WorldWideScience

Sample records for learning flow patterns

  1. Deriving Process-Driven Collaborative Editing Pattern from Collaborative Learning Flow Patterns

    Science.gov (United States)

    Marjanovic, Olivera; Skaf-Molli, Hala; Molli, Pascal; Godart, Claude

    2007-01-01

    Collaborative Learning Flow Patterns (CLFPs) have recently emerged as a new method to formulate best practices in structuring the flow of activities within various collaborative learning scenarios. The term "learning flow" is used to describe coordination and sequencing of learning tasks. This paper adopts the existing concept of CLFP and argues…

  2. Flow patterns in vertical two-phase flow

    International Nuclear Information System (INIS)

    McQuillan, K.W.; Whalley, P.B.

    1985-01-01

    This paper is concerned with the flow patterns which occur in upwards gas-liquid two-phase flow in vertical tubes. The basic flow patterns are described and the use of flow patter maps is discussed. The transition between plug flow and churn flow is modelled under the assumption that flooding of the falling liquid film limits the stability of plug flow. The resulting equation is combined with other flow pattern transition equations to produce theoretical flow pattern maps, which are then tested against experimental flow pattern data. Encouraging agreement is obtained

  3. Pattern recognition & machine learning

    CERN Document Server

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  4. Experimental study on flow pattern and heat transfer of inverted annular flow

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki; Akagawa, Koji; Fujii, Terushige; Nishida, Koji

    1990-01-01

    Experimental results are presented on flow pattern and heat transfer in the regions from inverted annular flow to dispersed flow in a vertical tube using freon R-113 as a working fluid at atmospheric pressure to discuss the correspondence between them. Axial distributions of heat transfer coefficient are measured and flow patterns are observed. The heat transfer characteristics are divided into three regions and a heat transfer characteristics map is proposed. The flow pattern changes from inverted annular flow (IAF) to dispersed flow (DF) through inverted slug flow (ISF) for lower inlet velocities and through agitated inverted annular flow (AIAF) for higher inlet velocities. A flow pattern map is obtained which corresponds well with the heat transfer characteristic map. (orig.)

  5. Experimental study on flow pattern transitions for inclined two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Nam Yee; Lee, Jae Young [Handong Univ., Pohang (Korea, Republic of); Kim, Man Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-07-01

    In this paper, experimental data on flow pattern transition of inclination angles from 0-90 are presented. A test section is constructed 2 mm long and I.D 1inch using transparent material. The test section is supported by aluminum frame that can be placed with any arbitrary inclined angles. The air-water two-phase flow is observed at room temperature and atmospheric condition using both high speed camera and void impedance meter. The signal is sampled with sampling rate 1kHz and is analyzed under fully-developed condition. Based on experimental data, flow pattern maps are made for various inclination angles. As increasing the inclination angels from 0 to 90, the flow pattern transitions on the plane jg-jf are changed, such as stratified flow to plug flow or slug flow or plug flow to bubbly flow. The transition lines between pattern regimes are moved or sometimes disappeared due to its inclined angle.

  6. The Virtual Teacher (VT) Paradigm: Learning New Patterns of Interpersonal Coordination Using the Human Dynamic Clamp.

    Science.gov (United States)

    Kostrubiec, Viviane; Dumas, Guillaume; Zanone, Pier-Giorgio; Kelso, J A Scott

    2015-01-01

    The Virtual Teacher paradigm, a version of the Human Dynamic Clamp (HDC), is introduced into studies of learning patterns of inter-personal coordination. Combining mathematical modeling and experimentation, we investigate how the HDC may be used as a Virtual Teacher (VT) to help humans co-produce and internalize new inter-personal coordination pattern(s). Human learners produced rhythmic finger movements whilst observing a computer-driven avatar, animated by dynamic equations stemming from the well-established Haken-Kelso-Bunz (1985) and Schöner-Kelso (1988) models of coordination. We demonstrate that the VT is successful in shifting the pattern co-produced by the VT-human system toward any value (Experiment 1) and that the VT can help humans learn unstable relative phasing patterns (Experiment 2). Using transfer entropy, we find that information flow from one partner to the other increases when VT-human coordination loses stability. This suggests that variable joint performance may actually facilitate interaction, and in the long run learning. VT appears to be a promising tool for exploring basic learning processes involved in social interaction, unraveling the dynamics of information flow between interacting partners, and providing possible rehabilitation opportunities.

  7. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    Science.gov (United States)

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  8. Ferrofluid-in-oil two-phase flow patterns in a flow-focusing microchannel

    Science.gov (United States)

    Sheu, T. S.; Chen, Y. T.; Lih, F. L.; Miao, J. M.

    This study investigates the two-phase flow formation process of water-based Fe3O4 ferrofluid (dispersed phase) in a silicon oil (continuous phase) flow in the microfluidic flow-focusing microchannel under various operational conditions. With transparent PDMS chip and optical microscope, four main two-phase flow patterns as droplet flow, slug flow, ring flow and churn flow are observed. The droplet shape, size, and formation mechanism were also investigated under different Ca numbers and intended to find out the empirical relations. The paper marks an original flow pattern map of the ferrofluid-in-oil flows in the microfluidic flow-focusing microchannels. The flow pattern transiting from droplet flow to slug flow appears for an operational conditions of QR < 1 and Lf / W < 1. The power law index that related Lf / W to QR was 0.36 in present device.

  9. Climatology of local flow patterns around Basel

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Recently a method has been developed to classify local-scale flow patterns from the wind measurements at a dense network of stations. It was found that in the MISTRAL area around Basel a dozen characteristic flow patterns occur. However, as the dense network of stations ran only during one year, no reliable climatology can be inferred from these data, especially the annual cycle of the flow patterns is not well determined from a single year of observations. As there exist several routinely operated stations in and near the MISTRAL area, a method was searched to identify the local flow patterns from the observations at the few routine stations. A linear discriminant analysis turned out to be the best method. Based of data from 11 stations which were simultaneously operated during 1990-1995 a six-year climatology of the flow patterns could be obtained. (author) 1 fig., 1 tab., 3 refs.

  10. Research for rolling effects on flow pattern of gas-water flow in horizontal tubes

    International Nuclear Information System (INIS)

    Luan Feng; Yan Changqi

    2007-01-01

    The flow pattern transition of two-phase flow is caused by the inertial force resulted from rolling and incline of horizontal tubes under rolling state. an experimental study on the flow patterns of gas-water flow was carried out in horizontal tubes under rolling state, which rolling period is 15 second and rolling angle is 10 degrees, and a pattern flow picture is shown. It was found that there are two flow patterns in one rolling period under some gas flux and water flux. (authors)

  11. Hepatic vein flow pattern in children: assesment with Doppler sonography

    International Nuclear Information System (INIS)

    Ahmetoglu, Ali; Kosucu, Polat; Arikan, Elif; Dinc, Hasan; Resit Guemele, Halit

    2005-01-01

    Background: Aim of this study is to establish normal hepatic vein flow pattern and effect of age, sex, activity and feeding status on the hepatic flow pattern in normal Turkish children less than 15 years of ages and also to compare our values with the previously reported studies. Method: Hepatic vein flow patterns were evaluated in 150 children (83 male, 67 female) without any cardiac, pulmonary and liver disease by using Doppler sonography. Blood flow patterns were compared with age, sex, activity, and feeding status of the children. Results: Only 44% of the children had triphasic flow pattern in all hepatic veins. Monophasic flow pattern was the most common flow pattern in children less then 1 year of age. Triphasic flow pattern increase after 1 year of age. Although most of the children older than 1 year of age had triphasic flow pattern, there is some variation in the flow patterns of the hepatic veins in the same subject. Triphasic hepatic flow pattern is most commonly seen in the left hepatic vein and least commonly seen in the right hepatic vein. There was no significant difference between male and girl, children who were agitated or calm and fasting or not fasting in respect to triphasic flow pattern. Conclusion: Liver stiffening is not only the reason for abnormal hepatic flow pattern and some other physiologic factors may also lead to mono and/or diphasic flow pattern in the children. Absence of triphasic flow pattern must not be accepted as a liver pathology in children especially younger than 1 year of age

  12. Complex networks from experimental horizontal oil–water flows: Community structure detection versus flow pattern discrimination

    International Nuclear Information System (INIS)

    Gao, Zhong-Ke; Fang, Peng-Cheng; Ding, Mei-Shuang; Yang, Dan; Jin, Ning-De

    2015-01-01

    We propose a complex network-based method to distinguish complex patterns arising from experimental horizontal oil–water two-phase flow. We first use the adaptive optimal kernel time–frequency representation (AOK TFR) to characterize flow pattern behaviors from the energy and frequency point of view. Then, we infer two-phase flow complex networks from experimental measurements and detect the community structures associated with flow patterns. The results suggest that the community detection in two-phase flow complex network allows objectively discriminating complex horizontal oil–water flow patterns, especially for the segregated and dispersed flow patterns, a task that existing method based on AOK TFR fails to work. - Highlights: • We combine time–frequency analysis and complex network to identify flow patterns. • We explore the transitional flow behaviors in terms of betweenness centrality. • Our analysis provides a novel way for recognizing complex flow patterns. • Broader applicability of our method is demonstrated and articulated

  13. Arterial secondary blood flow patterns visualized with vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Hansen, Jens Munk

    2011-01-01

    This study presents the first quantification and visualisation of secondary flow patterns with vector flow ultrasound. The first commercial implementation of the vector flow method Transverse Oscillation was used to obtain in-vivo, 2D vector fields in real-time. The hypothesis of this study...... was that the rotational direction is constant within each artery. Three data sets of 10 seconds were obtained from three main arteries in healthy volunteers. For each data set the rotational flow patterns were identified during the diastole. Each data set contains a 2D vector field over time and with the vector angles...

  14. Competitive STDP Learning of Overlapping Spatial Patterns.

    Science.gov (United States)

    Krunglevicius, Dalius

    2015-08-01

    Spike-timing-dependent plasticity (STDP) is a set of Hebbian learning rules firmly based on biological evidence. It has been demonstrated that one of the STDP learning rules is suited for learning spatiotemporal patterns. When multiple neurons are organized in a simple competitive spiking neural network, this network is capable of learning multiple distinct patterns. If patterns overlap significantly (i.e., patterns are mutually inclusive), however, competition would not preclude trained neuron's responding to a new pattern and adjusting synaptic weights accordingly. This letter presents a simple neural network that combines vertical inhibition and Euclidean distance-dependent synaptic strength factor. This approach helps to solve the problem of pattern size-dependent parameter optimality and significantly reduces the probability of a neuron's forgetting an already learned pattern. For demonstration purposes, the network was trained for the first ten letters of the Braille alphabet.

  15. Image processing system for flow pattern measurements

    International Nuclear Information System (INIS)

    Ushijima, Satoru; Miyanaga, Yoichi; Takeda, Hirofumi

    1989-01-01

    This paper describes the development and application of an image processing system for measurements of flow patterns occuring in natural circulation water flows. In this method, the motions of particles scattered in the flow are visualized by a laser light slit and they are recorded on normal video tapes. These image data are converted to digital data with an image processor and then transfered to a large computer. The center points and pathlines of the particle images are numerically analized, and velocity vectors are obtained with these results. In this image processing system, velocity vectors in a vertical plane are measured simultaneously, so that the two dimensional behaviors of various eddies, with low velocity and complicated flow patterns usually observed in natural circulation flows, can be determined almost quantitatively. The measured flow patterns, which were obtained from natural circulation flow experiments, agreed with photographs of the particle movements, and the validity of this measuring system was confirmed in this study. (author)

  16. TF.Learn: TensorFlow's High-level Module for Distributed Machine Learning

    OpenAIRE

    Tang, Yuan

    2016-01-01

    TF.Learn is a high-level Python module for distributed machine learning inside TensorFlow. It provides an easy-to-use Scikit-learn style interface to simplify the process of creating, configuring, training, evaluating, and experimenting a machine learning model. TF.Learn integrates a wide range of state-of-art machine learning algorithms built on top of TensorFlow's low level APIs for small to large-scale supervised and unsupervised problems. This module focuses on bringing machine learning t...

  17. Classification of pulsating flow patterns in curved pipes.

    Science.gov (United States)

    Tada, S; Oshima, S; Yamane, R

    1996-08-01

    The fully developed periodic laminar flow of incompressible Newtonian fluids through a pipe of circular cross section, which is coiled in a circle, was simulated numerically. The flow patterns are characterized by three parameters: the Womersley number Wo, the Dean number De, and the amplitude ratio beta. The effect of these parameters on the flow was studied in the range 2.19 secondary flow evolved with increasing Womersley number and Dean number is explained. The secondary flow patterns are classified into three main groups: the viscosity-dominated type, the inertia-dominated type, and the convection-dominated type. It was found that when the amplitude ratio of the volumetric flow rate is equal to 1.0, four to six vortices of the secondary flow appear at high Dean numbers, and the Lyne-type flow patterns disappear at beta > or = 0.50.

  18. Graphical User Interface Development for Representing Air Flow Patterns

    Science.gov (United States)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  19. Modulating patterns of two-phase flow with electric fields.

    Science.gov (United States)

    Liu, Dingsheng; Hakimi, Bejan; Volny, Michael; Rolfs, Joelle; Anand, Robbyn K; Turecek, Frantisek; Chiu, Daniel T

    2014-07-01

    This paper describes the use of electro-hydrodynamic actuation to control the transition between three major flow patterns of an aqueous-oil Newtonian flow in a microchannel: droplets, beads-on-a-string (BOAS), and multi-stream laminar flow. We observed interesting transitional flow patterns between droplets and BOAS as the electric field was modulated. The ability to control flow patterns of a two-phase fluid in a microchannel adds to the microfluidic tool box and improves our understanding of this interesting fluid behavior.

  20. Method for confirming flow pattern of gas-water flow in horizontal tubes under rolling state

    International Nuclear Information System (INIS)

    Luan Feng; Yan Changqi

    2008-01-01

    An experimental study on the flow patterns of gas-water flow was carried out in horizontal tubes under rolling state. It was found that the pressure drop of two phase flow was with an obvious periodical characteristic. The flow pattern of the gas-water flow was distinguished according to the characteristics of the pressure drop in this paper. It was proved that the characteristics of the pressure drop can distinguish the flow pattern of gas-water flow correctly through comparing with the result of careful observation and high speed digital camera. (authors)

  1. Modeling study on the flow patterns of gas-liquid flow for fast decarburization during the RH process

    Science.gov (United States)

    Li, Yi-hong; Bao, Yan-ping; Wang, Rui; Ma, Li-feng; Liu, Jian-sheng

    2018-02-01

    A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern (BP), transition pattern (TP), and wave pattern (WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.

  2. Identification of 3-phase flow patterns of heavy oil from pressure drop and flow rate data

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, F.; Bannwart, A.C.; Mendes, J.R.P. [Campinas State Univ., Sao Paulo (Brazil); Serapiao, A.B.S. [Sao Paulo State Univ., Sao Paulo (Brazil)

    2008-07-01

    Pipe flow of oil-gas-water mixtures poses a complex thermo-fluid dynamical problem. This paper examined the relationship between phase flow rates, flow pattern identification, and pressure drop in 3-phase water-assisted heavy oil in the presence of a gaseous phase. An artificial intelligence program called a support vector machine (SVM) was used to determine relevant parameters for flow pattern classification. Data from a 3-phase flow of heavy oil with gas and water in a vertical pipe was used in the study. The data were used to train the machine, which then predicted the flow pattern of the remaining data. Tests with different parameters and training data were then performed. The study showed that the proposed SVM flow pattern identification process accurately predicted flow patterns. It was concluded that the SVM took a relatively short amount of time to train. Future research is needed to apply the tool to larger flow datasets. 5 refs., 1 tab., 2 figs.

  3. The Case of Flow and Learning Revisited

    Science.gov (United States)

    Ro, Young K.; Guo, Yi Maggie; Klein, Barbara D.

    2018-01-01

    Many business schools are criticized for being ineffective in helping students learn proper management skills and knowledge. Flow theory has been cited as being helpful in many learning environments in that flow experience can enhance student learning. The authors conducted a study of 315 students in an undergraduate operations management (OM)…

  4. Two-phase flow patterns in adiabatic and diabatic corrugated plate gaps

    Science.gov (United States)

    Polzin, A.-E.; Kabelac, S.; de Vries, B.

    2016-09-01

    Correlations for two-phase heat transfer and pressure drop can be improved considerably, when they are adapted to specific flow patterns. As plate heat exchangers find increasing application as evaporators and condensers, there is a need for flow pattern maps for corrugated plate gaps. This contribution presents experimental results on flow pattern investigations for such a plate heat exchanger background, using an adiabatic visualisation setup as well as a diabatic setup. Three characteristic flow patterns were observed in the considered range of two-phase flow: bubbly flow, film flow and slug flow. The occurrence of these flow patterns is a function of mass flux, void fraction, fluid properties and plate geometry. Two different plate geometries having a corrugation angle of 27° and 63°, respectively and two different fluids (water/air and R365mfc liquid/vapor) have been analysed. A flow pattern map using the momentum flux is presented.

  5. Multiagent-Based Simulation of Temporal-Spatial Characteristics of Activity-Travel Patterns Using Interactive Reinforcement Learning

    Directory of Open Access Journals (Sweden)

    Min Yang

    2014-01-01

    Full Text Available We propose a multiagent-based reinforcement learning algorithm, in which the interactions between travelers and the environment are considered to simulate temporal-spatial characteristics of activity-travel patterns in a city. Road congestion degree is added to the reinforcement learning algorithm as a medium that passes the influence of one traveler’s decision to others. Meanwhile, the agents used in the algorithm are initialized from typical activity patterns extracted from the travel survey diary data of Shangyu city in China. In the simulation, both macroscopic activity-travel characteristics such as traffic flow spatial-temporal distribution and microscopic characteristics such as activity-travel schedules of each agent are obtained. Comparing the simulation results with the survey data, we find that deviation of the peak-hour traffic flow is less than 5%, while the correlation of the simulated versus survey location choice distribution is over 0.9.

  6. Deep Learning For Sequential Pattern Recognition

    OpenAIRE

    Safari, Pooyan

    2013-01-01

    Projecte realitzat en el marc d’un programa de mobilitat amb la Technische Universität München (TUM) In recent years, deep learning has opened a new research line in pattern recognition tasks. It has been hypothesized that this kind of learning would capture more abstract patterns concealed in data. It is motivated by the new findings both in biological aspects of the brain and hardware developments which have made the parallel processing possible. Deep learning methods come along with ...

  7. Transformative Learning: Patterns of Psychophysiologic Response and Technology-Enabled Learning and Intervention Systems

    Science.gov (United States)

    2008-09-01

    Psychophysiologic Response and Technology -Enabled Learning and Intervention Systems PRINCIPAL INVESTIGATOR: Leigh W. Jerome, Ph.D...NUMBER Transformative Learning : Patterns of Psychophysiologic Response and Technology - Enabled Learning and Intervention Systems 5b. GRANT NUMBER...project entitled “Transformative Learning : Patterns of Psychophysiologic Response in Technology Enabled Learning and Intervention Systems.” The

  8. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    Science.gov (United States)

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  9. A system for learning statistical motion patterns.

    Science.gov (United States)

    Hu, Weiming; Xiao, Xuejuan; Fu, Zhouyu; Xie, Dan; Tan, Tieniu; Maybank, Steve

    2006-09-01

    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy K-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction.

  10. A Model for Predicting Learning Flow and Achievement in Corporate e-Learning

    Science.gov (United States)

    Joo, Young Ju; Lim, Kyu Yon; Kim, Su Mi

    2012-01-01

    The primary objective of this study was to investigate the determinants of learning flow and achievement in corporate online training. Self-efficacy, intrinsic value, and test anxiety were selected as learners' motivational factors, while perceived usefulness and ease of use were also selected as learning environmental factors. Learning flow was…

  11. Doctoral Student Learning Patterns: Learning about Active Knowledge Creation or Passive Production

    Science.gov (United States)

    Vekkaila, Jenna; Pyhältö, Kirsi

    2016-01-01

    Doctoral studies are about learning to create new knowledge and to become a researcher. Yet surprisingly little is known about the individual learning patterns of doctoral students. The study aims to explore learning patterns among natural science doctoral students. The participants included 19 doctoral students from a top-level natural science…

  12. Learning from correlated patterns by simple perceptrons

    Energy Technology Data Exchange (ETDEWEB)

    Shinzato, Takashi; Kabashima, Yoshiyuki [Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 226-8502 (Japan)], E-mail: shinzato@sp.dis.titech.ac.jp, E-mail: kaba@dis.titech.ac.jp

    2009-01-09

    Learning behavior of simple perceptrons is analyzed for a teacher-student scenario in which output labels are provided by a teacher network for a set of possibly correlated input patterns, and such that the teacher and student networks are of the same type. Our main concern is the effect of statistical correlations among the input patterns on learning performance. For this purpose, we extend to the teacher-student scenario a methodology for analyzing randomly labeled patterns recently developed in Shinzato and Kabashima 2008 J. Phys. A: Math. Theor. 41 324013. This methodology is used for analyzing situations in which orthogonality of the input patterns is enhanced in order to optimize the learning performance.

  13. Learning from correlated patterns by simple perceptrons

    Science.gov (United States)

    Shinzato, Takashi; Kabashima, Yoshiyuki

    2009-01-01

    Learning behavior of simple perceptrons is analyzed for a teacher-student scenario in which output labels are provided by a teacher network for a set of possibly correlated input patterns, and such that the teacher and student networks are of the same type. Our main concern is the effect of statistical correlations among the input patterns on learning performance. For this purpose, we extend to the teacher-student scenario a methodology for analyzing randomly labeled patterns recently developed in Shinzato and Kabashima 2008 J. Phys. A: Math. Theor. 41 324013. This methodology is used for analyzing situations in which orthogonality of the input patterns is enhanced in order to optimize the learning performance.

  14. Learning from correlated patterns by simple perceptrons

    International Nuclear Information System (INIS)

    Shinzato, Takashi; Kabashima, Yoshiyuki

    2009-01-01

    Learning behavior of simple perceptrons is analyzed for a teacher-student scenario in which output labels are provided by a teacher network for a set of possibly correlated input patterns, and such that the teacher and student networks are of the same type. Our main concern is the effect of statistical correlations among the input patterns on learning performance. For this purpose, we extend to the teacher-student scenario a methodology for analyzing randomly labeled patterns recently developed in Shinzato and Kabashima 2008 J. Phys. A: Math. Theor. 41 324013. This methodology is used for analyzing situations in which orthogonality of the input patterns is enhanced in order to optimize the learning performance

  15. Eliciting design patterns for e-learning systems

    Science.gov (United States)

    Retalis, Symeon; Georgiakakis, Petros; Dimitriadis, Yannis

    2006-06-01

    Design pattern creation, especially in the e-learning domain, is a highly complex process that has not been sufficiently studied and formalized. In this paper, we propose a systematic pattern development cycle, whose most important aspects focus on reverse engineering of existing systems in order to elicit features that are cross-validated through the use of appropriate, authentic scenarios. However, an iterative pattern process is proposed that takes advantage of multiple data sources, thus emphasizing a holistic view of the teaching learning processes. The proposed schema of pattern mining has been extensively validated for Asynchronous Network Supported Collaborative Learning (ANSCL) systems, as well as for other types of tools in a variety of scenarios, with promising results.

  16. Deep learning of unsteady laminar flow over a cylinder

    Science.gov (United States)

    Lee, Sangseung; You, Donghyun

    2017-11-01

    Unsteady flow over a circular cylinder is reconstructed using deep learning with a particular emphasis on elucidating the potential of learning the solution of the Navier-Stokes equations. A deep neural network (DNN) is employed for deep learning, while numerical simulations are conducted to produce training database. Instantaneous and mean flow fields which are reconstructed by deep learning are compared with the simulation results. Fourier transform of flow variables has been conducted to validate the ability of DNN to capture both amplitudes and frequencies of flow motions. Basis decomposition of learned flow is performed to understand the underlying mechanisms of learning flow through DNN. The present study suggests that a deep learning technique can be utilized for reconstruction and, potentially, for prediction of fluid flow instead of solving the Navier-Stokes equations. This work was supported by the National Research Foundation of Korea(NRF) Grant funded by the Korea government(Ministry of Science, ICT and Future Planning) (No. 2014R1A2A1A11049599, No. 2015R1A2A1A15056086, No. 2016R1E1A2A01939553).

  17. Multiple flow patterns and heat transfer in confined jet impingement

    International Nuclear Information System (INIS)

    Li Xianchang; Gaddis, J. Leo; Wang Ting

    2005-01-01

    The flow field of a 2-D laminar confined impinging slot jet is investigated. Numerical results indicate that there exist two different solutions in some range of geometric and flow parameters. The two steady flow patterns are obtained under identical boundary conditions but only with different initial flow fields. Two different exit boundary conditions are investigated with two commercial software packages to eliminate artificial or computational effects. The different flow patterns are observed to significantly affect the heat transfer. A flow visualization experiment is carried out to verify the computational results and both flow patterns are observed. The bifurcation mechanism is interpreted and discussed

  18. Catalog Learning: Carabid Beetles Learn to Manipulate with Innate Coherent Behavioral Patterns

    Directory of Open Access Journals (Sweden)

    Zhanna Reznikova

    2013-07-01

    Full Text Available One of the most fascinating problems in comparative psychology is how learning contributes to solving specific functional problems in animal life, and which forms of learning our species shares with non-human animals. Simulating a natural situation of territorial conflicts between predatory carabids and red wood ants in field and laboratory experiments, we have revealed a relatively simple and quite natural form of learning that has been overlooked. We call it catalog learning, the name we give to the ability of animals to establish associations between stimuli and coherent behavioral patterns (patterns consist of elementary motor acts that have a fixed order. Instead of budgeting their motor acts gradually, from chaotic to rational sequences in order to learn something new, which is characteristic for a conditioning response, animals seem to be “cataloguing” their repertoire of innate coherent behavioral patterns in order to optimize their response to a certain repetitive event. This form of learning can be described as “stimulus-pattern” learning. In our experiments four “wild” carabid species, whose cognitive abilities have never been studied before, modified their behavior in a rather natural manner in order to avoid damage from aggressive ants. Beetles learned to select the relevant coherent behavioral patterns from the set of seven patterns, which are common to all four species and apparently innate. We suggest that this form of learning differs from the known forms of associative learning, and speculate that it is quite universal and can be present in a wide variety of species, both invertebrate and vertebrate. This study suggests a new link between the concepts of cognition and innateness.

  19. Investigation on flow patterns and transition characteristics in a tube-bundle channel

    International Nuclear Information System (INIS)

    Xiang Wenyuan; Lu Yonghong; Zhao Guisheng

    2012-01-01

    Tube-bundle channels have been widely used in condenser-evaporator and other industrial heat-exchange equipment. The characteristics of two-phase flow patterns and their transitions for refrigerant R-113 through a vertical tube-bundle channel are experimentally investigated using high-speed camera. Experiments show that there are four main flow patterns in the tube-bundle channel, which are bubbly flow, bubbly-churn flow, churn flow and annular flow. And in the same cross-section of tube- bundle channels, it is shown that there might be different flow patterns in different sub-channels. The flow pattern transitions exhibit unsynchronized in different sub-channels. On the basis of experimental research, the flow pattern map is drawn and analyses are made on the comparison of differences between boiling flow patterns in a circular tube and those in a tube-bundle channel. (authors)

  20. Experimental investigation on flow patterns of gas-liquid two-phase upward flow through packed channel with spheres

    International Nuclear Information System (INIS)

    Zhang Nan; Sun Zhongning; Zhao Zhongnan

    2011-01-01

    Experiments of visualized two-phase upward flow were conducted in the packed channel, which filled with 3, 5, 8 mm in diameter of glass sphere respectively. The gas superficial velocity ranges from 0.005 to 1.172 m/s. The liquid superficial velocity ranges from 0.004 to 0.093 m/s. Four representative flow patterns were observed as bubbly flow, cluster flow, liquid-pulse flow and churn-pulse flow, and corresponding flow pattern maps were also presented. It is found that the pulse flow region is dominant. The comparisons of flow pattern map between packed channel and non-packed channel show that the bubbly flow region in packed channel is narrower than that of non-packed channel due to the packing. The comparisons of flow pattern maps for three different packing sizes show that the cluster flow region expands with the increase of the packing diameter. In the low liquid superficial velocity, the cluster flow directly changes to churn-pulse flow in the packed channel with 8 mm packing. (authors)

  1. Streamline topology: Patterns in fluid flows and their bifurcations

    DEFF Research Database (Denmark)

    Brøns, Morten

    2007-01-01

    Using dynamical systems theory, we consider structures such as vortices and separation in the streamline patterns of fluid flows. Bifurcation of patterns under variation of external parameters is studied using simplifying normal form transformations. Flows away from boundaries, flows close to fix...... walls, and axisymmetric flows are analyzed in detail. We show how to apply the ideas from the theory to analyze numerical simulations of the vortex breakdown in a closed cylindrical container....

  2. PatterNet: a system to learn compact physical design pattern representations for pattern-based analytics

    Science.gov (United States)

    Lutich, Andrey

    2017-07-01

    This research considers the problem of generating compact vector representations of physical design patterns for analytics purposes in semiconductor patterning domain. PatterNet uses a deep artificial neural network to learn mapping of physical design patterns to a compact Euclidean hyperspace. Distances among mapped patterns in this space correspond to dissimilarities among patterns defined at the time of the network training. Once the mapping network has been trained, PatterNet embeddings can be used as feature vectors with standard machine learning algorithms, and pattern search, comparison, and clustering become trivial problems. PatterNet is inspired by the concepts developed within the framework of generative adversarial networks as well as the FaceNet. Our method facilitates a deep neural network (DNN) to learn directly the compact representation by supplying it with pairs of design patterns and dissimilarity among these patterns defined by a user. In the simplest case, the dissimilarity is represented by an area of the XOR of two patterns. Important to realize that our PatterNet approach is very different to the methods developed for deep learning on image data. In contrast to "conventional" pictures, the patterns in the CAD world are the lists of polygon vertex coordinates. The method solely relies on the promise of deep learning to discover internal structure of the incoming data and learn its hierarchical representations. Artificial intelligence arising from the combination of PatterNet and clustering analysis very precisely follows intuition of patterning/optical proximity correction experts paving the way toward human-like and human-friendly engineering tools.

  3. Two-phase flow patterns in a four by four rod bundle

    International Nuclear Information System (INIS)

    Mizutani, Yoshitaka; Tomiyama, Akio; Hosokawa, Shigeo; Sou, Akira; Kudo, Yoshiro; Mishima, Kaichiro

    2007-01-01

    Air-water two-phase flow patterns in a four by four square lattice rod bundle consisting of an acrylic channel box of 68 mm in width and transparent rods of 12mm in diameter were observed by utilizing a high speed video camera, FEP (fluorinated ethylene propylene) tubes for rods, and a fiberscope inserted in a rod. The FEP possesses the same refractive index as water, and thereby, whole flow patterns in the bundle and local flow patterns in subchannels were successfully visualized with little optical distortion. The ranges of gas and liquid volume fluxes, (J G ) and (J L ), in the present experiments were 0.1 L ) G ) G )-(J L ) flow pattern diagram is so narrow that it can be regarded as a boundary between bubbly and churn flows. (2) the boundary between bubbly and churn flows is close to the boundary between bubbly and slug flows of the Mishima and Ishii's flow pattern transition model, and (3) the boundary between churn and annular flow is close to the Mishima and Ishii's model. (author)

  4. Two-Phase Flow Patterns in a Four by Four Rod Bundle

    International Nuclear Information System (INIS)

    Yoshitaka Mizutani; Shigeo Hosokawa; Akio Tomiyama

    2006-01-01

    Air-water two-phase flow patterns in a four by four square lattice rod bundle consisting of an acrylic channel box of 68 mm in width and transparent rods of 12 mm in diameter were observed by utilizing a high speed video camera, FEP (fluorinated ethylene propylene) tubes for rods, and a fiber-scope inserted in a rod. The FEP possesses the same refractive index as water, and thereby, whole flow patterns in the bundle and local flow patterns in subchannels were successfully visualized with little optical distortion. The ranges of liquid and gas volume fluxes, G > and L >, in the present experiments were 0.1 L > G > G > - L > flow pattern diagram is so narrow that it can be regarded as a boundary between bubbly and churn flows, (2) the boundary between bubbly and churn flows is close to the boundary between bubbly and slug flows of the Mishima and Ishii's flow pattern transition model, and (3) the boundary between churn and annular flows is well predicted by the Mishima and Ishii's model. (authors)

  5. experimental investigation of flow pattern around repelling

    African Journals Online (AJOL)

    A. Mahdieh NajafAbadi and M. M. Bateni

    2017-09-01

    Sep 1, 2017 ... FLOW-3D® software used to simulate flow pattern. The simulation was .... separated into separation zone, shear layer, vortices zone, end point of vorticity zone and primary flow zone. In the figure, b1 and b2 denote ... closer to the wall for the attractive spur dike. For case of the repelling spur dike, transverse.

  6. Flow patterns in a cylindrical porous enclosure

    International Nuclear Information System (INIS)

    Sezai, I.

    2005-01-01

    Natural convection in a 3-D vertical cylinder containing an isotropic porous media is studied numerically using the Brinkman and Forcheimer's extensions to the Darcy law. The cylinder is heated from below and cooled from top while the vertical wall is insulated. The formation of multiple flow patterns are investigated by varying the Rayleigh number. Altogether, six different steady flow patterns are found exhibiting different symmetries. The results are presented in terms of projection of streamlines and Nusselt number distributions on the heated plate. (authors)

  7. Flow patterns in a cylindrical porous enclosure

    Energy Technology Data Exchange (ETDEWEB)

    Sezai, I. [Eastern Mediterranean Univ., Dept. Mechanical Engineering(Turkey)

    2005-07-01

    Natural convection in a 3-D vertical cylinder containing an isotropic porous media is studied numerically using the Brinkman and Forcheimer's extensions to the Darcy law. The cylinder is heated from below and cooled from top while the vertical wall is insulated. The formation of multiple flow patterns are investigated by varying the Rayleigh number. Altogether, six different steady flow patterns are found exhibiting different symmetries. The results are presented in terms of projection of streamlines and Nusselt number distributions on the heated plate. (authors)

  8. Altered doppler flow patterns in cirrhosis patients: An overview

    Energy Technology Data Exchange (ETDEWEB)

    Iranpour, Pooya; Lall, Chandana; Houshyar, Roozbeh; Helmy, Mohammad; Yang, Albert; Ward, Garrett; Goodwin, Scott C. [Dept. of Radiology, University of California Irvine, Orange (United States); Choi, Joon Il [Dept. of Radiology, Seoul St. Mary' s Hospital, College of Medicine, The Catholic University of Korea, Seoul (Korea, Republic of)

    2016-01-15

    Doppler ultrasonography of the hepatic vasculature is an integral part of evaluating precirrhotic and cirrhotic patients. While the reversal of the portal venous flow is a well-recognized phenomenon, other flow patterns, although not as easily understood, may play an important role in assessing the disease status. This article discusses the different characteristic flow patterns observed from the portal vein, hepatic artery, and hepatic vein in patients with liver cirrhosis or related complications and procedures. Knowledge of these different flow patterns provides additional information that may reinforce the diagnosis of cirrhosis, help in staging, and offer prognostic information for determining the direction of therapy. Doppler ultrasonography is invaluable when liver transplantation is being considered and aids in the diagnosis of cirrhosis and portal hypertension.

  9. A Flow of Entrepreneurial Learning Elements in Experiential Learning Settings

    DEFF Research Database (Denmark)

    Ramsgaard, Michael Breum; Christensen, Marie Ernst

    This paper explored the concept of learning in an experiential learning setting and whether the learning process can be understood as a flow of learning factors influencing the outcome. If many constituting factors lead to the development of learning outcomes, there might need to be developed...... that are a part of experiential learning settings and curriculum development....... a differentiated approach to facilitate experiential learning. Subsequently the paper investigated how facilitators of learning processes can design a learning space where the boundary of what is expected from the learner is challenged. In other words the aim was to explore the transformative learning processes...

  10. Churn-annular flow pattern transition in a vertical upward gas-liquid two-phase flow in various conduits

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki; Ueda, Tadanobu; Asano, Hitoshi

    2008-01-01

    Void fraction was measured by neutron radiography for a vertical upward gas-water two-phase flow in a concentric annular tube with and with out a spacer, 4x4 rod bundle with and without a spacer and a tight rod bundle with and without a wrapping wire for various gas and liquid flow rates. The flow patterns of these two-phase flows were determined by the Mishima-Ishii flow pattern map and void fraction was calculated by the Ishii's drift flux model. The predicted values were compared with the experimental results. The void fraction was well predicted by the Mishima-Ishii flow pattern map and the Ishii's drift flux model except the annular flow region with void fraction lower than 0.8 for conduits with small equivalent diameter. A new churn-annular flow pattern transition condition of the void fraction equal to 0.8 was added. The void fraction for the present experimental condition was successful predicted with the new transition model. (author)

  11. Relationship between thermal stratification and flow patterns in steam-quenching suppression pool

    International Nuclear Information System (INIS)

    Song, Daehun; Erkan, Nejdet; Jo, Byeongnam; Okamoto, Koji

    2015-01-01

    Highlights: • Thermal stratification mechanism by direct contact condensation is investigated. • Thermal stratification condition changes according to the flow pattern. • Thermal stratification depends on the force balance between buoyancy and momentum. • Flow pattern change was observed even in the same regime. • Flow pattern is affected by the sensitive force balance. - Abstract: This study aims to examine the relationship between thermal stratification and flow patterns in a steam-quenching suppression pool using particle image velocimetry. Thermal stratification was experimentally evaluated in a depressurized water pool under different steam mass flux conditions. The time evolution of the temperature profile of the suppression pool was presented with the variation of condensation regimes, and steam condensation processes were visualized using a high-speed camera. The thermal stratification condition was classified into full mixing, gradual thermal stratification, and developed thermal stratification. It was found that the condition was determined by the flow patterns depending on the force balance between buoyancy and momentum. The force balance affected both the condensation regime and the flow pattern, and hence, the flow pattern was changed with the condensation regime. However, the force balance had a sensitive influence on the flow in the pool; therefore, distinct flow patterns were observed even in the same condensation regime.

  12. Effect of friction on pebble flow pattern in pebble bed reactor

    International Nuclear Information System (INIS)

    Li, Yu; Gui, Nan; Yang, Xingtuan; Tu, Jiyuan; Jiang, Shengyao

    2016-01-01

    Highlights: • A 3D DEM study on particle–wall/particle friction in pebble bed reactor is carried out. • Characteristic values are defined to evaluate features of pebble flow pattern quantitatively. • Particle–wall friction is dominant to determine flow pattern in a specific pebble bed. • Friction effect of hopper part on flow field is more critical than that of cylinder part. • Three cases of 1:1 full scale practical pebble beds are simulated for demonstration. - Abstract: Friction affects pebble flow pattern in pebble-bed high temperature gas-cooled reactor (HTGR) significantly. Through a series of three dimensional DEM (discrete element method) simulations it is shown that reducing friction can be beneficial and create a uniform and consistent flow field required by nuclear engineering. Particle–wall friction poses a decisive impact on flow pattern, and particle–particle friction usually plays a secondary role; relation between particle–wall friction and flow pattern transition is also concluded. Moreover, new criteria are created to describe flow patterns quantitatively according to crucial issues in HTGR like stagnant zone, radial uniformity and flow sequence. Last but not least, it is proved that friction control of hopper part is more important than that of cylinder part in practical pebble beds, so reducing friction between pebbles and hopper surface is the engineering priority.

