorithms. In this work, we develop a methodology for learning flipping and rotation invariant sparsifying transforms, dubbed FRIST, to better represent natural images that contain textures with various geometrical directions. The proposed alternating FRIST learning algorithm involves efficient optimal updates. We provide a convergence guarantee, and demonstrate the empirical convergence behavior of the proposed FRIST learning approach. Preliminary experiments show the promising performance of FRIST learning for sparse image representation, segmentation, denoising, robust inpainting, and compressed sensing-based magnetic resonance image reconstruction. (paper)

  7. Controlling lightwave in Riemann space by merging geometrical optics with transformation optics.

    Science.gov (United States)

    Liu, Yichao; Sun, Fei; He, Sailing

    2018-01-11

    In geometrical optical design, we only need to choose a suitable combination of lenses, prims, and mirrors to design an optical path. It is a simple and classic method for engineers. However, people cannot design fantastical optical devices such as invisibility cloaks, optical wormholes, etc. by geometrical optics. Transformation optics has paved the way for these complicated designs. However, controlling the propagation of light by transformation optics is not a direct design process like geometrical optics. In this study, a novel mixed method for optical design is proposed which has both the simplicity of classic geometrical optics and the flexibility of transformation optics. This mixed method overcomes the limitations of classic optical design; at the same time, it gives intuitive guidance for optical design by transformation optics. Three novel optical devices with fantastic functions have been designed using this mixed method, including asymmetrical transmissions, bidirectional focusing, and bidirectional cloaking. These optical devices cannot be implemented by classic optics alone and are also too complicated to be designed by pure transformation optics. Numerical simulations based on both the ray tracing method and full-wave simulation method are carried out to verify the performance of these three optical devices.

  8. Geometric Transformations in Middle School Mathematics Textbooks

    Science.gov (United States)

    Zorin, Barbara

    2011-01-01

    This study analyzed treatment of geometric transformations in presently available middle grades (6, 7, 8) student mathematics textbooks. Fourteen textbooks from four widely used textbook series were evaluated: two mainline publisher series, Pearson (Prentice Hall) and Glencoe (Math Connects); one National Science Foundation (NSF) funded curriculum…

  9. Blind Forensics of Successive Geometric Transformations in Digital Images Using Spectral Method: Theory and Applications.

    Science.gov (United States)

    Chen, Chenglong; Ni, Jiangqun; Shen, Zhaoyi; Shi, Yun Qing

    2017-06-01

    Geometric transformations, such as resizing and rotation, are almost always needed when two or more images are spliced together to create convincing image forgeries. In recent years, researchers have developed many digital forensic techniques to identify these operations. Most previous works in this area focus on the analysis of images that have undergone single geometric transformations, e.g., resizing or rotation. In several recent works, researchers have addressed yet another practical and realistic situation: successive geometric transformations, e.g., repeated resizing, resizing-rotation, rotation-resizing, and repeated rotation. We will also concentrate on this topic in this paper. Specifically, we present an in-depth analysis in the frequency domain of the second-order statistics of the geometrically transformed images. We give an exact formulation of how the parameters of the first and second geometric transformations influence the appearance of periodic artifacts. The expected positions of characteristic resampling peaks are analytically derived. The theory developed here helps to address the gap left by previous works on this topic and is useful for image security and authentication, in particular, the forensics of geometric transformations in digital images. As an application of the developed theory, we present an effective method that allows one to distinguish between the aforementioned four different processing chains. The proposed method can further estimate all the geometric transformation parameters. This may provide useful clues for image forgery detection.

  10. Geometrical methods in learning theory

    International Nuclear Information System (INIS)

    Burdet, G.; Combe, Ph.; Nencka, H.

    2001-01-01

    The methods of information theory provide natural approaches to learning algorithms in the case of stochastic formal neural networks. Most of the classical techniques are based on some extremization principle. A geometrical interpretation of the associated algorithms provides a powerful tool for understanding the learning process and its stability and offers a framework for discussing possible new learning rules. An illustration is given using sequential and parallel learning in the Boltzmann machine

  11. Improved remote gaze estimation using corneal reflection-adaptive geometric transforms

    Science.gov (United States)

    Ma, Chunfei; Baek, Seung-Jin; Choi, Kang-A.; Ko, Sung-Jea

    2014-05-01

    Recently, the remote gaze estimation (RGE) technique has been widely applied to consumer devices as a more natural interface. In general, the conventional RGE method estimates a user's point of gaze using a geometric transform, which represents the relationship between several infrared (IR) light sources and their corresponding corneal reflections (CRs) in the eye image. Among various methods, the homography normalization (HN) method achieves state-of-the-art performance. However, the geometric transform of the HN method requiring four CRs is infeasible for the case when fewer than four CRs are available. To solve this problem, this paper proposes a new RGE method based on three alternative geometric transforms, which are adaptive to the number of CRs. Unlike the HN method, the proposed method not only can operate with two or three CRs, but can also provide superior accuracy. To further enhance the performance, an effective error correction method is also proposed. By combining the introduced transforms with the error-correction method, the proposed method not only provides high accuracy and robustness for gaze estimation, but also allows for a more flexible system setup with a different number of IR light sources. Experimental results demonstrate the effectiveness of the proposed method.

  12. Transformative Learning

    Science.gov (United States)

    Wang, Victor C. X.; Cranton, Patricia

    2011-01-01

    The theory of transformative learning has been explored by different theorists and scholars. However, few scholars have made an attempt to make a comparison between transformative learning and Confucianism or between transformative learning and andragogy. The authors of this article address these comparisons to develop new and different insights…

  13. Theoretical frameworks for the learning of geometrical reasoning

    OpenAIRE

    Jones, Keith

    1998-01-01

    With the growth in interest in geometrical ideas it is important to be clear about the nature of geometrical reasoning and how it develops. This paper provides an overview of three theoretical frameworks for the learning of geometrical reasoning: the van Hiele model of thinking in geometry, Fischbein’s theory of figural concepts, and Duval’s cognitive model of geometrical reasoning. Each of these frameworks provides theoretical resources to support research into the development of geometrical...

  14. Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus

    International Nuclear Information System (INIS)

    He, Ji-Huan; Elagan, S.K.; Li, Z.B.

    2012-01-01

    The fractional complex transform is suggested to convert a fractional differential equation with Jumarie's modification of Riemann–Liouville derivative into its classical differential partner. Understanding the fractional complex transform and the chain rule for fractional calculus are elucidated geometrically. -- Highlights: ► The chain rule for fractional calculus is invalid, a counter example is given. ► The fractional complex transform is explained geometrically. ► Fractional equations can be converted into differential equations.

  15. Geometric Hypergraph Learning for Visual Tracking

    OpenAIRE

    Du, Dawei; Qi, Honggang; Wen, Longyin; Tian, Qi; Huang, Qingming; Lyu, Siwei

    2016-01-01

    Graph based representation is widely used in visual tracking field by finding correct correspondences between target parts in consecutive frames. However, most graph based trackers consider pairwise geometric relations between local parts. They do not make full use of the target's intrinsic structure, thereby making the representation easily disturbed by errors in pairwise affinities when large deformation and occlusion occur. In this paper, we propose a geometric hypergraph learning based tr...

  16. STRUCTURE AND ORGANIZATION OF SHAPES IN THE DESIGN OF INDUSTRIAL PRODUCTS, USING GEOMETRICAL TRANSFORMATIONS

    OpenAIRE

    MARIN Dumitru

    2006-01-01

    This paper presents the major contribution of geometrical transformations in the structure and organization of the shapes which compose industrial products. Geometrical transformations, such as symmetry, translation, rotation, homology etc. are frequently used in the design activity for filling the plane and the space (plane and spatial equipartitions), in ornaments and also in creating shapes, which are functional and aesthetical at the same time.

  17. Decay of the Fourier transform analytic and geometric aspects

    CERN Document Server

    Iosevich, Alex

    2014-01-01

    The Plancherel formula says that the L2 norm of the function is equal to the L2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration.

  18. Implicit face prototype learning from geometric information.

    Science.gov (United States)

    Or, Charles C-F; Wilson, Hugh R

    2013-04-19

    There is evidence that humans implicitly learn an average or prototype of previously studied faces, as the unseen face prototype is falsely recognized as having been learned (Solso & McCarthy, 1981). Here we investigated the extent and nature of face prototype formation where observers' memory was tested after they studied synthetic faces defined purely in geometric terms in a multidimensional face space. We found a strong prototype effect: The basic results showed that the unseen prototype averaged from the studied faces was falsely identified as learned at a rate of 86.3%, whereas individual studied faces were identified correctly 66.3% of the time and the distractors were incorrectly identified as having been learned only 32.4% of the time. This prototype learning lasted at least 1 week. Face prototype learning occurred even when the studied faces were further from the unseen prototype than the median variation in the population. Prototype memory formation was evident in addition to memory formation of studied face exemplars as demonstrated in our models. Additional studies showed that the prototype effect can be generalized across viewpoints, and head shape and internal features separately contribute to prototype formation. Thus, implicit face prototype extraction in a multidimensional space is a very general aspect of geometric face learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Three-dimensional geometric simulations of random anisotropic growth during transformation phenomena

    DEFF Research Database (Denmark)

    Godiksen, Rasmus Brauner; Rios, P.R.; Vandermeer, Roy Allen

    2008-01-01

    In this paper, the effects of anisotropic growth during transformation processes are investigated by geometric simulations of randomly oriented shape preserved ellipsoids in three dimensions and the applicability of idealized models are tested. Surprisingly, the results show that the models can...

  20. Geometrical intuition and the learning and teaching of geometry

    OpenAIRE

    Fujita, Taro; Jones, Keith; Yamamoto, Shinya

    2004-01-01

    Intuition is often regarded as essential in the learning of geometry, but how such skills might be effectively developed in students remains an open question. This paper reviews the role and importance of geometrical intuition and suggests it involves the skills to create and manipulate geometrical figures in the mind, to see geometrical properties, to relate images to concepts and theorems in geometry, and decide where and how to start when solving problems in geometry. Based on these theore...

  1. Geometrical bucklings for two-dimensional regular polygonal regions using the finite Fourier transformation

    International Nuclear Information System (INIS)

    Mori, N.; Kobayashi, K.

    1996-01-01

    A two-dimensional neutron diffusion equation is solved for regular polygonal regions by the finite Fourier transformation, and geometrical bucklings are calculated for regular 3-10 polygonal regions. In the case of the regular triangular region, it is found that a simple and rigorous analytic solution is obtained for the geometrical buckling and the distribution of the neutron current along the outer boundary. (author)

  2. THE LET ME LEARN PROFESSIONAL LEARNING PROCESS FOR TEACHER TRANSFORMATION

    OpenAIRE

    Calleja, Colin

    2013-01-01

    This research set out to explore how a group of nine educators from a Catholic Church school in Malta, who have attended the Let Me Learn professional Learning process (LMLpLp), experienced personal and professional transformation. This study investigates those factors influencing participants in their transformative learning journey. It also explores the dynamics of transformative learning and whether individual transformation affects the school’s transformative learning experience. More spe...

  3. Analysis of Geometric Thinking Students’ and Process-Guided Inquiry Learning Model

    Science.gov (United States)

    Hardianti, D.; Priatna, N.; Priatna, B. A.

    2017-09-01

    This research aims to analysis students’ geometric thinking ability and theoretically examine the process-oriented guided iquiry (POGIL) model. This study uses qualitative approach with descriptive method because this research was done without any treatment on subjects. Data were collected naturally. This study was conducted in one of the State Junior High School in Bandung. The population was second grade students and the sample was 32 students. Data of students’ geometric thinking ability were collected through geometric thinking test. These questions are made based on the characteristics of geometry thinking based on van hiele’s theory. Based on the results of the analysis and discussion, students’ geometric thinking ability is still low so it needs to be improved. Therefore, an effort is needed to overcome the problems related to students’ geometric thinking ability. One of the efforts that can be done by doing the learning that can facilitate the students to construct their own geometry concept, especially quadrilateral’s concepts so that students’ geometric thinking ability can enhance maximally. Based on study of the theory, one of the learning models that can enhance the students’ geometric thinking ability is POGIL model.

  4. Workplaces as Transformative Learning Spaces

    DEFF Research Database (Denmark)

    Maslo, Elina

    2010-01-01

    some other examples on “successful learning” from the formal, informal and non-formal learning environments, trying to prove those criteria. This presentation provides a view on to new examples on transformative learning spaces we discovered doing research on Workplace Learning in Latvia as a part......Abstract to the Vietnam Forum on Lifelong Learning: Building a Learning Society Hanoi, 7-8 December 2010 Network 2: Competence development as Workplace Learning Title of proposal: Workplaces as Transformative Learning Spaces Author: Elina Maslo, dr. paed., University of Latvia, elina@latnet.lv Key...... words: learning, lifelong learning, adult learning, workplace learning, transformative learning spaces During many years of research on lifelong foreign language learning with very different groups of learners, we found some criteria, which make learning process successful. Since then we tried to find...

  5. The Effects of Computer-assisted and Distance Learning of Geometric Modeling

    Directory of Open Access Journals (Sweden)

    Omer Faruk Sozcu

    2013-01-01

    Full Text Available The effects of computer-assisted and distance learning of geometric modeling and computer aided geometric design are studied. It was shown that computer algebra systems and dynamic geometric environments can be considered as excellent tools for teaching mathematical concepts of mentioned areas, and distance education technologies would be indispensable for consolidation of successfully passed topics

  6. Learning Building Layouts with Non-geometric Visual Information: The Effects of Visual Impairment and Age

    Science.gov (United States)

    Kalia, Amy A.; Legge, Gordon E.; Giudice, Nicholas A.

    2009-01-01

    Previous studies suggest that humans rely on geometric visual information (hallway structure) rather than non-geometric visual information (e.g., doors, signs and lighting) for acquiring cognitive maps of novel indoor layouts. This study asked whether visual impairment and age affect reliance on non-geometric visual information for layout learning. We tested three groups of participants—younger (sighted, older (50–70 years) normally sighted, and low vision (people with heterogeneous forms of visual impairment ranging in age from 18–67). Participants learned target locations in building layouts using four presentation modes: a desktop virtual environment (VE) displaying only geometric cues (Sparse VE), a VE displaying both geometric and non-geometric cues (Photorealistic VE), a Map, and a Real building. Layout knowledge was assessed by map drawing and by asking participants to walk to specified targets in the real space. Results indicate that low-vision and older normally-sighted participants relied on additional non-geometric information to accurately learn layouts. In conclusion, visual impairment and age may result in reduced perceptual and/or memory processing that makes it difficult to learn layouts without non-geometric visual information. PMID:19189732

  7. Geometric algebra description of polarization mode dispersion, polarization-dependent loss, and Stokes tensor transformations.

    Science.gov (United States)

    Soliman, George; Yevick, David; Jessop, Paul

    2014-09-01

    This paper demonstrates that numerous calculations involving polarization transformations can be condensed by employing suitable geometric algebra formalism. For example, to describe polarization mode dispersion and polarization-dependent loss, both the material birefringence and differential loss enter as bivectors and can be combined into a single symmetric quantity. Their frequency and distance evolution, as well as that of the Stokes vector through an optical system, can then each be expressed as a single compact expression, in contrast to the corresponding Mueller matrix formulations. The intrinsic advantage of the geometric algebra framework is further demonstrated by presenting a simplified derivation of generalized Stokes parameters that include the electric field phase. This procedure simultaneously establishes the tensor transformation properties of these parameters.

  8. Organizational Learning through Transformational Leadership

    Science.gov (United States)

    Imran, Muhammad Kashif; Ilyas, Muhammad; Aslam, Usman; Ubaid-Ur-Rahman

    2016-01-01

    Purpose: The transformation of firms from resource-based-view to knowledge-based-view has extended the importance of organizational learning. Thus, this study aims to develop an organizational learning model through transformational leadership with indirect effect of knowledge management process capability and interactive role of…

  9. Transformative Learning as an "Inter-Practice" Phenomenon

    Science.gov (United States)

    Hodge, Steven

    2014-01-01

    Transformative learning theory and practice-based theory both offer compelling but distinct accounts of adult learning. The vicissitudes of individual meaning-making is the focus of transformative learning theory whereas practice-based accounts view participation in social practices as the key to understanding learning. Despite their differing…

  10. The reduction of motion artifacts in digital subtraction angiography by geometrical image transformation

    International Nuclear Information System (INIS)

    Fitzpatrick, J.M.; Pickens, D.R.; Mandava, V.R.; Grefenstette, J.J.

    1988-01-01

    In the diagnosis of arteriosclerosis, radio-opaque dye is injected into the interior of the arteries to make them visible. Because of its increased contrast sensitivity, digital subtraction angiography has the potential for providing diagnostic images of arteries with reduced dye volumes. In the conventional technique, a mask image, acquired before the introduction of the dye, is subtracted from the contrast image, acquired after the dye is introduced, to produce a difference image in which only the dye in the arteries is visible. The usefulness of this technique has been severely limited by the image degradation caused by patient motion during image acquisition. This motion produces artifacts in the difference image that obscure the arteries. One technique for dealing with the problem is to reduce the degradation by means of image registration. The registration is carried out by means of a geometrical transformation of the mask image before subtraction so that it is in registration with the contrast image. This paper describes a technique for determining an optimal transformation. The authors employ a one-to-one elastic mapping and the Jacobian of that mapping to produce a geometrical image transformation. They choose a parameterized class of such mappings and use a heuristic search algorithm to optimize the parameters to minimize the severity of the motion artifacts. To increase the speed of the optimization process they use a statistical image comparison technique that provides a quick approximate evaluation of each image transformation. They present the experimental results of the application of their registration system to mask-contrast pairs, for images acquired from a specially designed phantom, and for clinical images

  11. Tunable orbital angular momentum mode filter based on optical geometric transformation.

    Science.gov (United States)

    Huang, Hao; Ren, Yongxiong; Xie, Guodong; Yan, Yan; Yue, Yang; Ahmed, Nisar; Lavery, Martin P J; Padgett, Miles J; Dolinar, Sam; Tur, Moshe; Willner, Alan E

    2014-03-15

    We present a tunable mode filter for spatially multiplexed laser beams carrying orbital angular momentum (OAM). The filter comprises an optical geometric transformation-based OAM mode sorter and a spatial light modulator (SLM). The programmable SLM can selectively control the passing/blocking of each input OAM beam. We experimentally demonstrate tunable filtering of one or multiple OAM modes from four multiplexed input OAM modes with vortex charge of ℓ=-9, -4, +4, and +9. The measured output power suppression ratio of the propagated modes to the blocked modes exceeds 14.5 dB.

  12. Transformative Learning: Personal Empowerment in Learning Mathematics

    Science.gov (United States)

    Hassi, Marja-Liisa; Laursen, Sandra L.

    2015-01-01

    This article introduces the concept of personal empowerment as a form of transformative learning. It focuses on commonly ignored but enhancing elements of mathematics learning and argues that crucial personal resources can be essentially promoted by high engagement in mathematical problem solving, inquiry, and collaboration. This personal…

  13. Transforming Leadership Development for Significant Learning.

    Science.gov (United States)

    Owen, Julie E

    2015-01-01

    Leadership education is undergoing a transformation where powerful pedagogies and emerging knowledge about the scholarship of teaching and learning supplant long held and often-outmoded practices of leadership education. This transformation requires new commitments to evidence-based practice, critical consciousness, and more complex understanding of the levers of leadership learning. © 2015 Wiley Periodicals, Inc., A Wiley Company.

  14. Transformative Learning: Patterns of Psychophysiologic Response and Technology-Enabled Learning and Intervention Systems

    Science.gov (United States)

    2008-09-01

    Psychophysiologic Response and Technology -Enabled Learning and Intervention Systems PRINCIPAL INVESTIGATOR: Leigh W. Jerome, Ph.D...NUMBER Transformative Learning : Patterns of Psychophysiologic Response and Technology - Enabled Learning and Intervention Systems 5b. GRANT NUMBER...project entitled “Transformative Learning : Patterns of Psychophysiologic Response in Technology Enabled Learning and Intervention Systems.” The

  15. Learning and the transformative potential of citizen science.

    Science.gov (United States)

    Bela, Györgyi; Peltola, Taru; Young, Juliette C; Balázs, Bálint; Arpin, Isabelle; Pataki, György; Hauck, Jennifer; Kelemen, Eszter; Kopperoinen, Leena; Van Herzele, Ann; Keune, Hans; Hecker, Susanne; Suškevičs, Monika; Roy, Helen E; Itkonen, Pekka; Külvik, Mart; László, Miklós; Basnou, Corina; Pino, Joan; Bonn, Aletta

    2016-10-01

    The number of collaborative initiatives between scientists and volunteers (i.e., citizen science) is increasing across many research fields. The promise of societal transformation together with scientific breakthroughs contributes to the current popularity of citizen science (CS) in the policy domain. We examined the transformative capacity of citizen science in particular learning through environmental CS as conservation tool. We reviewed the CS and social-learning literature and examined 14 conservation projects across Europe that involved collaborative CS. We also developed a template that can be used to explore learning arrangements (i.e., learning events and materials) in CS projects and to explain how the desired outcomes can be achieved through CS learning. We found that recent studies aiming to define CS for analytical purposes often fail to improve the conceptual clarity of CS; CS programs may have transformative potential, especially for the development of individual skills, but such transformation is not necessarily occurring at the organizational and institutional levels; empirical evidence on simple learning outcomes, but the assertion of transformative effects of CS learning is often based on assumptions rather than empirical observation; and it is unanimous that learning in CS is considered important, but in practice it often goes unreported or unevaluated. In conclusion, we point to the need for reliable and transparent measurement of transformative effects for democratization of knowledge production. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  16. Geometrical Image Transforms

    OpenAIRE

    Havelka, Jan

    2008-01-01

    Tato diplomová práce se zabývá akcelerací geometrických transformací obrazu s využitím GPU a architektury NVIDIA (R) CUDA TM. Časově kritické části kódu jsou přesunuty na GPU a vykonány paralelně. Jedním z výsledků je demonstrační aplikace pro porovnání výkonnosti obou architektur: CPU, a GPU v kombinaci s CPU. Pro referenční implementaci jsou použity vysoce optimalizované algoritmy z knihovny OpenCV, od firmy Intel. This master's thesis deals with acceleration of geometrical image transfo...

  17. Closed-Form Solutions for Gradient Elastic Beams with Geometric Discontinuities by Laplace Transform

    Directory of Open Access Journals (Sweden)

    Mustafa Özgür Yayli

    2013-01-01

    Full Text Available The static bending solution of a gradient elastic beam with external discontinuities is presented by Laplace transform. Its utility lies in the ability to switch differential equations to algebraic forms that are more easily solved. A Laplace transformation is applied to the governing equation which is then solved for the static deflection of the microbeam. The exact static response of the gradient elastic beam with external discontinuities is obtained by applying known initial conditions when the others are derived from boundary conditions. The results are given in a series of figures and compared with their classical counterparts. The main contribution of this paper is to provide a closed-form solution for the static deflection of microbeams under geometric discontinuities.

  18. Implementation of Transformative Sustainability Learning into Engineering Curricular

    Directory of Open Access Journals (Sweden)

    Yuliana Lavrysh

    2018-04-01

    Full Text Available Nowadays an engineering profession is the most promising in terms of sustainability. Yet, there is a question if higher educational establishments are ready and possess necessary resources to prepare graduates in a sufficient way to create a life-sustainable future. Therefore, universities recognize the education for sustainable development as an essential and timely process of engineering training. The paper presents the characteristics of transformative sustainability learning as a key factor of advanced life-learning engineering education. The analysis of theoretical background signifies that the transformative sustainability learning concept is based on the theory of person’s transformations depending on such personality traits as the life experience, cognitive development, and critical reflection skills which foster personality changes towards sustainability. Thus, we can state that transformative sustainability learning (TSL integrates such fields as transformative learning and Education for Sustainable Development and the combination impacts personal and societal transformations. This fact provides us with the opportunity to suggest the (TSL concepts implementation into engineering educational process as an approach that enhances students’ motivation to studying, understanding of sustainability issues and high order thinking skills. If students experience personality transformations, we can find out the pedagogical strategy attributed to these transformations. Having conducted interviews and observations the teaching process at the university, we outlined the most used TSL pedagogical strategies at technical university (placed-based, problem-based, enquiry and service learning assessed their efficacy, found out the barriers to successful implementation and suggested recommendations to overcome the barriers. Our paper demonstrates potential of TSL implementation as it not only benefits for students but also enhances sustainability

  19. Travel and Adult Transformative Learning

    Science.gov (United States)

    Lindstrom, Steven K.

    2011-01-01

    This phenomenological research study examines the lived experience of individual adult transformation in the context of travel. Adults throughout history have experienced profound personal and perception changes as a result of significant travel events. Transformative learning occurs through experience, crisis, and reflection, all of which are…

  20. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  1. Strategies of learning in the process of transformation

    DEFF Research Database (Denmark)

    Lorentzen, Anne

    2005-01-01

    The paper deals with the learning and innovation strategies of manufacturing companies in the economies of transformation.......The paper deals with the learning and innovation strategies of manufacturing companies in the economies of transformation....

  2. Online Feature Transformation Learning for Cross-Domain Object Category Recognition.

    Science.gov (United States)

    Zhang, Xuesong; Zhuang, Yan; Wang, Wei; Pedrycz, Witold

    2017-06-09

    In this paper, we introduce a new research problem termed online feature transformation learning in the context of multiclass object category recognition. The learning of a feature transformation is viewed as learning a global similarity metric function in an online manner. We first consider the problem of online learning a feature transformation matrix expressed in the original feature space and propose an online passive aggressive feature transformation algorithm. Then these original features are mapped to kernel space and an online single kernel feature transformation (OSKFT) algorithm is developed to learn a nonlinear feature transformation. Based on the OSKFT and the existing Hedge algorithm, a novel online multiple kernel feature transformation algorithm is also proposed, which can further improve the performance of online feature transformation learning in large-scale application. The classifier is trained with k nearest neighbor algorithm together with the learned similarity metric function. Finally, we experimentally examined the effect of setting different parameter values in the proposed algorithms and evaluate the model performance on several multiclass object recognition data sets. The experimental results demonstrate the validity and good performance of our methods on cross-domain and multiclass object recognition application.

  3. Geometrical Modification of Learning Vector Quantization Method for Solving Classification Problems

    Directory of Open Access Journals (Sweden)

    Korhan GÜNEL

    2016-09-01

    Full Text Available In this paper, a geometrical scheme is presented to show how to overcome an encountered problem arising from the use of generalized delta learning rule within competitive learning model. It is introduced a theoretical methodology for describing the quantization of data via rotating prototype vectors on hyper-spheres.The proposed learning algorithm is tested and verified on different multidimensional datasets including a binary class dataset and two multiclass datasets from the UCI repository, and a multiclass dataset constructed by us. The proposed method is compared with some baseline learning vector quantization variants in literature for all domains. Large number of experiments verify the performance of our proposed algorithm with acceptable accuracy and macro f1 scores.

  4. Measuring Curricular Impact on Dental Hygiene Students' Transformative Learning.

    Science.gov (United States)

    Springfield, Emily C; Smiler, Andrew P; Gwozdek, Anne E

    2015-12-01

    Previous research has suggested that transformative learning can be fostered in higher education by creating active learning experiences that are directly related to content taught, are personally engaging, and can stimulate reflection. The aim of this qualitative study was to assess changes experienced by students in an e-learning dental hygiene degree completion program beyond attainment of competence-changes that may be described as transformative learning. The data used were transcripts of focus groups that had been conducted with each of the first five cohorts of students to graduate from the program; a total of 30 of the 42 students in the five cohorts (71%) participated. Using their previously developed Transformation Rubric for Engaged Learning, the authors categorized focus group data to identify changes in students' confidence, pride, skills, perceptions of the world, and personal identity at the transformative and nontransformative levels. Every participant reported at least one change; overall, the students averaged 8.3 changes. The vast majority (84%) of these changes were transformative. Middle-performing students showed a disproportionately higher rate of transformational changes in the areas of confidence and pride. The e-learning program appeared to have had a significant transformative impact on students, but additional research on the effect on middle-performing students is warranted.

  5. A geometric view on learning Bayesian network structures

    Czech Academy of Sciences Publication Activity Database

    Studený, Milan; Vomlel, Jiří; Hemmecke, R.

    2010-01-01

    Roč. 51, č. 5 (2010), s. 578-586 ISSN 0888-613X. [PGM 2008] R&D Projects: GA AV ČR(CZ) IAA100750603; GA MŠk(CZ) 1M0572; GA ČR GA201/08/0539 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : learning Bayesian networks * standard imset * inclusion neighborhood * geometric neighborhood * GES algorithm Subject RIV: BA - General Mathematics Impact factor: 1.679, year: 2010 http://library.utia.cas.cz/separaty/2010/MTR/studeny-0342804. pdf

  6. Appropriating Geometric Series as a Cultural Tool: A Study of Student Collaborative Learning

    Science.gov (United States)

    Carlsen, Martin

    2010-01-01

    The aim of this article is to illustrate how students, through collaborative small-group problem solving, appropriate the concept of geometric series. Student appropriation of cultural tools is dependent on five sociocultural aspects: involvement in joint activity, shared focus of attention, shared meanings for utterances, transforming actions and…

  7. Instant transformation of learned repulsion into motivational "wanting".

    Science.gov (United States)

    Robinson, Mike J F; Berridge, Kent C

    2013-02-18

    Learned cues for pleasant reward often elicit desire, which, in addicts, may become compulsive. According to the dominant view in addiction neuroscience and reinforcement modeling, such desires are the simple products of learning, coming from a past association with reward outcome. We demonstrate that cravings are more than merely the products of accumulated pleasure memories-even a repulsive learned cue for unpleasantness can become suddenly desired via the activation of mesocorticolimbic circuitry. Rats learned repulsion toward a Pavlovian cue (a briefly-inserted metal lever) that always predicted an unpleasant Dead Sea saltiness sensation. Yet, upon first reencounter in a novel sodium-depletion state to promote mesocorticolimbic reactivity (reflected by elevated Fos activation in ventral tegmentum, nucleus accumbens, ventral pallidum, and the orbitofrontal prefrontal cortex), the learned cue was instantly transformed into an attractive and powerful motivational magnet. Rats jumped and gnawed on the suddenly attractive Pavlovian lever cue, despite never having tasted intense saltiness as anything other than disgusting. Instant desire transformation of a learned cue contradicts views that Pavlovian desires are essentially based on previously learned values (e.g., prediction error or temporal difference models). Instead desire is recomputed at reencounter by integrating Pavlovian information with the current brain/physiological state. This powerful brain transformation reverses strong learned revulsion into avid attraction. When applied to addiction, related mesocorticolimbic transformations (e.g., drugs or neural sensitization) of cues for already-pleasant drug experiences could create even more intense cravings. This cue/state transformation helps define what it means to say that addiction hijacks brain limbic circuits of natural reward. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Geometric Positioning Accuracy Improvement of ZY-3 Satellite Imagery Based on Statistical Learning Theory

    Directory of Open Access Journals (Sweden)

    Niangang Jiao

    2018-05-01

    Full Text Available With the increasing demand for high-resolution remote sensing images for mapping and monitoring the Earth’s environment, geometric positioning accuracy improvement plays a significant role in the image preprocessing step. Based on the statistical learning theory, we propose a new method to improve the geometric positioning accuracy without ground control points (GCPs. Multi-temporal images from the ZY-3 satellite are tested and the bias-compensated rational function model (RFM is applied as the block adjustment model in our experiment. An easy and stable weight strategy and the fast iterative shrinkage-thresholding (FIST algorithm which is widely used in the field of compressive sensing are improved and utilized to define the normal equation matrix and solve it. Then, the residual errors after traditional block adjustment are acquired and tested with the newly proposed inherent error compensation model based on statistical learning theory. The final results indicate that the geometric positioning accuracy of ZY-3 satellite imagery can be improved greatly with our proposed method.

  9. Coaching Model + Clinical Playbook = Transformative Learning.

    Science.gov (United States)

    Fletcher, Katherine A; Meyer, Mary

    2016-01-01

    Health care employers demand that workers be skilled in clinical reasoning, able to work within complex interprofessional teams to provide safe, quality patient-centered care in a complex evolving system. To this end, there have been calls for radical transformation of nursing education including the development of a baccalaureate generalist nurse. Based on recommendations from the American Association of Colleges of Nursing, faculty concluded that clinical education must change moving beyond direct patient care by applying the concepts associated with designer, manager, and coordinator of care and being a member of a profession. To accomplish this, the faculty utilized a system of focused learning assignments (FLAs) that present transformative learning opportunities that expose students to "disorienting dilemmas," alternative perspectives, and repeated opportunities to reflect and challenge their own beliefs. The FLAs collected in a "Playbook" were scaffolded to build the student's competencies over the course of the clinical experience. The FLAs were centered on the 6 Quality and Safety Education for Nurses competencies, with 2 additional concepts of professionalism and systems-based practice. The FLAs were competency-based exercises that students performed when not assigned to direct patient care or had free clinical time. Each FLA had a lesson plan that allowed the student and faculty member to see the competency addressed by the lesson, resources, time on task, student instructions, guide for reflection, grading rubric, and recommendations for clinical instructor. The major advantages of the model included (a) consistent implementation of structured learning experiences by a diverse teaching staff using a coaching model of instruction; (b) more systematic approach to present learning activities that build upon each other; (c) increased time for faculty to interact with students providing direct patient care; (d) guaranteed capture of selected transformative

  10. The Audience Wheel as a Technic to Create Transformative Learning

    DEFF Research Database (Denmark)

    Helth, Poula

    2016-01-01

    Purpose: The purpose of this chapter is to document how a new learning technic may create transformative learning in leadership in an organisational practice. Design/methodology/approach: The learning methods developed in the learning in practice (LIP) project include aesthetic performances...... combined with reflections. The intention has been to explore how leadership may be transformed, when leaders work as a collective of leaders. The learning methods developed and tested in the LIP project are art-informed learning methods, concepts of liminality and reflection processes carried out...... in the leaders’ organisational practice. Findings: One of the most important findings in the LIP project in relation to transformative learning is a new learning technique based on guided processes rooted in aesthetic performance combined with reflections and separation of roles as performer and audience...

  11. Device-Free Localization via an Extreme Learning Machine with Parameterized Geometrical Feature Extraction

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2017-04-01

    Full Text Available Device-free localization (DFL is becoming one of the new technologies in wireless localization field, due to its advantage that the target to be localized does not need to be attached to any electronic device. In the radio-frequency (RF DFL system, radio transmitters (RTs and radio receivers (RXs are used to sense the target collaboratively, and the location of the target can be estimated by fusing the changes of the received signal strength (RSS measurements associated with the wireless links. In this paper, we will propose an extreme learning machine (ELM approach for DFL, to improve the efficiency and the accuracy of the localization algorithm. Different from the conventional machine learning approaches for wireless localization, in which the above differential RSS measurements are trivially used as the only input features, we introduce the parameterized geometrical representation for an affected link, which consists of its geometrical intercepts and differential RSS measurement. Parameterized geometrical feature extraction (PGFE is performed for the affected links and the features are used as the inputs of ELM. The proposed PGFE-ELM for DFL is trained in the offline phase and performed for real-time localization in the online phase, where the estimated location of the target is obtained through the created ELM. PGFE-ELM has the advantages that the affected links used by ELM in the online phase can be different from those used for training in the offline phase, and can be more robust to deal with the uncertain combination of the detectable wireless links. Experimental results show that the proposed PGFE-ELM can improve the localization accuracy and learning speed significantly compared with a number of the existing machine learning and DFL approaches, including the weighted K-nearest neighbor (WKNN, support vector machine (SVM, back propagation neural network (BPNN, as well as the well-known radio tomographic imaging (RTI DFL approach.

  12. Integrating transformative learning and action learning approaches to enhance ethical leadership for supervisors in the hotel business

    OpenAIRE

    Boonyuen Saranya; Charungkaittikul Suwithida; Ratana-ubol Archanya

    2016-01-01

    Ethical leadership is now increasingly focused in leadership development. The main purpose of this study is to explore two methods of adult learning, action learning and transformative learning, and to use the methods to enhance ethical leadership. Building ethical leadership requires an approach that focuses on personal values, beliefs, or frames of references, which is transformative learning. Transformative learning requires a series of meetings to conduct critical discourse and to follow ...

  13. Transformation of a Foucault shadowgram into the geometrical model of a shear interferogram by means of isophotometry

    Science.gov (United States)

    Zhevlakov, A. P.; Zatsepina, M. E.; Kirillovskii, V. K.

    2014-06-01

    The principles of transformation of a Foucault shadowgram into a quantitative map of wave-front deformation based on creation of a system of isophotes are unveiled. The presented studies and their results prove that there is a high degree of correspondence between a Foucault shadowgram and the geometrical model of a shear interferogram with respect to displaying wave-front deformations.

  14. Integrating transformative learning and action learning approaches to enhance ethical leadership for supervisors in the hotel business

    Directory of Open Access Journals (Sweden)

    Boonyuen Saranya

    2016-01-01

    Full Text Available Ethical leadership is now increasingly focused in leadership development. The main purpose of this study is to explore two methods of adult learning, action learning and transformative learning, and to use the methods to enhance ethical leadership. Building ethical leadership requires an approach that focuses on personal values, beliefs, or frames of references, which is transformative learning. Transformative learning requires a series of meetings to conduct critical discourse and to follow up the learning of learners. By organizing such action learning, human resource developers can optimize their time and effort more effectively. The authors have created a comprehensive model to integrate the two learning approaches in a general way that focuses not only on ethical leadership, but also on all kinds of behavioral transformation in the workplace in the hotel business or even other types of business.

  15. The Nature of Self-Directed Learning and Transformational Learning in Self-Managing Bipolar Disorder to Stay Well

    Science.gov (United States)

    Francik, Wendy A.

    2012-01-01

    The purpose of the research was to explore the self-directed learning and transformational learning experiences among persons with bipolar disorder. A review of previous research pointed out how personal experiences with self-directed learning and transformational learning facilitated individuals' learning to manage HIV, Methicillan-resitant…

  16. Reasoning with Paper and Pencil: The Role of Inscriptions in Student Learning of Geometric Series

    Science.gov (United States)

    Carlsen, Martin

    2009-01-01

    The purpose of this article is to analyse how students use inscriptions as tools for thinking and learning in mathematical problem-solving activities. The empirical context is that of learning about geometric series in a small group setting. What has been analysed is how students made use of inscriptions, self-made as well as those provided by…

  17. MRI reconstruction with joint global regularization and transform learning.

    Science.gov (United States)

    Tanc, A Korhan; Eksioglu, Ender M

    2016-10-01

    Sparsity based regularization has been a popular approach to remedy the measurement scarcity in image reconstruction. Recently, sparsifying transforms learned from image patches have been utilized as an effective regularizer for the Magnetic Resonance Imaging (MRI) reconstruction. Here, we infuse additional global regularization terms to the patch-based transform learning. We develop an algorithm to solve the resulting novel cost function, which includes both patchwise and global regularization terms. Extensive simulation results indicate that the introduced mixed approach has improved MRI reconstruction performance, when compared to the algorithms which use either of the patchwise transform learning or global regularization terms alone. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Geometrization of the Electromagnetic Field and Dark Matter

    CERN Document Server

    Pestov, I B

    2005-01-01

    A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized lectromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space--time which des...

  19. Transforming existing content into reusable Learning Objects

    NARCIS (Netherlands)

    Doorten, Monique; Giesbers, Bas; Janssen, José; Daniels, Jan; Koper, Rob

    2003-01-01

    Please cite as: Doorten, M., Giesbers, B., Janssen, J., Daniëls, J, & Koper, E.J.R., (2004). Transforming existing content into reusable learning objects. In R. McGreal, Online Education using Learning Objects (pp. 116-127). London: RoutledgeFalmer.

  20. Transformative unlearning: safety, discernment and communities of learning.

    Science.gov (United States)

    Macdonald, Geraldine

    2002-09-01

    This paper aims to stimulate awareness about the intellectual and emotional work of 'unlearning' in knowledge workers in the emerging learning age. The importance of providing a safe space for dialogue to promote transformative learning, through building 'communities of learning', is highlighted. Unlearning is conceptualized within a transformative education paradigm, one whose primary orientation is discernment, a personal growth process involving the activities of receptivity, recognition and grieving. The author utilizes the metaphor of an unfolding spiral path to explore her experience of needing to 'unlearn' a trusted nursing practice prior to 'learning' new best caring practices related to infant sleep positions. Macro and micro approaches to facilitating unlearning in organizations, in learners and in nurses are suggested.

  1. The Role of Transformational Learning in Women's Leadership Development

    Science.gov (United States)

    Suby-Long, Sallie

    2012-01-01

    Based on the theory of transformational learning, the purpose of this study was to conduct survey research with women graduates of two community-based leadership development programs to determine what characteristics describe transformational learning among women participants and to identify what learning activities and experiences may foster…

  2. Effectiveness of Discovery Learning-Based Transformation Geometry Module

    Science.gov (United States)

    Febriana, R.; Haryono, Y.; Yusri, R.

    2017-09-01

    Development of transformation geometry module is conducted because the students got difficulties to understand the existing book. The purpose of the research was to find out the effectiveness of discovery learning-based transformation geometry module toward student’s activity. Model of the development was Plomp model consisting preliminary research, prototyping phase and assessment phase. The research was focused on assessment phase where it was to observe the designed product effectiveness. The instrument was observation sheet. The observed activities were visual activities, oral activities, listening activities, mental activities, emotional activities and motor activities. Based on the result of the research, it is found that visual activities, learning activities, writing activities, the student’s activity is in the criteria very effective. It can be concluded that the use of discovery learning-based transformation geometry module use can increase the positive student’s activity and decrease the negative activity.

  3. Transform Modern Language Learning through Mobile Devices

    Science.gov (United States)

    Tuttle, Harry Grover

    2013-01-01

    College professors can transform their modern language classes through mobile devices. Their students' learning becomes more active, more personalized, more contextual, and more culturally authentic as illustrated through the author's modern language mobile learning classroom examples. In addition, their students engage in many diverse types of…

  4. Geometrization of the electromagnetic field and dark matter

    International Nuclear Information System (INIS)

    Pestov, I.B.

    2005-01-01

    A general concept of potential field is introduced. The potential field that one puts in correspondence with dark matter, has fundamental geometrical interpretation (parallel transport) and has intrinsically inherent local symmetry. The equations of dark matter field are derived that are invariant with respect to the local transformations. It is shown how to reduce these equations to the Maxwell equations. Thus, the dark matter field may be considered as generalized electromagnetic field and a simple solution of the old problem is given to connect electromagnetic field with geometrical properties of the physical manifold itself. It is shown that gauge fixing renders generalized electromagnetic field effectively massive while the Maxwell electromagnetic field remains massless. To learn more about interactions between matter and dark matter on the microscopical level (and to recognize the fundamental role of internal symmetry) the general covariant Dirac equation is derived in the Minkowski space-time which describes the interactions of spinor field with dark matter field

  5. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-01-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an…

  6. Image reconstruction by domain-transform manifold learning

    Science.gov (United States)

    Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.

    2018-03-01

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development

  7. Creating Activating Events for Transformative Learning in a Prison Classroom

    Science.gov (United States)

    Keen, Cheryl H.; Woods, Robert

    2016-01-01

    In this article, we interpreted, in light of Mezirow's theory of transformative learning, interviews with 13 educators regarding their work with marginalized adult learners in prisons in the northeastern United States. Transformative learning may have been aided by the educators' response to unplanned activating events, humor, and respect, and…

  8. Student journals: a means of assessing transformative learning in aging related courses.

    Science.gov (United States)

    Cohen, Adrienne L; Pitman Brown, Pamela; Morales, Justin P

    2015-01-01

    In courses where topics are sensitive or even considered taboo for discussion, it can be difficult to assess students' deeper learning. In addition, incorporating a wide variety of students' values and beliefs, designing instructional strategies and including varied assessments adds to the difficulty. Journal entries or response notebooks can highlight reflection upon others' viewpoints, class readings, and additional materials. These are useful across all educational levels in deep learning and comprehension strategies assessments. Journaling meshes with transformative learning constructs, allowing for critical self-reflection essential to transformation. Qualitative analysis of journals in a death and dying class reveals three transformative themes: awareness of others, questioning, and comfort. Students' journal entries demonstrate transformative learning via communication with others through increased knowledge/exposure to others' experiences and comparing/contrasting others' personal beliefs with their own. Using transformative learning within gerontology and geriatrics education, as well as other disciplined aging-related courses is discussed.

  9. Geometric metamorphosis.

    Science.gov (United States)

    Niethammer, Marc; Hart, Gabriel L; Pace, Danielle F; Vespa, Paul M; Irimia, Andrei; Van Horn, John D; Aylward, Stephen R

    2011-01-01

    Standard image registration methods do not account for changes in image appearance. Hence, metamorphosis approaches have been developed which jointly estimate a space deformation and a change in image appearance to construct a spatio-temporal trajectory smoothly transforming a source to a target image. For standard metamorphosis, geometric changes are not explicitly modeled. We propose a geometric metamorphosis formulation, which explains changes in image appearance by a global deformation, a deformation of a geometric model, and an image composition model. This work is motivated by the clinical challenge of predicting the long-term effects of traumatic brain injuries based on time-series images. This work is also applicable to the quantification of tumor progression (e.g., estimating its infiltrating and displacing components) and predicting chronic blood perfusion changes after stroke. We demonstrate the utility of the method using simulated data as well as scans from a clinical traumatic brain injury patient.

  10. From Broadway to Berlin: Transformative Learning through German Hip-Hop

    Science.gov (United States)

    Sosulski, Michael J.

    2013-01-01

    This article explores the possibilities for effecting Transformative Learning in students of German language and culture through the use of popular music videos, in both the target and the students' own languages. Transformative Learning, a term that has differing valences in numerous academic disciplines, is employed here in its social-scientific…

  11. A content-based digital image watermarking scheme resistant to local geometric distortions

    International Nuclear Information System (INIS)

    Yang, Hong-ying; Chen, Li-li; Wang, Xiang-yang

    2011-01-01

    Geometric distortion is known as one of the most difficult attacks to resist, as it can desynchronize the location of the watermark and hence cause incorrect watermark detection. Geometric distortion can be decomposed into two classes: global affine transforms and local geometric distortions. Most countermeasures proposed in the literature only address the problem of global affine transforms. It is a challenging problem to design a robust image watermarking scheme against local geometric distortions. In this paper, we propose a new content-based digital image watermarking scheme with good visual quality and reasonable resistance against local geometric distortions. Firstly, the robust feature points, which can survive various common image processing and global affine transforms, are extracted by using a multi-scale SIFT (scale invariant feature transform) detector. Then, the affine covariant local feature regions (LFRs) are constructed adaptively according to the feature scale and local invariant centroid. Finally, the digital watermark is embedded into the affine covariant LFRs by modulating the magnitudes of discrete Fourier transform (DFT) coefficients. By binding the watermark with the affine covariant LFRs, the watermark detection can be done without synchronization error. Experimental results show that the proposed image watermarking is not only invisible and robust against common image processing operations such as sharpening, noise addition, and JPEG compression, etc, but also robust against global affine transforms and local geometric distortions

  12. Transformative Learning: A Case for Using Grounded Theory as an Assessment Analytic

    Science.gov (United States)

    Patterson, Barbara A. B.; Munoz, Leslie; Abrams, Leah; Bass, Caroline

    2015-01-01

    Transformative Learning Theory and pedagogies leverage disruptive experiences as catalysts for learning and teaching. By facilitating processes of critical analysis and reflection that challenge assumptions, transformative learning reframes what counts as knowledge and the sources and processes for gaining and producing it. Students develop a…

  13. Lifelong Learning from Natural Disasters: Transformative Group-Based Learning at Philippine Universities

    Science.gov (United States)

    Dahl, Kari Kragh Blume; Millora, Christopher Malagad

    2016-01-01

    This study explores reflective experience during transformative, group-based learning among university leaders following a natural disaster such as a typhoon in two Philippine universities. Natural disasters are recurrent phenomena in many parts of the world, but the literature largely ignores their impact on lifelong human learning, for instance…

  14. Transformative Education through International Service-­Learning: Realising an Ethical Ecology of Learning. Routledge Research in International and Comparative Education

    Science.gov (United States)

    Bamber, Philip M.