  13. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part I: Flow Patterns and Their Transitions

    Science.gov (United States)

    Wang, Bo; Wang, Xiaodong; Etay, Jacqueline; Na, Xianzhao; Zhang, Xinde; Fautrelle, Yves

    2016-04-01

    In this study, an Archimedean helical permanent magnetic field was constructed and its driving effects on liquid metal were examined. A magnetic stirrer was constructed using a series of arc-like magnets. The helical distribution of its magnetic field, which was confirmed via Gauss probe measurements and numerical simulations, can be considered a combination of rotating and traveling magnetic fields. The characteristics of the flow patterns, particularly the transitions between the meridian secondary flow (two vortices) and the global axial flow (one vortex), driven by this magnetic field were quantitatively measured using ultrasonic Doppler velocimetry. The transient and modulated flow behaviors will be presented in a companion article. The D/ H dimension ratio was used to characterize the transitions of these two flow patterns. The results demonstrated that the flow patterns depend on not only the intrinsic structure of the magnetic field, e.g., the helix lead angle, but also the performance parameters, e.g., the dimensional ratio of the liquid bulk. The notable opposing roles of these two flow patterns in the improvement of macrosegregations when imposing such magnetic fields near the solidifying front were qualitatively addressed.

  14. Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks

    Science.gov (United States)

    2015-12-31

    classification of liquid–vapor structures into flow patterns is useful for predicting heat transfer rates and, ultimately, system performance. Most flow and...Here, ~x represents the spa- tial variables, x and y, and t is time. This normalization assigns εð~x; tÞ to be zero for only vapor (εg) and one for...tube surface [17,22]. As in stratified wavy flow, interfacial waves were also present in stratified wavy transitional flow. The waves were more fre

  15. A novel drag force coefficient model for gas–water two-phase flows under different flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Zhi, E-mail: shangzhi@tsinghua.org.cn

    2015-07-15

    Graphical abstract: - Highlights: • A novel drag force coefficient model was established. • This model realized to cover different flow patterns for CFD. • Numerical simulations were performed under wide range flow regimes. • Validations were carried out through comparisons to experiments. - Abstract: A novel drag force coefficient model has been developed to study gas–water two-phase flows. In this drag force coefficient model, the terminal velocities were calculated through the revised drift flux model. The revised drift flux is different from the traditional drift flux model because the natural curve movement of the bubble was revised through considering the centrifugal force. Owing to the revisions, the revised drift flux model was to extend to 3D. Therefore it is suitable for CFD applications. In the revised drift flux model, the different flow patterns of the gas–water two-phase flows were able to be considered. This model innovatively realizes the drag force being able to cover different flow patterns of gas–water two-phase flows on bubbly flow, slug flow, churn flow, annular flow and mist flow. Through the comparisons of the numerical simulations to the experiments in vertical upward and downward pipe flows, this model was validated.

  16. Pattern-Induced Covert Category Learning in Songbirds.

    Science.gov (United States)

    Comins, Jordan A; Gentner, Timothy Q

    2015-07-20

    Language is uniquely human, but its acquisition may involve cognitive capacities shared with other species. During development, language experience alters speech sound (phoneme) categorization. Newborn infants distinguish the phonemes in all languages but by 10 months show adult-like greater sensitivity to native language phonemic contrasts than non-native contrasts. Distributional theories account for phonetic learning by positing that infants infer category boundaries from modal distributions of speech sounds along acoustic continua. For example, tokens of the sounds /b/ and /p/ cluster around different mean voice onset times. To disambiguate overlapping distributions, contextual theories propose that phonetic category learning is informed by higher-level patterns (e.g., words) in which phonemes normally occur. For example, the vowel sounds /Ι/ and /e/ can occupy similar perceptual spaces but can be distinguished in the context of "with" and "well." Both distributional and contextual cues appear to function in speech acquisition. Non-human species also benefit from distributional cues for category learning, but whether category learning benefits from contextual information in non-human animals is unknown. The use of higher-level patterns to guide lower-level category learning may reflect uniquely human capacities tied to language acquisition or more general learning abilities reflecting shared neurobiological mechanisms. Using songbirds, European starlings, we show that higher-level pattern learning covertly enhances categorization of the natural communication sounds. This observation mirrors the support for contextual theories of phonemic category learning in humans and demonstrates a general form of learning not unique to humans or language. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. TensorFlow Agents: Efficient Batched Reinforcement Learning in TensorFlow

    OpenAIRE

    Hafner, Danijar; Davidson, James; Vanhoucke, Vincent

    2017-01-01

    We introduce TensorFlow Agents, an efficient infrastructure paradigm for building parallel reinforcement learning algorithms in TensorFlow. We simulate multiple environments in parallel, and group them to perform the neural network computation on a batch rather than individual observations. This allows the TensorFlow execution engine to parallelize computation, without the need for manual synchronization. Environments are stepped in separate Python processes to progress them in parallel witho...

  18. Analysis of blood flow patterns in aortic aneurysm by cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Matsuoka, Hiroshi

    1993-01-01

    Cine MRI (0.5 T) using rephased gradient echo technique was performed to study the patterns of blood flow in the aortic aneurysm of 16 patients with aortic aneurysm, and the data were compared with those of 5 healthy volunteers. In the transaxial section, the blood flow in normal aorta appeared as homogeneous high intensity during systole. On the other hand, the blood flow in the aneurysm appeared as inhomogeneous flow enhancement with flow void. In the sagittal scan, the homogeneous flow enhancement in a normal aorta was also observed during systole and its apex of flow enhancement was 'taper'. The blood flow patterns in the aneurysm were classified as 'irregular', 'zonal', 'eddy', and 'obscure' depending on the contrast of flow enhancement and flow void. Their apexes were 'taper' or 'round'. The blood flow patterns in the aneurysm were related to the size of aneurysm. In patients with a large size 'aneurysm, their flow patterns were 'eddy' or 'obscure' and the flow enhancement was 'round'. On the other hand, in patients with a small size aneurysm, their flow patterns were 'irregular' or 'zonal', and their flow enhancement was 'taper'. Though the exact mechanism of abnormal flow patterns in an aortic aneurysm remains to be determined, cine MRI gives helpful informations in assessing blood flow dynamics in the aneurysm. (author)

  19. An experimental study on two-phase flow pattern in low pressure natural circulation system

    International Nuclear Information System (INIS)

    Wu Shaorong; Han Bing; Zhou Lei; Zhang Youjie; Jiang Shengyao; Wu Xinxin

    1991-10-01

    An experimental study on two-phase flow pattern in the riser of low pressure natural circulation system was performed. The local differential pressure signal was analysed for flow pattern. It is considered that Sr f·d/v can be used to distinguish different flow patterns and it has clear and definite physical meaning. Flow patterns at different inlet temperature with different system pressures (1.5 MPa, 0.24 MPa and 0.1 MPa) are described. It is considered that the flow pattern is only bubble flow without flow pattern change during the period of low quality density-wave instability at 1.5 MPa. There is no density-wave oscillation in the system, when flow pattern is in bubble-intermittent transition area. The effect of flash vaporization on stability at low pressure is discussed

  20. Modeling on bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng

    2011-01-01

    A theoretical model was developed to predict the bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel. The model was developed based on the imbalance theory of Helmholtz and some reasonable assumptions. The maximum ideal bubble in narrow rectangular channel and the thermal hydraulics boundary condition leading to bubbly flow to churn flow pattern transition was calculated. The model was validated by experimental data from previous researches. Comparison between predicted result and experimental result shows a reasonable good agreement. (author)

  1. Blood flow patterns underlie developmental heart defects.

    Science.gov (United States)

    Midgett, Madeline; Thornburg, Kent; Rugonyi, Sandra

    2017-03-01

    Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10-35% led predominantly to ventricular septal defects, whereas constricting by 35-60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel "dose-response" type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. Copyright © 2017 the American Physiological Society.

  2. Flow Patterns in an Open Channel Confluence with Increasingly Dominant Tributary Inflow

    Directory of Open Access Journals (Sweden)

    Laurent Schindfessel

    2015-08-01

    Full Text Available Despite the ratio of incoming discharges being recognized as a key parameter in open-channel confluence hydrodynamics, little is known about the flow patterns when the tributary provides more than 90% of the total discharge. This paper offers a systematic study of flow features when the tributary becomes increasingly dominant in a 90° confluence with a fixed concordant bed. Large-eddy simulations are used to investigate the three-dimensional complex flow patterns for three different discharge ratios. It is found that the tributary flow impinges on the opposing bank when the tributary flow becomes sufficiently dominant, causing a recirculating eddy in the upstream channel of the confluence, which induces significant changes in the incoming velocity distribution. Moreover, it results in stronger helicoidal cells in the downstream channel, along with zones of upwelling flow. In turn, the changed flow patterns also influence the mixing layer and the flow recovery. Finally, intermittent events of stronger upwelling flow are discerned. Improved understanding of flow patterns at confluences where the tributary is dominant is applicable to both engineering and earth sciences.

  3. Flow experience in game based learning – a systematic literature review

    Directory of Open Access Journals (Sweden)

    Arttu Perttula

    2017-03-01

    Full Text Available The entertaining elements implemented in a serious game are key factors in determining whether a player will be engaged in a play-learn process and able to achieve the desired learning outcomes. Thus, optimization of subjective playing experience is a crucial part of a game design process. Flow theory can be adopted for measuring user experience and analyzing the quality of serious game designs. In addition, flow seems to have a positive influence on performance enhancement, learning and engagement. The focus of this review is especially on examining the meaning of flow in the context of serious games as well as exploring the relationship between flow and learning, factors that influence occurrence of flow and how flow is operationalized. The review revealed that there are mainly conceptual considerations about flow in serious games, but no robust empirical evidence about the meaning of flow. This is in line with other studies. We argue that research on flow should focus on the specific aspects related to the very nature of serious games that combine enjoyment and learning. Furthermore, new methods to measure flow and analyse the data need to be developed and studied.

  4. Patterns in Teacher Learning in Different Phases of the Professional Career

    Science.gov (United States)

    Vermunt, Jan D.; Endedijk, Maaike D.

    2011-01-01

    This paper reviews recent research on learning patterns of student teachers and experienced teachers, mostly in the context of educational innovation and teachers' professional development. The discussion is structured along a model of teacher learning patterns comprising learning activities, regulation of learning, beliefs on own learning about…

  5. Subcutaneous blood flow in early male pattern baldness

    International Nuclear Information System (INIS)

    Klemp, P.; Peters, K.; Hansted, B.

    1989-01-01

    The subcutaneous blood flow (SBF) was measured by the 133 Xe washout method in the scalp of 14 patients with early male pattern baldness. Control experiments were performed in 14 normal haired men matched for age. The SBF in the scalp of the normal individuals was about 10 times higher than previously reported SBF values in other anatomical regions. In patients with early male pattern baldness, SBF was 2.6 times lower than the values found in the normal individuals (13.7 +/- 9.6 vs 35.7 +/- 10.5 ml/100 g/min-1). This difference was statistically significant (p much less than 0.001). A reduced nutritive blood flow to the hair follicles might be a significant event in the pathogenesis of early male pattern baldness

  6. Blood flow patterns during incremental and steady-state aerobic exercise.

    Science.gov (United States)

    Coovert, Daniel; Evans, LeVisa D; Jarrett, Steven; Lima, Carla; Lima, Natalia; Gurovich, Alvaro N

    2017-05-30

    Endothelial shear stress (ESS) is a physiological stimulus for vascular homeostasis, highly dependent on blood flow patterns. Exercise-induced ESS might be beneficial on vascular health. However, it is unclear what type of ESS aerobic exercise (AX) produces. The aims of this study are to characterize exercise-induced blood flow patterns during incremental and steady-state AX. We expect blood flow pattern during exercise will be intensity-dependent and bidirectional. Six college-aged students (2 males and 4 females) were recruited to perform 2 exercise tests on cycleergometer. First, an 8-12-min incremental test (Test 1) where oxygen uptake (VO2), heart rate (HR), blood pressure (BP), and blood lactate (La) were measured at rest and after each 2-min step. Then, at least 48-hr. after the first test, a 3-step steady state exercise test (Test 2) was performed measuring VO2, HR, BP, and La. The three steps were performed at the following exercise intensities according to La: 0-2 mmol/L, 2-4 mmol/L, and 4-6 mmol/L. During both tests, blood flow patterns were determined by high-definition ultrasound and Doppler on the brachial artery. These measurements allowed to determine blood flow velocities and directions during exercise. On Test 1 VO2, HR, BP, La, and antegrade blood flow velocity significantly increased in an intensity-dependent manner (repeated measures ANOVA, pflow velocity did not significantly change during Test 1. On Test 2 all the previous variables significantly increased in an intensity-dependent manner (repeated measures ANOVA, pflow patterns during incremental and steady-state exercises include both antegrade and retrograde blood flows.

  7. A Learning Patterns Perspective on Student Learning in Higher Education: State of the Art and Moving Forward

    Science.gov (United States)

    Vermunt, Jan D.; Donche, Vincent

    2017-01-01

    The aim of this article is to review the state of the art of research and theory development on student learning patterns in higher education and beyond. First, the learning patterns perspective and the theoretical framework are introduced. Second, research published since 2004 on student learning patterns is systematically identified and…

  8. Optimizing a Workplace Learning Pattern: A Case Study from Aviation

    Science.gov (United States)

    Mavin, Timothy John; Roth, Wolff-Michael

    2015-01-01

    Purpose: This study aims to contribute to current research on team learning patterns. It specifically addresses some negative perceptions of the job performance learning pattern. Design/methodology/approach: Over a period of three years, qualitative and quantitative data were gathered on pilot learning in the workplace. The instructional modes…

  9. Surface Patterning: Controlling Fluid Flow Through Dolphin and Shark Skin Biomimicry

    Science.gov (United States)

    Gamble, Lawren; Lang, Amy; Bradshaw, Michael; McVay, Eric

    2013-11-01

    Dolphin skin is characterized by circumferential ridges, perpendicular to fluid flow, present from the crest of the head until the tail fluke. When observing a cross section of skin, the ridges have a sinusoidal pattern. Sinusoidal grooves have been proven to induce vortices in the cavities that can help control flow separation which can reduce pressure drag. Shark skin, however, is patterned with flexible scales that bristle up to 50 degrees with reversed flow. Both dolphin ridges and shark scales are thought to help control fluid flow and increase swimming efficiency by delaying the separation of the boundary layer. This study investigates how flow characteristics can be altered with bio-inspired surface patterning. A NACA 4412 hydrofoil was entirely patterned with transverse sinusoidal grooves, inspired by dolphin skin but scaled so the cavities on the model have the same Reynolds number as the cavities on a swimming shark. Static tests were conducted at a Reynolds number of approximately 100,000 and at varying angles of attack. The results were compared to the smooth hydrofoil case. The flow data was quantified using Digital Particle Image Velocimetry (DPIV). The results of this study demonstrated that the patterned hydrofoil experienced greater separation than the smooth hydrofoil. It is hypothesize that this could be remediated if the pattern was placed only after the maximum thickness of the hydrofoil. Funding through NSF REU grant 1062611 is gratefully acknowledged.

  10. Comparison of detection pattern of HCC by ferumoxide-enhanced MRI and intratumoral blood flow pattern

    International Nuclear Information System (INIS)

    Itou, Naoki; Kotake, Fumio; Saitou, Kazuhiro; Abe, Kimihiko

    2000-01-01

    We compared the detection rate and pattern of ferumoxide-enhanced magnetic resonance imaging (Fe-MRI) with the intratumoral blood flow pattern determined by CT angiography (CTA) and CT portography (CTAP) in 124 nodes (34 cases) diagnosed as hepatocellular carcinoma (HCC) or borderline HCC, based on the clinical course. Sequences to obtain a T1-weighted images (T1W), proton density-weighted images (PDW), T2-weighted images (T2W), T2*-weighted images (T2*W) were used in Fe-MRI. In nodes shown to be hypervascular on CTA, the detection rate by Fe-MRI was 69.7%. In nodes shown to be avascular by CTAP, the detection rate by Fe-MRI was 67.3%. These rates were higher than with other flow patterns. In nodes showing high signal intensity (HSI) on any sequences, arterial blood flow was increased and portal blood flow decreased in comparison with nodes without high signal intensity. All nodes showing HSI, both on Fe-MRI T2W and T2*W, were hypervascular on CTA, and portal blood flow was absent on CTAP. Nodes showing HSI on both T2*W and T2W were considered to have greater arterial blood flow and decreased portal blood flow compared with nodes appearing as HSI on T2*W, but only as iso- or low signal intensity on T2W (Mann-Whitney U-test; p<0.05). (author)

  11. Experimental study of flow patterns near tube support structures

    International Nuclear Information System (INIS)

    Rummens, H.E.C.; Turner, C.W.

    1994-07-01

    Extensive blockage of broached support plates in steam generators has occurred at the Bruce A Nuclear Generating Station (NGS), forcing unit derating in 1988 March. Blockage has also been found on the lower broached plates of the Pickering B and Point Lepreau NGSs. Water chemistry and operating conditions are known to influence fouling directly. We suspect that flow patterns also play a role, that these patterns are influenced by the geometry of steam generator (SG) components, and that particularly the broached plate design actively creates an environment favorable to deposition. Experiments are in progress to examine the flow patterns near various tube supports: the broached plate, two types of lattice bars, and the formed bars. Preliminary tests in an air/water loop with 1/2- and 7-tube SG mockups containing the tube supports have been completed. Flow patterns were visualized using injected air bubbles. Local velocities and turbulence levels were measured using a laser technique, which confirmed observations of flow recirculation and stagnation. Axial pressure profiles were measured to determine overall resistance coefficients, and to identify local pressure extremes. Some visualization tests were also carried out on an artificially fouled broached plate. Based on results to date, several deposition mechanisms are proposed: deposition of particles in stagnant regions, deposition of solubles due to flashing in low-pressure regions, and deposition in smaller channels due to steam migration toward larger channels. A qualitative assessment of the tube support designs based on these mechanisms implies that the relative resistances to fouling are: (WORST) broach plate << lattice bars << formed bars (BEST). As the air/water simulation shows only hydraulic flow patterns, further tests will be done in a simple liquid/vapor Freon loop to examine thermal effects. (author). 3 refs., 10 figs

  12. Critical heat flux and flow pattern for water flow in annular geometry

    International Nuclear Information System (INIS)

    Park, Jae Wook; Baek, Won Pil; Chang, Soon Heung

    1996-01-01

    An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced-circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m, inner diameter = 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, churn-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for upward flow

  13. Two-phase flow patterns in horizontal rectangular minichannel

    Directory of Open Access Journals (Sweden)

    Ron’shin Fedor

    2016-01-01

    Full Text Available The two-phase flow in a short horizontal channel of rectangular cross-section of 1 × 19 mm2 has been studied experimentally. Five conventional two-phase flow patterns have been detected (bubble, churn, stratified, annular and jet and transitions between them have been determined. It is shown that a change in the width of the horizontal channels has a substantial effect on the boundaries between the flow regimes.

  14. Factors Impacting Corporate E-Learners' Learning Flow, Satisfaction, and Learning Persistence

    Science.gov (United States)

    Joo, Young Ju; Joung, Sunyong; Kim, Nam Hee; Chung, Hyun Min

    2012-01-01

    This study aimed to investigate the structural relationships among teaching presence, cognitive presence, usage, learning flow, satisfaction, and learning persistence in corporate e-learners. The research participants were 462 e-learners registered for e-lectures through an electronics company in South Korea. First, the sense of teaching presence,…

  15. Gas-liquid-liquid three-phase flow pattern and pressure drop in a microfluidic chip : similarities with gas-liquid/liquid-liquid flows

    NARCIS (Netherlands)

    Yue, J.; Rebrov, E.; Schouten, J.C.

    2014-01-01

    We report a three-phase slug flow and parallel-slug flow as two major flow patterns found under the nitrogen-decane-water flow through a glass microfluidic chip which features a long microchannel with a hydraulic diameter of 98 µm connected to a cross-flow mixer. The three-phase slug flow pattern is

  16. An efficient flow-based botnet detection using supervised machine learning

    DEFF Research Database (Denmark)

    Stevanovic, Matija; Pedersen, Jens Myrup

    2014-01-01

    Botnet detection represents one of the most crucial prerequisites of successful botnet neutralization. This paper explores how accurate and timely detection can be achieved by using supervised machine learning as the tool of inferring about malicious botnet traffic. In order to do so, the paper...... introduces a novel flow-based detection system that relies on supervised machine learning for identifying botnet network traffic. For use in the system we consider eight highly regarded machine learning algorithms, indicating the best performing one. Furthermore, the paper evaluates how much traffic needs...... to accurately and timely detect botnet traffic using purely flow-based traffic analysis and supervised machine learning. Additionally, the results show that in order to achieve accurate detection traffic flows need to be monitored for only a limited time period and number of packets per flow. This indicates...

  17. Magnetic field induced flow pattern reversal in a ferrofluidic Taylor-Couette system.

    Science.gov (United States)

    Altmeyer, Sebastian; Do, Younghae; Lai, Ying-Cheng

    2015-12-21

    We investigate the dynamics of ferrofluidic wavy vortex flows in the counter-rotating Taylor-Couette system, with a focus on wavy flows with a mixture of the dominant azimuthal modes. Without external magnetic field flows are stable and pro-grade with respect to the rotation of the inner cylinder. More complex behaviors can arise when an axial or a transverse magnetic field is applied. Depending on the direction and strength of the field, multi-stable wavy states and bifurcations can occur. We uncover the phenomenon of flow pattern reversal as the strength of the magnetic field is increased through a critical value. In between the regimes of pro-grade and retrograde flow rotations, standing waves with zero angular velocities can emerge. A striking finding is that, under a transverse magnetic field, a second reversal in the flow pattern direction can occur, where the flow pattern evolves into pro-grade rotation again from a retrograde state. Flow reversal is relevant to intriguing phenomena in nature such as geomagnetic reversal. Our results suggest that, in ferrofluids, flow pattern reversal can be induced by varying a magnetic field in a controlled manner, which can be realized in laboratory experiments with potential applications in the development of modern fluid devices.

  18. Effect of the mitral valve on diastolic flow patterns

    International Nuclear Information System (INIS)

    Seo, Jung Hee; Vedula, Vijay; Mittal, Rajat; Abraham, Theodore; Dawoud, Fady; Luo, Hongchang; Lardo, Albert C.

    2014-01-01

    The leaflets of the mitral valve interact with the mitral jet and significantly impact diastolic flow patterns, but the effect of mitral valve morphology and kinematics on diastolic flow and its implications for left ventricular function have not been clearly delineated. In the present study, we employ computational hemodynamic simulations to understand the effect of mitral valve leaflets on diastolic flow. A computational model of the left ventricle is constructed based on a high-resolution contrast computed-tomography scan, and a physiological inspired model of the mitral valve leaflets is synthesized from morphological and echocardiographic data. Simulations are performed with a diode type valve model as well as the physiological mitral valve model in order to delineate the effect of mitral-valve leaflets on the intraventricular flow. The study suggests that a normal physiological mitral valve promotes the formation of a circulatory (or “looped”) flow pattern in the ventricle. The mitral valve leaflets also increase the strength of the apical flow, thereby enhancing apical washout and mixing of ventricular blood. The implications of these findings on ventricular function as well as ventricular flow models are discussed

  19. Measurements of two-phase flow patterns in a 4 x 4 rod bundle

    International Nuclear Information System (INIS)

    Akio tomiyama; Akira Sou; Shigeo Hosokawa; Masato Mitsuhashi; Kohei Noda; Yasushi Tsubo; Kaichiro Mishima; Yoshiro Kudo

    2005-01-01

    Air-water two-phase flow patterns in a 4 x 4 square lattice rod bundle consisting of an acrylic channel box of 68 mm in width and transparent rods of 12 mm in diameter were measured by utilizing FEP (fluorinated ethylene propylene) tubes for the rods. The FEP possesses the same refractive index with water, and therefore, whole flow patterns in the bundle and local flow patterns in subchannels were visualized with little optical distortion. In addition to the visualization, transmission rates of laser beam from one rod to its opponent rod and two-point correlation coefficients of phase indicator functions were measured to examine the feasibility of objective identification of flow patterns in subchannels. The ranges of liquid and gas volume fluxes, JL and JG, were 0.1 < JL < 2.0 m/s and 0.04 < JG < 8.85 m/s, respectively. As a result, the following conclusions were obtained: (1) slug flow pattern does not appear in the rod bundle and bubbly flow would directly transit to churn flow, (2) the measured boundary between bubbly and churn flows is close to the boundary between bubbly and slug flows given by Mishima and Ishii's flow pattern transition model, (3) critical void fraction causing bubbly to churn flow transition depends on a subchannel, i.e., about 0.3 for inner subchannels, about 0.2 for side subchannels and about 0.1 for corner subchannels, and (4) the two-point correlation coefficient of phase indicator functions for two inner subchannels shows a steep increase at the bubbly to churn flow transition, which, in turn, means that the two-point correlation is an appropriate indicator for detecting this transition. (authors)

  20. Doing ecohydrology backward: Inferring wetland flow and hydroperiod from landscape patterns

    Science.gov (United States)

    Acharya, Subodh; Kaplan, David A.; Jawitz, James W.; Cohen, Matthew J.

    2017-07-01

    Human alterations to hydrology have globally impacted wetland ecosystems. Preventing or reversing these impacts is a principal focus of restoration efforts. However, restoration effectiveness is often hampered by limited information on historical landscape properties and hydrologic regime. To help address this gap, we developed a novel statistical approach for inferring flows and inundation frequency (i.e., hydroperiod, HP) in wetlands where changes in spatial vegetation and geomorphic patterns have occurred due to hydrologic alteration. We developed an analytical expression for HP as a transformation of the landscape-scale stage-discharge relationship. We applied this model to the Everglades "ridge-slough" (RS) landscape, a patterned, lotic peatland in southern Florida that has been drastically degraded by compartmentalization, drainage, and flow diversions. The new method reliably estimated flow and HP for a range of RS landscape patterns. Crucially, ridge-patch anisotropy and elevation above sloughs were strong drivers of flow-HP relationships. Increasing ridge heights markedly increased flow required to achieve sufficient HP to support peat accretion. Indeed, ridge heights inferred from historical accounts would require boundary flows 3-4 times greater than today, which agrees with restoration flow estimates from more complex, spatially distributed models. While observed loss of patch anisotropy allows HP targets to be met with lower flows, such landscapes likely fail to support other ecological functions. This work helps inform restoration flows required to restore stable ridge-slough patterning and positive peat accretion in this degraded ecosystem, and, more broadly, provides tools for exploring interactions between landscape and hydrology in lotic wetlands and floodplains.

  1. Transductive Pattern Learning for Information Extraction

    National Research Council Canada - National Science Library

    McLernon, Brian; Kushmerick, Nicholas

    2006-01-01

    .... We present TPLEX, a semi-supervised learning algorithm for information extraction that can acquire extraction patterns from a small amount of labelled text in conjunction with a large amount of unlabelled text...

  2. Echocardiographic and hemodynamic determinants of right coronary artery flow reserve and phasic flow pattern in advanced non-ischemic cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Mady Charles

    2007-09-01

    Full Text Available Abstract Background In patients with advanced non-ischemic cardiomyopathy (NIC, right-sided cardiac disturbances has prognostic implications. Right coronary artery (RCA flow pattern and flow reserve (CFR are not well known in this setting. The purpose of this study was to assess, in human advanced NIC, the RCA phasic flow pattern and CFR, also under right-sided cardiac disturbances, and compare with left coronary circulation. As well as to investigate any correlation between the cardiac structural, mechanical and hemodynamic parameters with RCA phasic flow pattern or CFR. Methods Twenty four patients with dilated severe NIC were evaluated non-invasively, even by echocardiography, and also by cardiac catheterization, inclusive with Swan-Ganz catheter. Intracoronary Doppler (Flowire data was obtained in RCA and left anterior descendent coronary artery (LAD before and after adenosine. Resting RCA phasic pattern (diastolic/systolic was compared between subgroups with and without pulmonary hypertension, and with and without right ventricular (RV dysfunction; and also with LAD. RCA-CFR was compared with LAD, as well as in those subgroups. Pearson's correlation analysis was accomplished among echocardiographic (including LV fractional shortening, mass index, end systolic wall stress more hemodynamic parameters with RCA phasic flow pattern or RCA-CFR. Results LV fractional shortening and end diastolic diameter were 15.3 ± 3.5 % and 69.4 ± 12.2 mm. Resting RCA phasic pattern had no difference comparing subgroups with vs. without pulmonary hypertension (1.45 vs. 1.29, p = NS either with vs. without RV dysfunction (1.47 vs. 1.23, p = NS; RCA vs. LAD was 1.35 vs. 2.85 (p Conclusion In patients with chronic advanced NIC, RCA phasic flow pattern has a mild diastolic predominance, less marked than in LAD, with no effects from pulmonary artery hypertension or RV dysfunction. There is no significant correlation between any cardiac mechanical-structural or

  3. Design of flow-field patterns for proton exchange membrane fuel cell application

    International Nuclear Information System (INIS)

    Rosli, M.I.; Wan Ramli Wan Daud; Kamaruzzaman Sopian; Jaafar Sahari

    2006-01-01

    Fuel cells are electrochemical devices that produce electricity at high efficiency without combustion. Fuel cells are emerging as viable candidates as power sources in many applications, including road vehicles, small-scale power stations, and possibly even portable electronics. This paper addresses the design of flow-field patterns for proton exchange membrane fuel cell (PEMFC). The PEMFC is a low-temperature fuel cell, in which a proton conductive polymer membrane is used as the electrolyte. In PEMFC, flow-field pattern is one important thing that effects the performance of PEMFC. This paper present three types of flow-field pattern that will be consider to be testing using CFD analysis and by experimental. The design look detail on to their shape and dimension to get the best pattern in term of more active electrode area compare to electrode area that will be used. Another advantage and disadvantage for these three type of flow-field patterns from literature also compared in this paper

  4. The art and learning patterns of knowing in nursing

    Directory of Open Access Journals (Sweden)

    Cristina Lavareda Baixinho

    2014-12-01

    Full Text Available Objective To identify the perception of the students about the use of art as a pedagogical strategy in learning the patterns of knowing in nursing; to identify the dimensions of each pattern valued in the analysis of pieces of art. Method Descriptive mixed study. Data collection used a questionnaire applied to 31 nursing students. Results In the analysis of the students’ discourse, it was explicit that empirical knowledge includes scientific knowledge, tradition and nature of care. The aesthetic knowledge implies expressiveness, subjectivity and sensitivity. Self-knowledge, experience, reflective attitude and relationships with others are the subcategories of personal knowledge and the moral and ethics support ethical knowledge. Conclusion It is possible to learn patterns of knowledge through art, especially the aesthetic, ethical and personal. It is necessary to investigate further pedagogical strategies that contribute to the learning patterns of nursing knowledge.

  5. Identification of two-phase flow pattern by using specific spatial frequency of differential pressure signal

    International Nuclear Information System (INIS)

    Han Bin; Tong Yunxian; Wu Shaorong

    1992-11-01

    It is a classical method by using analysis of differential pressure fluctuation signal to identify two-phase flow pattern. The method which uses trait peak in the frequency-domain will result confusion between bubble flow and intermittent flow due to the influence of gas speed. Considering the spatial geometric significance of two-phase slow patterns and using the differential pressure gauge as a sensor, the Strouhal number 'Sr' is taken as the basis for distinguishing flow patterns. Using Strouhal number 'Sr' to identify flow pattern has clear physical meaning. The experimental results using the spatial analytical technique to measure the flow pattern are also given

  6. Periodic flow patterns of the magnetic fluid in microchannel

    International Nuclear Information System (INIS)

    Chang, C.-W.; Cheng, Y.-T.; Tsai, C.-Y.; Chien, J.-H.; Wang, P.-Y.; Chen, P.-H.

    2007-01-01

    In this study, of interests are the periodic flow patterns of the oil-based magnetic fluid in microchannels. A microfluidic chip is made of poly-dimethylsiloxane (PDMS) and contains cross-shape microchannels. The microchannels are 1000 μm in width and 200 μm in depth. A syringe pump was used to drive the fluids. Periodic flow patterns were seen and the slugs of magnetic fluid and DI water were generated. The operating factors discussed in the present work are the flow rates and the magnetic field. The frequency of generation of the slugs increases with increase in the flow rates. Besides, by settling the permanent magnet around the microchannel, the periods of the slug generation are changed. Different positions of the magnet lead to different periods for generating the slugs. By adjusting operating conditions, to control the frequency and the volume of the slugs is practical

  7. PATTERNS OF FLOWS IN AN INTERMEDIATE PROMINENCE OBSERVED BY HINODE

    International Nuclear Information System (INIS)

    Ahn, Kwangsu; Chae, Jongchul; Cao Wenda; Goode, Philip R.

    2010-01-01

    The investigation of plasma flows in filaments/prominences gives us clues to understanding their magnetic structures. We studied the patterns of flows in an intermediate prominence observed by Hinode/SOT. By examining a time series of Hα images and Ca II H images, we have found horizontal flows in the spine and vertical flows in the barb. Both of these flows have a characteristic speed of 10-20 km s -1 . The horizontal flows displayed counterstreaming. Our detailed investigation revealed that most of the moving fragments in fact reversed direction at the end point of the spine near a footpoint close to the associated active region. These returning flows may be one possible explanation of the well-known counterstreaming flows in prominences. In contrast, we have found vertical flows-downward and upward-in the barb. Most of the horizontal flows in the spine seem to switch into vertical flows when they approach the barb, and vice versa. We propose that the net force resulting from a small deviation from magnetohydrostatic equilibrium, where magnetic fields are predominantly horizontal, may drive these patterns of flow. In the prominence studied here, the supposed magnetohydrostatic configuration is characterized by magnetic field lines sagging with angles of 13 0 and 39 0 in the spine and the barb, respectively.

  8. Living with diabetes—Development of learning patterns over a 3-year period

    Directory of Open Access Journals (Sweden)

    Åsa Kneck

    2014-07-01

    Full Text Available Background: Learning involves acquiring new knowledge and skills, and changing our ways of thinking, acting, and feeling. Learning in relation to living with diabetes is a lifelong process where there is limited knowledge of how it is experienced and established over time. It was considered important to explore how learning was developed over time for persons living with diabetes. Aim: The aim of the study was to identify patterns in learning when living with diabetes, from recently being diagnosed, and over a 3-year period. Materials and methods: A longitudinal qualitative descriptive design was used. Thirteen participants, with both type I and type II diabetes, were interviewed at three different occasions during a 3-year period. Qualitative content analysis was used in different steps in order to distinguish patterns. Findings: Five main patterns of learning were identified. Two of the patterns (I and II were characterized by gradually becoming comfortable living with diabetes, whereas for one pattern (IV living with diabetes became gradually more difficult. For pattern V living with diabetes was making only a limited impact on life, whereas for Pattern III there was a constant management of obstacles related to illness. The different patterns in the present study showed common and different ways of learning and using different learning strategies at different timespans. Conclusion: The present study showed that duration of illness is not of importance for how far a person has come in his own learning process. A person-centered care is needed to meet the different and changing needs of persons living with diabetes in relation to learning to live with a lifelong illness.

  9. Entropy feature extraction on flow pattern of gas/liquid two-phase flow based on cross-section measurement

    International Nuclear Information System (INIS)

    Han, J; Dong, F; Xu, Y Y

    2009-01-01

    This paper introduces the fundamental of cross-section measurement system based on Electrical Resistance Tomography (ERT). The measured data of four flow regimes of the gas/liquid two-phase flow in horizontal pipe flow are obtained by an ERT system. For the measured data, five entropies are extracted to analyze the experimental data according to the different flow regimes, and the analysis method is examined and compared in three different perspectives. The results indicate that three different perspectives of entropy-based feature extraction are sensitive to the flow pattern transition in gas/liquid two-phase flow. By analyzing the results of three different perspectives with the changes of gas/liquid two-phase flow parameters, the dynamic structures of gas/liquid two-phase flow is obtained, and they also provide an efficient supplementary to reveal the flow pattern transition mechanism of gas/liquid two-phase flow. Comparison of the three different methods of feature extraction shows that the appropriate entropy should be used for the identification and prediction of flow regimes.

  10. Traffic Flow Prediction with Rainfall Impact Using a Deep Learning Method

    Directory of Open Access Journals (Sweden)

    Yuhan Jia

    2017-01-01

    Full Text Available Accurate traffic flow prediction is increasingly essential for successful traffic modeling, operation, and management. Traditional data driven traffic flow prediction approaches have largely assumed restrictive (shallow model architectures and do not leverage the large amount of environmental data available. Inspired by deep learning methods with more complex model architectures and effective data mining capabilities, this paper introduces the deep belief network (DBN and long short-term memory (LSTM to predict urban traffic flow considering the impact of rainfall. The rainfall-integrated DBN and LSTM can learn the features of traffic flow under various rainfall scenarios. Experimental results indicate that, with the consideration of additional rainfall factor, the deep learning predictors have better accuracy than existing predictors and also yield improvements over the original deep learning models without rainfall input. Furthermore, the LSTM can outperform the DBN to capture the time series characteristics of traffic flow data.

  11. Visualisation of cerebrospinal fluid flow patterns in albino Xenopus larvae in vivo

    Directory of Open Access Journals (Sweden)

    Mogi Kazue

    2012-04-01

    Full Text Available Abstract Background It has long been known that cerebrospinal fluid (CSF, its composition and flow, play an important part in normal brain development, and ependymal cell ciliary beating as a possible driver of CSF flow has previously been studied in mammalian fetuses in vitro. Lower vertebrate animals are potential models for analysis of CSF flow during development because they are oviparous. Albino Xenopus laevis larvae are nearly transparent and have a straight, translucent brain that facilitates the observation of fluid flow within the ventricles. The aim of these experiments was to study CSF flow and circulation in vivo in the developing brain of living embryos, larvae and tadpoles of Xenopus laevis using a microinjection technique. Methods The development of Xenopus larval brain ventricles and the patterns of CSF flow were visualised after injection of quantum dot nanocrystals and polystyrene beads (3.1 or 5.8 μm in diameter into the fourth cerebral ventricle at embryonic/larval stages 30-53. Results The fluorescent nanocrystals showed the normal development of the cerebral ventricles from embryonic/larval stages 38 to 53. The polystyrene beads injected into stage 47-49 larvae revealed three CSF flow patterns, left-handed, right-handed and non-biased, in movement of the beads into the third ventricle from the cerebral aqueduct (aqueduct of Sylvius. In the lateral ventricles, anterior to the third ventricle, CSF flow moved anteriorly along the outer wall of the ventricle to the inner wall and then posteriorly, creating a semicircle. In the cerebral aqueduct, connecting the third and fourth cerebral ventricles, CSF flow moved rostrally in the dorsal region and caudally in the ventral region. Also in the fourth ventricle, clear dorso-ventral differences in fluid flow pattern were observed. Conclusions This is the first visualisation of the orchestrated CSF flow pattern in developing vertebrates using a live animal imaging approach. CSF flow

  12. Research Issues in Evaluating Learning Pattern Development in Higher Education

    Science.gov (United States)

    Richardson, John T. E.

    2013-01-01

    This article concludes the special issue of "Studies in Educational Evaluation" concerned with "Evaluating learning pattern development in higher education" by discussing research issues that have emerged from the previous contributions. The article considers in turn: stability versus variability in learning patterns; old versus new analytic…

  13. Modeling on bubbly to churn flow pattern transition in narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng

    2012-01-01

    A theoretical model based on some reasonable concepts was developed to predict the bubbly flow to churn flow pattern transition in vertical narrow rectangular channel under flow boiling condition. The maximum size of ideal bubble in narrow rectangular channel was calculated based on previous literature. The thermal hydraulics boundary condition of bubbly to churn flow pattern transition was exported from Helmholtz and maximum size of ideal bubble. The theoretical model was validated by existent experimental data. (authors)

  14. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    Directory of Open Access Journals (Sweden)

    Rick O Gilmore

    Full Text Available Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction at three different speeds (2, 4, and 8 deg/s. Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood.