    2016-01-01

    Transformative learning is a compelling approach to learning that is becoming increasingly popular in a diverse range of educational settings and encounters. This book reconceptualises transformative learning through an investigation of the learning process and outcomes of International Service-Learning (ISL), a pedagogical approach that blends…

  15. Learning for transformation of water governance

    NARCIS (Netherlands)

    Blackmore, Chris; Bommel, van Severine; Bruin, de Annemarieke; Vries, de Jasper; Westberg, Lotten; Powell, Neil; Foster, Natalie; Collins, Kevin; Roggero, Pier Paolo; Seddaiu, Giovanna

    2016-01-01

    This paper considers how learning for transformation of water governance in the context of climate change adaptation can be designed for and supported, drawing examples from the international climate change adaptation and water governance project (CADWAGO). The project explicitly set out to design

  16. Gaia: "Thinking Like a Planet" as Transformative Learning

    Science.gov (United States)

    Haigh, Martin

    2014-01-01

    Transformative learning may involve gentle perspective widening or something more traumatic. This paper explores the impact of a transformative pedagogy in a course that challenges learners to "think like a planet". Among six sources of intellectual anxiety, learners worry about: why Gaia Theory is neglected by their other courses; the…

  17. Adult Learning, Transformative Education, and Indigenous Epistemology

    Science.gov (United States)

    McEachern, Diane

    2016-01-01

    This chapter describes an innovative program that weaves together adult learning, transformative education, and indigenous epistemology in order to prepare Alaskan rural indigenous social service providers to better serve their communities.

  18. Connecting and Reflecting: Transformative Learning in Academic Libraries

    Science.gov (United States)

    Hooper, Michaela D. Willi; Scharf, Emily

    2017-01-01

    This literature review is intended to examine transformative learning within the context of academic libraries and its applications for librarians. Although the main audience is academic librarians who facilitate student learning, it may also be of interest to other practitioners and researchers who are interested in applying transformative…

  19. Parallel implementation of geometric transformations

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, K A; Ip, H H.S.

    1982-10-01

    An implementation of digitized picture rotation and magnification based on Weiman's algorithm is presented. In a programmable array machine routines to perform small transformations code efficiently. The method illustrates the interpolative nature of the algorithm. 6 references.

  20. Transformative Learning in Postapartheid South Africa: Disruption, Dilemma, and Direction

    Science.gov (United States)

    Cox, Amanda J.; John, Vaughn M.

    2016-01-01

    The catalyst for learning and change in transformative learning theory has mostly been explained in terms of a disorientation in a relatively stable life. This article explores a South African, nonformal adult learning program, as a source of "orienting dilemmas," which catalyze learning and change in lives that are regularly and…

  1. Transforming Leadership Identity in a Virtual Environment: Learning about the Leading Self

    Science.gov (United States)

    Rusch, Edith A.; Brunner, C. Cryss

    2013-01-01

    Schein contends that "unless leaders become learners themselves … acknowledg[ing] vulnerabilities and uncertainties--then transformational learning will never take that lead to transformative learning, the authors engaged educational leadership doctoral students in an 'Experimental Simulation', using masked identities in a virtual…

  2. Hospital transformation and organisational learning.

    Science.gov (United States)

    Ho, W

    1999-12-01

    Kwong Wah Hospital was founded by the charity organisation Tung Wah Group of Hospitals some 88 years ago, with management transfer to the Hong Kong Hospital Authority in 1991. Capitalizing both from the traditional caring culture of its founder, as well as opportunities in the new management environment, the hospital has scored remarkable successes in service quality, community partnership, organisational effectiveness, and staff development. Underpinning these transformations were Structure, Process, People, and Culture strategies. The learning imperative is heavily mandated or the success of each of these strands of development. Indeed, the embodiment of a learning organisation culture provides the impetus in sustaining the change momentum, towards achieving the Vision of becoming a 'Most Preferred Hospital' in Hong Kong.

  3. Application of Riesz transforms to the isotropic AM-PM decomposition of geometrical-optical illusion images.

    Science.gov (United States)

    Sierra-Vázquez, Vicente; Serrano-Pedraza, Ignacio

    2010-04-01

    The existence of a special second-order mechanism in the human visual system, able to demodulate the envelope of visual stimuli, suggests that spatial information contained in the image envelope may be perceptually relevant. The Riesz transform, a natural isotropic extension of the Hilbert transform to multidimensional signals, was used here to demodulate band-pass filtered images of well-known visual illusions of length, size, direction, and shape. We show that the local amplitude of the monogenic signal or envelope of each illusion image conveys second-order information related to image holistic spatial structure, whereas the local phase component conveys information about the spatial features. Further low-pass filtering of the illusion image envelopes creates physical distortions that correspond to the subjective distortions perceived in the illusory images. Therefore the envelope seems to be the image component that physically carries the spatial information about these illusions. This result contradicts the popular belief that the relevant spatial information to perceive geometrical-optical illusions is conveyed only by the lower spatial frequencies present in their Fourier spectrum.

  4. Towards Automatic Learning of Heuristics for Mechanical Transformations of Procedural Code

    Directory of Open Access Journals (Sweden)

    Guillermo Vigueras

    2017-01-01

    Full Text Available The current trends in next-generation exascale systems go towards integrating a wide range of specialized (co-processors into traditional supercomputers. Due to the efficiency of heterogeneous systems in terms of Watts and FLOPS per surface unit, opening the access of heterogeneous platforms to a wider range of users is an important problem to be tackled. However, heterogeneous platforms limit the portability of the applications and increase development complexity due to the programming skills required. Program transformation can help make programming heterogeneous systems easier by defining a step-wise transformation process that translates a given initial code into a semantically equivalent final code, but adapted to a specific platform. Program transformation systems require the definition of efficient transformation strategies to tackle the combinatorial problem that emerges due to the large set of transformations applicable at each step of the process. In this paper we propose a machine learning-based approach to learn heuristics to define program transformation strategies. Our approach proposes a novel combination of reinforcement learning and classification methods to efficiently tackle the problems inherent to this type of systems. Preliminary results demonstrate the suitability of this approach.

  5. Learning with touchscreen devices: game strategies to improve geometric thinking

    Science.gov (United States)

    Soldano, Carlotta; Arzarello, Ferdinando

    2016-03-01

    The aim of this paper is to reflect on the importance of the students' game-strategic thinking during the development of mathematical activities. In particular, we hypothesise that this type of thinking helps students in the construction of logical links between concepts during the "argumentation phase" of the proving process. The theoretical background of our study lies in the works of J. Hintikka, a Finnish logician, who developed a new type of logic, based on game theory, called the logic of inquiry. In order to experiment with this new approach to the teaching and learning of mathematics, we have prepared five game-activities based on geometric theorems in which two players play against each other in a multi-touch dynamic geometric environment (DGE). In this paper, we present the design of the first game-activity and the relationship between it and the logic of inquiry. Then, adopting the theoretical framework of the instrumental genesis by Vérillon and Rabardel (EJPE 10: 77-101, 1995), we will present and analyse significant actions and dialogues developed by students while they are solving the game. We focus on the presence of a particular way of playing the game introduced by the students, the "reflected game", and highlight its functions for the development of the task.

  6. EDUCATION REFORMS TOWARDS 21ST CENTURY SKILLS: TRANSFORMING STUDENTS' LEARNING EXPERIENCES THROUGH EFFECTIVE LEARNING ENVIRONMENTS

    OpenAIRE

    Harriet Wambui Njui

    2018-01-01

    This paper reviews literature on learning environments with a view to making recommendations on how teachers could create effective and high-quality learning environments that provide learners with transformative learning experiences as they go through the process of education. An effective learning environment is critical because quality education, which is essential to real learning and human development, is influenced by factors both inside and outside the classroom. Learning institutions ...

  7. Measures of student success with textbook transformations: the Affordable Learning Georgia Initiative

    Directory of Open Access Journals (Sweden)

    Emily Croteau

    2017-03-01

    Full Text Available In 2014, the state of Georgia’s budget supported a University System of Georgia (USG initiative: Affordable Learning Georgia (ALG. The initiative was implemented via Textbook Transformation Grants, which provided grants to USG faculty, libraries and librarians, and institutions to “transform their use of textbooks and other learning materials into using lower cost options”, in other words to use open educational resources (OER in lieu of a traditional bound textbook. The Round One Textbook Transformation Grants have already shown to be successful in that they saved students approximately $760,000.  What is not known, is the collective impact on student learning. This study examines the learning gains or losses pre- and post-transformation in ALG Round One courses where traditional resources were replaced with OER.  It estimates differences between pre- and post- textbook transformation across the following outcomes: 1 Drop Fail Withdraw (DFW rates, 2 rates of completion, 3 numbers of students receiving a final grade of A or B, C and D, 4 numerical final grades as a percent, 5 final exam grades as a percent, and, 6 course-specific assessment grades measured in percent. Twenty-four data sets were analyzed for DFW rate, eight data sets for completion rate, fourteen data sets for grade distribution, three data sets for final exam grades, three data sets for course specific assessment and one data set for final grades. The null hypothesis that there would be no differences between pre- and post-transformation rates in these learning outcomes was supported.  Thus, this study demonstrates that the USG’s ALG initiative helped students save money without negatively impacting learning outcomes. In addition, it is the first of its kind to measure some of these learning outcomes (e.g. final exam grade, assessment grade, and distribution of letter grades at this scale.

  8. Geometric phases for mixed states during cyclic evolutions

    International Nuclear Information System (INIS)

    Fu Libin; Chen Jingling

    2004-01-01

    The geometric phases of cyclic evolutions for mixed states are discussed in the framework of unitary evolution. A canonical 1-form is defined whose line integral gives the geometric phase, which is gauge invariant. It reduces to the Aharonov and Anandan phase in the pure state case. Our definition is consistent with the phase shift in the proposed experiment (Sjoeqvist et al 2000 Phys. Rev. Lett. 85 2845) for a cyclic evolution if the unitary transformation satisfies the parallel transport condition. A comprehensive geometric interpretation is also given. It shows that the geometric phases for mixed states share the same geometric sense with the pure states

  9. The chicken or the egg? Investigating the transformational impact of learning technology

    OpenAIRE

    Buchan, Janet F.

    2011-01-01

    This study aimed to investigate the transformational impact of introducing significant new learning technology in an Australian university over the time period 2007–2009. The exploration of this transformation is grounded in a social–ecological systems approach to the management of technology enhanced learning environments in the face of constant change. The transformational impact is described using the Adaptive Cycle Framework. The single case study had a whole-of-institution systems focus....

  10. Geometrical Similarity Transformations in Dynamic Geometry Environment Geogebra

    Science.gov (United States)

    Andraphanova, Natalia V.

    2015-01-01

    The subject of the article is usage of modern computer technologies through the example of interactive geometry environment Geogebra as an innovative technology of representing and studying of geometrical material which involves such didactical opportunities as vizualisation, simulation and dynamics. There is shown a classification of geometric…

  11. A Concept Transformation Learning Model for Architectural Design Learning Process

    Science.gov (United States)

    Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming

    2016-01-01

    Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…

  12. From eLearning to Digital Transformation: A Framework and Implications for L&D

    OpenAIRE

    Seufert, Sabine; Meier, Christoph

    2016-01-01

    How can the learning function (L&D) support learning and innovation ability of the entire organization in times of digital transformation? The core challenges for the learning function are twofold. Competence clarification: What are relevant “digital competences” in terms of knowledge, skills and attitudes that employees need in order to cope with digital transformation? Competence development: How to organize, design and support learning processes contributing to digital competences and digi...

  13. Memory Transformation Enhances Reinforcement Learning in Dynamic Environments.

    Science.gov (United States)

    Santoro, Adam; Frankland, Paul W; Richards, Blake A

    2016-11-30

    Over the course of systems consolidation, there is a switch from a reliance on detailed episodic memories to generalized schematic memories. This switch is sometimes referred to as "memory transformation." Here we demonstrate a previously unappreciated benefit of memory transformation, namely, its ability to enhance reinforcement learning in a dynamic environment. We developed a neural network that is trained to find rewards in a foraging task where reward locations are continuously changing. The network can use memories for specific locations (episodic memories) and statistical patterns of locations (schematic memories) to guide its search. We find that switching from an episodic to a schematic strategy over time leads to enhanced performance due to the tendency for the reward location to be highly correlated with itself in the short-term, but regress to a stable distribution in the long-term. We also show that the statistics of the environment determine the optimal utilization of both types of memory. Our work recasts the theoretical question of why memory transformation occurs, shifting the focus from the avoidance of memory interference toward the enhancement of reinforcement learning across multiple timescales. As time passes, memories transform from a highly detailed state to a more gist-like state, in a process called "memory transformation." Theories of memory transformation speak to its advantages in terms of reducing memory interference, increasing memory robustness, and building models of the environment. However, the role of memory transformation from the perspective of an agent that continuously acts and receives reward in its environment is not well explored. In this work, we demonstrate a view of memory transformation that defines it as a way of optimizing behavior across multiple timescales. Copyright © 2016 the authors 0270-6474/16/3612228-15$15.00/0.

  14. The Chicken or the Egg? Investigating the Transformational Impact of Learning Technology

    Science.gov (United States)

    Buchan, Janet F.

    2011-01-01

    This study aimed to investigate the transformational impact of introducing significant new learning technology in an Australian university over the time period 2007-2009. The exploration of this transformation is grounded in a social-ecological systems approach to the management of technology enhanced learning environments in the face of constant…

  15. Transformative Teaching and Learning by Developing

    Science.gov (United States)

    Kallioinen, Outi

    2011-01-01

    The scholarship of teaching at Laurea University of Applied Sciences is undergoing a great change. The purpose of this article is to reflect the SWOT-analysis produced by 13 teachers at the end of the 2-year PD programme for Transformative Teaching concerning the implementation of the new pedagogical model of Laurea called Learning by Developing…

  16. Transforming Identities through Transforming Care: How People with Learning Disabilities Experience Moving out of Hospital

    Science.gov (United States)

    Head, Annabel; Ellis-Caird, Helen; Rhodes, Louisa; Parkinson, Kathie

    2018-01-01

    Background: People with learning disabilities are moving out of hospitals as part of the Transforming Care programme, although thus far their views on how they have experienced this have not been researched. Materials and Methods: A qualitative design was used to explore how people with learning disabilities experienced moving as part of…

  17. The Role of Spirituality in Transition to Parenthood: Qualitative Research Using Transformative Learning Theory.

    Science.gov (United States)

    Klobučar, Nataša Rijavec

    2016-08-01

    This article presents results of a qualitative study of 12 adult couples making transition to parenthood. The aim of the study was to research the meaning of transition to parenthood through the lens of transformative learning theory. Transformative learning theory explains learning through meaning-making of that life experience. In this paper, the spiritual dimension of learning is emphasized. An important part of research methodology included biographical method, using semi-structured interviews before and after the birth of the first child. The research showed that transformative learning occurs in different spheres of life during transition to parenthood. This paper discusses the spiritual dimension of learning, meaning-making and presents results of the research.

  18. The Influence of Supervisor's Transformational Leadership on Learning Culture and Learning Transfer of Nuclear R and D Personnel

    International Nuclear Information System (INIS)

    Min, Sang-Ki; Hwang, Hye-Seon; Jin, You-Rim; Lee, Eui-Jin; Lee, Soo-Jin

    2017-01-01

    Transformational leadership means that supervisors try to support the members individually, and encourage them to find new methods and approaches. In this study, it was identified empirically that a supervisor's transformational leadership has a strong influence on the learning culture and learning transfer of nuclear R and D personnel. To develop the competency of R and D personnel, not only formal education programs but also informal learning such as workplace learning have been carried out in the nuclear R and D organization. In this situation, transformational leadership has an effect on willingness and behavior of nuclear R and D personnel on the formal and informal learning. Therefore, transformational leadership is crucial factor in the human resource development system. The leadership required by them is not a one-sided order, but rather individual consideration, charisma, and intellectual stimulation for their nuclear R and D members. As a point of nuclear training and education, it is necessary to consider the operation of leadership programs that strengthen the transformational leadership of the project managers.

  19. Modelling and experimental investigation of geometrically graded NiTi shape memory alloys

    International Nuclear Information System (INIS)

    Shariat, Bashir S; Liu, Yinong; Rio, Gerard

    2013-01-01

    To improve actuation controllability of a NiTi shape memory alloy component in applications, it is desirable to create a wide stress window for the stress-induced martensitic transformation in the alloy. One approach is to create functionally graded NiTi with a geometric gradient in the actuation direction. This geometric gradient leads to transformation load and displacement gradients in the structure. This paper reports a study of the pseudoelastic behaviour of geometrically graded NiTi by means of mechanical model analysis and experimentation using three types of sample geometry. Closed-form solutions are obtained for nominal stress–strain variation of such components under cyclic tensile loading and the predictions are validated with experimental data. The geometrically graded NiTi samples exhibit a distinctive positive stress gradient for the stress-induced martensitic transformation and the slope of the stress gradient can be adjusted by sample geometry design. (paper)

  20. Transformative Learning and Professional Identity Formation During International Health Electives: A Qualitative Study Using Grounded Theory.

    Science.gov (United States)

    Sawatsky, Adam P; Nordhues, Hannah C; Merry, Stephen P; Bashir, M Usmaan; Hafferty, Frederic W

    2018-03-27

    International health electives (IHEs) are widely available during residency and provide unique experiences for trainees. Theoretical models of professional identity formation and transformative learning may provide insight into residents' experiences during IHEs. The purpose of this study was to explore transformative learning and professional identity formation during resident IHEs and characterize the relationship between transformative learning and professional identity formation. The authors used a constructivist grounded theory approach, with the sensitizing concepts of transformative learning and professional identity formation to analyze narrative reflective reports of residents' IHEs. The Mayo International Health Program supports residents from all specialties across three Mayo Clinic sites. In 2015, the authors collected narrative reflective reports from 377 IHE participants dating from 2001-2014. Reflections were coded and themes were organized into a model for transformative learning during IHEs, focusing on professional identity. Five components of transformative learning were identified during IHEs: a disorienting experience; an emotional response; critical reflection; perspective change; and a commitment to future action. Within the component of critical reflection three domains relating to professional identity were identified: making a difference; the doctor-patient relationship; and medicine in its "purest form." Transformation was demonstrated through perspective change and a commitment to future action, including continued service, education, and development. IHEs provide rich experiences for transformative learning and professional identity formation. Understanding the components of transformative learning may provide insight into the interaction between learner, experiences, and the influence of mentors in the process of professional identity formation.

  1. Spherical projections and liftings in geometric tomography

    DEFF Research Database (Denmark)

    Goodey, Paul; Kiderlen, Markus; Weil, Wolfgang

    2011-01-01

    We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies and to rad......We consider a variety of integral transforms arising in Geometric Tomography. It will be shown that these can be put into a common framework using spherical projection and lifting operators. These operators will be applied to support functions and surface area measures of convex bodies...... and to radial functions of star bodies. We then investigate averages of lifted projections and show that they correspond to self-adjoint intertwining operators. We obtain formulas for the eigenvalues of these operators and use them to ascertain circumstances under which tomographic measurements determine...... the original bodies. This approach via mean lifted projections leads us to some unexpected relationships between seemingly disparate geometric constructions....

  2. Transforming and Turning around Low-Performing Schools: The Role of Online Learning

    Science.gov (United States)

    Corry, Michael; Carlson-Bancroft, Angela

    2014-01-01

    This review of the literature examines online learning as a core strategy for bold, dramatic curricular reform within transformational or turnaround models in improving low-performing K-12 schools. The analysis of the literature in this area found benefits of online learning in transforming and turning around low-performing schools to include: (a)…

  3. An Ecological Perspective of Power in Transformational Learning: A Case Study of Ethical Vegans.

    Science.gov (United States)

    McDonald, Barbara; Cervero, Ronald M.; Courtenay, Bradley C.

    1999-01-01

    In-depth interviews with 12 ethical vegans revealed the process of becoming vegetarian. Transformative learning proved to be a journey rather than a one-time decision. Mezirow's transformative theory does not adequately account for the power relations central to this process. Therefore, transformative learning should be viewed more holistically.…

  4. A deep learning framework for causal shape transformation.

    Science.gov (United States)

    Lore, Kin Gwn; Stoecklein, Daniel; Davies, Michael; Ganapathysubramanian, Baskar; Sarkar, Soumik

    2018-02-01

    Recurrent neural network (RNN) and Long Short-term Memory (LSTM) networks are the common go-to architecture for exploiting sequential information where the output is dependent on a sequence of inputs. However, in most considered problems, the dependencies typically lie in the latent domain which may not be suitable for applications involving the prediction of a step-wise transformation sequence that is dependent on the previous states only in the visible domain with a known terminal state. We propose a hybrid architecture of convolution neural networks (CNN) and stacked autoencoders (SAE) to learn a sequence of causal actions that nonlinearly transform an input visual pattern or distribution into a target visual pattern or distribution with the same support and demonstrated its practicality in a real-world engineering problem involving the physics of fluids. We solved a high-dimensional one-to-many inverse mapping problem concerning microfluidic flow sculpting, where the use of deep learning methods as an inverse map is very seldom explored. This work serves as a fruitful use-case to applied scientists and engineers in how deep learning can be beneficial as a solution for high-dimensional physical problems, and potentially opening doors to impactful advance in fields such as material sciences and medical biology where multistep topological transformations is a key element. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Transformative Learning Theory in Gerontology: Nontraditional Students

    Science.gov (United States)

    Brown, Pamela Pitman; Brown, Candace S.

    2015-01-01

    Mezirow (1978) applied and used Transformative Learning Theoretical (TLT) processes while studying women who reentered academics during the 1970s. Similar to Mezirow's original 1975 work, we identify "factors that impeded or facilitated" participants' progress to obtain their undergraduate degree during the traditional student…

  6. The Relationship among Transformational Teaching and Student Motivation and Learning

    Science.gov (United States)

    Noland, Aaron; Richards, Keith

    2014-01-01

    Transformational leadership is a well-documented and validated leadership perspective studied in management and organizational contexts that has recently been applied to the instructional context. The current study predicted a positive relationship between teacher transformational leadership and learning, and motivation. A population of 273…

  7. Geometrical interpretation of optical absorption

    Energy Technology Data Exchange (ETDEWEB)

    Monzon, J. J.; Barriuso, A. G.; Sanchez-Soto, L. L. [Departamento de Optica, Facultad de Fisica, Universidad Complutense, E-28040 Madrid (Spain); Montesinos-Amilibia, J. M. [Departamento de Geometria y Topologia, Facultad de Matematicas, Universidad Complutense, E-28040 Madrid (Spain)

    2011-08-15

    We reinterpret the transfer matrix for an absorbing system in very simple geometrical terms. In appropriate variables, the system appears as performing a Lorentz transformation in a (1 + 3)-dimensional space. Using homogeneous coordinates, we map that action on the unit sphere, which is at the realm of the Klein model of hyperbolic geometry. The effects of absorption appear then as a loxodromic transformation, that is, a rhumb line crossing all the meridians at the same angle.

  8. Combining lived experience with the facilitation of enquiry-based learning: a 'trigger' for transformative learning.

    Science.gov (United States)

    Stacey, G; Oxley, R; Aubeeluck, A

    2015-09-01

    What is known on the subject The values underpinning recovery-orientated practice are recited in the literature and influential in the content of mental health nurse education internationally. However, scepticism exists regarding the degree to which students' assimilate the principles of recovery into their practice due to the troublesome and challenging nature of learning at a transformational level, also known as threshold concept learning. Evaluation suggests that this combination of educational approaches positively influences students' prior understandings, beliefs and values in relation to the prospect for people with significant mental health problems to recover. The components of threshold concepts are useful as a deductive framework for the evaluation of educational initiatives which attempt to initiate transformative learning. While this forum clearly holds significant potential for student development, support and preparation is needed for both the student and the facilitator in order to enable the possibility of learning which influences attitudes, beliefs and practice. The aim of this paper is to discuss the potential for combining lived experience of mental distress with the facilitation of enquiry-based learning (EBL) to act as a trigger for transformative learning in the context of promoting the understanding of mental health 'recovery' in nurse education.The values underpinning recovery-orientated practice are recited in the literature and influential in mental health nurse education internationally. However, scepticism exists regarding the degree to which students assimilate into their practice. An open-ended was distributed to a cohort of pre-registration nursing students receiving the co-facilitated EBL (n = 112). Data demonstrated how the specific attributes of this educational approach were identified by students as impacting positively on ill-informed preconceptions, understanding of complex theory and their future practice. Results were

  9. On open questions in the geometric approach to structural learning Bayesian nets

    Czech Academy of Sciences Publication Activity Database

    Studený, Milan; Vomlel, Jiří

    2011-01-01

    Roč. 52, č. 5 (2011), s. 627-640 ISSN 0888-613X. [Workshop on Uncertainty Processing WUPES'09 /8./. Liblice, 19.09.2009-23.09.2009] R&D Projects: GA MŠk(CZ) 1M0572; GA ČR GA201/08/0539; GA ČR GEICC/08/E010 Grant - others:GA MŠk(CZ) 2C06019 Institutional research plan: CEZ:AV0Z10750506 Keywords : structural learning Bayesian nets * standard imset * polytope * geometric neighborhood * differential imset Subject RIV: BA - General Mathematics Impact factor: 1.948, year: 2011 http://library.utia.cas.cz/separaty/2011/MTR/studeny-0358907. pdf

  10. Transformative Learning Approaches for Public Relations Pedagogy

    Science.gov (United States)

    Motion, Judy; Burgess, Lois

    2014-01-01

    Public relations educators are frequently challenged by students' flawed perceptions of public relations. Two contrasting case studies are presented in this paper to illustrate how socially-oriented paradigms may be applied to a real-client project to deliver a transformative learning experience. A discourse-analytic approach is applied within the…

  11. Transforming RN education: clinical learning and clinical knowledge development.

    Science.gov (United States)

    Benner, P

    1993-04-01

    Transforming RN education has the potential for transforming clinical teaching and learning for all students. The returning RN student offers possibilities for clinical learning that the generic student does not have, but this should not cause us to limit the returning RN student to the generic level. Where possible innovative programs should be developed to move the RN student from baccalaureate level to the Master's level. As educators, we should take the opportunity to increase the numbers of nurses who are educationally prepared to move into advanced levels of practice. The returning RN student offers a rich human resource for the profession, and a rich resource for improving our clinical teaching as well as our practice.

  12. Transgressing the norm: Transformative agency in community-based learning for sustainability in southern African contexts

    Science.gov (United States)

    Lotz-Sisitka, Heila; Mukute, Mutizwa; Chikunda, Charles; Baloi, Aristides; Pesanayi, Tichaona

    2017-12-01

    Environment and sustainability education processes are often oriented to change and transformation, and frequently involve the emergence of new forms of human activity. However, not much is known about how such change emerges from the learning process, or how it contributes to the development of transformative agency in community contexts. The authors of this article present four cross-case perspectives of expansive learning and transformative agency development in community-based education in southern Africa, studying communities pursuing new activities that are more socially just and sustainable. The four cases of community learning and transformative agency focus on the following activities: (1) sustainable agriculture in Lesotho; (2) seed saving and rainwater harvesting in Zimbabwe; (3) community-based irrigation scheme management in Mozambique; and (4) biodiversity conservation co-management in South Africa. The case studies all draw on cultural-historical activity theory to guide learning and change processes, especially third-generation cultural-historical activity theory (CHAT), which emphasises expansive learning in collectives across interacting activity systems. CHAT researchers, such as the authors of this article, argue that expansive learning can lead to the emergence of transformative agency. The authors extend their transformative agency analysis to probe if and how expansive learning might also facilitate instances of transgressing norms - viewed here as embedded practices which need to be reframed and changed in order for sustainability to emerge.

  13. A Professionalism Curricular Model to Promote Transformative Learning Among Residents.

    Science.gov (United States)

    Foshee, Cecile M; Mehdi, Ali; Bierer, S Beth; Traboulsi, Elias I; Isaacson, J Harry; Spencer, Abby; Calabrese, Cassandra; Burkey, Brian B

    2017-06-01

    Using the frameworks of transformational learning and situated learning theory, we developed a technology-enhanced professionalism curricular model to build a learning community aimed at promoting residents' self-reflection and self-awareness. The RAPR model had 4 components: (1) R ecognize : elicit awareness; (2) A ppreciate : question assumptions and take multiple perspectives; (3) P ractice : try new/changed perspectives; and (4) R eflect : articulate implications of transformed views on future actions. The authors explored the acceptability and practicality of the RAPR model in teaching professionalism in a residency setting, including how residents and faculty perceive the model, how well residents carry out the curricular activities, and whether these activities support transformational learning. A convenience sample of 52 postgraduate years 1 through 3 internal medicine residents participated in the 10-hour curriculum over 4 weeks. A constructivist approach guided the thematic analysis of residents' written reflections, which were a required curricular task. A total of 94% (49 of 52) of residents participated in 2 implementation periods (January and March 2015). Findings suggested that RAPR has the potential to foster professionalism transformation in 3 domains: (1) attitudinal, with participants reporting they viewed professionalism in a more positive light and felt more empathetic toward patients; (2) behavioral, with residents indicating their ability to listen to patients increased; and (3) cognitive, with residents indicating the discussions improved their ability to reflect, and this helped them create meaning from experiences. Our findings suggest that RAPR offers an acceptable and practical strategy to teach professionalism to residents.

  14. Optimal quantum learning of a unitary transformation

    International Nuclear Information System (INIS)

    Bisio, Alessandro; Chiribella, Giulio; D'Ariano, Giacomo Mauro; Facchini, Stefano; Perinotti, Paolo

    2010-01-01

    We address the problem of learning an unknown unitary transformation from a finite number of examples. The problem consists in finding the learning machine that optimally emulates the examples, thus reproducing the unknown unitary with maximum fidelity. Learning a unitary is equivalent to storing it in the state of a quantum memory (the memory of the learning machine) and subsequently retrieving it. We prove that, whenever the unknown unitary is drawn from a group, the optimal strategy consists in a parallel call of the available uses followed by a 'measure-and-rotate' retrieving. Differing from the case of quantum cloning, where the incoherent 'measure-and-prepare' strategies are typically suboptimal, in the case of learning the 'measure-and-rotate' strategy is optimal even when the learning machine is asked to reproduce a single copy of the unknown unitary. We finally address the problem of the optimal inversion of an unknown unitary evolution, showing also in this case the optimality of the 'measure-and-rotate' strategies and applying our result to the optimal approximate realignment of reference frames for quantum communication.

  15. Engaging First Graders in Transformational Early Childhood Emergent Learning Themes

    Science.gov (United States)

    Pendergrass, Amanda Daniel

    2013-01-01

    The purpose of this qualitative case study was to encourage learners to care for others and make a difference in the world through Reggio Emilia-inspired teaching and learning practice that promoted transformational education. Students were anticipated to take an active role in helping to develop the transformational educational curriculum.…

  16. Learning for Transformation: Empowering the Nigerian Child ...

    African Journals Online (AJOL)

    This deficiency in learning is undoubtedly endeared by the “Banking concept of education” practiced within the system as captured by Paulo Freire; has become the concern of all and sundry in our society. This paper therefore, explores the viability of drama as a potent device for learners' empowerment and transformation: ...

  17. Language and learning in transformative learning spaces – multilingual learner’s stories

    DEFF Research Database (Denmark)

    Maslo, Elina

    : Practice to theory, theory to practice. Procedia – Social and Behavioral Sciences. Elsevier. Van Manen, M. (1997). Researching Lived Experience. The Althouse Press.  Intent of the Publication:This publication intends to provide a more nuanced understanding of human learning processes, not least......Proposal information:The necessity of knowing languages, many languages in fact, is emphasised in many different contexts in Europe, often in connection with globalisation. Languages are referred to as a key that opens a door – or many doors. Language is “a key to education”, ”a key to employment...... to success – language and learning in transformative learning spaces” is a study of multilingual people’s experiences of their (language) learning processes. It is aimed to improve our understanding of human learning processes, not least the subjective dimensions of these processes. Despite rapid development...

  18. Spiking, Bursting, and Population Dynamics in a Network of Growth Transform Neurons.

    Science.gov (United States)

    Gangopadhyay, Ahana; Chakrabartty, Shantanu

    2017-04-27

    This paper investigates the dynamical properties of a network of neurons, each of which implements an asynchronous mapping based on polynomial growth transforms. In the first part of this paper, we present a geometric approach for visualizing the dynamics of the network where each of the neurons traverses a trajectory in a dual optimization space, whereas the network itself traverses a trajectory in an equivalent primal optimization space. We show that as the network learns to solve basic classification tasks, different choices of primal-dual mapping produce unique but interpretable neural dynamics like noise shaping, spiking, and bursting. While the proposed framework is general enough, in this paper, we demonstrate its use for designing support vector machines (SVMs) that exhibit noise-shaping properties similar to those of ΣΔ modulators, and for designing SVMs that learn to encode information using spikes and bursts. It is demonstrated that the emergent switching, spiking, and burst dynamics produced by each neuron encodes its respective margin of separation from a classification hyperplane whose parameters are encoded by the network population dynamics. We believe that the proposed growth transform neuron model and the underlying geometric framework could serve as an important tool to connect well-established machine learning algorithms like SVMs to neuromorphic principles like spiking, bursting, population encoding, and noise shaping.

  19. Robust Learning Control Design for Quantum Unitary Transformations.

    Science.gov (United States)

    Wu, Chengzhi; Qi, Bo; Chen, Chunlin; Dong, Daoyi

    2017-12-01

    Robust control design for quantum unitary transformations has been recognized as a fundamental and challenging task in the development of quantum information processing due to unavoidable decoherence or operational errors in the experimental implementation of quantum operations. In this paper, we extend the systematic methodology of sampling-based learning control (SLC) approach with a gradient flow algorithm for the design of robust quantum unitary transformations. The SLC approach first uses a "training" process to find an optimal control strategy robust against certain ranges of uncertainties. Then a number of randomly selected samples are tested and the performance is evaluated according to their average fidelity. The approach is applied to three typical examples of robust quantum transformation problems including robust quantum transformations in a three-level quantum system, in a superconducting quantum circuit, and in a spin chain system. Numerical results demonstrate the effectiveness of the SLC approach and show its potential applications in various implementation of quantum unitary transformations.

  20. Iyengar Yoga for Motherhood: Teaching Transformation in a Nonformal Learning Environment

    Science.gov (United States)

    Tate, Amy

    2016-01-01

    This chapter looks at ways in which pregnant women adopt the practices of Iyengar yoga, its value as a mode of transformative learning within a nonformal learning space, and the culture of body maintenance that drives practitioners.

  1. Transformative Learning and the Road to Maternal Leadership

    Science.gov (United States)

    Panton, Rachel

    2016-01-01

    This study of three Africana (Black women of the Diaspora) holistic health educators shows how their woman-centered learning cultures led them to personal transformation and leadership roles. Understanding their development can inform educational programming and support services for Black women students.

  2. Using Data Collection Apps and Single-Case Designs to Research Transformative Learning in Adults

    Science.gov (United States)

    Roessger, Kevin M.; Greenleaf, Arie; Hoggan, Chad

    2017-01-01

    To overcome situational hurdles when researching transformative learning in adults, we outline a research approach using single-case research designs and smartphone data collection apps. This approach allows researchers to better understand learners' current lived experiences and determine the effects of transformative learning interventions on…

  3. The Student Perspective: Can the Use of Technologies Transform Learning?

    OpenAIRE

    O'Donnell, Eileen

    2010-01-01

    PUBLISHED This chapter explores students? perspectives on the transformations that the use of technology has brought to higher education. The use of technologies in higher education facilitates flexible learning environments but the benefits to students who engage with these technologies will only be realised if the design is pedagogically sound. The pedagogic approach employed by lecturers when designing their e-learning platforms or learning management systems has the cap...

  4. Transformative Learning Model for Youth Life Skills Entrepreneurs in Poor Weavers Songket Palembang

    Directory of Open Access Journals (Sweden)

    Ayi Olim

    2015-05-01

    Full Text Available Non-formal education serves to develop the potential of students with an emphasis on the mastery of knowledge and functional skills and professional attitude and personality development, is now understood as an alternative approach to the future education with an emphasis on the mastery of skills. transformative learning, life skills and entrepreneurship as a modality of model development. learner/ prospective participants learn from the lower-middle group (in the shadow of the transmission of learning should be the owner of the learning process and should be able to identify the capabilities and environmental problems, reflect and take action in developing entrepreneurial abilities. The model requires changing patterns of transformative learning and utilization participants life skills learning, facilitation and management support from stakeholders

  5. The geometric phase analysis method based on the local high resolution discrete Fourier transform for deformation measurement

    International Nuclear Information System (INIS)

    Dai, Xianglu; Xie, Huimin; Wang, Huaixi; Li, Chuanwei; Wu, Lifu; Liu, Zhanwei

    2014-01-01

    The geometric phase analysis (GPA) method based on the local high resolution discrete Fourier transform (LHR-DFT) for deformation measurement, defined as LHR-DFT GPA, is proposed to improve the measurement accuracy. In the general GPA method, the fundamental frequency of the image plays a crucial role. However, the fast Fourier transform, which is generally employed in the general GPA method, could make it difficult to locate the fundamental frequency accurately when the fundamental frequency is not located at an integer pixel position in the Fourier spectrum. This study focuses on this issue and presents a LHR-DFT algorithm that can locate the fundamental frequency with sub-pixel precision in a specific frequency region for the GPA method. An error analysis is offered and simulation is conducted to verify the effectiveness of the proposed method; both results show that the LHR-DFT algorithm can accurately locate the fundamental frequency and improve the measurement accuracy of the GPA method. Furthermore, typical tensile and bending tests are carried out and the experimental results verify the effectiveness of the proposed method. (paper)

  6. Designing and Evaluating Students' Transformative Learning

    Directory of Open Access Journals (Sweden)

    Nina B. Namaste

    2017-12-01

    Full Text Available Transformative learning hinges on navigating cognitive dissonance; thus, intercultural competency assignments and experiences need to be integrated into study abroad/away courses to help students process and make sense of the cognitive dissonance such an experience provides. Assignments, therefore, need to consciously and intentionally triangulate learning by addressing the read (course readings, the lived/observed (conversations, interactions, activities, excursions, observations about public portrayals of culture, etc., and the compared (home culture vs. host culture. The hope is to improve students’ experiences so that semesters abroad are consistently deep, enriching, and intellectual as opposed to simply an extended tourist sojourn. This article documents the process by which I designed for and assessed, via an in-depth analysis of students’ texts/writings, students’ transformation of their intercultural competency skills and development. In addition, I compared students’ works from two differing semesters to evaluate whether transformation in intercultural competency is inherent in the nature of study abroad or must be explicitly taught and cultivated. My Scholarship of Teaching and Learning (SoTL project corroborated the almost ten years of research that confirm our fears: exposure to another culture is not enough; studying and living abroad does not necessarily lead to increased intercultural learning. Meaningful, integrative, “learning-laden,” and transformative study abroad experiences hinge on students’ ability to make sense of cognitive dissonance. Intercultural competency assignments, therefore, need to be fully and intentionally designed and integrated into such experiences, and evaluated to document such growth. L’apprentissage transformationnel repose sur la manière de naviguer la dissonance cognitive. Par conséquent, les devoirs qui traitent de la compétence interculturelle ainsi que les expériences n

  7. Transforming Low Socioeconomic Status Schools to Learning for Well-Being Schools

    DEFF Research Database (Denmark)

    Nunez, Heilyn Camacho

    2016-01-01

    This article presents the initial finding about the complexity of dealing with a transformation of a low socioeconomic school into a learning for well-being school. The article looks at the problem through the lens of complexity theory to discuss the different components, subsystems and the diffe......This article presents the initial finding about the complexity of dealing with a transformation of a low socioeconomic school into a learning for well-being school. The article looks at the problem through the lens of complexity theory to discuss the different components, subsystems...

  8. Using the Discovering Model to Facilitate Transformational Learning and Career Development

    Science.gov (United States)

    Kroth, Michael; Boverie, Patricia

    2009-01-01

    Transformative Learning Theory has become one of the leading adult learning theories today and yet students, practitioners, and faculty can find it difficult to use. This useful theory has been applied to a variety of settings, including helping to describe the process which occurs as life mission is related to self directed learning. In the book,…

  9. The Analysis of Geometrical Reasoning Ability Viewed from Self-Efficacy on Connected Mathematic Project (CMP Learning Etnomathematics-Based

    Directory of Open Access Journals (Sweden)

    Desi Dwi Damaryanti

    2017-11-01

    Full Text Available The purpose of this research was to know the geometrical reasoning ability of the students viewed from the self-efficacy through the learning of  Connected Mathematic Project (CMP ethnomathematic-based. The type of this research was qualitative which was descriptive. To obtained the validity of the qualitative data, the checking technique used in this research was sources triangulation, which had been done by comparing the suitability of the obtained data from the results of the interview and the test. Population of this research was the students of grade VIII at SMP Negeri 1 Sidoharjo and the sample was the students from VIII A Class. At the final, 12 research subjects were chosen to represent the group of level 1 self-efficacy, level 2 self-efficacy, level 3 self-efficacy, level 4 self efficacy, level 5 self-efficacy, and level 6 self-efficacy. In this research, there was a finding which shows us that the students with high self-efficacy had low ability to finish the geometrical reasoning ability test, while the students with low self-efficacy had the ability to finish the geometrical reasoning ability test. The factors which affected the finding were the motivations and the interest of learning mathematics which was affecting the attitude of the students in the classroom.

  10. Transformative Learning and the Form That Transforms: Towards a Psychosocial Theory of Recognition Using Auto/ Biographical Narrative Research

    Science.gov (United States)

    West, Linden

    2014-01-01

    In this article, I interrogate the changing forms that may be fundamental to transformative learning and how these are best chronicled and understood. Drawing on auto/biographical narrative research, I challenge the continuing primacy of a kind of overly disembodied, decontextualized cognition as the basis of transformation. Notions of epistemic…

  11. Towards Sustaining Levels of Reflective Learning: How Do Transformational Leadership, Task Interdependence, and Self-Efficacy Shape Teacher Learning in Schools?

    Directory of Open Access Journals (Sweden)

    Arnoud Oude Groote Beverborg

    2015-03-01

    Full Text Available Whereas cross-sectional research has shown that transformational leadership, task interdependence, and self-efficacy are positively related to teachers’ engagement in reflective learning activities, the causal direction of these relations needs further inquiry. At the same time, individual teacher learning might play a mutual role in strengthening school-level capacity for sustained improvement. Building on previous research, this longitudinal study therefore examines how transformational leadership, task interdependence, self-efficacy, and teachers’ engagement in self-reflection mutually affect each other over time. Questionnaire data gathered on three measurement occasions from 655 Dutch Vocational Education and Training teachers was analyzed using a multivariate Latent Difference Score model. Results indicate that self-reflection and task interdependence reciprocally influence each other’s change. A considerate and stimulating transformational leader was found to contribute to this process. Change in self-efficacy was influenced by self-reflection, indicating that learning leads to competency beliefs. Together, the findings point to the important role transformational leadership practices play in facilitating teamwork, and sustaining teachers’ levels of learning in schools.

  12. Action Research as a Space for Transforming Learning Cultures

    Directory of Open Access Journals (Sweden)

    Elżbieta Wołodźko

    2015-12-01

    Full Text Available The article presents a three-year educational action research project on autonomous and reflective learning. Students and teachers, being actively engaged in many learning practices, were both participating in process(es of developing educational and research community. These interrelated processes framed a dynamic space for constructing and reconstructing the participants’ learning cultures. Thanks to linking educational and research aspects of students’ activity and to interpenetration of practice and reflection, action research generates particular conditions for learning cultures’ transformation, from “traditional” toward “new” ones, based on reflectivity, authenticity and empowerment. The dynamism of learning cultures was connected to various and conscious and reflective types of educational participation, which affected autonomy of studying (in its numerous dimensions and types, being in turn a constitutive element of participants’ learning cultures.

  13. Storytelling: An Ancient Human Technology and Critical-Creative Pedagogy for Transformative Learning

    Science.gov (United States)

    Kalogeras, Stavroula

    2013-01-01

    In the era of e-learning, student-centered approaches and constructivists learning environments are critical success factors. The inherent interactivity of the Internet and the emotional engagement of story can lead to transformative learning experiences in media rich environments. This paper focuses on Web-Based Transmedia Storytelling…

  14. A Transformative Perspective on the Scholarship of Teaching and Learning

    Science.gov (United States)

    Cranton, Patricia

    2011-01-01

    In this paper, I explore the Scholarship of Teaching and Learning through the lens of transformative learning theory and critical theory. In doing so, I expand the notion of a Scholarship of Teaching so as to go beyond the solving of practical problems in teaching and the improvement of teaching effectiveness. I focus on an emancipatory…

  15. Transformative Learning Following Job Loss: A Dissertation Renewal

    Science.gov (United States)

    Benway, Robert

    2017-01-01

    This study renews a doctoral dissertation written in 2003 on transformative learning following job loss. An abbreviated literature review compares corporate and worker circumstances from the original study to the present time. Findings show that corporations choose reductions in force due to pressure from investors instead of productivity, and…

  16. Geometric representation of the generator of duality in massless and massive p-form field theories

    International Nuclear Information System (INIS)

    Contreras, Ernesto; Martinez, Yisely; Leal, Lorenzo

    2010-01-01

    We study the invariance under duality transformations in massless and massive p-form field theories and obtain the Noether generators of the infinitesimal transformations that correspond to this symmetry. These generators can be realized in geometrical representations that generalize the loop representation of the Maxwell field, allowing for a geometrical interpretation which is studied.

  17. Transformation of an academic medical center: lessons learned from restructuring and downsizing.

    Science.gov (United States)

    Woodard, B; Fottler, M D; Kilpatrick, A O

    1999-01-01

    This article reviews management literature on health care transformation and describes the processes, including restructuring, job redesign, and downsizing, involved in one academic medical center's experience. The article concludes with lessons learned at each of the stages of the transformation process: planning, implementation, and process continuation. Managerial implications for similar transformation efforts in other health care organizations are suggested.

  18. Unsupervised learning of a steerable basis for invariant image representations

    Science.gov (United States)

    Bethge, Matthias; Gerwinn, Sebastian; Macke, Jakob H.

    2007-02-01

    There are two aspects to unsupervised learning of invariant representations of images: First, we can reduce the dimensionality of the representation by finding an optimal trade-off between temporal stability and informativeness. We show that the answer to this optimization problem is generally not unique so that there is still considerable freedom in choosing a suitable basis. Which of the many optimal representations should be selected? Here, we focus on this second aspect, and seek to find representations that are invariant under geometrical transformations occuring in sequences of natural images. We utilize ideas of 'steerability' and Lie groups, which have been developed in the context of filter design. In particular, we show how an anti-symmetric version of canonical correlation analysis can be used to learn a full-rank image basis which is steerable with respect to rotations. We provide a geometric interpretation of this algorithm by showing that it finds the two-dimensional eigensubspaces of the average bivector. For data which exhibits a variety of transformations, we develop a bivector clustering algorithm, which we use to learn a basis of generalized quadrature pairs (i.e. 'complex cells') from sequences of natural images.

  19. Detecting Structural Metadata with Decision Trees and Transformation-Based Learning

    National Research Council Canada - National Science Library

    Kim, Joungbum; Schwarm, Sarah E; Ostendorf, Mari

    2004-01-01

    .... Specifically, combinations of decision trees and language models are used to predict sentence ends and interruption points and given these events transformation based learning is used to detect edit...

  20. Transformational Leadership in the Classroom: Fostering Student Learning, Student Participation, and Teacher Credibility

    Science.gov (United States)

    Bolkan, San; Goodboy, Alan K.

    2009-01-01

    The purpose of this study was to examine the relationships between transformational leadership in college classrooms (i.e., charisma, individualized consideration, intellectual stimulation), student learning outcomes (i.e., cognitive learning, affective learning, state motivation, communication satisfaction), student participation, and student…

  1. Transformational Learning and Role of Self-Authorship in Developing Women Leaders

    Science.gov (United States)

    Collay, Michelle; Cooper, Joanne

    2008-01-01

    Given the challenges of the workplace and the historic exclusion of women and people of color from positional leadership, this dual case study explores women's experiences in two graduate programs designed to support transformational learning of educational leaders. Data included participants' structured reflections on learning about leadership,…

  2. Leading to Transgress: Critical Considerations for Transforming Leadership Learning.

    Science.gov (United States)

    Osteen, Laura; Guthrie, Kathy L; Jones, Tamara Bertrand

    2016-12-01

    The culturally relevant leadership learning (CRLL) model is explored through the lens of theory and practice. This creates critical questions to guide leadership educators in the ongoing process of transforming leadership programs. © 2016 Wiley Periodicals, Inc., A Wiley Company.

  3. Numerical nonlinear complex geometrical optics algorithm for the 3D Calderón problem

    DEFF Research Database (Denmark)

    Delbary, Fabrice; Knudsen, Kim

    2014-01-01

    to the generalized Laplace equation. The 3D problem was solved in theory in late 1980s using complex geometrical optics solutions and a scattering transform. Several approximations to the reconstruction method have been suggested and implemented numerically in the literature, but here, for the first time, a complete...... computer implementation of the full nonlinear algorithm is given. First a boundary integral equation is solved by a Nystrom method for the traces of the complex geometrical optics solutions, second the scattering transform is computed and inverted using fast Fourier transform, and finally a boundary value...

  4. Using Transformative Learning as a Framework to Explore Women and Running

    Science.gov (United States)

    Hayduk, Dina

    2011-01-01

    This qualitative narrative inquiry explored women's self-perceptions changed through regular participation in running. Transformative learning theory was considered as a possible explanation for the learning and changes adult women experienced. In-depth interviews of 11 adult women who have been running between 1 to 4 years were conducted. Based…

  5. Jack Mezirow's Conceptualisation of Adult Transformative Learning: A Review

    Science.gov (United States)

    Calleja, Colin

    2014-01-01

    This paper traces the evolution of Jack Mezirow's transformative learning theory and its conceptualisation. It discusses the three major influences, namely Thomas Khun's philosophical conception of paradigm, Freire's conception of conscientisation and consciousness growth, and Habermas' domains of learning and the discussion of…

  6. A Critical Comparison of Transformation and Deep Approach Theories of Learning

    Science.gov (United States)

    Howie, Peter; Bagnall, Richard

    2015-01-01

    This paper reports a critical comparative analysis of two popular and significant theories of adult learning: the transformation and the deep approach theories of learning. These theories are operative in different educational sectors, are significant, respectively, in each, and they may be seen as both touching on similar concerns with learning…

  7. Unlock The Genıus Within:NEUROBIOLOGICAL TRAUMA, TEACHING, AND TRANSFORMATIVE LEARNING

    Directory of Open Access Journals (Sweden)

    Tojde

    2005-07-01

    Full Text Available Here, Daniel S. Janik, MD, PhD, argues replacing education and teaching with non-traumatic, curiosity-based, discovery-driven, and mentor-assisted transformational learning. Unlock the Genius Within is an easy read that explains-in conversational manner-the newest ideas on neurobiological and transformational learning beginning with what's wrong with education and ending with a call for reader participation in developing an applying neurobiological learning and transformational learning theory and methodology. Janik draws extensively from his own experiences first as a physician working with psychological recovery from trauma, and then as an educator and linguist in applying neurobiological-based transformational learning in clinics, classrooms, and tutoring. Features:· Descriptions of classical and contemporary research alongside allusions to popular movies and television programs· Suggested further readings· Neurobiological learning web resourcesThroughout this book, the author incorporates humor, wisdom, and anecdotes to draw readers into traditionally incomprehensible concepts and information that demonstrates transformational learning. It will be of interest to teachers (postsecondary, secondary, and ESL, administrators, counselors, parents, students, and medical researchers. http://www.rowmaneducation.com/ISBN/1578862914 Throughout this book, the author incorporates humor, wisdom, and anecdotes to draw readers into traditionally incomprehensible concepts and information that demonstrates transformational learning. It will be of interest to teachers (postsecondary, secondary, and ESL, administrators, counselors, parents, students, and medical researchers. About The Author Dr. Daniel S. Janik is a physician and University Studies Coordinator at Intercultural Communications College, a private English second language and college preparation school in Honolulu, Hawaii, USA. Reviews for Unlock the Genius Within: Neurobiological Trauma

  8. Translating and transforming (a) CALL for leadership for learning

    DEFF Research Database (Denmark)

    Weinreich, Elvi; Bjerg, Helle

    2015-01-01

    "The paper pursues the argument that the process of translation is not solely a linguistic exercise. It also implies methodological and conceptual questions related to the translation and as such transformation of general and theoretical research based models of leadership for learning...

  9. Exploring Phonetic Realization in Danish by Transformation-Based Learning

    DEFF Research Database (Denmark)

    Uneson, Marcus; Schachtenhaufen, Ruben

    2011-01-01

    We align phonemic and semi-narrow phonetic transcriptions in the DanPASS corpus and extend the phonemic description with sound classes and with traditional phonetic features. From this representation, we induce rules for phonetic realization by Transformation-Based Learning (TBL). The rules thus ...

  10. Transformed Telepresence and Its Association with Learning in Computer-Supported Collaborative Learning: A Case Study in English Learning and Its Evaluation

    Science.gov (United States)

    Ting, Yu-Liang; Tai, Yaming; Chen, Jun-Horng

    2017-01-01

    Telepresence has been playing an important role in a mediated learning environment. However, the current design of telepresence seems to be dominated by the emulation of physical human presence. With reference to social constructivism learning and the recognition of individuals as intelligent entities, this study explored the transformation of…

  11. Positioning Learning Design: Learner Experience and the challenges of transforming teaching practice

    NARCIS (Netherlands)

    Johnson, Mark; Griffiths, Dai; Hanslot, Zubair

    2010-01-01

    Johnson, M., Griffiths, D., & Hanslot, Z. (2010). Positioning Learning Design: Learner Experience and the challenges of transforming teaching practice. In D. Griffiths, & R. Koper (Eds.), Rethinking Learning and Employment at a Time of Economic Uncertainty. Proceedings of the 6th TENCompetence Open

  12. The transformation of Teacher Work through digital learning platforms

    DEFF Research Database (Denmark)

    Christiansen, René Boyer; Andreasen, Lars Birch

    four transformation tendencies in the educational system regarding teacher work and discuss these in relation to a recent research project which aims at looking at the organizational and didactical implications for teachers working with digital platforms in the Danish primary school.......This paper examines a new mandatory initiative in the Danish primary school regarding digital learning platforms for students, teachers and parents and regards this as a part of a global process that leads to a transformation of teacher work and thus everyday life for teachers in schools. We list...

  13. Understanding the long-term influence of EIA on organisational learning and transformation

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Megan, E-mail: 31836179@student.murdoch.edu.au [Environmental and Conservation Sciences, Murdoch University (Australia); Morrison-Saunders, Angus, E-mail: a.morrison-saunders@murdoch.edu.au [Environmental and Conservation Sciences, Murdoch University, Australia, Research Unit for Environmental Sciences and Management, North-West University (South Africa)

    2017-05-15

    This research is an attempt to verify the notion postulated by Robert Bartlett and Lynton Caldwell that the full benefits of environmental impact assessment (EIA) would take decades to be realized. While EIA is intended to directly influence decision-making regarding new development proposals, the process is also expected to lead to organisational learning and transformation over time. Our aim was to examine the influence of EIA on a single Western Australian proponent with sustained experience in the process to understand how EIA is used within the organisation and to seek evidence of transformation of the organisation's purpose and mission. The research reviewed literature in order to identify key influences of EIA on organisations, along with semi-structured staff interviews and document analysis for the case study organisation. Ascertaining causality that involvement in EIA processes influences or effects organisational learning and transformation is a challenge in the face of other societal events. Document analysis and interviewee data indicates that the action-forcing nature of EIA did influence proponent behavior through the creation of internal processes seeking to ensure robust design of new projects that would satisfy environmental protection expectations, without the need to trigger formal EIA. Evidence of EIA values and thinking were apparent within internal documentation, including the evolving mission statement. Our research indicates that participation in the EIA process can positively influence organisational learning and transformation by guiding internal change for decision-making. - Highlights: • The long-term influence of EIA on a proponent organisation is investigated. • EIA promotes internal organisational learning and transformation. • Analysis of mission statements can indicate the influence of EIA on organisations. • Organisations aligned with EIA values can reduce the need to engage in formal EIA.

  14. Understanding the long-term influence of EIA on organisational learning and transformation

    International Nuclear Information System (INIS)

    Jones, Megan; Morrison-Saunders, Angus

    2017-01-01

    This research is an attempt to verify the notion postulated by Robert Bartlett and Lynton Caldwell that the full benefits of environmental impact assessment (EIA) would take decades to be realized. While EIA is intended to directly influence decision-making regarding new development proposals, the process is also expected to lead to organisational learning and transformation over time. Our aim was to examine the influence of EIA on a single Western Australian proponent with sustained experience in the process to understand how EIA is used within the organisation and to seek evidence of transformation of the organisation's purpose and mission. The research reviewed literature in order to identify key influences of EIA on organisations, along with semi-structured staff interviews and document analysis for the case study organisation. Ascertaining causality that involvement in EIA processes influences or effects organisational learning and transformation is a challenge in the face of other societal events. Document analysis and interviewee data indicates that the action-forcing nature of EIA did influence proponent behavior through the creation of internal processes seeking to ensure robust design of new projects that would satisfy environmental protection expectations, without the need to trigger formal EIA. Evidence of EIA values and thinking were apparent within internal documentation, including the evolving mission statement. Our research indicates that participation in the EIA process can positively influence organisational learning and transformation by guiding internal change for decision-making. - Highlights: • The long-term influence of EIA on a proponent organisation is investigated. • EIA promotes internal organisational learning and transformation. • Analysis of mission statements can indicate the influence of EIA on organisations. • Organisations aligned with EIA values can reduce the need to engage in formal EIA.

  15. Transformation through expeditionary change using online learning and competence-building technologies

    Directory of Open Access Journals (Sweden)

    Donald M. Norris

    2011-12-01

    Full Text Available This paper presents a patterns-based model of the evolution of learning and competence-building technologies, grounded in examples of current practice. The model imagines five simple stages in how institutions use ‘expeditionary change' to innovate more nimbly. It builds upon three assertions. First, the pervasiveness of web-based knowledge-sharing in higher education's communities, observatories and social networks makes it easier to: introduce relevant technologies, find people doing similar things, learn from their experiences, find and collaborate with early adopters of learning technologies, hear about relevant innovations, and discover and exploit news of opportunities, threats and trends. Second, expeditionary change based on such knowledge-sharing facilitates transformations in: production functions for learning, roles of faculty and mentors, business models, patterns and cadences of interactivity, use of open resources, and the roles of learners. Third, those transformations make it easier for disruptive forms of higher education to emerge; for example, dynamically updated curricula that address emerging and important knowledge gaps, and thereby increase students' employability.

  16. Transformations to diagonal bases in closed-loop quantum learning control experiments

    International Nuclear Information System (INIS)

    Cardoza, David; Trallero-Herrero, Carlos; Langhojer, Florian; Rabitz, Herschel; Weinacht, Thomas

    2005-01-01

    This paper discusses transformations between bases used in closed-loop learning control experiments. The goal is to transform to a basis in which the number of control parameters is minimized and in which the parameters act independently. We demonstrate a simple procedure for testing whether a unitary linear transformation (i.e., a rotation amongst the control variables) is sufficient to reduce the search problem to a set of globally independent variables. This concept is demonstrated with closed-loop molecular fragmentation experiments utilizing shaped, ultrafast laser pulses

  17. Multiscale unfolding of real networks by geometric renormalization

    Science.gov (United States)

    García-Pérez, Guillermo; Boguñá, Marián; Serrano, M. Ángeles

    2018-06-01

    Symmetries in physical theories denote invariance under some transformation, such as self-similarity under a change of scale. The renormalization group provides a powerful framework to study these symmetries, leading to a better understanding of the universal properties of phase transitions. However, the small-world property of complex networks complicates application of the renormalization group by introducing correlations between coexisting scales. Here, we provide a framework for the investigation of complex networks at different resolutions. The approach is based on geometric representations, which have been shown to sustain network navigability and to reveal the mechanisms that govern network structure and evolution. We define a geometric renormalization group for networks by embedding them into an underlying hidden metric space. We find that real scale-free networks show geometric scaling under this renormalization group transformation. We unfold the networks in a self-similar multilayer shell that distinguishes the coexisting scales and their interactions. This in turn offers a basis for exploring critical phenomena and universality in complex networks. It also affords us immediate practical applications, including high-fidelity smaller-scale replicas of large networks and a multiscale navigation protocol in hyperbolic space, which betters those on single layers.

  18. Koszul Information Geometry and Souriau Geometric Temperature/Capacity of Lie Group Thermodynamics

    Directory of Open Access Journals (Sweden)

    Frédéric Barbaresco

    2014-08-01

    Full Text Available The François Massieu 1869 idea to derive some mechanical and thermal properties of physical systems from “Characteristic Functions”, was developed by Gibbs and Duhem in thermodynamics with the concept of potentials, and introduced by Poincaré in probability. This paper deals with generalization of this Characteristic Function concept by Jean-Louis Koszul in Mathematics and by Jean-Marie Souriau in Statistical Physics. The Koszul-Vinberg Characteristic Function (KVCF on convex cones will be presented as cornerstone of “Information Geometry” theory, defining Koszul Entropy as Legendre transform of minus the logarithm of KVCF, and Fisher Information Metrics as hessian of these dual functions, invariant by their automorphisms. In parallel, Souriau has extended the Characteristic Function in Statistical Physics looking for other kinds of invariances through co-adjoint action of a group on its momentum space, defining physical observables like energy, heat and momentum as pure geometrical objects. In covariant Souriau model, Gibbs equilibriums states are indexed by a geometric parameter, the Geometric (Planck Temperature, with values in the Lie algebra of the dynamical Galileo/Poincaré groups, interpreted as a space-time vector, giving to the metric tensor a null Lie derivative. Fisher Information metric appears as the opposite of the derivative of Mean “Moment map” by geometric temperature, equivalent to a Geometric Capacity or Specific Heat. We will synthetize the analogies between both Koszul and Souriau models, and will reduce their definitions to the exclusive Cartan “Inner Product”. Interpreting Legendre transform as Fourier transform in (Min,+ algebra, we conclude with a definition of Entropy given by a relation mixing Fourier/Laplace transforms: Entropy = (minus Fourier(Min,+ o Log o Laplace(+,X.

  19. Transformative Learning for a Sustainable Future: An Exploration of Pedagogies for Change at an Alternative College

    Directory of Open Access Journals (Sweden)

    Joanna Blake

    2013-12-01

    Full Text Available Educators and policy makers have long recognised the central role that education can play in creating a more sustainable and equitable world. Yet some question whether current processes across mainstream higher education prepare learners sufficiently to graduate with the capabilities or motivation to shape and create a future that is life-sustaining. This paper presents findings from a qualitative research project carried out by Plymouth University in association with Schumacher College, Devon, UK. Schumacher College is an alternative, civil society college, owned by the Dartington Hall Trust that claims to provide transformative learning opportunities within a broad context of sustainability. The study explored the nature and application of transformative learning as a pedagogical approach to advance change towards sustainability. If learners claimed transformational learning experiences, the research asked whether, and to what extent, this transformation could be attributed to the pedagogies employed at the College. The paper begins by setting out the broad background to the relationship between marginal and mainstream educational settings, and definitions and theoretical underpinnings of transformative learning, and then leads into the research design and findings. The potential for transformative pedagogies to be applied to and employed within the wider higher education (HE sector is then discussed, and the overall findings and conclusions are presented.

  20. Geometric Bioinspired Networks for Recognition of 2-D and 3-D Low-Level Structures and Transformations.

    Science.gov (United States)

    Bayro-Corrochano, Eduardo; Vazquez-Santacruz, Eduardo; Moya-Sanchez, Eduardo; Castillo-Munis, Efrain

    2016-10-01

    This paper presents the design of radial basis function geometric bioinspired networks and their applications. Until now, the design of neural networks has been inspired by the biological models of neural networks but mostly using vector calculus and linear algebra. However, these designs have never shown the role of geometric computing. The question is how biological neural networks handle complex geometric representations involving Lie group operations like rotations. Even though the actual artificial neural networks are biologically inspired, they are just models which cannot reproduce a plausible biological process. Until now researchers have not shown how, using these models, one can incorporate them into the processing of geometric computing. Here, for the first time in the artificial neural networks domain, we address this issue by designing a kind of geometric RBF using the geometric algebra framework. As a result, using our artificial networks, we show how geometric computing can be carried out by the artificial neural networks. Such geometric neural networks have a great potential in robot vision. This is the most important aspect of this contribution to propose artificial geometric neural networks for challenging tasks in perception and action. In our experimental analysis, we show the applicability of our geometric designs, and present interesting experiments using 2-D data of real images and 3-D screw axis data. In general, our models should be used to process different types of inputs, such as visual cues, touch (texture, elasticity, temperature), taste, and sound. One important task of a perception-action system is to fuse a variety of cues coming from the environment and relate them via a sensor-motor manifold with motor modules to carry out diverse reasoned actions.

  1. Thin-Film Power Transformers

    Science.gov (United States)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  2. The roles of electronic books in the transformation of learning and instruction

    NARCIS (Netherlands)

    Huang, Ronghuai; Chen, Nian-Shing; Kang, Myunghee; McKenney, Susan; Churchill, Daniel

    2014-01-01

    Huang, R., Chen, N., Kang, M. McKenney, S. & Churchill, D. (2013). The roles of electronic books in the transformation of learning and instruction. In N. Chen, R. Huang, Kinshuk, Y. Li, D. G. Sampson (Eds.) Proceedings of the IEEE 13th International Conference on Advanced Learning Technologies

  3. Women Educational Leaders' Narratives: The Dynamics of Service Learning on Training and Transformation

    OpenAIRE

    Davis, Dannielle Joy; Major, Amanda; Cook, Debra; Bell, Janel

    2015-01-01

    Service learning strengthens all involved: Students, faculty members, the community, and higher education institutions. Benefits of service learning for students include gaining real world experiences, personal and transformative outcomes (Conway, Amel, & Gerwien’s, 2009), as well as higher order thinking from reflection on the experience (Molee, Henry, Sessa, & McKinney-Prupis, 2010). To understand the dynamics of service learning upon students' learning and transformati...

  4. Lie group model neuromorphic geometric engine for real-time terrain reconstruction from stereoscopic aerial photos

    Science.gov (United States)

    Tsao, Thomas R.; Tsao, Doris

    1997-04-01

    In the 1980's, neurobiologist suggested a simple mechanism in primate visual cortex for maintaining a stable and invariant representation of a moving object. The receptive field of visual neurons has real-time transforms in response to motion, to maintain a stable representation. When the visual stimulus is changed due to motion, the geometric transform of the stimulus triggers a dual transform of the receptive field. This dual transform in the receptive fields compensates geometric variation in the stimulus. This process can be modelled using a Lie group method. The massive array of affine parameter sensing circuits will function as a smart sensor tightly coupled to the passive imaging sensor (retina). Neural geometric engine is a neuromorphic computing device simulating our Lie group model of spatial perception of primate's primal visual cortex. We have developed the computer simulation and experimented on realistic and synthetic image data, and performed a preliminary research of using analog VLSI technology for implementation of the neural geometric engine. We have benchmark tested on DMA's terrain data with their result and have built an analog integrated circuit to verify the computational structure of the engine. When fully implemented on ANALOG VLSI chip, we will be able to accurately reconstruct a 3D terrain surface in real-time from stereoscopic imagery.

  5. Transformative Learning, Affect, and Reciprocal Care in Community Engagement

    Science.gov (United States)

    Holmes, Ashley J.

    2015-01-01

    Drawing on interviews with writing teachers, this article highlights some of the affective responses that may arise for students, community partners, and teachers when we situate our pedagogies in public sites beyond the classroom. I analyze a teacher-narrated moment of student distress to demonstrate how theories of transformative learning might…

  6. Peer Mentorship and Transformational Learning: PhD Student Experiences

    Science.gov (United States)

    Preston, Jane P.; Ogenchuk, Marcella J.; Nsiah, Joseph K.

    2014-01-01

    The purpose of the paper is to describe our peer mentorship experiences and explain how these experiences fostered transformational learning during our PhD graduate program in educational administration. As a literature backdrop, we discuss characteristics of traditional forms of mentorship and depict how our experiences of peer mentorship was…

  7. Transforming Future Teaching through ‘Carpe Diem’ Learning Design

    Directory of Open Access Journals (Sweden)

    Gilly Salmon

    2014-01-01

    Full Text Available Academic staff in Higher Education (HE need to transform their teaching practices to support more future-orientated, digital, student-centered learning. Promoting, enabling and implementing these changes urgently requires acceptable, meaningful and effective staff development for academics. We identify four key areas that are presenting as barriers to the implementation of successful staff development. We illuminate the Carpe Diem learning design workshop process and illustrate its impact on academic staff as a viable, constructive alternative to traditional staff development processes. The Carpe Diem model directly exposes and addresses the irony that educational institutions expect their academic staff to learn to design and deliver personalized, mobile and technology-enhanced learning to students, whilst wedded to ‘one size fits all’ face-to-face interventions…or worse, ‘page turning’ e-learning that masquerades as staff development. To avoid further frustrations and expensive, inappropriate initiatives, the spirit and practice of Carpe Diem could act as a ‘pathfinder beacon’, and be more widely adopted to enable fast, effective and fully embedded, learner-ready, future-proofed learning.

  8. Dialogic Learning: Basis for Education & Transformation in Brasil

    Directory of Open Access Journals (Sweden)

    Adriana Marigo

    2011-10-01

    Full Text Available The present paper aims to introduce the Nucleus of Investigation and Social and Educational Action (NIASE, which is an academic nucleus in Brazil whose practices are based on the concept of dialogic learning as well as on the communicative action theory by Jürgen Habermas and on the concept of dialogicity by Paulo Freire. Dialogic learning is the result of dialogue directed to the overcoming of social and educational challenges which can be achieved through seven articulated principles: egalitarian dialogue, cultural intelligence, transformation, instrumental dimension, creation of meaning, sympathy and equality of differences. NIASE, which was founded in Brazil in 2002 with the purpose of working with education, research and extension, has found in dialogic learning the support for the democratic organization of schooling and on schooling educational environments, whose participants decide on seeking learning qualification and the social respect from the involved groups. As a result of such actions, the concept of dialogic learning has made an impact on education and academic production in Brazil, therefore contributing to consolidate the social commitment and the dialogue between the scientific community and the broader context in which it is involved.

  9. Artefacts in geometric phase analysis of compound materials.

    Science.gov (United States)

    Peters, Jonathan J P; Beanland, Richard; Alexe, Marin; Cockburn, John W; Revin, Dmitry G; Zhang, Shiyong Y; Sanchez, Ana M

    2015-10-01

    The geometric phase analysis (GPA) algorithm is known as a robust and straightforward technique that can be used to measure lattice strains in high resolution transmission electron microscope (TEM) images. It is also attractive for analysis of aberration-corrected scanning TEM (ac-STEM) images that resolve every atom column, since it uses Fourier transforms and does not require real-space peak detection and assignment to appropriate sublattices. Here it is demonstrated that, in ac-STEM images of compound materials with compositionally distinct atom columns, an additional geometric phase is present in the Fourier transform. If the structure changes from one area to another in the image (e.g. across an interface), the change in this additional phase will appear as a strain in conventional GPA, even if there is no lattice strain. Strategies to avoid this pitfall are outlined. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Transforming narratives into educational tools: the collaborative development of a transformative learning tool based on Nicaraguan adolescents' creative writing about intimate partner violence.

    Science.gov (United States)

    Singleton, Robyn; Picado Araúz, María de la Paz; Trocin, Kathleen; Winskell, Kate

    2017-01-01

    The use of narrative has become increasingly popular in the public health, community development, and education fields. Via emotionally engaging plotlines with authentic, captivating characters, stories provide an opportunity for participants to be carried away imaginatively into the characters' world while connecting the story with their own lived experiences. Stories have been highlighted as valuable tools in transformative learning. However, little published literature exists demonstrating applications of stories in group-based transformative learning curricula. This paper describes the creation of a narrative-based transformative learning tool based on an analysis of Nicaraguan adolescents' meaning-making around intimate partner violence (IPV) in their creative narratives. In collaboration with a Nicaraguan organization, US researchers analyzed a sample of narratives ( n = 55; 16 male-authored, 39 female-authored) on IPV submitted to a 2014 scriptwriting competition by adolescents aged 15-19. The data were particularly timely in that they responded to a new law protecting victims of gender-based violence, Law 779, and contradicted social-conservative claims that the Law 779 destroys family unity. We incorporated results from this analysis into the creation of the transformative learning tool, separated into thematic sections. The tool's sections (which comprise one story and three corresponding activities) aim to facilitate critical reflection, interpersonal dialogue, and self- and collective efficacy for social action around the following themes derived from the analysis: IPV and social support; IPV and romantic love; masculinity; warning signs of IPV; and sexual abuse. As a collaboration between a public health research team based at a US university and a Nicaraguan community-based organization, it demonstrates the potential in the age of increasingly smooth electronic communication for novel community-university partnerships to facilitate the development of

  11. Image quality assessment based on multiscale geometric analysis.

    Science.gov (United States)

    Gao, Xinbo; Lu, Wen; Tao, Dacheng; Li, Xuelong

    2009-07-01

    Reduced-reference (RR) image quality assessment (IQA) has been recognized as an effective and efficient way to predict the visual quality of distorted images. The current standard is the wavelet-domain natural image statistics model (WNISM), which applies the Kullback-Leibler divergence between the marginal distributions of wavelet coefficients of the reference and distorted images to measure the image distortion. However, WNISM fails to consider the statistical correlations of wavelet coefficients in different subbands and the visual response characteristics of the mammalian cortical simple cells. In addition, wavelet transforms are optimal greedy approximations to extract singularity structures, so they fail to explicitly extract the image geometric information, e.g., lines and curves. Finally, wavelet coefficients are dense for smooth image edge contours. In this paper, to target the aforementioned problems in IQA, we develop a novel framework for IQA to mimic the human visual system (HVS) by incorporating the merits from multiscale geometric analysis (MGA), contrast sensitivity function (CSF), and the Weber's law of just noticeable difference (JND). In the proposed framework, MGA is utilized to decompose images and then extract features to mimic the multichannel structure of HVS. Additionally, MGA offers a series of transforms including wavelet, curvelet, bandelet, contourlet, wavelet-based contourlet transform (WBCT), and hybrid wavelets and directional filter banks (HWD), and different transforms capture different types of image geometric information. CSF is applied to weight coefficients obtained by MGA to simulate the appearance of images to observers by taking into account many of the nonlinearities inherent in HVS. JND is finally introduced to produce a noticeable variation in sensory experience. Thorough empirical studies are carried out upon the LIVE database against subjective mean opinion score (MOS) and demonstrate that 1) the proposed framework has

  12. Effect of Environmental Education Based on Transformational Learning Theory on Perceptions towards Environmental Problems and Permanency of Learning

    Science.gov (United States)

    Uyanik, Gökhan

    2016-01-01

    The aim of the study is to determine effect of environmental education based on transformational learning theory on primary school teacher candidates' perceptions towards environmental problems and permanency of learning. Pretest-posttest quasi-experimental design have been used in this study. The study group consists of 66 teacher candidates who…

  13. Exposing region duplication through local geometrical color invariant features

    Science.gov (United States)

    Gong, Jiachang; Guo, Jichang

    2015-05-01

    Many advanced image-processing softwares are available for tampering images. How to determine the authenticity of an image has become an urgent problem. Copy-move is one of the most common image forgery operations. Many methods have been proposed for copy-move forgery detection (CMFD). However, most of these methods are designed for grayscale images without any color information used. They are usually not suitable when the duplicated regions have little structure or have undergone various transforms. We propose a CMFD method using local geometrical color invariant features to detect duplicated regions. The method starts by calculating the color gradient of the inspected image. Then, we directly take the color gradient as the input for scale invariant features transform (SIFT) to extract color-SIFT descriptors. Finally, keypoints are matched and clustered before their geometrical relationship is estimated to expose the duplicated regions. We evaluate the detection performance and computational complexity of the proposed method together with several popular CMFD methods on a public database. Experimental results demonstrate the efficacy of the proposed method in detecting duplicated regions with various transforms and poor structure.

  14. Transformative Learning and Concepts of the Self: Insights from Immigrant and Intercultural Journeys

    Science.gov (United States)

    Lange, Elizabeth

    2015-01-01

    This article examines Canadian immigrant and intercultural learning as an insightful context for examining transformative learning. Theories of intercultural communication are explored, particularly the concept of transculturality and Bhabha's concept of "Third Space". Various concepts of the self are also compared, particularly two…

  15. Dead Wolves, Dead Birds, and Dead Trees: Catalysts for Transformative Learning in the Making of Scientist-Environmentalists

    Science.gov (United States)

    Walter, Pierre

    2013-01-01

    This historical study identifies catalysts for transformative learning in the lives of three scientist-environmentalists important to the 20th-century environmental movement: Aldo Leopold, Rachel Carson, and David Suzuki. Following a brief review of theoretical perspectives on transformative learning, the article argues that transformative…

  16. Improved Student Reasoning About Carbon-Transforming Processes Through Inquiry-Based Learning Activities Derived from an Empirically Validated Learning Progression

    Science.gov (United States)

    JW, Schramm; Jin, H.; Keeling, EG; Johnson, M.; Shin, HJ

    2017-05-01

    This paper reports on our use of a fine-grained learning progression to assess secondary students' reasoning through carbon-transforming processes (photosynthesis, respiration, biosynthesis). Based on previous studies, we developed a learning progression with four progress variables: explaining mass changes, explaining energy transformations, explaining subsystems, and explaining large-scale systems. For this study, we developed a 2-week teaching module integrating these progress variables. Students were assessed before and after instruction, with the learning progression framework driving data analysis. Our work revealed significant overall learning gains for all students, with the mean post-test person proficiency estimates higher by 0.6 logits than the pre-test proficiency estimates. Further, instructional effects were statistically similar across all grades included in the study (7th-12th) with students in the lowest third of initial proficiency evidencing the largest learning gains. Students showed significant gains in explaining the processes of photosynthesis and respiration and in explaining transformations of mass and energy, areas where prior research has shown that student misconceptions are prevalent. Student gains on items about large-scale systems were higher than with other variables (although absolute proficiency was still lower). Gains across each of the biological processes tested were similar, despite the different levels of emphasis each had in the teaching unit. Together, these results indicate that students can benefit from instruction addressing these processes more explicitly. This requires pedagogical design quite different from that usually practiced with students at this level.

  17. Geometric phases and hidden local gauge symmetry

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo

    2005-01-01

    The analysis of geometric phases associated with level crossing is reduced to the familiar diagonalization of the Hamiltonian in the second quantized formulation. A hidden local gauge symmetry, which is associated with the arbitrariness of the phase choice of a complete orthonormal basis set, becomes explicit in this formulation (in particular, in the adiabatic approximation) and specifies physical observables. The choice of a basis set which specifies the coordinate in the functional space is arbitrary in the second quantization, and a subclass of coordinate transformations, which keeps the form of the action invariant, is recognized as the gauge symmetry. We discuss the implications of this hidden local gauge symmetry in detail by analyzing geometric phases for cyclic and noncyclic evolutions. It is shown that the hidden local symmetry provides a basic concept alternative to the notion of holonomy to analyze geometric phases and that the analysis based on the hidden local gauge symmetry leads to results consistent with the general prescription of Pancharatnam. We however note an important difference between the geometric phases for cyclic and noncyclic evolutions. We also explain a basic difference between our hidden local gauge symmetry and a gauge symmetry (or equivalence class) used by Aharonov and Anandan in their definition of generalized geometric phases

  18. Transformative Learning Experiences of International Graduate Students from Asian Countries

    Science.gov (United States)

    Kumi-Yeboah, Alex; James, Waynne

    2014-01-01

    This article investigates the transformative learning experiences of international graduate students from Asian countries. Data collection consisted of quantitative and qualitative methods. Participants included international graduate students from Asia, in the Colleges of Arts and Sciences and Engineering. Overall, 82.3% of the participants…

  19. Digital technologies, participatory learning and the transformation of students’ conduct of everyday life

    DEFF Research Database (Denmark)

    Schraube, Ernst

    expanding human activities, they are also powerful socio-political “forms of life” (Langdon Winner) transforming fundamentally the practice of teaching and learning as well as the students’ conduct of everyday life. The paper explores the meaning of digital learning spaces at universities (especially...

  20. Researching the Practice of Fostering Transformative Learning: Lessons Learned From the Study of Andragogy

    Science.gov (United States)

    Taylor, Edward W.; Laros, Anna

    2014-01-01

    This article identifies factors that have contributed to the challenges associated with the practice and research of fostering transformative learning (TL), by drawing on the work by Rachal and others in reviewing the study of andragogy--theory, research, and practice. Implications are also discussed of how scholars of TL can best respond to the…

  1. Geometric theory of information

    CERN Document Server

    2014-01-01

    This book brings together geometric tools and their applications for Information analysis. It collects current and many uses of in the interdisciplinary fields of Information Geometry Manifolds in Advanced Signal, Image & Video Processing, Complex Data Modeling and Analysis, Information Ranking and Retrieval, Coding, Cognitive Systems, Optimal Control, Statistics on Manifolds, Machine Learning, Speech/sound recognition, and natural language treatment which are also substantially relevant for the industry.

  2. Organizational Transformation from the Inside Out: Reinventing the MIT Center for Organizational Learning.

    Science.gov (United States)

    Clanon, Jeff

    1999-01-01

    The 2-year process by which the Massachusetts Institute of Technology's Center for Organizational Learning transformed into the self-governed Society for Organizational Learning illustrates new ways of conceiving organizations, the capabilities required for change, and critical elements of the process: diverse representation, grounding in business…

  3. Phenotypic transformation affects associative learning in the desert locust.

    Science.gov (United States)

    Simões, Patrício M V; Niven, Jeremy E; Ott, Swidbert R

    2013-12-02

    In desert locusts, increased population densities drive phenotypic transformation from the solitarious to the gregarious phase within a generation [1-4]. Here we show that when presented with odor-food associations, the two extreme phases differ in aversive but not appetitive associative learning, with solitarious locusts showing a conditioned aversion more quickly than gregarious locusts. The acquisition of new learned aversions was blocked entirely in acutely crowded solitarious (transiens) locusts, whereas appetitive learning and prior learned associations were unaffected. These differences in aversive learning support phase-specific feeding strategies. Associative training with hyoscyamine, a plant alkaloid found in the locusts' habitat [5, 6], elicits a phase-dependent odor preference: solitarious locusts avoid an odor associated with hyoscyamine, whereas gregarious locusts do not. Remarkably, when solitarious locusts are crowded and then reconditioned with the odor-hyoscyamine pairing as transiens, the specific blockade of aversive acquisition enables them to override their prior aversive memory with an appetitive one. Under fierce food competition, as occurs during crowding in the field, this provides a neuroecological mechanism enabling locusts to reassign an appetitive value to an odor that they learned previously to avoid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. 1:1 (dis)section - Learning through full-scale dissection and transformations of abandoned buildings

    DEFF Research Database (Denmark)

    Krag, Mo Michelsen Stochholm; Keiding, Tina Bering

    2018-01-01

    This paper reports on four transformation workshops. The aim was to provide first-year students with an understanding of the relation between the section as a semantic representation and the materiality, structure and spatial relations of a concrete building. The culmination of each workshop...... was a full-scale dissection and transformation of an abandoned house. As we shall see, the workshops fulfilled not only the intended learning goals, but created an unforeseen and unique context for learning about the relations between building, place and place....

  5. Learning Dynamics in Transformational Change: A Study of Workforce Behavior in the Developing Economies

    Directory of Open Access Journals (Sweden)

    Abdul Majid

    2011-10-01

    Full Text Available Organizational and individual learning are two different concepts in contemporaryorganizational theory. Organizational learning is a difficult concept which needs to be furtherelucidated for organizational practitioner at actual work setting; especially in the developingcountries like Pakistan. This paper reviews the literature on organizational learning intransformational change, and the comparative learning processes in the developed anddeveloping economies. Furthermore, we are dealing here with the proposed learning cycle instrategic change process with special reference to the developing countries.Keywords: Learning cycle, Transformational change, Innovation, Learning Dynamics

  6. Transformative Learning Challenges in a Context of Trauma and Fear: An Educator's Story

    Science.gov (United States)

    John, Vaughn M.

    2016-01-01

    After more than three decades of development, transformative learning theory is currently a major theory of adult learning. It has also attracted substantial critique, leading to further development, application and differentiation. Recent contributions to this vast scholarship show a quest for a more unified theory. This article examines…

  7. Shame and Transformation in the Theory and Practice of Adult Learning and Education

    Science.gov (United States)

    Walker, Jude

    2017-01-01

    Shame both stymies and motivates learning; it prevents adults from participating in educational programs yet, with accompanied self-examination, it can be the catalyst for transformation. While fundamental for understanding adult learning, shame is (shamefully) inadequately theorized in the field of adult education: We don't talk enough about…

  8. Cancer cell detection and classification using transformation invariant template learning methods

    International Nuclear Information System (INIS)

    Talware, Rajendra; Abhyankar, Aditya

    2011-01-01

    In traditional cancer cell detection, pathologists examine biopsies to make diagnostic assessments, largely based on cell morphology and tissue distribution. The process of image acquisition is very much subjective and the pattern undergoes unknown or random transformations during data acquisition (e.g. variation in illumination, orientation, translation and perspective) results in high degree of variability. Transformed Component Analysis (TCA) incorporates a discrete, hidden variable that accounts for transformations and uses the Expectation Maximization (EM) algorithm to jointly extract components and normalize for transformations. Further the TEMPLAR framework developed takes advantage of hierarchical pattern models and adds probabilistic modeling for local transformations. Pattern classification is based on Expectation Maximization algorithm and General Likelihood Ratio Tests (GLRT). Performance of TEMPLAR is certainly improved by defining area of interest on slide a priori. Performance can be further enhanced by making the kernel function adaptive during learning. (author)

  9. Transformative learning theory: facilitating mammography screening in rural women.

    Science.gov (United States)

    Purtzer, Mary Anne; Overstreet, Lindsey

    2014-03-01

    To use transformative learning to investigate what experiences serve as catalysts for mammography screening, the cognitive and affective responses that result from the catalyst, and how screening behavior is impacted. A descriptive qualitative study. Southeastern Wyoming. 25 low-income, rural women aged 40 years and older. Four focus group interviews. Cancer experiences triggered universal responses of fear by screeners and nonscreeners. The manner in which that fear response was interpreted was a critical factor in the facilitation of, or impedance to, screening. Dichotomous interpretations of fear responses provided the context for screening behavior. Immobilizing and isolating experiences were associated with nonscreening behavior, whereas motivation and self-efficacy were associated with screening behavior. Transformative learning theory is a useful framework from which to explain differences in mammography screening behavior. Creating opportunities that facilitate dialogue and critical reflection hold the potential to change immobilizing and isolating frames of reference in nonscreening women. To help women transcend their fear and become self-efficacious, nurses can assess how cancer and the screening experience is viewed and, if indicated, move beyond standard education and offer opportunities for dialogue and critical reflection.

  10. Supporting Pre-Service Teachers' Technology-Enabled Learning Design Thinking through Whole of Programme Transformation

    Science.gov (United States)

    Bower, Matt; Highfield, Kate; Furney, Pam; Mowbray, Lee

    2013-01-01

    This paper explains a development and evaluation project aimed at transforming two pre-service teacher education programmes at Macquarie University to more effectively cultivate students' technology-enabled learning design thinking. The process of transformation was based upon an explicit and sustained focus on developing university academics'…

  11. Learning Spatiotemporally Encoded Pattern Transformations in Structured Spiking Neural Networks.

    Science.gov (United States)

    Gardner, Brian; Sporea, Ioana; Grüning, André

    2015-12-01

    Information encoding in the nervous system is supported through the precise spike timings of neurons; however, an understanding of the underlying processes by which such representations are formed in the first place remains an open question. Here we examine how multilayered networks of spiking neurons can learn to encode for input patterns using a fully temporal coding scheme. To this end, we introduce a new supervised learning rule, MultilayerSpiker, that can train spiking networks containing hidden layer neurons to perform transformations between spatiotemporal input and output spike patterns. The performance of the proposed learning rule is demonstrated in terms of the number of pattern mappings it can learn, the complexity of network structures it can be used on, and its classification accuracy when using multispike-based encodings. In particular, the learning rule displays robustness against input noise and can generalize well on an example data set. Our approach contributes to both a systematic understanding of how computations might take place in the nervous system and a learning rule that displays strong technical capability.

  12. The Difference Engine: Computing, Knowledge, and the Transformation of Learning

    Science.gov (United States)

    Provenzo, Eugene F.

    2011-01-01

    Since the 1960s, the rapid evolution of technology has created a new cultural geography--a virtual geography. "The Difference Engine: Computing, Knowledge and the Transformation of Learning" offers a conscious critique of this change and its effects on contemporary culture and education. This engaging text assumes that we are at a critical…

  13. Transformative learning: empathy and multicultural awareness in podiatric medical education.

    Science.gov (United States)

    Elliott, Craig M; Toomey, Robert J; Goodman, Brooke A; Barbosa, Peter

    2012-01-01

    Short-term medical missions are common in medical educational settings and could possibly affect student learning. Little research has been conducted about the potential of these missions on students' transformative learning, in particular as it relates to empathy and multicultural awareness. Eight podiatric medical students who participated in short-term medical missions in 2008 and 2009 completed an electronic survey to investigate the effect of their experience as it relates to their learning. The empathy and multicultural awareness impact of the mission experience was emphasized. Qualitative questions in the survey were coded, themed, and triangulated with the quantitative responses. Six students (75%) "strongly agreed" that participating in the medical mission was a significant positive experience in their podiatric medical training. Six students felt that their experiences in serving these communities increased their personal awareness of multicultural/diversity needs in general. All of the students agreed that they will become better podiatric physicians because of their experiences in the medical missions. The qualitative data also indicate that the experience had an effect on the students' views of health care and increased empathy toward their patients. Short-term medical missions could play a significant role in the transformative learning experience in podiatric medical education. This could affect the empathy and multicultural awareness of podiatric medical students. Further and more extensive evaluations of the potential impact of short-term medical missions in podiatric medical education should be explored because it could influence curriculum and global health in the field of podiatric medicine.

  14. Supervised Variational Relevance Learning, An Analytic Geometric Feature Selection with Applications to Omic Datasets.

    Science.gov (United States)

    Boareto, Marcelo; Cesar, Jonatas; Leite, Vitor B P; Caticha, Nestor

    2015-01-01

    We introduce Supervised Variational Relevance Learning (Suvrel), a variational method to determine metric tensors to define distance based similarity in pattern classification, inspired in relevance learning. The variational method is applied to a cost function that penalizes large intraclass distances and favors small interclass distances. We find analytically the metric tensor that minimizes the cost function. Preprocessing the patterns by doing linear transformations using the metric tensor yields a dataset which can be more efficiently classified. We test our methods using publicly available datasets, for some standard classifiers. Among these datasets, two were tested by the MAQC-II project and, even without the use of further preprocessing, our results improve on their performance.

  15. Unified picture of non-geometric fluxes and T-duality in double field theory via graded symplectic manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Marc Andre [Particle Theory and Cosmology Group, Department of Physics,Graduate School of Science, Tohoku University,Aoba-ku, Sendai 980-8578 (Japan); Ikeda, Noriaki [Department of Mathematical Sciences, Ritsumeikan University,Kusatsu, Shiga 525-8577 (Japan); Watamura, Satoshi [Particle Theory and Cosmology Group, Department of Physics,Graduate School of Science, Tohoku University,Aoba-ku, Sendai 980-8578 (Japan)

    2017-02-15

    We give a systematic derivation of the local expressions of the NS H-flux, geometric F- as well as non-geometric Q- and R-fluxes in terms of bivector β- and two-form B-potentials including vielbeins. They are obtained using a supergeometric method on QP-manifolds by twist of the standard Courant algebroid on the generalized tangent space without flux. Bianchi identities of the fluxes are easily deduced. We extend the discussion to the case of the double space and present a formulation of T-duality in terms of canonical transformations between graded symplectic manifolds. Thus, we find a unified description of geometric as well as non-geometric fluxes and T-duality transformations in double field theory. Finally, the construction is compared to the formerly introduced Poisson Courant algebroid, a Courant algebroid on a Poisson manifold, as a model for R-flux.

  16. The Arts Connection: The Arts and Transformative Learning in Professional Development

    Science.gov (United States)

    Cain, Beverlyn; Dixon, John A.

    2013-01-01

    Artist-in-residency experiences (puppetry, creative drama, music, and movement) indicated a connection with emotional transformative learning as a venue for professional development. This small teacher practitioner-based study involved teacher participants engaged in four-weeklong artist residencies at four childcare centers. Thirteen teachers…

  17. Geometric Calculus -- Engineering Mathematics for the 21st century

    OpenAIRE

    HITZER, Eckhard MS

    2002-01-01

    This paper treats important questions at the interface of mathmatics and the engineering science. It starts off with a quick quotation tour through 2300 years of mathmatical history. At the beginning of the 21 century,technology has developed beyond every expectation. But do we also learn and practice an adequately modern form of mathmatics? The papaer argues that this role is very likely to be played by universal geometric calculus. The fundamental geometric product of vectors is introduced....

  18. Transformative learning spaces

    DEFF Research Database (Denmark)

    Maslo, Elina

    Despite rapid development of learning theory in general and language learning theory in particular in the last years, we still cannot provide an unequivocal answer on the question “why do individuals who presumably possess similar cognitive capacities for second language learning achieve such var......, Leo (2010). The ecology of language learning: Practice to theory, theory to practice. Procedia – Social and Behavioral Sciences. Elsevier......., social, personal, cultural, and historical world they live in (van Lier, 2000). People can learn when they discover possibilities for learning, which appear in this complex world – so called affordances (Gibson, 1979). This happens in the interaction between people and their environment on the basis...... to the different ways of interaction of cognitive, affective and social factors by different individuals. Learning stories, where multilingual individuals are telling about their subjective experiences in language learning in particular and learning in general, are constructed by using a special developed...

  19. Geometrical approach to fluid models

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Schep, T.J.