  15. Simulation of Flow Pattern around Inclined Bridge Group Pier using FLOW-3D Software

    Directory of Open Access Journals (Sweden)

    Malihesadat Jafari

    2017-03-01

    Full Text Available Introduction: Bridges are certainly one of the most important structures but costly service elements in a transport system. The bridges are very required to access the damaged areas in emergency situations such as floods and earthquakes. Scour around the foundations of bridge piers exposed to the flowing water than can destroy the bridge itself is a subject of major concern. Flow pattern is known as responsible for all changes in stream bed. Any obstacle in the channel can form new flow patterns causing additional shear stress exerted on the bed than the equilibrium condition of the absence of the obstacle. Appropriate shaping of flow pattern and proper selecting of pier geometry and the location of bridge piers can be one of the proper methods in reduction of scour amount which is the main subject of the present study. Materials and Methods: Inclined bridge group pier is a type of bridges with modern geometry based on development in building technology of structures. Many of these bridges have been built all around the world and the 8th bridge built crossing the Karun River in Ahvaz is a sample of the Iranian ones considered in this research. Hydrodynamic behavior of flow is investigated around the inclined bridge group pier settled on foundation using the FLOW-3D numerical model. Inclined bridge group pier investigated in this study, includes two rectangular piers which are 2.5 cm long and 3.5 cm wide and set in an angle of 28 degree on rectangular foundation which is 16 cm long and 10 cm wide and installed in three different foundation levels namely at, above and below the bed levels. The physical model of prototype pier considered in this study was constructed to the scale of 1:190 of the Ahvaz 8th bridge. In order to verify the accuracy of the numerical model, velocity data obtained from image processing technique were used. Results and Discussion: Due to non- linearity and interactions between various phenomena involved, flow pattern

  16. Visualization and analysis of flow patterns of human carotid bifurcation by computational fluid dynamics

    International Nuclear Information System (INIS)

    Xue Yunjing; Gao Peiyi; Lin Yan

    2007-01-01

    Objective: To investigate flow patterns at carotid bifurcation in vivo by combining computational fluid dynamics (CFD)and MR angiography imaging. Methods: Seven subjects underwent contrast-enhanced MR angiography of carotid artery in Siemens 3.0 T MR. Flow patterns of the carotid artery bifurcation were calculated and visualized by combining MR vascular imaging post-processing and CFD. Results: The flow patterns of the carotid bifurcations in 7 subjects were varied with different phases of a cardiac cycle. The turbulent flow and back flow occurred at bifurcation and proximal of internal carotid artery (ICA) and external carotid artery (ECA), their occurrence and conformation were varied with different phase of a cardiac cycle. The turbulent flow and back flow faded out quickly when the blood flow to the distal of ICA and ECA. Conclusion: CFD combined with MR angiography can be utilized to visualize the cyclical change of flow patterns of carotid bifurcation with different phases of a cardiac cycle. (authors)

  17. Flow Navigation by Smart Microswimmers via Reinforcement Learning

    Science.gov (United States)

    Colabrese, Simona; Biferale, Luca; Celani, Antonio; Gustavsson, Kristian

    2017-11-01

    We have numerically modeled active particles which are able to acquire some limited knowledge of the fluid environment from simple mechanical cues and exert a control on their preferred steering direction. We show that those swimmers can learn effective strategies just by experience, using a reinforcement learning algorithm. As an example, we focus on smart gravitactic swimmers. These are active particles whose task is to reach the highest altitude within some time horizon, exploiting the underlying flow whenever possible. The reinforcement learning algorithm allows particles to learn effective strategies even in difficult situations when, in the absence of control, they would end up being trapped by flow structures. These strategies are highly nontrivial and cannot be easily guessed in advance. This work paves the way towards the engineering of smart microswimmers that solve difficult navigation problems. ERC AdG NewTURB 339032.

  18. Evaluation of flow volume and flow patterns in the patent false lumen of chronic aortic dissections using velocity-encoded cine magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Toshihisa; Watanabe, Shigeru; Sakurada, Hideki; Ono, Katsuhiro; Urano, Miharu; Hijikata, Yasuyoshi; Saito, Isao; Masuda, Yoshiaki [Chiba Univ. (Japan). School of Medicine

    2000-10-01

    In 21 patients with chronic aortic dissections and proven patent false lumens, the flow volume and flow patterns in the patent false lumens was evaluated using velocity-encoded cine magnetic resonance imaging (VENC-MRI) and the relationship between the flow characteristics and aortic enlargement was retrospectively examined. Flow patterns in the false lumen were divided into 3 groups: pattern A with primarily antegrade flow (n=6), pattern R with primarily retrograde flow (n=3), and pattern B with bidirectional flow (n=12). In group A, the rate of flow volume in the false lumen compared to the total flow volume in true and false lumens (%TFV) and the average rate of enlargement of the maximum diameter of the dissected aorta per year ({delta}D) were significantly greater than in groups R and B (%TFV: 74.1{+-}0.07 vs 15.2{+-}0.03 vs 11.8{+-}0.04, p<0.01; {delta}D: 3.62{+-}0.82 vs 0 vs 0.58{+-}0.15 mm/year, p<0.05, respectively). There was a significant correlation between %TFV and {delta}D (r=0.79, p<0.0001). Evaluation of flow volume and flow patterns in the patent false lumen using VENC-MRI may be useful for predicting enlargement of the dissected aorta. (author)

  19. Learning-induced pattern classification in a chaotic neural network

    International Nuclear Information System (INIS)

    Li, Yang; Zhu, Ping; Xie, Xiaoping; He, Guoguang; Aihara, Kazuyuki

    2012-01-01

    In this Letter, we propose a Hebbian learning rule with passive forgetting (HLRPF) for use in a chaotic neural network (CNN). We then define the indices based on the Euclidean distance to investigate the evolution of the weights in a simplified way. Numerical simulations demonstrate that, under suitable external stimulations, the CNN with the proposed HLRPF acts as a fuzzy-like pattern classifier that performs much better than an ordinary CNN. The results imply relationship between learning and recognition. -- Highlights: ► Proposing a Hebbian learning rule with passive forgetting (HLRPF). ► Defining indices to investigate the evolution of the weights simply. ► The chaotic neural network with HLRPF acts as a fuzzy-like pattern classifier. ► The pattern classifier ability of the network is improved much.

  20. Classification of natural circulation two-phase flow patterns using fuzzy inference on image analysis

    International Nuclear Information System (INIS)

    Mesquita, R.N. de; Masotti, P.H.F.; Penha, R.M.L.; Andrade, D.A.; Sabundjian, G.; Torres, W.M.

    2012-01-01

    Highlights: ► A fuzzy classification system for two-phase flow instability patterns is developed. ► Flow patterns are classified based on images of natural circulation experiments. ► Fuzzy inference is optimized to use single grayscale profiles as input. - Abstract: Two-phase flow on natural circulation phenomenon has been an important theme on recent studies related to nuclear reactor designs. The accuracy of heat transfer estimation has been improved with new models that require precise prediction of pattern transitions of flow. In this work, visualization of natural circulation cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. A Fuzzy Flow-type Classification System (FFCS) was developed to classify these patterns based only on image extracted features. Image acquisition and temperature measurements were simultaneously done. Experiments in natural circulation facility were adjusted to generate a series of characteristic two-phase flow instability periodic cycles. The facility is composed of a loop of glass tubes, a heat source using electrical heaters, a cold source using a helicoidal heat exchanger, a visualization section and thermocouples positioned over different loop sections. The instability cyclic period is estimated based on temperature measurements associated with the detection of a flow transition image pattern. FFCS shows good results provided that adequate image acquisition parameters and pre-processing adjustments are used.

  1. The impact of traffic-flow patterns on air quality in urban street canyons

    International Nuclear Information System (INIS)

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17–42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. - Highlights: • CFD is used to study impact of traffic-flow patterns on urban air quality. • Facilitating free-flow patterns induce more turbulence in street canyons. • Traffic-generated turbulence alters pollutant levels in urban street canyons. - This study investigates the effect of vehicle-induced-turbulence generated during free-flow traffic pattern in reduction of air pollutant concentrations in urban street canyons.

  2. Learning Spatiotemporally Encoded Pattern Transformations in Structured Spiking Neural Networks.

    Science.gov (United States)

    Gardner, Brian; Sporea, Ioana; Grüning, André

    2015-12-01

    Information encoding in the nervous system is supported through the precise spike timings of neurons; however, an understanding of the underlying processes by which such representations are formed in the first place remains an open question. Here we examine how multilayered networks of spiking neurons can learn to encode for input patterns using a fully temporal coding scheme. To this end, we introduce a new supervised learning rule, MultilayerSpiker, that can train spiking networks containing hidden layer neurons to perform transformations between spatiotemporal input and output spike patterns. The performance of the proposed learning rule is demonstrated in terms of the number of pattern mappings it can learn, the complexity of network structures it can be used on, and its classification accuracy when using multispike-based encodings. In particular, the learning rule displays robustness against input noise and can generalize well on an example data set. Our approach contributes to both a systematic understanding of how computations might take place in the nervous system and a learning rule that displays strong technical capability.

  3. Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Jiao, Kui; Bachman, John; Zhou, Yibo; Park, Jae Wan

    2014-01-01

    Highlights: • 3D numerical works to study the effect of cross flow on the PEMFC performance. • The cross flow ensure more evenly distributed water and oxygen in the CL. • The optimal net power output can be identified by controlling the back pressure. • Results confirm that present design is effective in improving performance. - Abstract: The cross flow in proton exchange membrane fuel cells (PEMFCs) plays an important role in changing the transport pattern and performance. In this study, three-dimensional numerical simulations are carried out to investigate the effect of induced cross flow on the flow pattern and performance of a PEMFC with a previously proposed and experimentally studied novel parallel flow channel design. The numerical results indicate that the liquid water and oxygen become more evenly distributed in the catalyst layer (CL) as the pressure difference between the low-pressure and high-pressure flow channels increases. It has been found that, in the low-pressure channels, the cross flow drives a convective flow from the CL to the flow channel resulting in improved liquid water removal. The optimal net power output can be identified by controlling the back pressure on the high-pressure flow channels. The numerical results confirm that this novel parallel flow channel design is effective in improving PEMFC performance

  4. Velocity measurements and identification of the flow pattern of vertical air-water flows with light-beam detectors

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.; Leoni, B.

    1980-07-01

    A new detector for measuring fluid velocities in two-phase flows by means of Noise-Analysis (especially Transient-Cross-Correlation-technique) has been developed. The detector utilizes a light-beam which is modulated by changes in the transparency of the two-phase flow. The results of nine measurements for different flow-regimes of vertical air/water-flows are shown. A main topic of these investigations was to answer the question if it is possible to identify the flow-pattern by looking at the shape of different 'Noise-Analytical-functions' (like APSD, CPSD, CCF etc.). The results prove that light-beam sensors are good detectors for fluid-velocity measurements in different flow regimes and in a wide range of fluid velocities starting with values of about 0.08 m/s up to values of 40 m/s. With respect to flow-pattern identification only the time-signals and the shape of the cross-power-density-function (CPSD) seem to be useful. (Auth.)

  5. Assessment of theoretical flow pattern maps for vertical upward two-phase flow

    International Nuclear Information System (INIS)

    Khare, Rajesh; Vijayan, P.K.; Saha, D.; Venkat Raj, V.

    1997-04-01

    Taitel-Dukler (1980), Mishima-Ishii (1984) and Solbrig (1986) flow pattern maps have been assessed against an experimental data bank compiled from different sources. The data bank consisted of a total of 1411 data points with 368 bubbly, 474 slug/churn and 545 annular flow points, the rest being transition points. The data bank consisted of mainly steam water data; some amount of air-water data are included as there were no steam-water data at low pressure ( gs - U ls plane. (author)

  6. Evaluation of flow volume and flow patterns in the patent false lumen of chronic aortic dissections using velocity-encoded cine magnetic resonance imaging

    International Nuclear Information System (INIS)

    Inoue, Toshihisa; Watanabe, Shigeru; Sakurada, Hideki; Ono, Katsuhiro; Urano, Miharu; Hijikata, Yasuyoshi; Saito, Isao; Masuda, Yoshiaki

    2000-01-01

    In 21 patients with chronic aortic dissections and proven patent false lumens, the flow volume and flow patterns in the patent false lumens was evaluated using velocity-encoded cine magnetic resonance imaging (VENC-MRI) and the relationship between the flow characteristics and aortic enlargement was retrospectively examined. Flow patterns in the false lumen were divided into 3 groups: pattern A with primarily antegrade flow (n=6), pattern R with primarily retrograde flow (n=3), and pattern B with bidirectional flow (n=12). In group A, the rate of flow volume in the false lumen compared to the total flow volume in true and false lumens (%TFV) and the average rate of enlargement of the maximum diameter of the dissected aorta per year (ΔD) were significantly greater than in groups R and B (%TFV: 74.1±0.07 vs 15.2±0.03 vs 11.8±0.04, p<0.01; ΔD: 3.62±0.82 vs 0 vs 0.58±0.15 mm/year, p<0.05, respectively). There was a significant correlation between %TFV and ΔD (r=0.79, p<0.0001). Evaluation of flow volume and flow patterns in the patent false lumen using VENC-MRI may be useful for predicting enlargement of the dissected aorta. (author)

  7. Inspiratory flow pattern in humans.

    Science.gov (United States)

    Lafortuna, C L; Minetti, A E; Mognoni, P

    1984-10-01

    The theoretical estimation of the mechanical work of breathing during inspiration at rest is based on the common assumption that the inspiratory airflow wave is a sine function of time. Different analytical studies have pointed out that from an energetic point of view a rectangular wave is more economical than a sine wave. Visual inspection of inspiratory flow waves recorded during exercise in humans and various animals suggests that a trend toward a rectangular flow wave may be a possible systematic response of the respiratory system. To test this hypothesis, the harmonic content of inspiratory flow waves that were recorded in six healthy subjects at rest, during exercise hyperventilation, and during a maximum voluntary ventilation (MVV) maneuver were evaluated by a Fourier analysis, and the results were compared with those obtained on sinusoidal and rectangular models. The dynamic work inherent in the experimental waves and in the sine-wave model was practically the same at rest; during exercise hyperventilation and MVV, the experimental wave was approximately 16-20% more economical than the sinusoidal one. It was concluded that even though at rest the sinusoidal model is a reasonably good approximation of inspiratory flow, during exercise and MVV, a physiological controller is probably operating in humans that can select a more economical inspiratory pattern. Other peculiarities of airflow wave during hyperventilation and some optimization criteria are also discussed.

  8. Structure of two-phase air-water flows. Study of average void fraction and flow patterns

    International Nuclear Information System (INIS)

    Roumy, R.

    1969-01-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V sg = f( ) * g(V sl ). The function g(V sl ) for the case of independent bubbles has been found to be: g(V sl ) = V sl + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V sg /V sl . (author) [fr

  9. Analyzing Unsaturated Flow Patterns in Fractured Rock Using an Integrated Modeling Approach

    International Nuclear Information System (INIS)

    Y.S. Wu; G. Lu; K. Zhang; L. Pan; G.S. Bodvarsson

    2006-01-01

    Characterizing percolation patterns in unsaturated fractured rock has posed a greater challenge to modeling investigations than comparable saturated zone studies, because of the heterogeneous nature of unsaturated media and the great number of variables impacting unsaturated flow. This paper presents an integrated modeling methodology for quantitatively characterizing percolation patterns in the unsaturated zone of Yucca Mountain, Nevada, a proposed underground repository site for storing high-level radioactive waste. The modeling approach integrates a wide variety of moisture, pneumatic, thermal, and isotopic geochemical field data into a comprehensive three-dimensional numerical model for modeling analyses. It takes into account the coupled processes of fluid and heat flow and chemical isotopic transport in Yucca Mountain's highly heterogeneous, unsaturated fractured tuffs. Modeling results are examined against different types of field-measured data and then used to evaluate different hydrogeological conceptualizations and their results of flow patterns in the unsaturated zone. In particular, this model provides a much clearer understanding of percolation patterns and flow behavior through the unsaturated zone, both crucial issues in assessing repository performance. The integrated approach for quantifying Yucca Mountain's flow system is demonstrated to provide a practical modeling tool for characterizing flow and transport processes in complex subsurface systems

  10. Patterns in clinical students' self-regulated learning behavior: a Q-methodology study.

    Science.gov (United States)

    Berkhout, Joris J; Teunissen, Pim W; Helmich, Esther; van Exel, Job; van der Vleuten, Cees P M; Jaarsma, Debbie A D C

    2017-03-01

    Students feel insufficiently supported in clinical environments to engage in active learning and achieve a high level of self-regulation. As a result clinical learning is highly demanding for students. Because of large differences between students, supervisors may not know how to support them in their learning process. We explored patterns in undergraduate students' self-regulated learning behavior in the clinical environment, to improve tailored supervision, using Q-methodology. Q-methodology uses features of both qualitative and quantitative methods for the systematic investigation of subjective issues by having participants sort statements along a continuum to represent their opinion. We enrolled 74 students between December 2014 and April 2015 and had them characterize their learning behavior by sorting 52 statements about self-regulated learning behavior and explaining their response. The statements used for the sorting were extracted from a previous study. The data was analyzed using by-person factor analysis to identify clusters of individuals with similar sorts of the statements. The resulting factors and qualitative data were used to interpret and describe the patterns that emerged. Five resulting patterns were identified in students' self-regulated learning behavior in the clinical environment, which we labelled: Engaged, Critically opportunistic, Uncertain, Restrained and Effortful. The five patterns varied mostly regarding goals, metacognition, communication, effort, and dependence on external regulation for learning. These discrete patterns in students' self-regulated learning behavior in the clinical environment are part of a complex interaction between student and learning context. The results suggest that developing self-regulated learning behavior might best be supported regarding individual students' needs.

  11. Particle Swarm Optimization with Double Learning Patterns.

    Science.gov (United States)

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants.

  12. Particle Swarm Optimization with Double Learning Patterns

    Science.gov (United States)

    Shen, Yuanxia; Wei, Linna; Zeng, Chuanhua; Chen, Jian

    2016-01-01

    Particle Swarm Optimization (PSO) is an effective tool in solving optimization problems. However, PSO usually suffers from the premature convergence due to the quick losing of the swarm diversity. In this paper, we first analyze the motion behavior of the swarm based on the probability characteristic of learning parameters. Then a PSO with double learning patterns (PSO-DLP) is developed, which employs the master swarm and the slave swarm with different learning patterns to achieve a trade-off between the convergence speed and the swarm diversity. The particles in the master swarm and the slave swarm are encouraged to explore search for keeping the swarm diversity and to learn from the global best particle for refining a promising solution, respectively. When the evolutionary states of two swarms interact, an interaction mechanism is enabled. This mechanism can help the slave swarm in jumping out of the local optima and improve the convergence precision of the master swarm. The proposed PSO-DLP is evaluated on 20 benchmark functions, including rotated multimodal and complex shifted problems. The simulation results and statistical analysis show that PSO-DLP obtains a promising performance and outperforms eight PSO variants. PMID:26858747

  13. Involvement of Working Memory in College Students' Sequential Pattern Learning and Performance

    Science.gov (United States)

    Kundey, Shannon M. A.; De Los Reyes, Andres; Rowan, James D.; Lee, Bern; Delise, Justin; Molina, Sabrina; Cogdill, Lindsay

    2013-01-01

    When learning highly organized sequential patterns of information, humans and nonhuman animals learn rules regarding the hierarchical structures of these sequences. In three experiments, we explored the role of working memory in college students' sequential pattern learning and performance in a computerized task involving a sequential…

  14. Different protein-protein interface patterns predicted by different machine learning methods.

    Science.gov (United States)

    Wang, Wei; Yang, Yongxiao; Yin, Jianxin; Gong, Xinqi

    2017-11-22

    Different types of protein-protein interactions make different protein-protein interface patterns. Different machine learning methods are suitable to deal with different types of data. Then, is it the same situation that different interface patterns are preferred for prediction by different machine learning methods? Here, four different machine learning methods were employed to predict protein-protein interface residue pairs on different interface patterns. The performances of the methods for different types of proteins are different, which suggest that different machine learning methods tend to predict different protein-protein interface patterns. We made use of ANOVA and variable selection to prove our result. Our proposed methods taking advantages of different single methods also got a good prediction result compared to single methods. In addition to the prediction of protein-protein interactions, this idea can be extended to other research areas such as protein structure prediction and design.

  15. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

    Science.gov (United States)

    Arubi, Tesi I. M.; Yeung, Hoi

    2012-03-01

    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

  16. Influence of fast advective flows on pattern formation of Dictyostelium discoideum

    Science.gov (United States)

    Bae, Albert; Zykov, Vladimir; Bodenschatz, Eberhard

    2018-01-01

    We report experimental and numerical results on pattern formation of self-organizing Dictyostelium discoideum cells in a microfluidic setup under a constant buffer flow. The external flow advects the signaling molecule cyclic adenosine monophosphate (cAMP) downstream, while the chemotactic cells attached to the solid substrate are not transported with the flow. At high flow velocities, elongated cAMP waves are formed that cover the whole length of the channel and propagate both parallel and perpendicular to the flow direction. While the wave period and transverse propagation velocity are constant, parallel wave velocity and the wave width increase linearly with the imposed flow. We also observe that the acquired wave shape is highly dependent on the wave generation site and the strength of the imposed flow. We compared the wave shape and velocity with numerical simulations performed using a reaction-diffusion model and found excellent agreement. These results are expected to play an important role in understanding the process of pattern formation and aggregation of D. discoideum that may experience fluid flows in its natural habitat. PMID:29590179

  17. Critical heat flux and flow pattern for water flow in annular geometry

    International Nuclear Information System (INIS)

    Park, J.-W.; Baek, W.-P.; Chang, S.H.

    1997-01-01

    An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced-circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m, inner diameter 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, churn-to-annular flow transition and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for the upward flow. In addition to the experiment, selected CHF correlations for annuli are assessed based on 1156 experimental data from various sources. The Doerffer et al. (1994); Barnett (1966); Jannsen and Kervinen (1963); Levitan and Lantsman (1977) correlations show reasonable predictions for wide parameter ranges, among which the Doerffer et al. (1994) correlation shows the widest parameter ranges and a possibility of further improvement. However, there is no correlation predicting the low-pressure, low-flow CHF satisfactorily. (orig.)

  18. Using artificial intelligence to improve identification of nanofluid gas–liquid two-phase flow pattern in mini-channel

    Directory of Open Access Journals (Sweden)

    Jian Xiao

    2018-01-01

    Full Text Available This work combines fuzzy logic and a support vector machine (SVM with a principal component analysis (PCA to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas–liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.

  19. Using artificial intelligence to improve identification of nanofluid gas-liquid two-phase flow pattern in mini-channel

    Science.gov (United States)

    Xiao, Jian; Luo, Xiaoping; Feng, Zhenfei; Zhang, Jinxin

    2018-01-01

    This work combines fuzzy logic and a support vector machine (SVM) with a principal component analysis (PCA) to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas-liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.

  20. Flow Patterns and Thermal Drag in a One-Dimensional Inviscid Channel with Heating or Cooling

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    In this paper investigations on the flow patterns and the thermal drag phenomenon in one -dimensional inviscid channel flow with heating or cooling are described and discussed:expressions of flow rate ratio and thermal drag coefficient for different flow patterns and its physical mechanism are presented.

  1. Machine learning of the reactor core loading pattern critical parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2007-01-01

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employed a recently introduced machine learning technique, Support Vector Regression (SVR), which has a strong theoretical background in statistical learning theory. Superior empirical performance of the method has been reported on difficult regression problems in different fields of science and technology. SVR is a data driven, kernel based, nonlinear modelling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modelling. The starting set of experimental data for training and testing of the machine learning algorithm was obtained using a two-dimensional diffusion theory reactor physics computer code. We illustrate the performance of the solution and discuss its applicability, i.e., complexity, speed and accuracy, with a projection to a more realistic scenario involving machine learning from the results of more accurate and time consuming three-dimensional core modelling code. (author)

  2. A study on effects of cash flow patterns and auditors’ opinions in predicting financial distress

    Directory of Open Access Journals (Sweden)

    Fatemeh Namvar

    2013-07-01

    Full Text Available Bankruptcy has been one of the most important issues among investors in stock market and there are literally different techniques for predicting bankruptcy. In this paper, we study on effects of cash flow patterns and auditors’ opinions in predicting financial distress on some 80 selected firms traded on Tehran Stock Exchange over the period 2005-2011. In this study, the combination of cash flow patterns represent firm’s resource allocations and operational capabilities interacted with their strategy choices. In additions, predictions about each individual cash flow components, operational, investment, financial, are derived from economic theory, which forms a basis for the life proxy. We use cash flow patterns in the decline stage and compare the results with auditors’ opinions. The results indicate that cash flow patterns could predict financial distress companies in Iran. In addition, the effective cash flow patterns in predicting financial distress is more than auditors’ feedbacks.

  3. Supervised Learning for Visual Pattern Classification

    Science.gov (United States)

    Zheng, Nanning; Xue, Jianru

    This chapter presents an overview of the topics and major ideas of supervised learning for visual pattern classification. Two prevalent algorithms, i.e., the support vector machine (SVM) and the boosting algorithm, are briefly introduced. SVMs and boosting algorithms are two hot topics of recent research in supervised learning. SVMs improve the generalization of the learning machine by implementing the rule of structural risk minimization (SRM). It exhibits good generalization even when little training data are available for machine training. The boosting algorithm can boost a weak classifier to a strong classifier by means of the so-called classifier combination. This algorithm provides a general way for producing a classifier with high generalization capability from a great number of weak classifiers.

  4. Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles.

    Science.gov (United States)

    Zhong, Xin; Duan, Fei

    2016-02-01

    The flow regimes and the deposition pattern have been investigated by changing the ethanol concentration in a water-based binary mixture droplet suspended with alumina nanoparticles. To visualize the flow patterns, Particle Image Velocimetry (PIV) has been applied in the binary liquid droplet containing the fluorescent microspheres. Three distinct flow regimes have been revealed in the evaporation. In Regime I, the vortices and chaotic flows are found to carry the particles to the liquid-vapor interface and to promote the formation of particle aggregation. The aggregates move inwards in Regime II as induced by the Marangoni flow along the droplet free surface. Regime III is dominated by the drying of the left water and the capillary flow driving particles radially outward is observed. The relative weightings of Regimes I and II, which are enhanced with an increasing load of ethanol, determine the motion of the nanoparticles and the formation of the final drying pattern.

  5. An active, collaborative approach to learning skills in flow cytometry.

    Science.gov (United States)

    Fuller, Kathryn; Linden, Matthew D; Lee-Pullen, Tracey; Fragall, Clayton; Erber, Wendy N; Röhrig, Kimberley J

    2016-06-01

    Advances in science education research have the potential to improve the way students learn to perform scientific interpretations and understand science concepts. We developed active, collaborative activities to teach skills in manipulating flow cytometry data using FlowJo software. Undergraduate students were given compensated clinical flow cytometry listmode output (FCS) files and asked to design a gating strategy to diagnose patients with different hematological malignancies on the basis of their immunophenotype. A separate cohort of research trainees was given uncompensated data files on which they performed their own compensation, calculated the antibody staining index, designed a sequential gating strategy, and quantified rare immune cell subsets. Student engagement, confidence, and perceptions of flow cytometry were assessed using a survey. Competency against the learning outcomes was assessed by asking students to undertake tasks that required understanding of flow cytometry dot plot data and gating sequences. The active, collaborative approach allowed students to achieve learning outcomes not previously possible with traditional teaching formats, for example, having students design their own gating strategy, without forgoing essential outcomes such as the interpretation of dot plots. In undergraduate students, favorable perceptions of flow cytometry as a field and as a potential career choice were correlated with student confidence but not the ability to perform flow cytometry data analysis. We demonstrate that this new pedagogical approach to teaching flow cytometry is beneficial for student understanding and interpretation of complex concepts. It should be considered as a useful new method for incorporating complex data analysis tasks such as flow cytometry into curricula. Copyright © 2016 The American Physiological Society.

  6. Systematic Assessment of the Impact of User Roles on Network Flow Patterns

    Science.gov (United States)

    2017-09-01

    a system at IP address c_IPj can be expressed as D[ui][c_ip j]. Specifying use of a specific protocol ( prk ), server port (spl) and distant end IP...address (e_ipm) can be expressed as D[ui][c_ip j][ prk ][spl][e_ipm]. 3.2 Patterns Within Flow Sets We define patterns within a set of Netflow records as...address, protocol, server port, and endpoint IP address (D[ui][c_ip j][ prk ][spl][e_ipm]) we identified sequential flow pairs, matching each flow with

  7. Spatio-temporal flow maps for visualizing movement and contact patterns

    Directory of Open Access Journals (Sweden)

    Bing Ni

    2017-03-01

    Full Text Available The advanced telecom technologies and massive volumes of intelligent mobile phone users have yielded a huge amount of real-time data of people’s all-in-one telecommunication records, which we call telco big data. With telco data and the domain knowledge of an urban city, we are now able to analyze the movement and contact patterns of humans in an unprecedented scale. Flow map is widely used to display the movements of humans from one single source to multiple destinations by representing locations as nodes and movements as edges. However, it fails the task of visualizing both movement and contact data. In addition, analysts often need to compare and examine the patterns side by side, and do various quantitative analysis. In this work, we propose a novel spatio-temporal flow map layout to visualize when and where people from different locations move into the same places and make contact. We also propose integrating the spatiotemporal flow maps into existing spatiotemporal visualization techniques to form a suite of techniques for visualizing the movement and contact patterns. We report a potential application the proposed techniques can be applied to. The results show that our design and techniques properly unveil hidden information, while analysis can be achieved efficiently. Keywords: Spatio-temporal data, Flow map, Urban mobility

  8. Effects of rainfall patterns and land cover on the subsurface flow generation of sloping Ferralsols in southern China.

    Directory of Open Access Journals (Sweden)

    Jian Duan

    Full Text Available Rainfall patterns and land cover are two important factors that affect the runoff generation process. To determine the surface and subsurface flows associated with different rainfall patterns on sloping Ferralsols under different land cover types, observational data related to surface and subsurface flows from 5 m × 15 m plots were collected from 2010 to 2012. The experiment was conducted to assess three land cover types (grass, litter cover and bare land in the Jiangxi Provincial Soil and Water Conservation Ecological Park. During the study period, 114 natural rainfall events produced subsurface flow and were divided into four groups using k-means clustering according to rainfall duration, rainfall depth and maximum 30-min rainfall intensity. The results showed that the total runoff and surface flow values were highest for bare land under all four rainfall patterns and lowest for the covered plots. However, covered plots generated higher subsurface flow values than bare land. Moreover, the surface and subsurface flows associated with the three land cover types differed significantly under different rainfall patterns. Rainfall patterns with low intensities and long durations created more subsurface flow in the grass and litter cover types, whereas rainfall patterns with high intensities and short durations resulted in greater surface flow over bare land. Rainfall pattern I had the highest surface and subsurface flow values for the grass cover and litter cover types. The highest surface flow value and lowest subsurface flow value for bare land occurred under rainfall pattern IV. Rainfall pattern II generated the highest subsurface flow value for bare land. Therefore, grass or litter cover are able to convert more surface flow into subsurface flow under different rainfall patterns. The rainfall patterns studied had greater effects on subsurface flow than on total runoff and surface flow for covered surfaces, as well as a greater effect on surface

  9. Decompositions of injection patterns for nodal flow allocation in renewable electricity networks

    Science.gov (United States)

    Schäfer, Mirko; Tranberg, Bo; Hempel, Sabrina; Schramm, Stefan; Greiner, Martin

    2017-08-01

    The large-scale integration of fluctuating renewable power generation represents a challenge to the technical and economical design of a sustainable future electricity system. In this context, the increasing significance of long-range power transmission calls for innovative methods to understand the emerging complex flow patterns and to integrate price signals about the respective infrastructure needs into the energy market design. We introduce a decomposition method of injection patterns. Contrary to standard flow tracing approaches, it provides nodal allocations of link flows and costs in electricity networks by decomposing the network injection pattern into market-inspired elementary import/export building blocks. We apply the new approach to a simplified data-driven model of a European electricity grid with a high share of renewable wind and solar power generation.

  10. 4D flow MRI assessment of right atrial flow patterns in the normal heart - influence of caval vein arrangement and implications for the patent foramen ovale.

    Directory of Open Access Journals (Sweden)

    Jehill D Parikh

    Full Text Available To investigate atrial flow patterns in the normal adult heart, to explore whether caval vein arrangement and patency of the foramen ovale (PFO may be associated with flow pattern.Time-resolved, three-dimensional velocity encoded magnetic resonance imaging (4D flow was employed to assess atrial flow patterns in thirteen healthy subjects (6 male, 40 years, range 25-50 and thirteen subjects (6 male, 40 years, range 21-50 with cryptogenic stroke and patent foramen ovale (CS-PFO. Right atrial flow was defined as vortical, helico-vortical, helical and multiple vortices. Time-averaged and peak systolic and diastolic flows in the caval and pulmonary veins and their anatomical arrangement were compared.A spectrum of right atrial flow was observed across the four defined categories. The right atrial flow patterns were strongly associated with the relative position of the caval veins. Right atrial flow patterns other than vortical were more common (p = 0.015 and the separation between the superior and inferior vena cava greater (10±5mm versus 3±3mm, p = 0.002 in the CS-PFO group. In the left atrium all subjects except one had counter-clockwise vortical flow. Vortex size varied and was associated with left lower pulmonary vein flow (systolic r = 0.61, p = 0.001, diastolic r = 0.63 p = 0.002. A diastolic vortex was less common and time-averaged left atrial velocity was greater in the CS-PFO group (17±2cm/sec versus 15±1, p = 0.048. One CS-PFO subject demonstrated vortical retrograde flow in the descending aortic arch; all other subjects had laminar descending aortic flow.Right atrial flow patterns in the normal heart are heterogeneous and are associated with the relative position of the caval veins. Patterns, other than 'typical' vortical flow, are more prevalent in the right atrium of those with cryptogenic stroke in the context of PFO. Left atrial flow patterns are more homogenous in normal hearts and show a relationship with flow arising from the left

  11. A study of flow patterns for staggered cylinders at low Reynolds number by spectral element method

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Li-Chieh; Chen, Chien-Lin; Ye, Jian-Zhi [National Yunlin University of Science and Technology, Taiwan (China)

    2017-06-15

    This study investigates the pattern of flow past two staggered array cylinders using the spectral element method by varying the distance between the cylinders and the angle of incidence (α) at low Reynolds numbers (Re = 100-800). Six flow patterns are identified as Shear layer reattachment (SLR), Induced separation (IS), Vortex impingement (VI), Synchronized vortex shedding (SVS), Vortex pairing and enveloping (VPE), and Vortex pairing splitting and enveloping (VPSE). These flow patterns can be transformed from one to another by changing the distance between the cylinders, the angle of incidence, or Re. SLR, IS and VI flow patterns appear in regimes with small angles of incidence (i.e., α ≤ 30° ) and hold only a single von Karman vortex shedding in a wake with one shedding frequency. SVS, VPE and VPSE flow patterns appear in regimes with large angles of incidence (i.e., 30° ≤ α ≤ 50° ) and present two synchronized von Karman vortices. Quantitative analyses and physical interpretation are also conducted to determine the generation mechanisms of the said flow patterns.

  12. Investigating flow patterns in a channel with complex obstacles using the lattice Boltzmann method

    Energy Technology Data Exchange (ETDEWEB)

    Yojina, Jiraporn; Ngamsaad, Waipot; Nuttavut, Narin; Triampo, Darapond; Lenbury, Yongwimon; Sriyab, Somchai; Triampo, Wannapong [Faculty of Science, Mahidol University, Bangkok (Thailand); Kanthang, Paisan [Rajamangala University of Technology, Bangkok (Thailand)

    2010-10-15

    In this work, mesoscopic modeling via a computational lattice Boltzmann method (LBM) is used to investigate the flow pattern phenomena and the physical properties of the flow field around one and two square obstacles inside a two-dimensional channel with a fixed blockage ratio,{beta} =14 , centered inside a 2D channel, for a range of Reynolds numbers (Re) from 1 to 300. The simulation results show that flow patterns can initially exhibit laminar flow at low Re and then make a transition to periodic, unsteady, and, finally, turbulent flow as the Re get higher. Streamlines and velocity profiles and a vortex shedding pattern are observed. The Strouhal numbers are calculated to characterize the shedding frequency and flow dynamics. The effect of the layouts or configurations of the obstacles are also investigated, and the possible connection between the mixing process and the appropriate design of a chemical mixing system is discussed

  13. The Role of Statistical Learning and Working Memory in L2 Speakers' Pattern Learning

    Science.gov (United States)

    McDonough, Kim; Trofimovich, Pavel

    2016-01-01

    This study investigated whether second language (L2) speakers' morphosyntactic pattern learning was predicted by their statistical learning and working memory abilities. Across three experiments, Thai English as a Foreign Language (EFL) university students (N = 140) were exposed to either the transitive construction in Esperanto (e.g., "tauro…

  14. Individual Difference Factors in the Learning and Transfer of Patterning Discriminations

    Directory of Open Access Journals (Sweden)

    Elisa Maes

    2017-07-01

    Full Text Available In an associative patterning task, some people seem to focus more on learning an overarching rule, whereas others seem to focus on acquiring specific relations between the stimuli and outcomes involved. Building on earlier work, we further investigated which cognitive factors are involved in feature- vs. rule-based learning and generalization. To this end, we measured participants' tendency to generalize according to the rule of opposites after training on negative and positive patterning problems (i.e., A+/B+/AB− and C−/D−/CD+, their tendency to attend to global aspects or local details of stimuli, their systemizing disposition and their score on the Raven intelligence test. Our results suggest that while intelligence might have some influence on patterning learning and generalization, visual processing style and systemizing disposition do not. We discuss our findings in the light of previous observations on patterning.

  15. Patterns in Elementary School Students' Strategic Actions in Varying Learning Situations

    Science.gov (United States)

    Malmberg, Jonna; Järvenoja, Hanna; Järvelä, Sanna

    2013-01-01

    This study uses log file traces to examine differences between high-and low-achieving students' strategic actions in varying learning situations. In addition, this study illustrates, in detail, what strategic and self-regulated learning constitutes in practice. The study investigates the learning patterns that emerge in learning situations…

  16. An Examination of Game-Based Learning from Theories of Flow Experience and Cognitive Load

    Science.gov (United States)

    Lai, Chih-Hung; Chu, Chih-Ming; Liu, Hsiang-Hsuan; Yang, Shun-Bo; Chen, Wei-Hsuan

    2013-01-01

    This study aims to discuss whether game-based learning with the integration of games and digital learning could enhance not only the flow experience in learning but achieve the same flow experience in pure games. In addition, the authors discovered that whether the game-based learning could make learners to reveal higher cognitive load. The…

  17. Drag Reduction of an Airfoil Using Deep Learning

    Science.gov (United States)

    Jiang, Chiyu; Sun, Anzhu; Marcus, Philip

    2017-11-01

    We reduced the drag of a 2D airfoil by starting with a NACA-0012 airfoil and used deep learning methods. We created a database which consists of simulations of 2D external flow over randomly generated shapes. We then developed a machine learning framework for external flow field inference given input shapes. Past work which utilized machine learning in Computational Fluid Dynamics focused on estimations of specific flow parameters, but this work is novel in the inference of entire flow fields. We further showed that learned flow patterns are transferable to cases that share certain similarities. This study illustrates the prospects of deeper integration of data-based modeling into current CFD simulation frameworks for faster flow inference and more accurate flow modeling.

  18. Effect of Flood Water Diffuser on Flow Pattern of Water during Road Crossing

    Directory of Open Access Journals (Sweden)

    Abdul Ghani A.N.