    1997-01-01

    Differential geometry based upon the Cartan calculus of differential forms is applied to investigate invariant properties of equations that describe the motion of continuous media. The main feature of this approach is that physical quantities are treated as geometrical objects. The geometrical notion of invariance is introduced in terms of Lie derivatives and a general procedure for the construction of local and integral fluid invariants is presented. The solutions of the equations for invariant fields can be written in terms of Lagrange variables. A generalization of the Hamiltonian formalism for finite-dimensional systems to continuous media is proposed. Analogously to finite-dimensional systems, Hamiltonian fluids are introduced as systems that annihilate an exact two-form. It is shown that Euler and ideal, charged fluids satisfy this local definition of a Hamiltonian structure. A new class of scalar invariants of Hamiltonian fluids is constructed that generalizes the invariants that are related with gauge transformations and with symmetries (Noether). copyright 1997 American Institute of Physics

  20. Transforming the Capstone: Transformative Learning as a Pedagogical Framework and Vehicle for Ethical Reflection in the Capstone Course

    Science.gov (United States)

    Martin, Jason M.; Strawser, Michael G.

    2017-01-01

    This study emphasizes the importance of faculty development and training as a means to prepare faculty to design the capstone course as a high-impact educational practice. Specifically, this research explores transformative learning in the capstone class as a vehicle for reflection on personal and professional ethics. Students enrolled in a…

  1. F-SVM: Combination of Feature Transformation and SVM Learning via Convex Relaxation

    OpenAIRE

    Wu, Xiaohe; Zuo, Wangmeng; Zhu, Yuanyuan; Lin, Liang

    2015-01-01

    The generalization error bound of support vector machine (SVM) depends on the ratio of radius and margin, while standard SVM only considers the maximization of the margin but ignores the minimization of the radius. Several approaches have been proposed to integrate radius and margin for joint learning of feature transformation and SVM classifier. However, most of them either require the form of the transformation matrix to be diagonal, or are non-convex and computationally expensive. In this ...

  2. Classification of mammographic masses using geometric symmetry and fractal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Guo Qi; Ruiz, V.F. [Cybernetics, School of Systems Engineering, Univ. of Reading (United Kingdom); Shao Jiaqing [Dept. of Electronics, Univ. of Kent (United Kingdom); Guo Falei [WanDe Industrial Engineering Co. (China)

    2007-06-15

    In this paper, we propose a fuzzy symmetry measure based on geometrical operations to characterise shape irregularity of mammographic mass lesion. Group theory, a powerful tool in the investigation of geometric transformation, is employed in our work to define and describe the underlying mathematical relations. We investigate the usefulness of fuzzy symmetry measure in combination with fractal analysis for classification of masses. Comparative studies show that fuzzy symmetry measure is useful for shape characterisation of mass lesions and is a good complementary feature for benign-versus-malignant classification of masses. (orig.)

  3. The geometric phase and the Schwinger term in some models

    International Nuclear Information System (INIS)

    Grosse, H.; Langmann, E.

    1991-01-01

    We discuss quantization of fermions interacting with external fields and observe the occurrence of equivalent as well as inequivalent representations of the canonical anticommutation relations. Implementability of gauge and axial gauge transformations leads to generators which fulfill an algebra of charges with Schwinger term. This term can be written as a cocycle and leads to the boson-fermion correspondence. Transport of a quantum mechanical system along a closed loop of parameter space may yield a geometric mechanical system along a closed loop of parameter space may yield a geometric phase. We discuss models for which nonintegrable phase factors are obtained from the adiabatic parallel transport. After second quantization one obtains, in addition, a Schwinger term. Depending on the type of transformation a subtle relationship between these two obstructions can occur. We indicate finally how we may transport density matrices along closed loops in parameter space. (authors)

  4. Performance Assessment and Geometric Calibration of RESOURCESAT-2

    Science.gov (United States)

    Radhadevi, P. V.; Solanki, S. S.; Akilan, A.; Jyothi, M. V.; Nagasubramanian, V.

    2016-06-01

    Resourcesat-2 (RS-2) has successfully completed five years of operations in its orbit. This satellite has multi-resolution and multi-spectral capabilities in a single platform. A continuous and autonomous co-registration, geo-location and radiometric calibration of image data from different sensors with widely varying view angles and resolution was one of the challenges of RS-2 data processing. On-orbit geometric performance of RS-2 sensors has been widely assessed and calibrated during the initial phase operations. Since then, as an ongoing activity, various geometric performance data are being generated periodically. This is performed with sites of dense ground control points (GCPs). These parameters are correlated to the direct geo-location accuracy of the RS-2 sensors and are monitored and validated to maintain the performance. This paper brings out the geometric accuracy assessment, calibration and validation done for about 500 datasets of RS-2. The objectives of this study are to ensure the best absolute and relative location accuracy of different cameras, location performance with payload steering and co-registration of multiple bands. This is done using a viewing geometry model, given ephemeris and attitude data, precise camera geometry and datum transformation. In the model, the forward and reverse transformations between the coordinate systems associated with the focal plane, payload, body, orbit and ground are rigorously and explicitly defined. System level tests using comparisons to ground check points have validated the operational geo-location accuracy performance and the stability of the calibration parameters.

  5. Harmonic and geometric analysis

    CERN Document Server

    Citti, Giovanna; Pérez, Carlos; Sarti, Alessandro; Zhong, Xiao

    2015-01-01

    This book presents an expanded version of four series of lectures delivered by the authors at the CRM. Harmonic analysis, understood in a broad sense, has a very wide interplay with partial differential equations and in particular with the theory of quasiconformal mappings and its applications. Some areas in which real analysis has been extremely influential are PDE's and geometric analysis. Their foundations and subsequent developments made extensive use of the Calderón–Zygmund theory, especially the Lp inequalities for Calderón–Zygmund operators (Beurling transform and Riesz transform, among others) and the theory of Muckenhoupt weights.  The first chapter is an application of harmonic analysis and the Heisenberg group to understanding human vision, while the second and third chapters cover some of the main topics on linear and multilinear harmonic analysis. The last serves as a comprehensive introduction to a deep result from De Giorgi, Moser and Nash on the regularity of elliptic partial differen...

  6. Traditional vectors as an introduction to geometric algebra

    International Nuclear Information System (INIS)

    Carroll, J E

    2003-01-01

    The 2002 Oersted Medal Lecture by David Hestenes concerns the many advantages for education in physics if geometric algebra were to replace standard vector algebra. However, such a change has difficulties for those who have been taught traditionally. A new way of introducing geometric algebra is presented here using a four-element array composed of traditional vector and scalar products. This leads to an explicit 4 x 4 matrix representation which contains key requirements for three-dimensional geometric algebra. The work can be extended to include Maxwell's equations where it is found that curl and divergence appear naturally together. However, to obtain an explicit representation of space-time algebra with the correct behaviour under Lorentz transformations, an 8 x 8 matrix representation has to be formed. This leads to a Dirac representation of Maxwell's equations showing that space-time algebra has hidden within its formalism the symmetry of 'parity, charge conjugation and time reversal'

  7. Learning Trajectory for Transforming Teachers' Knowledge for Teaching Mathematics and Science with Digital Image and Video Technologies in an Online Learning Experience

    Science.gov (United States)

    Niess, Margaret L.; Gillow-Wiles, Henry

    2014-01-01

    This qualitative cross-case study explores the influence of a designed learning trajectory on transforming teachers' technological pedagogical content knowledge (TPACK) for teaching with digital image and video technologies. The TPACK Learning Trajectory embeds tasks with specific instructional strategies within a social metacognitive…

  8. Transforming learning?

    Science.gov (United States)

    1999-09-01

    A new Learning and Skills Council for post-16 learning is the latest proposal from the UK Government in its attempt to ensure a highly skilled workforce for the next century. Other aims will be to reduce the variability in standards of the existing post-16 system, coordination and coherence between further education and training, and a reduction in the duplication and layers in contracting and funding. The proposals include: a national Learning and Skills Council, with 40-50 local Learning and Skills Councils to develop local plans; a strengthened strategic role for business in education and training, influencing a budget of #5bn a radical new youth programme entitled `Connexions', with dedicated personal advisors for young people; greater cooperation between sixth forms and colleges; and the establishment of an independent inspectorate covering all work-related learning and training, to include a new role for Ofsted in inspecting the provision for 16-19 year-olds in schools and colleges. It is hoped that this programme will build on the successes of the previous systems and that savings of at least #50m can be achieved through streamlining and the reduction in bureaucracy. The intentions are set out in a White Paper, Learning to Succeed, which is available from the Stationery Office and bookshops, as well as on the website www.dfee.gov.uk/post16. Published in addition to the White Paper was `School Sixth form funding: a consultation paper' (available from DfEE publications, Prolog, PO Box 5050, Sherwood Park, Annesley, Nottingham NG15 0DJ) and `Transition plan for the post-16 education and training and for local delivery of support for small firms' (available from Trevor Tucknutt, TECSOP Division, Level 3, Department for Education and Employment, Moorfoot, Sheffield S1 4PQ). The deadline for comments on both the sixth form consultation document and the White Paper is 15 October 1999. Almost simultaneously with the announcement of the above proposals came the

  9. A transformative perspective on learning and professional development of Afghan physiotherapists.

    Science.gov (United States)

    Wickford, Jenny; Edwards, Ian; Rosberg, Susanne

    2012-05-01

    The aim of this article is to explore factors that impacted learning of Afghan physiotherapists in a development project to improve the physiotherapy services in a disability programme implemented by a Swedish nongovernmental organisation in Afghanistan. Participant observation, recorded as field notes, was used to document the process, to gain a better understanding of professional development of physiotherapists in Afghanistan. Field notes were analysed and factors affecting learning were interpreted from a perspective inspired by transformative learning. Various factors were identified: a pattern approach to treatment, linear thinking, and socially oriented decision making affected how new things learned were put into practice; concrete representations and an instrumental view of knowledge characterised learning approaches; language barriers, different interpretations of meaning, and cultural codes challenged communication; and a prescriptive, encouraging approach of the expatriate physiotherapy development worker affected teaching and learning. Working with professional development across cultural borders is challenging, and the identified factors impacting learning can help expatriate physiotherapists in adapting training to the Afghan context. Exploring meaning perspectives and communicative learning could enhance understanding of these factors for both expatriate and Afghan physiotherapists and should be a focus in future development activities.

  10. Teaching Ethics to Marketing and Logistics Majors: A Transformative Learning Experiment

    Science.gov (United States)

    Aguirre, Grant; Hyman, Michael R.; Goudge, Darrell; Genchev, Stefan; Carrell, Amy; Hamilton, Corey

    2017-01-01

    Within the context of a transformative learning field experiment, the ethical ideologies of marketing majors, logistics majors, and nonbusiness majors were found to differ. Based on this finding, a field experiment was conducted to determine the effect (if any) that ethics instruction has on marketing and logistics majors versus nonbusiness…

  11. Emergence of a Learning Community: A Transforming Experience at the Boundaries

    Science.gov (United States)

    Raia, Federica

    2013-01-01

    I narrate a process of transformation, a professional and personal journey framed by an experience that captured my attention shaping my interpretation and reflections. From a critical complexity framework I discuss the emergence of a learning community from the cooperation among individuals of diverse social and cultural worlds sharing the need…

  12. Closing Gaps in Geometrically Frustrated Symmetric Clusters: Local Equivalence between Discrete Curvature and Twist Transformations

    Directory of Open Access Journals (Sweden)

    Fang Fang

    2018-05-01

    Full Text Available In geometrically frustrated clusters of polyhedra, gaps between faces can be closed without distorting the polyhedra by the long established method of discrete curvature, which consists of curving the space into a fourth dimension, resulting in a dihedral angle at the joint between polyhedra in 4D. An alternative method—the twist method—has been recently suggested for a particular case, whereby the gaps are closed by twisting the cluster in 3D, resulting in an angular offset of the faces at the joint between adjacent polyhedral. In this paper, we show the general applicability of the twist method, for local clusters, and present the surprising result that both the required angle of the twist transformation and the consequent angle at the joint are the same, respectively, as the angle of bending to 4D in the discrete curvature and its resulting dihedral angle. The twist is therefore not only isomorphic, but isogonic (in terms of the rotation angles to discrete curvature. Our results apply to local clusters, but in the discussion we offer some justification for the conjecture that the isomorphism between twist and discrete curvature can be extended globally. Furthermore, we present examples for tetrahedral clusters with three-, four-, and fivefold symmetry.

  13. DESIGNING E-LEARNING PROGRAMS FOR RURAL SOCIAL TRANSFORMATION AND POVERTY REDUCTION

    Directory of Open Access Journals (Sweden)

    C. S. H. N.MURTHY

    2008-01-01

    Full Text Available ABSTRACTWhile the conventional education system with different forms of E-learning and rigid academic instructive curriculum could not bring desired changes in specified timeframe work at rural level in the targeted communities and groups, a multipronged sociological approach with a sociable and flexible curriculum in new E-Learning programs becomes need of hour. The impact of socializing influence of these E-Learning programs should be properly exploited to motivate and inspire the rural target groups. The benefits of E-learning then become extensive and soon integrate with the needs of the lower strata of the society in order for achieving a rapid social transformation in the lives of the farmers, vocational groups, artisans and small income self help groups comprising women, girls and physically challenged. The paper suggests a number of new generation E-Learning programs as strategies of development communication with a promise of high returns for the industry for its investment in these programs with socially relevant messages and media convergence.

  14. Freedom to Connect: Insight Into the Existential Dimension of Transformative Learning in a Graduate Seminar

    Science.gov (United States)

    Sohn, Brian K.; Plaas, Kristina; Franklin, Karen; Dellard, Tiffany; Murphy, Brenda; Greenberg, Katherine H.; Greenberg, Neil B.; Pollio, Howard R.; Thomas, Sandra P.

    2016-01-01

    Previous analyses of transformational learning (TL) focused on rational or nonrational processes such as critical reflection on an uncomfortable personal situation or emotional learning. In this phenomenological study, researchers examined existential dimensions of TL. Individual interviews were analyzed to identify the lived experiences of eight…

  15. Transformational leadership as a moderator of the relationship between psychological safety and learning behaviour in work teams in Ghana

    Directory of Open Access Journals (Sweden)

    Stephen K. Kumako

    2013-07-01

    Research purpose: The study was aimed at investigating the relationship between psychological safety and learning behaviour in teams, as well as the moderating role of transformational team leadership in this relationship. Motivation for the study: For a team to be effective, adaptive and innovative and engage in learning behaviours, the transformational team leader must set the right climate in the team, where he or she welcomes the team members’ opinions, questions and feedback at no risk to their image. An understanding of this will be important in team leader selection and training. Research design, approach and method: Using a cross-sectional survey design, 57 work teams comprising 456 respondents in teams of 7–9 members were purposively sampled from five financial institutions in Accra, Ghana. Hierarchical regression and moderation analyses were run on the data at the team level. Main findings: Results indicated a positive relationship between team psychological safety and team learning behaviour, with transformational team leadership moderating this relationship. Practical/managerial implication: Transformational team leadership is important in creating a climate of psychological safety that will enable team members to engage in learning behaviours. Contribution/value-add: The study provided theoretical and empirical evidence that, in organisational contexts, transformational team leadership is an important variable that can facilitate psychological safety and learning behaviour in teams.

  16. Relation between catalyst-assisted transformation and multiple-copy transformation for bipartite pure states

    International Nuclear Information System (INIS)

    Feng Yuan; Duan Runyao; Ying Mingsheng

    2006-01-01

    We show that in some cases, catalyst-assisted entanglement transformation cannot be implemented by multiple-copy transformation for pure states. This fact, together with the result we obtained in R. Y. Duan, Y. Feng, X. Li, and M. S. Ying, Phys. Rev. A 71, 042319 (2005), namely that the latter can be completely implemented by the former, indicates that catalyst-assisted transformation is strictly more powerful than multiple-copy transformation. For the purely probabilistic setting we find, however, these two kinds of transformations are geometrically equivalent in the sense that the sets of pure states that can be converted into a given pure state with maximal probabilities not less than a given value have the same closure, regardless of whether catalyst-assisted transformation or multiple-copy transformation is used

  17. Geometric phases in astigmatic optical modes of arbitrary order

    International Nuclear Information System (INIS)

    Habraken, Steven J. M.; Nienhuis, Gerard

    2010-01-01

    The transverse spatial structure of a paraxial beam of light is fully characterized by a set of parameters that vary only slowly under free propagation. They specify bosonic ladder operators that connect modes of different orders, in analogy to the ladder operators connecting harmonic-oscillator wave functions. The parameter spaces underlying sets of higher-order modes are isomorphic to the parameter space of the ladder operators. We study the geometry of this space and the geometric phase that arises from it. This phase constitutes the ultimate generalization of the Gouy phase in paraxial wave optics. It reduces to the ordinary Gouy phase and the geometric phase of nonastigmatic optical modes with orbital angular momentum in limiting cases. We briefly discuss the well-known analogy between geometric phases and the Aharonov-Bohm effect, which provides some complementary insights into the geometric nature and origin of the generalized Gouy phase shift. Our method also applies to the quantum-mechanical description of wave packets. It allows for obtaining complete sets of normalized solutions of the Schroedinger equation. Cyclic transformations of such wave packets give rise to a phase shift, which has a geometric interpretation in terms of the other degrees of freedom involved.

  18. Experimental realization of universal geometric quantum gates with solid-state spins.

    Science.gov (United States)

    Zu, C; Wang, W-B; He, L; Zhang, W-G; Dai, C-Y; Wang, F; Duan, L-M

    2014-10-02

    Experimental realization of a universal set of quantum logic gates is the central requirement for the implementation of a quantum computer. In an 'all-geometric' approach to quantum computation, the quantum gates are implemented using Berry phases and their non-Abelian extensions, holonomies, from geometric transformation of quantum states in the Hilbert space. Apart from its fundamental interest and rich mathematical structure, the geometric approach has some built-in noise-resilience features. On the experimental side, geometric phases and holonomies have been observed in thermal ensembles of liquid molecules using nuclear magnetic resonance; however, such systems are known to be non-scalable for the purposes of quantum computing. There are proposals to implement geometric quantum computation in scalable experimental platforms such as trapped ions, superconducting quantum bits and quantum dots, and a recent experiment has realized geometric single-bit gates in a superconducting system. Here we report the experimental realization of a universal set of geometric quantum gates using the solid-state spins of diamond nitrogen-vacancy centres. These diamond defects provide a scalable experimental platform with the potential for room-temperature quantum computing, which has attracted strong interest in recent years. Our experiment shows that all-geometric and potentially robust quantum computation can be realized with solid-state spin quantum bits, making use of recent advances in the coherent control of this system.

  19. Research workshops as a Means to individual and organizational learning and transformation

    DEFF Research Database (Denmark)

    Sommer, Finn M.; Sprogøe, Jonas; Nygaard Andersen, Randi

    In this empirical paper we explore experiences with organizing so called research workshops in a university of applied science. A research workshop is a action learning oriented didactical and educational format designed to be explorative, and the aim is for the participants to acquire research s...... skills and competencies. However, research workshops are also used strategically to facilitate organizational development. By way of organizational learning theory, we discuss research workshops as way to individual learning and organizational transformation.......In this empirical paper we explore experiences with organizing so called research workshops in a university of applied science. A research workshop is a action learning oriented didactical and educational format designed to be explorative, and the aim is for the participants to acquire research...

  20. Women's Leadership Development in Sport Settings: Factors Influencing the Transformational Learning Experience of Female Managers

    Science.gov (United States)

    Megheirkouni, Majd; Roomi, Muhammad Azam

    2017-01-01

    Purpose: This study explores the positive and negative factors influencing transformational learning experiences of female leaders in women's leadership development programmes in sports and examines the differences in learning/change factors cited by those who successfully addressed them and those who failed. Design/methodology/approach: The study…

  1. Blended Learning as Transformational Institutional Learning

    Science.gov (United States)

    VanDerLinden, Kim

    2014-01-01

    This chapter reviews institutional approaches to blended learning and the ways in which institutions support faculty in the intentional redesign of courses to produce optimal learning. The chapter positions blended learning as a strategic opportunity to engage in organizational learning.

  2. Artefacts in geometric phase analysis of compound materials

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Jonathan J.P., E-mail: j.j.p.peters@warwick.ac.uk [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Beanland, Richard; Alexe, Marin [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom); Cockburn, John W.; Revin, Dmitry G.; Zhang, Shiyong Y. [Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Sanchez, Ana M., E-mail: a.m.sanchez@warwick.ac.uk [Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL (United Kingdom)

    2015-10-15

    The geometric phase analysis (GPA) algorithm is known as a robust and straightforward technique that can be used to measure lattice strains in high resolution transmission electron microscope (TEM) images. It is also attractive for analysis of aberration-corrected scanning TEM (ac-STEM) images that resolve every atom column, since it uses Fourier transforms and does not require real-space peak detection and assignment to appropriate sublattices. Here it is demonstrated that, in ac-STEM images of compound materials with compositionally distinct atom columns, an additional geometric phase is present in the Fourier transform. If the structure changes from one area to another in the image (e.g. across an interface), the change in this additional phase will appear as a strain in conventional GPA, even if there is no lattice strain. Strategies to avoid this pitfall are outlined. - Highlights: • GPA is shown to produce incorrect strains when applied to images of compound materials. • A mathematical description is laid out for why GPA can produce artefacts. • The artefact is demonstrated using experimental and simulated data. • A ‘rule’ is set to avoid this artefact in GPA.

  3. Learning Experience on Transformer Using HOT Lab for Pre-service Physics Teacher’s

    Science.gov (United States)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.

    2017-09-01

    This study aimed at investigating pre-service teacher’s critical thinking skills improvement through Higher Order Thinking (HOT) Lab on transformer learning. This research used mix method with the embedded experimental model. Research subjects are 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The results showed that based on the results of the analysis of practical reports and observation sheet shows students in the experimental group was better in carrying out the practicum and can solve the real problem while the control group was going on the opposite. The critical thinking skills of students applying the HOT Lab were higher than the verification lab. Critical thinking skills could increase due to HOT Lab based problems solving that can develop higher order thinking skills through laboratory activities. Therefore, it was concluded that the application of HOT Lab was more effective than verification lab on improving students’ thinking skills on transformer topic learning. Finally, HOT Lab can be implemented in other subject learning and could be used to improve another higher order thinking skills.

  4. Making the Most of Continuing Medical Education: Evidence of Transformative Learning During a Course in Evidence-Based Medicine and Decision Making.

    Science.gov (United States)

    Sokol, Randi G; Shaughnessy, Allen F

    2018-01-01

    Continuing medical information courses have been criticized for not promoting behavior change among their participants. For behavior change to occur, participants often need to consciously reject previous ideas and transform their way of thinking. Transformational learning is a process that cultivates deep emotional responses and can lead to cognitive and behavioral change in learners, potentially facilitating rich learning experiences and expediting knowledge translation. We explored participants' experiences at a 2-day conference designed to support transformative learning as they encounter new concepts within Information Mastery, which challenge their previous frameworks around the topic of medical decision making. Using the lens of transformative learning theory, we asked: how does Information Mastery qualitatively promote perspective transformation and hence behavior change? We used a hermeneutic phenomenologic approach to capture the lived experience of 12 current and nine previous attendees of the "Information Mastery" course through individual interviews, focus groups, and observation. Data were thematically analyzed. Both prevoius and current conference attendees described how the delivery of new concepts about medical decision making evoked strong emotional responses, facilitated personal transformation, and propelled expedited behavior change around epistemological, moral, and information management themes, resulting in a newfound sense of self-efficacy, confidence, and ownership in their ability to make medical decisions. When the topic area holds the potential to foster a qualitative reframing of learners' guiding paradigms and worldviews, attention should be paid to supporting learners' personalized meaning-making process through transformative learning opportunities to promote translation into practice.

  5. PERFORMANCE ASSESSMENT AND GEOMETRIC CALIBRATION OF RESOURCESAT-2

    Directory of Open Access Journals (Sweden)

    P. V. Radhadevi

    2016-06-01

    Full Text Available Resourcesat-2 (RS-2 has successfully completed five years of operations in its orbit. This satellite has multi-resolution and multi-spectral capabilities in a single platform. A continuous and autonomous co-registration, geo-location and radiometric calibration of image data from different sensors with widely varying view angles and resolution was one of the challenges of RS-2 data processing. On-orbit geometric performance of RS-2 sensors has been widely assessed and calibrated during the initial phase operations. Since then, as an ongoing activity, various geometric performance data are being generated periodically. This is performed with sites of dense ground control points (GCPs. These parameters are correlated to the direct geo-location accuracy of the RS-2 sensors and are monitored and validated to maintain the performance. This paper brings out the geometric accuracy assessment, calibration and validation done for about 500 datasets of RS-2. The objectives of this study are to ensure the best absolute and relative location accuracy of different cameras, location performance with payload steering and co-registration of multiple bands. This is done using a viewing geometry model, given ephemeris and attitude data, precise camera geometry and datum transformation. In the model, the forward and reverse transformations between the coordinate systems associated with the focal plane, payload, body, orbit and ground are rigorously and explicitly defined. System level tests using comparisons to ground check points have validated the operational geo-location accuracy performance and the stability of the calibration parameters.

  6. Analytic Expression of Geometric Discord in Arbitrary Mixture of any Two Bi-qubit Product Pure States

    International Nuclear Information System (INIS)

    Xie Chuan-Mei; Xing Hang; Zhang Zhan-Jun; Liu Yi-Min

    2015-01-01

    Quantum correlations in a family of states comprising any mixture of a pair of arbitrary bi-qubit product pure states are studied by employing geometric discord [Phys. Rev. Lett. 105 (2010) 190502] as the quantifier. First, the inherent symmetry in the family of states about local unitary transformations is revealed. Then, the analytic expression of geometric discords in the states is worked out. Some concrete discussions and analyses on the captured geometric discords are made so that their distinct features are exposed. It is found that, the more averagely the two bi-qubit product states are mixed, the bigger geometric discord the mixed state owns. Moreover, the monotonic relationships of geometric discord with different parameters are revealed. (paper)

  7. Will MOOCs Transform Learning and Teaching in Higher Education? Engagement and Course Retention in Online Learning Provision

    Science.gov (United States)

    de Freitas, Sara Isabella; Morgan, John; Gibson, David

    2015-01-01

    Massive open online courses (MOOCs) have been the subject of much polarised debate around their potential to transform higher education in terms of opening access. Although MOOCs have been attracting large learner cohorts, concerns have emerged from the early evidence base centring upon issues of quality in learning and teaching provision, and…

  8. A Chameleon with a Complex: Searching for Transformation in International Service-Learning

    Science.gov (United States)

    Kiely, Richard

    2004-01-01

    This article reports findings from a longitudinal case study investigating how students experience perspective transformation from their participation in international service-learning program with an explicit social justice orientation. Findings indicate that each student experienced profound changes in their world-view in at least one of six…

  9. Probabilistic active recognition of multiple objects using Hough-based geometric matching features

    CSIR Research Space (South Africa)

    Govender, N

    2015-01-01

    Full Text Available be recognized simultaneously, and occlusion and clutter (through distracter objects) is common. We propose a representation for object viewpoints using Hough transform based geometric matching features, which are robust in such circumstances. We show how...

  10. Design and Modeling of an Integrated Micro-Transformer in a Flyback Converter

    Directory of Open Access Journals (Sweden)

    M. Derkaoui

    2013-11-01

    Full Text Available This paper presents the design and modeling of a square micro-transformer for its integration in a flyback converter. From the specifications of the switching power supply, we determined the geometric parameters of this micro-transformer. The π-electrical model of this micro-transformer highlights all parasitic effects generated by stacking of different material layers and permits to calculate the technological parameters by using the S-parameters. A good dimensioning of the geometrical parameters reduces efficiently the energy losses in the micro-transformer and permits to reach the desirable value of the converter output voltage. We have also simulated the electromagnetic effects with the help of the software FEMLAB3.1 in two cases. The first case, without ferromagnetic core, the second case with ferromagnetic core, in order to choose the micro-transformer that has better electromagnetic compatibility with the vicinity components. To validate dimensioning of the geometrical and technological parameters, we have simulated with the help of the software PSIM6.0, the equivalent electrical circuit of the converter containing the electrical circuit of the dimensioned planar micro-transformer.

  11. Emergence of a learning community: a transforming experience at the boundaries

    Science.gov (United States)

    Raia, Federica

    2013-03-01

    I narrate a process of transformation, a professional and personal journey framed by an experience that captured my attention shaping my interpretation and reflections. From a critical complexity framework I discuss the emergence of a learning community from the cooperation among individuals of diverse social and cultural worlds sharing the need to change a traditional professional development program structure and develop a new science education Masters Degree/Certification program. I zoom into the continual redefinition of the community, its evolution and complex interrelations among its participants and the emergence of a learning community as a boundary space having an emancipatory role and allowing growth and learning. I analyze the dialectical relationship between agents' behavior either impeding growth or having an emancipatory function of a mindful RelationalAct in a complex adaptive system framework.

  12. Image understanding using geometric context

    Science.gov (United States)

    Zhang, Xiaochun; Liu, Chuancai

    2017-07-01

    A Gibbs Sampler based topic model for image annotation, which takes into account the interaction between visual geometric context and related topic, is presented. Most of the existing topic models for scene annotation use segmentation-based algorithm. However, topic models using segmentation algorithm alone sometimes can produce erroneous results when used to annotate real-life scene pictures. Therefore, our algorithm makes use of peaks of image surface instead of segmentation regions. Existing approaches use SIFT algorithm and treat the peaks as round blob features. In this paper, the peaks are treated as anisotropic blob features, which models low level visual elements more precisely. In order to better utilize visual features, our model not only takes into consideration visual codeword, but also considers influence of visual properties to topic formation, such as orientation, width, length and color. The basic idea is based on the assumption that different topics will produce distinct visual appearance, and different visual appearance is helpful to distinguish topics. During the learning stage, each topic will be associated with a set of distributions of visual properties, which depicts appearance of the topic. This paper considers more geometric properties, which will reduce topic uncertainty and learn the images better. Tested with Corel5K, SAIAPR-TC12 and Espgame100k Datasets, our method performs moderately better than some state of the arts methods.

  13. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit.

    Science.gov (United States)

    Song, Chao; Zheng, Shi-Biao; Zhang, Pengfei; Xu, Kai; Zhang, Libo; Guo, Qiujiang; Liu, Wuxin; Xu, Da; Deng, Hui; Huang, Keqiang; Zheng, Dongning; Zhu, Xiaobo; Wang, H

    2017-10-20

    Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.

  14. Linked Learning as a High School Transformation Strategy: Organizational Structures and Leadership Behaviors That Support Lasting Change

    Science.gov (United States)

    Weiss, Elizabeth Rocio

    2016-01-01

    Linked Learning is an approach that has proven effective in transforming the learning experiences for high school students. An instrumental case study was conducted in a large urban district in Southern California where district and school leaders implemented Linked Learning as a systemic high school reform initiative. Analysis of the data…

  15. The secret adventures of order: globalization, education and transformative social justice learning

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Torres

    Full Text Available There are many definitions of globalization, or perhaps more accurately, there are many globalizations. Discussing the four faces of globalization - globalization from above, globalization from below, the globalization of human rights, and the globalization of the war against terrorism - and their impacts on education and learning, this article offers an analysis of neoliberal globalization and how "competition-based reforms" affected educational policy in K-12 and higher education. These reforms are characterized by efforts to create measurable performance standards through extensive standardized testing (the new standards and accountability movement, introduction of new teaching and learning methods leading to the expectation of better performance at low cost (e.g., universalization of textbooks, and improvements in the selection and training of teachers. Competition-based reforms in higher education tend to adopt a vocational orientation and to reflect the point of view that colleges and universities exist largely to serve the economic well-being of a society. Privatization is the final major reform effort linked to neoliberal globalization and perhaps the most dominant. As an alternative, the article provides insights into the possibilities of employing the concept of marginality as a central construct for a model of transformative social justice learning. Following the inspiration of Paulo Freire, I argue that transformative social justice learning is a social, political and pedagogical practice which will take place when people reach a deeper, richer, more textured and nuanced understanding of themselves and their world.

  16. Electric field distribution and current emission in a miniaturized geometrical diode

    Science.gov (United States)

    Lin, Jinpu; Wong, Patrick Y.; Yang, Penglu; Lau, Y. Y.; Tang, W.; Zhang, Peng

    2017-06-01

    We study the electric field distribution and current emission in a miniaturized geometrical diode. Using Schwarz-Christoffel transformation, we calculate exactly the electric field inside a finite vacuum cathode-anode (A-K) gap with a single trapezoid protrusion on one of the electrode surfaces. It is found that there is a strong field enhancement on both electrodes near the protrusion, when the ratio of the A-K gap distance to the protrusion height d /h spot checked against COMSOL simulations. We calculate the effective field enhancement factor for the field emission current, by integrating the local Fowler-Nordheim current density along the electrode surfaces. We systematically examine the electric field enhancement and the current rectification of the miniaturized geometrical diode for various geometric dimensions and applied electric fields.

  17. The role of transformative leadership, ICT infrastructure and learning climate in teachers’ use of digital learning materials during their classes

    NARCIS (Netherlands)

    Vermeulen, Marjan; Kreijns, Karel; Van Buuren, Hans; Van Acker, Frederik

    2017-01-01

    This study investigated whether the school organizational variables transformative leadership (TL), ICT-infrastructure (technical and social), and organizational learning climate were related to teachers’ dispositional variables attitude, perceived norm, and perceived behavior control (PBC). The

  18. Nonlocal transformation optics.

    Science.gov (United States)

    Castaldi, Giuseppe; Galdi, Vincenzo; Alù, Andrea; Engheta, Nader

    2012-02-10

    We show that the powerful framework of transformation optics may be exploited for engineering the nonlocal response of artificial electromagnetic materials. Relying on the form-invariant properties of coordinate-transformed Maxwell's equations in the spectral domain, we derive the general constitutive "blueprints" of transformation media yielding prescribed nonlocal field-manipulation effects and provide a physically incisive and powerful geometrical interpretation in terms of deformation of the equifrequency contours. In order to illustrate the potentials of our approach, we present an example of application to a wave-splitting refraction scenario, which may be implemented via a simple class of artificial materials. Our results provide a systematic and versatile framework which may open intriguing venues in dispersion engineering of artificial materials.

  19. The role of work-related learning in the identity transformation of Canadian workers with low literacy skills

    Science.gov (United States)

    Taylor, Maurice C.; Trumpower, David L.; Purse, Edward R.

    2015-12-01

    Workplaces are settings where power, knowledge and self are brought together in a complex social environment which includes various forms of struggle related to identity, agency, socio-cultural norms, political structures and functional practices. The purpose of this article is to uncover how formal and informal work-related learning processes influence the identity transformation of workers with low literacy and essential skills. Drawing on two recent Canadian data bases which serve as cases in this study, the position taken by the authors is that the organisational context can both facilitate and impede worker subjectivity. Various conditions, approaches to learning and training pathways are examined as they contribute to social cognitive and transformative learning theories.

  20. New Geometric-distortion Solution for STIS FUV-MAMA

    Science.gov (United States)

    Sohn, S. Tony

    2018-04-01

    We derived a new geometric distortion solution for the STIS FUV-MAMA detector. To do this, positions of stars in 89 FUV-MAMA observations of NGC 6681 were compared to an astrometric standard catalog created using WFC3/UVIS imaging data to derive a fourth-order polynomial solution that transforms raw (x, y) positions to geometrically- corrected (x, y) positions. When compared to astrometric catalog positions, the FUV- MAMA position measurements based on the IDCTAB showed residuals with an RMS of ∼ 30 mas in each coordinate. Using the new IDCTAB, the RMS is reduced to ∼ 4 mas, or 0.16 FUV-MAMA pixels, in each coordinate. The updated IDCTAB is now being used in the HST STIS pipeline to process all STIS FUV-MAMA images.

  1. Geometric Total Variation for Texture Deformation

    DEFF Research Database (Denmark)

    Bespalov, Dmitriy; Dahl, Anders Lindbjerg; Shokoufandeh, Ali

    2010-01-01

    In this work we propose a novel variational method that we intend to use for estimating non-rigid texture deformation. The method is able to capture variation in grayscale images with respect to the geometry of its features. Our experimental evaluations demonstrate that accounting for geometry...... of features in texture images leads to significant improvements in localization of these features, when textures undergo geometrical transformations. Accurate localization of features in the presense of unkown deformations is a crucial property for texture characterization methods, and we intend to expoit...

  2. There Is More to Digital Learning than Counting on Your Fingers: Transforming Learning and Teaching with Digital Pedagogy

    Science.gov (United States)

    Smirnova, Lyudmila; Lazarevic , Bojan; Malloy, Veronica

    2018-01-01

    This paper explores how pedagogy is being influenced by fast developing digital technologies. Results are presented from exploratory research conducted in 2016. The findings are addressed in terms of the transformation of learning and education, including the move from the measured to the engaged classroom. Emerging technology creates a natural…

  3. Exploring students’ adaptive reasoning skills and van Hiele levels of geometric thinking: a case study in geometry

    Science.gov (United States)

    Rizki, H. T. N.; Frentika, D.; Wijaya, A.

    2018-03-01

    This study aims to explore junior high school students’ adaptive reasoning and the Van Hiele level of geometric thinking. The present study was a quasi-experiment with the non-equivalent control group design. The participants of the study were 34 seventh graders and 35 eighth graders in the experiment classes and 34 seventh graders and 34 eighth graders in the control classes. The students in the experiment classes learned geometry under the circumstances of a Knisley mathematical learning. The data were analyzed quantitatively by using inferential statistics. The results of data analysis show an improvement of adaptive reasoning skills both in the grade seven and grade eight. An improvement was also found for the Van Hiele level of geometric thinking. These results indicate the positive impact of Knisley learning model on students’ adaptive reasoning skills and Van Hiele level of geometric thinking.

  4. Effects of Transformational and Transactional Leadership on Cognitive Effort and Outcomes during Collaborative Learning within a Virtual World

    Science.gov (United States)

    Kahai, Surinder; Jestire, Rebecca; Huang, Rui

    2013-01-01

    Computer-supported collaborative learning is a common e-learning activity. Instructors have to create appropriate social and instructional interventions in order to promote effective learning. We performed a study that examined the effects of two popular leadership interventions, transformational and transactional, on cognitive effort and outcomes…

  5. Geometric algebra with applications in science and engineering

    CERN Document Server

    Sobczyk, Garret

    2001-01-01

    The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer­ ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar­ ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math­ ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling ...

  6. A Divergence Median-based Geometric Detector with A Weighted Averaging Filter

    Science.gov (United States)

    Hua, Xiaoqiang; Cheng, Yongqiang; Li, Yubo; Wang, Hongqiang; Qin, Yuliang

    2018-01-01

    To overcome the performance degradation of the classical fast Fourier transform (FFT)-based constant false alarm rate detector with the limited sample data, a divergence median-based geometric detector on the Riemannian manifold of Heimitian positive definite matrices is proposed in this paper. In particular, an autocorrelation matrix is used to model the correlation of sample data. This method of the modeling can avoid the poor Doppler resolution as well as the energy spread of the Doppler filter banks result from the FFT. Moreover, a weighted averaging filter, conceived from the philosophy of the bilateral filtering in image denoising, is proposed and combined within the geometric detection framework. As the weighted averaging filter acts as the clutter suppression, the performance of the geometric detector is improved. Numerical experiments are given to validate the effectiveness of our proposed method.

  7. Building on transformative learning and response shift theory to investigate health-related quality of life changes over time in individuals with chronic health conditions and disability.

    Science.gov (United States)

    Barclay-Goddard, Ruth; King, Judy; Dubouloz, Claire-Jehanne; Schwartz, Carolyn E

    2012-02-01

    A major goal of treatment for people living with chronic illness or disability is self-management leading to optimized health-related quality of life. This change process has been described in the adult education literature as transformative learning, while in health-related quality of life research, response shift has emerged as a key concept. Response shift and transformative learning literature were reviewed, and the theoretical frameworks of the 2 concepts were compared and contrasted. Response shift is described as a change in internal standards, values, or definition of a construct (eg, health-related quality of life) over time, commonly seen in individuals with chronic illness. In the context of chronic illness, transformative learning is described as a complex process of personal change including beliefs, feelings, knowledge, and values. Transformative learning is often triggered by the diagnosis of a chronic illness. This results in a critical reflection of taken-for-granted assumptions and leads to new ways of thinking, influencing personal changes in daily living. Comparing the models of response shift and transformative learning in chronic illness, the catalyst in response shift appears comparable with the trigger in transformational learning; mechanisms to process of changing; and perceived quality of life to outcomes. Both transformative learning and response shift have much to offer health care providers in understanding the learning process for the person living with chronic illness or disability to optimize their quality of life. Suggestions for future research in response shift and transformative learning in individuals with chronic health conditions and disability are proposed. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Geometric mean for subspace selection.

    Science.gov (United States)

    Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J

    2009-02-01

    Subspace selection approaches are powerful tools in pattern classification and data visualization. One of the most important subspace approaches is the linear dimensionality reduction step in the Fisher's linear discriminant analysis (FLDA), which has been successfully employed in many fields such as biometrics, bioinformatics, and multimedia information management. However, the linear dimensionality reduction step in FLDA has a critical drawback: for a classification task with c classes, if the dimension of the projected subspace is strictly lower than c - 1, the projection to a subspace tends to merge those classes, which are close together in the original feature space. If separate classes are sampled from Gaussian distributions, all with identical covariance matrices, then the linear dimensionality reduction step in FLDA maximizes the mean value of the Kullback-Leibler (KL) divergences between different classes. Based on this viewpoint, the geometric mean for subspace selection is studied in this paper. Three criteria are analyzed: 1) maximization of the geometric mean of the KL divergences, 2) maximization of the geometric mean of the normalized KL divergences, and 3) the combination of 1 and 2. Preliminary experimental results based on synthetic data, UCI Machine Learning Repository, and handwriting digits show that the third criterion is a potential discriminative subspace selection method, which significantly reduces the class separation problem in comparing with the linear dimensionality reduction step in FLDA and its several representative extensions.

  9. Geometric mean IELT and premature ejaculation: appropriate statistics to avoid overestimation of treatment efficacy.

    Science.gov (United States)

    Waldinger, Marcel D; Zwinderman, Aeilko H; Olivier, Berend; Schweitzer, Dave H

    2008-02-01

    The intravaginal ejaculation latency time (IELT) behaves in a skewed manner and needs the appropriate statistics for correct interpretation of treatment results. To explain the rightful use of geometrical mean IELT values and the fold increase of the geometric mean IELT because of the positively skewed IELT distribution. Linking theoretical arguments to the outcome of several selective serotonin reuptake inhibitor and modern antidepressant study results. Geometric mean IELT and fold increase of geometrical mean IELT. Log-transforming each separate IELT measurement of each individual man is the basis for the calculation of the geometric mean IELT. A drug-induced positively skewed IELT distribution necessitates the calculation of the geometric mean IELTs at baseline and during drug treatment. In a positively skewed IELT distribution, the use of the "arithmetic" mean IELT risks an overestimation of the drug-induced ejaculation delay as the mean IELT is always higher than the geometric mean IELT. Strong ejaculation-delaying drugs give rise to a strong positively skewed IELT distribution, whereas weak ejaculation-delaying drugs give rise to (much) less skewed IELT distributions. Ejaculation delay is expressed in fold increase of the geometric mean IELT. Drug-induced ejaculatory performance discloses a positively skewed IELT distribution, requiring the use of the geometric mean IELT and the fold increase of the geometric mean IELT.

  10. Adaptive Wavelet Transforms

    Energy Technology Data Exchange (ETDEWEB)

    Szu, H.; Hsu, C. [Univ. of Southwestern Louisiana, Lafayette, LA (United States)

    1996-12-31

    Human sensors systems (HSS) may be approximately described as an adaptive or self-learning version of the Wavelet Transforms (WT) that are capable to learn from several input-output associative pairs of suitable transform mother wavelets. Such an Adaptive WT (AWT) is a redundant combination of mother wavelets to either represent or classify inputs.

  11. Invisible data matrix detection with smart phone using geometric correction and Hough transform

    Science.gov (United States)

    Sun, Halit; Uysalturk, Mahir C.; Karakaya, Mahmut

    2016-04-01

    Two-dimensional data matrices are used in many different areas that provide quick and automatic data entry to the computer system. Their most common usage is to automatically read labeled products (books, medicines, food, etc.) and recognize them. In Turkey, alcohol beverages and tobacco products are labeled and tracked with the invisible data matrices for public safety and tax purposes. In this application, since data matrixes are printed on a special paper with a pigmented ink, it cannot be seen under daylight. When red LEDs are utilized for illumination and reflected light is filtered, invisible data matrices become visible and decoded by special barcode readers. Owing to their physical dimensions, price and requirement of special training to use; cheap, small sized and easily carried domestic mobile invisible data matrix reader systems are required to be delivered to every inspector in the law enforcement units. In this paper, we first developed an apparatus attached to the smartphone including a red LED light and a high pass filter. Then, we promoted an algorithm to process captured images by smartphones and to decode all information stored in the invisible data matrix images. The proposed algorithm mainly involves four stages. In the first step, data matrix code is processed by Hough transform processing to find "L" shaped pattern. In the second step, borders of the data matrix are found by using the convex hull and corner detection methods. Afterwards, distortion of invisible data matrix corrected by geometric correction technique and the size of every module is fixed in rectangular shape. Finally, the invisible data matrix is scanned line by line in the horizontal axis to decode it. Based on the results obtained from the real test images of invisible data matrix captured with a smartphone, the proposed algorithm indicates high accuracy and low error rate.

  12. How Multilevel Societal Learning Processes Facilitate Transformative Change: A Comparative Case Study Analysis on Flood Management

    Directory of Open Access Journals (Sweden)

    Claudia Pahl-Wostl

    2013-12-01

    Full Text Available Sustainable resources management requires a major transformation of existing resource governance and management systems. These have evolved over a long time under an unsustainable management paradigm, e.g., the transformation from the traditionally prevailing technocratic flood protection toward the holistic integrated flood management approach. We analyzed such transformative changes using three case studies in Europe with a long history of severe flooding: the Hungarian Tisza and the German and Dutch Rhine. A framework based on societal learning and on an evolutionary understanding of societal change was applied to identify drivers and barriers for change. Results confirmed the importance of informal learning and actor networks and their connection to formal policy processes. Enhancing a society's capacity to adapt is a long-term process that evolves over decades, and in this case, was punctuated by disastrous flood events that promoted windows of opportunity for change.

  13. On Becoming a Qualitative Researcher: A View through the Lens of Transformative Learning

    Science.gov (United States)

    Carawan, Lena W.; Knight, Sharon; Wittman, Peggy; Pokorny, Marie; Velde, Beth P.

    2011-01-01

    This article describes a graduate-level qualitative research course informed by transformational learning theory. It presents strategies an interdisciplinary team of instructors used to engage and support students as they entered and moved through the course. The strategies focused on creating a safe, supportive, learner-centered environment,…

  14. Improved Student Learning through a Faculty Learning Community: How Faculty Collaboration Transformed a Large-Enrollment Course from Lecture to Student Centered

    Science.gov (United States)

    Elliott, Emily R.; Reason, Robert D.; Coffman, Clark R.; Gangloff, Eric J.; Raker, Jeffrey R.; Powell-Coffman, Jo Anne; Ogilvie, Craig A.

    2016-01-01

    Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture setting. To support this change, we set up a faculty learning community (FLC) in which instructors develop new pedagogies, adapt active-learning strategies to large courses, discuss challenges and progress, critique and revise classroom interventions, and share materials. We present data on how the collaborative work of the FLC led to increased implementation of active-learning strategies and a concurrent improvement in student learning. Interestingly, student learning gains correlate with the percentage of classroom time spent in active-learning modes. Furthermore, student attitudes toward learning biology are weakly positively correlated with these learning gains. At our institution, the FLC framework serves as an agent of iterative emergent change, resulting in the creation of a more student-centered course that better supports learning. PMID:27252298

  15. Geometric shapes inversion method of space targets by ISAR image segmentation

    Science.gov (United States)

    Huo, Chao-ying; Xing, Xiao-yu; Yin, Hong-cheng; Li, Chen-guang; Zeng, Xiang-yun; Xu, Gao-gui

    2017-11-01

    The geometric shape of target is an effective characteristic in the process of space targets recognition. This paper proposed a method of shape inversion of space target based on components segmentation from ISAR image. The Radon transformation, Hough transformation, K-means clustering, triangulation will be introduced into ISAR image processing. Firstly, we use Radon transformation and edge detection to extract space target's main body spindle and solar panel spindle from ISAR image. Then the targets' main body, solar panel, rectangular and circular antenna are segmented from ISAR image based on image detection theory. Finally, the sizes of every structural component are computed. The effectiveness of this method is verified using typical targets' simulation data.

  16. Transformational and Passive Leadership: An Initial Investigation of University Instructors as Leaders in a Virtual Learning Environment

    Science.gov (United States)

    Bogler, Ronit; Caspi, Avner; Roccas, Sonia

    2013-01-01

    The study investigated whether students perceive their university instructors in a virtual learning environment as leaders. Referring to the full range leadership theory (FRLT), we examined the effects of transformational and passive leadership styles of university instructors on students' satisfaction and learning outcomes. Completed web-based…

  17. Linear and support vector regressions based on geometrical correlation of data

    Directory of Open Access Journals (Sweden)

    Kaijun Wang

    2007-10-01

    Full Text Available Linear regression (LR and support vector regression (SVR are widely used in data analysis. Geometrical correlation learning (GcLearn was proposed recently to improve the predictive ability of LR and SVR through mining and using correlations between data of a variable (inner correlation. This paper theoretically analyzes prediction performance of the GcLearn method and proves that GcLearn LR and SVR will have better prediction performance than traditional LR and SVR for prediction tasks when good inner correlations are obtained and predictions by traditional LR and SVR are far away from their neighbor training data under inner correlation. This gives the applicable condition of GcLearn method.

  18. Transforming Language Ideologies through Action Research: A Case Study of Bilingual Science Learning

    Science.gov (United States)

    Yang, Eunah

    This qualitative case study explored a third grade bilingual teacher's transformative language ideologies through participating in a collaborative action research project. By merging language ideologies theory, Cultural Historical Activity Theory (CHAT), and action research, I was able to identify the analytic focus of this study. I analyzed how one teacher and I, the researcher, collaboratively reflected on classroom language practices during the video analysis meetings and focus groups. Further, I analyzed twelve videos that we coded together to see the changes in the teacher's language practices over time. My unit of analysis was the discourse practice mediated by additive language ideologies. Throughout the collaborative action research process, we both critically reflected on the classroom language use. We also developed a critical consciousness about the participatory shifts and learning of focal English Learner (EL) students. Finally, the teacher made changes to her classroom language practices. The results of this study will contribute to the literacy education research field for theoretical, methodological, and practical insights. The integration of language ideologies, CHAT, and action research can help educational practitioners, researchers, and policy makers understand the importance of transforming teachers' language ideologies in designing additive learning contexts for ELs. From a methodological perspective, the transformative language ideologies through researcher and teacher collaborated video analysis process provide a unique contribution to the language ideologies in education literature, with analytic triangulation. As a practical implication, this study suggests action research can be one of the teacher education tools to help the teachers transform language ideologies for EL education.

  19. Disformal transformation in Newton-Cartan geometry

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Peng [Zhejiang Chinese Medical University, Department of Information, Hangzhou (China); Sun Yat-Sen University, School of Physics and Astronomy, Guangzhou (China); Yuan, Fang-Fang [Nankai University, School of Physics, Tianjin (China)

    2016-08-15

    Newton-Cartan geometry has played a central role in recent discussions of the non-relativistic holography and condensed matter systems. Although the conformal transformation in non-relativistic holography can easily be rephrased in terms of Newton-Cartan geometry, we show that it requires a nontrivial procedure to arrive at the consistent form of anisotropic disformal transformation in this geometry. Furthermore, as an application of the newly obtained transformation, we use it to induce a geometric structure which may be seen as a particular non-relativistic version of the Weyl integrable geometry. (orig.)

  20. Self-Assessment of Schools and Teachers as a Road to Transforming Schools from Teaching to Learning Organisations

    Science.gov (United States)

    Franz, Hans-Werner

    2012-01-01

    This article explores the manner in which self-assessment in schools can play an integral role in the transformation of schools into learning organisations. The perspective adopted is based upon European experiences and describes and analyses the sociological constructs and bases supporting the process of transformation. (Contains 6 notes and 2…

  1. Physics in schools: the geometrical behaviour of large objects moving with relativistic velocities

    Energy Technology Data Exchange (ETDEWEB)

    Ormicki, M

    1977-01-01

    In the special relativity theory time and place are transformed from one inertia system to a second inertia system which is in motion in relation to the first, using the Lorentz transformation equations. Since in general the Lorentz abbreviations are only used for distances between a number of individual points, this may lead to a lack of understanding of how larger objects behave geometrically when they have relative velocities to each other. A model is considered to illustrate the operation of the Lorentz transformation in such cases, with results which can be handled on a mini-computer.

  2. Transformative Theory in Social Research

    DEFF Research Database (Denmark)

    Ravn, Ib

    Social-scientific theory usually represents an attempt to describe or explain social phenomena and, sometimes, to criticize them. However, a theory can be transformative in the sense that in using and testing it, researchers may help practitioners transform and improve their social conditions......, institutions or organisations. This idea is illustrated by a research-and-development effort to help conference organisers develop meeting formats that create more learning among delegates than is accomplished by the conventional, lecture-based format. This effort was based on a (transformative) theory...... of conferences as forums for learning and "human co-flourishing." Seventeen learning techniques were derived from the theory and were tested as hypotheses: When implemented in 30 live experiments, did they contribute to learning, as specified by the theory? Properties of transformative theory that distinguish...

  3. Transformation optics, isotropic chiral media and non-Riemannian geometry

    International Nuclear Information System (INIS)

    Horsley, S A R

    2011-01-01

    The geometrical interpretation of electromagnetism in transparent media (transformation optics) is extended to include chiral media that are isotropic but inhomogeneous. It was found that such media may be described through introducing the non-Riemannian geometrical property of torsion into the Maxwell equations, and it is shown how such an interpretation may be applied to the design of optical devices.

  4. The metallic ratios as limits of complex valued transformations

    International Nuclear Information System (INIS)

    Falcon, Sergio; Plaza, Angel

    2009-01-01

    We study the presence of the metallic ratios as limits of two complex valued transformations. These complex variable functions are introduced and related with the two geometric antecedents for each triangle in a particular triangle partition, the four-triangle longest-edge (4TLE) partition. In this way, the fractality of a geometric diagram for the classes of dissimilar generated triangles is also explained.

  5. Teaching caring and competence: Student transformation during an older adult focused service-learning course.

    Science.gov (United States)

    Brown, Karen M; Bright, Leslie M

    2017-11-01

    Innovative teaching strategies develop nurses' knowledge, skills, and attitudes while simultaneously integrating the art of caring and transforming attitudes toward adults over age 65. The study's purpose was to explore students' experiences and attitudes toward older adults with cognitive and/or physical limitations as well as the effects on students' knowledge and skills during a baccalaureate nursing, course which included a service-learning experience. Service-learning synthesizes meaningful community service, academic instruction, and reflection. Participants included baccalaureate students enrolled in a service-learning nursing course focused on older adults. This retrospective, qualitative, phenomenological study used reflective journals and an online survey to explore baccalaureate nursing students' experiences toward older adults with cognitive and/or physical limitations. Themes included initial attitudes of anticipation, apprehension, anxiety, and ageist stereotypes. Final attitudes included a "completely changed perspective" of caring, compassion, and respect indicative of a rewarding, "life-changing" experience. Participants cited enhanced learning, especially in the areas of patient-centered care, collaboration, communication, advocacy, empathy, assessment skills, and evidence-based practice. This innovative teaching strategy led to transformed attitudes toward older adults, reduced fear of older adult populations, an increased desire to work with older adults, and the ability to form a transpersonal, caring relationship while enhancing nursing knowledge and skills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy.

    Science.gov (United States)

    Jaferzadeh, Keyvan; Moon, Inkyu

    2015-11-01

    Quantitative phase information obtained by digital holographic microscopy (DHM) can provide new insight into the functions and morphology of single red blood cells (RBCs). Since the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D geometric changes induced by storage time can help hematologists realize its optimal functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage lesion using DHM. Our experimental results show that the substantial geometric transformation of the biconcave-shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. Furthermore, our quantitative analysis shows that there are significant correlations between chemical and morphological properties of RBCs.

  7. Constructing Geometric Properties of Rectangle, Square, and Triangle in the Third Grade of Indonesian Primary Schools

    Directory of Open Access Journals (Sweden)

    Ilham Rizkianto

    2013-07-01

    Full Text Available Previous studies have provided that when learning shapes for the first time, young children tend to use the prototype as the reference point for comparisons, but often fail when doing so since they do not yet think about the defining attributes or the geometric properties of the shapes. Most of the time, elementary students learn geometric properties of shapes only as empty verbal statements to be memorized, without any chance to experience the contepts meaningfully. In the light of it, a sequence of instructional activities along with computer manipulative was designed to support Indonesian third graders in constructing geometric properties of square, rectangle, and triangle. The aim of the present study is to develop a loval instructional theory to support third graders in constructing geometric properties of rectangle, square, and triangle. Thirty seven students of one third grade classes in SD Pupuk Sriwijaya Palembang, along with their class teacher, were involved in the study. Our findings suggest that the combination of computer and non-computer activities suppots third graders in constructing geometric properties of square, rectangle, and triangle in that it provides opportunities to the students to experience and to develop the concepts meaningfully while using their real experiences as the bases to attain a higher geometric thinking level.Key concepts: Geometric properties, rectangle, square, triangle, design research, realistic mathematics education DOI: http://dx.doi.org/10.22342/jme.4.2.414.160-171

  8. Recent Advances in Material and Geometrical Modelling in Dental Applications

    Directory of Open Access Journals (Sweden)

    Waleed M. S. Al Qahtani

    2018-06-01

    Full Text Available This article touched, in brief, the recent advances in dental materials and geometric modelling in dental applications. Most common categories of dental materials as metallic alloys, composites, ceramics and nanomaterials were briefly demonstrated. Nanotechnology improved the quality of dental biomaterials. This new technology improves many existing materials properties, also, to introduce new materials with superior properties that covered a wide range of applications in dentistry. Geometric modelling was discussed as a concept and examples within this article. The geometric modelling with engineering Computer-Aided-Design (CAD system(s is highly satisfactory for further analysis or Computer-Aided-Manufacturing (CAM processes. The geometric modelling extracted from Computed-Tomography (CT images (or its similar techniques for the sake of CAM also reached a sufficient level of accuracy, while, obtaining efficient solid modelling without huge efforts on body surfaces, faces, and gaps healing is still doubtable. This article is merely a compilation of knowledge learned from lectures, workshops, books, and journal articles, articles from the internet, dental forum, and scientific groups' discussions.

  9. Failure of geometric electromagnetism in the adiabatic vector Kepler problem

    International Nuclear Information System (INIS)

    Anglin, J.R.; Schmiedmayer, J.

    2004-01-01

    The magnetic moment of a particle orbiting a straight current-carrying wire may precess rapidly enough in the wire's magnetic field to justify an adiabatic approximation, eliminating the rapid time dependence of the magnetic moment and leaving only the particle position as a slow degree of freedom. To zeroth order in the adiabatic expansion, the orbits of the particle in the plane perpendicular to the wire are Keplerian ellipses. Higher-order postadiabatic corrections make the orbits precess, but recent analysis of this 'vector Kepler problem' has shown that the effective Hamiltonian incorporating a postadiabatic scalar potential ('geometric electromagnetism') fails to predict the precession correctly, while a heuristic alternative succeeds. In this paper we resolve the apparent failure of the postadiabatic approximation, by pointing out that the correct second-order analysis produces a third Hamiltonian, in which geometric electromagnetism is supplemented by a tensor potential. The heuristic Hamiltonian of Schmiedmayer and Scrinzi is then shown to be a canonical transformation of the correct adiabatic Hamiltonian, to second order. The transformation has the important advantage of removing a 1/r 3 singularity which is an artifact of the adiabatic approximation

  10. Topology-optimized metasurfaces: impact of initial geometric layout.

    Science.gov (United States)

    Yang, Jianji; Fan, Jonathan A

    2017-08-15

    Topology optimization is a powerful iterative inverse design technique in metasurface engineering and can transform an initial layout into a high-performance device. With this method, devices are optimized within a local design phase space, making the identification of suitable initial geometries essential. In this Letter, we examine the impact of initial geometric layout on the performance of large-angle (75 deg) topology-optimized metagrating deflectors. We find that when conventional metasurface designs based on dielectric nanoposts are used as initial layouts for topology optimization, the final devices have efficiencies around 65%. In contrast, when random initial layouts are used, the final devices have ultra-high efficiencies that can reach 94%. Our numerical experiments suggest that device topologies based on conventional metasurface designs may not be suitable to produce ultra-high-efficiency, large-angle metasurfaces. Rather, initial geometric layouts with non-trivial topologies and shapes are required.

  11. Direct numerical reconstruction of conductivities in three dimensions using scattering transforms

    DEFF Research Database (Denmark)

    Bikowski, Jutta; Knudsen, Kim; Mueller, Jennifer L

    2011-01-01

    A direct three-dimensional EIT reconstruction algorithm based on complex geometrical optics solutions and a nonlinear scattering transform is presented and implemented for spherically symmetric conductivity distributions. The scattering transform is computed both with a Born approximation and from...

  12. A multiple kernel classification approach based on a Quadratic Successive Geometric Segmentation methodology with a fault diagnosis case.

    Science.gov (United States)

    Honório, Leonardo M; Barbosa, Daniele A; Oliveira, Edimar J; Garcia, Paulo A Nepomuceno; Santos, Murillo F

    2018-03-01

    This work presents a new approach for solving classification and learning problems. The Successive Geometric Segmentation technique is applied to encapsulate large datasets by using a series of Oriented Bounding Hyper Box (OBHBs). Each OBHB is obtained through linear separation analysis and each one represents a specific region in a pattern's solution space. Also, each OBHB can be seen as a data abstraction layer and be considered as an individual Kernel. Thus, it is possible by applying a quadratic discriminant function, to assemble a set of nonlinear surfaces separating each desirable pattern. This approach allows working with large datasets using high speed linear analysis tools and yet providing a very accurate non-linear classifier as final result. The methodology was tested using the UCI Machine Learning repository and a Power Transformer Fault Diagnosis real scenario problem. The results were compared with different approaches provided by literature and, finally, the potential and further applications of the methodology were also discussed. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Transformation optics beyond the manipulation of light trajectories.

    Science.gov (United States)

    Ginis, Vincent; Tassin, Philippe

    2015-08-28

    Since its inception in 2006, transformation optics has become an established tool to understand and design electromagnetic systems. It provides a geometrical perspective into the properties of light waves without the need for a ray approximation. Most studies have focused on modifying the trajectories of light rays, e.g. beam benders, lenses, invisibility cloaks, etc. In this contribution, we explore transformation optics beyond the manipulation of light trajectories. With a few well-chosen examples, we demonstrate that transformation optics can be used to manipulate electromagnetic fields up to an unprecedented level. In the first example, we introduce an electromagnetic cavity that allows for deep subwavelength confinement of light. The cavity is designed with transformation optics even though the concept of trajectory ceases to have any meaning in a structure as small as this cavity. In the second example, we show that the properties of Cherenkov light emitted in a transformation-optical material can be understood and modified from simple geometric considerations. Finally, we show that optical forces--a quadratic function of the fields--follow the rules of transformation optics too. By applying a folded coordinate transformation to a pair of waveguides, optical forces can be enhanced just as if the waveguides were closer together. With these examples, we open up an entirely new spectrum of devices that can be conceived using transformation optics. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Investigation of the Geometrical Distortions in the Nuclear Emulsion

    International Nuclear Information System (INIS)

    Batusov, Yu.A.; Rumyantseva, V.P.; Soroko, L.M.; Tereshchenko, V.V.

    1994-01-01

    The geometrical distortions in the nuclear emulsion were investigated by means of two devices: 1) stereoscopic meso-optical Fourier transform microscope (MFTM) and 2) traditional optical microscope (KSM-1) designed for precise measurements. The particle tracks were produced by primary Oxygen-nuclei with impulse 65.6 GeV/c and by secondary α-particles in various regions of the nuclear emulsion. The measurement errors were: 1.8' (angular minute) for orientation angle θ xy ; 2.7' (angular minute) for dip angle θ z ; 0.3 μm for transverse coordinate x; 0.1 μm for longitudinal coordinate y and 0.3 μm for depth coordinate z. The effect of the global forced bending of the nuclear emulsion glass support was detected and estimated as dθ z /dy=2' (angular minute) per mm. To suppress the local geometrical distortions, a difference plot was calculated for two secondary α-particles going very close within ≤ 10 μm over the distance 6 mm. It was shown that this mode of the local geometrical distortions is kept constant over the mutual transverse distances up to 0.6 mm. By observing the zy-plots of four secondary α-particles we have isolated the rotating mode of the local geometrical distortions in the nuclear emulsion. 5 refs., 11 figs

  15. The Role of Transformative Leadership, ICT-Infrastructure and Learning Climate in Teachers' Use of Digital Learning Materials during Their Classes

    Science.gov (United States)

    Vermeulen, Marjan; Kreijns, Karel; van Buuren, Hans; Van Acker, Frederik

    2017-01-01

    This study investigated whether school organizational variables (ie, transformative leadership (TL), ICT-infrastructure (technical and social) and organizational learning climate were related to teachers' dispositional variables (ie, attitude, perceived norm and perceived behavior control [PBC]). The direct and indirect influences of the…

  16. SIAM Conference on Geometric Design and Computing. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-03-11

    The SIAM Conference on Geometric Design and Computing attracted 164 domestic and international researchers, from academia, industry, and government. It provided a stimulating forum in which to learn about the latest developments, to discuss exciting new research directions, and to forge stronger ties between theory and applications. Final Report

  17. The Role of Transformational Leadership, Organizational Culture and Organizational Learning in Improving the Performance of Iranian Agricultural Faculties

    Science.gov (United States)

    Abbasi, Enayat; Zamani-Miandashti, Naser

    2013-01-01

    This empirical research was conducted to investigate the role of transformational leadership, organizational culture and organizational learning in improving the performance of Iranian agricultural faculties and leading them to become learning organizations. The research population consisted of all faculty members of public agricultural faculties…

  18. Stories of Transformation: Using Personal Narrative to Explore Transformative Experience among Undergraduate Peer Mentors

    Science.gov (United States)

    Bunting, Bryce; Williams, David

    2017-01-01

    While past researchers suggest undergraduate peer mentors (PMs) benefit from mentoring their peers, this experience is rarely associated with transformative learning. Using narrative analysis of authentic mentoring stories, we explored how particular types of mentoring experiences contribute to transformative learning for PMs of first-year…

  19. Adaptive Neuron Model: An architecture for the rapid learning of nonlinear topological transformations

    Science.gov (United States)

    Tawel, Raoul (Inventor)

    1994-01-01

    A method for the rapid learning of nonlinear mappings and topological transformations using a dynamically reconfigurable artificial neural network is presented. This fully-recurrent Adaptive Neuron Model (ANM) network was applied to the highly degenerate inverse kinematics problem in robotics, and its performance evaluation is bench-marked. Once trained, the resulting neuromorphic architecture was implemented in custom analog neural network hardware and the parameters capturing the functional transformation downloaded onto the system. This neuroprocessor, capable of 10(exp 9) ops/sec, was interfaced directly to a three degree of freedom Heathkit robotic manipulator. Calculation of the hardware feed-forward pass for this mapping was benchmarked at approximately 10 microsec.

  20. Similarity of Ferrosilicon Submerged Arc Furnaces With Different Geometrical Parameters

    Directory of Open Access Journals (Sweden)

    Machulec B.

    2017-12-01

    Full Text Available In order to determine reasons of unsatisfactory production output regarding one of the 12 MVA furnaces, a comparative analysis with a furnace of higher power that showed a markedly better production output was performed. For comparison of ferrosilicon furnaces with different geometrical parameters and transformer powers, the theory of physical similarity was applied. Geometrical, electrical and thermal parameters of the reaction zones are included in the comparative analysis. For furnaces with different geometrical parameters, it is important to ensure the same temperature conditions of the reaction zones. Due to diverse mechanisms of heat generation, different criteria for determination of thermal and electrical similarity for the upper and lower reaction zones were assumed contrary to other publications. The parameter c3 (Westly was assumed the similarity criterion for the upper furnace zones where heat is generated as a result of resistive heating while the parameter J1 (Jaccard was assumed the similarity criterion for the lower furnace zones where heat is generated due to arc radiation.

  1. Method of locating related items in a geometric space for data mining

    Science.gov (United States)

    Hendrickson, Bruce A.

    1999-01-01

    A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method is especially beneficial for communicating databases with many items, and with non-regular relationship patterns. Examples of such databases include databases containing items such as scientific papers or patents, related by citations or keywords. A computer system adapted for practice of the present invention can include a processor, a storage subsystem, a display device, and computer software to direct the location and display of the entities. The method comprises assigning numeric values as a measure of similarity between each pairing of items. A matrix is constructed, based on the numeric values. The eigenvectors and eigenvalues of the matrix are determined. Each item is located in the geometric space at coordinates determined from the eigenvectors and eigenvalues. Proper construction of the matrix and proper determination of coordinates from eigenvectors can ensure that distance between items in the geometric space is representative of the numeric value measure of the items' similarity.

  2. Some Components of Geometric Knowledge of Future Elementary School Teachers

    Science.gov (United States)

    Debrenti, Edith

    2016-01-01

    Geometric experience, spatial representation, spatial visualization, understanding the world around us, and developing the ability of spatial reasoning are fundamental aims in the teaching of mathematics. (Freudenthal, 1972) Learning is a process which involves advancing from level to level. In primary school the focus is on the first two levels…

  3. Geometrical phases from global gauge invariance of nonlinear classical field theories

    International Nuclear Information System (INIS)

    Garrison, J.C.; Chiao, R.Y.

    1988-01-01

    We show that the geometrical phases recently discovered in quantum mechanics also occur naturally in the theory of any classical complex multicomponent field satisfying nonlinear equations derived from a Lagrangean with is invariant under gauge transformations of the first kind. Some examples are the paraxial wave equation for nonlinear optics, and Ginzburg-Landau equations for complex order parameters in condensed-matter physics

  4. Geometric description of images as topographic maps

    CERN Document Server

    Caselles, Vicent

    2010-01-01

    This volume discusses the basic geometric contents of an image and presents a tree data structure to handle those contents efficiently. The nodes of the tree are derived from connected components of level sets of the intensity, while the edges represent inclusion information. Grain filters, morphological operators simplifying these geometric contents, are analyzed and several applications to image comparison and registration, and to edge and corner detection, are presented. The mathematically inclined reader may be most interested in Chapters 2 to 6, which generalize the topological Morse description to continuous or semicontinuous functions, while mathematical morphologists may more closely consider grain filters in Chapter 3. Computer scientists will find algorithmic considerations in Chapters 6 and 7, the full justification of which may be found in Chapters 2 and 4 respectively. Lastly, all readers can learn more about the motivation for this work in the image processing applications presented in Chapter 8...

  5. Transforming Passive Receptivity of Knowledge into Deep Learning Experiences at the Undergraduate Level: An Example from Music Theory

    Science.gov (United States)

    Ferenc, Anna

    2015-01-01

    This article discusses transformation of passive knowledge receptivity into experiences of deep learning in a lecture-based music theory course at the second-year undergraduate level through implementation of collaborative projects that evoke natural critical learning environments. It presents an example of such a project, addresses key features…

  6. The Efficiency Challenge: Creating a Transformative Learning Experience in a Principles of Management Course

    Science.gov (United States)

    Durant, Rita A.; Carlon, Donna M.; Downs, Alexis

    2017-01-01

    This article describes the results of the "Efficiency Challenge," a 10-week, Principles of Management course activity that uses reflection and goal setting to help students understand the concept of operational efficiency. With transformative learning theory as a lens, we base our report on 4 years' worth of student reflections regarding…

  7. Testing a measure of organizational learning capacity and readiness for transformational change in human services.

    Science.gov (United States)

    Bess, Kimberly D; Perkins, Douglas D; McCown, Diana L

    2011-01-01

    Transformative organizational change requires organizational learning capacity, which we define in terms of (1) internal and (2) external organizational systems alignment, and promoting a culture of learning, including (3) an emphasis on exploration and information, (4) open communication, (5) staff empowerment, and (6) support for professional development. We shortened and adapted Watkins and Marsick's Dimensions of Learning Organizations Questionnaire into a new 16-item Organizational Learning Capacity Scale (OLCS) geared more toward nonprofit organizations. The OLCS and its subscales measuring each of the above 6 dimensions are unusually reliable for their brevity. ANOVAs for the OLCS and subscales clearly and consistently confirmed extensive participant observations and other qualitative data from four nonprofit human service organizations and one local human service funding organization.

  8. Visualizing the Geometric Series.

    Science.gov (United States)

    Bennett, Albert B., Jr.

    1989-01-01

    Mathematical proofs often leave students unconvinced or without understanding of what has been proved, because they provide no visual-geometric representation. Presented are geometric models for the finite geometric series when r is a whole number, and the infinite geometric series when r is the reciprocal of a whole number. (MNS)

  9. Geometric analysis

    CERN Document Server

    Bray, Hubert L; Mazzeo, Rafe; Sesum, Natasa

    2015-01-01

    This volume includes expanded versions of the lectures delivered in the Graduate Minicourse portion of the 2013 Park City Mathematics Institute session on Geometric Analysis. The papers give excellent high-level introductions, suitable for graduate students wishing to enter the field and experienced researchers alike, to a range of the most important areas of geometric analysis. These include: the general issue of geometric evolution, with more detailed lectures on Ricci flow and Kähler-Ricci flow, new progress on the analytic aspects of the Willmore equation as well as an introduction to the recent proof of the Willmore conjecture and new directions in min-max theory for geometric variational problems, the current state of the art regarding minimal surfaces in R^3, the role of critical metrics in Riemannian geometry, and the modern perspective on the study of eigenfunctions and eigenvalues for Laplace-Beltrami operators.

  10. Automated business process management – in times of digital transformation using machine learning or artificial intelligence

    Directory of Open Access Journals (Sweden)

    Paschek Daniel

    2017-01-01

    Full Text Available The continuous optimization of business processes is still a challenge for companies. In times of digital transformation, faster changing internal and external framework conditions and new customer expectations for fastest delivery and best quality of goods and many more, companies should set up their internal process at the best way. But what to do if framework conditions changed unexpectedly? The purpose of the paper is to analyse how the digital transformation will impact the Business Process Management (BPM while using methods like machine learning or artificial intelligence. Therefore, the core components will be explained, compared and set up in relation. To identify application areas interviews and analysis will be held up with digital companies. The finding of the paper will be recommendation for action in the field of BPM and process optimization through machine learning and artificial intelligence. The Approach of optimizing and management processes via machine learning and artificial intelligence will support companies to decide which tool will be the best for automated BPM.

  11. On bivariate geometric distribution

    Directory of Open Access Journals (Sweden)

    K. Jayakumar

    2013-05-01

    Full Text Available Characterizations of bivariate geometric distribution using univariate and bivariate geometric compounding are obtained. Autoregressive models with marginals as bivariate geometric distribution are developed. Various bivariate geometric distributions analogous to important bivariate exponential distributions like, Marshall-Olkin’s bivariate exponential, Downton’s bivariate exponential and Hawkes’ bivariate exponential are presented.

  12. Adopting an Active Learning Approach to Teaching in a Research-Intensive Higher Education Context Transformed Staff Teaching Attitudes and Behaviours

    Science.gov (United States)

    White, Paul J.; Larson, Ian; Styles, Kim; Yuriev, Elizabeth; Evans, Darrell R.; Rangachari, P. K.; Short, Jennifer L.; Exintaris, Betty; Malone, Daniel T.; Davie, Briana; Eise, Nicole; Mc Namara, Kevin; Naidu, Somaiya

    2016-01-01

    The conventional lecture has significant limitations in the higher education context, often leading to a passive learning experience for students. This paper reports a process of transforming teaching and learning with active learning strategies in a research-intensive educational context across a faculty of 45 academic staff and more than 1,000…

  13. Amazingly resilient Indigenous people! Using transformative learning to facilitate positive student engagement with sensitive material.

    Science.gov (United States)

    Jackson, Debra; Power, Tamara; Sherwood, Juanita; Geia, Lynore

    2013-12-01

    If health professionals are to effectively contribute to improving the health of Indigenous people, understanding of the historical, political, and social disadvantage that has lead to health disparity is essential. This paper describes a teaching and learning experience in which four Australian Indigenous academics in collaboration with a non-Indigenous colleague delivered an intensive workshop for masters level post-graduate students. Drawing upon the paedagogy of Transformative Learning, the objectives of the day included facilitating students to explore their existing understandings of Indigenous people, the impact of ongoing colonisation, the diversity of Australia's Indigenous people, and developing respect for alternative worldviews. Drawing on a range of resources including personal stories, autobiography, film and interactive sessions, students were challenged intellectually and emotionally by the content. Students experienced the workshop as a significant educational event, and described feeling transformed by the content, better informed, more appreciative of other worldviews and Indigenous resilience and better equipped to contribute in a more meaningful way to improving the quality of health care for Indigenous people. Where this workshop differs from other Indigenous classes was in the involvement of an Indigenous teaching team. Rather than a lone academic who can often feel vulnerable teaching a large cohort of non-Indigenous students, an Indigenous teaching team reinforced Indigenous authority and created an emotionally and culturally safe space within which students were allowed to confront and explore difficult truths. Findings support the value of multiple teaching strategies underpinned by the theory of transformational learning, and the potential benefits of facilitating emotional as well as intellectual student engagement when presenting sensitive material.

  14. Post-boosting of classification boundary for imbalanced data using geometric mean.

    Science.gov (United States)

    Du, Jie; Vong, Chi-Man; Pun, Chi-Man; Wong, Pak-Kin; Ip, Weng-Fai

    2017-12-01

    In this paper, a novel imbalance learning method for binary classes is proposed, named as Post-Boosting of classification boundary for Imbalanced data (PBI), which can significantly improve the performance of any trained neural networks (NN) classification boundary. The procedure of PBI simply consists of two steps: an (imbalanced) NN learning method is first applied to produce a classification boundary, which is then adjusted by PBI under the geometric mean (G-mean). For data imbalance, the geometric mean of the accuracies of both minority and majority classes is considered, that is statistically more suitable than the common metric accuracy. PBI also has the following advantages over traditional imbalance methods: (i) PBI can significantly improve the classification accuracy on minority class while improving or keeping that on majority class as well; (ii) PBI is suitable for large data even with high imbalance ratio (up to 0.001). For evaluation of (i), a new metric called Majority loss/Minority advance ratio (MMR) is proposed that evaluates the loss ratio of majority class to minority class. Experiments have been conducted for PBI and several imbalance learning methods over benchmark datasets of different sizes, different imbalance ratios, and different dimensionalities. By analyzing the experimental results, PBI is shown to outperform other imbalance learning methods on almost all datasets. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Geometrical foundations of continuum mechanics an application to first- and second-order elasticity and elasto-plasticity

    CERN Document Server

    Steinmann, Paul

    2015-01-01

    This book illustrates the deep roots of the geometrically nonlinear kinematics of generalized continuum mechanics in differential geometry. Besides applications to first- order elasticity and elasto-plasticity an appreciation thereof is particularly illuminating for generalized models of continuum mechanics such as second-order (gradient-type) elasticity and elasto-plasticity.   After a motivation that arises from considering geometrically linear first- and second- order crystal plasticity in Part I several concepts from differential geometry, relevant for what follows, such as connection, parallel transport, torsion, curvature, and metric for holonomic and anholonomic coordinate transformations are reiterated in Part II. Then, in Part III, the kinematics of geometrically nonlinear continuum mechanics are considered. There various concepts of differential geometry, in particular aspects related to compatibility, are generically applied to the kinematics of first- and second- order geometrically nonlinear con...

  16. 2D co-ordinate transformation based on a spike timing-dependent plasticity learning mechanism.

    Science.gov (United States)

    Wu, QingXiang; McGinnity, Thomas Martin; Maguire, Liam; Belatreche, Ammar; Glackin, Brendan

    2008-11-01

    In order to plan accurate motor actions, the brain needs to build an integrated spatial representation associated with visual stimuli and haptic stimuli. Since visual stimuli are represented in retina-centered co-ordinates and haptic stimuli are represented in body-centered co-ordinates, co-ordinate transformations must occur between the retina-centered co-ordinates and body-centered co-ordinates. A spiking neural network (SNN) model, which is trained with spike-timing-dependent-plasticity (STDP), is proposed to perform a 2D co-ordinate transformation of the polar representation of an arm position to a Cartesian representation, to create a virtual image map of a haptic input. Through the visual pathway, a position signal corresponding to the haptic input is used to train the SNN with STDP synapses such that after learning the SNN can perform the co-ordinate transformation to generate a representation of the haptic input with the same co-ordinates as a visual image. The model can be applied to explain co-ordinate transformation in spiking neuron based systems. The principle can be used in artificial intelligent systems to process complex co-ordinate transformations represented by biological stimuli.

  17. Visualisation, imagery, and the development of geometrical reasoning

    OpenAIRE

    Jones, Keith; Bills, Chris

    1998-01-01

    This report focuses on some aspects of the nature and role of visualisation and imagery in the teaching and learning of mathematics, particularly as a component in the development of geometrical reasoning. Issues briefly addressed include the relationship between imagery and perception, imagery and memory, the nature of dynamic images, and the interaction between imagery and concept development. The report concludes with a series of questions that may provide a suitable programme for research...

  18. Learning in Practice

    DEFF Research Database (Denmark)

    Helth, Poula

    on theories of aesthetic performance and transformative learning, and on empirical studies through interventive methods within action research and ethnography. Transformative learning in my study has been developed based on aesthetic performance addressing leaders’ learning in practice. This kind of learning......The thesis presents the essence of my study of how leaders transform their practice through aesthetic performance. The background of the study is leaders' need for learning in and through practice, as an alternative to learning in classrooms and to leadership education programs. The study is based...... happens when leaders become aware of the potential for transformation of their leadership practice when they experiment with aesthetic performance integrated in a learning process. The greatest impact in relation to organisational transformation is, when leaders base their learning on a collective...

  19. Classification of cyclic initial states and geometric phase for the spin-j system

    Energy Technology Data Exchange (ETDEWEB)

    Skrynnikov, N.R.; Zhou, J.; Sanctuary, B.C. [Dept. of Chem., McGill Univ., Montreal, PQ (Canada)

    1994-09-21

    Quantum states which evolve cyclically in their projective Hilbert space give rise to a geometric (or Aharonov-Anandan) phase. An aspect of primary interest is stable cyclic behaviour as realized under a periodic Hamiltonian. The problem has been handled by use of time-dependent transformations treated along the lines of Floquet's theory as well as in terms of exponential operators with a goal to examine the variety of initial states exhibiting cyclic behaviour. A particular case of special cyclic initial states is described which is shown to be important for nuclear magnetic resonance experiments aimed at the study of the effects of the geometric phase. An example of arbitrary spin j in a precessing magnetic field and spin j=1 subject to both axially symmetric quadrupolar interaction and a precessing magnetic field are presented. The invariant (Kobe's) geometric phase is calculated for special cyclic states. (author)

  20. Geometrical parton

    Energy Technology Data Exchange (ETDEWEB)

    Ebata, T [Tohoku Univ., Sendai (Japan). Coll. of General Education

    1976-06-01

    The geometrical distribution inferred from the inelastic cross section is assumed to be proportional to the partial waves. The precocious scaling and the Q/sup 2/-dependence of various quantities are treated from the geometrical point of view. It is shown that the approximate conservation of the orbital angular momentum may be a very practical rule to understand the helicity structure of various hadronic and electromagnetic reactions. The rule can be applied to inclusive reactions as well. The model is also applied to large angle processes. Through the discussion, it is suggested that many peculiar properties of the quark-parton can be ascribed to the geometrical effects.

  1. On transforms between Gabor frames and wavelet frames

    DEFF Research Database (Denmark)

    Christensen, Ole; Goh, Say Song

    2013-01-01

    We describe a procedure that enables us to construct dual pairs of wavelet frames from certain dual pairs of Gabor frames. Applying the construction to Gabor frames generated by appropriate exponential Bsplines gives wavelet frames generated by functions whose Fourier transforms are compactly...... supported splines with geometrically distributed knot sequences. There is also a reverse transform, which yields pairs of dual Gabor frames when applied to certain wavelet frames....

  2. A BIO-EXPERIENTIAL MODEL FOR LEARNING CREATIVE DESIGN PRACTICES THAT SUPPORTS TRANSFORMATIVE DEVELOPMENT IN BEGINNING DESIGN STUDENTS

    Directory of Open Access Journals (Sweden)

    Stephen Temple

    2010-07-01

    Full Text Available This paper asks what beginning design learning experiences best support the remainder of design education. It is a conjecture of brain-based learning theory that a student’s direct, concrete primary experiences are responsible for the construction of fundamental structures of neural processing as “hard wired” pathways. These structures then form the ground of and set into play patterns of later more abstracted learning experiences. Pedagogy of basic design courses that seeks introduction of creative processes as a foundation for design education must recognize these experiential, biologically developmental relationships as basic to developmentally appropriate beginning design curriculum. This paper models a beginning design pedagogy on developmental relationships between concrete and abstract processes of learning as a basis for transformative creative thinking that enables student self-development that progresses up the curriculum. Aligning with developmental learning theories (Piaget and others, a basic tenant of this approach is that learning at the primary level of direct experience self initiates brain changes where students form their own structure of learning. Thus, initial learning experiences will be those that best enable decision-making consistent with the biological interactivity between body and mind, between, respectively, the concrete and the abstract. This is important because the designed environment in which we all live is grounded in the development of abstract content experientially based in concrete material physicality. Experiential learning theories (Kolb and others, following Piaget identify concrete and abstract learning as fundamental poles for acquiring and acting on knowledge: Concrete learning involves direct experiential engagement through heuristic discovery and reflection and abstract learning involves indirect representational cues in acts of conceptualization, synthesis, and experimentation. The

  3. The study on the import of the geometric body by GDML in GEANT4

    International Nuclear Information System (INIS)

    Sun Baodong; Liu Huilan; Sun Dawang; Xie Zhaoyang; Song Yushou

    2014-01-01

    Geometry Description Markup Language (GDML) can be used as an application interface program to import the geometric body into GEANT4. It greatly simplifies the detector construction work with high reliability. With this mechanism the geometric data of a detector is described in an XML file and read by the XML parser embedded in GEANT4. The geometric structure of a detector is designed in CAD toolkit Solidworks and saved as a standard STEP file. Then, by FastRad the STEP file is transformed into XML script, which is readable for GEANT4. In comparison with the detectors constructed by Constructed Solid Geometry (CSG) provided by GEANT4, those imported by GDML also satisfies the requests of general simulation application. At the same time, some solutions and tips for several common problems during the progress constructing the detectors by GDML are given. (authors)

  4. Studies on a Double Poisson-Geometric Insurance Risk Model with Interference

    Directory of Open Access Journals (Sweden)

    Yujuan Huang

    2013-01-01

    Full Text Available This paper mainly studies a generalized double Poisson-Geometric insurance risk model. By martingale and stopping time approach, we obtain adjustment coefficient equation, the Lundberg inequality, and the formula for the ruin probability. Also the Laplace transformation of the time when the surplus reaches a given level for the first time is discussed, and the expectation and its variance are obtained. Finally, we give the numerical examples.

  5. The Impact of Transformational Leadership, Experiential Learning, and Reflective Journaling on the Conservation Ethic of Tertiary-Level Non-Science Majors

    Science.gov (United States)

    Reynolds, Bradley Robert

    2013-01-01

    The impact of transformational leadership, experiential learning, and reflective journaling on the conservation ethic of non-science majors in a general education survey course was investigated. The main research questions were: (1) Is the Conservation of Biodiversity professor a transformational leader? (2) Is there a difference in the…

  6. Activating Hope in the Midst of Crisis: Emotions, Transformative Learning, and "The Work That Reconnects"

    Science.gov (United States)

    Hathaway, Mark D.

    2017-01-01

    Joanna Macy's "Work that Reconnects" (WTR) is a transformative learning process that endeavors to help participants acknowledge, experience, and understand the emotions that may either empower or inhibit action to address the ecological crisis. The WTR seeks to work through grief, fear, and despair to animate a sense of active,…

  7. Geometric Design Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Geometric Design Laboratory (GDL) is to support the Office of Safety Research and Development in research related to the geometric design...

  8. How transformational learning promotes caring, consultation and creativity, and ultimately contributes to sustainable development: Lessons from the Partnership for Education and Research about Responsible Living (PERL) network

    Science.gov (United States)

    Thoresen, Victoria Wyszynski

    2017-12-01

    Oases of learning which are transformative and lead to significant behavioural change can be found around the globe. Transformational learning has helped learners not only to understand what they have been taught but also to re-conceptualise and re-apply this understanding to their daily lives. Unfortunately, as many global reports indicate, inspirational transformational learning approaches for sustainable development are rare and have yet to become the norm - despite calls for such approaches by several outstanding educators and organisations. This article examines three learning approaches developed by the network of the Partnership for Education and Research about Responsible Living (PERL). These approaches are structured around core elements of transformative learning for sustainable development, yet focus particularly on the ability to care, consult with others and be creative. They seem to depend on the learners' ability to articulate their perceptions of sustainable development in relation to their own values and to identify how these are actualised in their daily life. Together with other core elements of transformative learning, an almost magical (not precisely measurable) synergy then emerges. The intensity of this synergy appears to be directly related to the individual learner's understanding of the contradictions, interlinkages and interdependencies of modern society. The impact of this synergy seems to be concurrent with the extent to which the learner engages in a continual learning process with those with whom he/she has contact. The findings of this study suggest that mainstreaming transformational learning for sustainable development in ways that release the "magic synergy of creative caring" can result in the emergence of individuals who are willing and able to move from "business as usual" towards more socially just, economically equitable, and environmentally sensitive behaviour.

  9. Leading High School Transformation for College and Career Success: A Guide for Developing a System of Linked Learning Pathways

    Science.gov (United States)

    Stearns, Roman

    2014-01-01

    This ConnectEd Guide for Developing a System of Linked Learning Pathways will introduce school district leaders and their community partners to Linked Learning and a system of quality pathways that can transform high schools, instructional practice, and the student experience. Not intended to be prescriptive, this document can and should be…

  10. Photo-crosslinking induced geometric restriction controls the self-assembly of diphenylalanine based peptides

    International Nuclear Information System (INIS)

    Tie Zuoxiu; Qin Meng; Zou Dawei; Cao Yi; Wang Wei

    2011-01-01

    The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels. In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by π-π stacking among the phenyl groups. Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions. Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous. This finding is confirmed using far-UV circular dichroism, Fourier transform infrared spectroscopy and atomic force microscopy. Based on such a mechanism, we are able to control the gel-sol transition of Fmoc-FFY using the geometric restriction induced by photo-crosslinking of C-terminal tyrosine groups. We believe that geometric restriction should be considered as an important factor in the design of peptide-based materials. It can also be implemented as a useful strategy for the construction of environment-responsive 'smart' materials. (authors)

  11. Geometric and Texture Inpainting by Gibbs Sampling

    DEFF Research Database (Denmark)

    Gustafsson, David Karl John; Pedersen, Kim Steenstrup; Nielsen, Mads

    2007-01-01

    . In this paper we use the well-known FRAME (Filters, Random Fields and Maximum Entropy) for inpainting. We introduce a temperature term in the learned FRAME Gibbs distribution. By sampling using different temperature in the FRAME Gibbs distribution, different contents of the image are reconstructed. We propose...... a two step method for inpainting using FRAME. First the geometric structure of the image is reconstructed by sampling from a cooled Gibbs distribution, then the stochastic component is reconstructed by sample froma heated Gibbs distribution. Both steps in the reconstruction process are necessary...

  12. Homogenous isotropic invisible cloak based on geometrical optics.

    Science.gov (United States)

    Sun, Jingbo; Zhou, Ji; Kang, Lei

    2008-10-27

    Invisible cloak derived from the coordinate transformation requires its constitutive material to be anisotropic. In this work, we present a cloak of graded-index isotropic material based on the geometrical optics theory. The cloak is realized by concentric multilayered structure with designed refractive index to achieve the low-scattering and smooth power-flow. Full-wave simulations on such a design of a cylindrical cloak are performed to demonstrate the cloaking ability to incident wave of any polarization. Using normal nature material with isotropy and low absorption, the cloak shows light on a practical path to stealth technology, especially that in the optical range.

  13. Cross-Grade Comparison of Students' Conceptual Understanding with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, G.

    2015-01-01

    Students commonly find the field of physics difficult. Therefore, they generally have learning problems. One of the subjects with which they have difficulties is optics within a physics discipline. This study aims to determine students' conceptual understanding levels at different education levels relating to lenses in geometric optics. A…

  14. Geometric calibration between PET scanner and structured light scanner

    DEFF Research Database (Denmark)

    Kjer, Hans Martin; Olesen, Oline Vinter; Paulsen, Rasmus Reinhold

    2011-01-01

    Head movements degrade the image quality of high resolution Positron Emission Tomography (PET) brain studies through blurring and artifacts. Manny image reconstruction methods allows for motion correction if the head position is tracked continuously during the study. Our method for motion tracking...... is a structured light scanner placed just above the patient tunnel on the High Resolution Research Tomograph (HRRT, Siemens). It continuously registers point clouds of a part of the patient's face. The relative motion is estimated as the rigid transformation between frames. A geometric calibration between...

  15. Can Transformational Leadership Influence on Teachers' Commitment towards Organization, Teaching Profession, and Students Learning? A Quantitative Analysis

    Science.gov (United States)

    Ibrahim, Mohammed Sani; Ghavifekr, Simin; Ling, Sii; Siraj, Saedah; Azeez, Mohd Ibrahim K.

    2014-01-01

    This study investigates the impact of transformational leadership as idealized influence, inspirational motivation, intellectual stimulation, and individualized consideration on teachers' commitment towards organization, teaching profession, and students' learning. A quantitative survey method was applied, and four broadly hypothesized…

  16. The Dance of the Magic Dragon: Embodied Knowledge in the Context of Transformative Learning Theory

    Science.gov (United States)

    Tsouvala, Maria; Magos, Kostas

    2016-01-01

    This paper describes a dance-based research project conducted at the Department of Early Childhood Education of the University of Thessaly. The main aim of the project was to explore the possibilities of dance in understanding the self in relation to the world, under the perspective of the transformative learning theory. The methodology applied…

  17. Designing and Using an Open Graphic Interface for Instruction in Geometrical Optics.

    Science.gov (United States)

    Ronen, Miky; And Others

    1993-01-01

    Discusses conceptual difficulties in the field of geometrical optics and describes RAY, a microcomputer-based graphic interface that was designed to serve as a teaching aid and as a learning environment. The ability to combine theory and formal representations with real demonstrations and experiments is discussed. (Contains seven references.) (LRW)

  18. Virtual Enterprise: Transforming Entrepreneurship Education

    Science.gov (United States)

    Borgese, Anthony

    2011-01-01

    Entrepreneurship education is ripe for utilizing experiential learning methods. Experiential methods are best learned when there is constant immersion into the subject matter. One such transformative learning methodology is Virtual Enterprise (VE). Virtual Enterprise is a multi-faceted, experiential learning methodology disseminated by the City…

  19. The effect of photometric and geometric context on photometric and geometric lightness effects.

    Science.gov (United States)

    Lee, Thomas Y; Brainard, David H

    2014-01-24

    We measured the lightness of probe tabs embedded at different orientations in various contextual images presented on a computer-controlled stereo display. Two background context planes met along a horizontal roof-like ridge. Each plane was a graphic rendering of a set of achromatic surfaces with the simulated illumination for each plane controlled independently. Photometric context was varied by changing the difference in simulated illumination intensity between the two background planes. Geometric context was varied by changing the angle between them. We parsed the data into separate photometric effects and geometric effects. For fixed geometry, varying photometric context led to linear changes in both the photometric and geometric effects. Varying geometric context did not produce a statistically reliable change in either the photometric or geometric effects.