    2014-03-01

    Full Text Available One of the methods to reduce the velocity of flood water flow across roads is to design obstacle objects as diffusers and place them alongside the road shoulder. The velocity reduction of water flow depends on the diffusion pattern of water. The pattern of diffused water depends on the design of the obstacle objects. The main purpose of this study is to investigate the design of obstacle objects and their water diffusing patterns and their capability to reduce the velocity of the flood water flow during road crossing. Variety of designs and orientation of the obstacle objects were tested in the environmental laboratory on a scale of 1:20. The results are classified into three distinguishable patterns of diffusion. Finally, two diffuser shapes and arrangements are recommended for further investigations in full scale or CFD model.

  19. The use of magnetic resonance imaging to quantify multi-phase flow patterns and transitions

    International Nuclear Information System (INIS)

    Reyes, J.N. Jr.; Lafi, A.Y.; Saloner, D.

    1998-01-01

    Conventional measurement techniques have given limited insights into the complex structure of multi-phase flows. This has led to highly subjective flow pattern classifications which have been cast in terms of flow regime maps. Rather than using static flow regime maps, some of the next generation of multi-phase flow analysis codes will implement interfacial area transport equations that would calculate the flow patterns that evolve spatially and temporally. To assess these new codes, a large data base needs to be established to quantify the essential characteristics of multi-phase flow structure. One such characteristic is the interfacial area concentration. In this paper, we discuss the current benefits and limitations of using Magnetic Resonance Imaging (MRI) to examine multi- phase flow patterns and transitions. Of particular interest, are the MRI measurements of interfacial area concentration for slug flow in an air-water system. These tests were performed at the University of California, San Francisco (UCSF) School of Medicine MRI Center as a collaborative research effort with Oregon State University (OSU). The special scanning sequences designed by UCSF were capable of imaging at repetition intervals as fast as 7 milliseconds. (author)

  20. The use of magnetic resonance imaging to quantify multi-phase flow patterns and transitions

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, Jr, J N; Lafi, A Y [Department of Nuclear Engineering, Oregon State University, Corvallis, OR (United States); Saloner, D [University of California, San Francisco School of Medicine, Veterans Administration Medical Center, San Francisco, CA (United States)

    1998-09-01

    Conventional measurement techniques have given limited insights into the complex structure of multi-phase flows. This has led to highly subjective flow pattern classifications which have been cast in terms of flow regime maps. Rather than using static flow regime maps, some of the next generation of multi-phase flow analysis codes will implement interfacial area transport equations that would calculate the flow patterns that evolve spatially and temporally. To assess these new codes, a large data base needs to be established to quantify the essential characteristics of multi-phase flow structure. One such characteristic is the interfacial area concentration. In this paper, we discuss the current benefits and limitations of using Magnetic Resonance Imaging (MRI) to examine multi- phase flow patterns and transitions. Of particular interest, are the MRI measurements of interfacial area concentration for slug flow in an air-water system. These tests were performed at the University of California, San Francisco (UCSF) School of Medicine MRI Center as a collaborative research effort with Oregon State University (OSU). The special scanning sequences designed by UCSF were capable of imaging at repetition intervals as fast as 7 milliseconds. (author)

  1. An artificial intelligence based improved classification of two-phase flow patterns with feature extracted from acquired images.

    Science.gov (United States)

    Shanthi, C; Pappa, N

    2017-05-01

    Flow pattern recognition is necessary to select design equations for finding operating details of the process and to perform computational simulations. Visual image processing can be used to automate the interpretation of patterns in two-phase flow. In this paper, an attempt has been made to improve the classification accuracy of the flow pattern of gas/ liquid two- phase flow using fuzzy logic and Support Vector Machine (SVM) with Principal Component Analysis (PCA). The videos of six different types of flow patterns namely, annular flow, bubble flow, churn flow, plug flow, slug flow and stratified flow are recorded for a period and converted to 2D images for processing. The textural and shape features extracted using image processing are applied as inputs to various classification schemes namely fuzzy logic, SVM and SVM with PCA in order to identify the type of flow pattern. The results obtained are compared and it is observed that SVM with features reduced using PCA gives the better classification accuracy and computationally less intensive than other two existing schemes. This study results cover industrial application needs including oil and gas and any other gas-liquid two-phase flows. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Two-phase flow patterns and their relationship to two-phase heat transfer

    International Nuclear Information System (INIS)

    Hewitt, G.F.

    1977-01-01

    The objective of this lecture was to discuss the general nature of two phase flows, to define the various regimes of flow and to discuss the influence of these regimes on the heat transfer processes taking place. The methods of regime delineation are briefly described and regime descriptions introduced for both vertical and horizontal flows in tubes. ''Flow regime maps'' have been widely used as an aid to determination of the regime which occurs in a given situation. Some of the more widely used maps are described and the limitations of this approach discussed. There have been many attempts to obtain a better phenomenological description of two phase flow patterns. In this lecture, these attempts will be reviewed in the context of the bubble/plug, plug/churn and churn/annular flow transitions in vertical flow. The latter two transitions are related to the flooding/flow reversal phenomena. For horizontal flows, recent work on the onset of slugging will be reviewed. In flows with evaporation or condensation, the situation is influenced by departures from thermodynamic equilibrium and the types of departure observed are discuss briefly. Flow patterns and their relationships with heat transfer regimes are then reviewed for the case of condensation in horizontal tubes and evaporation in vertical tubes

  3. Parametric study of flow patterns behind the standing accretion shock wave for core-collapse supernovae

    Energy Technology Data Exchange (ETDEWEB)

    Iwakami, Wakana; Nagakura, Hiroki [Yukawa Institute for Theoretical Physics, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502 (Japan); Yamada, Shoichi, E-mail: wakana@heap.phys.waseda.ac.jp [Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2014-05-10

    In this study, we conduct three-dimensional hydrodynamic simulations systematically to investigate the flow patterns behind the accretion shock waves that are commonly formed in the post-bounce phase of core-collapse supernovae. Adding small perturbations to spherically symmetric, steady, shocked accretion flows, we compute the subsequent evolutions to find what flow pattern emerges as a consequence of hydrodynamical instabilities such as convection and standing accretion shock instability for different neutrino luminosities and mass accretion rates. Depending on these two controlling parameters, various flow patterns are indeed realized. We classify them into three basic patterns and two intermediate ones; the former includes sloshing motion (SL), spiral motion (SP), and multiple buoyant bubble formation (BB); the latter consists of spiral motion with buoyant-bubble formation (SPB) and spiral motion with pulsationally changing rotational velocities (SPP). Although the post-shock flow is highly chaotic, there is a clear trend in the pattern realization. The sloshing and spiral motions tend to be dominant for high accretion rates and low neutrino luminosities, and multiple buoyant bubbles prevail for low accretion rates and high neutrino luminosities. It is interesting that the dominant pattern is not always identical between the semi-nonlinear and nonlinear phases near the critical luminosity; the intermediate cases are realized in the latter case. Running several simulations with different random perturbations, we confirm that the realization of flow pattern is robust in most cases.

  4. Effect of solar chimney inclination angle on space flow pattern and ventilation rate

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouny, Ramadan; Korah, Nader S.A. [Department of Mechanical Power Engineering and Energy, Minia University, Minia 61111 (Egypt)

    2009-02-15

    The solar chimney is a simple and practical idea that is applied to enhance space natural ventilation. The chimney could be vertical or inclined. The chimney inclination angle is an important parameter that greatly affects space flow pattern and ventilation rate. In the present study, the effect of chimney inclination angle on air change per hour and indoor flow pattern was numerically and analytically investigated. A numerical simulation using Ansys, a FEM-based code, was used to predict flow pattern. Then the results were compared with published experimental measurements. A FORTRAN program was developed to iteratively solve the mathematical model that was obtained through an overall energy balance on the solar chimney. The analytical results showed that an optimum air flow rate value was achieved when the chimney inclination is between 45 and 70 for latitude of 28.4 . The numerically predicted flow pattern inside the space supports this finding. Moreover, in the present study a correlation to predict the air change per hour was developed. The correlation was tested within a solar intensity greater than or equal to 500 W/m{sup 2}, and chimney width from 0.1 m to 0.35 m for different inclination angles with acceptable values. (author)

  5. Patterns of Internet Usage: Learning Sphere and the Socio-cultural Context

    Directory of Open Access Journals (Sweden)

    Hossein Ebrahimabadi

    2009-11-01

    Full Text Available In addition to the curriculum and the learning targets, there are some other points –as “the culture of the real life”, “patterns of communication and virtual-life’s experiencing”, and generally “pattern of communication and internet usage”- should be considered in evaluating internet. Applying results of a survey on the impacts of both the web-based and the traditional educational methods on students’ learning and motivation, the present study explores the patterns of internet usage. Research method is experimental, using the t test for independent groups and analyzing multi-variable regression, and some points as the population, method of sampling and data gathering is explained in the article. Results show that there is a meaningful difference between the grades of the test group and the witness group; thus variable of “the internet usage” could predict changes in learning. In other words, supra-usage of internet would decrease learning and curriculum development. However, using internet for scientific and schooling would cause students to correlate their patterns of computer and internet usage. As results show, decline in entertaining usage of internet is related to the socio-cultural context, way and amount of participating in the web, and the quality of virtual learning sphere, rather than the interest or disinterest of the users.

  6. Velocity bias induced by flow patterns around ADCPs and associated deployment platforms

    Science.gov (United States)

    Mueller, David S.

    2015-01-01

    Velocity measurements near the Acoustic Doppler Current Profiler (ADCP) are important for mapping surface currents, measuring velocity and discharge in shallow streams, and providing accurate estimates of discharge in the top unmeasured portion of the water column. Improvements to ADCP performance permit measurement of velocities much closer (5 cm) to the transducer than has been possible in the past (25 cm). Velocity profiles collected by the U.S. Geological Survey (USGS) with a 1200 kHz Rio Grande Zedhead ADCP in 2002 showed a negative bias in measured velocities near the transducers. On the basis of these results, the USGS initiated a study combining field, laboratory, and numerical modeling data to assess the effect of flow patterns caused by flow around the ADCP and deployment platforms on velocities measured near the transducers. This ongoing study has shown that the negative bias observed in the field is due to the flow pattern around the ADCP. The flow pattern around an ADCP violates the basic assumption of flow homogeneity required for an accurate three-dimensional velocity solution. Results, to date (2014), have indicated velocity biases within the measurable profile, due to flow disturbance, for the TRDI 1200 kHz Rio Grande Zedhead and the SonTek RiverSurveyor M9 ADCPs. The flow speed past the ADCP, the mount and the deployment platform have also been shown to play an important role in the magnitude and extent of the velocity bias.

  7. Possible effects of two-phase flow pattern on the mechanical behavior of mudstones

    Science.gov (United States)

    Goto, H.; Tokunaga, T.; Aichi, M.

    2016-12-01

    To investigate the influence of two-phase flow pattern on the mechanical behavior of mudstones, laboratory experiments were conducted. In the experiment, air was injected from the bottom of the water-saturated Quaternary Umegase mudstone sample under hydrostatic external stress condition. Both axial and circumferential strains at half the height of the sample and volumetric discharge of water at the outlet were monitored during the experiment. Numerical simulation of the experiment was tried by using a simulator which can solve coupled two-phase flow and poroelastic deformation assuming the extended-Darcian flow with relative permeability and capillary pressure as functions of the wetting-phase fluid saturation. In the numerical simulation, the volumetric discharge of water was reproduced well while both strains were not. Three dimensionless numbers, i.e., the viscosity ratio, the Capillary number, and the Bond number, which characterize the two-phase flow pattern (Lenormand et al., 1988; Ewing and Berkowitz, 1998) were calculated to be 2×10-2, 2×10-11, and 7×10-11, respectively, in the experiment. Because the Bond number was quite small, it was possible to apply Lenormand et al. (1988)'s diagram to evaluate the flow regime, and the flow regime was considered to be capillary fingering. While, in the numerical simulation, air moved uniformly upward with quite low non-wetting phase saturation conditions because the fluid flow obeyed the two-phase Darcy's law. These different displacement patterns developed in the experiment and assumed in the numerical simulation were considered to be the reason why the deformation behavior observed in the experiment could not be reproduced by numerical simulation, suggesting that the two-phase flow pattern could affect the changes of internal fluid pressure patterns during displacement processes. For further studies, quantitative analysis of the experimental results by using a numerical simulator which can solve the coupled

  8. Pattern formation and three-dimensional instability in rotating flows

    Science.gov (United States)

    Christensen, Erik A.; Aubry, Nadine; Sorensen, Jens N.

    1997-03-01

    A fluid flow enclosed in a cylindrical container where fluid motion is created by the rotation of one end wall as a centrifugal fan is studied. Direct numerical simulations and spatio-temporal analysis have been performed in the early transition scenario, which includes a steady-unsteady transition and a breakdown of axisymmetric to three-dimensional flow behavior. In the early unsteady regime of the flow, the central vortex undergoes a vertical beating motion, accompanied by axisymmetric spikes formation on the edge of the breakdown bubble. As traveling waves, the spikes move along the central vortex core toward the rotating end-wall. As the Reynolds number is increased further, the flow undergoes a three-dimensional instability. The influence of the latter on the previous patterns is studied.

  9. Characterizing Groundwater Level and Flow Pattern in a Shallow ...

    African Journals Online (AJOL)

    Bheema

    This study characterize groundwater yield and flow pattern on a shallow ... simple process of weathering, fractured fissure systems, networks of joints and ..... lowest yield in wells that are deeper than the mean well depth in the study area.

  10. Exploring the roles of interaction and flow in explaining nurses' e-learning acceptance.

    Science.gov (United States)

    Cheng, Yung-Ming

    2013-01-01

    To provide safe and competent patient care, it is very important that medical institutions should provide nurses with continuing education by using appropriate learning methods. As compared to traditional learning, electronic learning (e-learning) is a more flexible method for nurses' in-service learning. Hence, e-learning is expected to play a pivotal role in providing continuing education for nurses. This study's purpose was to explore the role and relevance of interaction factors, intrinsic motivator (i.e., flow), and extrinsic motivators (i.e., perceived usefulness (PU) and perceived ease of use (PEOU)) in explaining nurses' intention to use the e-learning system. Based on the technology acceptance model (TAM) with the flow theory, this study's research model presents three types of interaction factors, learner-system interaction, instructor-learner interaction, and learner-learner interaction to construct an extended TAM to explore nurses' intention to use the e-learning system. Sample data were gathered from nurses at two regional hospitals in Taiwan. A total of 320 questionnaires were distributed, 254 (79.375%) questionnaires were returned. Consequently, 218 usable questionnaires were analyzed in this study, with a usable response rate of 68.125%. First, confirmatory factor analysis was used to develop the measurement model. Second, to explore the causal relationships among all constructs, the structural model for the research model was tested by using structural equation modeling. First, learner-system interaction, instructor-learner interaction, and learner-learner interaction respectively had significant effects on PU, PEOU, and flow. Next, flow had significant effects on PU and PEOU, and PEOU had a significant effect on PU. Finally, the effects of flow, PU, and PEOU on intention to use were significant. Synthetically speaking, learner-system interaction, instructor-learner interaction, and learner-learner interaction can indirectly make significant

  11. Hypothetical Pattern Recognition Design Using Multi-Layer Perceptorn Neural Network For Supervised Learning

    Directory of Open Access Journals (Sweden)

    Md. Abdullah-al-mamun

    2015-08-01

    Full Text Available Abstract Humans are capable to identifying diverse shape in the different pattern in the real world as effortless fashion due to their intelligence is grow since born with facing several learning process. Same way we can prepared an machine using human like brain called Artificial Neural Network that can be recognize different pattern from the real world object. Although the various techniques is exists to implementation the pattern recognition but recently the artificial neural network approaches have been giving the significant attention. Because the approached of artificial neural network is like a human brain that is learn from different observation and give a decision the previously learning rule. Over the 50 years research now a days pattern recognition for machine learning using artificial neural network got a significant achievement. For this reason many real world problem can be solve by modeling the pattern recognition process. The objective of this paper is to present the theoretical concept for pattern recognition design using Multi-Layer Perceptorn neural networkin the algorithm of artificial Intelligence as the best possible way of utilizing available resources to make a decision that can be a human like performance.

  12. Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.

    Science.gov (United States)

    Guidotti, Roberto; Del Gratta, Cosimo; Baldassarre, Antonello; Romani, Gian Luca; Corbetta, Maurizio

    2015-07-08

    When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus. Here we test whether visual learning/task performance can induce a change in the patterns of coded information in R-fMRI signals consistent with a role of spontaneous activity in representing task-relevant information. Human subjects underwent R-fMRI before and after perceptual learning on a novel visual shape orientation discrimination task. Task-evoked fMRI patterns to trained versus novel stimuli were recorded after learning was completed, and before the second R-fMRI session. Using multivariate pattern analysis on task-evoked signals, we found patterns in several cortical regions, as follows: visual cortex, V3/V3A/V7; within the default mode network, precuneus, and inferior parietal lobule; and, within the dorsal attention network, intraparietal sulcus, which discriminated between trained and novel visual stimuli. The accuracy of classification was strongly correlated with behavioral performance. Next, we measured multivariate patterns in R-fMRI signals before and after learning. The frequency and similarity of resting states representing the task/visual stimuli states increased post-learning in the same cortical regions recruited by the task. These findings support a representational role of spontaneous brain activity. Copyright © 2015 the authors 0270-6474/15/359786-13$15.00/0.

  13. Relationship between spontaneous expiratory flow-volume curve pattern and air-flow obstruction in elderly COPD patients.

    Science.gov (United States)

    Nozoe, Masafumi; Mase, Kyoshi; Murakami, Shigefumi; Okada, Makoto; Ogino, Tomoyuki; Matsushita, Kazuhiro; Takashima, Sachie; Yamamoto, Noriyasu; Fukuda, Yoshihiro; Domen, Kazuhisa

    2013-10-01

    Assessment of the degree of air-flow obstruction is important for determining the treatment strategy in COPD patients. However, in some elderly COPD patients, measuring FVC is impossible because of cognitive dysfunction or severe dyspnea. In such patients a simple test of airways obstruction requiring only a short run of tidal breathing would be useful. We studied whether the spontaneous expiratory flow-volume (SEFV) curve pattern reflects the degree of air-flow obstruction in elderly COPD patients. In 34 elderly subjects (mean ± SD age 80 ± 7 y) with stable COPD (percent-of-predicted FEV(1) 39.0 ± 18.5%), and 12 age-matched healthy subjects, we measured FVC and recorded flow-volume curves during quiet breathing. We studied the SEFV curve patterns (concavity/convexity), spirometry results, breathing patterns, and demographics. The SEFV curve concavity/convexity prediction accuracy was examined by calculating the receiver operating characteristic curves, cutoff values, area under the curve, sensitivity, and specificity. Fourteen subjects with COPD had a concave SEFV curve. All the healthy subjects had convex SEFV curves. The COPD subjects who had concave SEFV curves often had very severe airway obstruction. The percent-of-predicted FEV(1)% (32.4%) was the most powerful SEFV curve concavity predictor (area under the curve 0.92, 95% CI 0.83-1.00), and had the highest sensitivity (0.93) and specificity (0.88). Concavity of the SEFV curve obtained during tidal breathing may be a useful test for determining the presence of very severe obstruction in elderly patients unable to perform a satisfactory FVC maneuver.

  14. CFD simulation of flow pattern in a bubble column reactor for forming aerobic granules and its development.

    Science.gov (United States)

    Fan, Wenwen; Yuan, LinJiang; Li, Yonglin

    2018-06-04

    The flow pattern is considered to play an important role in the formation of aerobic granular sludge in a bubble column reactor; therefore, it is necessary to understand the behavior of the flow in the reactor. A three-dimensional computational fluid dynamics (CFD) simulation for bubble column reactor was established to visualize the flow patterns of two-phase air-liquid flow and three-phase air-liquid-sludge flow under different ratios of height to diameter (H/D ratio) and superficial gas upflow velocities (SGVs). Moreover, a simulation of the three-phase flow pattern at the same SGV and different characteristics of the sludge was performed in this study. The results show that not only SGV but also properties of sludge involve the transformation of flow behaviors and relative velocity between liquid and sludge. For the original activated sludge floc to cultivate aerobic granules, the flow pattern has nothing to do with sludge, but is influenced by SGV, and the vortices is occurred and the relative velocity is increased with an increase in SGV; the two-phase flow can simplify the three-phase flow that predicts the flow pattern development in bubble column reactor (BCR) for aerobic granulation. For the aerobic granules, the liquid flow behavior developed from the symmetrical circular flow to numbers and small-size vortices with an increase in the sludge diameter, the relative velocity is amount up to u r =5.0, it is 29.4 times of original floc sludge.

  15. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    Directory of Open Access Journals (Sweden)

    Krešimir Trontl

    2008-01-01

    Full Text Available The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR, which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy.

  16. Machine Learning of the Reactor Core Loading Pattern Critical Parameters

    International Nuclear Information System (INIS)

    Trontl, K.; Pevec, D.; Smuc, T.

    2008-01-01

    The usual approach to loading pattern optimization involves high degree of engineering judgment, a set of heuristic rules, an optimization algorithm, and a computer code used for evaluating proposed loading patterns. The speed of the optimization process is highly dependent on the computer code used for the evaluation. In this paper, we investigate the applicability of a machine learning model which could be used for fast loading pattern evaluation. We employ a recently introduced machine learning technique, support vector regression (SVR), which is a data driven, kernel based, nonlinear modeling paradigm, in which model parameters are automatically determined by solving a quadratic optimization problem. The main objective of the work reported in this paper was to evaluate the possibility of applying SVR method for reactor core loading pattern modeling. We illustrate the performance of the solution and discuss its applicability, that is, complexity, speed, and accuracy

  17. Mode pattern of internal flow in a water droplet on a vibrating hydrophobic surface.

    Science.gov (United States)

    Kim, Hun; Lim, Hee-Chang

    2015-06-04

    The objective of this study is to understand the mode pattern of the internal flow in a water droplet placed on a hydrophobic surface that periodically and vertically vibrates. As a result, a water droplet on a vibrating hydrophobic surface has a typical shape that depends on each resonance mode, and, additionally, we observed a diversified lobe size and internal flows in the water droplet. The size of each lobe at the resonance frequency was relatively greater than that at the neighboring frequencies, and the internal flow of the nth order mode was also observed in the flow visualization. In general, large symmetrical flow streams were generated along the vertical axis in each mode, with a large circulating movement from the bottom to the top, and then to the triple contact line along the droplet surface. In contrast, modes 2 and 4 generated a Y-shaped flow pattern, in which the flow moved to the node point in the lower part of the droplet, but modes 6 and 8 had similar patterns, with only a little difference. In addition, as a result of the PIV measurement, while the flow velocity of mode 4 was faster than that of model 2, those of modes 6 and 8 were almost similar.

  18. Experimental and visual study on flow patterns and pressure drops in U-tubes

    International Nuclear Information System (INIS)

    Da Silva Lima, J. R.

    2011-01-01

    In single- and two-phase flow heat exchangers (in particular 'coils'), besides the straight tubes there are also many singularities, in particular the 180° return bends (also called return bends or U-bends). However, contrary to the literature concerning pressure drops and heat transfer in straight tubes, where many experimental data and predicting methods are available, only a limited number of studies concerning U-bends can be found. Neither reliable experimental data nor proven prediction methods are available. Indeed, flow structure, pressure drop and heat transfer in U-bends are an old unresolved design problem in the heat transfer industry. Thus, the present study aims at providing further insight on two-phase pressure drops and flows patterns in U-bends. Based on a new type of U-bend test section, an extensive experimental study was conducted. The experimental campaign covered five test sections with three internal diameters (7.8, 10.8 and 13.4 mm), five bend diameters (24.8, 31.7, 38.1, 54.8 and 66.1 mm), tested for three orientations (horizontal, vertical upflow and vertical downflow), two fluids (R134a and R410A), two saturation temperatures (5 and 10 °C) and mass velocities ranging from 150 to 1000 kg s -1 m -2 . The flow pattern observations identified were stratified-wavy, slug-stratified-wavy, intermittent, annular, dryout and mist flows. The effects of the U-bend on the flow patterns were also observed. A total of 5655 pressure drop data were measured at seven different locations in the test section ( straight tubes and U-bend) providing a total of almost 40,000 data points. The straight tube data were first used to improve the actual two-phase straight tube model of Moreno-Quibén and Thome. This updated model was then used to developed a two-phase U-bend pressure drop model. Based on a comparison between experimental and predicted values, it is concluded that the new two-phase frictional pressure drop model for U-bends successfully

  19. Identification of two-phase flow patterns in a nuclear reactor by the high-frequency contribution fraction

    International Nuclear Information System (INIS)

    Wang, Y.W.; Pei, B.S.; King, C.H.; Lee, S.C.

    1989-01-01

    Recently, King et al. and Wang et al. analyzed the fluctuating characteristics of differential pressure and void fraction by the optimum modeling method and by spectral analysis, respectively. These two investigations presented some new concepts and deterministic criteria, which are based on purely empirical formulas, to identify two-phase flow patterns. These deterministic criteria on two-phase flow patterns' identification seem to show reasonable performance. In King's and Wang's studies, there are at least three problems that need further investigations for the applications to the nuclear reactor engineering field. These three problems are the following: 1. Is the response to a certain two-phase flow pattern, i.e., the fluctuating characteristics, of neutrons the same as that of differential pressure or void fraction? 2. Could those criteria developed from air/water flow be allowed to identify steam/water two-phase flow patterns? 3. Could those criteria be applied to identify two-phase flow patterns in rod bundles? In this paper, parts of the investigated results answer the first problem, and detailed comparisons with the previous work of the authors are given on a variety of items

  20. Heat transfer and flow pattern during two-phase flow boiling of R-134a in horizontal smooth and microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Minghuei; Lin, Tsunkuo; Tseng, Chyuanchyi [National Sun Yat Sen Univ., Taiwan (China). Dept. of Mechanical Engineering

    2002-09-01

    Flow pattern and heat transfer during evaporation in a 10.7 mm diameter smooth tube and a micro-fin tube are presented. The tubes were tested in the ranges of mass flux between 163 and 408 kg m{sup -2}s{sup -1} and heat flux between 2200 and 56 000 W m{sup -2}. The evaporation temperature was 6{sup o}C. Flow maps for both the tubes are plotted in the coordinates of mass flux and vapor quality. The relations of flow pattern and local heat transfer coefficient are discussed. The heat transfer coefficients for intermittent and annular flows in both the smooth tube and the micro-fin tube are shown to agree well with Gungor and Winterton's correlation with modified constants. (author)

  1. A study of the cerebral blood flow pattern and cognitive deficit in Parkinson's disease

    International Nuclear Information System (INIS)

    Tamaru, Fuyuhiko

    1997-01-01

    Cerebral blood flow pattern in Parkinson's disease was examined by 123 I-IMP SPECT to determine whether the deficit in cognitive function is reflected in it. The patient group with Parkinson's disease showed deterioration in intelligence (Minimental state examination, Raven's Colored Progressive Matrices) and frontal lobe test (the Wisconsin Card Sorting Test). Though the uptake ratio of prefrontal area/occipital area in 123 I-IMP SPECT study varied widely in the Parkinson's disease group compared to the normal control group, there was no significant difference in the mean. Selective depletion of frontal lobe blood flow was not confirmed in this study. There was no correlation between cerebral blood flow pattern and cognitive functions including frontal lobe function and intelligence. We concluded that the deficit in cognitive function was not reflected in the cerebral blood flow pattern in Parkinson's disease. (author)

  2. Exploring the Behavioural Patterns of Entrepreneurial Learning: A Competency Approach

    Science.gov (United States)

    Man, Thomas Wing Yan

    2006-01-01

    Purpose: The purpose of this study is to empirically explore the behavioural patterns involved in entrepreneurial learning through a conceptualization of entrepreneurial learning as a "competency". Design/methodology/approach: Semi-structured interviews to 12 entrepreneurs were conducted with a focus on the critical incidents in which…

  3. Effect of a flow-corrective insert on the flow pattern in a pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu; Gui, Nan; Yang, Xingtuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Tu, Jiyuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); School of Aerospace, Mechanical & Manufacturing Engineering, RMIT University, Melbourne 3083, VIC (Australia); Jiang, Shengyao, E-mail: shengyaojiang@sina.com [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-04-15

    Highlights: • Effect of an insert on improving flow uniformity and eliminating stagnant zone is studied. • Three values concerned with the stagnant zone, radial uniformity and flow sequence are used. • Outlet diameter is a critical parameter that determines balancing mechanism of the insert. • Height/location is varied to let the insert work in unbalanced region and avoid adverse effect. - Abstract: A flow-corrective insert is adopted in the pebble-bed high temperature gas-cooled reactor (HTGR) to improve flow performance of the pebble flow for the first time. 3D discrete element method (DEM) modeling is employed to study this slow and dense granular flow. It is verified that locating a properly designed insert in the bed can help transform unsatisfactory flow field to the preferred flow pattern for pebble bed reactors. Three characteristic values on the stagnant zone, radial uniformity and flow sequence of pebble flow are defined to evaluate uniformity of the overall flow field quantitatively. The results demonstrate that the pebble bed equipped with an insert performs better than normal beds from all these three aspects. Moreover, based on numerical experiments, several universal tips for insert design on height, location and outlet diameter are suggested.

  4. Learning patterns of life from intelligence analyst chat

    Science.gov (United States)

    Schneider, Michael K.; Alford, Mark; Babko-Malaya, Olga; Blasch, Erik; Chen, Lingji; Crespi, Valentino; HandUber, Jason; Haney, Phil; Nagy, Jim; Richman, Mike; Von Pless, Gregory; Zhu, Howie; Rhodes, Bradley J.

    2016-05-01

    Our Multi-INT Data Association Tool (MIDAT) learns patterns of life (POL) of a geographical area from video analyst observations called out in textual reporting. Typical approaches to learning POLs from video make use of computer vision algorithms to extract locations in space and time of various activities. Such approaches are subject to the detection and tracking performance of the video processing algorithms. Numerous examples of human analysts monitoring live video streams annotating or "calling out" relevant entities and activities exist, such as security analysis, crime-scene forensics, news reports, and sports commentary. This user description typically corresponds with textual capture, such as chat. Although the purpose of these text products is primarily to describe events as they happen, organizations typically archive the reports for extended periods. This archive provides a basis to build POLs. Such POLs are useful for diagnosis to assess activities in an area based on historical context, and for consumers of products, who gain an understanding of historical patterns. MIDAT combines natural language processing, multi-hypothesis tracking, and Multi-INT Activity Pattern Learning and Exploitation (MAPLE) technologies in an end-to-end lab prototype that processes textual products produced by video analysts, infers POLs, and highlights anomalies relative to those POLs with links to "tracks" of related activities performed by the same entity. MIDAT technologies perform well, achieving, for example, a 90% F1-value on extracting activities from the textual reports.

  5. Patterns and stability of a whirlpool flow

    Energy Technology Data Exchange (ETDEWEB)

    Carrión, Luis [Universidad de las Fuerzas Armadas-ESPE, Av. Gral. Rumiñahui s/n Sangolquí 171103 (Ecuador); Herrada, Miguel A; María López-Herrera, José [E.S.I, Universidad de Sevilla, Camino de los Descubrimientos s/n 41092 (Spain); Shtern, Vladimir N [Shtern Research and Consulting, Houston, Texas 77096, United States of America (United States)

    2017-04-15

    This numerical study reveals stable multi-eddy patterns of a steady axisymmetric air–water flow driven by the rotating bottom disk in a vertical sealed cylindrical container. As rotation strength Re increases, eddies emerge, coalesce, separate, and disappear in both air and water. The topological scenario varies with water volume fraction H{sub w} according to the results obtained for H{sub w}  = 0.3, 0.5, and 0.8. Interesting features are: (a) zipper-like chains of air and water eddies forming as the interface bends and (b) bubble-ring air eddies existing in the Re ranges specified in the paper. The stability analysis, performed with the help of a novel efficient technique for two-fluid flows, shows that these multi-eddy motions are stable. The shear-layer instability develops as the interface approaches either the top or bottom of the container and some eddies vanish. The physical reasoning behind the eddy formation and the flow instability is provided. The results are of fundamental interest and can have applications in bioreactors. (paper)

  6. Numerical Study of Flow Motion and Patterns Driven by a Rotating Permanent Helical Magnetic Field

    Science.gov (United States)

    Yang, Wenzhi; Wang, Xiaodong; Wang, Bo; Baltaretu, Florin; Etay, Jacqueline; Fautrelle, Yves

    2016-10-01

    Liquid metal magnetohydrodynamic flow driven by a rotating permanent helical magnetic field in a cylindrical container is numerically studied. A three-dimensional numerical simulation provides insight into the visualization of the physical fields, including the magnetic field, the Lorentz force density, and the flow structures, especially the flow patterns in the meridional plane. Because the screen parameter is sufficiently small, the model is decoupled into electromagnetic and hydrodynamic components. Two flow patterns in the meridional plane, i.e., the global flow and the secondary flow, are discovered and the impact of several system parameters on their transition is investigated. Finally, a verifying model is used for comparison with the previous experiment.

  7. Effects of mobile gaming patterns on learning outcomes: a literature review

    NARCIS (Netherlands)

    Schmitz, Birgit; Klemke, Roland; Specht, Marcus

    2013-01-01

    Schmitz, B., Klemke, R., & Specht, M. (2012). Effects of mobile gaming patterns on learning outcomes: A literature review. International Journal of Technology Enhanced Learning, 4(5-6), 345-358. doi:10.1504/IJTEL.2012.051817

  8. Pattern Extraction Algorithm for NetFlow-Based Botnet Activities Detection

    Directory of Open Access Journals (Sweden)

    Rafał Kozik

    2017-01-01

    Full Text Available As computer and network technologies evolve, the complexity of cybersecurity has dramatically increased. Advanced cyber threats have led to current approaches to cyber-attack detection becoming ineffective. Many currently used computer systems and applications have never been deeply tested from a cybersecurity point of view and are an easy target for cyber criminals. The paradigm of security by design is still more of a wish than a reality, especially in the context of constantly evolving systems. On the other hand, protection technologies have also improved. Recently, Big Data technologies have given network administrators a wide spectrum of tools to combat cyber threats. In this paper, we present an innovative system for network traffic analysis and anomalies detection to utilise these tools. The systems architecture is based on a Big Data processing framework, data mining, and innovative machine learning techniques. So far, the proposed system implements pattern extraction strategies that leverage batch processing methods. As a use case we consider the problem of botnet detection by means of data in the form of NetFlows. Results are promising and show that the proposed system can be a useful tool to improve cybersecurity.

  9. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns.

    Science.gov (United States)

    Hartwig, Jan; Metternich, Jan B; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V

    2014-06-14

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  10. Continuous flow chemistry: a discovery tool for new chemical reactivity patterns

    OpenAIRE

    Hartwig, Jan; Metternich, Jan B.; Nikbin, Nikzad; Kirschning, Andreas; Ley, Steven V.

    2014-01-01

    Continuous flow chemistry as a process intensification tool is well known. However, its ability to enable chemists to perform reactions which are not possible in batch is less well studied or understood. Here we present an example, where a new reactivity pattern and extended reaction scope has been achieved by transferring a reaction from batch mode to flow. This new reactivity can be explained by suppressing back mixing and precise control of temperature in a flow reactor set up.

  11. Pressure-flow characteristics of normal and disordered esophageal motor patterns.

    Science.gov (United States)

    Singendonk, Maartje M J; Kritas, Stamatiki; Cock, Charles; Ferris, Lara F; McCall, Lisa; Rommel, Nathalie; van Wijk, Michiel P; Benninga, Marc A; Moore, David; Omari, Taher I

    2015-03-01

    To perform pressure-flow analysis (PFA) in a cohort of pediatric patients who were referred for diagnostic manometric investigation. PFA was performed using purpose designed Matlab-based software. The pressure-flow index (PFI), a composite measure of bolus pressurization relative to flow and the impedance ratio, a measure of the extent of bolus clearance failure were calculated. Tracings of 76 pediatric patients (32 males; 9.1 ± 0.7 years) and 25 healthy adult controls (7 males; 36.1 ± 2.2 years) were analyzed. Patients mostly had normal motility (50%) or a category 4 disorder and usually weak peristalsis (31.5%) according to the Chicago Classification. PFA of healthy controls defined reference ranges for PFI ≤142 and impedance ratio ≤0.49. Pediatric patients with pressure-flow (PF) characteristics within these limits had normal motility (62%), most patients with PF characteristics outside these limits also had an abnormal Chicago Classification (61%). Patients with high PFI and disordered motor patterns all had esophagogastric junction outflow obstruction. Disordered PF characteristics are associated with disordered esophageal motor patterns. By defining the degree of over-pressurization and/or extent of clearance failure, PFA may be a useful adjunct to esophageal pressure topography-based classification. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Pro deep learning with TensorFlow a mathematical approach to advanced artificial intelligence in Python

    CERN Document Server

    Pattanayak, Santanu

    2017-01-01

    Deploy deep learning solutions in production with ease using TensorFlow. You'll also develop the mathematical understanding and intuition required to invent new deep learning architectures and solutions on your own. Pro Deep Learning with TensorFlow provides practical, hands-on expertise so you can learn deep learning from scratch and deploy meaningful deep learning solutions. This book will allow you to get up to speed quickly using TensorFlow and to optimize different deep learning architectures. All of the practical aspects of deep learning that are relevant in any industry are emphasized in this book. You will be able to use the prototypes demonstrated to build new deep learning applications. The code presented in the book is available in the form of iPython notebooks and scripts which allow you to try out examples and extend them in interesting ways. You will be equipped with the mathematical foundation and scientific knowledge to pursue research in this field and give back to the community.

  13. Nonlinear waves and pattern dynamics

    CERN Document Server

    Pelinovsky, Efim; Mutabazi, Innocent

    2018-01-01

    This book addresses the fascinating phenomena associated with nonlinear waves and spatio-temporal patterns. These appear almost everywhere in nature from sand bed forms to brain patterns, and yet their understanding still presents fundamental scientific challenges. The reader will learn here, in particular, about the current state-of-the art and new results in: Nonlinear water waves: resonance, solitons, focusing, Bose-Einstein condensation, as well as and their relevance for the sea environment (sea-wind interaction, sand bed forms, fiber clustering) Pattern formation in non-equilibrium media: soap films, chimera patterns in oscillating media, viscoelastic Couette-Taylor flow, flow in the wake behind a heated cylinder, other pattern formation. The editors and authors dedicate this book to the memory of Alexander Ezersky, Professor of Fluid Mechanics at the University of Caen Normandie (France) from September 2007 to July 2016. Before 2007, he had served as a Senior Scientist at the Institute of Applied Physi...

  14. Pattern database applications from design to manufacturing

    Science.gov (United States)

    Zhuang, Linda; Zhu, Annie; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh

    2017-03-01

    Pattern-based approaches are becoming more common and popular as the industry moves to advanced technology nodes. At the beginning of a new technology node, a library of process weak point patterns for physical and electrical verification are starting to build up and used to prevent known hotspots from re-occurring on new designs. Then the pattern set is expanded to create test keys for process development in order to verify the manufacturing capability and precheck new tape-out designs for any potential yield detractors. With the database growing, the adoption of pattern-based approaches has expanded from design flows to technology development and then needed for mass-production purposes. This paper will present the complete downstream working flows of a design pattern database(PDB). This pattern-based data analysis flow covers different applications across different functional teams from generating enhancement kits to improving design manufacturability, populating new testing design data based on previous-learning, generating analysis data to improve mass-production efficiency and manufacturing equipment in-line control to check machine status consistency across different fab sites.

  15. Selection of Two-Phase Flow Patterns at a Simple Junction in Microfluidic Devices

    Science.gov (United States)

    Engl, W.; Ohata, K.; Guillot, P.; Colin, A.; Panizza, P.

    2006-04-01

    We study the behavior of a confined stream made of two immiscible fluids when it reaches a T junction. Two flow patterns are witnessed: the stream is either directed in only one sidearm, yielding a preferential flow pathway for the dispersed phase, or splits between both. We show that the selection of these patterns is not triggered by the shape of the junction nor by capillary effects, but results from confinement. It can be anticipated in terms of the hydrodynamic properties of the flow. A simple model yielding universal behavior in terms of the relevant adimensional parameters of the problem is presented and discussed.

  16. Patterns of regional cerebral blood flow in acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Skriver, E B

    1981-01-01

    In a consecutive group of 56 stroke patients the regional cerebral blood flow was measured within 84 hours after stroke. A 254 multidetector scintillation camera and the intracarotid Xenon-133 injection method was used to study rCBF. Typical rCBF-patterns are described and compared to the findings...

  17. Application of ICT supported learning in fluid mechanics

    DEFF Research Database (Denmark)

    Brohus, Henrik; Svidt, Kjeld

    2004-01-01

    of tools for knowledge transfer facilitates deep understanding and increases learning efficiency. Air flow is by nature invisible and represents a further challenge in the effort of providing sufficient understanding of typical flow patterns and behaviour of room air flow. An example of visualisation......This paper focuses on the application of ICT, Information & Communication Technology, supported learning in the area of fluid mechanics education. Taking a starting point in a course in Ventilation Technology, including room air flow and contaminant distribution, it explains how ICT may be used...... actively in the learning environment to increase efficiency in the learning process. The paper comprises past experiences and lessons learnt as well as prospect for future development in the area. A model is presented that describes a high efficiency learning environment where ICT plays an important role...

  18. Features of two-phase flow patterns in horizontal rectangular microchannels of height 50 μm

    Directory of Open Access Journals (Sweden)

    Ron’shin Fedor

    2016-01-01

    Full Text Available The horizontal microchannel with the height of 50 micrometres and width of 40 mm of a rectangular cross-section has been used to study two-phase flow. The classical patterns of two-phase flow in the channel (bubble, stratified, churn, jet, and annular have been detected. Experimental information allows us to define the characteristics of the regimes and to determine precisely the boundaries between the patterns of the two-phase flows.

  19. An Examination of the Effects of Flow on Learning in a Graduate-Level Introductory Operations Management Course

    Science.gov (United States)

    Klein, Barbara D.; Rossin, Don; Guo, Yi Maggie; Ro, Young K.

    2010-01-01

    The authors investigated the effects of flow on learning outcomes in a graduate-level operations management course. Flow was assessed through an overall flow score, four dimensions of flow, and three characteristics of flow activities. Learning outcomes were measured objectively through multiple-choice quiz scores and subjectively using measures…

  20. Periodic and aperiodic flow patterns around an airfoil with leading-edge protuberances

    Science.gov (United States)

    Cai, Chang; Zuo, Zhigang; Maeda, Takao; Kamada, Yasunari; Li, Qing'an; Shimamoto, Kensei; Liu, Shuhong

    2017-11-01

    Recently leading-edge protuberances have attracted great attention as a passive method for separation control. In this paper, the effect of multiple leading-edge protuberances on the performance of a two-dimensional airfoil is investigated through experimental measurement of aerodynamic forces, surface tuft visualization, and numerical simulation. In contrast to the sharp stall of the baseline airfoil with large hysteresis effect during AOA (angle of attack) increasing and decreasing, the stall process of the modified airfoil with leading-edge protuberances is gentle and stable. Flow visualization revealed that the flow past each protuberance is periodic and symmetric at small AOAs. Streamwise vortices are generated on the shoulders of the protuberance, leading to a larger separation around the valley sections and a longer attachment along the peak sections. When some critical AOA is exceeded, aperiodic and asymmetric flow patterns occur on the protuberances at different spanwise positions, with leading-edge separation on some of the valley sections and non-stalled condition elsewhere. A combined mechanism, involving both the compartmentalization effect of the slender momentum-enhanced attached flows on the protuberance peaks and the downwash effect of the local stalled region with low circulation, is proposed to explain the generation of the aperiodic flow patterns. The influence of the number of protuberances is also investigated, which shows similar aperiodic flow patterns. The distance between the neighboring local stalled valley sections is found to be in the range of 4-7 times the protuberance wavelength. According to the proposed mechanism, it is speculated that the distance between the neighboring local stalled valley sections is inclined to increase with a smaller protuberance amplitude or at a larger AOA.

  1. Flow patterns of GaInSn liquid on inclined stainless steel plate under a range of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Juan-Cheng, E-mail: yangjc@xjtu.edu.cn [State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Qi, Tian-Yu [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China); Wang, Zeng-Hui [School of Engineering Sciences, University of Chinese Academy and Sciences, Beijing 100049 (China)

    2016-11-01

    Highlights: • The liquid GaInSn metal flow loop was built to study some fusion related liquid metal MHD phenomenon. • The flow patterns of GaInSn free surface flow with the change of Re number and Ha number were got by lot of experiments. • Some detailed descriptions of these flow patterns were also made, and a solid conclusion which agreed with some previous studies was got. - Abstract: In the present paper, some preliminary experimental studies have been conducted to show the flow pattern of liquid metal flow using visualization method. For the convenience of experiments in lab, Ga{sup 67}In{sup 20.5}Sn{sup 12.5} in liquid state at room temperature is used. A test section made by stainless steel is inserted in a traverse magnetic field with strength (B{sub 0}) varies from 0 to 1.28 T. The inclined angle of stainless steel plate in test section is about 9°. Visualization results obtained by high-speed camera (Phantom M/LC 310) shown that GaInSn liquid flow on inclined stainless steel plate behaved unstable liquid column flow pattern in the low flow rate, while behaved large area spreading flow pattern with small waves on the free surface in the large flow rate. However, in the magnetic field, under the action of electromagnetic force, the flow patterns of GaInSn liquid have some significant changes on the spreading width and surface structure of free surface. Some detailed analyses on these changes have been also showed in the present paper. Plans for future work are also presented.

  2. The impact of traffic-flow patterns on air quality in urban street canyons.

    Science.gov (United States)

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Short-range dynamics and prediction of mesoscale flow patterns in the MISTRAL field experiment

    Energy Technology Data Exchange (ETDEWEB)

    Weber, R.O.; Kaufmann, P.; Talkner, P. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    In a limited area of about 50 km by 50 km with complex topography, wind measurements on a dense network were performed during the MISTRAL field experiment in 1991-1992. From these data the characteristic wind fields were identified by an automated classification method. The dynamics of the resulting twelve typical regional flow patterns is studied. It is discussed how transitions between the flow patterns take place and how well the transition probabilities can be described in the framework of a Markov model. Guided by this discussion, a variety of prediction models were tested which allow a short-term forecast of the flow pattern type. It is found that a prediction model which uses forecast information from the synoptic scale has the best forecast skill. (author) 2 figs., 7 refs.

  4. Temporal and spatial evolution characteristics of gas-liquid two-phase flow pattern based on image texture spectrum descriptor

    Science.gov (United States)

    Zhou, Xi-Guo; Jin, Ning-De; Wang, Zhen-Ya; Zhang, Wen-Yin

    2009-11-01

    The dynamic image information of typical gas-liquid two-phase flow patterns in vertical upward pipe is captured by a highspeed dynamic camera. The texture spectrum descriptor is used to describe the texture characteristics of the processed images whose content is represented in the form of texture spectrum histogram, and four time-varying characteristic parameter indexes which represent image texture structure of different flow patterns are extracted. The study results show that the amplitude fluctuation of texture characteristic parameter indexes of bubble flow is lowest and shows very random complex dynamic behavior; the amplitude fluctuation of slug flow is higher and shows intermittent motion behavior between gas slug and liquid slug, and the amplitude fluctuation of churn flow is the highest and shows better periodicity; the amplitude fluctuation of bubble-slug flow is from low to high and oscillating frequence is higher than that of slug flow, and includes the features of both slug flow and bubble flow; the slug-churn flow loses the periodicity of slug flow and churn flow, and the amplitude fluctuation is high. The results indicate that the image texture characteristic parameter indexes of different flow pattern can reflect the flow characteristics of gas-liquid two-phase flow, which provides a new approach to understand the temporal and spatial evolution of flow pattern dynamics.

  5. Localized electric field induced transition and miniaturization of two-phase flow patterns inside microchannels.

    Science.gov (United States)

    Sharma, Abhinav; Tiwari, Vijeet; Kumar, Vineet; Mandal, Tapas Kumar; Bandyopadhyay, Dipankar

    2014-10-01

    Strategic application of external electrostatic field on a pressure-driven two-phase flow inside a microchannel can transform the stratified or slug flow patterns into droplets. The localized electrohydrodynamic stress at the interface of the immiscible liquids can engender a liquid-dielectrophoretic deformation, which disrupts the balance of the viscous, capillary, and inertial forces of a pressure-driven flow to engender such flow morphologies. Interestingly, the size, shape, and frequency of the droplets can be tuned by varying the field intensity, location of the electric field, surface properties of the channel or fluids, viscosity ratio of the fluids, and the flow ratio of the phases. Higher field intensity with lower interfacial tension is found to facilitate the oil droplet formation with a higher throughput inside the hydrophilic microchannels. The method is successful in breaking down the regular pressure-driven flow patterns even when the fluid inlets are exchanged in the microchannel. The simulations identify the conditions to develop interesting flow morphologies, such as (i) an array of miniaturized spherical or hemispherical or elongated oil drops in continuous water phase, (ii) "oil-in-water" microemulsion with varying size and shape of oil droplets. The results reported can be of significance in improving the efficiency of multiphase microreactors where the flow patterns composed of droplets are preferred because of the availability of higher interfacial area for reactions or heat and mass exchange. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Altered Precipitation and Flow Patterns in the Dunajec River Basin

    Directory of Open Access Journals (Sweden)

    Mariola Kędra

    2017-01-01

    Full Text Available This study analyzes changes in long-term patterns of precipitation and river flow, as well as changes in their variability over the most recent 60 years (1956–2015. The study area is situated in the mountain basin of the Dunajec River, encompassing streams draining the Tatra Mountains in southern Poland. The focus of the study was to evaluate how regional warming translates into precipitation changes in the studied mountain region, and how changes in climate affect sub-regional hydrology. Monthly time series of precipitation measured at several sites were compared for two 30-year periods (1986–2015 versus 1956–1985. The significance of the difference between the periods in question was evaluated by means of the Wilcoxon signed rank test with the Bonferroni correction. The identified shifts in precipitation for 6 months are statistically significant and largely consistent with the revealed changes in river flow patterns. Moreover, significant differences in precipitation variability were noted in the study area, resulting in a significant decrease in the repeatability of precipitation over the most recent 30 years (1986–2015. Changes in the variability of the river flow studied were less visible in this particular mountain region (while significant for two months; however, the overall repeatability of river flow decreased significantly at the same rate as for precipitation.

  7. Quantitative cerebral blood flow patterns with the short lived isotope 195m Au

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1984-01-01

    A previously reported theory for quantitative cerebral blood flow measurements using intravenously injected nondiffusible radiotracers has been applied on patients after stroke and on volunteers undergoing a mental stimulation exercise. Quantitative measurements of cerebral blood flow patterns (in ml/min/100g) not only in p.a. but also in lateral views of the brain are possible by using of the short-lived (30 sec) isotope Au 195m. The energy spectrum of the eluate of the generator shows two strong photon peaks, one at 68 keV and a second at 262 keV. The 68 keV peak is suitable for perfusion studies in lateral views of the hemispheres, no 'look through' effect is seen. The 262 keV peak is good for studies in p.a. positions. The studies last less than 1 minute and can be repeated after 3 minutes. Parametric images for quantitative regional cerebral blood flow can be generated. The area of occluded vessels in the case of stroke can be made visible. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. After optical stimulation a clear increase of blood flow was seen in the visual cortex. The results prove that not only with freely diffusible (like Xenon) but also with nondiffusible indicators like 195m Au it is possible to measure quantitatively cerebral blood flow patterns. Au 195m is very advantageous for quantitative clinical investigations of cerebrovascular disease. (Author)

  8. Effect of diameter and axial location on upward gas–liquid two-phase flow patterns in intermediate-scale vertical tubes

    International Nuclear Information System (INIS)

    Ansari, M.R.; Azadi, R.

    2016-01-01

    Highlights: • A vertical two-phase flow system is manufactured to study flow behavior adiabatically. • Two test sections are studied with inner diameters of 40 mm and 70 mm at two locations. • Flow pattern maps are presented for both tubes. • Effects of tube diameter and heights on pattern transition boundaries are investigated. • Three sub-patterns bubbly flow and two types of slug pattern are recognized. - Abstract: In the present research, a two-phase flow system is designed, manufactured, assembled and adjusted to study two-phase flow behavior isothermally. Test sections are tubes standing in vertical position and are made of transparent acrylic with inner diameters of 40 mm and 70 mm. Two axial locations of 1.73 m and 3.22 m are chosen for data acquisition. Flow pattern maps are presented for both tubes. Effects of tube diameter and axial location on pattern transition boundaries are investigated. Air and water are chosen as working fluids. The range of air and water superficial velocities are 0.054–9.654 m/s and 0.015–0.877 m/s for the 40 mm diameter tube, but these values are 0.038–20.44 m/s and 0.036–1.530 m/s for 70 mm diameter tube. The results show that for both tubes, increasing axial location does not affect flow transition boundaries significantly. However, slug pattern region shrinks considerably by changing tube diameter from 40 mm to 70 mm. Using image processing techniques, recorded high speed movies were investigated accurately. As a result, bubbly flow in the 40 mm tube can be divided into three sub-patterns as dispersed, agitated and agglomerated bubbly. Also, two types of slug pattern are also recognized in the same tube diameter which are called small and large slugs. Semi-annular flow is observed as an independent pattern in the 70 mm tube that does not behave as known churn or annular patterns.

  9. CFD flow pattern analysis on primaryside of IHX for fast reactors

    International Nuclear Information System (INIS)

    Takano, Masahito; Mochizuki, Hiroyasu

    2011-01-01

    The present paper describes the CFD analysis on the primary-side of an intermediate heat exchange (IHX) which has the similar configurations as the IHX for the fast breeder reactor 'Monju'. The IHX is precisely modeled based on the discussion about meshing system. The present model is used for the heat transfer analysis under low-flowrate and natural circulation conditions. The IHX is a shell-and-tube type and counter-flow heat exchanger which has more than 3000 heat transfer tubes on the secondary side. Therefore, the flow pattern on the primary side gets complex. Measurement of flow pattern and temperature distribution on the primary-side of the real IHX are almost impossible. Since the heat transfer tubes of approximately 5 m in length are fixed at 7 plates with many flow holes and placed on the 23 circles with an appropriate lattice pitch, the number of meshes becomes enormous size. In order to overcome these problems, a separate model is discussed. In the present study, two models are discussed. The first one is a precise full-sector model with one flow entrance, 6 windows on the primary-side. The flow distributions are calculated changing inlet flow rate from 100% to 0.1% which is equivalent to 10 6 to 10 3 in the Reynolds numbers. The other model is a sector model with 8 chamber separated by 7 flow-rectifying plats. Pressure losses at each plate and chamber are calculated using this model. As a result of the analysis, since there is only a small flow deviation between the flow from the 6 windows under turbulent flow and laminar flow conditions, the sector model with one window is possible model in the calculation. The small radial velocity gradient is calculated from 23rd layer (outer heat transfer tube) to 10th layer. The distribution is not dependent on the flow rate. Axial flow distributions through the rectifying plates are unified from the entrance to the down-stream. The sector model is applicable to calculate the primary-side flow distributions

  10. The transition criteria of circulating flow pattern of moderator in the calandria tank of CANDU nuclear power plant

    International Nuclear Information System (INIS)

    Jung, Yun Sik; Lee, Jae Young; Kim, Man Woong

    2004-01-01

    The moderator cooling system to the Calandria tank of CANDU nuclear power plant provides an alternative pass of heat sink during the hypothetical loss of coolant accident. Also, the neutron population in the CANDU plant can be affected by the moderator temperature change which strongly depends on the circulating flow pattern in the Calandria tank. It has been known that there are three distinguished flow patterns: the buoyancy dominated flow, the momentum dominated flow, and the mixed type flow. The Canadian Nuclear Safety Commission (CNSC) recommended that a series of experimental works should be performed to verify the three dimensional codes. Two existing facilities, SPEL (1982) and STERN (1990), have produced experimental data for these purposes. The present work is also motivated to build up a new scaled experimental facility named HGU for the same purposes. CANDU-6 was selected as the target plant to be scaled down. In the design for the scaled facility, the knowledge on the flow regime transitions in the circulating flow was imperative. In the present study, to pave the way for the scaling, the flow pattern maps of circulating flow were constructed based on the Reynolds number and Archimedes number. The CFX code was employed with real meshes to represent all calandria tubes in the tank. The flow pattern maps were constructed for SPEL, STERN, HGU, and CANDU6. As the key transition criterion useful for scaling law, a new Archimedes number considering the jet impingement of the feed water in the Calandria tank was found. The transition of flow patterns was made with the same Archimedes number for CANDU6, STERN and HGU. However, SPEL which has third of the modified Archimedes number showed different maps in the wider region of mixed flow pattern was observed. It was found that the Archimedes number considering the inlet nozzle velocity plays the key role in patterns classification. Also, it can be suggested that the moderator cooling system needs to be designed

  11. Flow pattern in the ventricle of brain with cilia beating and CSF circulation

    Science.gov (United States)

    Wang, Yong; Westendorf, Christian; Faubel, Regina; Eichele, Gregor; Bodenschatz, Eberhard

    We recently discovered that cilia of the ventral third ventricle (v3V) of mammalian brain generate a complex flow network close to the wall. However, the flow pattern in the overall three dimensional v3V, especially under physiological condition, remains to be investigated. Computational fluid dynamics is arguably the best approach for such investigations. Several v3V geometries are reconstructed from different data for comparison study. The lattice Boltzmann method and immersed boundary method are used to reproduce the experimental set-up for an opened v3V firstly. The experimentally recorded cilia induced flow network is projected on the curved v3V wall. The flow maps obtained numerically at different heights from the v3V wall agree with the experimental data qualitatively. We then consider the entire v3V with ciliary flow network along the wall for boundary condition. Moreover, we add a time dependent flow rate to represent the CSF circulation, and study flow pattern in the ventricle. We thank the Max Planck Society (MPG) for financial support. This work is conducted within the Physics and Medicine Initiative at Goettingen Campus between MPG and University Medical Center.

  12. Experimental study of circle grid fractal pattern on turbulent intensity in pipe flow

    International Nuclear Information System (INIS)

    Manshoor, B; Zaman, I; Othman, M F; Khalid, Amir

    2013-01-01

    Fractal turbulence is deemed much more efficient than grid turbulence in terms of a turbulence generation. In this paper, the hotwire experimental results for the circle grids fractal pattern as a turbulent generator will be presented. The self-similar edge characteristic of the circle grid fractal pattern is thought to play a vital role in the enhancement of turbulent intensity. Three different beta ratios of perforated plates based on circle grids fractal pattern were used in the experimental work and each paired with standard circle grids with similar porosity. The objectives were to study the fractal scaling influence on the flow and also to explore the potential of the circle grids fractal pattern in enhancing the turbulent intensity. The results provided an excellent insight of the fractal generated turbulence and the fractal flow physics. Across the circle grids fractal pattern, the pressure drop was lower but the turbulent intensity was higher than those across the paired standard circle grids

  13. Visualized study on specific points on demand curves and flow patterns in a single-side heated narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Junfeng; Huang Yanping; Wang Yanlin

    2011-01-01

    Highlights: → Specific points on the demand curve and flow patterns are visually studied. → Bubbly, churn, and annular flows were observed. → Onset of flow instability and bubbly-churn transition occurs at the same time. → The evolution of specific points and flow pattern transitions were examined. - Abstract: A simultaneous visualization and measurement study on some specific points on demand curves, such as onset of nucleate boiling (ONB), onset of significant void (OSV), onset of flow instability (OFI), and two-phase flow patterns in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, was carried out. New experimental approaches were adopted to identify OSV and OFI in a narrow rectangular channel. Under experimental conditions, the ONB could be predicted well by the Sato and Matsumura model. The OSV model of Bowring can reasonably predict the OSV if the single-side heated condition is considered. The OFI was close to the saturated boiling point and could be described accurately by Kennedy's correlation. The two-phase flow patterns observed in this experiment could be classified into bubbly, churn, and annular flow. Slug flow was never observed. The OFI always occurred when the bubbles at the channel exit began to coalesce, which corresponded to the beginning of the bubbly-churn transition in flow patterns. Finally, the evolution of specific points and flow pattern transitions were examined in a single-side heated narrow rectangular channel.

  14. Dynamics of baroclinic wave pattern in transition zones between different flow regimes

    International Nuclear Information System (INIS)

    Larcher, Thomas von; Egbers, Christoph

    2005-01-01

    Baroclinic waves, both steady and time-dependent, are studied experimentally in a differentially heated rotating cylindrical gap with a free surface, cooled from within. Water is used as working fluid. We focus especially on transition zones between different flow regimes, where complex flow pattern like mixed-mode states are found. The transition from steady wave regime to irregular flow is also of particular interest. The surface flow is observed with visualisation techniques. Velocity time series are measured with the optical laser-Doppler-velocimetry technique. Thermographic measurements are applied for temperature field visualisations

  15. Uncertainty Flow Facilitates Zero-Shot Multi-Label Learning in Affective Facial Analysis

    Directory of Open Access Journals (Sweden)

    Wenjun Bai

    2018-02-01

    Full Text Available Featured Application: The proposed Uncertainty Flow framework may benefit the facial analysis with its promised elevation in discriminability in multi-label affective classification tasks. Moreover, this framework also allows the efficient model training and between tasks knowledge transfer. The applications that rely heavily on continuous prediction on emotional valance, e.g., to monitor prisoners’ emotional stability in jail, can be directly benefited from our framework. Abstract: To lower the single-label dependency on affective facial analysis, it urges the fruition of multi-label affective learning. The impediment to practical implementation of existing multi-label algorithms pertains to scarcity of scalable multi-label training datasets. To resolve this, an inductive transfer learning based framework, i.e.,Uncertainty Flow, is put forward in this research to allow knowledge transfer from a single labelled emotion recognition task to a multi-label affective recognition task. I.e., the model uncertainty—which can be quantified in Uncertainty Flow—is distilled from a single-label learning task. The distilled model uncertainty ensures the later efficient zero-shot multi-label affective learning. On the theoretical perspective, within our proposed Uncertainty Flow framework, the feasibility of applying weakly informative priors, e.g., uniform and Cauchy prior, is fully explored in this research. More importantly, based on the derived weight uncertainty, three sets of prediction related uncertainty indexes, i.e., soft-max uncertainty, pure uncertainty and uncertainty plus are proposed to produce reliable and accurate multi-label predictions. Validated on our manual annotated evaluation dataset, i.e., the multi-label annotated FER2013, our proposed Uncertainty Flow in multi-label facial expression analysis exhibited superiority to conventional multi-label learning algorithms and multi-label compatible neural networks. The success of our

  16. From lag synchronization to pattern formation in one-dimensional open flow models

    International Nuclear Information System (INIS)

    Liu Zengrong; Luo Jigui

    2006-01-01

    In this paper, the relation between synchronization and pattern formation in one-dimensional discrete and continuous open flow models is investigated in detail. Firstly a sufficient condition for globally asymptotical stability of lag/anticipating synchronization among lattices of these models is proved by analytic method. Then, by analyzing and simulating lag/anticipating synchronization in discrete case, three kinds of pattern of wave (it is called wave pattern) travelling in the lattices are discovered. Finally, a proper definition for these kinds of pattern is proposed

  17. Differential theory of learning for efficient neural network pattern recognition

    Science.gov (United States)

    Hampshire, John B., II; Vijaya Kumar, Bhagavatula

    1993-09-01

    We describe a new theory of differential learning by which a broad family of pattern classifiers (including many well-known neural network paradigms) can learn stochastic concepts efficiently. We describe the relationship between a classifier's ability to generate well to unseen test examples and the efficiency of the strategy by which it learns. We list a series of proofs that differential learning is efficient in its information and computational resource requirements, whereas traditional probabilistic learning strategies are not. The proofs are illustrated by a simple example that lends itself to closed-form analysis. We conclude with an optical character recognition task for which three different types of differentially generated classifiers generalize significantly better than their probabilistically generated counterparts.

  18. TensorFlow: A system for large-scale machine learning

    OpenAIRE

    Abadi, Martín; Barham, Paul; Chen, Jianmin; Chen, Zhifeng; Davis, Andy; Dean, Jeffrey; Devin, Matthieu; Ghemawat, Sanjay; Irving, Geoffrey; Isard, Michael; Kudlur, Manjunath; Levenberg, Josh; Monga, Rajat; Moore, Sherry; Murray, Derek G.

    2016-01-01

    TensorFlow is a machine learning system that operates at large scale and in heterogeneous environments. TensorFlow uses dataflow graphs to represent computation, shared state, and the operations that mutate that state. It maps the nodes of a dataflow graph across many machines in a cluster, and within a machine across multiple computational devices, including multicore CPUs, general-purpose GPUs, and custom designed ASICs known as Tensor Processing Units (TPUs). This architecture gives flexib...

  19. Student Media Usage Patterns and Non-Traditional Learning in Higher Education

    Directory of Open Access Journals (Sweden)

    Olaf Zawacki-Richter

    2015-04-01

    Full Text Available A total of 2,338 students at German universities participated in a survey, which investigated media usage patterns of so-called traditional and non-traditional students (Schuetze & Wolter, 2003. The students provided information on the digital devices that they own or have access to, and on their usage of media and e-learning tools and services for their learning. A distinction was made between external, formal and internal, informal tools and services. Based on the students’ responses, a typology of media usage patterns was established by means of a latent class analysis (LCA. Four types or profiles of media usage patterns were identified. These types were labeled entertainment users, peripheral users, advanced users and instrumental users. Among non-traditional students, the proportion of instrumental users was rather high. Based on the usage patterns of traditional and non-traditional students, implications for media selection in the instructional design process are outlined in the paper.

  20. Simulated Flow Pattern in Massive Pulmonary Embolism: Significance for Selective Intrapulmonary Thrombolysis

    International Nuclear Information System (INIS)

    Schmitz-Rode, Thomas; Kilbinger, Markus; Guenther, Rolf W.

    1998-01-01

    Purpose: The flow pattern in the central pulmonary arteries proximal to large pulmonary emboli was studied experimentally. The currents to which thrombolytic agents are exposed when administered via an intrapulmonary catheter were visualized in order to explain the lack of benefit of local versus systemic administration. Methods: By illumination of suspended microspheres, the flow pattern proximal to an obstructing embolus was visualized in an in vitro pulmonary arterial flow model. In six dogs massive pulmonary embolism was created. A pigtail catheter was positioned in the pulmonary artery immediately proximal to the central edge of the occluding embolus. To allow visualization of the local flow pattern, a small amount of contrast material (4 ml) was injected through the catheter at a high flow rate (25 ml/sec). The course of the radiopaque spot that emerged from the catheter tip within 160 msec was monitored with digital subtraction angiography at a frame rate of 12.5 frames/sec. In two dogs, the study was repeated after embolus fragmentation with the same catheter position. Results: The flow model study revealed formation of a vortex proximal to the occluding embolus. In vivo experiments showed that the radiopaque spot was whirled by the vortex proximal to the embolus and made only evanescent contact with the edge of the embolus. Regardless of the embolus location, the contrast spot was washed into the non-occluded ipsilateral and contralateral pulmonary arteries within 0.40-0.64 sec. After embolus fragmentation, the contrast spot was carried completely into the formerly occluded artery. Conclusion: Flow studies explain why thrombolytic agents administered via a catheter positioned adjacent to the embolus may have no more effect than systemically administered agents. An enhanced local effect is precluded by the rapid washout into the non-occluded pulmonary arteries and subsequent systemic dilution. These results support the practice of direct intrathrombic

  1. Learning Based Approach for Optimal Clustering of Distributed Program's Call Flow Graph

    Science.gov (United States)

    Abofathi, Yousef; Zarei, Bager; Parsa, Saeed

    Optimal clustering of call flow graph for reaching maximum concurrency in execution of distributable components is one of the NP-Complete problems. Learning automatas (LAs) are search tools which are used for solving many NP-Complete problems. In this paper a learning based algorithm is proposed to optimal clustering of call flow graph and appropriate distributing of programs in network level. The algorithm uses learning feature of LAs to search in state space. It has been shown that the speed of reaching to solution increases remarkably using LA in search process, and it also prevents algorithm from being trapped in local minimums. Experimental results show the superiority of proposed algorithm over others.

  2. WISC-R Subtest Pattern Stability and Learning Disabilities: A Profile Analysis.

    Science.gov (United States)

    Mealor, David J.; Abrams, Pamela F.

    Profile analysis was performed on Wechsler Intelligence Scale for Children-Revised (WISC-R) scores of 29 learning disabled students (6-10 years old) in a Specific Learning Disabilities (SLD) program, to determine whether subtest patterns for initial and re-evaluation WISC-R administrations would differ significantly. Profile analysis was applied…

  3. The role of consolidation in learning context-dependent phonotactic patterns in speech and digital sequence production.

    Science.gov (United States)

    Anderson, Nathaniel D; Dell, Gary S

    2018-04-03

    Speakers implicitly learn novel phonotactic patterns by producing strings of syllables. The learning is revealed in their speech errors. First-order patterns, such as "/f/ must be a syllable onset," can be distinguished from contingent, or second-order, patterns, such as "/f/ must be an onset if the vowel is /a/, but a coda if the vowel is /o/." A metaanalysis of 19 experiments clearly demonstrated that first-order patterns affect speech errors to a very great extent in a single experimental session, but second-order vowel-contingent patterns only affect errors on the second day of testing, suggesting the need for a consolidation period. Two experiments tested an analogue to these studies involving sequences of button pushes, with fingers as "consonants" and thumbs as "vowels." The button-push errors revealed two of the key speech-error findings: first-order patterns are learned quickly, but second-order thumb-contingent patterns are only strongly revealed in the errors on the second day of testing. The influence of computational complexity on the implicit learning of phonotactic patterns in speech production may be a general feature of sequence production.

  4. Experimental investigation on flow patterns of RP-3 kerosene under sub-critical and supercritical pressures

    Science.gov (United States)

    Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui

    2014-02-01

    Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.

  5. Learning new gait patterns: Exploratory muscle activity during motor learning is not predicted by motor modules

    Science.gov (United States)

    Ranganathan, Rajiv; Krishnan, Chandramouli; Dhaher, Yasin Y.; Rymer, William Z.

    2018-01-01

    The motor module hypothesis in motor control proposes that the nervous system can simplify the problem of controlling a large number of muscles in human movement by grouping muscles into a smaller number of modules. Here, we tested one prediction of the modular organization hypothesis by examining whether there is preferential exploration along these motor modules during the learning of a new gait pattern. Healthy college-aged participants learned a new gait pattern which required increased hip and knee flexion during the swing phase while walking in a lower-extremity robot (Lokomat). The new gait pattern was displayed as a foot trajectory in the sagittal plane and participants attempted to match their foot trajectory to this template. We recorded EMG from 8 lower-extremity muscles and we extracted motor modules during both baseline walking and target-tracking using non-negative matrix factorization (NMF). Results showed increased trajectory variability in the first block of learning, indicating that participants were engaged in exploratory behavior. Critically, when we examined the muscle activity during this exploratory phase, we found that the composition of motor modules changed significantly within the first few strides of attempting the new gait pattern. The lack of persistence of the motor modules under even short time scales suggests that motor modules extracted during locomotion may be more indicative of correlated muscle activity induced by the task constraints of walking, rather than reflecting a modular control strategy. PMID:26916510

  6. The influence of different diffusion pattern to the sub- and super-critical fluid flow in brown coal

    Science.gov (United States)

    Peng, Peihuo

    2018-03-01

    Sub- and super-critical CO2 flowing in nanoscale pores are recently becoming of great interest due to that it is closely related to many engineering applications, such as geological burial and sequestration of carbon dioxide, Enhanced Coal Bed Methane recovery ( ECBM), super-critical CO2 fracturing and so on. Gas flow in nanopores cannot be described simply by the Darcy equation. Different diffusion pattern such as Fick diffusion, Knudsen diffusion, transitional diffusion and slip flow at the solid matrix separate the seepage behaviour from Darcy-type flow. According to the principle of different diffusion pattern, the flow of sub- and super-critical CO2 in brown coal was simulated by numerical method, and the results were compared with the experimental results to explore the contribution of different diffusion pattern and swelling effect in sub- and super-critical CO2 flow in nanoscale pores.

  7. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.

    Science.gov (United States)

    Yang, Zhaochu; Dong, Tao; Halvorsen, Einar

    2014-01-01

    This work describes a capacitive sensor for identification of microfluidic two-phase flow in lab-on-chip devices. With interdigital electrodes and thin insulation layer utilized, this sensor is capable of being integrated with the microsystems easily. Transducing principle and design considerations are presented with respect to the microfluidic gas/liquid flow patterns. Numerical simulation results verify the operational principle. And the factors affecting the performance of the sensor are discussed. Besides, a feasible process flow for the fabrication is also proposed.

  8. Methods for discriminating gas-liquid two phase flow patterns based on gray neural networks and SVM

    International Nuclear Information System (INIS)

    Li Jingjing; Zhou Tao; Duan Jun; Zhang Lei

    2013-01-01

    Background: The flow patterns of two phase flow will directly influence the heat transfer and mass transfer of the flow. Purpose: By wavelet analysis of the pressure drop experimental data, the wavelet coefficients of different frequency can be obtained. Methods: Get the wavelet energy and then train them in the model of BP neural network to distinguish the flow patterns. Introduced the implant gray neural networks model and use it for the two phase flow for the first time. At the same time, set up the method of training the pressure data and wavelet energy data in the support vector machine. Results: Through treatment of the gray layer, the result of the neural network is more accuracy. It can obviously reduce the effect of data marginalization. The accuracy of the pressure drop Lib-SVM method is 95.2%. Conclusions: The results show that these three methods can make a distinction among the different flow patterns and the Lib-SVM method gets the best result, then the gray neural networks, and at last the BP neural networks. (authors)

  9. Flow Patterns in the Sedimentation of a Capsule-Shaped Particle

    International Nuclear Information System (INIS)

    Nie De-Ming; Lin Jian-Zhong; Zhang Kai

    2012-01-01

    The main objective of this study is to numerically investigate the settling of a capsule-shaped particle in an infinitely long channel by the newly developed LB-DF/FD method. This work will focus on the effects of the particle orientation and particle/fluid density ratio on the flow patterns during sedimentation. As the density ratio is varied, our results show that there are four distinct modes of sedimentation: vertical sedimentation, horizontal sedimentation, periodically oscillating sedimentation and chaotic mode where the particle is released from the center of the domain with an initial inclination of π/4 to break the symmetry. Furthermore, we also numerically investigate the flow patterns where the particle is released with an initial inclination of 0, π/6, π/3 and π/2. We conduct a detailed study on the effects of density ratio on the transition from the vertical sedimentation mode to horizontal sedimentation mode. (fundamental areas of phenomenology(including applications))

  10. Cryptic species? Patterns of maternal and paternal gene flow in eight neotropical bats.

    Directory of Open Access Journals (Sweden)

    Elizabeth L Clare

    Full Text Available Levels of sequence divergence at mitochondrial loci are frequently used in phylogeographic analysis and species delimitation though single marker systems cannot assess bi-parental gene flow. In this investigation I compare the phylogeographic patterns revealed through the maternally inherited mitochondrial COI region and the paternally inherited 7(th intron region of the Dby gene on the Y-chromosome in eight common Neotropical bat species. These species are diverse and include members of two families from the feeding guilds of sanguivores, nectarivores, frugivores, carnivores and insectivores. In each case, the currently recognized taxon is comprised of distinct, substantially divergent intraspecific mitochondrial lineages suggesting cryptic species complexes. In Chrotopterus auritus, and Saccopteryx bilineata I observed congruent patterns of divergence in both genetic regions suggesting a cessation of gene flow between intraspecific groups. This evidence supports the existence of cryptic species complexes which meet the criteria of the genetic species concept. In Glossophaga soricina two intraspecific groups with largely sympatric South American ranges show evidence for incomplete lineage sorting or frequent hybridization while a third group with a Central American distribution appears to diverge congruently at both loci suggesting speciation. Within Desmodus rotundus and Trachops cirrhosus the paternally inherited region was monomorphic and thus does not support or refute the potential for cryptic speciation. In Uroderma bilobatum, Micronycteris megalotis and Platyrrhinus helleri the gene regions show conflicting patterns of divergence and I cannot exclude ongoing gene flow between intraspecific groups. This analysis provides a comprehensive comparison across taxa and employs both maternally and paternally inherited gene regions to validate patterns of gene flow. I present evidence for previously unrecognized species meeting the criteria of

  11. Effect of Flow on Cultured Cell at Micro-Pattern of Ridge Lines

    Directory of Open Access Journals (Sweden)

    Haruka Hino

    2017-10-01

    Full Text Available A flow channel with a micro-pattern of ridge lines of a scaffold has been designed to study quantitatively the effect of flow on an oriented cell in vitro. The lines of parallel micro ridges (0.001 mm height, 0.003 mm width, and 0.003 mm interval are made by the lithography technique on the lower surface of the channel as the scaffold to make orientation of each cell. Variation is made about the angle between the longitudinal direction of the ridge line and the direction of the flow: zero, 0.79 and 1.6 rad. The suspension of C2C12 (mouse myoblast cell line was injected to the channel, and incubated for two hours on the micro ridges before the flow test for four hours. The flow rate of 3/hour is controlled by a syringe pump to make variation of the wall shear stress of < 3 Pa. The action of each cell adhered on the micro pattern was analyzed at the time lapse images. The experimental results show that both the migration and the deformation of each myoblast along the micro ridge are restricted by the wall shear stress higher than 3 Pa.

  12. Complex blood flow patterns in an idealized left ventricle: A numerical study

    Science.gov (United States)

    Tagliabue, Anna; Dedè, Luca; Quarteroni, Alfio

    2017-09-01

    In this paper, we study the blood flow dynamics in a three-dimensional (3D) idealized left ventricle of the human heart whose deformation is driven by muscle contraction and relaxation in coordination with the action of the mitral and aortic valves. We propose a simplified but realistic mathematical treatment of the valves function based on mixed time-varying boundary conditions (BCs) for the Navier-Stokes equations modeling the flow. These switchings in time BCs, from natural to essential and vice versa, model either the open or the closed configurations of the valves. At the numerical level, these BCs are enforced by means of the extended Nitsche's method (Tagliabue et al., Int. J. Numer. Methods Fluids, 2017). Numerical results for the 3D idealized left ventricle obtained by means of Isogeometric Analysis are presented, discussed in terms of both instantaneous and phase-averaged quantities of interest and validated against those available in the literature, both experimental and computational. The complex blood flow patterns are analysed to describe the characteristic fluid properties, to show the transitional nature of the flow, and to highlight its main features inside the left ventricle. The sensitivity of the intraventricular flow patterns to the mitral valve properties is also investigated.

  13. Motif distributions in phase-space networks for characterizing experimental two-phase flow patterns with chaotic features.

    Science.gov (United States)

    Gao, Zhong-Ke; Jin, Ning-De; Wang, Wen-Xu; Lai, Ying-Cheng

    2010-07-01

    The dynamics of two-phase flows have been a challenging problem in nonlinear dynamics and fluid mechanics. We propose a method to characterize and distinguish patterns from inclined water-oil flow experiments based on the concept of network motifs that have found great usage in network science and systems biology. In particular, we construct from measured time series phase-space complex networks and then calculate the distribution of a set of distinct network motifs. To gain insight, we first test the approach using time series from classical chaotic systems and find a universal feature: motif distributions from different chaotic systems are generally highly heterogeneous. Our main finding is that the distributions from experimental two-phase flows tend to be heterogeneous as well, suggesting the underlying chaotic nature of the flow patterns. Calculation of the maximal Lyapunov exponent provides further support for this. Motif distributions can thus be a feasible tool to understand the dynamics of realistic two-phase flow patterns.