  20. Symmetry-Adapted Machine Learning for Tensorial Properties of Atomistic Systems.

    Science.gov (United States)

    Grisafi, Andrea; Wilkins, David M; Csányi, Gábor; Ceriotti, Michele

    2018-01-19

    Statistical learning methods show great promise in providing an accurate prediction of materials and molecular properties, while minimizing the need for computationally demanding electronic structure calculations. The accuracy and transferability of these models are increased significantly by encoding into the learning procedure the fundamental symmetries of rotational and permutational invariance of scalar properties. However, the prediction of tensorial properties requires that the model respects the appropriate geometric transformations, rather than invariance, when the reference frame is rotated. We introduce a formalism that extends existing schemes and makes it possible to perform machine learning of tensorial properties of arbitrary rank, and for general molecular geometries. To demonstrate it, we derive a tensor kernel adapted to rotational symmetry, which is the natural generalization of the smooth overlap of atomic positions kernel commonly used for the prediction of scalar properties at the atomic scale. The performance and generality of the approach is demonstrated by learning the instantaneous response to an external electric field of water oligomers of increasing complexity, from the isolated molecule to the condensed phase.

  1. A geometric rationale for invariance, covariance and constitutive relations

    Science.gov (United States)

    Romano, Giovanni; Barretta, Raffaele; Diaco, Marina

    2018-01-01

    There are, in each branch of science, statements which, expressed in ambiguous or even incorrect but seemingly friendly manner, were repeated for a long time and eventually became diffusely accepted. Objectivity of physical fields and of their time rates and frame indifference of constitutive relations are among such notions. A geometric reflection on the description of frame changes as spacetime automorphisms, on induced push-pull transformations and on proper physico-mathematical definitions of material, spatial and spacetime tensor fields and of their time-derivatives along the motion, is here carried out with the aim of pointing out essential notions and of unveiling false claims. Theoretical and computational aspects of nonlinear continuum mechanics, and especially those pertaining to constitutive relations, involving material fields and their time rates, gain decisive conceptual and operative improvement from a proper geometric treatment. Outcomes of the geometric analysis are frame covariance of spacetime velocity, material stretching and material spin. A univocal and frame-covariant tool for evaluation of time rates of material fields is provided by the Lie derivative along the motion. The postulate of frame covariance of material fields is assessed to be a natural physical requirement which cannot interfere with the formulation of constitutive laws, with claims of the contrary stemming from an improper imposition of equality in place of equivalence.

  2. Impact of Simulator-Based Instruction on Diagramming in Geometrical Optics by Introductory Physics Students.

    Science.gov (United States)

    Reiner, Miriam; And Others

    1995-01-01

    Observations of high school physics students in an instructional experiment with an interactive learning environment in geometrical optics indicated that students in the Optics Dynagrams Project went through major conceptual developments as reflected in the diagrams they constructed. (Author/MKR)

  3. Transforming physical materials into artefacts – learning in the school’s practice of Sloyd

    Directory of Open Access Journals (Sweden)

    Bent Illum

    2012-09-01

    Full Text Available This article describes learning and interaction in the practice of Sloyd [Craft and Design, sw. Slöjd] when pupils in the school’s practice of sloyd work on and transform material into a sloyd object in the Swedish comprehensive school. As an aid in depicting how cultural socialisation and learning in the practice of sloyd in school can be formulated, we make use of video-recorded empirical data from sloyd lessons in comprehensive school. Based on the empirical data collected, it is particularly important to analyse how communication during sloyd work takes place in the form of not only talk but also non-verbal interaction (body language, gestures, mimicry, etc. and other tool-mediated activities. Also of interest is the environment where learning takes place, for example, how the classroom for sloyd is furnished, accessibility, selection of tools and materials. Since only parts of the practice of sloyd have been scientifically described, all the conditions that affect interaction and learning in sloyd classrooms are of importance (Lindström, Borg, Johansson & Lindberg, 2003. Keywords: craft and design, sloyd, classroom research, sociocultural, learning materiality, microanalysis

  4. The Power of Transformation

    DEFF Research Database (Denmark)

    Foged, Hans Isak Worre

    2017-01-01

    Transformation of the built environment in Denmark is estimated to become 51% of the total building activities in the future in order to accommodate new energy targets, a general population move to the city and to maintain buildings, which otherwise presents high architectural qualities. This poi......Transformation of the built environment in Denmark is estimated to become 51% of the total building activities in the future in order to accommodate new energy targets, a general population move to the city and to maintain buildings, which otherwise presents high architectural qualities....... This points to the need of new ideas, methods and models for architects to transform existing building envelopes beyond the current primary approach of simply adding and external insulation layer. The research studies and present thermal simulation methods, models, elementary design studies and applied design...... approaches to envelope transformations based on modifying colours and local geometries of an envelope. The study finds that colour can be used instrumentally as a design variable to control external surface heat accumulation and envelope heat transfer, whereas local geometric variations only present...

  5. Generalized nihility media from transformation optics

    International Nuclear Information System (INIS)

    Yan, Wei; Yan, Min; Qiu, Min

    2011-01-01

    Nihility media in the previous literature are usually understood as media with ε = μ = 0. Transformation optics opens a new perspective for capturing the essence of such media. From this perspective, we generalize the definition of nihility media as transformation media derived from volumeless geometrical elements. A volumeless geometrical elements can be either a point (P), a line (L), or a surface (S). Their corresponding transformation media are therefore called P-, L-, or S-type nihility media, respectively. The previous defined nihility media with ε = μ = 0 is a special case under the P-type nihility media. The constructions of nihility media by metamaterials are discussed. The eigenfields in different types of nihility media are derived. The interactions between an externally incident wave and a slab of nihility media in a free space background are analyzed. Furthermore, we discuss compensated bilayers composed of nihility media. It is shown that for a slab of P-type nihility media, a normally incident wave can perfectly transmit through, while all obliquely incident waves are completely blocked; for a slab made of L-type nihility media, both normally and obliquely incident waves can transmit with some reflections, which can be eliminated by adding a compensating L-type nihility media; for a slab of S-type nihility media, all field components can perfectly transmit through

  6. "Donghak" (Eastern Learning), Self-Cultivation, and Social Transformation: Towards Diverse Curriculum Discourses on Equity and Justice

    Science.gov (United States)

    Moon, Seungho

    2017-01-01

    This inquiry aims to advance curricular discourses on equity and social transformation by reviewing Korea's indigenous philosophy and religion, Donghak [(foreign characters omitted) Eastern Learning]. I explicate the ways in which the democratic ideals of equity and justice were implemented in nineteenth- and twentieth-Korean society, founded upon…

  7. Geometric group theory

    CERN Document Server

    Druţu, Cornelia

    2018-01-01

    The key idea in geometric group theory is to study infinite groups by endowing them with a metric and treating them as geometric spaces. This applies to many groups naturally appearing in topology, geometry, and algebra, such as fundamental groups of manifolds, groups of matrices with integer coefficients, etc. The primary focus of this book is to cover the foundations of geometric group theory, including coarse topology, ultralimits and asymptotic cones, hyperbolic groups, isoperimetric inequalities, growth of groups, amenability, Kazhdan's Property (T) and the Haagerup property, as well as their characterizations in terms of group actions on median spaces and spaces with walls. The book contains proofs of several fundamental results of geometric group theory, such as Gromov's theorem on groups of polynomial growth, Tits's alternative, Stallings's theorem on ends of groups, Dunwoody's accessibility theorem, the Mostow Rigidity Theorem, and quasiisometric rigidity theorems of Tukia and Schwartz. This is the f...

  8. Aplicación del Modelo Van Hiele Para la Enseñanza de la Geometría Analítica

    Directory of Open Access Journals (Sweden)

    Ruth Mery González-Sepulveda

    2010-01-01

    Full Text Available There is no doubt that the study of issues related to the intrinsic geometry has multiple difficulties, analysis and characterization which has been studied in many educationalsettings, finding that some specific difficulties associated with the language of geometry that are linked with reading and understanding of words. Our daily oral language has many basic geometric terms allows us to communicate and understand with greater precision observations about the world in which we live. That is why some students do not achieve the expected performance in the subject, so generating them and dropout issues academic. This research shows an aid to interpreting the evolution of geometric reasoning in students and what is the model for development of geometric reasoning developed by Van Hiele spouses. Whose main components are the “theory of levels of reasoning,” which explains how development occurs in the quality of geometric reasoning of students as they study geometry, and the “learning phase”, which is its didactic approach sequencing of the teaching and learning in the classroom, in order to facilitate the ascent of the students from one level to next higher reasoning. Of the findings highlight the idea that students entering the first semester of mathematics and computer science degree, he finds great difficulty in basic concepts of geometry which prevents the acquisition of new knowledge. It was found that the model can be applied to any topic of mathematical knowledge as it is flexible, ensuring students learn a valid form of geometric processes to yield significantly satisfactorily in Analytic Geometry.

  9. Wavelet Transforms using VTK-m

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shaomeng [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sewell, Christopher Meyer [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-27

    These are a set of slides that deal with the topics of wavelet transforms using VTK-m. First, wavelets are discussed and detailed, then VTK-m is discussed and detailed, then wavelets and VTK-m are looked at from a performance comparison, then from an accuracy comparison, and finally lessons learned, conclusion, and what is next. Lessons learned are the following: Launching worklets is expensive; Natural logic of performing 2D wavelet transform: Repeat the same 1D wavelet transform on every row, repeat the same 1D wavelet transform on every column, invoke the 1D wavelet worklet every time: num_rows x num_columns; VTK-m approach of performing 2D wavelet transform: Create a worklet for 2D that handles both rows and columns, invoke this new worklet only one time; Fast calculation, but cannot reuse 1D implementations.

  10. Computational Contact Mechanics Geometrically Exact Theory for Arbitrary Shaped Bodies

    CERN Document Server

    Konyukhov, Alexander

    2013-01-01

    This book contains a systematical analysis of geometrical situations  leading to  contact pairs -- point-to-surface, surface-to-surface, point-to-curve, curve-to-curve and curve-to-surface.  Each contact pair  is inherited with a special coordinate system based on its geometrical properties such as a Gaussian surface coordinate system or a Serret-Frenet curve coordinate system.  The formulation in a covariant form allows in a straightforward fashion to consider various constitutive relations for a  certain pair such as anisotropy for both frictional and structural parts. Then standard methods well known in computational contact mechanics such as penalty, Lagrange multiplier methods, combination of both and others  are formulated in these coordinate systems. Such formulations require then the powerful apparatus of differential geometry of surfaces and curves as well as of convex analysis. The final goals of such transformations are  then ready-for-implementation numerical algorithms within the finite e...

  11. On geometrized gravitation theories

    International Nuclear Information System (INIS)

    Logunov, A.A.; Folomeshkin, V.N.

    1977-01-01

    General properties of the geometrized gravitation theories have been considered. Geometrization of the theory is realized only to the extent that by necessity follows from an experiment (geometrization of the density of the matter Lagrangian only). Aor a general case the gravitation field equations and the equations of motion for matter are formulated in the different Riemann spaces. A covariant formulation of the energy-momentum conservation laws is given in an arbitrary geometrized theory. The noncovariant notion of ''pseudotensor'' is not required in formulating the conservation laws. It is shown that in the general case (i.e., when there is an explicit dependence of the matter Lagrangian density on the covariant derivatives) a symmetric energy-momentum tensor of the matter is explicitly dependent on the curvature tensor. There are enlisted different geometrized theories that describe a known set of the experimental facts. The properties of one of the versions of the quasilinear geometrized theory that describes the experimental facts are considered. In such a theory the fundamental static spherically symmetrical solution has a singularity only in the coordinate origin. The theory permits to create a satisfactory model of the homogeneous nonstationary Universe

  12. Photo-Crosslinking Induced Geometric Restriction Controls the Self-Assembly of Diphenylalanine Based Peptides

    International Nuclear Information System (INIS)

    Tie Zuo-Xiu; Qin Meng; Zou Da-Wei; Cao Yi; Wang Wei

    2011-01-01

    The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels. In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by π — π stacking among the phenyl groups. Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions. Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous. This finding is confirmed using far-UV circular dichroism, Fourier transform infrared spectroscopy and atomic force microscopy. Based on such a mechanism, we are able to control the gel-sol transition of Fmoc-FFY using the geometric restriction induced by photo-crosslinking of C-terminal tyrosine groups. We believe that geometric restriction should be considered as an important factor in the design of peptide-based materials. It can also be implemented as a useful strategy for the construction of environment-responsive 'smart' materials. (cross-disciplinary physics and related areas of science and technology)

  13. Point- and curve-based geometric conflation

    KAUST Repository

    Ló pez-Vá zquez, C.; Manso Callejo, M.A.

    2013-01-01

    Geometric conflation is the process undertaken to modify the coordinates of features in dataset A in order to match corresponding ones in dataset B. The overwhelming majority of the literature considers the use of points as features to define the transformation. In this article we present a procedure to consider one-dimensional curves also, which are commonly available as Global Navigation Satellite System (GNSS) tracks, routes, coastlines, and so on, in order to define the estimate of the displacements to be applied to each object in A. The procedure involves three steps, including the partial matching of corresponding curves, the computation of some analytical expression, and the addition of a correction term in order to satisfy basic cartographic rules. A numerical example is presented. © 2013 Copyright Taylor and Francis Group, LLC.

  14. How Transformational Learning Promotes Caring, Consultation and Creativity, and Ultimately Contributes to Sustainable Development: Lessons from the Partnership for Education and Research about Responsible Living (PERL) Network

    Science.gov (United States)

    Thoresen, Victoria Wyszynski

    2017-01-01

    Oases of learning which are transformative and lead to significant behavioural change can be found around the globe. Transformational learning has helped learners not only to understand what they have been taught but also to re-conceptualise and re-apply this understanding to their daily lives. Unfortunately, as many global reports indicate,…

  15. Madrasah Culture Based Transformational Leadership Model

    Directory of Open Access Journals (Sweden)

    Nur Khoiri

    2016-10-01

    Full Text Available Leadership is the ability to influence, direct behavior, and have a particular expertise in the field of the group who want to achieve the goals. A dynamic organization requires transformational leadership model. A school principal as a leader at school aims to actualize good learning leadership. Leadership learning focuses on learning which components include curriculum, teaching and learning process, assessment, teacher assessment and development, good service in learning, and developing a learning community in schools based on organizational culture as value, assumption, belief evolved from the roots of member thought of the organization and believed by all members of the organization and implemented in everyday life that could give meaning Keywords: leadership, transformational leadership, headmaster, instructional leadership, organizational culture.

  16. Transformations in Kenyan Science Teachers' Locus of Control: The Influence of Contextualized Science and Emancipated Student Learning

    Science.gov (United States)

    Anderson, D.; Nashon, S.; Namazzi, E.; Okemwa, P.; Ombogo, P.; Ooko, S.; Beru, F.

    2015-01-01

    This study investigated Kenyan science teachers' pedagogical transformations, which manifested as they enacted and experienced a reformed contextualized science curriculum in which students' learning experiences were critical catalysts of teacher change. Twelve high school teachers voluntarily participated in the study and were interviewed about…

  17. Wild, free-living rufous hummingbirds do not use geometric cues in a spatial task.

    Science.gov (United States)

    Hornsby, Mark A W; Hurly, T Andrew; Hamilton, Caitlin E; Pritchard, David J; Healy, Susan D

    2014-10-01

    In the laboratory, many species orient themselves using the geometric properties of an enclosure or array and geometric information is often preferred over visual cues. Whether animals use geometric cues when relocating rewarded locations in the wild, however, has rarely been investigated. We presented free-living rufous hummingbirds with a rectangular array of four artificial flowers to investigate learning of rewarded locations using geometric cues. In one treatment, we rewarded two of four flowers at diagonally opposite corners. In a second treatment, we provided a visual cue to the rewarded flower by connecting the flowers with "walls" consisting of four dowels (three white, one blue) laid on the ground connecting each of the flowers. Neither treatment elicited classical geometry results; instead, hummingbirds typically chose one particular flower over all others. When we exchanged that flower with another, hummingbirds tended to visit the original flower. These results suggest that (1) hummingbirds did not use geometric cues, but instead may have used a visually derived cue on the flowers themselves, and (2) using geometric cues may have been more difficult than using visual characteristics. Although hummingbirds typically prefer spatial over visual information, we hypothesize that they will not use geometric cues over stable visual features but that they make use of small, flower-specific visual cues. Such cues may play a more important role in foraging decisions than previously thought. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Transformative Learning of Pre-Service Teachers during Study Abroad in Reggio Emilia, Italy: A Case Study

    Science.gov (United States)

    Vatalaro, Angela; Szente, Judit; Levin, Judith

    2015-01-01

    The present paper explores the transformative learning of five pre-service teachers participating in a two-week study abroad program to Reggio Emilia, Italy. The study was conducted in order to understand how a study abroad program could contribute to pre-service teachers' content knowledge, teaching practices, and global competence. Through a…

  19. Teachers' Transformation as Learning: Teaching Cantonese Opera in Hong Kong Schools with a Teacher-Artist Partnership

    Science.gov (United States)

    Leung, Bo Wah

    2014-01-01

    The Hong Kong Government has advocated teaching Cantonese opera in the school music curriculum to promote Chinese culture education. This longitudinal study aims to examine how and why teachers transform within 3 years in learning and teaching Cantonese opera with a teacher-artist partnership approach in schools. Five primary and two secondary…

  20. Oblique projections and standard-form transformations for discrete inverse problems

    DEFF Research Database (Denmark)

    Hansen, Per Christian

    2013-01-01

    This tutorial paper considers a specific computational tool for the numerical solution of discrete inverse problems, known as the standard-form transformation, by which we can treat general Tikhonov regularization problems efficiently. In the tradition of B. N. Datta's expositions of numerical li...... linear algebra, we use the close relationship between oblique projections, pseudoinverses, and matrix computations to derive a simple geometric motivation and algebraic formulation of the standard-form transformation....

  1. Tangram solved? Prefrontal cortex activation analysis during geometric problem solving.

    Science.gov (United States)

    Ayaz, Hasan; Shewokis, Patricia A; Izzetoğlu, Meltem; Çakır, Murat P; Onaral, Banu

    2012-01-01

    Recent neuroimaging studies have implicated prefrontal and parietal cortices for mathematical problem solving. Mental arithmetic tasks have been used extensively to study neural correlates of mathematical reasoning. In the present study we used geometric problem sets (tangram tasks) that require executive planning and visuospatial reasoning without any linguistic representation interference. We used portable optical brain imaging (functional near infrared spectroscopy--fNIR) to monitor hemodynamic changes within anterior prefrontal cortex during tangram tasks. Twelve healthy subjects were asked to solve a series of computerized tangram puzzles and control tasks that required same geometric shape manipulation without problem solving. Total hemoglobin (HbT) concentration changes indicated a significant increase during tangram problem solving in the right hemisphere. Moreover, HbT changes during failed trials (when no solution found) were significantly higher compared to successful trials. These preliminary results suggest that fNIR can be used to assess cortical activation changes induced by geometric problem solving. Since fNIR is safe, wearable and can be used in ecologically valid environments such as classrooms, this neuroimaging tool may help to improve and optimize learning in educational settings.

  2. The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations

    Science.gov (United States)

    Kulyabov, Dmitry S.; Korolkova, Anna V.; Velieva, Tatyana R.

    2018-04-01

    The transformation optics uses geometrized Maxwell's constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell's constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell's equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell's equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.

  3. Quality as Transformation: Educational Metamorphosis

    Science.gov (United States)

    Cheng, Ming

    2014-01-01

    The notion of "quality as transformation" has been widely used in the higher education sector. However, both quality and transformation are elusive terms. There is little research exploring how quality could be equated to transformation in the learning process. This paper will provide an insight into the relationship between quality and…

  4. Shellwise Mackay transformation in iron nanoclusters.

    Science.gov (United States)

    Rollmann, Georg; Gruner, Markus E; Hucht, Alfred; Meyer, Ralf; Entel, Peter; Tiago, Murilo L; Chelikowsky, James R

    2007-08-24

    Structure and magnetism of iron clusters with up to 641 atoms have been investigated by means of density functional theory calculations including full geometric optimizations. Body-centered cubic (bcc) isomers are found to be lowest in energy when the clusters contain more than about 100 atoms. In addition, another stable conformation has been identified for magic-number clusters, which lies well within the range of thermal energies as compared to the bcc isomers. Its structure is characterized by a close-packed particle core and an icosahedral surface, while intermediate shells are partially transformed along the Mackay path between icosahedral and cuboctahedral geometry. The gradual transformation results in a favorable bcc environment for the subsurface atoms. For Fe55, the shellwise Mackay-transformed morphology is a promising candidate for the ground state.

  5. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    International Nuclear Information System (INIS)

    Frohwein, Lynn J.; Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-01-01

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  6. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Frohwein, Lynn J., E-mail: frohwein@uni-muenster.de; Schäfers, Klaus P. [European Institute for Molecular Imaging, University of Münster, Münster 48149 (Germany); Hoerr, Verena; Faber, Cornelius [Department of Clinical Radiology, University Hospital of Münster, Münster 48149 (Germany)

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  7. Electrical Impedance Tomography: 3D Reconstructions using Scattering Transforms

    DEFF Research Database (Denmark)

    Delbary, Fabrice; Hansen, Per Christian; Knudsen, Kim

    2012-01-01

    In three dimensions the Calderon problem was addressed and solved in theory in the 1980s. The main ingredients in the solution of the problem are complex geometrical optics solutions to the conductivity equation and a (non-physical) scattering transform. The resulting reconstruction algorithm...

  8. A Unified Method of Finding Laplace Transforms, Fourier Transforms, and Fourier Series. [and] An Inversion Method for Laplace Transforms, Fourier Transforms, and Fourier Series. Integral Transforms and Series Expansions. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 324 and 325.

    Science.gov (United States)

    Grimm, C. A.

    This document contains two units that examine integral transforms and series expansions. In the first module, the user is expected to learn how to use the unified method presented to obtain Laplace transforms, Fourier transforms, complex Fourier series, real Fourier series, and half-range sine series for given piecewise continuous functions. In…

  9. Geometric approximation algorithms

    CERN Document Server

    Har-Peled, Sariel

    2011-01-01

    Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.

  10. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.

    Science.gov (United States)

    Arrieta, Jorge; Cartwright, Julyan H E; Gouillart, Emmanuelle; Piro, Nicolas; Piro, Oreste; Tuval, Idan

    2015-01-01

    Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.

  11. Geometric Mixing, Peristalsis, and the Geometric Phase of the Stomach.

    Directory of Open Access Journals (Sweden)

    Jorge Arrieta

    Full Text Available Mixing fluid in a container at low Reynolds number--in an inertialess environment--is not a trivial task. Reciprocating motions merely lead to cycles of mixing and unmixing, so continuous rotation, as used in many technological applications, would appear to be necessary. However, there is another solution: movement of the walls in a cyclical fashion to introduce a geometric phase. We show using journal-bearing flow as a model that such geometric mixing is a general tool for using deformable boundaries that return to the same position to mix fluid at low Reynolds number. We then simulate a biological example: we show that mixing in the stomach functions because of the "belly phase," peristaltic movement of the walls in a cyclical fashion introduces a geometric phase that avoids unmixing.

  12. Experiential learning: transforming theory into practice.

    Science.gov (United States)

    Yardley, Sarah; Teunissen, Pim W; Dornan, Tim

    2012-01-01

    Whilst much is debated about the importance of experiential learning in curriculum development, the concept only becomes effective if it is applied in an appropriate way. We believe that this effectiveness is directly related to a sound understanding of the theory, supporting the learning. The purpose of this article is to introduce readers to the theories underpinning experiential learning, which are then expanded further in an AMEE Guide, which considers the theoretical basis of experiential learning from a social learning, constructionist perspective and applies it to three stages of medical education: early workplace experience, clerkships and residency. This article argues for the importance and relevance of experiential learning and addresses questions that are commonly asked about it. First, we answer the questions 'what is experiential learning?' and 'how does it relate to social learning theory?' to orientate readers to the principles on which our arguments are based. Then, we consider why those ideas (theories) are relevant to educators--ranging from those with responsibilities for curriculum design to 'hands-on' teachers and workplace supervisors. The remainder of this article discusses how experiential learning theories and a socio-cultural perspective can be applied in practice. We hope that this will give readers a taste for our more detailed AMEE Guide and the further reading recommended at the end of it.

  13. Explorations in statistics: the log transformation.

    Science.gov (United States)

    Curran-Everett, Douglas

    2018-06-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This thirteenth installment of Explorations in Statistics explores the log transformation, an established technique that rescales the actual observations from an experiment so that the assumptions of some statistical analysis are better met. A general assumption in statistics is that the variability of some response Y is homogeneous across groups or across some predictor variable X. If the variability-the standard deviation-varies in rough proportion to the mean value of Y, a log transformation can equalize the standard deviations. Moreover, if the actual observations from an experiment conform to a skewed distribution, then a log transformation can make the theoretical distribution of the sample mean more consistent with a normal distribution. This is important: the results of a one-sample t test are meaningful only if the theoretical distribution of the sample mean is roughly normal. If we log-transform our observations, then we want to confirm the transformation was useful. We can do this if we use the Box-Cox method, if we bootstrap the sample mean and the statistic t itself, and if we assess the residual plots from the statistical model of the actual and transformed sample observations.

  14. Transforming distance education curricula through distributive leadership

    Directory of Open Access Journals (Sweden)

    Mike Keppell

    2010-12-01

    Full Text Available This paper examines a core leadership strategy for transforming learning and teaching in distance education through flexible and blended learning. It focuses on a project centred on distributive leadership that involves collaboration, shared purpose, responsibility and recognition of leadership irrespective of role or position within an organisation. Distributive leadership was a core principle in facilitating the transformation of learning and teaching through a Teaching Fellowship Scheme that empowered leaders across a regional distance education university. In parallel, a design-based research project analysed the perceptions of the Teaching Fellows in relation to blended learning, time/space, peer learning, innovation and equity issues in relation to distance education.

  15. Learning organisations

    Directory of Open Access Journals (Sweden)

    Sabina Jelenc Krašovec

    2000-12-01

    Full Text Available A vast array of economical, social, political, cultural and other factors influences the transformed role of learning and education in the society, as well as the functioning of local community and its social and communication patterns. The influences which are manifested as global problems can only be successfully solved on the level of local community. Analogously with the society in general, there is a great need of transforming a local community into a learning, flexible and interconnected environment which takes into account different interests, wishes and needs regarding learning and being active. The fundamental answer to changes is the strategy of lifelong learning and education which requires reorganisation of all walks of life (work, free time, family, mass media, culture, sport, education and transforming of organisations into learning organisations. With learning society based on networks of knowledge individuals are turning into learning individuals, and organisations into learning organisations; people who learn take the responsibility of their progress, learning denotes partnership among learning people, teachers, parents, employers and local community, so that they work together to achieve better results.

  16. Geometric Description of the Thermodynamics of the Noncommutative Schwarzschild Black Hole

    Directory of Open Access Journals (Sweden)

    Alexis Larrañaga

    2013-01-01

    Full Text Available The thermodynamics of the noncommutative Schwarzschild black hole is reformulated within the context of the recently developed formalism of geometrothermodynamics (GTD. Using a thermodynamic metric which is invariant with respect to Legendre transformations, we determine the geometry of the space of equilibrium states and show that phase transitions, which correspond to divergencies of the heat capacity, are represented geometrically as singularities of the curvature scalar. This further indicates that the curvature of the thermodynamic metric is a measure of thermodynamic interaction.

  17. Plane Transformations in a Complex Setting III: Similarities

    Science.gov (United States)

    Dana-Picard, Thierry

    2009-01-01

    This is the third part of a study of plane transformations described in a complex setting. After the study of homotheties, translations, rotations and reflections, we proceed now to the study of plane similarities, either direct or inverse. Their group theoretical properties are described, and their action on classical geometrical objects is…

  18. A geometric criterion for the stability of forced oscillations in non-linear mechanics (1961); Un critere geometrique de stabilite des oscillations forcees en mecanique non lineaire (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Blaquiere, A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The author completes the two-parameter diagram theory which he has previously explained, by giving a geometric criterion of stability for a non-linear system under forced conditions. After two simple geometric transformations of the diagram he obtains the separators which are the boundary conditions for the zones of stability. (author) [French] L'auteur complete la theorie du diagramme a deux parametres, qu'il a anterieurement exposee, par l'enonce d'un critere geometrique de stabilite, relatif aux regimes forces d'un systeme non lineaire. Il obtient, par deux transformations geometriques simples du diagramme, les separatrices qui delimitent les zones de stabilite. (auteur)

  19. A Method to Optimize Geometric Errors of Machine Tool based on SNR Quality Loss Function and Correlation Analysis

    Directory of Open Access Journals (Sweden)

    Cai Ligang

    2017-01-01

    Full Text Available Instead improving the accuracy of machine tool by increasing the precision of key components level blindly in the production process, the method of combination of SNR quality loss function and machine tool geometric error correlation analysis to optimize five-axis machine tool geometric errors will be adopted. Firstly, the homogeneous transformation matrix method will be used to build five-axis machine tool geometric error modeling. Secondly, the SNR quality loss function will be used for cost modeling. And then, machine tool accuracy optimal objective function will be established based on the correlation analysis. Finally, ISIGHT combined with MATLAB will be applied to optimize each error. The results show that this method is reasonable and appropriate to relax the range of tolerance values, so as to reduce the manufacturing cost of machine tools.

  20. Geometrical Aspects During Formation of Compact Aggregates of Red Blood Cells

    Directory of Open Access Journals (Sweden)

    Cardoso A.V.

    2002-01-01

    Full Text Available In the past forty years considerable progress has been achieved on the knowledge of human blood as a non-Newtonian shear-thinning suspension, whose initial state, that is at rest (stasis or at very low shear rates, has a gel-like internal structure which is destroyed as shear stress increases. The main goal of this communication is to describe the role of geometrical aspects during RBC (red blood cell aggregate formation, growth and compaction on naturally aggregate (porcine blood and non-aggregate (bovine blood samples. We consider how these aspects coupled with tension equilibrium are decisive to transform red cell linear roleaux to three-dimensional aggregates or clusters. Geometrical aspects are also crucial on the compaction of red blood cell aggregates. These densely packed aggregates could precipitate out of blood- either as dangerous deposits on arterial walls, or as clots which travel in suspension until they block some crucial capillary.

  1. Geometric Lagrangian approach to the physical degree of freedom count in field theory

    Science.gov (United States)

    Díaz, Bogar; Montesinos, Merced

    2018-05-01

    To circumvent some technical difficulties faced by the geometric Lagrangian approach to the physical degree of freedom count presented in the work of Díaz, Higuita, and Montesinos [J. Math. Phys. 55, 122901 (2014)] that prevent its direct implementation to field theory, in this paper, we slightly modify the geometric Lagrangian approach in such a way that its resulting version works perfectly for field theory (and for particle systems, of course). As in previous work, the current approach also allows us to directly get the Lagrangian constraints, a new Lagrangian formula for the counting of the number of physical degrees of freedom, the gauge transformations, and the number of first- and second-class constraints for any action principle based on a Lagrangian depending on the fields and their first derivatives without performing any Dirac's canonical analysis. An advantage of this approach over the previous work is that it also allows us to handle the reducibility of the constraints and to get the off-shell gauge transformations. The theoretical framework is illustrated in 3-dimensional generalized general relativity (Palatini and Witten's exotic actions), Chern-Simons theory, 4-dimensional BF theory, and 4-dimensional general relativity given by Palatini's action with a cosmological constant.

  2. Optics learning by computing, with examples using Maple, MathCad, Mathematica, and MATLAB

    CERN Document Server

    Moeller, Karl Dieter

    2007-01-01

    This new edition is intended for a one semester course in optics for juniors and seniors in science and engineering; it uses scripts from Maple, MathCad, Mathematica, and MATLAB provide a simulated laboratory where students can learn by exploration and discovery instead of passive absorption. The text covers all the standard topics of a traditional optics course, including: geometrical optics and aberration, interference and diffraction, coherence, Maxwell's equations, wave guides and propagating modes, blackbody radiation, atomic emission and lasers, optical properties of materials, Fourier transforms and FT spectroscopy, image formation, and holography. It contains step by step derivations of all basic formulas in geometrical, wave and Fourier optics. The basic text is supplemented by over 170 files in Maple, MathCad, Mathematica, and MATLAB (many of which are in the text, each suggesting programs to solve a particular problem, and each linked to a topic in or application of optics. The computer files are d...

  3. Geometrical optical illusionists.

    Science.gov (United States)

    Wade, Nicholas J

    2014-01-01

    Geometrical optical illusions were given this title by Oppel in 1855. Variants on such small distortions of visual space were illustrated thereafter, many of which bear the names of those who first described them. Some original forms of the geometrical optical illusions are shown together with 'perceptual portraits' of those who described them. These include: Roget, Chevreul, Fick, Zöllner, Poggendorff, Hering, Kundt, Delboeuf Mach, Helmholtz, Hermann, von Bezold, Müller-Lyer, Lipps, Thiéry, Wundt, Münsterberg, Ebbinghaus, Titchener, Ponzo, Luckiesh, Sander, Ehrenstein, Gregory, Heard, White, Shepard, and. Lingelbach. The illusions are grouped under the headings of orientation, size, the combination of size and orientation, and contrast. Early theories of illusions, before geometrical optical illusions were so named, are mentioned briefly.

  4. Player Transformation of Educational Multiplayer Games

    DEFF Research Database (Denmark)

    Magnussen, Rikke; Misfeldt, Morten

    2004-01-01

    transformed the game to accommodate social interaction. With these transformed ways of playing the game, they managed to get to the top of the high score list while avoiding the educational parts of the game. Players transforming educational games to escape learning elements can be a problem when these games...... are used for formal education. In this paper we argue that player transformation of educational games can, however, be the basis of exciting and unconventional learning of valuable things, such as how to transform information technology to better accommodate social interaction.......Children's great interest in multiplayer games has led to attempts to design educational multiplayer games. In this study, we have studied a test of an educational multiplayer game designed for mathematics education for children aged nine to twelve. In our observations, it became clear that pupils...

  5. Determination of heat transfer parameters by use of finite integral transform and experimental data for regular geometric shapes

    Science.gov (United States)

    Talaghat, Mohammad Reza; Jokar, Seyyed Mohammad

    2017-12-01

    This article offers a study on estimation of heat transfer parameters (coefficient and thermal diffusivity) using analytical solutions and experimental data for regular geometric shapes (such as infinite slab, infinite cylinder, and sphere). Analytical solutions have a broad use in experimentally determining these parameters. Here, the method of Finite Integral Transform (FIT) was used for solutions of governing differential equations. The temperature change at centerline location of regular shapes was recorded to determine both the thermal diffusivity and heat transfer coefficient. Aluminum and brass were used for testing. Experiments were performed for different conditions such as in a highly agitated water medium ( T = 52 °C) and in air medium ( T = 25 °C). Then, with the known slope of the temperature ratio vs. time curve and thickness of slab or radius of the cylindrical or spherical materials, thermal diffusivity value and heat transfer coefficient may be determined. According to the method presented in this study, the estimated of thermal diffusivity of aluminum and brass is 8.395 × 10-5 and 3.42 × 10-5 for a slab, 8.367 × 10-5 and 3.41 × 10-5 for a cylindrical rod and 8.385 × 10-5 and 3.40 × 10-5 m2/s for a spherical shape, respectively. The results showed there is close agreement between the values estimated here and those already published in the literature. The TAAD% is 0.42 and 0.39 for thermal diffusivity of aluminum and brass, respectively.

  6. Research on Copy-Move Image Forgery Detection Using Features of Discrete Polar Complex Exponential Transform

    Science.gov (United States)

    Gan, Yanfen; Zhong, Junliu

    2015-12-01

    With the aid of sophisticated photo-editing software, such as Photoshop, copy-move image forgery operation has been widely applied and has become a major concern in the field of information security in the modern society. A lot of work on detecting this kind of forgery has gained great achievements, but the detection results of geometrical transformations of copy-move regions are not so satisfactory. In this paper, a new method based on the Polar Complex Exponential Transform is proposed. This method addresses issues in image geometric moment, focusing on constructing rotation invariant moment and extracting features of the rotation invariant moment. In order to reduce rounding errors of the transform from the Polar coordinate system to the Cartesian coordinate system, a new transformation method is presented and discussed in detail at the same time. The new method constructs a 9 × 9 shrunk template to transform the Cartesian coordinate system back to the Polar coordinate system. It can reduce transform errors to a much greater degree. Forgery detection, such as copy-move image forgery detection, is a difficult procedure, but experiments prove our method is a great improvement in detecting and identifying forgery images affected by the rotated transform.

  7. Geometric Constructions with the Computer.

    Science.gov (United States)

    Chuan, Jen-chung

    The computer can be used as a tool to represent and communicate geometric knowledge. With the appropriate software, a geometric diagram can be manipulated through a series of animation that offers more than one particular snapshot as shown in a traditional mathematical text. Geometric constructions with the computer enable the learner to see and…

  8. GEOMETRIC AND RADIOMETRIC EVALUATION OF RASAT IMAGES

    Directory of Open Access Journals (Sweden)

    A. Cam

    2016-06-01

    Full Text Available RASAT, the second remote sensing satellite of Turkey, was designed and assembled, and also is being operated by TÜBİTAK Uzay (Space Technologies Research Institute (Ankara. RASAT images in various levels are available free-of-charge via Gezgin portal for Turkish citizens. In this paper, the images in panchromatic (7.5 m GSD and RGB (15 m GSD bands in various levels were investigated with respect to its geometric and radiometric characteristics. The first geometric analysis is the estimation of the effective GSD as less than 1 pixel for radiometrically processed level (L1R of both panchromatic and RGB images. Secondly, 2D georeferencing accuracy is estimated by various non-physical transformation models (similarity, 2D affine, polynomial, affine projection, projective, DLT and GCP based RFM reaching sub-pixel accuracy using minimum 39 and maximum 52 GCPs. The radiometric characteristics are also investigated for 8 bits, estimating SNR between 21.8-42.2, and noise 0.0-3.5 for panchromatic and MS images for L1R when the sea is masked to obtain the results for land areas. The analysis show that RASAT images satisfies requirements for various applications. The research is carried out in Zonguldak test site which is mountainous and partly covered by dense forest and urban areas.

  9. Transformation-invariant visual representations in self-organizing spiking neural networks.

    Science.gov (United States)

    Evans, Benjamin D; Stringer, Simon M

    2012-01-01

    The ventral visual pathway achieves object and face recognition by building transformation-invariant representations from elementary visual features. In previous computer simulation studies with rate-coded neural networks, the development of transformation-invariant representations has been demonstrated using either of two biologically plausible learning mechanisms, Trace learning and Continuous Transformation (CT) learning. However, it has not previously been investigated how transformation-invariant representations may be learned in a more biologically accurate spiking neural network. A key issue is how the synaptic connection strengths in such a spiking network might self-organize through Spike-Time Dependent Plasticity (STDP) where the change in synaptic strength is dependent on the relative times of the spikes emitted by the presynaptic and postsynaptic neurons rather than simply correlated activity driving changes in synaptic efficacy. Here we present simulations with conductance-based integrate-and-fire (IF) neurons using a STDP learning rule to address these gaps in our understanding. It is demonstrated that with the appropriate selection of model parameters and training regime, the spiking network model can utilize either Trace-like or CT-like learning mechanisms to achieve transform-invariant representations.

  10. Transform-invariant visual representations in self-organizing spiking neural networks

    Directory of Open Access Journals (Sweden)

    Benjamin eEvans

    2012-07-01

    Full Text Available The ventral visual pathway achieves object and face recognition by building transform-invariant representations from elementary visual features. In previous computer simulation studies with rate-coded neural networks, the development of transform invariant representations has been demonstrated using either of two biologically plausible learning mechanisms, Trace learning and Continuous Transformation (CT learning. However, it has not previously been investigated how transform invariant representations may be learned in a more biologically accurate spiking neural network. A key issue is how the synaptic connection strengths in such a spiking network might self-organize through Spike-Time Dependent Plasticity (STDP where the change in synaptic strength is dependent on the relative times of the spikes emitted by the pre- and postsynaptic neurons rather than simply correlated activity driving changes in synaptic efficacy. Here we present simulations with conductance-based integrate-and-fire (IF neurons using a STDP learning rule to address these gaps in our understanding. It is demonstrated that with the appropriate selection of model pa- rameters and training regime, the spiking network model can utilize either Trace-like or CT-like learning mechanisms to achieve transform-invariant representations.

  11. HTML5 and CSS3 transition, transformation and animation

    CERN Document Server

    Guarini, Gianluca Daniele

    2013-01-01

    Quick and simple example-driven introduction to HTML5 Transitions, Transformations and Animations. Learn by doing to create some simply amazing HTML5 web applications. If you are a web developer or designer and would love to learn and use the game changing technologies included within HTML5 this is the right book for you, start at the beginning and learn some of this technologies awesome features around transitions, transformations and animations. This book is for beginners with transitions, transformations and animations that want a quick and simple kick start using clear and reusable example

  12. DOA estimation for conformal vector-sensor array using geometric algebra

    Science.gov (United States)

    Meng, Tianzhen; Wu, Minjie; Yuan, Naichang

    2017-12-01

    In this paper, the problem of direction of arrival (DOA) estimation is considered in the case of multiple polarized signals impinging on the conformal electromagnetic vector-sensor array (CVA). We focus on modeling the manifold holistically by a new mathematical tool called geometric algebra. Compared with existing methods, the presented one has two main advantages. Firstly, it acquires higher resolution by preserving the orthogonality of the signal components. Secondly, it avoids the cumbersome matrix operations while performing the coordinate transformations, and therefore, has a much lower computational complexity. Simulation results are provided to demonstrate the effectiveness of the proposed algorithm.

  13. Geometrical scaling in charm structure function ratios

    International Nuclear Information System (INIS)

    Boroun, G.R.; Rezaei, B.

    2014-01-01

    By using a Laplace-transform technique, we solve the next-to-leading-order master equation for charm production and derive a compact formula for the ratio R c =F L cc ¯ /F 2 cc ¯ , which is useful for extracting the charm structure function from the reduced charm cross section, in particular, at DESY HERA, at small x. Our results show that this ratio is independent of x at small x. In this method of determining the ratios, we apply geometrical scaling in charm production in deep inelastic scattering (DIS). Our analysis shows that the renormalization scales have a sizable impact on the ratio R c at high Q 2 . Our results for the ratio of the charm structure functions are in a good agreement with some phenomenological models

  14. Model-based recognition of 3-D objects by geometric hashing technique

    International Nuclear Information System (INIS)

    Severcan, M.; Uzunalioglu, H.

    1992-09-01

    A model-based object recognition system is developed for recognition of polyhedral objects. The system consists of feature extraction, modelling and matching stages. Linear features are used for object descriptions. Lines are obtained from edges using rotation transform. For modelling and recognition process, geometric hashing method is utilized. Each object is modelled using 2-D views taken from the viewpoints on the viewing sphere. A hidden line elimination algorithm is used to find these views from the wire frame model of the objects. The recognition experiments yielded satisfactory results. (author). 8 refs, 5 figs

  15. Creating a Safe Environment for Women's Leadership Transformation

    Science.gov (United States)

    Debebe, Gelaye

    2011-01-01

    This study used qualitative data to describe how transformational learning was achieved in a women-only training (WOT) program. The article argues that an environment conducive to transformational learning for women was created from the harmonious coalescing of the presence of all-women participants and instructors with gender-sensitive teaching…

  16. Learning and geometry computational approaches

    CERN Document Server

    Smith, Carl

    1996-01-01

    The field of computational learning theory arose out of the desire to for­ mally understand the process of learning. As potential applications to artificial intelligence became apparent, the new field grew rapidly. The learning of geo­ metric objects became a natural area of study. The possibility of using learning techniques to compensate for unsolvability provided an attraction for individ­ uals with an immediate need to solve such difficult problems. Researchers at the Center for Night Vision were interested in solving the problem of interpreting data produced by a variety of sensors. Current vision techniques, which have a strong geometric component, can be used to extract features. However, these techniques fall short of useful recognition of the sensed objects. One potential solution is to incorporate learning techniques into the geometric manipulation of sensor data. As a first step toward realizing such a solution, the Systems Research Center at the University of Maryland, in conjunction with the C...

  17. Transmuted Complementary Weibull Geometric Distribution

    Directory of Open Access Journals (Sweden)

    Ahmed Z. A…fify

    2014-12-01

    Full Text Available This paper provides a new generalization of the complementary Weibull geometric distribution that introduced by Tojeiro et al. (2014, using the quadratic rank transmutation map studied by Shaw and Buckley (2007. The new distribution is referred to as transmuted complementary Weibull geometric distribution (TCWGD. The TCWG distribution includes as special cases the complementary Weibull geometric distribution (CWGD, complementary exponential geometric distribution(CEGD,Weibull distribution (WD and exponential distribution (ED. Various structural properties of the new distribution including moments, quantiles, moment generating function and RØnyi entropy of the subject distribution are derived. We proposed the method of maximum likelihood for estimating the model parameters and obtain the observed information matrix. A real data set are used to compare the ‡exibility of the transmuted version versus the complementary Weibull geometric distribution.

  18. Managing stakeholders in transformational government

    DEFF Research Database (Denmark)

    Reinwald, Anja Kaldahl; Kræmmergaard, Pernille

    2012-01-01

    a stakeholder perspective. The paper reports how they succeeded in involving the most important stakeholders in the process of reaching transformational government. Finally the paper offers six lessons learned, based on the case study, about how to manage the involved stakeholders to reach transformational...

  19. Analysis of geometric phase effects in the quantum-classical Liouville formalism.

    Science.gov (United States)

    Ryabinkin, Ilya G; Hsieh, Chang-Yu; Kapral, Raymond; Izmaylov, Artur F

    2014-02-28

    We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.

  20. Analysis of geometric phase effects in the quantum-classical Liouville formalism

    Energy Technology Data Exchange (ETDEWEB)

    Ryabinkin, Ilya G.; Izmaylov, Artur F. [Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4 (Canada); Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada); Hsieh, Chang-Yu; Kapral, Raymond [Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6 (Canada)

    2014-02-28

    We analyze two approaches to the quantum-classical Liouville (QCL) formalism that differ in the order of two operations: Wigner transformation and projection onto adiabatic electronic states. The analysis is carried out on a two-dimensional linear vibronic model where geometric phase (GP) effects arising from a conical intersection profoundly affect nuclear dynamics. We find that the Wigner-then-Adiabatic (WA) QCL approach captures GP effects, whereas the Adiabatic-then-Wigner (AW) QCL approach does not. Moreover, the Wigner transform in AW-QCL leads to an ill-defined Fourier transform of double-valued functions. The double-valued character of these functions stems from the nontrivial GP of adiabatic electronic states in the presence of a conical intersection. In contrast, WA-QCL avoids this issue by starting with the Wigner transform of single-valued quantities of the full problem. As a consequence, GP effects in WA-QCL can be associated with a dynamical term in the corresponding equation of motion. Since the WA-QCL approach uses solely the adiabatic potentials and non-adiabatic derivative couplings as an input, our results indicate that WA-QCL can capture GP effects in two-state crossing problems using first-principles electronic structure calculations without prior diabatization or introduction of explicit phase factors.