  14. Identifying Learning Patterns of Children at Risk for Specific Reading Disability

    Science.gov (United States)

    Barbot, Baptiste; Krivulskaya, Suzanna; Hein, Sascha; Reich, Jodi; Thuma, Philip E.; Grigorenko, Elena L.

    2016-01-01

    Differences in learning patterns of vocabulary acquisition in children at risk (+SRD) and not at risk (-SRD) for Specific Reading Disability (SRD) were examined using a microdevelopmental paradigm applied to the multi-trial Foreign Language Learning Task (FLLT; Baddeley et al., 1995). The FLLT was administered to 905 children from rural…

  15. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    Directory of Open Access Journals (Sweden)

    Qiang Yu

    Full Text Available A new learning rule (Precise-Spike-Driven (PSD Synaptic Plasticity is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  16. Precise-spike-driven synaptic plasticity: learning hetero-association of spatiotemporal spike patterns.

    Science.gov (United States)

    Yu, Qiang; Tang, Huajin; Tan, Kay Chen; Li, Haizhou

    2013-01-01

    A new learning rule (Precise-Spike-Driven (PSD) Synaptic Plasticity) is proposed for processing and memorizing spatiotemporal patterns. PSD is a supervised learning rule that is analytically derived from the traditional Widrow-Hoff rule and can be used to train neurons to associate an input spatiotemporal spike pattern with a desired spike train. Synaptic adaptation is driven by the error between the desired and the actual output spikes, with positive errors causing long-term potentiation and negative errors causing long-term depression. The amount of modification is proportional to an eligibility trace that is triggered by afferent spikes. The PSD rule is both computationally efficient and biologically plausible. The properties of this learning rule are investigated extensively through experimental simulations, including its learning performance, its generality to different neuron models, its robustness against noisy conditions, its memory capacity, and the effects of its learning parameters. Experimental results show that the PSD rule is capable of spatiotemporal pattern classification, and can even outperform a well studied benchmark algorithm with the proposed relative confidence criterion. The PSD rule is further validated on a practical example of an optical character recognition problem. The results again show that it can achieve a good recognition performance with a proper encoding. Finally, a detailed discussion is provided about the PSD rule and several related algorithms including tempotron, SPAN, Chronotron and ReSuMe.

  17. Parallel patterns determination in solving cyclic flow shop problem with setups

    Directory of Open Access Journals (Sweden)

    Bożejko Wojciech

    2017-06-01

    Full Text Available The subject of this work is the new idea of blocks for the cyclic flow shop problem with setup times, using multiple patterns with different sizes determined for each machine constituting optimal schedule of cities for the traveling salesman problem (TSP. We propose to take advantage of the Intel Xeon Phi parallel computing environment during so-called ’blocks’ determination basing on patterns, in effect significantly improving the quality of obtained results.

  18. Near-Horizontal, Two-Phase Flow Patterns of Nitrogen and Hydrogen at Low Mass Heat and Flux (on CD-ROM)

    Science.gov (United States)

    VanDresar, N. T.; Siegwarth, J. D.

    2001-01-01

    One reason for NASA's interest in cryogenic two-phase flow with low mass and heat flux is the need to design spacecraft heat exchangers used for vaporizing cryogenic propellants. The CD-ROM provides digitized movies of particular flow patterns observed in experimental work. The movies have been provided in (QuickTime9Trademark) format, encoded at 320w x 240h pixels, 15 fps, using the Sorenson(Trademark) Video Codec for compression. Experiments were conducted to obtain data on the two-phase (liquid and vapor) flow behavior of cryogenic nitrogen and hydrogen under low mass and heat flux conditions. Tests were performed in normal gravity with a 1.5 degree up flow configuration. View ports in the apparatus permitted visual observation of the two-phase flow patterns. Computer codes to predict flow patterns were developed from theoretical/empirical models reported in the literature. Predictions from the computer codes were compared with experimental flow pattern observations. Results are presented employing the traditional two-dimensional flow pattern map format using the liquid and gas superficial velocities as coordinates. In general, the agreement between the experimental results and the analytical predictive methods is reasonably good. Small regions of the flow pattern maps are identified where the models are deficient as a result of neglecting phase change phenomena. Certain regions of the maps were beyond the range of the experiments and could not be completely validated. Areas that could benefit from further work include modeling of the transition from separated flow, collection of additional data in the bubble and annular flow regimes, and collection of experimental data at other inclination angles, tube diameters and high heat flux.

  19. Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend

    Science.gov (United States)

    Engel, Frank; Rhoads, Bruce L.

    2016-01-01

    Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.

  20. Flow patterns from metallic vascular endoprostheses: in vitro results

    Energy Technology Data Exchange (ETDEWEB)

    Mueller-Huelsbeck, S.; Grimm, J.; Jahnke, T.; Haeselbarth, G.; Heller, M. [Dept. of Radiology, University Hospital, Kiel (Germany)

    2001-05-01

    The aim of this study was to determine flow characteristics and pressure gradients of different balloon- and self-expandable stents in an in vitro flow-model. Seven vascular stents (Bridge, Cragg, Memotherm, Palmaz PS 784, Sinus, Symphony, Wallstent), equal in length (60 mm) and diameter (10 mm), were deployed in a closed flow model. The inner diameter of the tube measured 9 mm. Flow at 1.5 and 6 l/min was applied. Flow patterns were visualized by anionic particles illuminated with two helium-neon lasers. Late laminary flow characteristics and pre- /post-stent pressure gradients were determined in either expanded stent, 25 and 50 % tube stenosis. Stent implantation induced a decrease of laminary flow when compared with an unstented tube with and without concentric 25 % stenosis (p < 0.01) at all flow rates and an increase of pressure gradients when compared with an unstented tube for a flow rate of 6 l/min and all stenoses (p < 0.01). At 1.5 l/min most stents revealed no significant change of pressure gradient, the highest gradient measured 4.0 mmHg. Sinus permitted maximum (expanded: 82.1 % and 76.9 % at 25 % stenosis at 1.5 l/min; p < 0.01) and Palmaz minimum of laminary flow at all flow rates and stenoses (70.2 and 52.4 % at 25 % stenosis at 1.5 l/min; p < 0.01). At 6 l/min, when completely expanded, Sinus is equal to Bridge and Memotherm; in 25 % stenosis Sinus is equal to Bridge, Memotherm, and additionally to Cragg and Wall. None of the endoprostheses revealed laminary flow at 50 % stenosis. Inadequate stent deployment bears the risk of creating less laminary flow and pressure gradients. Since flow disturbances and pressure gradients may influence neointimal hyperplasia, stent design and completeness of stent expansion are important factors regarding the appearance of thrombus formation and postinterventional restenosis. (orig.)

  1. Application of Deep Learning and Supervised Learning Methods to Recognize Nonlinear Hidden Pattern in Water Stress Levels from Spatiotemporal Datasets across Rural and Urban US Counties

    Science.gov (United States)

    Eisenhart, T.; Josset, L.; Rising, J. A.; Devineni, N.; Lall, U.

    2017-12-01

    In the wake of recent water crises, the need to understand and predict the risk of water stress in urban and rural areas has grown. This understanding has the potential to improve decision making in public resource management, policy making, risk management and investment decisions. Assuming an underlying relationship between urban and rural water stress and observable features, we apply Deep Learning and Supervised Learning models to uncover hidden nonlinear patterns from spatiotemporal datasets. Results of interest includes prediction accuracy on extreme categories (i.e. urban areas highly prone to water stress) and not solely the average risk for urban or rural area, which adds complexity to the tuning of model parameters. We first label urban water stressed counties using annual water quality violations and compile a comprehensive spatiotemporal dataset that captures the yearly evolution of climatic, demographic and economic factors of more than 3,000 US counties over the 1980-2010 period. As county-level data reporting is not done on a yearly basis, we test multiple imputation methods to get around the issue of missing data. Using Python libraries, TensorFlow and scikit-learn, we apply and compare the ability of, amongst other methods, Recurrent Neural Networks (testing both LSTM and GRU cells), Convolutional Neural Networks and Support Vector Machines to predict urban water stress. We evaluate the performance of those models over multiple time spans and combine methods to diminish the risk of overfitting and increase prediction power on test sets. This methodology seeks to identify hidden nonlinear patterns to assess the predominant data features that influence urban and rural water stress. Results from this application at the national scale will assess the performance of deep learning models to predict water stress risk areas across all US counties and will highlight a predominant Machine Learning method for modeling water stress risk using spatiotemporal

  2. Lack of strategy holding: a new pattern of learning deficit in cortical dementias.

    Science.gov (United States)

    Benedet, María J; Lauro-Grotto, Rosapia; Giotti, Chiara

    2009-09-01

    The aim of this study was to demonstrate, by means of systematic research and qualitative data analysis, the presence, among a group of patients with fronto-temporal lobar degeneration of a subgroup that, at variance with the standard pattern, is able to devise and implement learning strategies, but appear impaired at carrying them on from a trial to the next. In order to provide evidence of the existence of a group of patients showing this type of learning disability, that we refer to as lack of strategy holding, we performed a stepwise hierarchical cluster analysis of a set of variables whose scores were selected from the subject's performance at the Test de Aprendizaje Verbal España-Complutense. Results substantiate the segregation of three groups of subjects characterized by the following patterns of performance: normal elderly individuals, who show a quite preserved ability to discover a semantic strategy along the learning trials and to carry it from a trial to the next, patients presenting with a deficit in implementing semantic learning strategies and possibly use of serial and/or phonological strategies to perform the task, and to patients who, although able to generate and implement appropriate learning strategies, appear unable to carry them over the learning trials. The presence of this new pattern raises a few questions that seem worth trying to address.

  3. A pedagogical design pattern framework for sharing experiences and enhancing communities of practice within online and blended learning

    DEFF Research Database (Denmark)

    May, Michael; Neutszky-Wulff, Chresteria; Rosthøj, Susanne

    2016-01-01

    for teachers at the University of Copenhagen a new and simpler pedagogical design pattern framework was developed for interfaculty sharing of experiences and enhancing communities of practice in relation to online and blended learning across the university. The framework of pedagogical design patterns were...... applied to describe the learning design in four online and blended learning courses within different academic disciplines: Classical Greek, Biostatistics, Environmental Management in Europe, and Climate Change Impacts, Adaptation and Mitigation. Future perspectives for using the framework for developing...... new E-learning patterns for online and blended learning courses are discussed....

  4. Evaluation of Spatial Pattern of Altered Flow Regimes on a River Network Using a Distributed Hydrological Model.

    Science.gov (United States)

    Ryo, Masahiro; Iwasaki, Yuichi; Yoshimura, Chihiro; Saavedra V, Oliver C

    2015-01-01

    Alteration of the spatial variability of natural flow regimes has been less studied than that of the temporal variability, despite its ecological importance for river ecosystems. Here, we aimed to quantify the spatial patterns of flow regime alterations along a river network in the Sagami River, Japan, by estimating river discharge under natural and altered flow conditions. We used a distributed hydrological model, which simulates hydrological processes spatiotemporally, to estimate 20-year daily river discharge along the river network. Then, 33 hydrologic indices (i.e., Indicators of Hydrologic Alteration) were calculated from the simulated discharge to estimate the spatial patterns of their alterations. Some hydrologic indices were relatively well estimated such as the magnitude and timing of maximum flows, monthly median flows, and the frequency of low and high flow pulses. The accuracy was evaluated with correlation analysis (r > 0.4) and the Kolmogorov-Smirnov test (α = 0.05) by comparing these indices calculated from both observed and simulated discharge. The spatial patterns of the flow regime alterations varied depending on the hydrologic indices. For example, both the median flow in August and the frequency of high flow pulses were reduced by the maximum of approximately 70%, but these strongest alterations were detected at different locations (i.e., on the mainstream and the tributary, respectively). These results are likely caused by different operational purposes of multiple water control facilities. The results imply that the evaluation only at discharge gauges is insufficient to capture the alteration of the flow regime. Our findings clearly emphasize the importance of evaluating the spatial pattern of flow regime alteration on a river network where its discharge is affected by multiple water control facilities.

  5. A Cross-Cultural Comparison of Student Learning Patterns in Higher Education

    Science.gov (United States)

    Marambe, Kosala N.; Vermunt, Jan D.; Boshuizen, Henny P. A.

    2012-01-01

    The aim of this study was to compare student learning patterns in higher education across different cultures. A meta-analysis was performed on three large-scale studies that had used the same research instrument: the Inventory of learning Styles (ILS). The studies were conducted in the two Asian countries Sri Lanka and Indonesia and the European…

  6. Patterns of gene flow define species of thermophilic Archaea.

    Directory of Open Access Journals (Sweden)

    Hinsby Cadillo-Quiroz

    2012-02-01

    Full Text Available Despite a growing appreciation of their vast diversity in nature, mechanisms of speciation are poorly understood in Bacteria and Archaea. Here we use high-throughput genome sequencing to identify ongoing speciation in the thermoacidophilic Archaeon Sulfolobus islandicus. Patterns of homologous gene flow among genomes of 12 strains from a single hot spring in Kamchatka, Russia, demonstrate higher levels of gene flow within than between two persistent, coexisting groups, demonstrating that these microorganisms fit the biological species concept. Furthermore, rates of gene flow between two species are decreasing over time in a manner consistent with incipient speciation. Unlike other microorganisms investigated, we do not observe a relationship between genetic divergence and frequency of recombination along a chromosome, or other physical mechanisms that would reduce gene flow between lineages. Each species has its own genetic island encoding unique physiological functions and a unique growth phenotype that may be indicative of ecological specialization. Genetic differentiation between these coexisting groups occurs in large genomic "continents," indicating the topology of genomic divergence during speciation is not uniform and is not associated with a single locus under strong diversifying selection. These data support a model where species do not require physical barriers to gene flow but are maintained by ecological differentiation.

  7. Patterns of gene flow define species of thermophilic Archaea.

    Science.gov (United States)

    Cadillo-Quiroz, Hinsby; Didelot, Xavier; Held, Nicole L; Herrera, Alfa; Darling, Aaron; Reno, Michael L; Krause, David J; Whitaker, Rachel J

    2012-02-01

    Despite a growing appreciation of their vast diversity in nature, mechanisms of speciation are poorly understood in Bacteria and Archaea. Here we use high-throughput genome sequencing to identify ongoing speciation in the thermoacidophilic Archaeon Sulfolobus islandicus. Patterns of homologous gene flow among genomes of 12 strains from a single hot spring in Kamchatka, Russia, demonstrate higher levels of gene flow within than between two persistent, coexisting groups, demonstrating that these microorganisms fit the biological species concept. Furthermore, rates of gene flow between two species are decreasing over time in a manner consistent with incipient speciation. Unlike other microorganisms investigated, we do not observe a relationship between genetic divergence and frequency of recombination along a chromosome, or other physical mechanisms that would reduce gene flow between lineages. Each species has its own genetic island encoding unique physiological functions and a unique growth phenotype that may be indicative of ecological specialization. Genetic differentiation between these coexisting groups occurs in large genomic "continents," indicating the topology of genomic divergence during speciation is not uniform and is not associated with a single locus under strong diversifying selection. These data support a model where species do not require physical barriers to gene flow but are maintained by ecological differentiation.

  8. The effect of bowl-in-piston geometry layout on fluid flow pattern

    Directory of Open Access Journals (Sweden)

    Jovanovic Zoran S.

    2011-01-01

    Full Text Available In this paper some results concerning the evolution of 3D fluid flow pattern through all four strokes in combustion chambers with entirely different bowl-in-piston geometry layouts ranging from ”omega” to “simple cylinder” were presented. All combustion chambers i.e. those with „omega“ bowls, with different profiles, and those with „cylinder“ bowls, with different squish area ranging from 44% to 62%, were with flat head, vertical valves and identical elevation of intake and exhaust ports. A bunch of results emerged by dint of multidimensional modeling of nonreactive fluid flow in arbitrary geometry with moving objects and boundaries. The fluid flow pattern during induction and compression in all cases was extremely complicated and entirely three-dimensional. It should be noted that significant differences due to geometry of the bowl were encountered only in the vicinity of TDC. Namely, in the case of “omega” bowl all three types of organized macro flows were observed while in the case of “cylinder” bowl no circumferential velocity was registered at all. On the contrary, in the case of “cylinder” bowl some interesting results concerning reverse tumble and its center of rotation shifting from exhaust valve zone to intake valve zone during induction stroke and vice-verse from intake valve zone to exhaust valve zone during compression were observed while in the case of “omega” bowl no such a displacement was legible. During expansion the fluid flow pattern is fully controlled by piston motion and during exhaust it is mainly one-dimensional, except in the close proximity of exhaust valve. For that reason it is not affected by the geometry of the bowl.

  9. Rethinking Hearing Aid Fitting by Learning From Behavioral Patterns

    DEFF Research Database (Denmark)

    Johansen, Benjamin; Petersen, Michael Kai; Pontoppidan, Niels Henrik

    2017-01-01

    users to remotely enhance auditory focus and attenuate background noise to improve speech intelligibility. N=5, participants changed program settings and adjusted volume on their hearing instruments using their smartphones. We found that individual behavioral patterns affected the usage of the devices....... A significant difference between program usage, and weekdays versus weekends, were found. Users not only changed programs to modify aspects of directionality and noise reduction, but also continuously adjusted the volume. Rethinking hearing instruments as devices that adaptively learn behavioral patterns based...

  10. The Effect of Confluence Angle on the Flow Pattern at a Rectangular Open-Channel

    Directory of Open Access Journals (Sweden)

    F. Rooniyan

    2014-02-01

    Full Text Available Flow connection in channels is a phenomenon which frequently happens in rivers, water and drainage channels and urban sewage systems. The phenomenon appears to be more complex in rivers than in channels, especially at the y-junction bed joint that causes erosion and sedimentation at some areas resulting to morphological changes. Flow behavior at the channel junction area depends on variables such as channel geometry, discharge ratio, tributary width and y-junction connection angle of the channel, bed level changes at the bed joint, flow characteristic at the bed joint upstream and flow Froude number in different sections. In this research, fluent numerical model and junction angles of 30o, 45o & 60o are used to analyze and evaluate the effect of channel junction geometry on the flow pattern and the flow separation zone dimensions in different ratios of flow discharge (upstream channel discharge to total discharge of the flow. Results for two ratios of flow discharge are represented. Results are in agreement with earlier studies and it is shown that the change of the channel crossing angle affects the flow pattern in the main channel and also that the dimensions of the created separation zone in the main channel become larger when the crossing angle increases. This phenomenon can also be observed when the flow discharge ratio is lower. Analysis showed that the least dimension of the separation zone will be at the crossing angle of 45o .

  11. Flow Pattern in Ventilated Rooms with Large Depth and Width

    DEFF Research Database (Denmark)

    Yue, Zou; Nielsen, Peter V.

    In this paper both model experiments and Computational Fluid Dynamics (CFD) are employed to study the isothennal flow pattern in the ventilated room with different UH and inlet velocities. The maximum size of the model is 1.4* 0.72*0.0714m and the measurement is made by a Laser Doppler anemometer....

  12. MODFLOW 2.0: A program for predicting moderator flow patterns

    Science.gov (United States)

    Peterson, P. F.; Paik, I. K.

    1991-07-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in the operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors.

  13. Depth distribution of preferential flow patterns in a sandy loam soil as affected by tillage

    Directory of Open Access Journals (Sweden)

    C. T. Petersen

    1997-01-01

    Full Text Available Dye-tracer studies using the anionic dye Brilliant Blue FCF were conducted on a structured sandy loam soil (Typic Agrudalf. 25 mm of dye solution was applied to the surface of 11 1.6 x 1.6 m field plots, some of which had been subjected to conventional seed bed preparation (harrowing while others had been rotovated to either 5 or 15 cm depth before sowing. The soil was excavated to about 160 cm depth one or two days after dye application. Flow patterns and structural features appearing on vertical or horizontal cross sections were examined and photographed. The flow patterns were digitized, and depth functions for the number of activated flow pathways and the degree of dye coverage were calculated. Dye was found below 100 cm depth on 26 out of 33 vertical cross sections made in conventionally tilled plots showing that preferential flow was a prevailing phenomenon. The depth-averaged number of stained flow pathways in the 25-100 cm layer was significantly smaller in a plot rotovated to 5 cm depth than in a conventionally tilled plot, both under relatively dry initial soil conditions and when the entire soil profiles were initially at field capacity. There were no examples of dye penetration below 25 cm depth one month after deep rotovation. Distinct horizontal structures in flow patterns appearing at 20-40 cm depth coupled with changes in flow domains indicated soil layering with abrupt changes in soil structure and hydraulic properties.

  14. Is having similar eye movement patterns during face learning and recognition beneficial for recognition performance? Evidence from hidden Markov modeling.

    Science.gov (United States)

    Chuk, Tim; Chan, Antoni B; Hsiao, Janet H

    2017-12-01

    The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Design of a High Viscosity Couette Flow Facility for Patterned Surface Drag Measurements

    Science.gov (United States)

    Johnson, Tyler; Lang, Amy

    2009-11-01

    Direct drag measurements can be difficult to obtain with low viscosity fluids such as air or water. In this facility, mineral oil is used as the working fluid to increase the shear stress across the surface of experimental models. A mounted conveyor creates a flow within a plexiglass tank. The experimental model of a flat or patterned surface is suspended above a moving belt. Within the gap between the model and moving belt a Couette flow with a linear velocity profile is created. PIV measurements are used to determine the exact velocities and the Reynolds numbers for each experiment. The model is suspended by bars that connect to the pillow block housing of each bearing. Drag is measured by a force gauge connected to linear roller bearings that slide along steel rods. The patterned surfaces, initially consisting of 2-D cavities, are embedded in a plexiglass plate so as to keep the total surface area constant for each experiment. First, the drag across a flat plate is measured and compared to theoretical values for laminar Couette flow. The drag for patterned surfaces is then measured and compared to a flat plate.

  16. Pattern transitions of oil-water two-phase flow with low water content in rectangular horizontal pipes probed by terahertz spectrum.

    Science.gov (United States)

    Feng, Xin; Wu, Shi-Xiang; Zhao, Kun; Wang, Wei; Zhan, Hong-Lei; Jiang, Chen; Xiao, Li-Zhi; Chen, Shao-Hua

    2015-11-30

    The flow-pattern transition has been a challenging problem in two-phase flow system. We propose the terahertz time-domain spectroscopy (THz-TDS) to investigate the behavior underlying oil-water flow in rectangular horizontal pipes. The low water content (0.03-2.3%) in oil-water flow can be measured accurately and reliably from the relationship between THz peak amplitude and water volume fraction. In addition, we obtain the flow pattern transition boundaries in terms of flow rates. The critical flow rate Qc of the flow pattern transitions decreases from 0.32 m3 h to 0.18 m3 h when the corresponding water content increases from 0.03% to 2.3%. These properties render THz-TDS particularly powerful technology for investigating a horizontal oil-water two-phase flow system.

  17. Learning causes reorganization of neuronal firing patterns to represent related experiences within a hippocampal schema.

    Science.gov (United States)

    McKenzie, Sam; Robinson, Nick T M; Herrera, Lauren; Churchill, Jordana C; Eichenbaum, Howard

    2013-06-19

    According to schema theory as proposed by Piaget and Bartlett, learning involves the assimilation of new memories into networks of preexisting knowledge, as well as alteration of the original networks to accommodate the new information. Recent evidence has shown that rats form a schema of goal locations and that the hippocampus plays an essential role in adding new memories to the spatial schema. Here we examined the nature of hippocampal contributions to schema updating by monitoring firing patterns of multiple CA1 neurons as rats learned new goal locations in an environment in which there already were multiple goals. Before new learning, many neurons that fired on arrival at one goal location also fired at other goals, whereas ensemble activity patterns also distinguished different goal events, thus constituting a neural representation that linked distinct goals within a spatial schema. During new learning, some neurons began to fire as animals approached the new goals. These were primarily the same neurons that fired at original goals, the activity patterns at new goals were similar to those associated with the original goals, and new learning also produced changes in the preexisting goal-related firing patterns. After learning, activity patterns associated with the new and original goals gradually diverged, such that initial generalization was followed by a prolonged period in which new memories became distinguished within the ensemble representation. These findings support the view that consolidation involves assimilation of new memories into preexisting neural networks that accommodate relationships among new and existing memories.

  18. Patterns of Indigenous Learning: An Ethnographic Study on How Kindergartners Learn in Mana, Fiji

    Science.gov (United States)

    Lee, Chih-Yih; Sparks, Paul

    2015-01-01

    Technology has greatly impacted educational systems around the world, even in the most geographically isolated places. This study utilizes an ethnographic approach to examine the patterns of learning in a kindergarten in Mana, Fiji. Data comprised of interviews, observations and examination of related artifacts. The results provide baseline data…

  19. Exploring Elementary-School Students' Engagement Patterns in a Game-Based Learning Environment

    Science.gov (United States)

    Hsieh, Ya-Hui; Lin, Yi-Chun; Hou, Huei-Tse

    2015-01-01

    Unlike most research, which has primarily examined the players' interest in or attitude toward game-based learning through questionnaires, the purpose of this empirical study is to explore students' engagement patterns by qualitative observation and sequential analysis to visualize and better understand their game-based learning process. We…

  20. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    Science.gov (United States)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  1. Ambient Displays and Game Design Patterns for Social Learning

    NARCIS (Netherlands)

    Kelle, Sebastian; Börner, Dirk; Kalz, Marco; Specht, Marcus; Glahn, Christian

    2011-01-01

    Kelle, S., Börner, D., Kalz, M., Specht, M., & Glahn, C. (2010). Ambient Displays and Game Design Patterns for Social Learning. In B. Chang, T. Hirashima, & H. Ogata (Eds.), Joint Proceedings of the Work-in-Progress Poster and Invited Young Researcher Symposium for the 18th International Conference

  2. Novice medical students: individual patterns in the use of learning strategies and how they change during the first academic year.

    Science.gov (United States)

    Fabry, Götz; Giesler, Marianne

    2012-01-01

    Adequate use of different learning strategies is one of the most important prerequisites of academic success. The actual use of learning strategies is the result of an interaction between individual and situational variables. Against this background we conducted a longitudinal study with first year medical students to investigate whether individuals show different patterns in their use of learning strategies and whether these patterns change during the first academic year. Medical students (N=175, 58% female) were surveyed three times in their first academic year regarding their use of learning strategies. A hierarchical cluster analysis (Ward) was conducted in order to identify groups of students with different patterns of learning strategies. We identified four different patterns in approaches to learning among novice medical students ("easy-going", "flexible", "problematic" and "hardworking" learners). Compared to their peers, the problematic learners had the worst final school grades. In addition changes in the use of learning strategies were identified, most of them occurred during the first term. Students start their academic studies with different patterns of learning strategies; the characteristics of these patterns change during the first academic year. Further research is necessary to better understand how individual and situational variables determine students' learning.

  3. Acceptance of Game-Based Learning and Intrinsic Motivation as Predictors for Learning Success and Flow Experience

    Directory of Open Access Journals (Sweden)

    Manuel Ninaus

    2017-09-01

    Full Text Available There is accumulating evidence that engagement with digital math games can improve students’ learning. However, in what way individual variables critical to game-based learning influence students' learning success still needs to be explored. Therefore, the aim of this study was to investigate the influence of students’ acceptance of game-based learning (e.g., perceived usefulness of a game as a learning tool, perceived ease of use, as well as their intrinsic motivation for math (e.g., their math interest, self-efficacy and quality of playing experience on learning success in a game-based rational number training. Additionally, we investigated the influence of the former variables on quality of playing experience (operationalized as perceived flow. Results indicated that the game-based training was effective. Moreover, students’ learning success and their quality of playing experience were predicted by measures of acceptance of game-based learning and intrinsic motivation for math. These findings indicated that learning success in game-based learning approaches are driven by students’ acceptance of the game as a learning tool and content-specific intrinsic motivation. Therefore, the present work is of particular interest to researchers, developers, and practitioners working with game-based learning environments.

  4. INVESTIGATION OF CONTINGENCY PATTERNS OF TEACHERS’ SCAFFOLDING IN TEACHING AND LEARNING MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Anwar Anwar

    2016-12-01

    Full Text Available The purpose of this study is to investigate the patterns of scaffolding contingency in teaching and learning mathematics carried out by three teachers. Contingency patterns are obtained by examining the transcription from video recording of conversation fragments between teachers and students during the provision of scaffolding. The contingency patterns are drawn in three strategies: diagnostic strategy, intervention strategy, and checking diagnosis. The result shows that the three teachers expressed different interaction contingencies in their scaffolding activities: contingent dominant, non-contingent dominant, and pseudo-contingent. It is also found that the learning interaction performed by experienced teachers tends to be contingent dominant compared to novice teachers. Keywords: Contingency, Contingent Dominant, Non-Contingent Dominant, Pseudo Contingent, Scaffolding DOI: http://dx.doi.org/10.22342/jme.8.1.3410.65-76

  5. Probabilistically-Cued Patterns Trump Perfect Cues in Statistical Language Learning.

    Science.gov (United States)

    Lany, Jill; Gómez, Rebecca L

    2013-01-01

    Probabilistically-cued co-occurrence relationships between word categories are common in natural languages but difficult to acquire. For example, in English, determiner-noun and auxiliary-verb dependencies both involve co-occurrence relationships, but determiner-noun relationships are more reliably marked by correlated distributional and phonological cues, and appear to be learned more readily. We tested whether experience with co-occurrence relationships that are more reliable promotes learning those that are less reliable using an artificial language paradigm. Prior experience with deterministically-cued contingencies did not promote learning of less reliably-cued structure, nor did prior experience with relationships instantiated in the same vocabulary. In contrast, prior experience with probabilistically-cued co-occurrence relationships instantiated in different vocabulary did enhance learning. Thus, experience with co-occurrence relationships sharing underlying structure but not vocabulary may be an important factor in learning grammatical patterns. Furthermore, experience with probabilistically-cued co-occurrence relationships, despite their difficultly for naïve learners, lays an important foundation for learning novel probabilistic structure.

  6. English-learning infants' perception of word stress patterns.

    Science.gov (United States)

    Skoruppa, Katrin; Cristià, Alejandrina; Peperkamp, Sharon; Seidl, Amanda

    2011-07-01

    Adult speakers of different free stress languages (e.g., English, Spanish) differ both in their sensitivity to lexical stress and in their processing of suprasegmental and vowel quality cues to stress. In a head-turn preference experiment with a familiarization phase, both 8-month-old and 12-month-old English-learning infants discriminated between initial stress and final stress among lists of Spanish-spoken disyllabic nonwords that were segmentally varied (e.g. ['nila, 'tuli] vs [lu'ta, pu'ki]). This is evidence that English-learning infants are sensitive to lexical stress patterns, instantiated primarily by suprasegmental cues, during the second half of the first year of life. © 2011 Acoustical Society of America

  7. A pedagogical design pattern framework for sharing experiences and enhancing communities of practice within online and blended learning

    Directory of Open Access Journals (Sweden)

    Chresteria Neutszky-Wulff

    2016-12-01

    Full Text Available ”Design patterns” were originally proposed in architecture and later in software engineering as a methodology to sketch and share solutions to recurring design problems. In recent years ”pedagogical design patterns” have been introduced as a way to sketch and share good practices in teaching and learning; specifically in the context of technology-enhanced learning (e-learning. Several attempts have been made to establish a framework for describing and sharing such e-learning patterns, but so far they have had limited success. At a series of workshops in a competence-development project for teachers at the University of Copenhagen a new and simpler pedagogical design pattern framework was developed for interfaculty sharing of experiences and enhancing communities of practice in relation to online and blended learning across the university. In this study, the new pedagogical design pattern framework is applied to describe the learning design in four online and blended learning courses within different academic disciplines: Classical Greek, Biostatistics, Environmental Management in Europe, and Climate Change Impacts, Adaptation and Mitigation. Future perspectives for using the framework for developing new E-learning patterns for online and blended learning courses are discussed.

  8. Can Sap Flow Help Us to Better Understand Transpiration Patterns in Landscapes?

    Science.gov (United States)

    Hassler, S. K.; Weiler, M.; Blume, T.

    2017-12-01

    Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions and for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. At the tree scale, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status, stand-specific characteristics such as basal area or stand density and site-specific characteristics such as geology, slope position or aspect control sap flow of individual trees. However, little is known about the relative importance or the dynamic interplay of these controls. We studied these influences with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km²-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we applied linear models to the daily spatial pattern of sap velocity and determined the importance of the different predictors. By upscaling sap velocities to the tree level with the help of species-dependent empirical estimates for sapwood area we also examined patterns of sap flow as a more direct representation of transpiration. Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in this landscape, namely tree species, tree diameter, geology and aspect. For sap flow, the site-specific predictors provided the largest contribution to the explained variance, however, in contrast to the sap velocity analysis, geology was more important than aspect. Spatial variability of atmospheric demand and soil moisture explained only a small fraction of the variance. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, were

  9. RSTensorFlow: GPU Enabled TensorFlow for Deep Learning on Commodity Android Devices.

    Science.gov (United States)

    Alzantot, Moustafa; Wang, Yingnan; Ren, Zhengshuang; Srivastava, Mani B

    2017-06-01

    Mobile devices have become an essential part of our daily lives. By virtue of both their increasing computing power and the recent progress made in AI, mobile devices evolved to act as intelligent assistants in many tasks rather than a mere way of making phone calls. However, popular and commonly used tools and frameworks for machine intelligence are still lacking the ability to make proper use of the available heterogeneous computing resources on mobile devices. In this paper, we study the benefits of utilizing the heterogeneous (CPU and GPU) computing resources available on commodity android devices while running deep learning models. We leveraged the heterogeneous computing framework RenderScript to accelerate the execution of deep learning models on commodity Android devices. Our system is implemented as an extension to the popular open-source framework TensorFlow. By integrating our acceleration framework tightly into TensorFlow, machine learning engineers can now easily make benefit of the heterogeneous computing resources on mobile devices without the need of any extra tools. We evaluate our system on different android phones models to study the trade-offs of running different neural network operations on the GPU. We also compare the performance of running different models architectures such as convolutional and recurrent neural networks on CPU only vs using heterogeneous computing resources. Our result shows that although GPUs on the phones are capable of offering substantial performance gain in matrix multiplication on mobile devices. Therefore, models that involve multiplication of large matrices can run much faster (approx. 3 times faster in our experiments) due to GPU support.

  10. A D-Shaped Bileaflet Bioprosthesis which Replicates Physiological Left Ventricular Flow Patterns.

    Directory of Open Access Journals (Sweden)

    Sean Guo-Dong Tan

    Full Text Available Prior studies have shown that in a healthy heart, there exist a large asymmetric vortex structure that aids in establishing a steady flow field in the left ventricle. However, the implantation of existing artificial heart valves at the mitral position is found to have a negative effect on this physiological flow pattern. In light of this, a novel D-shaped bileaflet porcine bioprosthesis (GD valve has been designed based on the native geometry mitral valve, with the hypothesis that biomimicry in valve design can restore physiological left ventricle flow patterns after valve implantation. An in-vitro experiment using two dimensional particle velocimetry imaging was carried out to determine the hemodynamic performance of the new bileaflet design and then compared to that of the well-established St. Jude Epic valve which functioned as a control in the experiment. Although both valves were found to have similar Reynolds shear stress and Turbulent Kinetic Energy levels, the novel D-shape valve was found to have lower turbulence intensity and greater mean kinetic energy conservation.

  11. A D-Shaped Bileaflet Bioprosthesis which Replicates Physiological Left Ventricular Flow Patterns

    Science.gov (United States)

    Tan, Sean Guo-Dong; Kim, Sangho; Hon, Jimmy Kim Fatt; Leo, Hwa Liang

    2016-01-01

    Prior studies have shown that in a healthy heart, there exist a large asymmetric vortex structure that aids in establishing a steady flow field in the left ventricle. However, the implantation of existing artificial heart valves at the mitral position is found to have a negative effect on this physiological flow pattern. In light of this, a novel D-shaped bileaflet porcine bioprosthesis (GD valve) has been designed based on the native geometry mitral valve, with the hypothesis that biomimicry in valve design can restore physiological left ventricle flow patterns after valve implantation. An in-vitro experiment using two dimensional particle velocimetry imaging was carried out to determine the hemodynamic performance of the new bileaflet design and then compared to that of the well-established St. Jude Epic valve which functioned as a control in the experiment. Although both valves were found to have similar Reynolds shear stress and Turbulent Kinetic Energy levels, the novel D-shape valve was found to have lower turbulence intensity and greater mean kinetic energy conservation. PMID:27258099

  12. An objective indicator for two-phase flow pattern transition

    International Nuclear Information System (INIS)

    Hervieu, E.; Seleghim, P. Jr.

    1998-01-01

    This work concerns the development of a methodology which objective is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. In a first time, the efforts focused on: the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way; the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe; the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the unstationarity degree. In a second time, in order to verify the fundamental assumption, a series of experiments were conducted, which objective was to demonstrate the correlation between unstationarity and regime transition. The unstationarity degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local time-frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (author)

  13. Two-phase flow pattern measurements with a wire mesh sensor in a direct steam generating solar thermal collector

    Science.gov (United States)

    Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard

    2017-06-01

    At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.

  14. Flow Pattern in a Fluidized Bed with a Non-fluidized Zone

    DEFF Research Database (Denmark)

    Lin, Weigang; Dam-Johansen, Kim; Van den Bleek, Cor. M.

    1997-01-01

    is introduced. However, once the gas velocity exceeds the minimum fluidization velocity in the zone where the air is introduced, the cross-flow hardly changes upon further increase of the gas velocity. A continuity equation and Ergun's equation are used to describe the flow pattern and pressure distribution...... over the bed. Very good agreement between the experimental and calculated results is achieved without any fitting parameter. The results are relevant to the understanding of heat transfer behaviour of a fluidized bed combustor (FBC) that is only partly fluidized to control its load....

  15. Arrangement and Applying of Movement Patterns in the Cerebellum Based on Semi-supervised Learning.

    Science.gov (United States)

    Solouki, Saeed; Pooyan, Mohammad

    2016-06-01

    Biological control systems have long been studied as a possible inspiration for the construction of robotic controllers. The cerebellum is known to be involved in the production and learning of smooth, coordinated movements. Therefore, highly regular structure of the cerebellum has been in the core of attention in theoretical and computational modeling. However, most of these models reflect some special features of the cerebellum without regarding the whole motor command computational process. In this paper, we try to make a logical relation between the most significant models of the cerebellum and introduce a new learning strategy to arrange the movement patterns: cerebellar modular arrangement and applying of movement patterns based on semi-supervised learning (CMAPS). We assume here the cerebellum like a big archive of patterns that has an efficient organization to classify and recall them. The main idea is to achieve an optimal use of memory locations by more than just a supervised learning and classification algorithm. Surely, more experimental and physiological researches are needed to confirm our hypothesis.

  16. Active Learning in Fluid Mechanics: Youtube Tube Flow and Puzzling Fluids Questions

    Science.gov (United States)

    Hrenya, Christine M.