  1. Enterprise transformation :lessons learned, pathways to success.

    Energy Technology Data Exchange (ETDEWEB)

    Slavin, Adam M.; Woodard, Joan Brune

    2006-05-01

    In this report, we characterize the key themes of transformation and tie them together in a ''how to'' guide. The perspectives were synthesized from strategic management literature, case studies, and from interviews with key management personnel from private industry on their transformation experiences.

  2. Transformative Theory in Social and Organizational Research

    DEFF Research Database (Denmark)

    Ravn, Ib

    2016-01-01

    and institutions. This idea is illustrated by a research-and-development project in Denmark, headed by the author, which used transformative theory to design professional conferences that are more conducive to participant learning and involvement than is the conventional, lecture-based format. A number of learning...... techniques were derived from the theory and were tested as hypotheses: When implemented in thirty live conference experiments, did they contribute to learning, as specified by the theory? Used in this manner, transformative theory may supplement the aspirations motivating change agents by some of the well...

  3. Structure preserving transformations for Newtonian Lie-admissible equations

    International Nuclear Information System (INIS)

    Cantrijn, F.

    1979-01-01

    Recently, a new formulation of non-conservative mechanics has been presented in terms of Hamilton-admissible equations which constitute a generalization of the conventional Hamilton equations. The algebraic structure entering the Hamilton-admissible description of a non-conservative system is that of a Lie-admissible algebra. The corresponding geometrical treatment is related to the existence of a so-called symplectic-admissible form. The transformation theory for Hamilton-admissible systems is currently investigated. The purpose of this paper is to describe one aspect of this theory by identifying the class of transformations which preserve the structure of Hamilton-admissible equations. Necessary and sufficient conditions are established for a transformation to be structure preserving. Some particular cases are discussed and an example is worked out

  4. Research and Innovation in Physics Education: Transforming Classrooms, Teaching, and Student Learning at the Tertiary Level

    Science.gov (United States)

    Jolly, Pratibha

    2009-04-01

    It is well recognized that science and technology and the quality of scientifically trained manpower crucially determines the development and economic growth of nations and the future of humankind. At the same time, there is growing global concern about flight of talent from physics in particular, and the need to make physics teaching and learning effective and careers in physics attractive. This presentation presents the findings of seminal physics education research on students' learning that are impacting global praxis and motivating changes in content, context, instruments, and ways of teaching and learning physics, focusing on active learning environments that integrate the use of a variety of resources to create experiences that are both hands-on and minds-on. Initiatives to bring about innovative changes in a university system are described, including a triadic model that entails indigenous development of PHYSARE using low-cost technologies. Transfer of pedagogic innovations into the formal classroom is facilitated by professional development programs that provide experiential learning of research-based innovative teaching practices, catalyze the process of reflection through classroom research, and establish a collaborative network of teachers empowered to usher radical transformation.

  5. Geometric phases in discrete dynamical systems

    Energy Technology Data Exchange (ETDEWEB)

    Cartwright, Julyan H.E., E-mail: julyan.cartwright@csic.es [Instituto Andaluz de Ciencias de la Tierra, CSIC–Universidad de Granada, E-18100 Armilla, Granada (Spain); Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada (Spain); Piro, Nicolas, E-mail: nicolas.piro@epfl.ch [École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne (Switzerland); Piro, Oreste, E-mail: piro@imedea.uib-csic.es [Departamento de Física, Universitat de les Illes Balears, E-07122 Palma de Mallorca (Spain); Tuval, Idan, E-mail: ituval@imedea.uib-csic.es [Mediterranean Institute for Advanced Studies, CSIC–Universitat de les Illes Balears, E-07190 Mallorca (Spain)

    2016-10-14

    In order to study the behaviour of discrete dynamical systems under adiabatic cyclic variations of their parameters, we consider discrete versions of adiabatically-rotated rotators. Parallelling the studies in continuous systems, we generalize the concept of geometric phase to discrete dynamics and investigate its presence in these rotators. For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number of the system. For the discrete version of the rotated rotator considered by Berry, the rotated standard map, we further explore this connection as well as the role of the geometric phase at the onset of chaos. Further into the chaotic regime, we show that the geometric phase is also related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent. - Highlights: • We extend the concept of geometric phase to maps. • For the rotated sine circle map, we demonstrate an analytical relationship between the geometric phase and the rotation number. • For the rotated standard map, we explore the role of the geometric phase at the onset of chaos. • We show that the geometric phase is related to the diffusive behaviour of the dynamical variables and the Lyapunov exponent.

  6. A Didactic Sequence of Elementary Geometric Optics Informed by History and Philosophy of Science

    Science.gov (United States)

    Maurício, Paulo; Valente, Bianor; Chagas, Isabel

    2017-01-01

    The concepts and instruments required for the teaching and learning of geometric optics are introduced in the didactic process without a proper didactic transposition. This claim is secured by the ample evidence of both wide- and deep-rooted alternative concepts on the topic. Didactic transposition is a theory that comes from a reflection on the…

  7. Discrete Fourier Transform Analysis in a Complex Vector Space

    Science.gov (United States)

    Dean, Bruce H.

    2009-01-01

    Alternative computational strategies for the Discrete Fourier Transform (DFT) have been developed using analysis of geometric manifolds. This approach provides a general framework for performing DFT calculations, and suggests a more efficient implementation of the DFT for applications using iterative transform methods, particularly phase retrieval. The DFT can thus be implemented using fewer operations when compared to the usual DFT counterpart. The software decreases the run time of the DFT in certain applications such as phase retrieval that iteratively call the DFT function. The algorithm exploits a special computational approach based on analysis of the DFT as a transformation in a complex vector space. As such, this approach has the potential to realize a DFT computation that approaches N operations versus Nlog(N) operations for the equivalent Fast Fourier Transform (FFT) calculation.

  8. On the possibility of the geometrical reconstruction of the charged particle trajectories in the streamer chamber

    International Nuclear Information System (INIS)

    Constantin, F.; Jipa, A.; Ilie, Gh.

    1998-01-01

    An interesting problem in the experiments using visualisation detectors is that of the geometrical reconstruction of the trajectories. In this work a new method for the geometrical reconstruction of trajectories of the charged particles produced in nucleus-nucleus collisions at 4.5 A GeV/c is proposed. The experiments have been performed at the JINR Synchrophasotron, in the frame of the SKM 200 Collaboration. The geometrical reconstruction method is based on the facilities offered by the Sun3VME-MaxVideo20 work-station, a real time image processing machine produced by DataCube Corporation. An algorithm is constructed taking into account some relevant characteristics of the pictures. For a typical picture, the centre, a very noisy region, is the starting point for all main tracks (the vertex); the poor contrast makes tracks identification difficult. Surrounding this first region there is an almost circular belt with a better contrast and without overlapping tracks. Finally, the third region, the outer one, is the origin of the secondary tracks, which is also noisy. The secondary tracks identify particles created in the chamber far from the vertex; secondary particle creation induces a large noise into the image and the sharpness reduces. The areas of these three regions vary from one picture to other, their fractions amounting around 20%, 50%, and 30%, respectively. The algorithm treats the primary tracks only. It takes great advantage for the well-defined geometrical vertex position. The primary tracks represent curved trajectories of charged particles moving in a magnetic field. As curved tracks are harder to identify relative to straight lines, we propose a conformal transformation from the surface z = x + iy to the surface w = u + iv related by the relation z a 2 /w. It transforms circles passing through origin in z plane into straight lines in w plane. The a 2 factor is a constant which must be determined. Practically, we transform a discrete image by

  9. The Use of Immersive Virtual Reality in the Learning Sciences: Digital Transformations of Teachers, Students, and Social Context

    Science.gov (United States)

    Bailenson, Jeremy N.; Yee, Nick; Blascovich, Jim; Beall, Andrew C.; Lundblad, Nicole; Jin, Michael

    2008-01-01

    This article illustrates the utility of using virtual environments to transform social interaction via behavior and context, with the goal of improving learning in digital environments. We first describe the technology and theories behind virtual environments and then report data from 4 empirical studies. In Experiment 1, we demonstrated that…

  10. Invisibility Cloaking Based on Geometrical Optics for Visible Light

    Science.gov (United States)

    Ichikawa, H.; Oura, M.; Taoda, T.

    2013-06-01

    Optical cloaking has been one of unattainable dreams and just a subject in fiction until recently. Several different approaches to cloaking have been proposed and demonstrated: stealth technology, active camouflage and transformation optics. The last one would be the most formal approach modifying electromagnetic field around an object to be cloaked with metamaterials. While cloaking based on transformation optics, though valid only at single frequency, is experimentally demonstrated in microwave region, its operation in visible spectrum is still distant from realisation mainly owing to difficulty in fabricating metamaterial structure whose elements are much smaller than wavelength of light. Here we show that achromatic optical cloaking in visible spectrum is possible with the mere principle based on geometrical optics. In combining a pair of polarising beam splitters and right-angled prisms, rays of light to be obstructed by an object can make a detour to an observer, while unobstructed rays go straight through two polarising beam splitters. What is observed eventually through the device is simply background image as if nothing exists in between.

  11. Machine Learning Applications in Estimating Transformer Loss of Life

    OpenAIRE

    Majzoobi, Alireza; Mahoor, Mohsen; Khodaei, Amin

    2017-01-01

    Transformer life assessment and failure diagnostics have always been important problems for electric utility companies. Ambient temperature and load profile are the main factors which affect aging of the transformer insulation, and consequently, the transformer lifetime. The IEEE Std. C57.911995 provides a model for calculating the transformer loss of life based on ambient temperature and transformer's loading. In this paper, this standard is used to develop a data-driven static model for hou...

  12. Technically Speaking: Transforming Language Learning through Virtual Learning Environments (MOOs).

    Science.gov (United States)

    von der Emde, Silke; Schneider, Jeffrey; Kotter, Markus

    2001-01-01

    Draws on experiences from a 7-week exchange between students learning German at an American college and advanced students of English at a German university. Maps out the benefits to using a MOO (multiple user domains object-oriented) for language learning: a student-centered learning environment structured by such objectives as peer teaching,…

  13. The Geometric Phase in Quantum Systems

    International Nuclear Information System (INIS)

    Pascazio, S

    2003-01-01

    inexperienced in such matters and needs to look at details. This book is addressed to graduate physics and chemistry students and was written thinking of students. However, I would recommend it also to young and mature physicists, even those who are already 'into' the subject. It is a comprehensive work, jointly written by five researchers. After a simple introduction to the subject, the book gradually provides deeper concepts, more advanced theory and finally an interesting introduction and explanation of recent experiments. For its multidisciplinary features, this work could not have been written by one single author. The collaborative effort is undoubtedly one of its most interesting qualities. I would definitely recommend it to anyone who wants to learn more on the geometric phase, a topic that is both beautiful and intriguing. (book review)

  14. Machine learning (ML)-guided OPC using basis functions of polar Fourier transform

    Science.gov (United States)

    Choi, Suhyeong; Shim, Seongbo; Shin, Youngsoo

    2016-03-01

    With shrinking feature size, runtime has become a limitation of model-based OPC (MB-OPC). A few machine learning-guided OPC (ML-OPC) have been studied as candidates for next-generation OPC, but they all employ too many parameters (e.g. local densities), which set their own limitations. We propose to use basis functions of polar Fourier transform (PFT) as parameters of ML-OPC. Since PFT functions are orthogonal each other and well reflect light phenomena, the number of parameters can significantly be reduced without loss of OPC accuracy. Experiments demonstrate that our new ML-OPC achieves 80% reduction in OPC time and 35% reduction in the error of predicted mask bias when compared to conventional ML-OPC.

  15. The Eisenhart lift: a didactical introduction of modern geometrical concepts from Hamiltonian dynamics

    International Nuclear Information System (INIS)

    Cariglia, Marco; Alves, Filipe Kelmer

    2015-01-01

    This work originates from part of a final year undergraduate research project on the Eisenhart lift for Hamiltonian systems. The Eisenhart lift is a procedure to describe trajectories of a classical natural Hamiltonian system as geodesics in an enlarged space. We point out that it can be easily obtained from basic principles of Hamiltonian dynamics, and as such it represents a useful didactical way to introduce graduate students to several modern concepts of geometry applied to physics: curved spaces, both Riemannian and Lorentzian, conformal transformations, geometrization of interactions and extra dimensions, and geometrization of dynamical symmetries. For all these concepts the Eisenhart lift can be used as a theoretical tool that provides easily achievable examples, with the added benefit of also being a topic of current research with several applications, among which are included the study of dynamical systems and non-relativistic holography. (paper)

  16. Researching transformative learning spaces through learners' stories

    DEFF Research Database (Denmark)

    Maslo, Elina

    spaces, learning to learn through languages, learners´ stories, qualitative research method Methodology or Methods/Research Instruments or Sources Used A number of semi structured qualitative interviews have been conducted with three learners of Danish as second language. The language learners...... in the paper is on the research process and methodological tools. The goal of this paper is to show, that learners´ stories have a huge potential in researching learning processes. References Benson, P. & D. Nunan (2004). Lerners´ stories. Difference and Diversity in Language Learning. Cambridge University...... to use learners´ stories as a research methodology in the field of learning in general and language learning in particular....

  17. Madrasah Culture Based Transformational Leadership Model

    OpenAIRE

    Nur Khoiri

    2016-01-01

    Leadership is the ability to influence, direct behavior, and have a particular expertise in the field of the group who want to achieve the goals. A dynamic organization requires transformational leadership model. A school principal as a leader at school aims to actualize good learning leadership. Leadership learning focuses on learning which components include curriculum, teaching and learning process, assessment, teacher assessment and development, good service in learning, and developing a ...

  18. Actualizing Notions of Perspective Transformation Using Web 2.0: Student Views on What Works for Language and Culture Learning

    Science.gov (United States)

    Davidson Devall, Kelly

    2015-01-01

    The framework of perspective transformation (Mezirow, 1994) provides a rich context for the conceptualization of technology use in language and culture learning. Although others have focused on the processes of becoming interculturally competent (Taylor, 1994) and changing language structures (Foster, 1997), more exploration of how technology aids…

  19. A Phenomenological Study Investigating Transformative Learning Strategies Implemented by 10 Title I Elementary Principals That Influence Novice Teacher Retention

    Science.gov (United States)

    Fountain, Tara

    2014-01-01

    The purpose of this qualitative phenomenological study was to investigate transformative learning strategies implemented by 10 Title I elementary principals that influence novice teacher retention. Data were gathered by individual interviews. Data were analyzed using Creswell's (2013) description of qualitative research as a collection of data…

  20. Spike sorting based upon machine learning algorithms (SOMA).

    Science.gov (United States)

    Horton, P M; Nicol, A U; Kendrick, K M; Feng, J F

    2007-02-15

    We have developed a spike sorting method, using a combination of various machine learning algorithms, to analyse electrophysiological data and automatically determine the number of sampled neurons from an individual electrode, and discriminate their activities. We discuss extensions to a standard unsupervised learning algorithm (Kohonen), as using a simple application of this technique would only identify a known number of clusters. Our extra techniques automatically identify the number of clusters within the dataset, and their sizes, thereby reducing the chance of misclassification. We also discuss a new pre-processing technique, which transforms the data into a higher dimensional feature space revealing separable clusters. Using principal component analysis (PCA) alone may not achieve this. Our new approach appends the features acquired using PCA with features describing the geometric shapes that constitute a spike waveform. To validate our new spike sorting approach, we have applied it to multi-electrode array datasets acquired from the rat olfactory bulb, and from the sheep infero-temporal cortex, and using simulated data. The SOMA sofware is available at http://www.sussex.ac.uk/Users/pmh20/spikes.

  1. Towards Smart City Learning

    DEFF Research Database (Denmark)

    Rehm, Matthias; Stan, Catalin; Wøldike, Niels Peter

    2015-01-01

    , the concept of smart city learning is exploited to situate learning about geometric shapes in concrete buildings and thus make them more accessible for younger children. In close collaboration with a local school a game for 3rd graders was developed and tested on a field trip and in class. A mixed measures...

  2. Recovery of the matrix operators in the similarity and congruency transformations: Applications in polarimetry

    International Nuclear Information System (INIS)

    November, L.J.

    1993-01-01

    Formulas are presented for the recovery of the matrix operators in arbitrary-order similarity and congruency transformations. Two independent input and output matrix pairs exactly determine the similarity-transformation matrix operator, while three independent Hermitian-matrix pairs are required for the congruency-transformation operator. The congruency transformation is the natural form for the quantum observables of a multiple-element wave function, e.g., for polarized-light transfer: the recovery of the Jones matrix for a nondepolarizing device is demonstrated, given any three linearly independent partially polarized input Stokes states. The recovery formula gives a good solution even with large added noise in the test matrices. Combined with numerical least-squares methods, the formula can give an optimized solution for measures of observation error. A more general operator, which includes the effect of isotropic depolarization, is defined, and its recovery is demonstrated also. The recovery formulas have a three-dimensional geometric interpretation in the second-order case, e.g., in the Poincare sphere. It is pointed out that the geometric property is a purely mathematical property of quantum observables that arises without referring to spatial characteristics for the underlying wave function. 36 refs., 9 figs

  3. Thermal Error Modelling of the Spindle Using Data Transformation and Adaptive Neurofuzzy Inference System

    Directory of Open Access Journals (Sweden)

    Yanlei Li

    2015-01-01

    Full Text Available This paper proposes a new method for predicting spindle deformation based on temperature data. The method introduces the adaptive neurofuzzy inference system (ANFIS, which is a neurofuzzy modeling approach that integrates the kernel and geometrical transformations. By utilizing data transformation, the number of ANFIS rules can be effectively reduced and the predictive model structure can be simplified. To build the predictive model, we first map the original temperature data to a feature space with Gaussian kernels. We then process the mapped data with the geometrical transformation and make the data gather in the square region. Finally, the transformed data are used as input to train the ANFIS. A verification experiment is conducted to evaluate the performance of the proposed method. Six Pt100 thermal resistances are used to monitor the spindle temperature, and a laser displacement sensor is used to detect the spindle deformation. Experimental results show that the proposed method can precisely predict the spindle deformation and greatly improve the thermal performance of the spindle. Compared with back propagation (BP networks, the proposed method is more suitable for complex working conditions in practical applications.

  4. Transforming Exploratory Creativity with DeLeNoX

    DEFF Research Database (Denmark)

    Liapis, Antonios; Martínez, Héctor Pérez; Togelius, Julian

    2013-01-01

    We introduce DeLeNoX (Deep Learning Novelty Explorer), a system that autonomously creates artifacts in constrained spaces according to its own evolving interestingness criterion. DeLeNoX proceeds in alternating phases of exploration and transformation. In the exploration phases, a version...... of novelty search augmented with constraint handling searches for maximally diverse artifacts using a given distance function. In the transformation phases, a deep learning autoencoder learns to compress the variation between the found artifacts into a lower-dimensional space. The newly trained encoder...

  5. Optimization of biotechnological systems through geometric programming

    Directory of Open Access Journals (Sweden)

    Torres Nestor V

    2007-09-01

    Full Text Available Abstract Background In the past, tasks of model based yield optimization in metabolic engineering were either approached with stoichiometric models or with structured nonlinear models such as S-systems or linear-logarithmic representations. These models stand out among most others, because they allow the optimization task to be converted into a linear program, for which efficient solution methods are widely available. For pathway models not in one of these formats, an Indirect Optimization Method (IOM was developed where the original model is sequentially represented as an S-system model, optimized in this format with linear programming methods, reinterpreted in the initial model form, and further optimized as necessary. Results A new method is proposed for this task. We show here that the model format of a Generalized Mass Action (GMA system may be optimized very efficiently with techniques of geometric programming. We briefly review the basics of GMA systems and of geometric programming, demonstrate how the latter may be applied to the former, and illustrate the combined method with a didactic problem and two examples based on models of real systems. The first is a relatively small yet representative model of the anaerobic fermentation pathway in S. cerevisiae, while the second describes the dynamics of the tryptophan operon in E. coli. Both models have previously been used for benchmarking purposes, thus facilitating comparisons with the proposed new method. In these comparisons, the geometric programming method was found to be equal or better than the earlier methods in terms of successful identification of optima and efficiency. Conclusion GMA systems are of importance, because they contain stoichiometric, mass action and S-systems as special cases, along with many other models. Furthermore, it was previously shown that algebraic equivalence transformations of variables are sufficient to convert virtually any types of dynamical models into

  6. Geometrical model of multiple production

    International Nuclear Information System (INIS)

    Chikovani, Z.E.; Jenkovszky, L.L.; Kvaratshelia, T.M.; Struminskij, B.V.

    1988-01-01

    The relation between geometrical and KNO-scaling and their violation is studied in a geometrical model of multiple production of hadrons. Predictions concerning the behaviour of correlation coefficients at future accelerators are given

  7. Pragmatic geometric model evaluation

    Science.gov (United States)

    Pamer, Robert

    2015-04-01

    Quantification of subsurface model reliability is mathematically and technically demanding as there are many different sources of uncertainty and some of the factors can be assessed merely in a subjective way. For many practical applications in industry or risk assessment (e. g. geothermal drilling) a quantitative estimation of possible geometric variations in depth unit is preferred over relative numbers because of cost calculations for different scenarios. The talk gives an overview of several factors that affect the geometry of structural subsurface models that are based upon typical geological survey organization (GSO) data like geological maps, borehole data and conceptually driven construction of subsurface elements (e. g. fault network). Within the context of the trans-European project "GeoMol" uncertainty analysis has to be very pragmatic also because of different data rights, data policies and modelling software between the project partners. In a case study a two-step evaluation methodology for geometric subsurface model uncertainty is being developed. In a first step several models of the same volume of interest have been calculated by omitting successively more and more input data types (seismic constraints, fault network, outcrop data). The positions of the various horizon surfaces are then compared. The procedure is equivalent to comparing data of various levels of detail and therefore structural complexity. This gives a measure of the structural significance of each data set in space and as a consequence areas of geometric complexity are identified. These areas are usually very data sensitive hence geometric variability in between individual data points in these areas is higher than in areas of low structural complexity. Instead of calculating a multitude of different models by varying some input data or parameters as it is done by Monte-Carlo-simulations, the aim of the second step of the evaluation procedure (which is part of the ongoing work) is to

  8. Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems

    Science.gov (United States)

    Vanchurin, Vitaly

    2018-05-01

    Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.

  9. The Transformative-Learning Potential of Feminist-Inspired Guided Art Gallery Visits for People Diagnosed with Mental Illness and Addiction

    Science.gov (United States)

    Spring, Lauren; Smith, Melissa; DaSilva, Maureen

    2018-01-01

    Consciousness-raising practices at the heart of feminism remain one of the most vital components of transformative learning theory and provide the foundation for its constructivist underpinnings. Recently, there has been a call for educators to employ consciousness-raising practices outside of traditional classroom settings and to focus greater…

  10. Models of Transformative Learning for Social Justice: Comparative Case Studies of Non-Formal Development Education in Britain and Spain

    Science.gov (United States)

    Brown, Eleanor J.

    2015-01-01

    This paper presents comparative case studies of non-formal development education by non-profit organisations in two European countries. The study aimed to explore the extent to which such activities provide opportunities for transformative learning. The research was qualitative and began with interviews with educators across 14 organisations in…

  11. Stoking the Dialogue on the Domains of Transformative Learning Theory: Insights From Research With Faith-Based Organizations in Kenya

    Science.gov (United States)

    Moyer, Joanne M.; Sinclair, A. John

    2016-01-01

    Transformative learning theory is applied in a variety of fields, including archaeology, religious studies, health care, the physical sciences, environmental studies, and natural resource management. Given the breadth of the theory's application, it needs to be adaptable to broad contexts. This article shares insights gained from applying the…

  12. Moment-based method for computing the two-dimensional discrete Hartley transform

    Science.gov (United States)

    Dong, Zhifang; Wu, Jiasong; Shu, Huazhong

    2009-10-01

    In this paper, we present a fast algorithm for computing the two-dimensional (2-D) discrete Hartley transform (DHT). By using kernel transform and Taylor expansion, the 2-D DHT is approximated by a linear sum of 2-D geometric moments. This enables us to use the fast algorithms developed for computing the 2-D moments to efficiently calculate the 2-D DHT. The proposed method achieves a simple computational structure and is suitable to deal with any sequence lengths.

  13. Summarize to learn: summarization and visualization of text for ubiquitous learning

    DEFF Research Database (Denmark)

    Chongtay, Rocio; Last, Mark; Verbeke, Mathias

    2013-01-01

    Visualizations can stand in many relations to texts – and, as research into learning with pictures has shown, they can become particularly valuable when they transform the contents of the text (rather than just duplicate its message or structure it). But what kinds of transformations can...... be particularly helpful in the learning process? In this paper, we argue that interacting with, and creating, summaries of texts is a key transformation technique, and we investigate how textual and graphical summarization approaches, as well as automatic and manual summarization, can complement one another...... to support effective learning....

  14. Creating collaborative learning environments for transforming primary care practices now.

    Science.gov (United States)

    Miller, William L; Cohen-Katz, Joanne

    2010-12-01

    The renewal of primary care waits just ahead. The patient-centered medical home (PCMH) movement and a refreshing breeze of collaboration signal its arrival with demonstration projects and pilots appearing across the country. An early message from this work suggests that the development of collaborative, cross-disciplinary teams may be essential for the success of the PCMH. Our focus in this article is on training existing health care professionals toward being thriving members of this transformed clinical care team in a relationship-centered PCMH. Our description of the optimal conditions for collaborative training begins with delineating three types of teams and how they relate to levels of collaboration. We then describe how to create a supportive, safe learning environment for this type of training, using a different model of professional socialization, and tools for building culture. Critical skills related to practice development and the cross-disciplinary collaborative processes are also included. Despite significant obstacles in readying current clinicians to be members of thriving collaborative teams, a few next steps toward implementing collaborative training programs for existing professionals are possible using competency-based and adult learning approaches. Grasping the long awaited arrival of collaborative primary health care will also require delivery system and payment reform. Until that happens, there is an abundance of work to be done envisioning new collaborative training programs and initiating a nation-wide effort to motivate and reeducate our colleagues. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  15. Graphene geometric diodes for terahertz rectennas

    International Nuclear Information System (INIS)

    Zhu Zixu; Joshi, Saumil; Grover, Sachit; Moddel, Garret

    2013-01-01

    We demonstrate a new thin-film graphene diode called a geometric diode that relies on geometric asymmetry to provide rectification at 28 THz. The geometric diode is coupled to an optical antenna to form a rectenna that rectifies incoming radiation. This is the first reported graphene-based antenna-coupled diode working at 28 THz, and potentially at optical frequencies. The planar structure of the geometric diode provides a low RC time constant, on the order of 10 −15 s, required for operation at optical frequencies, and a low impedance for efficient power transfer from the antenna. Fabricated geometric diodes show asymmetric current–voltage characteristics consistent with Monte Carlo simulations for the devices. Rectennas employing the geometric diode coupled to metal and graphene antennas rectify 10.6 µm radiation, corresponding to an operating frequency of 28 THz. The graphene bowtie antenna is the first demonstrated functional antenna made using graphene. Its response indicates that graphene is a suitable terahertz resonator material. Applications for this terahertz diode include terahertz-wave and optical detection, ultra-high-speed electronics and optical power conversion. (paper)

  16. Geometric Computing for Freeform Architecture

    KAUST Repository

    Wallner, J.

    2011-06-03

    Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area, dealing with meshes with planar faces and meshes which allow multilayer constructions (which is related to discrete surfaces and their curvatures), triangles meshes with circle-packing properties (which is related to conformal uniformization), and with the paneling problem. We emphasize the combination of numerical optimization and geometric knowledge.

  17. Geometric Design of Scalable Forward Scatterers for Optimally Efficient Solar Transformers.

    Science.gov (United States)

    Kim, Hye-Na; Vahidinia, Sanaz; Holt, Amanda L; Sweeney, Alison M; Yang, Shu

    2017-11-01

    It will be ideal to deliver equal, optimally efficient "doses" of sunlight to all cells in a photobioreactor system, while simultaneously utilizing the entire solar resource. Backed by the numerical scattering simulation and optimization, here, the design, synthesis, and characterization of the synthetic iridocytes that recapitulated the salient forward-scattering behavior of the Tridacnid clam system are reported, which presents the first geometric solution to allow narrow, precise forward redistribution of flux, utilizing the solar resource at the maximum quantum efficiency possible in living cells. The synthetic iridocytes are composed of silica nanoparticles in microspheres embedded in gelatin, both are low refractive index materials and inexpensive. They show wavelength selectivity, have little loss (the back-scattering intensity is reduced to less than ≈0.01% of the forward-scattered intensity), and narrow forward scattering cone similar to giant clams. Moreover, by comparing experiments and theoretical calculation, it is confirmed that the nonuniformity of the scatter sizes is a "feature not a bug" of the design, allowing for efficient, forward redistribution of solar flux in a micrometer-scaled paradigm. This method is environmentally benign, inexpensive, and scalable to produce optical components that will find uses in efficiency-limited solar conversion technologies, heat sinks, and biofuel production. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in EPI

    Science.gov (United States)

    Yeo, Desmond T. B.; Fessler, Jeffrey A.; Kim, Boklye

    2014-01-01

    The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventionally, geometric distortion is “corrected” with a static field map independently of image registration. That approach ignores all field map changes induced by head motion. This work evaluates the improved motion correction capability of mapping slice to volume (MSV) registration with concurrent iterative field corrected reconstruction using updated field maps derived from an initial static field map that has been spatially transformed and resampled. It accounts for motion-induced field map changes for translational and in-plane rotation motion. The results from simulated EPI time series data, in which motion, image intensity and activation ground truths are available, show improved accuracy in image registration, field corrected image reconstruction and activation detection. PMID:18280077

  19. Geometric solitons of Hamiltonian flows on manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  20. Neutron guide geometries for homogeneous phase space volume transformation

    Energy Technology Data Exchange (ETDEWEB)

    Stüßer, N., E-mail: stuesser@helmholtz-berlin.de; Bartkowiak, M.; Hofmann, T.

    2014-06-01

    We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender.

  1. Neutron guide geometries for homogeneous phase space volume transformation

    International Nuclear Information System (INIS)

    Stüßer, N.; Bartkowiak, M.; Hofmann, T.

    2014-01-01

    We extend geometries for recently developed optical guide systems that perform homogeneous phase space volume transformations on neutron beams. These modules allow rotating beam directions and can simultaneously compress or expand the beam cross-section. Guide systems combining these modules offer the possibility to optimize ballistic guides with and without direct view on the source and beam splitters. All systems are designed for monochromatic beams with a given divergence. The case of multispectral beams with wavelength-dependent divergence distributions is addressed as well. - Highlights: • Form invariant volume transformation in phase space. • Geometrical approach. • Ballistic guide, beam splitter, beam bender

  2. Community Opinion and Satisfaction with the Leadership at an Urban Community Educational Learning Center during an Organizational Transformation Process: A Frontline Perspective from Community Stakeholders

    Science.gov (United States)

    Lewis, Joseph Lee

    2013-01-01

    This study examined selected community stakeholders' perception of the current leadership at their local community educational learning center during an organizational transformation and cultural change process. The transition from a community college to an educational learning center, mandated in 2006 by the Accredition Commission and agreed on…

  3. Automatic Target Recognition in Synthetic Aperture Sonar Images Based on Geometrical Feature Extraction

    Directory of Open Access Journals (Sweden)

    J. Del Rio Vera

    2009-01-01

    Full Text Available This paper presents a new supervised classification approach for automated target recognition (ATR in SAS images. The recognition procedure starts with a novel segmentation stage based on the Hilbert transform. A number of geometrical features are then extracted and used to classify observed objects against a previously compiled database of target and non-target features. The proposed approach has been tested on a set of 1528 simulated images created by the NURC SIGMAS sonar model, achieving up to 95% classification accuracy.

  4. Geometric Computing for Freeform Architecture

    KAUST Repository

    Wallner, J.; Pottmann, Helmut

    2011-01-01

    Geometric computing has recently found a new field of applications, namely the various geometric problems which lie at the heart of rationalization and construction-aware design processes of freeform architecture. We report on our work in this area

  5. A new geometrical gravitational theory

    International Nuclear Information System (INIS)

    Obata, T.; Chiba, J.; Oshima, H.

    1981-01-01

    A geometrical gravitational theory is developed. The field equations are uniquely determined apart from one unknown dimensionless parameter ω 2 . It is based on an extension of the Weyl geometry, and by the extension the gravitational coupling constant and the gravitational mass are made to be dynamical and geometrical. The fundamental geometrical objects in the theory are a metric gsub(μν) and two gauge scalars phi and psi. The theory satisfies the weak equivalence principle, but breaks the strong one generally. u(phi, psi) = phi is found out on the assumption that the strong one keeps holding good at least for bosons of low spins. Thus there is the simple correspondence between the geometrical objects and the gravitational objects. Since the theory satisfies the weak one, the inertial mass is also dynamical and geometrical in the same way as is the gravitational mass. Moreover, the cosmological term in the theory is a coscalar of power -4 algebraically made of psi and u(phi, psi), so it is dynamical, too. Finally spherically symmetric exact solutions are given. The permissible range of the unknown parameter ω 2 is experimentally determined by applying the solutions to the solar system. (author)

  6. Mobile Watermarking against Geometrical Distortions

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-08-01

    Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.

  7. Color Face Recognition Based on Steerable Pyramid Transform and Extreme Learning Machines

    Directory of Open Access Journals (Sweden)

    Ayşegül Uçar

    2014-01-01

    Full Text Available This paper presents a novel color face recognition algorithm by means of fusing color and local information. The proposed algorithm fuses the multiple features derived from different color spaces. Multiorientation and multiscale information relating to the color face features are extracted by applying Steerable Pyramid Transform (SPT to the local face regions. In this paper, the new three hybrid color spaces, YSCr, ZnSCr, and BnSCr, are firstly constructed using the Cb and Cr component images of the YCbCr color space, the S color component of the HSV color spaces, and the Zn and Bn color components of the normalized XYZ color space. Secondly, the color component face images are partitioned into the local patches. Thirdly, SPT is applied to local face regions and some statistical features are extracted. Fourthly, all features are fused according to decision fusion frame and the combinations of Extreme Learning Machines classifiers are applied to achieve color face recognition with fast and high correctness. The experiments show that the proposed Local Color Steerable Pyramid Transform (LCSPT face recognition algorithm improves seriously face recognition performance by using the new color spaces compared to the conventional and some hybrid ones. Furthermore, it achieves faster recognition compared with state-of-the-art studies.

  8. Identity transformation

    DEFF Research Database (Denmark)

    Neergaard, Helle; Robinson, Sarah; Jones, Sally

    , as well as the resources they have when they come to the classroom. It also incorporates perspectives from (ii) transformational learning and explores the concept of (iii) nudging from a pedagogical viewpoint, proposing it as an important tool in entrepreneurship education. The study incorporates......This paper develops the concept of ‘pedagogical nudging’ and examines four interventions in an entrepreneurship classroom and the potential it has for student identity transformation. Pedagogical nudging is positioned as a tool, which in the hands of a reflective, professional......) assists students in straddling the divide between identities, the emotions and tensions this elicits, and (iv) transform student understanding. We extend nudging theory into a new territory. Pedagogical nudging techniques may be able to unlock doors and bring our students beyond the unacknowledged...

  9. Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging.

    Science.gov (United States)

    Yeo, Desmond T B; Fessler, Jeffrey A; Kim, Boklye

    2008-06-01

    The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventionally, geometric distortion is "corrected" with a static field map independently of image registration. That approach ignores all field map changes induced by head motion. This work evaluates the improved motion correction capability of mapping slice to volume with concurrent iterative field corrected reconstruction using updated field maps derived from an initial static field map that has been spatially transformed and resampled. It accounts for motion-induced field map changes for translational and in-plane rotation motion. The results from simulated EPI time series data, in which motion, image intensity and activation ground truths are available, show improved accuracy in image registration, field corrected image reconstruction and activation detection.

  10. Nonbijective canonical transformations and applications to some dynamical systems

    International Nuclear Information System (INIS)

    Negadi, T.

    1988-01-01

    A first part is devoted to a presentation of a simplified formalism concerning non-bijective canonical transformations and to an interpretation of some of them in the framework on the theory of Lie algebras. In particular, the well-known Levi-Civita and Kustaanheimo-Stiefel transformations are generalized to the non-compact case and to the dimensions 2, 4 and 8. The differential and geometrical properties of the so-called Hurwitz transformations as well as their interpretation in terms of Lie algebras under constraints are given. A second part is concerned with the application of certain non-bijective canonical transformations (and in particular the Kustaanheimo-Stiefel transformation) to some dynamical systems of interest in theoretical and in chemical physics. The applications concern especially hydrogenoid systems, free or embedded in static and uniform electromagnetic fields, and systems presenting a line of singularity (as the Hartmann system, the Aharonov-Bohm system, and the dyonium system). The Kustaanheimo-Stiefel transformation allows to convert the Schroedinger equations for the later systems into Schroedinger equations for oscillators (harmonic, anharmonic, non-harmonic) in 2 or 4 dimensions [fr

  11. Shape equivalence under perspective and projective transformations

    OpenAIRE

    Wagemans, Johan; Lamote, C; Van Gool, Luc

    1997-01-01

    When a planar shape is viewed obliquely, it is deformed by a perspective deformation. If the visual system were to pick up geometrical invariants from such projections, these would necessarily be invariant under the wider class of projective transformations. To what extent can the visual system tell the difference between perspective and nonperspective but still projective deformations of shapes? To investigate this, observers were asked to indicate which of two test patterns most resembled a...

  12. Clifford Fourier transform on vector fields.

    Science.gov (United States)

    Ebling, Julia; Scheuermann, Gerik

    2005-01-01

    Image processing and computer vision have robust methods for feature extraction and the computation of derivatives of scalar fields. Furthermore, interpolation and the effects of applying a filter can be analyzed in detail and can be advantages when applying these methods to vector fields to obtain a solid theoretical basis for feature extraction. We recently introduced the Clifford convolution, which is an extension of the classical convolution on scalar fields and provides a unified notation for the convolution of scalar and vector fields. It has attractive geometric properties that allow pattern matching on vector fields. In image processing, the convolution and the Fourier transform operators are closely related by the convolution theorem and, in this paper, we extend the Fourier transform to include general elements of Clifford Algebra, called multivectors, including scalars and vectors. The resulting convolution and derivative theorems are extensions of those for convolution and the Fourier transform on scalar fields. The Clifford Fourier transform allows a frequency analysis of vector fields and the behavior of vector-valued filters. In frequency space, vectors are transformed into general multivectors of the Clifford Algebra. Many basic vector-valued patterns, such as source, sink, saddle points, and potential vortices, can be described by a few multivectors in frequency space.

  13. Operational geometric phase for mixed quantum states

    International Nuclear Information System (INIS)

    Andersson, O; Heydari, H

    2013-01-01

    The geometric phase has found a broad spectrum of applications in both classical and quantum physics, such as condensed matter and quantum computation. In this paper, we introduce an operational geometric phase for mixed quantum states, based on spectral weighted traces of holonomies, and we prove that it generalizes the standard definition of the geometric phase for mixed states, which is based on quantum interferometry. We also introduce higher order geometric phases, and prove that under a fairly weak, generically satisfied, requirement, there is always a well-defined geometric phase of some order. Our approach applies to general unitary evolutions of both non-degenerate and degenerate mixed states. Moreover, since we provide an explicit formula for the geometric phase that can be easily implemented, it is particularly well suited for computations in quantum physics. (paper)

  14. Low-Resolution Tactile Image Recognition for Automated Robotic Assembly Using Kernel PCA-Based Feature Fusion and Multiple Kernel Learning-Based Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Yi-Hung Liu

    2014-01-01

    Full Text Available In this paper, we propose a robust tactile sensing image recognition scheme for automatic robotic assembly. First, an image reprocessing procedure is designed to enhance the contrast of the tactile image. In the second layer, geometric features and Fourier descriptors are extracted from the image. Then, kernel principal component analysis (kernel PCA is applied to transform the features into ones with better discriminating ability, which is the kernel PCA-based feature fusion. The transformed features are fed into the third layer for classification. In this paper, we design a classifier by combining the multiple kernel learning (MKL algorithm and support vector machine (SVM. We also design and implement a tactile sensing array consisting of 10-by-10 sensing elements. Experimental results, carried out on real tactile images acquired by the designed tactile sensing array, show that the kernel PCA-based feature fusion can significantly improve the discriminating performance of the geometric features and Fourier descriptors. Also, the designed MKL-SVM outperforms the regular SVM in terms of recognition accuracy. The proposed recognition scheme is able to achieve a high recognition rate of over 85% for the classification of 12 commonly used metal parts in industrial applications.

  15. Human-robot cooperative movement training: Learning a novel sensory motor transformation during walking with robotic assistance-as-needed

    Directory of Open Access Journals (Sweden)

    Benitez Raul

    2007-03-01

    Full Text Available Abstract Background A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Methods Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. Results We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. Conclusion The assist

  16. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.

    Science.gov (United States)

    Emken, Jeremy L; Benitez, Raul; Reinkensmeyer, David J

    2007-03-28

    A prevailing paradigm of physical rehabilitation following neurologic injury is to "assist-as-needed" in completing desired movements. Several research groups are attempting to automate this principle with robotic movement training devices and patient cooperative algorithms that encourage voluntary participation. These attempts are currently not based on computational models of motor learning. Here we assume that motor recovery from a neurologic injury can be modelled as a process of learning a novel sensory motor transformation, which allows us to study a simplified experimental protocol amenable to mathematical description. Specifically, we use a robotic force field paradigm to impose a virtual impairment on the left leg of unimpaired subjects walking on a treadmill. We then derive an "assist-as-needed" robotic training algorithm to help subjects overcome the virtual impairment and walk normally. The problem is posed as an optimization of performance error and robotic assistance. The optimal robotic movement trainer becomes an error-based controller with a forgetting factor that bounds kinematic errors while systematically reducing its assistance when those errors are small. As humans have a natural range of movement variability, we introduce an error weighting function that causes the robotic trainer to disregard this variability. We experimentally validated the controller with ten unimpaired subjects by demonstrating how it helped the subjects learn the novel sensory motor transformation necessary to counteract the virtual impairment, while also preventing them from experiencing large kinematic errors. The addition of the error weighting function allowed the robot assistance to fade to zero even though the subjects' movements were variable. We also show that in order to assist-as-needed, the robot must relax its assistance at a rate faster than that of the learning human. The assist-as-needed algorithm proposed here can limit error during the learning of a

  17. Teaching Stable Two-Mirror Resonators through the Fractional Fourier Transform

    Science.gov (United States)

    Moreno, Ignacio; Garcia-Martinez, Pascuala; Ferreira, Carlos

    2010-01-01

    We analyse two-mirror resonators in terms of their fractional Fourier transform (FRFT) properties. We use the basic ABCD ray transfer matrix method to show how the resonator can be regarded as the cascade of two propagation-lens-propagation FRFT systems. Then, we present a connection between the geometric properties of the resonator (the g…

  18. Geometrical and topological formulation of local gauge and supergauge theories

    International Nuclear Information System (INIS)

    Macrae, K.I.

    1976-01-01

    A geometrical and topological formulation of local gauge and supergauge invariance is presented. Analysis of experiments of the type described by Bohm and Aharanov and in the attempt to understand immersed submanifolds such as the string with internal symmetry, in a geometric setting, are led to the introduction of fiber bundles, superspaces. Many exact classical solutions to the equations of motion were considered for these gauge theories with specific choices of gauge group such as SU 4 . We describe some exact soliton solutions to these theories which have linear Regge trajectories, i.e., their angular momentum is a linear function of their mass squared. Next one discusses the actions and equations of motion for gauge theories whose base manifolds can have arbitrarily dimensioned submanifolds excised from them, manifolds with holes were discussed. These holes can have fractional quark charges when the structure group is, for example, SU 3 or SU 4 . By extending the concept of conservation of energy to include the excised submanifolds, their actions, and their equations of motion were derived showing that they can act as charged particles. Using the fractionality of the quark charges, are led to suggest a topological confinement mechanism for these particles. One also derives the actions and equations of motion for the string from this viewpoint. Some new Lie algebras which have anticommuting elements are introduced. Their gauge theories are described, and the possibility of fermionic actions for the anticommuting pieces is examined. Supersymmetric strings and their supergauge transformations were discussed and an extension was suggested of supersymmetry to immersed minimal submanifolds other than the string. Both quarklike and vectorlike fermions are included. Finally the invariance of both the equations of motion and the gauge conditions under supersymmetry transformations for these submanifolds were described

  19. Geometrical factors in the perception of sacredness

    DEFF Research Database (Denmark)

    Costa, Marco; Bonetti, Leonardo

    2016-01-01

    Geometrical and environmental factors in the perception of sacredness, dominance, and attractiveness were assessed by 137 participants in five tests. In the first test, a two-alternative forced-choice paradigm was used to test the perception of sacredness, dominance, and attractiveness in geometr......Geometrical and environmental factors in the perception of sacredness, dominance, and attractiveness were assessed by 137 participants in five tests. In the first test, a two-alternative forced-choice paradigm was used to test the perception of sacredness, dominance, and attractiveness...... in geometrical figures differing in shape, verticality, size, and symmetry. Verticality, symmetry, and convexity were found to be important factors in the perception of sacredness. In the second test, participants had to mark the point inside geometrical surfaces that was perceived as most sacred, dominant....... Geometrical factors in the perception of sacredness, dominance, and attractiveness were largely overlapping....

  20. Sharing Histories-a transformative learning/teaching method to empower community health workers to support health behavior change of mothers.

    Science.gov (United States)

    Altobelli, Laura C

    2017-08-23

    One of the keys to improving health globally is promoting mothers' adoption of healthy home practices for improved nutrition and illness prevention in the first 1000 days of life from conception. Customarily, mothers are taught health messages which, even if simplified, are hard to remember. The challenge is how to promote learning and behavior change of mothers more effectively in low-resource settings where access to health information is poor, educational levels are low, and traditional beliefs are strong. In addressing that challenge, a new learning/teaching method called "Sharing Histories" is in development to improve the performance of female community health workers (CHWs) in promoting mothers' behaviors for maternal, neonatal and child health (MNCH). This method builds self-confidence and empowerment of CHWs in learning sessions that are built on guided sharing of their own memories of childbearing and child care. CHWs can later share histories with the mother, building her trust and empowerment to change. For professional primary health care staff who are not educators, Sharing Histories is simple to learn and use so that the method can be easily incorporated into government health systems and ongoing CHW programs. I present here the Sharing Histories method, describe how it differs from other social and behavior change methods, and discuss selected literature from psychology, communications, and neuroscience that helps to explain how and why this method works as a transformative tool to engage, teach, transform, and empower CHWs to be more effective change agents with other mothers in their communities, thereby contributing to the attainment of the Sustainable Development Goals.

  1. Asymptotic and geometrical quantization

    International Nuclear Information System (INIS)

    Karasev, M.V.; Maslov, V.P.