    2011-01-01

    Active-learning exercises appropriate for a course in undergraduate fluid mechanics are presented. The first exercise involves an experiment in gravity-driven tube flow, with small groups of students partaking in a contest to predict the experimental flow rates using the mechanical energy balance. The second exercise takes the form of an…

  17. Two-phase flow measurement based on oblique laser scattering

    Science.gov (United States)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cícero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    Multiphase flow measurements play a crucial role in monitoring productions processes in many industries. To guarantee the safety of processes involving multiphase flows, it is important to detect changes in the flow conditions before they can cause damage, often in fractions of seconds. Here we demonstrate how the scattering pattern of a laser beam passing a two-phase flow under an oblique angle to the flow direction can be used to detect derivations from the desired flow conditions in microseconds. Applying machine-learning techniques to signals obtained from three photo-detectors we achieve a compact, versatile, low-cost sensor design for safety applications.

  18. Ice Flows: A Game-based Learning approach to Science Communication

    Science.gov (United States)

    Le Brocq, Anne

    2017-04-01

    Game-based learning allows people to become immersed in an environment, and learn how the system functions and responds to change through playing a game. Science and gaming share a similar characteristic: they both involve learning and understanding the rules of the environment you are in, in order to achieve your objective. I will share experiences of developing and using the educational game "Ice Flows" for science communication. The game tasks the player with getting a penguin to its destination, through controlling the size of the ice sheet via ocean temperature and snowfall. Therefore, the game aims to educate the user about the environmental controls on the behaviour of the ice sheet, whilst they are enjoying playing a game with penguins. The game was funded by a NERC Large Grant entitled "Ice shelves in a warming world: Filchner Ice Shelf system, Antarctica", so uses data from the Weddell Sea sector of the West Antarctic Ice Sheet to generate unique levels. The game will be easily expandable to other regions of Antarctica and beyond, with the ultimate aim of giving a full understanding to the user of different ice flow regimes across the planet.

  19. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems

    OpenAIRE

    Abadi, Martín; Agarwal, Ashish; Barham, Paul; Brevdo, Eugene; Chen, Zhifeng; Citro, Craig; Corrado, Greg S.; Davis, Andy; Dean, Jeffrey; Devin, Matthieu; Ghemawat, Sanjay; Goodfellow, Ian; Harp, Andrew; Irving, Geoffrey; Isard, Michael

    2016-01-01

    TensorFlow is an interface for expressing machine learning algorithms, and an implementation for executing such algorithms. A computation expressed using TensorFlow can be executed with little or no change on a wide variety of heterogeneous systems, ranging from mobile devices such as phones and tablets up to large-scale distributed systems of hundreds of machines and thousands of computational devices such as GPU cards. The system is flexible and can be used to express a wide variety of algo...

  20. A supervised learning rule for classification of spatiotemporal spike patterns.

    Science.gov (United States)

    Lilin Guo; Zhenzhong Wang; Adjouadi, Malek

    2016-08-01

    This study introduces a novel supervised algorithm for spiking neurons that take into consideration synapse delays and axonal delays associated with weights. It can be utilized for both classification and association and uses several biologically influenced properties, such as axonal and synaptic delays. This algorithm also takes into consideration spike-timing-dependent plasticity as in Remote Supervised Method (ReSuMe). This paper focuses on the classification aspect alone. Spiked neurons trained according to this proposed learning rule are capable of classifying different categories by the associated sequences of precisely timed spikes. Simulation results have shown that the proposed learning method greatly improves classification accuracy when compared to the Spike Pattern Association Neuron (SPAN) and the Tempotron learning rule.

  1. An objective indicator for two-phase flow pattern transition

    International Nuclear Information System (INIS)

    Hervieua, E.; Seleghim, P. Jr.

    1998-01-01

    This work concerns the development of a methodology the objective of which is to characterize and diagnose two-phase flow regime transitions. The approach is based on the fundamental assumption that a transition flow is less stationary than a flow with an established regime. During the first time, the efforts focused on: (1) the design and construction of an experimental loop, allowing to reproduce the main horizontal two-phase flow patterns, in a stable and controlled way; (2) the design and construction of an electrical impedance probe, providing an imaged information of the spatial phase distribution in the pipe; and (3) the systematic study of the joint time-frequency and time-scale analysis methods, which permitted to define an adequate parameter quantifying the unstationarity degree. During the second time, in order to verify the fundamental assumption, a series of experiments were conducted, the objective of which was to demonstrate the correlation between unstationarity and regime transition. The unstationarity degree was quantified by calculating the Gabor's transform time-frequency covariance of the impedance probe signals. Furthermore, the phenomenology of each transition was characterized by the joint moments and entropy. The results clearly show that the regime transitions are correlated with local time-frequency covariance peaks, which demonstrates that these regime transitions are characterized by a loss of stationarity. Consequently, the time-frequency covariance constitutes an objective two-phase flow regime transition indicator. (orig.)

  2. Optimized Structure of the Traffic Flow Forecasting Model With a Deep Learning Approach.

    Science.gov (United States)

    Yang, Hao-Fan; Dillon, Tharam S; Chen, Yi-Ping Phoebe

    2017-10-01

    Forecasting accuracy is an important issue for successful intelligent traffic management, especially in the domain of traffic efficiency and congestion reduction. The dawning of the big data era brings opportunities to greatly improve prediction accuracy. In this paper, we propose a novel model, stacked autoencoder Levenberg-Marquardt model, which is a type of deep architecture of neural network approach aiming to improve forecasting accuracy. The proposed model is designed using the Taguchi method to develop an optimized structure and to learn traffic flow features through layer-by-layer feature granulation with a greedy layerwise unsupervised learning algorithm. It is applied to real-world data collected from the M6 freeway in the U.K. and is compared with three existing traffic predictors. To the best of our knowledge, this is the first time that an optimized structure of the traffic flow forecasting model with a deep learning approach is presented. The evaluation results demonstrate that the proposed model with an optimized structure has superior performance in traffic flow forecasting.

  3. Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Nuclear Engineering Center], e-mail: rnavarro@ipen.br

    2009-07-01

    Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)

  4. Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis

    International Nuclear Information System (INIS)

    Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A.

    2009-01-01

    Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)

  5. Axial flow velocity patterns in a normal human pulmonary artery model: pulsatile in vitro studies.

    Science.gov (United States)

    Sung, H W; Yoganathan, A P

    1990-01-01

    It has been clinically observed that the flow velocity patterns in the pulmonary artery are directly modified by disease. The present study addresses the hypothesis that altered velocity patterns relate to the severity of various diseases in the pulmonary artery. This paper lays a foundation for that analysis by providing a detailed description of flow velocity patterns in the normal pulmonary artery, using flow visualization and laser Doppler anemometry techniques. The studies were conducted in an in vitro rigid model in a right heart pulse duplicator system. In the main pulmonary artery, a broad central flow field was observed throughout systole. The maximum axial velocity (150 cm s-1) was measured at peak systole. In the left pulmonary artery, the axial velocities were approximately evenly distributed in the perpendicular plane. However, in the bifurcation plane, they were slightly skewed toward the inner wall at peak systole and during the deceleration phase. In the right pulmonary artery, the axial velocity in the perpendicular plane had a very marked M-shaped profile at peak systole and during the deceleration phase, due to a pair of strong secondary flows. In the bifurcation plane, higher axial velocities were observed along the inner wall, while lower axial velocities were observed along the outer wall and in the center. Overall, relatively low levels of turbulence were observed in all the branches during systole. The maximum turbulence intensity measured was at the boundary of the broad central flow field in the main pulmonary artery at peak systole.

  6. Analysis of serial coronary artery flow patterns early after primary angioplasty: new insights into the dynamics of the microcirculation.

    Science.gov (United States)

    Sharif, Dawod; Rofe, Guy; Sharif-Rasslan, Amal; Goldhammer, Ehud; Makhoul, Nabeel; Shefer, Arie; Hassan, Amin; Rauchfleisch, Shmuel; Rosenschein, Uri

    2008-06-01

    The temporal behavior of the coronary microcirculation in acute myocardial infarction may affect outcome. Diastolic deceleration time and early systolic flow reversal derived from coronary artery blood flow velocity patterns reflect microcirculatory function. To assess left anterior descending coronary artery flow velocity patterns using Doppler transthoracic echocardiography after primary percutaneous coronary intervention, in patients with anterior AMI. Patterns of flow velocity patterns of the LAD were obtained using transthoracic echocardiography-Doppler in 31 consecutive patients who presented with anterior AMI. Measurements were done at 6 hours, 36-48 hours, and 5 days after successful PPCI. Measurements of DDT and pressure half times (Pt%), as well as observation for ESFR were performed. In the first 2 days following PPCI, the average DDT (600 +/- 340 msec) was shorter than on day 5 (807 +/- 332 msec) (P 600 msec) and vice versa. On day 5 most DDTs became longer. Pt1/2 at 6 hours was not different than at day 2 (174 +/- 96 vs. 193 +/- 99 msec, P = NS) and became longer on day 5 (235 +/- 98 msec, P = 0.012). Bidirectional patterns were also observed in the ESFR in 6 patients (19%) at baseline, in 4 (13%) at 36 hours, and in 2 (6.5%) on day 5 after PPCI. Flow velocity patterns of the LAD after PPCI in AMI are dynamic and reflect unpredictable changes in microcirculation.

  7. The RiverFish Approach to Business Process Modeling: Linking Business Steps to Control-Flow Patterns

    Science.gov (United States)

    Zuliane, Devanir; Oikawa, Marcio K.; Malkowski, Simon; Alcazar, José Perez; Ferreira, João Eduardo

    Despite the recent advances in the area of Business Process Management (BPM), today’s business processes have largely been implemented without clearly defined conceptual modeling. This results in growing difficulties for identification, maintenance, and reuse of rules, processes, and control-flow patterns. To mitigate these problems in future implementations, we propose a new approach to business process modeling using conceptual schemas, which represent hierarchies of concepts for rules and processes shared among collaborating information systems. This methodology bridges the gap between conceptual model description and identification of actual control-flow patterns for workflow implementation. We identify modeling guidelines that are characterized by clear phase separation, step-by-step execution, and process building through diagrams and tables. The separation of business process modeling in seven mutually exclusive phases clearly delimits information technology from business expertise. The sequential execution of these phases leads to the step-by-step creation of complex control-flow graphs. The process model is refined through intuitive table and diagram generation in each phase. Not only does the rigorous application of our modeling framework minimize the impact of rule and process changes, but it also facilitates the identification and maintenance of control-flow patterns in BPM-based information system architectures.

  8. A cross-cultural comparison of student learning patterns in higher education

    NARCIS (Netherlands)

    Marambe, Kosala; Vermunt, Jan; Boshuizen, Els

    2012-01-01

    Marambe, K. N., Vermunt, J. D., & Boshuizen, H. P. A. (2012). A cross-cultural comparison of student learning patterns in higher education. Higher Education, 64(3), 299-316. doi:10.1007/s10734-011-9494-z

  9. Learning alternative movement coordination patterns using reinforcement feedback.

    Science.gov (United States)

    Lin, Tzu-Hsiang; Denomme, Amber; Ranganathan, Rajiv

    2018-05-01

    One of the characteristic features of the human motor system is redundancy-i.e., the ability to achieve a given task outcome using multiple coordination patterns. However, once participants settle on using a specific coordination pattern, the process of learning to use a new alternative coordination pattern to perform the same task is still poorly understood. Here, using two experiments, we examined this process of how participants shift from one coordination pattern to another using different reinforcement schedules. Participants performed a virtual reaching task, where they moved a cursor to different targets positioned on the screen. Our goal was to make participants use a coordination pattern with greater trunk motion, and to this end, we provided reinforcement by making the cursor disappear if the trunk motion during the reach did not cross a specified threshold value. In Experiment 1, we compared two reinforcement schedules in two groups of participants-an abrupt group, where the threshold was introduced immediately at the beginning of practice; and a gradual group, where the threshold was introduced gradually with practice. Results showed that both abrupt and gradual groups were effective in shifting their coordination patterns to involve greater trunk motion, but the abrupt group showed greater retention when the reinforcement was removed. In Experiment 2, we examined the basis of this advantage in the abrupt group using two additional control groups. Results showed that the advantage of the abrupt group was because of a greater number of practice trials with the desired coordination pattern. Overall, these results show that reinforcement can be successfully used to shift coordination patterns, which has potential in the rehabilitation of movement disorders.

  10. Statistical learning of recurring sound patterns encodes auditory objects in songbird forebrain.

    Science.gov (United States)

    Lu, Kai; Vicario, David S

    2014-10-07

    Auditory neurophysiology has demonstrated how basic acoustic features are mapped in the brain, but it is still not clear how multiple sound components are integrated over time and recognized as an object. We investigated the role of statistical learning in encoding the sequential features of complex sounds by recording neuronal responses bilaterally in the auditory forebrain of awake songbirds that were passively exposed to long sound streams. These streams contained sequential regularities, and were similar to streams used in human infants to demonstrate statistical learning for speech sounds. For stimulus patterns with contiguous transitions and with nonadjacent elements, single and multiunit responses reflected neuronal discrimination of the familiar patterns from novel patterns. In addition, discrimination of nonadjacent patterns was stronger in the right hemisphere than in the left, and may reflect an effect of top-down modulation that is lateralized. Responses to recurring patterns showed stimulus-specific adaptation, a sparsening of neural activity that may contribute to encoding invariants in the sound stream and that appears to increase coding efficiency for the familiar stimuli across the population of neurons recorded. As auditory information about the world must be received serially over time, recognition of complex auditory objects may depend on this type of mnemonic process to create and differentiate representations of recently heard sounds.

  11. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG) Pattern Recognition

    Science.gov (United States)

    Huang, Qi; Yang, Dapeng; Jiang, Li; Zhang, Huajie; Liu, Hong; Kotani, Kiyoshi

    2017-01-01

    Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC), by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC). We compared PAC performance with incremental support vector classifier (ISVC) and non-adapting SVC (NSVC) in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05) and ISVC (13.38% ± 2.62%, p = 0.001), and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle). PMID:28608824

  12. A Novel Unsupervised Adaptive Learning Method for Long-Term Electromyography (EMG Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Qi Huang

    2017-06-01

    Full Text Available Performance degradation will be caused by a variety of interfering factors for pattern recognition-based myoelectric control methods in the long term. This paper proposes an adaptive learning method with low computational cost to mitigate the effect in unsupervised adaptive learning scenarios. We presents a particle adaptive classifier (PAC, by constructing a particle adaptive learning strategy and universal incremental least square support vector classifier (LS-SVC. We compared PAC performance with incremental support vector classifier (ISVC and non-adapting SVC (NSVC in a long-term pattern recognition task in both unsupervised and supervised adaptive learning scenarios. Retraining time cost and recognition accuracy were compared by validating the classification performance on both simulated and realistic long-term EMG data. The classification results of realistic long-term EMG data showed that the PAC significantly decreased the performance degradation in unsupervised adaptive learning scenarios compared with NSVC (9.03% ± 2.23%, p < 0.05 and ISVC (13.38% ± 2.62%, p = 0.001, and reduced the retraining time cost compared with ISVC (2 ms per updating cycle vs. 50 ms per updating cycle.

  13. A sequence identification measurement model to investigate the implicit learning of metrical temporal patterns.

    Directory of Open Access Journals (Sweden)

    Benjamin G Schultz

    Full Text Available Implicit learning (IL occurs unconsciously and without intention. Perceptual fluency is the ease of processing elicited by previous exposure to a stimulus. It has been assumed that perceptual fluency is associated with IL. However, the role of perceptual fluency following IL has not been investigated in temporal pattern learning. Two experiments by Schultz, Stevens, Keller, and Tillmann demonstrated the IL of auditory temporal patterns using a serial reaction-time task and a generation task based on the process dissociation procedure. The generation task demonstrated that learning was implicit in both experiments via motor fluency, that is, the inability to suppress learned information. With the aim to disentangle conscious and unconscious processes, we analyze unreported recognition data associated with the Schultz et al. experiments using the sequence identification measurement model. The model assumes that perceptual fluency reflects unconscious processes and IL. For Experiment 1, the model indicated that conscious and unconscious processes contributed to recognition of temporal patterns, but that unconscious processes had a greater influence on recognition than conscious processes. In the model implementation of Experiment 2, there was equal contribution of conscious and unconscious processes in the recognition of temporal patterns. As Schultz et al. demonstrated IL in both experiments using a generation task, and the conditions reported here in Experiments 1 and 2 were identical, two explanations are offered for the discrepancy in model and behavioral results based on the two tasks: 1 perceptual fluency may not be necessary to infer IL, or 2 conscious control over implicitly learned information may vary as a function of perceptual fluency and motor fluency.

  14. Prevalence and Patterns of Learning Disabilities in School Children.

    Science.gov (United States)

    Padhy, Susanta Kumar; Goel, Sonu; Das, Shyam Sinder; Sarkar, Siddharth; Sharma, Vijaylaxmi; Panigrahi, Mahima

    2016-04-01

    To assess the prevalence and patterns of learning disabilities (LD) in school going children in a northern city of India. The present cross-sectional study comprised of three-staged screening procedure for assessing learning disabilities of 3rd and 4th grade students studying in government schools. The first stage comprised of the teacher identifying at-risk student. In the second stage, teachers assessed at-risk students using Specific Learning Disability-Screening Questionnaire (SLD-SQ). The third stage comprised of assessment of the screen positive students using Brigance Diagnostic Inventory (BDI) part of NIMHANS Index of Specific Learning Disabilities for identifying the cases of LD. A total of 1211 (33.6%) children out of the total screened (n = 3600) were identified as at-risk by the teachers at the first stage. Of them, 360 were found to screen positive on the second stage using SLD-SQ. The most common deficits were missing out words or sentences while reading, misplacing letters or words while reading or writing, and making frequent mistake in spelling while writing or reading. Of these, 108 children were confirmed to have learning disability on the third stage using BDI, which represented 3.08% of the total population. Learning disability is an important concern in young school aged children. Early identification of such students can help in early institution of intervention and suitable modifications in teaching techniques.

  15. Stress and Damage Induced Gas Flow Pattern and Permeability Variation of Coal from Songzao Coalfield in Southwest China

    Directory of Open Access Journals (Sweden)

    Minghui Li

    2016-05-01

    Full Text Available The permeability of coal is a critical parameter in estimating the performance of coal reservoirs. Darcy’s law describes the flow pattern that the permeability has a linear relationship with the flow velocity. However, the stress induced deformation and damage can significantly influence the gas flow pattern and permeability of coal. Coals from Songzao coalfield in Chongqing, southwest China were collected for the study. The gas flow velocities under different injection gas pressures and effective stresses in the intact coal and damaged coal were tested using helium, incorporating the role of gas flow pattern on the permeability of coal. The relationships between the flow velocity and square of gas pressure gradient were discussed, which can help us to investigate the transformation conditions of gas linear flow and gas nonlinear flow in the coal. The results showed that the gas flow in the intact coal existed pseudo-initial flow rate under low effective stress. The low-velocity non-Darcy gas flow gradually occurred and the start-up pressure gradient increased in the coal as the effective stress increased. The gas flow rate in the damaged coal increased nonlinearly as the square of pressure gradient increased under low effective stress. The instability of gas flow caused by high ratio of injection gas pressure over effective stress in the damaged coal contributed to the increase of the gas flow rate. As the effective stress increased, the increase of gas flow rate in coal turned to be linear. The mechanisms of the phenomena were explored according to the experimental results. The permeability of coal was corrected based on the relationships between the flow velocity and square of gas pressure gradient, which showed advantages in accurately estimating the performance of coal reservoirs.

  16. Abnormal network flow detection based on application execution patterns from Web of Things (WoT) platforms.

    Science.gov (United States)

    Yoon, Young; Jung, Hyunwoo; Lee, Hana

    2018-01-01

    In this paper, we present a research work on a novel methodology of identifying abnormal behaviors at the underlying network monitor layer during runtime based on the execution patterns of Web of Things (WoT) applications. An execution pattern of a WoT application is a sequence of profiled time delays between the invocations of involved Web services, and it can be obtained from WoT platforms. We convert the execution pattern to a time sequence of network flows that are generated when the WoT applications are executed. We consider such time sequences as a whitelist. This whitelist reflects the valid application execution patterns. At the network monitor layer, our applied RETE algorithm examines whether any given runtime sequence of network flow instances does not conform to the whitelist. Through this approach, it is possible to interpret a sequence of network flows with regard to application logic. Given such contextual information, we believe that the administrators can detect and reason about any abnormal behaviors more effectively. Our empirical evaluation shows that our RETE-based algorithm outperforms the baseline algorithm in terms of memory usage.

  17. Unsaturated Zone Flow Patterns and Analysis

    International Nuclear Information System (INIS)

    Ahlers, C.

    2001-01-01

    This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M and O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M and O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses where conservatism may be

  18. Relationships among student attitudes, motivation, learning styles, learning strategies, patterns of learning, and achievement: A formative evaluation of distance education via Web-based courses

    Science.gov (United States)

    Shih, Ching-Chun

    The World Wide Web (WWW) is the latest in a long line of educational technologies, and the list of courses on it is growing daily. Formative evaluations would help educators enhance teaching and learning in Web-based courses. This study analyzed the relationships between student achievement and the following variables: attitudes, motivation, learning strategies, patterns of learning, learning styles, and selected demographics. It was a population study that included 99 students taking two non-major introductory biology courses offered over the WWW by Iowa State University in the fall of 1997. Seventy-four (75%) students completed a learning style test, an on-line questionnaire, and received a grade by the end of the semester. The learning style test was the Group Embedded Figures Test (GEFT), which classified students as either field-dependent or field-independent. The on-line questionnaire consisted of four scales (attitude, motivation, learning strategies, and patterns of learning), whose pilot-test reliabilities ranged from .71 to .91. The selected demographic variables were gender, class level, previous experience in subject area, hours per week studying and working, computer access, and types of students as off-campus, on-campus, or adult students. Over two-thirds of the students taking the Web-based courses were field-independent learners; however, there were no significant differences (.05 level) in achievement by learning style. Also, different backgrounds of students with different learning styles learned equally well in Web-based courses. The students enjoyed the convenience and self-controlled learning pace and were motivated by competition and high expectations in Web-based learning. They used most the learning strategies of finding important ideas from lectures and memorizing key words of important concepts and least the learning strategy of making charts or tables to organize the material. They seemed more interested in checking their grades than in

  19. Patterned Roughness for Cross-flow Transition Control at Mach 6

    Science.gov (United States)

    Arndt, Alexander; Matlis, Eric; Semper, Michael; Corke, Thomas

    2017-11-01

    Experiments are performed to investigate patterned discrete roughness for transition control on a sharp right-circular cone at an angle of attack at Mach 6.0. The approach to transition control is based on exciting less-amplified (subcritical) stationary cross-flow (CF) modes that suppress the growth of the more-amplified (critical) CF modes, and thereby delay transition. The experiments were performed in the Air Force Academy Ludwieg Tube which is a conventional (noisy) design. The cone model is equipped with a motorized 3-D traversing mechanism that mounts on the support sting. The traversing mechanism held a closely-spaced pair of fast-response total pressure Pitot probes. The model utilized a removable tip to exchange between different tip-roughness conditions. Mean flow distortion x-development indicated that the transition Reynolds number increased by 25% with the addition of the subcritical roughness. The energy in traveling disturbances was centered in the band of most amplified traveling CF modes predicted by linear theory. The spatial pattern in the amplitude of the traveling CF modes indicated a nonlinear (sum and difference) interaction between the stationary and traveling CF modes that might explain differences in Retrans between noisy and quiet environments. Air Force Grant FA9550-15-1-0278.

  20. A study of grout flow pattern analysis

    International Nuclear Information System (INIS)

    Lee, S. Y.; Hyun, S.

    2013-01-01

    A new disposal unit, designated as Salt Disposal Unit no. 6 (SDU6), is being designed for support of site accelerated closure goals and salt nuclear waste projections identified in the new Liquid Waste System plan. The unit is cylindrical disposal vault of 380 ft diameter and 43 ft in height, and it has about 30 million gallons of capacity. Primary objective was to develop the computational model and to perform the evaluations for the flow patterns of grout material in SDU6 as function of elevation of grout discharge port, and slurry rheology. A Bingham plastic model was basically used to represent the grout flow behavior. A two-phase modeling approach was taken to achieve the objective. This approach assumes that the air-grout interface determines the shape of the accumulation mound. The results of this study were used to develop the design guidelines for the discharge ports of the Saltstone feed materials in the SDU6 facility. The focusing areas of the modeling study are to estimate the domain size of the grout materials radially spread on the facility floor under the baseline modeling conditions, to perform the sensitivity analysis with respect to the baseline design and operating conditions such as elevation of discharge port, discharge pipe diameter, and grout properties, and to determine the changes in grout density as it is related to grout drop height. An axi-symmetric two-phase modeling method was used for computational efficiency. Based on the nominal design and operating conditions, a transient computational approach was taken to compute flow fields mainly driven by pumping inertia and natural gravity. Detailed solution methodology and analysis results are discussed here

  1. Characteristics of two-phase flow pattern transitions and pressure drop of five refrigerants in horizontal circular small tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pamitran, A.S. [Department of Mechanical Engineering, University of Indonesia, Kampus Baru UI, Depok 16424 (Indonesia); Choi, Kwang-Il [Graduate School, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Oh, Jong-Taek [Department of Refrigeration and Air Conditioning Engineering, Chonnam National University, San 96-1, Dunduk-Dong, Yeosu, Chonnam 550-749 (Korea); Hrnjak, Pega [Department of Mechanical Science and Engineering, ACRC, University of Illinois at Urbana-Champaign, 1206 West Green Street, Urbana, IL 61801 (United States)

    2010-05-15

    An experimental investigation on the characteristics of two-phase flow pattern transitions and pressure drop of R-22, R-134a, R-410A, R-290 and R-744 in horizontal small stainless steel tubes of 0.5, 1.5 and 3.0 mm inner diameters is presented. Experimental data were obtained over a heat flux range of 5-40 kW/m{sup 2}, mass flux range of 50-600 kg/(m{sup 2} s), saturation temperature range of 0-15 C, and quality up to 1.0. Experimental data were evaluated with Wang et al. and Wojtan et al. [Wang, C.C., Chiang, C.S., Lu, D.C., 1997. Visual observation of two-phase flow pattern of R-22, R-134a, and R-407C in a 6.5-mm smooth tube. Exp. Therm. Fluid Sci. 15, 395-405; Wojtan, L., Ursenbacher, T., Thome, J.R., 2005. Investigation of flow boiling in horizontal tubes: part I - a new diabatic two-phase flow pattern map. Int. J. Heat Mass Transfer 48, 2955-2969.] flow pattern maps. The effects of mass flux, heat flux, saturation temperature and inner tube diameter on the pressure drop of the working refrigerants are reported. The experimental pressure drop was compared with the predictions from some existing correlations. A new two-phase pressure drop model that is based on a superposition model for two-phase flow boiling of refrigerants in small tubes is presented. (author)

  2. Evaluation of early systolic flow pattern in left ventricle by tagging cine MRI in normal volunteers

    International Nuclear Information System (INIS)

    Sakakura, Kazuyoshi; Anno, Naoko; Kondo, Takeshi

    1992-01-01

    The tagging method is a new technique, which permits to apply discretionary lines (tags) on MR images. To evaluate intra left ventricular (LV) flow pattern, we performed ECG-gated gradient field echo cine MRI using tagging method in five normal male volunteers, aged 22-42 years. The horizontal long axis view of LV was imaged by multiphasic field echo pulse sequence. The three parallel tags (basal, middle and apical portion) were established on the horizontal long axis view of LV just after the triggered QRS waves. And the initial two images (70 ms and 120 ms after the triggered QRS waves) were analyzed. On the two tags (middle and apical portion) of these three tags, we measured the distance of displacement of the tags on three points (the near site of IVS, middle portion and the near site of free wall) respectively. At 70 ms after the trigger point, the only tagged blood at the near site of free wall flowed toward the apex. At 120 ms after the trigger point, all the tagged blood flowed toward the outflow tract of LV. And the maximum blood flow velocity was observed at the near site of IVS on middle portion of LV (166.0 mm/s). These results coincided with earlier studies by Doppler echocardiography. But we could not observe intra LV blood flow patterns throughout one cardiac cycle in this pulse sequence, because the tags had flowed out from LV and had become unclear due to spin relaxation and mixing. We concluded that the tagging method was useful to evaluate intra left ventricular blood flow patterns in early systolic phase. (author)

  3. Determination of drift-flux velocity as a function of two-phase flow patterns

    International Nuclear Information System (INIS)

    Austregesilo Filho, H.

    1986-01-01

    A method is suggested for the calculation of drift-flux velocity as a function of two-phase flow patterns determined analytically. This model can be introduced in computer codes for thermal hydraulic analyses based mainly on homogeneous assumptions, in order to achieve a more realis tic description of two-phase flow phenomena, which is needed for the simulation of accidents in nuclear power plants for which phase separation effects are dominant, e.g., small break accidents. (Author) [pt

  4. Wind-Induced Air-Flow Patterns in an Urban Setting: Observations and Numerical Modeling

    Science.gov (United States)

    Sattar, Ahmed M. A.; Elhakeem, Mohamed; Gerges, Bishoy N.; Gharabaghi, Bahram; Gultepe, Ismail

    2018-04-01

    City planning can have a significant effect on wind flow velocity patterns and thus natural ventilation. Buildings with different heights are roughness elements that can affect the near- and far-field wind flow velocity. This paper aims at investigating the impact of an increase in building height on the nearby velocity fields. A prototype urban setting of buildings with two different heights (25 and 62.5 cm) is built up and placed in a wind tunnel. Wind flow velocity around the buildings is mapped at different heights. Wind tunnel measurements are used to validate a 3D-numerical Reynolds averaged Naviers-Stokes model. The validated model is further used to calculate the wind flow velocity patterns for cases with different building heights. It was found that increasing the height of some buildings in an urban setting can lead to the formation of large horseshoe vortices and eddies around building corners. A separation area is formed at the leeward side of the building, and the recirculation of air behind the building leads to the formation of slow rotation vortices. The opposite effect is observed in the wake (cavity) region of the buildings, where both the cavity length and width are significantly reduced, and this resulted in a pronounced increase in the wind flow velocity. A significant increase in the wind flow velocity in the wake region of tall buildings with a value of up to 30% is observed. The spatially averaged velocities around short buildings also increased by 25% compared to those around buildings with different heights. The increase in the height of some buildings is found to have a positive effect on the wind ventilation at the pedestrian level.

  5. Future climate and changes in flow patterns in Czech headwater catchments

    Czech Academy of Sciences Publication Activity Database

    Benčoková, A.; Krám, P.; Hruška, Jakub

    2011-01-01

    Roč. 49, č. 1 (2011), s. 1-15 ISSN 0936-577X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional research plan: CEZ:AV0Z60870520 Keywords : climate change impact * flow pattern * regional climate scenarios * Headwater catchments * hydrological modelling * Broo90 Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.994, year: 2011

  6. Flow pattern assessment in tubes with wire coil inserts in laminar and transition regimes

    International Nuclear Information System (INIS)

    Garcia, A.; Solano, J.P.; Vicente, P.G.; Viedma, A.

    2007-01-01

    The paper presents an analysis of the flow mechanisms in tubes with wire coils using hydrogen bubble visualization and PIV techniques. Results have been contrasted with experimental data on pressure drop. The relation between the observed flow patterns and the friction factor has been analysed. The experimental analysis that has been carried out allows one to state that at low Reynolds numbers (Re < 400) the flow in tubes with wire coils is basically similar to the flow in smooth tubes. At Reynolds numbers between 500 and 700 and in short pitch wire coils a recirculating flow appears. The insertion of wires coils in a smooth tube accelerates significantly the transition to turbulence. This is produced at Reynolds numbers between 700 and 1000 depending on the wire pitch

  7. Dual-modality impairment of implicit learning of letter-strings versus color-patterns in patients with schizophrenia

    OpenAIRE

    Chiu, Ming-Jang; Liu, Kristina; Hsieh, Ming H; Hwu, Hai-Gwo

    2005-01-01

    Abstract Background Implicit learning was reported to be intact in schizophrenia using artificial grammar learning. However, emerging evidence indicates that artificial grammar learning is not a unitary process. The authors used dual coding stimuli and schizophrenia clinical symptom dimensions to re-evaluate the effect of schizophrenia on various components of artificial grammar learning. Methods Letter string and color pattern artificial grammar learning performances were compared between 63...

  8. Visualisation of flow patterns in straight and C-shape thermosyphons

    Science.gov (United States)

    Ong, K. S.; Tshai, K. H.; Firwana, A.

    2017-04-01

    A heat pipe is a passive heat transfer device capable of transferring a large quantity of heat effectively and efficiently over a long distance and with a small temperature difference between the heat source and heat sink. A heat pipe consists of a metal pipe initially vacuumed and then filled with a small quantity of fluid inside. The pipe is separated into a heating (evaporator) section and a cooling (condenser) section by an adiabatic section. In a run-around-coil heating, ventilation and air conditioning system, a wrap-around heat pipe heat exchanger could be employed to increase dehumidification and to reduce cooling costs. The thermal performance of a thermosyphon is dependent upon type of fill liquid, fill ratio, power input, pipe inclination and pipe dimensions. The boiling and condensation processes that occur inside a thermosyphon are quite complex. During operation, dry-out, burn-out or boiling limit, entrainment or flooding limit and geysering occur. These phenomena would lead to non-uniform axial wall temperature distribution in the pipe, or worse still, ineffective operation. In order to have a better understanding of the internal heat transfer phenomena, a visual study using transparent glass tubes and high speed camera recording of the internal flow patterns would be most helpful. This paper reports on an experimental investigation conducted to visualise the flow patterns in straight and C-shape thermosyphons. The pictures recorded enabled the internal flow boiling and condensation pattern occurring inside a straight and a C-shape thermosyphon to be observed. The thermosyphons were fabricated from 10 mm O/D × 8 mm I/D × 300 mm long glass tubes and filled with water with fill ratios from 0.5 - 1.5. The evaporator sections of the thermosyphons were immersed into a hot water tank that was electrically heated from cold at ambient temperature till boiling. Cooling of the condenser section was achieved using a fan. Preliminary results showed that dry

  9. Unsaturated Zone Flow Patterns and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    C. Ahlers

    2001-10-17

    This Analysis/Model Report (AMR) documents the development of an expected-case model for unsaturated zone (UZ) flow and transport that will be described in terms of the representativeness of models of the natural system. The expected-case model will provide an evaluation of the effectiveness of the natural barriers, assess the impact of conservatism in the Total System Performance Assessment (TSPA), and support the development of further models and analyses for public confidence building. The present models used in ''Total System Performance Assessment for the Site Recommendation'' (Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) 2000 [1532461]) underestimate the natural-barrier performance because of conservative assumptions and parameters and do not adequately address uncertainty and alternative models. The development of an expected case model for the UZ natural barrier addresses issues regarding flow-pattern analysis and modeling that had previously been treated conservatively. This is in line with the Repository Safety Strategy (RSS) philosophy of treating conservatively those aspects of the UZ flow and transport system that are not important for achieving regulatory dose (CRWMS M&O 2000 [153246], Section 1.1.1). The development of an expected case model for the UZ also provides defense-in-depth in areas requiring further analysis of uncertainty and alternative models. In general, the value of the conservative case is to provide a more easily defensible TSPA for behavior of UZ flow and transport processes at Yucca Mountain. This AMR has been prepared in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (Bechtel SAIC Company (BSC) 2001 [155051], Section 1.3 - Work Package 4301213UMG). The work scope is to examine the data and current models of flow and transport in the Yucca Mountain UZ to identify models and analyses

  10. Multisubject Learning for Common Spatial Patterns in Motor-Imagery BCI

    Directory of Open Access Journals (Sweden)

    Dieter Devlaminck

    2011-01-01

    Full Text Available Motor-imagery-based brain-computer interfaces (BCIs commonly use the common spatial pattern filter (CSP as preprocessing step before feature extraction and classification. The CSP method is a supervised algorithm and therefore needs subject-specific training data for calibration, which is very time consuming to collect. In order to reduce the amount of calibration data that is needed for a new subject, one can apply multitask (from now on called multisubject machine learning techniques to the preprocessing phase. Here, the goal of multisubject learning is to learn a spatial filter for a new subject based on its own data and that of other subjects. This paper outlines the details of the multitask CSP algorithm and shows results on two data sets. In certain subjects a clear improvement can be seen, especially when the number of training trials is relatively low.

  11. Improved children's motor learning of the basketball free shooting pattern by associating subjective error estimation and extrinsic feedback.

    Science.gov (United States)

    Silva, Leandro de Carvalho da; Pereira-Monfredini, Carla Ferro; Teixeira, Luis Augusto

    2017-09-01

    This study aimed at assessing the interaction between subjective error estimation and frequency of extrinsic feedback in the learning of the basketball free shooting pattern by children. 10- to 12-year olds were assigned to 1 of 4 groups combining subjective error estimation and relative frequency of extrinsic feedback (33% × 100%). Analysis of performance was based on quality of movement pattern. Analysis showed superior learning of the group combining error estimation and 100% feedback frequency, both groups receiving feedback on 33% of trials achieved intermediate results, and the group combining no requirement of error estimation and 100% feedback frequency had the poorest learning. Our results show the benefit of subjective error estimation in association with high frequency of extrinsic feedback in children's motor learning of a sport motor pattern.

  12. Quantitative activation patterns of cerebral blood flow during mental stimulation after intravenous injection of sup(195m)Au

    International Nuclear Information System (INIS)

    Lindner, P.; Nickel, O.

    1983-01-01

    A previously reported theory for quantitative cerebral blood flow measurement for nondiffusible radiotracers has been applied to patients after stroke and to volunteers undergoing a mental stimulation exercise. Quantitative measurements of cerebral blood flow pattern in p-a and lateral projections of the brain are obtained using the short lived (30s) isotope sup(195m)Au from the recently developed generator. The energy spectrum of the eluate from the generator shows two strong photon peaks, one at an energy level of 68 KeV and a second at 262 KeV. The low-energy peak is suitable for perfusion studies of the cerebral hemispheres in lateral projection, being without ''look through'' effect. The high-energy level is good for studies in p-a-projection. Studies last less than 1 min and can be repeated after 3 min. Parametric images for quantitative regional cerebral blood flow can be generated, in which the avascular region following stroke can be detected. Quantitative activation patterns of cerebral blood flow during mental stimulation can be generated. The results show that it is possible to measure cerebral blood-flow patterns not only with freely diffusible indicators like Xenon but also with nondiffusible indicators. (orig.)

  13. Heating patterns during cancer heat therapy as a function of blood flow

    International Nuclear Information System (INIS)

    Mendecki, J.; Friedenthal, E.; Botstein, C.; Sterzer, F.; Paglione, R.W.