    1984-01-01

    The main ideas of geometric-, deformation- and asymptotic quantizations are compared. It is shown that, on the one hand, the asymptotic approach is a direct generalization of exact geometric quantization, on the other hand, it generates deformation in multiplication of symbols and Poisson brackets. Besides investigating the general quantization diagram, its applications to the calculation of asymptotics of a series of eigenvalues of operators possessing symmetry groups are considered

  2. Geometric inequalities for black holes

    International Nuclear Information System (INIS)

    Dain, Sergio

    2013-01-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  3. Optical traps with geometric aberrations

    International Nuclear Information System (INIS)

    Roichman, Yael; Waldron, Alex; Gardel, Emily; Grier, David G.

    2006-01-01

    We assess the influence of geometric aberrations on the in-plane performance of optical traps by studying the dynamics of trapped colloidal spheres in deliberately distorted holographic optical tweezers. The lateral stiffness of the traps turns out to be insensitive to moderate amounts of coma, astigmatism, and spherical aberration. Moreover holographic aberration correction enables us to compensate inherent shortcomings in the optical train, thereby adaptively improving its performance. We also demonstrate the effects of geometric aberrations on the intensity profiles of optical vortices, whose readily measured deformations suggest a method for rapidly estimating and correcting geometric aberrations in holographic trapping systems

  4. Geometric inequalities for black holes

    Energy Technology Data Exchange (ETDEWEB)

    Dain, Sergio [Universidad Nacional de Cordoba (Argentina)

    2013-07-01

    Full text: A geometric inequality in General Relativity relates quantities that have both a physical interpretation and a geometrical definition. It is well known that the parameters that characterize the Kerr-Newman black hole satisfy several important geometric inequalities. Remarkably enough, some of these inequalities also hold for dynamical black holes. This kind of inequalities, which are valid in the dynamical and strong field regime, play an important role in the characterization of the gravitational collapse. They are closed related with the cosmic censorship conjecture. In this talk I will review recent results in this subject. (author)

  5. Transformative Learning in Human Resource Development: Successes in Scholarly Practitioner Applications--Conflict Management, Discursive Processes in Diversity and Leadership Development

    Science.gov (United States)

    Fisher-Yoshida, Beth; Geller, Kathy D.; Wasserman, Ilene C.

    2005-01-01

    Today's complex global environment calls for leaders to be agile decision makers, engage in critical self-reflection, integrate reflection with action, and partner with those who are different in significant ways. These capabilities and skills are the core qualities of transformative learning. This paper weaves research findings that explore…

  6. Classical geometry Euclidean, transformational, inversive, and projective

    CERN Document Server

    Leonard, I E; Liu, A C F; Tokarsky, G W

    2014-01-01

    Features the classical themes of geometry with plentiful applications in mathematics, education, engineering, and science Accessible and reader-friendly, Classical Geometry: Euclidean, Transformational, Inversive, and Projective introduces readers to a valuable discipline that is crucial to understanding bothspatial relationships and logical reasoning. Focusing on the development of geometric intuitionwhile avoiding the axiomatic method, a problem solving approach is encouraged throughout. The book is strategically divided into three sections: Part One focuses on Euclidean geometry, which p

  7. A numerical analysis of antithetic variates in Monte Carlo radiation transport with geometrical surface splitting

    International Nuclear Information System (INIS)

    Sarkar, P.K.; Prasad, M.A.

    1989-01-01

    A numerical study for effective implementation of the antithetic variates technique with geometric splitting/Russian roulette in Monte Carlo radiation transport calculations is presented. The study is based on the theory of Monte Carlo errors where a set of coupled integral equations are solved for the first and second moments of the score and for the expected number of flights per particle history. Numerical results are obtained for particle transmission through an infinite homogeneous slab shield composed of an isotropically scattering medium. Two types of antithetic transformations are considered. The results indicate that the antithetic transformations always lead to reduction in variance and increase in efficiency provided optimal antithetic parameters are chosen. A substantial gain in efficiency is obtained by incorporating antithetic transformations in rule of thumb splitting. The advantage gained for thick slabs (∼20 mfp) with low scattering probability (0.1-0.5) is attractively large . (author). 27 refs., 9 tabs

  8. Module Ten: Transformers; Basic Electricity and Electronics Individualized Learning System.

    Science.gov (United States)

    Bureau of Naval Personnel, Washington, DC.

    The module introduces a very important electrical device, the transformer. The module is divided into six lessons: transformer construction, transformer theory and operation, turns and voltage ratios, power and current, transformer efficiency, and semiconductor rectifiers. Each lesson consists of an overview, a list of study resources, lesson…

  9. Geometric phases for nonlinear coherent and squeezed states

    International Nuclear Information System (INIS)

    Yang Dabao; Chen Ying; Chen Jingling; Zhang Fulin

    2011-01-01

    The geometric phases for standard coherent states which are widely used in quantum optics have attracted considerable attention. Nevertheless, few physicists consider the counterparts of nonlinear coherent states, which are useful in the description of the motion of a trapped ion. In this paper, the non-unitary and non-cyclic geometric phases for two nonlinear coherent and one squeezed states are formulated, respectively. Moreover, some of their common properties are discussed, such as gauge invariance, non-locality and nonlinear effects. The nonlinear functions have dramatic impacts on the evolution of the corresponding geometric phases. They speed the evolution up or down. So this property may have an application in controlling or measuring geometric phase. For the squeezed case, when the squeezed parameter r → ∞, the limiting value of the geometric phase is also determined by a nonlinear function at a given time and angular velocity. In addition, the geometric phases for standard coherent and squeezed states are obtained under a particular condition. When the time evolution undergoes a period, their corresponding cyclic geometric phases are achieved as well. And the distinction between the geometric phases of the two coherent states may be regarded as a geometric criterion.

  10. Entropy Measures as Geometrical Tools in the Study of Cosmology

    Directory of Open Access Journals (Sweden)

    Gilbert Weinstein

    2017-12-01

    Full Text Available Classical chaos is often characterized as exponential divergence of nearby trajectories. In many interesting cases these trajectories can be identified with geodesic curves. We define here the entropy by S = ln χ ( x with χ ( x being the distance between two nearby geodesics. We derive an equation for the entropy, which by transformation to a Riccati-type equation becomes similar to the Jacobi equation. We further show that the geodesic equation for a null geodesic in a double-warped spacetime leads to the same entropy equation. By applying a Robertson–Walker metric for a flat three-dimensional Euclidean space expanding as a function of time, we again reach the entropy equation stressing the connection between the chosen entropy measure and time. We finally turn to the Raychaudhuri equation for expansion, which also is a Riccati equation similar to the transformed entropy equation. Those Riccati-type equations have solutions of the same form as the Jacobi equation. The Raychaudhuri equation can be transformed to a harmonic oscillator equation, and it has been shown that the geodesic deviation equation of Jacobi is essentially equivalent to that of a harmonic oscillator. The Raychaudhuri equations are strong geometrical tools in the study of general relativity and cosmology. We suggest a refined entropy measure applicable in cosmology and defined by the average deviation of the geodesics in a congruence.

  11. Improved Fourier-transform profilometry

    International Nuclear Information System (INIS)

    Mao Xianfu; Chen Wenjing; Su Xianyu

    2007-01-01

    An improved optical geometry of the projected-fringe profilometry technique, in which the exit pupil of the projecting lens and the entrance pupil of the imaging lens are neither at the same height above the reference plane nor coplanar, is discussed and used in Fourier-transform profilometry. Furthermore, an improved fringe-pattern description and phase-height mapping formula based on the improved geometrical generalization is deduced. Employing the new optical geometry, it is easier for us to obtain the full-field fringe by moving either the projector or the imaging device. Therefore the new method offers a flexible way to obtain reliable height distribution of a measured object

  12. Regular Polygons and Geometric Series.

    Science.gov (United States)

    Jarrett, Joscelyn A.

    1982-01-01

    Examples of some geometric illustrations of limits are presented. It is believed the limit concept is among the most important topics in mathematics, yet many students do not have good intuitive feelings for the concept, since it is often taught very abstractly. Geometric examples are suggested as meaningful tools. (MP)

  13. On Becoming a Global Citizen: Transformative Learning Through Global Health Experiences.

    Science.gov (United States)

    Litzelman, Debra K; Gardner, Adrian; Einterz, Robert M; Owiti, Philip; Wambui, Charity; Huskins, Jordan C; Schmitt-Wendholt, Kathleen M; Stone, Geren S; Ayuo, Paul O; Inui, Thomas S; Umoren, Rachel A

    Globalization has increased the demand for international experiences in medical education. International experiences improve medical knowledge, clinical skills, and self-development; influence career objectives; and provide insights on ethical and societal issues. However, global health rotations can end up being no more than tourism if not structured to foster personal transformation and global citizenship. We conducted a qualitative assessment of trainee-reported critical incidents to more deeply understand the impact of our global health experience on trainees. A cross-sectional survey was administered to trainees who had participated in a 2-month elective in Kenya from January 1989 to May 2013. We report the results of a qualitative assessment of the critical incident reflections participants (n = 137) entered in response to the prompt, "Write about one of your most memorable experiences and explain why you chose to describe this particular one." Qualitative analyses were conducted using thematic analysis and crystallization immersion analytic methods based on the principles of grounded theory, employing a constructivists' research paradigm. Four major themes emerged. These themes were Opening Oneself to a Broader World View; Impact of Suffering and Death; Life-Changing Experiences; and Commitment to Care for the Medically Underserved. Circumstances that learners encounter in the resource-scarce environment in Kenya are eye-opening and life-changing. When exposed to these frame-shifting circumstances, students elaborate on or transform existing points of view. These emotionally disruptive experiences in an international health setting allowed students to enter a transformational learning process with a global mind. Students can see the world as an interdependent society and develop the capacity to advance both their enlightened self-interest and the interest of people elsewhere in the world as they mature as global citizens. Medical schools are encouraged to

  14. Geometric Invariants and Object Recognition.

    Science.gov (United States)

    1992-08-01

    University of Chicago Press. Maybank , S.J. [1992], "The Projection of Two Non-coplanar Conics", in Geometric Invariance in Machine Vision, eds. J.L...J.L. Mundy and A. Zisserman, MIT Press, Cambridge, MA. Mundy, J.L., Kapur, .. , Maybank , S.J., and Quan, L. [1992a] "Geometric Inter- pretation of

  15. Geometric phases and quantum computation

    International Nuclear Information System (INIS)

    Vedral, V.

    2005-01-01

    Full text: In my lectures I will talk about the notion of the geometric phase and explain its relevance for both fundamental quantum mechanics as well as quantum computation. The phase will be at first introduced via the idea of Pancharatnam which involves interference of three or more light beams. This notion will then be generalized to the evolving quantum systems. I will discuss both pure and mixed states as well as unitary and non-unitary evolutions. I will also show how the concept of the vacuum induced geometric phase arises in quantum optics. A simple measurement scheme involving a Mach Zehnder interferometer will be presented and will be used to illustrate all the concepts in the lecture. Finally, I will expose a simple generalization of the geometric phase to evolving degenerate states. This will be seen to lead to the possibility of universal quantum computation using geometric effects only. Moreover, this contains a promise of intrinsically fault tolerant quantum information processing, whose prospects will be outlined at the end of the lecture. (author)

  16. Guide to Geometric Algebra in Practice

    CERN Document Server

    Dorst, Leo

    2011-01-01

    This highly practical "Guide to Geometric Algebra in Practice" reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. This title: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the d

  17. Geometric Phases for Mixed States in Trapped Ions

    International Nuclear Information System (INIS)

    Lu Hongxia

    2006-01-01

    The generalization of geometric phase from the pure states to the mixed states may have potential applications in constructing geometric quantum gates. We here investigate the mixed state geometric phases and visibilities of the trapped ion system in both non-degenerate and degenerate cases. In the proposed quantum system, the geometric phases are determined by the evolution time, the initial states of trapped ions, and the initial states of photons. Moreover, special periods are gained under which the geometric phases do not change with the initial states changing of photon parts in both non-degenerate and degenerate cases. The high detection efficiency in the ion trap system implies that the mixed state geometric phases proposed here can be easily tested.

  18. Surface current equilibria from a geometric point of view

    International Nuclear Information System (INIS)

    Kaiser, R.; Salat, A.

    1993-04-01

    This paper addresses the inverse problem of the existence of surface current MHD equilibria in toroidal geometry with vanishing magnetic field inside. Inverse means that the plasma-vacuum interface rather than the external wall or conductors are given and the latter remain to be determined. This makes a reformulation of the problem possible in geometric terms: What toroidal surfaces with analytic parameterization allow a simple analytic covering by geodesics? If such a covering by geodesics (field lines) exists, their orthogonal trajectories (current lines) also form a simple covering and are described by a function satisfying a nonlinear partial differential equation of the Hamilton-Jacobi type whose coefficients are combinations of the metric elements of the surface. All known equilibria - equilibria with zero and infinite rotational transform and the symmetric ones in the case of finite rotational transform - turn out to be solutions of separable cases of that equation and allow a unified description if the toroidal surface is parametrized in the moving trihedral associated with a closed curve. Analogously to volume current equilibria, the only continuous symmetries compatible with separability are plane, helical and axial symmetry. In the nonseparable case numerical evidence is presented for cases with chaotic behaviour of geodesics, thus restricting possible equilibria for these surfaces. For weak deviation from axisymmetry KAM-type behaviour is observed, i.e. destruction of geodesic coverings with a low rational rotational transform and preservation of those with irrational rotational transform. A previous attempt to establish three-dimensional surface current equilibria on the basis of the KAM theorem is rejected as incomplete, and a complete proof of the existence of equilibria in the weakly nonaxisymmetric case, based on the twist theorem for mappings, is given. Finally, for a certain class of strong deviations from axisymmetry an analytic criterion is

  19. Exact Solutions for Einstein's Hyperbolic Geometric Flow

    International Nuclear Information System (INIS)

    He Chunlei

    2008-01-01

    In this paper we investigate the Einstein's hyperbolic geometric flow and obtain some interesting exact solutions for this kind of flow. Many interesting properties of these exact solutions have also been analyzed and we believe that these properties of Einstein's hyperbolic geometric flow are very helpful to understanding the Einstein equations and the hyperbolic geometric flow

  20. Impact of data transformation and preprocessing in supervised ...

    African Journals Online (AJOL)

    Impact of data transformation and preprocessing in supervised learning ... Nowadays, the ideas of integrating machine learning techniques in power system has ... The proposed algorithm used Python-based split train and k-fold model ...

  1. DOA Estimation of Cylindrical Conformal Array Based on Geometric Algebra

    Directory of Open Access Journals (Sweden)

    Minjie Wu

    2016-01-01

    Full Text Available Due to the variable curvature of the conformal carrier, the pattern of each element has a different direction. The traditional method of analyzing the conformal array is to use the Euler rotation angle and its matrix representation. However, it is computationally demanding especially for irregular array structures. In this paper, we present a novel algorithm by combining the geometric algebra with Multiple Signal Classification (MUSIC, termed as GA-MUSIC, to solve the direction of arrival (DOA for cylindrical conformal array. And on this basis, we derive the pattern and array manifold. Compared with the existing algorithms, our proposed one avoids the cumbersome matrix transformations and largely decreases the computational complexity. The simulation results verify the effectiveness of the proposed method.

  2. Feature Extraction of Weld Defectology in Digital Image of Radiographic Film Using Geometric Invariant Moment and Statistical Texture

    International Nuclear Information System (INIS)

    Muhtadan

    2009-01-01

    The purpose of this research is to perform feature extraction in weld defect of digital image of radiographic film using geometric invariant moment and statistical texture method. Feature extraction values can be use as values that used to classify and pattern recognition on interpretation of weld defect in digital image of radiographic film by computer automatically. Weld defectology type that used in this research are longitudinal crack, transversal crack, distributed porosity, clustered porosity, wormhole, and no defect. Research methodology on this research are program development to read digital image, then performing image cropping to localize weld position, and then applying geometric invariant moment and statistical texture formulas to find feature values. The result of this research are feature extraction values that have tested with RST (rotation, scale, transformation) treatment and yield moment values that more invariant there are ϕ 3 , ϕ 4 , ϕ 5 from geometric invariant moment method. Feature values from statistical texture that are average intensity, average contrast, smoothness, 3 rd moment, uniformity, and entropy, they used as feature extraction values. (author)

  3. Geometrical method of decoupling

    Directory of Open Access Journals (Sweden)

    C. Baumgarten

    2012-12-01

    Full Text Available The computation of tunes and matched beam distributions are essential steps in the analysis of circular accelerators. If certain symmetries—like midplane symmetry—are present, then it is possible to treat the betatron motion in the horizontal, the vertical plane, and (under certain circumstances the longitudinal motion separately using the well-known Courant-Snyder theory, or to apply transformations that have been described previously as, for instance, the method of Teng and Edwards. In a preceding paper, it has been shown that this method requires a modification for the treatment of isochronous cyclotrons with non-negligible space charge forces. Unfortunately, the modification was numerically not as stable as desired and it was still unclear, if the extension would work for all conceivable cases. Hence, a systematic derivation of a more general treatment seemed advisable. In a second paper, the author suggested the use of real Dirac matrices as basic tools for coupled linear optics and gave a straightforward recipe to decouple positive definite Hamiltonians with imaginary eigenvalues. In this article this method is generalized and simplified in order to formulate a straightforward method to decouple Hamiltonian matrices with eigenvalues on the real and the imaginary axis. The decoupling of symplectic matrices which are exponentials of such Hamiltonian matrices can be deduced from this in a few steps. It is shown that this algebraic decoupling is closely related to a geometric “decoupling” by the orthogonalization of the vectors E[over →], B[over →], and P[over →], which were introduced with the so-called “electromechanical equivalence.” A mathematical analysis of the problem can be traced down to the task of finding a structure-preserving block diagonalization of symplectic or Hamiltonian matrices. Structure preservation means in this context that the (sequence of transformations must be symplectic and hence canonical. When

  4. Geometric control theory and sub-Riemannian geometry

    CERN Document Server

    Boscain, Ugo; Gauthier, Jean-Paul; Sarychev, Andrey; Sigalotti, Mario

    2014-01-01

    This volume presents recent advances in the interaction between Geometric Control Theory and sub-Riemannian geometry. On the one hand, Geometric Control Theory used the differential geometric and Lie algebraic language for studying controllability, motion planning, stabilizability and optimality for control systems. The geometric approach turned out to be fruitful in applications to robotics, vision modeling, mathematical physics etc. On the other hand, Riemannian geometry and its generalizations, such as  sub-Riemannian, Finslerian  geometry etc., have been actively adopting methods developed in the scope of geometric control. Application of these methods  has led to important results regarding geometry of sub-Riemannian spaces, regularity of sub-Riemannian distances, properties of the group  of diffeomorphisms of sub-Riemannian manifolds, local geometry and equivalence of distributions and sub-Riemannian structures, regularity of the Hausdorff volume.

  5. Chew-Low equations as Cremoma transformations

    International Nuclear Information System (INIS)

    Rerikh, K.V.

    1982-01-01

    The Chew-Low equations for the p-wave pion-nucleon scattering with the crossing-symmetry matrix (3x3) are investigated in their well-known formulation as a system of nonlinear difference equations. These equations interpreted as geometrical transformations are shown to be a special case of the Cremona transformaions. Using the properties of the Cremona transformations we obtain the general 3-parametric functional equation on invariant algebraic and nonalgebraic curves in the space solutions of the Chew- Low equations. It is proved that there exists only one invariant algebraic curve, the parabola corresponding to the well-known solution. Analysis of the general functional equation on invariant nonalgebraic curves makes it possible to select in addition to this parabola 3 invariant forms defining implicitly 3 nonalgebraic curves and to concretize for them the general equation by means of fixing the parameters. From the transformational properties of the invariant forms with respect to the Cremona transformations, there follows an important result that the ration of these forms in proper powers is the general integral of the nonlinear system of the Chew-Low equations, which is an even antiperiodic function. The structure of the second general integral is given and the functional equations which determinne this integral are presented [ru

  6. The lattice correspondence and diffusional-displacive phase transformations

    International Nuclear Information System (INIS)

    Nie, J.F.; Muddle, B.C.

    1999-01-01

    When a coherent interface is maintained between parent and product phases in a solid state phase transformation, then it is always possible to define a lattice correspondence across this interface and describe the structural change by a homogeneous lattice deformation, S T . For certain transformations, this strain is an invariant plane strain, with the invariant plane defining the planar, coherent interface between parent and product. This group includes the familiar martensitic face-centred cubic to close-packed hexagonal transformation in, for example, cobalt-based alloys, but it is demonstrated here that it also contains transformations giving rise to a broad range of plate-shaped, diffusional precipitation products. For many such transformation products, the transformation strain has a significant shear component and the accommodation of shear strain energy is potentially an important, and often overlooked, factor in both the nucleation and growth of such products. More commonly S T is not an invariant plane strain and, if a planar interface is to be preserved between parent and product, it is necessary to combine S T with a lattice invariant strain to allow a partially-coherent interface that is macroscopically invariant. It is demonstrated that there are diffusional transformation products which also have the geometric and crystallographic features of both of the common forms of partially-coherent martensitic products

  7. The relationship between internationalisation, creativity and transformation: A case study of higher education in Hungary

    Directory of Open Access Journals (Sweden)

    Melanie K. Smith

    2017-09-01

    Full Text Available The main objective of this article is to explore the relationship between internationalisation, creativity and transformation in the context of higher education. It is argued in academic theory that the process of internationalisation in higher education has two pillars: transformational learning and creative development, and that creativity is an integral part of transformational learning. To explore this relationship further, the authors draw on primary research undertaken in the context of a higher education institution in Budapest, Hungary. A Delphi study with senior academic staff and a focus group with Hungarian and international students were included in the research. Questions were asked which aimed to determine whether creativity is indeed an integral part of transformational learning, and whether creativity and transformation are the most important elements of internationalisation. Staff and students recognise the creative and transformative potential of internationalisation, but they also identified several challenges. These include encouraging students to go beyond instrumental approaches to learning, providing staff with the relevant training and support, changing the culture of institutions and overcoming the lack of flexibility in existing national education structures. Overall, the research findings reinforced theoretical perspectives, which propose creative thinking, cooperative and communicative learning, project-based and problem-solving activities as some of the main tools in the process of transformational learning and prerequisites for internationalisation.

  8. Copy-move forgery detection utilizing Fourier-Mellin transform log-polar features

    Science.gov (United States)

    Dixit, Rahul; Naskar, Ruchira

    2018-03-01

    In this work, we address the problem of region duplication or copy-move forgery detection in digital images, along with detection of geometric transforms (rotation and rescale) and postprocessing-based attacks (noise, blur, and brightness adjustment). Detection of region duplication, following conventional techniques, becomes more challenging when an intelligent adversary brings about such additional transforms on the duplicated regions. In this work, we utilize Fourier-Mellin transform with log-polar mapping and a color-based segmentation technique using K-means clustering, which help us to achieve invariance to all the above forms of attacks in copy-move forgery detection of digital images. Our experimental results prove the efficiency of the proposed method and its superiority to the current state of the art.

  9. SOME PROPERTIES OF GEOMETRIC DEA MODELS

    Directory of Open Access Journals (Sweden)

    Ozren Despić

    2013-02-01

    Full Text Available Some specific geometric data envelopment analysis (DEA models are well known to the researchers in DEA through so-called multiplicative or log-linear efficiency models. Valuable properties of these models were noted by several authors but the models still remain somewhat obscure and rarely used in practice. The purpose of this paper is to show from a mathematical perspective where the geometric DEA fits in relation to the classical DEA, and to provide a brief overview of some benefits in using geometric DEA in practice of decision making and/or efficiency measurement.

  10. Lectures on geometrical properties of nuclei

    International Nuclear Information System (INIS)

    Myers, W.D.

    1975-11-01

    Material concerning the geometrical properties of nuclei is drawn from a number of different sources. The leptodermous nature of nuclear density distributions and potential wells is used to draw together the various geometrical properties of these systems and to provide a unified means for their description. Extensive use is made of expansions of radial properties in terms of the surface diffuseness. A strong case is made for the use of convolution as a geometrical ansatz for generating diffuse surface distributions because of the number of simplifications that arise which are of practical importance. 7 figures

  11. A Convolution Tree with Deconvolution Branches: Exploiting Geometric Relationships for Single Shot Keypoint Detection

    OpenAIRE

    Kumar, Amit; Chellappa, Rama

    2017-01-01

    Recently, Deep Convolution Networks (DCNNs) have been applied to the task of face alignment and have shown potential for learning improved feature representations. Although deeper layers can capture abstract concepts like pose, it is difficult to capture the geometric relationships among the keypoints in DCNNs. In this paper, we propose a novel convolution-deconvolution network for facial keypoint detection. Our model predicts the 2D locations of the keypoints and their individual visibility ...

  12. FMRI evidence of 'mirror' responses to geometric shapes.

    Science.gov (United States)

    Press, Clare; Catmur, Caroline; Cook, Richard; Widmann, Hannah; Heyes, Cecilia; Bird, Geoffrey

    2012-01-01

    Mirror neurons may be a genetic adaptation for social interaction. Alternatively, the associative hypothesis proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control.

  13. Differential geometric structures

    CERN Document Server

    Poor, Walter A

    2007-01-01

    This introductory text defines geometric structure by specifying parallel transport in an appropriate fiber bundle and focusing on simplest cases of linear parallel transport in a vector bundle. 1981 edition.

  14. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    Science.gov (United States)

    Bucksch, Alexander; Atta-Boateng, Acheampong; Azihou, Akomian F.; Battogtokh, Dorjsuren; Baumgartner, Aly; Binder, Brad M.; Braybrook, Siobhan A.; Chang, Cynthia; Coneva, Viktoirya; DeWitt, Thomas J.; Fletcher, Alexander G.; Gehan, Malia A.; Diaz-Martinez, Diego Hernan; Hong, Lilan; Iyer-Pascuzzi, Anjali S.; Klein, Laura L.; Leiboff, Samuel; Li, Mao; Lynch, Jonathan P.; Maizel, Alexis; Maloof, Julin N.; Markelz, R. J. Cody; Martinez, Ciera C.; Miller, Laura A.; Mio, Washington; Palubicki, Wojtek; Poorter, Hendrik; Pradal, Christophe; Price, Charles A.; Puttonen, Eetu; Reese, John B.; Rellán-Álvarez, Rubén; Spalding, Edgar P.; Sparks, Erin E.; Topp, Christopher N.; Williams, Joseph H.; Chitwood, Daniel H.

    2017-01-01

    The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics. PMID:28659934

  15. Morphological Plant Modeling: Unleashing Geometric and Topological Potential within the Plant Sciences

    Directory of Open Access Journals (Sweden)

    Alexander Bucksch

    2017-06-01

    Full Text Available The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.

  16. Geometrical optics and the diffraction phenomenon

    International Nuclear Information System (INIS)

    Timofeev, Aleksandr V

    2005-01-01

    This note outlines the principles of the geometrical optics of inhomogeneous waves whose description necessitates the use of complex values of the wave vector. Generalizing geometrical optics to inhomogeneous waves permits including in its scope the analysis of the diffraction phenomenon. (methodological notes)

  17. Transformation Model with Constraints for High-Accuracy of 2D-3D Building Registration in Aerial Imagery

    Directory of Open Access Journals (Sweden)

    Guoqing Zhou

    2016-06-01

    Full Text Available This paper proposes a novel rigorous transformation model for 2D-3D registration to address the difficult problem of obtaining a sufficient number of well-distributed ground control points (GCPs in urban areas with tall buildings. The proposed model applies two types of geometric constraints, co-planarity and perpendicularity, to the conventional photogrammetric collinearity model. Both types of geometric information are directly obtained from geometric building structures, with which the geometric constraints are automatically created and combined into the conventional transformation model. A test field located in downtown Denver, Colorado, is used to evaluate the accuracy and reliability of the proposed method. The comparison analysis of the accuracy achieved by the proposed method and the conventional method is conducted. Experimental results demonstrated that: (1 the theoretical accuracy of the solved registration parameters can reach 0.47 pixels, whereas the other methods reach only 1.23 and 1.09 pixels; (2 the RMS values of 2D-3D registration achieved by the proposed model are only two pixels along the x and y directions, much smaller than the RMS values of the conventional model, which are approximately 10 pixels along the x and y directions. These results demonstrate that the proposed method is able to significantly improve the accuracy of 2D-3D registration with much fewer GCPs in urban areas with tall buildings.

  18. Geometric U-folds in four dimensions

    Science.gov (United States)

    Lazaroiu, C. I.; Shahbazi, C. S.

    2018-01-01

    We describe a general construction of geometric U-folds compatible with a non-trivial extension of the global formulation of four-dimensional extended supergravity on a differentiable spin manifold. The topology of geometric U-folds depends on certain flat fiber bundles which encode how supergravity fields are globally glued together. We show that smooth non-trivial U-folds of this type can exist only in theories where both the scalar and space-time manifolds have non-trivial fundamental group and in addition the scalar map of the solution is homotopically non-trivial. Consistency with string theory requires smooth geometric U-folds to be glued using subgroups of the effective discrete U-duality group, implying that the fundamental group of the scalar manifold of such solutions must be a subgroup of the latter. We construct simple examples of geometric U-folds in a generalization of the axion-dilaton model of \

  19. Educational research on everyday life, education and their transformations in globalized contexts

    DEFF Research Database (Denmark)

    Krejsler, John B.; Kryger, Niels

    2013-01-01

    Educational research on everyday life, education and their transformations in globalized contexts Not only formal education but everyday life inside as well as outside institutions have always been central sites of learning for children and adults. However, as social relations in everyday life...... are staged ever more as pedagogical and educational relations, practices of learning undergo transformations. The concept of everyday life is changing as daily routines and associated practices of learning are being transformed through processes caused by virtualization (social media, cell phones, lap...... by the four keynote-presenters at the NERA Congress in Copenhagen that took place in March 2012. We are thus proud to be able to present a special issue where senior scholars from India, the United States, Germany and Denmark: Educational research on everyday life, education and their transformations...

  20. The digital geometric phase technique applied to the deformation evaluation of MEMS devices

    International Nuclear Information System (INIS)

    Liu, Z W; Xie, H M; Gu, C Z; Meng, Y G

    2009-01-01

    Quantitative evaluation of the structure deformation of microfabricated electromechanical systems is of importance for the design and functional control of microsystems. In this investigation, a novel digital geometric phase technique was developed to meet the deformation evaluation requirement of microelectromechanical systems (MEMS). The technique is performed on the basis of regular artificial lattices, instead of a natural atom lattice. The regular artificial lattices with a pitch ranging from micrometer to nanometer will be directly fabricated on the measured surface of MEMS devices by using a focused ion beam (FIB). Phase information can be obtained from the Bragg filtered images after fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) of the scanning electronic microscope (SEM) images. Then the in-plane displacement field and the local strain field related to the phase information will be evaluated. The obtained results show that the technique can be well applied to deformation measurement with nanometer sensitivity and stiction force estimation of a MEMS device

  1. Transformation optics with artificial Riemann sheets

    Science.gov (United States)

    Xu, Lin; Chen, Huanyang

    2013-11-01

    The two original versions of ‘invisibility’ cloaks (Leonhardt 2006 Science 312 1777-80 and Pendry et al 2006 Science 312 1780-2) show perfect cloaking but require unphysical singularities in material properties. A non-Euclidean version of cloaking (Leonhardt 2009 Science 323 110-12) was later presented to address these problems, using a very complicated non-Euclidean geometry. In this work, we combine the two original approaches to transformation optics into a more general concept: transformation optics with artificial Riemann sheets. Our method is straightforward and can be utilized to design new kinds of cloaks that can work not only in the realm of geometric optics but also using wave optics. The physics behind this design is similar to that of the conformal cloak for waves. The resonances in the interior region make the phase delay disappear and induce the cloaking effect. Numerical simulations confirm our theoretical results.

  2. Forward error correction based on algebraic-geometric theory

    CERN Document Server

    A Alzubi, Jafar; M Chen, Thomas

    2014-01-01

    This book covers the design, construction, and implementation of algebraic-geometric codes from Hermitian curves. Matlab simulations of algebraic-geometric codes and Reed-Solomon codes compare their bit error rate using different modulation schemes over additive white Gaussian noise channel model. Simulation results of Algebraic-geometric codes bit error rate performance using quadrature amplitude modulation (16QAM and 64QAM) are presented for the first time and shown to outperform Reed-Solomon codes at various code rates and channel models. The book proposes algebraic-geometric block turbo codes. It also presents simulation results that show an improved bit error rate performance at the cost of high system complexity due to using algebraic-geometric codes and Chase-Pyndiah’s algorithm simultaneously. The book proposes algebraic-geometric irregular block turbo codes (AG-IBTC) to reduce system complexity. Simulation results for AG-IBTCs are presented for the first time.

  3. Fusion of geometric and texture features for finger knuckle surface recognition

    Directory of Open Access Journals (Sweden)

    K. Usha

    2016-03-01

    Full Text Available Hand-based biometrics plays a significant role in establishing security for real-time environments involving human interaction and is found to be more successful in terms of high speed and accuracy. This paper investigates on an integrated approach for personal authentication using Finger Back Knuckle Surface (FBKS based on two methodologies viz., Angular Geometric Analysis based Feature Extraction Method (AGFEM and Contourlet Transform based Feature Extraction Method (CTFEM. Based on these methods, this personal authentication system simultaneously extracts shape oriented feature information and textural pattern information of FBKS for authenticating an individual. Furthermore, the proposed geometric and textural analysis methods extract feature information from both proximal phalanx and distal phalanx knuckle regions (FBKS, while the existing works of the literature concentrate only on the features of proximal phalanx knuckle region. The finger joint region found nearer to the tip of the finger is called distal phalanx region of FBKS, which is a unique feature and has greater potentiality toward identification. Extensive experiments conducted using newly created database with 5400 FBKS images and the obtained results infer that the integration of shape oriented features with texture feature information yields excellent accuracy rate of 99.12% with lowest equal error rate of 1.04%.

  4. Learning to Learn: towards a Relational and Transformational Model of Learning for Improved Integrated Care Delivery

    Directory of Open Access Journals (Sweden)

    John Diamond

    2013-06-01

    Full Text Available Health and social care systems are implementing fundamental changes to organizational structures and work practices in an effort to achieve integrated care. While some integration initiatives have produced positive outcomes, many have not. We reframe the concept of integration as a learning process fueled by knowledge exchange across diverse professional and organizational communities. We thus focus on the cognitive and social dynamics of learning in complex adaptive systems, and on learning behaviours and conditions that foster collective learning and improved collaboration. We suggest that the capacity to learn how to learn shapes the extent to which diverse professional groups effectively exchange knowledge and self-organize for integrated care delivery.

  5. Refined geometric transition and qq-characters

    Science.gov (United States)

    Kimura, Taro; Mori, Hironori; Sugimoto, Yuji

    2018-01-01

    We show the refinement of the prescription for the geometric transition in the refined topological string theory and, as its application, discuss a possibility to describe qq-characters from the string theory point of view. Though the suggested way to operate the refined geometric transition has passed through several checks, it is additionally found in this paper that the presence of the preferred direction brings a nontrivial effect. We provide the modified formula involving this point. We then apply our prescription of the refined geometric transition to proposing the stringy description of doubly quantized Seiberg-Witten curves called qq-characters in certain cases.

  6. BOOK REVIEW: The Geometric Phase in Quantum Systems

    Science.gov (United States)

    Pascazio, S.

    2003-12-01

    inexperienced in such matters and needs to look at details. This book is addressed to graduate physics and chemistry students and was written thinking of students. However, I would recommend it also to young and mature physicists, even those who are already `into' the subject. It is a comprehensive work, jointly written by five researchers. After a simple introduction to the subject, the book gradually provides deeper concepts, more advanced theory and finally an interesting introduction and explanation of recent experiments. For its multidisciplinary features, this work could not have been written by one single author. The collaborative effort is undoubtedly one of its most interesting qualities. I would definitely recommend it to anyone who wants to learn more on the geometric phase, a topic that is both beautiful and intruiguing.

  7. Transformations Encouraged by Story Telling: Middle Eastern Adult Learners' Experiences Abroad

    Science.gov (United States)

    Nguyen, Shelbee R.

    2014-01-01

    Professionals in the field of adult and higher education recognize the path into any learning community is riddled with complexities of life exigencies. This author states that he found "light at the end of the tunnel" in an experiential, transformative study abroad course in Spanish language and culture. Transformative learning abroad…

  8. Optimization of the geometrical stability in square ring laser gyroscopes

    International Nuclear Information System (INIS)

    Santagata, R; Beghi, A; Cuccato, D; Belfi, J; Beverini, N; Virgilio, A Di; Ortolan, A; Porzio, A; Solimeno, S

    2015-01-01

    Ultra-sensitive ring laser gyroscopes are regarded as potential detectors of the general relativistic frame-dragging effect due to the rotation of the Earth. Our project for this goal is called GINGER (gyroscopes in general relativity), and consists of a ground-based triaxial array of ring lasers aimed at measuring the rotation rate of the Earth with an accuracy of 10 −14 rad s −1 . Such an ambitious goal is now within reach, as large-area ring lasers are very close to the required sensitivity and stability. However, demanding constraints on the geometrical stability of the optical path of the laser inside the ring cavity are required. Thus, we have begun a detailed study of the geometry of an optical cavity in order to find a control strategy for its geometry that could meet the specifications of the GINGER project. As the cavity perimeter has a stationary point for the square configuration, we identify a set of transformations on the mirror positions that allows us to adjust the laser beam steering to the shape of a square. We show that the geometrical stability of a square cavity strongly increases by implementing a suitable system to measure the mirror distances, and that the geometry stabilization can be achieved by measuring the absolute lengths of the two diagonals and the perimeter of the ring. (paper)

  9. Geometrical aspects of quantum spaces

    International Nuclear Information System (INIS)

    Ho, P.M.

    1996-01-01

    Various geometrical aspects of quantum spaces are presented showing the possibility of building physics on quantum spaces. In the first chapter the authors give the motivations for studying noncommutative geometry and also review the definition of a Hopf algebra and some general features of the differential geometry on quantum groups and quantum planes. In Chapter 2 and Chapter 3 the noncommutative version of differential calculus, integration and complex structure are established for the quantum sphere S 1 2 and the quantum complex projective space CP q (N), on which there are quantum group symmetries that are represented nonlinearly, and are respected by all the aforementioned structures. The braiding of S q 2 and CP q (N) is also described. In Chapter 4 the quantum projective geometry over the quantum projective space CP q (N) is developed. Collinearity conditions, coplanarity conditions, intersections and anharmonic ratios is described. In Chapter 5 an algebraic formulation of Reimannian geometry on quantum spaces is presented where Riemannian metric, distance, Laplacian, connection, and curvature have their quantum counterparts. This attempt is also extended to complex manifolds. Examples include the quantum sphere, the complex quantum projective space and the two-sheeted space. The quantum group of general coordinate transformations on some quantum spaces is also given

  10. The perception of geometrical structure from congruence

    Science.gov (United States)

    Lappin, Joseph S.; Wason, Thomas D.

    1989-01-01

    The principle function of vision is to measure the environment. As demonstrated by the coordination of motor actions with the positions and trajectories of moving objects in cluttered environments and by rapid recognition of solid objects in varying contexts from changing perspectives, vision provides real-time information about the geometrical structure and location of environmental objects and events. The geometric information provided by 2-D spatial displays is examined. It is proposed that the geometry of this information is best understood not within the traditional framework of perspective trigonometry, but in terms of the structure of qualitative relations defined by congruences among intrinsic geometric relations in images of surfaces. The basic concepts of this geometrical theory are outlined.

  11. Transforming Children's Health Spaces into Learning Places

    Science.gov (United States)

    Nisselle, Amy; Green, Julie; Scrimshaw, Chantel

    2011-01-01

    Purpose: Chronic health conditions can cause children extended school absences, creating significant barriers for continued education. Out-of-school learning environments, such as hospitals, provide opportunities to maintain children's learning identities during school absences. This paper seeks to present an example of hospital-based teaching and…

  12. From the geometric quantization to conformal field theory

    International Nuclear Information System (INIS)

    Alekseev, A.; Shatashvili, S.

    1990-01-01

    Investigation of 2d conformal field theory in terms of geometric quantization is given. We quantize the so-called model space of the compact Lie group, Virasoro group and Kac-Moody group. In particular, we give a geometrical interpretation of the Virasoro discrete series and explain that this type of geometric quantization reproduces the chiral part of CFT (minimal models, 2d-gravity, WZNW theory). In the appendix we discuss the relation between classical (constant) r-matrices and this geometrical approach. (orig.)

  13. Geometric inequalities methods of proving

    CERN Document Server

    Sedrakyan, Hayk

    2017-01-01

    This unique collection of new and classical problems provides full coverage of geometric inequalities. Many of the 1,000 exercises are presented with detailed author-prepared-solutions, developing creativity and an arsenal of new approaches for solving mathematical problems. This book can serve teachers, high-school students, and mathematical competitors. It may also be used as supplemental reading, providing readers with new and classical methods for proving geometric inequalities. .

  14. Transformative Learning: The Role of Research in Traditional Clinical Disciplines

    Science.gov (United States)

    Tims, Michael

    2014-01-01

    One of an educator’s main tasks is to develop the intellectual openness of students that is necessary for transformative learning to take place. An initial step in removing the constraint of assumption is to employ the process of unlearning in the classroom. Unlearning in its simplest form can be described as the process through which the student learns to ask questions about a subject on which they are passionate, and through critical reflection, to construct and validate a new understanding based on observations and information generated by the original questions. Developing the ability to improvise and innovate are clear and positive indications that unlearning has occurred, and the Maryland University of Integrative Health’s (MUIH’s) educators have found that integrating research methods into class and group projects can accelerate the unlearning process. MUIH promotes students’ effort to solve interesting problems using the community found within the classroom. The natural state of relativism found in group processes lends itself to making explicit the assumptions each individual brings to the process. MUIH’s methods include engaging students in visual deconstruction of research data found in graphs, tables, and images; having students identify the end point of a line of inquiry; and evaluating a previously accumulated body of evidence to determine if it supports a product’s claims (eg, claims about general health, structure-function, or therapeutic value). The ultimate aim in asking students to take part in research embedded in coursework is to provide an assessment of their abilities that is more closely linked to discipline-specific experience. MUIH’s method of ingraining a culture of inquiry into both classroom and independent research serves to enhance students’ self-awareness about the constraints of their own a priori thinking and to nurture a deeper trust in their own informed intuition. PMID:26770105

  15. Transforming Higher Education through and for Democratic Civic Engagement: A Model for Change

    Science.gov (United States)

    Saltmarsh, John; Janke, Emily M.; Clayton, Patti H.

    2015-01-01

    Twenty years ago, reflecting on the possibilities for service-learning (SL) to help re-envision higher education, Zlotkowski (1995) considered the question, "Does service-learning have a future?" and concluded "nothing less than a transformation of contemporary academic culture," a transformation of higher education…

  16. A geometric quantization of the Kostant-Sekiguchi correpondence for scalar type unitary highest weight representations

    DEFF Research Database (Denmark)

    Möllers, Jan

    2013-01-01

    (\\pi)\\subseteq\\mathfrak{p}_{\\mathbb{C}}^*$. The associated variety $Ass(\\pi)$ is the closure of a single nilpotent $K_{\\mathbb{C}}$-orbit $\\mathcal{O}^{K_{\\mathbb{C}}}\\subseteq\\mathfrak{p}_{\\mathbb{C}}^*$ which corresponds by the Kostant-Sekiguchi correspondence to a nilpotent coadjoint $G$-orbit $\\mathcal{O}^G\\subseteq\\mathfrak{g}^*$. The known Schr\\"odinger...... model of $\\pi$ is a realization on $L^2(\\mathcal{O})$, where $\\mathcal{O}\\subseteq\\mathcal{O}^G$ is a Lagrangian submanifold. We construct an intertwining operator from the Schr\\"odinger model to the new Fock model, the generalized Segal-Bargmann transform, which gives a geometric quantization...... and as integral kernel of the Segal-Bargmann transform. As a corollary to our construction we also obtain the integral kernel of the unitary inversion operator in the Schr\\"odinger model in terms of a multivariable $J$-Bessel function....

  17. Time Series Analysis Using Geometric Template Matching.

    Science.gov (United States)

    Frank, Jordan; Mannor, Shie; Pineau, Joelle; Precup, Doina

    2013-03-01

    We present a novel framework for analyzing univariate time series data. At the heart of the approach is a versatile algorithm for measuring the similarity of two segments of time series called geometric template matching (GeTeM). First, we use GeTeM to compute a similarity measure for clustering and nearest-neighbor classification. Next, we present a semi-supervised learning algorithm that uses the similarity measure with hierarchical clustering in order to improve classification performance when unlabeled training data are available. Finally, we present a boosting framework called TDEBOOST, which uses an ensemble of GeTeM classifiers. TDEBOOST augments the traditional boosting approach with an additional step in which the features used as inputs to the classifier are adapted at each step to improve the training error. We empirically evaluate the proposed approaches on several datasets, such as accelerometer data collected from wearable sensors and ECG data.

  18. Bayesian analogy with relational transformations.

    Science.gov (United States)

    Lu, Hongjing; Chen, Dawn; Holyoak, Keith J

    2012-07-01

    How can humans acquire relational representations that enable analogical inference and other forms of high-level reasoning? Using comparative relations as a model domain, we explore the possibility that bottom-up learning mechanisms applied to objects coded as feature vectors can yield representations of relations sufficient to solve analogy problems. We introduce Bayesian analogy with relational transformations (BART) and apply the model to the task of learning first-order comparative relations (e.g., larger, smaller, fiercer, meeker) from a set of animal pairs. Inputs are coded by vectors of continuous-valued features, based either on human magnitude ratings, normed feature ratings (De Deyne et al., 2008), or outputs of the topics model (Griffiths, Steyvers, & Tenenbaum, 2007). Bootstrapping from empirical priors, the model is able to induce first-order relations represented as probabilistic weight distributions, even when given positive examples only. These learned representations allow classification of novel instantiations of the relations and yield a symbolic distance effect of the sort obtained with both humans and other primates. BART then transforms its learned weight distributions by importance-guided mapping, thereby placing distinct dimensions into correspondence. These transformed representations allow BART to reliably solve 4-term analogies (e.g., larger:smaller::fiercer:meeker), a type of reasoning that is arguably specific to humans. Our results provide a proof-of-concept that structured analogies can be solved with representations induced from unstructured feature vectors by mechanisms that operate in a largely bottom-up fashion. We discuss potential implications for algorithmic and neural models of relational thinking, as well as for the evolution of abstract thought. Copyright 2012 APA, all rights reserved.

  19. Transformation of Didactic Intensions by Teachers: The Case of Geometrical Optics in Grade 8.

    Science.gov (United States)

    Hirn, Colette; Viennot, Laurence

    2000-01-01

    Investigates the idea that teachers are not passive transmitters, and that some general trends can be found in the way they transform proposed strategies. Presents the case of elementary optics in grade 8 in France in which four sets of data--interviews before teaching, logbooks, assessment tasks, and video-recorded class observations--lead to…

  20. Geometric group theory an introduction

    CERN Document Server

    Löh, Clara

    2017-01-01

    Inspired by classical geometry, geometric group theory has in turn provided a variety of applications to geometry, topology, group theory, number theory and graph theory. This carefully written textbook provides a rigorous introduction to this rapidly evolving field whose methods have proven to be powerful tools in neighbouring fields such as geometric topology. Geometric group theory is the study of finitely generated groups via the geometry of their associated Cayley graphs. It turns out that the essence of the geometry of such groups is captured in the key notion of quasi-isometry, a large-scale version of isometry whose invariants include growth types, curvature conditions, boundary constructions, and amenability. This book covers the foundations of quasi-geometry of groups at an advanced undergraduate level. The subject is illustrated by many elementary examples, outlooks on applications, as well as an extensive collection of exercises.