    1984-01-01

    Heating patterns as a function of regional blood flow were evaluated in healthy tissues with different vascular characteristics as well as in a variety of tumors submitted to microwave and RF-induced hyperthermia. Generally, faster heating and slower cooling was demonstrated for tumors. Definite correlation was found between the power needed to heat given tissue volume to a specific temperature and the ability of this tissue to dissipate heat via vascular flow. The measurements show that during the early phase of heating of tumors temperature rises slowly up to about 40 0 C. indicating good heat exchanges but that at this level rapid increase of temperature occurs for relatively small increments of power input. It is suggested that blood flow in malignant tissue remains competent and responsive to low grade heating, but that at higher temperature levels, in contrast to normal tissue, tumor blood flow rapidly decreases indicating compromised vascular system. Implication for treatment protocols are discussed

  14. Integral Mindflow: A Process of Mindfulness-in-Flow to Enhance Individual and Organization Learning

    Science.gov (United States)

    Cacioppe, Ron Lewis

    2017-01-01

    Purpose: This paper aims to examine the differences in mindfulness, meditation and flow and the conditions in which each occurs. It summarizes research that demonstrates positive benefits of these three for employee and organizational learning. While mindfulness focuses awareness on what is occurring in the moment, flow involves total immersion in…

  15. Decoding complex flow-field patterns in visual working memory.

    Science.gov (United States)

    Christophel, Thomas B; Haynes, John-Dylan

    2014-05-01

    There has been a long history of research on visual working memory. Whereas early studies have focused on the role of lateral prefrontal cortex in the storage of sensory information, this has been challenged by research in humans that has directly assessed the encoding of perceptual contents, pointing towards a role of visual and parietal regions during storage. In a previous study we used pattern classification to investigate the storage of complex visual color patterns across delay periods. This revealed coding of such contents in early visual and parietal brain regions. Here we aim to investigate whether the involvement of visual and parietal cortex is also observable for other types of complex, visuo-spatial pattern stimuli. Specifically, we used a combination of fMRI and multivariate classification to investigate the retention of complex flow-field stimuli defined by the spatial patterning of motion trajectories of random dots. Subjects were trained to memorize the precise spatial layout of these stimuli and to retain this information during an extended delay. We used a multivariate decoding approach to identify brain regions where spatial patterns of activity encoded the memorized stimuli. Content-specific memory signals were observable in motion sensitive visual area MT+ and in posterior parietal cortex that might encode spatial information in a modality independent manner. Interestingly, we also found information about the memorized visual stimulus in somatosensory cortex, suggesting a potential crossmodal contribution to memory. Our findings thus indicate that working memory storage of visual percepts might be distributed across unimodal, multimodal and even crossmodal brain regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Prediction for flow boiling heat transfer in small diameter tube using deep learning

    International Nuclear Information System (INIS)

    Enoki, Koji; Sei, Yuichi; Okawa, Tomio; Saito, Kiyoshi

    2017-01-01

    The applications of Artificial Intelligence ie AI show diversity in any fields. On the other hand, research of the predicting heat transfer regardless of single-phase or two-phase flow is still untouched. Therefore, we have confirmed usefulness using AI's deep learning function on horizontal flow boiling heat transfer in flowing mini-channel that is actively researched. The effect of the surface tension in the mini-channel is large compared with conventional large tubes, and then the heat transfer mechanism is very complicated. For this reason, the numerical correlations of many existing researchers the prediction result is not good. However, the mechanistic correlation based on the visualization experiment, which the authors' research group published several years ago has very high precision. Therefore, in this research paper, we confirmed the effectiveness of using deep learning for predicting of the boiling heat transfer in mini-channel while comparing our correlation. (author)

  17. Personality patterns and vocational interests of learning disabled and nonlearning disabled high school students

    OpenAIRE

    Ivy, Robert J.

    1991-01-01

    There is a lack of research based data in the field of learning disabilities, especially at the secondary level. The purpose of this study was to evaluate personality configuration patterns and vocational interests through the administration of the Myers-Briggs Type Indicator, Abbreviated Version (AV) and the Self-Directed Search, Form E (EASY) for learning disabled (LD) and non-learning disabled (NLD) students. The sample included 90 LD students and 100 Non-LD stud...

  18. Thinking Aloud While Solving a Stock-Flow Task: Surfacing the Correlation Heuristic and Other Reasoning Patterns

    NARCIS (Netherlands)

    Korzilius, H.P.L.M.; Raaijmakers, S.F.J.M.; Rouwette, E.A.J.A.; Vennix, J.A.M.

    2014-01-01

    In the literature, it is assumed that individuals, while performing stock-flow tasks, often use a correlation heuristic, a form of pattern matching in which they think that the behavior of the stock resembles the (net) flow. To investigate this assumption and to increase our insight in the actual

  19. Comparative Analysis of River Flow Modelling by Using Supervised Learning Technique

    Science.gov (United States)

    Ismail, Shuhaida; Mohamad Pandiahi, Siraj; Shabri, Ani; Mustapha, Aida

    2018-04-01

    The goal of this research is to investigate the efficiency of three supervised learning algorithms for forecasting monthly river flow of the Indus River in Pakistan, spread over 550 square miles or 1800 square kilometres. The algorithms include the Least Square Support Vector Machine (LSSVM), Artificial Neural Network (ANN) and Wavelet Regression (WR). The forecasting models predict the monthly river flow obtained from the three models individually for river flow data and the accuracy of the all models were then compared against each other. The monthly river flow of the said river has been forecasted using these three models. The obtained results were compared and statistically analysed. Then, the results of this analytical comparison showed that LSSVM model is more precise in the monthly river flow forecasting. It was found that LSSVM has he higher r with the value of 0.934 compared to other models. This indicate that LSSVM is more accurate and efficient as compared to the ANN and WR model.

  20. Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally

    Science.gov (United States)

    Lee, Donghoon; Ward, Philip; Block, Paul

    2018-02-01

    Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.

  1. Carbon flow pattern in the forest zones of Nigeria as influenced by ...

    African Journals Online (AJOL)

    use

    Forest in Nigeria plays a much wider role in the overall balance of issues ... Key words: Carbon flow pattern, forest life zone, land use, human activities, ... accounting about the forest is its contribution in relation to ... The scope of this work is limited to anthropogenic ... vegetation change, none of the natural factors is known.

  2. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    Energy Technology Data Exchange (ETDEWEB)

    Bornholdt, S. [Heidelberg Univ., (Germany). Inst., fuer Theoretische Physik; Graudenz, D. [Lawrence Berkeley Lab., CA (United States)

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback.

  3. General asymmetric neutral networks and structure design by genetic algorithms: A learning rule for temporal patterns

    International Nuclear Information System (INIS)

    Bornholdt, S.

    1993-07-01

    A learning algorithm based on genetic algorithms for asymmetric neural networks with an arbitrary structure is presented. It is suited for the learning of temporal patterns and leads to stable neural networks with feedback

  4. The Influence of Prosodic Stress Patterns and Semantic Depth on Novel Word Learning in Typically Developing Children.

    Science.gov (United States)

    Gladfelter, Allison; Goffman, Lisa

    2013-01-01

    The goal of this study was to investigate the effects of prosodic stress patterns and semantic depth on word learning. Twelve preschool-aged children with typically developing speech and language skills participated in a word learning task. Novel words with either a trochaic or iambic prosodic pattern were embedded in one of two learning conditions, either in children's stories (semantically rich) or picture matching games (semantically sparse). Three main analyses were used to measure word learning: comprehension and production probes, phonetic accuracy, and speech motor stability. Results revealed that prosodic frequency and density influence the learnability of novel words, or that there are prosodic neighborhood density effects. The impact of semantic depth on word learning was minimal and likely depends on the amount of experience with the novel words.

  5. Learning to classify wakes from local sensory information

    Science.gov (United States)

    Alsalman, Mohamad; Colvert, Brendan; Kanso, Eva; Kanso Team

    2017-11-01

    Aquatic organisms exhibit remarkable abilities to sense local flow signals contained in their fluid environment and to surmise the origins of these flows. For example, fish can discern the information contained in various flow structures and utilize this information for obstacle avoidance and prey tracking. Flow structures created by flapping and swimming bodies are well characterized in the fluid dynamics literature; however, such characterization relies on classical methods that use an external observer to reconstruct global flow fields. The reconstructed flows, or wakes, are then classified according to the unsteady vortex patterns. Here, we propose a new approach for wake identification: we classify the wakes resulting from a flapping airfoil by applying machine learning algorithms to local flow information. In particular, we simulate the wakes of an oscillating airfoil in an incoming flow, extract the downstream vorticity information, and train a classifier to learn the different flow structures and classify new ones. This data-driven approach provides a promising framework for underwater navigation and detection in application to autonomous bio-inspired vehicles.

  6. A Data Flow Model to Solve the Data Distribution Changing Problem in Machine Learning

    Directory of Open Access Journals (Sweden)

    Shang Bo-Wen

    2016-01-01

    Full Text Available Continuous prediction is widely used in broad communities spreading from social to business and the machine learning method is an important method in this problem.When we use the machine learning method to predict a problem. We use the data in the training set to fit the model and estimate the distribution of data in the test set.But when we use machine learning to do the continuous prediction we get new data as time goes by and use the data to predict the future data, there may be a problem. As the size of the data set increasing over time, the distribution changes and there will be many garbage data in the training set.We should remove the garbage data as it reduces the accuracy of the prediction. The main contribution of this article is using the new data to detect the timeliness of historical data and remove the garbage data.We build a data flow model to describe how the data flow among the test set, training set, validation set and the garbage set and improve the accuracy of prediction. As the change of the data set, the best machine learning model will change.We design a hybrid voting algorithm to fit the data set better that uses seven machine learning models predicting the same problem and uses the validation set putting different weights on the learning models to give better model more weights. Experimental results show that, when the distribution of the data set changes over time, our time flow model can remove most of the garbage data and get a better result than the traditional method that adds all the data to the data set; our hybrid voting algorithm has a better prediction result than the average accuracy of other predict models

  7. Patterning of ultrathin polymethylmethacrylate films by in-situ photodirecting of the Marangoni flow

    Energy Technology Data Exchange (ETDEWEB)

    Elashnikov, Roman [Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Repuiblic (Czech Republic); Fitl, Premysl [Department of Physics and Measurements, University of Chemistry and Technology, 16628 Prague, Czech Repuiblic (Czech Republic); Svorcik, Vaclav [Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Repuiblic (Czech Republic); Lyutakov, Oleksiy, E-mail: lyutakoo@vscht.cz [Department of Solid State Engineering, University of Chemistry and Technology, 16628 Prague, Czech Repuiblic (Czech Republic)

    2017-02-01

    Highlights: • The preparation of periodical structures on the polymer surface using photo-directing of Marangoni flow is described. • The surface tension gradient appears due to the spatial distribution of energy in the laser beam and leads to the creation of periodical structures. • The method allows the creation of surface structures with different symmetry, from simple line array to more complex geometries. - Abstract: Laser heating and Marangoni flow result in the formation of surface structures with different geometries and shape on thin polymer films. By laser beam irradiation combined with a sample movement the solid polymethylmethacrylate (PMMA) films are heated and undergo phase transition which leads to a material flow. Since the laser beam has a non-linear distribution of energy, the PMMA film is heated inhomogeneously and a surface tension gradient in a lateral direction is introduced. During this procedure additional phenomena such as “reversible” or cyclic polymer flow also take place. The careful choice of experimental conditions enables the preparation of patterns with sophisticated geometries and with hierarchical pattern organization. Depending on initial PMMA film thickness and speed of the sample movement line arrays are created, which can subsequently be transformed into the crimped lines or system of circular holes. In addition, the introduction of a constant acceleration in the sample movement or a laser beam distortion enables the preparation of regularly crimped lines, ordered hexagonal holes or overlapped plates.

  8. Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes

    Directory of Open Access Journals (Sweden)

    T. Blume

    2009-07-01

    Full Text Available Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale and binary indicator maps (for the long-term and hillslope scale. Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to

  9. Impact of vegetation die-off on spatial flow patterns over a tidal marsh

    NARCIS (Netherlands)

    Temmerman, S.; Moonen, P.; Schoelynck, J.; Govers, G.; Bouma, T.J.

    2012-01-01

    Large-scale die-off of tidal marsh vegetation, caused by global change, is expected to change flow patterns over tidal wetlands, and hence to affect valuable wetland functions such as reduction of shoreline erosion, attenuation of storm surges, and sedimentation in response to sea level rise. This

  10. Can visual assessment of blood flow patterns by dynamic contrast-enhanced computed tomography distinguish between malignant and benign lung tumors?

    DEFF Research Database (Denmark)

    Harders, Stefan Walbom; Madsen, Hans Henrik; Nellemann, Hanne Marie

    2017-01-01

    with suspected lung cancer and a lung tumor on their chest radiograph were included for DCE-CT. The tumors were categorized using structured qualitative analysis of tumor blood flow patterns. Histopathology was used as reference standard. RESULTS: Using structured qualitative analysis of tumor blood flow...... using structured qualitative analysis of tumor blood flow patterns is accurate as well as somewhat reproducible. However, there are significant limitations to DCE-CT.......BACKGROUND: Dynamic contrast-enhanced computed tomography (DCE-CT) is a tool, which, in theory, can quantify the blood flow and blood volume of tissues. In structured qualitative analysis, parametric color maps yield a visual impression of the blood flow and blood volume within the tissue being...

  11. Contrast-enhanced Harmonic power Doppler ultrasonography: Improved depiction of vascularity and characterization of flow pattern in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Baek, Hyung Chul; Yoon, Kwon Ha; Kim, Chang Guhn; Park, Ki Han; Won, Jong Jin

    2000-01-01

    To evaluate the value of contrast-enhanced harmonic power Doppler ultrasonography (PDUS) in depiction and characterization of tumoral vascularity in hepatocellular carcinoma (HCC). Thirty-three patients with HCC were prospectively evaluated with harmonic PDUS before and after injection of the contrast agent SH U 508A (2.5g, 300 mg/ml ). Unenhanced and serial dynamic scans at 15, 30, 45, 60, 90, 120, 150, 180, 240, 300 seconds after injection of contrast agents were obtained using a tissue harmonic technique with power Doppler imaging. The tumoral vascularity was expressed as percentage of power Doppler area, which was measured quantitatively by a computerized program (Ultrasonic Imaging Tool; Soongsil University, Seoul, Korea). The grade (0, no signal; 1, less than 5%; 2, 5-25%; 3, more than 25%) and flow pattern (intratumoral, detour, basket, and mixed) of tumoral vascularity were analyzed. Peak time of contrast-enhancement was measured on each tumor. After injection of contrast agent, tumoral flow signals increased in all lesions (100%). At unenhanced harmonic PDUS, flow signals were detected in 17 HCCs (52%); 15 tumors (46%) demonstrated grade 1 vascularity; and two (6%), grade 2. At contrast-enhanced harmonic PDUS, all tumors were detected vascularity; five (15%) were grade 1; eight (24%), grade 2; and 20 (61%), grade 3. Flow patterns were demonstated as follows at unenhanced harmonic PDUS; intratumoral pattern in 13 tumors (76%), detour in 2 (12%), and basket in 2 (12%). After injection of contrast agent, intratumoral pattern in 7 tumors (21%), detour 0 (0%), basket in 3 (9%) and mixed in 23 (70%) were demonstrated. Peak time of enhancement after injection of contrast agent was 30- 90 seconds in majority of the patients. Contrast-enhanced harmonic PDUS would be valuable in depiction of vascularity and characterization of flow pattern in HCC.

  12. Contrast-enhanced Harmonic power Doppler ultrasonography: Improved depiction of vascularity and characterization of flow pattern in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Hyung Chul; Yoon, Kwon Ha; Kim, Chang Guhn; Park, Ki Han; Won, Jong Jin [Wonkwang University School of Medicine, Iksa (Korea, Republic of)

    2000-12-15

    To evaluate the value of contrast-enhanced harmonic power Doppler ultrasonography (PDUS) in depiction and characterization of tumoral vascularity in hepatocellular carcinoma (HCC). Thirty-three patients with HCC were prospectively evaluated with harmonic PDUS before and after injection of the contrast agent SH U 508A (2.5g, 300 mg/ml ). Unenhanced and serial dynamic scans at 15, 30, 45, 60, 90, 120, 150, 180, 240, 300 seconds after injection of contrast agents were obtained using a tissue harmonic technique with power Doppler imaging. The tumoral vascularity was expressed as percentage of power Doppler area, which was measured quantitatively by a computerized program (Ultrasonic Imaging Tool; Soongsil University, Seoul, Korea). The grade (0, no signal; 1, less than 5%; 2, 5-25%; 3, more than 25%) and flow pattern (intratumoral, detour, basket, and mixed) of tumoral vascularity were analyzed. Peak time of contrast-enhancement was measured on each tumor. After injection of contrast agent, tumoral flow signals increased in all lesions (100%). At unenhanced harmonic PDUS, flow signals were detected in 17 HCCs (52%); 15 tumors (46%) demonstrated grade 1 vascularity; and two (6%), grade 2. At contrast-enhanced harmonic PDUS, all tumors were detected vascularity; five (15%) were grade 1; eight (24%), grade 2; and 20 (61%), grade 3. Flow patterns were demonstated as follows at unenhanced harmonic PDUS; intratumoral pattern in 13 tumors (76%), detour in 2 (12%), and basket in 2 (12%). After injection of contrast agent, intratumoral pattern in 7 tumors (21%), detour 0 (0%), basket in 3 (9%) and mixed in 23 (70%) were demonstrated. Peak time of enhancement after injection of contrast agent was 30- 90 seconds in majority of the patients. Contrast-enhanced harmonic PDUS would be valuable in depiction of vascularity and characterization of flow pattern in HCC.

  13. Experience of Google's latest deep learning library, TensorFlow, in a large-scale WLCG cluster

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Gen; Smith, Joshua Wyatt; Quadt, Arnulf [II. Physikalisches Institut, Georg-August-Universitaet Goettingen (Germany)

    2016-07-01

    The researchers at the Google Brain team released their second generation's Deep Learning library, TensorFlow, as an open-source package under the Apache 2.0 license in November, 2015. Google has already deployed the first generation's library using DistBlief in various systems such as Google Search, advertising systems, speech recognition systems, Google Images, Google Maps, Street View, Google Translate and many other latest products. In addition, many researchers in high energy physics have recently started to understand and use Deep Learning algorithms in their own research and analysis. We conceive a first use-case scenario of TensorFlow to create the Deep Learning models from high-dimensional inputs like physics analysis data in a large-scale WLCG computing cluster. TensorFlow carries out computations using a dataflow model and graph structure onto a wide variety of different hardware platforms and systems, such as many CPU architectures, GPUs and smartphone platforms. Having a single library that can distribute the computations to create a model to the various platforms and systems would significantly simplify the use of Deep Learning algorithms in high energy physics. We deploy TensorFlow with the Docker container environments and present the first use in our grid system.

  14. Feeding alters blood flow patterns in the American alligator (Alligator mississippiensis).

    Science.gov (United States)

    Findsen, Anders; Crossley, Dane A; Wang, Tobias

    2018-01-01

    The crocodilian cardiovascular design with a four-chambered heart and a left aorta that emerge from the right ventricle allows blood to be shunted away from the lungs, a right-to-left (R-L) shunt. The adaptive significance of this R-L shunt remains both poorly understood and controversial with particular debate on its putative role during digestion. Here we measure blood flow patterns in the right aorta (RAo), left aorta (LAo) and the coeliac artery (CoA) of undisturbed American alligators (Alligator mississippiensis) during fasting and throughout most of the digestive period. Digestion doubled blood flow in the RAo (10.1±0.9 to 20.7±1.5mlmin -1 kg -1 ), whereas LAo increased approximately 3-fold (3.8±0.6 to 12.2±2.1mlmin -1 kg -1 ). Blood flow in the CoA increased more than four-fold during digestion (3.0±0.6 to 13.3±1.6mlmin -1 kg -1 ). The rise in blood flows was achieved by a doubling of heart rate (18.5±3.3 to 37.8±3.6mlmin -1 kg -1 ). Maximal flows measured in all arteries and heart rate occurred in the first hour of the postprandial period and continued for the next 7h. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Motion Pattern Extraction and Event Detection for Automatic Visual Surveillance

    Directory of Open Access Journals (Sweden)

    Benabbas Yassine

    2011-01-01

    Full Text Available Efficient analysis of human behavior in video surveillance scenes is a very challenging problem. Most traditional approaches fail when applied in real conditions and contexts like amounts of persons, appearance ambiguity, and occlusion. In this work, we propose to deal with this problem by modeling the global motion information obtained from optical flow vectors. The obtained direction and magnitude models learn the dominant motion orientations and magnitudes at each spatial location of the scene and are used to detect the major motion patterns. The applied region-based segmentation algorithm groups local blocks that share the same motion direction and speed and allows a subregion of the scene to appear in different patterns. The second part of the approach consists in the detection of events related to groups of people which are merge, split, walk, run, local dispersion, and evacuation by analyzing the instantaneous optical flow vectors and comparing the learned models. The approach is validated and experimented on standard datasets of the computer vision community. The qualitative and quantitative results are discussed.

  16. Geographical patterns of adaptation within a species' range : Interactions between drift and gene flow

    NARCIS (Netherlands)

    Alleaume-Benharira, M; Pen, IR; Ronce, O

    We use individual-based stochastic simulations and analytical deterministic predictions to investigate the interaction between drift, natural selection and gene flow on the patterns of local adaptation across a fragmented species' range under clinally varying selection. Migration between populations

  17. Area PEc Neurons Use a Multiphasic Pattern of Activity to Signal the Spatial Properties of Optic Flow

    Directory of Open Access Journals (Sweden)

    Milena Raffi

    2017-01-01

    Full Text Available The cortical representation of visual perception requires the integration of several-signal processing distributed across many cortical areas, but the neural substrates of such perception are largely unknown. The type of firing pattern exhibited by single neurons is an important indicator of dynamic circuitry within or across cortical areas. Neurons in area PEc are involved in the spatial mapping of the visual field; thus, we sought to analyze the firing pattern of activity of PEc optic flow neurons to shed some light on the cortical processing of visual signals. We quantified the firing activity of 152 optic flow neurons using a spline interpolation function, which allowed determining onset, end, and latency of each neuronal response. We found that many PEc neurons showed multiphasic activity, which is strictly related to the position of the eye and to the position of the focus of expansion (FOE of the flow field. PEc neurons showed a multiphasic activity comprised of excitatory phases interspersed with inhibitory pauses. This phasic pattern seems to be a very efficient way to signal the spatial location of visual stimuli, given that the same neuron sends different firing patterns according to a specific combination of FOE/eye position.

  18. Quantification of complex blood flow using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    2010-01-01

    A quantitative method for distinguishing complex from non-complex flow patterns in ultrasound is presented. A new commercial BK Medical ultrasound scanner uses the Transverse Oscillation vector flow technique for visualising flow patterns in real-time. In vivo vector flow data of the blood flow...... patterns of the common carotid artery and the carotid bulb were obtained simultaneously as the basis for quantifying complex flow. The carotid bifurcation of two healthy volunteers were scanned. The presence of complex flow patterns from eight cardiac cycles were evaluated by three experts in medical...... for automatic detection of complex flow patterns....

  19. Neural Pattern Similarity in the Left IFG and Fusiform Is Associated with Novel Word Learning

    Directory of Open Access Journals (Sweden)

    Jing Qu

    2017-08-01

    Full Text Available Previous studies have revealed that greater neural pattern similarity across repetitions is associated with better subsequent memory. In this study, we used an artificial language training paradigm and representational similarity analysis to examine whether neural pattern similarity across repetitions before training was associated with post-training behavioral performance. Twenty-four native Chinese speakers were trained to learn a logographic artificial language for 12 days and behavioral performance was recorded using the word naming and picture naming tasks. Participants were scanned while performing a passive viewing task before training, after 4-day training and after 12-day training. Results showed that pattern similarity in the left pars opercularis (PO and fusiform gyrus (FG before training was negatively associated with reaction time (RT in both word naming and picture naming tasks after training. These results suggest that neural pattern similarity is an effective neurofunctional predictor of novel word learning in addition to word memory.

  20. Neural Pattern Similarity in the Left IFG and Fusiform Is Associated with Novel Word Learning

    Science.gov (United States)

    Qu, Jing; Qian, Liu; Chen, Chuansheng; Xue, Gui; Li, Huiling; Xie, Peng; Mei, Leilei

    2017-01-01

    Previous studies have revealed that greater neural pattern similarity across repetitions is associated with better subsequent memory. In this study, we used an artificial language training paradigm and representational similarity analysis to examine whether neural pattern similarity across repetitions before training was associated with post-training behavioral performance. Twenty-four native Chinese speakers were trained to learn a logographic artificial language for 12 days and behavioral performance was recorded using the word naming and picture naming tasks. Participants were scanned while performing a passive viewing task before training, after 4-day training and after 12-day training. Results showed that pattern similarity in the left pars opercularis (PO) and fusiform gyrus (FG) before training was negatively associated with reaction time (RT) in both word naming and picture naming tasks after training. These results suggest that neural pattern similarity is an effective neurofunctional predictor of novel word learning in addition to word memory. PMID:28878640

  1. Identifying Structural Flow Defects in Disordered Solids Using Machine-Learning Methods

    Science.gov (United States)

    Cubuk, E. D.; Schoenholz, S. S.; Rieser, J. M.; Malone, B. D.; Rottler, J.; Durian, D. J.; Kaxiras, E.; Liu, A. J.

    2015-03-01

    We use machine-learning methods on local structure to identify flow defects—or particles susceptible to rearrangement—in jammed and glassy systems. We apply this method successfully to two very different systems: a two-dimensional experimental realization of a granular pillar under compression and a Lennard-Jones glass in both two and three dimensions above and below its glass transition temperature. We also identify characteristics of flow defects that differentiate them from the rest of the sample. Our results show it is possible to discern subtle structural features responsible for heterogeneous dynamics observed across a broad range of disordered materials.

  2. Precipitation patterns during channel flow

    Science.gov (United States)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  3. Student Media Usage Patterns and Non-Traditional Learning in Higher Education

    Science.gov (United States)

    Zawacki-Richter, Olaf; Müskens, Wolfgang; Krause, Ulrike; Alturki, Uthman; Aldraiweesh, Ahmed

    2015-01-01

    A total of 2,338 students at German universities participated in a survey, which investigated media usage patterns of so-called traditional and non-traditional students (Schuetze & Wolter, 2003). The students provided information on the digital devices that they own or have access to, and on their usage of media and e-learning tools and…

  4. Ultrasound imaging of flow patterns in liver metastases from colorectal cancer

    DEFF Research Database (Denmark)

    Rafaelsen, Søren Rafael; Solvig, Jan

    2004-01-01

    BACKGROUND: The ability of colour Doppler, power Doppler and echo-enhanced Doppler imaging to detect the blood flow in liver metastases from colorectal cancer was investigated. An evaluation was then made to determine whether the flow pattern could be used as an indication of disease elsewhere....... METHODS: Forty-two patients with hepatic metastases from colorectal cancer were examined, 8 of whom had local recurrence of their colorectal cancer. Seventy-seven liver metastases were evaluated with colour Doppler and power Doppler, and the presence or absence of a Doppler signal in the halo or centre...... was noted. Forty-three of these metastases were further examined after contrast media echo-enhancement. RESULTS: Signals from the peripheral halo were detected by colour Doppler imaging in 34% of the metastases, and in 77% by power Doppler (P power Doppler...

  5. Dual-modality impairment of implicit learning of letter-strings versus color-patterns in patients with schizophrenia.

    Science.gov (United States)

    Chiu, Ming-Jang; Liu, Kristina; Hsieh, Ming H; Hwu, Hai-Gwo

    2005-12-12

    Implicit learning was reported to be intact in schizophrenia using artificial grammar learning. However, emerging evidence indicates that artificial grammar learning is not a unitary process. The authors used dual coding stimuli and schizophrenia clinical symptom dimensions to re-evaluate the effect of schizophrenia on various components of artificial grammar learning. Letter string and color pattern artificial grammar learning performances were compared between 63 schizophrenic patients and 27 comparison subjects. Four symptom dimensions derived from a Chinese Positive and Negative Symptom Scale ratings were correlated with patients' artificial grammar implicit learning performances along the two stimulus dimensions. Patients' explicit memory performances were assessed by verbal paired associates and visual reproduction subtests of the Wechsler Memory Scales Revised Version to provide a contrast to their implicit memory function. Schizophrenia severely hindered color pattern artificial grammar learning while the disease affected lexical string artificial grammar learning to a lesser degree after correcting the influences from age, education and the performance of explicit memory function of both verbal and visual modalities. Both learning performances correlated significantly with the severity of patients' schizophrenic clinical symptom dimensions that reflect poor abstract thinking, disorganized thinking, and stereotyped thinking. The results of this study suggested that schizophrenia affects various mechanisms of artificial grammar learning differently. Implicit learning, knowledge acquisition in the absence of conscious awareness, is not entirely intact in patients with schizophrenia. Schizophrenia affects implicit learning through an impairment of the ability of making abstractions from rules and at least in part decreasing the capacity for perceptual learning.

  6. Dual-modality impairment of implicit learning of letter-strings versus color-patterns in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Hwu Hai-Gwo

    2005-12-01

    Full Text Available Abstract Background Implicit learning was reported to be intact in schizophrenia using artificial grammar learning. However, emerging evidence indicates that artificial grammar learning is not a unitary process. The authors used dual coding stimuli and schizophrenia clinical symptom dimensions to re-evaluate the effect of schizophrenia on various components of artificial grammar learning. Methods Letter string and color pattern artificial grammar learning performances were compared between 63 schizophrenic patients and 27 comparison subjects. Four symptom dimensions derived from a Chinese Positive and Negative Symptom Scale ratings were correlated with patients' artificial grammar implicit learning performances along the two stimulus dimensions. Patients' explicit memory performances were assessed by verbal paired associates and visual reproduction subtests of the Wechsler Memory Scales Revised Version to provide a contrast to their implicit memory function. Results Schizophrenia severely hindered color pattern artificial grammar learning while the disease affected lexical string artificial grammar learning to a lesser degree after correcting the influences from age, education and the performance of explicit memory function of both verbal and visual modalities. Both learning performances correlated significantly with the severity of patients' schizophrenic clinical symptom dimensions that reflect poor abstract thinking, disorganized thinking, and stereotyped thinking. Conclusion The results of this study suggested that schizophrenia affects various mechanisms of artificial grammar learning differently. Implicit learning, knowledge acquisition in the absence of conscious awareness, is not entirely intact in patients with schizophrenia. Schizophrenia affects implicit learning through an impairment of the ability of making abstractions from rules and at least in part decreasing the capacity for perceptual learning.

  7. Flow patterns and heat transfer coefficients in flow-boiling and convective condensation of R22 inside a micro fin of new design

    International Nuclear Information System (INIS)

    Muzzio, A.; Niro, A.; Garaviglia, M.

    1998-01-01

    Saturated flow boiling and convective condensation experiments for oil-free refrigerant R22 been carried out with a micro fin tube of new design and with a smooth tube. Both tube have the same outer diameter of 9.52 mm and are horizontally operated. Two-phase flow pattern data have been obtained in addition of heat transfer coefficient and pressure drops; more-over, adiabatic tests have been also performed in order for flow pattern map to cover even adiabatic flows. Data are for mass fluxes ranging from about 90 to 400 Kg/s m 2 . In boiling tests, the nominal saturation temperature is 5 degree C, with inlet quality varying from 0.2 to 0.6 and the quality change ranging from 0.1 to 0.5. In condensation, results are for saturation temperature equal to 35 degree C, with inlet quality between 0.8 and 0.4, and quality change within 0.6 and 0.2. The comparison shows a large heat transfer augmentation with a moderate increment of pressure drops, especially in evaporation were the enhancement factor comes up to 4 while the penalty factor is about 1.4 at the most. Heat transfer coefficients both in evaporation and condensation are compared to the predictions of some recent correlations specifically proposed or modified for micro fin tube

  8. Pengalaman Flow dalam Belajar

    Directory of Open Access Journals (Sweden)

    Lucky Purwantini

    2017-08-01

    Full Text Available Flow is a condition when individual merges within his/her activity. When a person in flow state, he/she can develop his/her abilities and more success in learning. The purpose of the study is to understand flow experience in learning among undergraduate student. The study used case study qualitative approach. Informant of this research was an undergraduate student which had flow experience. Data was collected by an interview. According to the result, the subject did not experience flow in the learning process, as likes he was in meditation. It happened because when he learned something, he felt be pressed by tasks. It’s important for individual to relax when they are learning.

  9. Code requirements document: MODFLOW 2.1: A program for predicting moderator flow patterns

    International Nuclear Information System (INIS)

    Peterson, P.F.

    1992-03-01

    Sudden changes in the temperature of flowing liquids can result in transient buoyancy forces which strongly impact the flow hydrodynamics via flow stratification. These effects have been studied for the case of potential flow of stratified liquids to line sinks, but not for moderator flow in SRS reactors. Standard codes, such as TRAC and COMMIX, do not have the capability to capture the stratification effect, due to strong numerical diffusion which smears away the hot/cold fluid interface. A related problem with standard codes is the inability to track plumes injected into the liquid flow, again due to numerical diffusion. The combined effects of buoyant stratification and plume dispersion have been identified as being important in operation of the Supplementary Safety System which injects neutron-poison ink into SRS reactors to provide safe shutdown in the event of safety rod failure. The MODFLOW code discussed here provides transient moderator flow pattern information with stratification effects, and tracks the location of ink plumes in the reactor. The code, written in Fortran, is compiled for Macintosh II computers, and includes subroutines for interactive control and graphical output. Removing the graphics capabilities, the code can also be compiled on other computers. With graphics, in addition to the capability to perform safety related computations, MODFLOW also provides an easy tool for becoming familiar with flow distributions in SRS reactors

  10. The internal flow pattern analysis of a tidal power turbine operating on bidirectional generation-pumping

    International Nuclear Information System (INIS)

    Luo, Y Y; Xiao, Y X; Wang, Z W

    2013-01-01

    Using tidal energy can reduce environment pollution, save conventional energy and improve energy structure, hence it presents great advantage and is developing potential. Influenced by flood tide and low tide, a fully functional tidal power station needs to experience six operating modes, including bidirectional generation, pumping and sluice; the internal unsteady flow pattern and dynamic characters are very complicated. Based on a bidirectional tidal generator unit, three-dimensional unsteady flows in the flow path were calculated for four typical operating conditions with the pressure pulsation characteristics analyzed. According to the numerical results, the internal flow characteristics in the flow path were discussed. The influence of gravity to the hydraulic performance and flow characteristics were analysed. The results provide a theoretical analysis method of the hydraulic optimization design of the same type unit as well as a direction for stable operation and optimal scheduling of existing tidal power unit

  11. Multiphase flow parameter estimation based on laser scattering

    Science.gov (United States)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cicero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time.

  12. Multiphase flow parameter estimation based on laser scattering

    International Nuclear Information System (INIS)

    Vendruscolo, Tiago P; Fischer, Robert; Martelli, Cicero; Da Silva, Marco J; Rodrigues, Rômulo L P; Morales, Rigoberto E M

    2015-01-01

    The flow of multiple constituents inside a pipe or vessel, known as multiphase flow, is commonly found in many industry branches. The measurement of the individual flow rates in such flow is still a challenge, which usually requires a combination of several sensor types. However, in many applications, especially in industrial process control, it is not necessary to know the absolute flow rate of the respective phases, but rather to continuously monitor flow conditions in order to quickly detect deviations from the desired parameters. Here we show how a simple and low-cost sensor design can achieve this, by using machine-learning techniques to distinguishing the characteristic patterns of oblique laser light scattered at the phase interfaces. The sensor is capable of estimating individual phase fluxes (as well as their changes) in multiphase flows and may be applied to safety applications due to its quick response time. (paper)

  13. Detection of tuberculosis patterns in digital photographs of chest X-ray images using Deep Learning: feasibility study.

    Science.gov (United States)

    Becker, A S; Blüthgen, C; Phi van, V D; Sekaggya-Wiltshire, C; Castelnuovo, B; Kambugu, A; Fehr, J; Frauenfelder, T

    2018-03-01

    To evaluate the feasibility of Deep Learning-based detection and classification of pathological patterns in a set of digital photographs of chest X-ray (CXR) images of tuberculosis (TB) patients. In this prospective, observational study, patients with previously diagnosed TB were enrolled. Photographs of their CXRs were taken using a consumer-grade digital still camera. The images were stratified by pathological patterns into classes: cavity, consolidation, effusion, interstitial changes, miliary pattern or normal examination. Image analysis was performed with commercially available Deep Learning software in two steps. Pathological areas were first localised; detected areas were then classified. Detection was assessed using receiver operating characteristics (ROC) analysis, and classification using a confusion matrix. The study cohort was 138 patients with human immunodeficiency virus (HIV) and TB co-infection (median age 34 years, IQR 28-40); 54 patients were female. Localisation of pathological areas was excellent (area under the ROC curve 0.82). The software could perfectly distinguish pleural effusions from intraparenchymal changes. The most frequent misclassifications were consolidations as cavitations, and miliary patterns as interstitial patterns (and vice versa). Deep Learning analysis of CXR photographs is a promising tool. Further efforts are needed to build larger, high-quality data sets to achieve better diagnostic performance.

  14. New Techniques for Deep Learning with Geospatial Data using TensorFlow, Earth Engine, and Google Cloud Platform

    Science.gov (United States)

    Hancher, M.

    2017-12-01

    Recent years have seen promising results from many research teams applying deep learning techniques to geospatial data processing. In that same timeframe, TensorFlow has emerged as the most popular framework for deep learning in general, and Google has assembled petabytes of Earth observation data from a wide variety of sources and made them available in analysis-ready form in the cloud through Google Earth Engine. Nevertheless, developing and applying deep learning to geospatial data at scale has been somewhat cumbersome to date. We present a new set of tools and techniques that simplify this process. Our approach combines the strengths of several underlying tools: TensorFlow for its expressive deep learning framework; Earth Engine for data management, preprocessing, postprocessing, and visualization; and other tools in Google Cloud Platform to train TensorFlow models at scale, perform additional custom parallel data processing, and drive the entire process from a single familiar Python development environment. These tools can be used to easily apply standard deep neural networks, convolutional neural networks, and other custom model architectures to a variety of geospatial data structures. We discuss our experiences applying these and related tools to a range of machine learning problems, including classic problems like cloud detection, building detection, land cover classification, as well as more novel problems like illegal fishing detection. Our improved tools will make it easier for geospatial data scientists to apply modern deep learning techniques to their own problems, and will also make it easier for machine learning researchers to advance the state of the art of those techniques.

  15. Investigation of Flow Behavior around Corotating Blades in a Double-Spindle Lawn Mower Deck

    Directory of Open Access Journals (Sweden)

    Chon W.

    2005-01-01

    Full Text Available When the airflow patterns inside a lawn mower deck are understood, the deck can be redesigned to be efficient and have an increased cutting ability. To learn more, a combination of computational and experimental studies was performed to investigate the effects of blade and housing designs on a flow pattern inside a 1.1m wide corotating double-spindle lawn mower deck with side discharge. For the experimental portion of the study, air velocities inside the deck were measured using a laser Doppler velocimetry (LDV system. A high-speed video camera was used to observe the flow pattern. Furthermore, noise levels were measured using a sound level meter. For the computational fluid dynamics (CFD work, several arbitrary radial sections of a two-dimensional blade were selected to study flow computations. A three-dimensional, full deck model was also developed for realistic flow analysis. The computational results were then compared with the experimental results.

  16. Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Frydrychowicz, Alex [University Hospital Schleswig-Holstein, Clinic for Radiology and Nuclear Medicine, Luebeck (Germany); Berger, Alexander; Russe, Maximilian F.; Bock, Jelena [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Munoz del Rio, Alejandro [University of Wisconsin - Madison, Departments of Radiology and Medical Physics, Madison, WI (United States); Harloff, Andreas [University Hospital Freiburg, Department of Neurology and Clinical Neurophysiology, Freiburg (Germany); Markl, Michael [University Hospital Freiburg, Department of Radiology, Medical Physics, Freiburg (Germany); Northwestern University, Departments of Radiology and Biomedical Engineering, Chicago, IL (United States)

    2012-05-15

    It was the aim to analyse the impact of age, aortic arch geometry, and size on secondary flow patterns such as helix and vortex flow derived from flow-sensitive magnetic resonance imaging (4D PC-MRI). 62 subjects (age range = 20-80 years) without circumscribed pathologies of the thoracic aorta (ascending aortic (AAo) diameter: 3.2 {+-} 0.6 cm [range 2.2-5.1]) were examined by 4D PC-MRI after IRB-approval and written informed consent. Blood flow visualisation based on streamlines and time-resolved 3D particle traces was performed. Aortic diameter, shape (gothic, crook-shaped, cubic), angle, and age were correlated with existence and extent of secondary flow patterns (helicity, vortices); statistical modelling was performed. Helical flow was the typical pattern in standard crook-shaped aortic arches. With altered shapes and increasing age, helicity was less common. AAo diameter and age had the highest correlation (r = 0.69 and 0.68, respectively) with number of detected vortices. None of the other arch geometric or demographic variables (for all, P {>=} 0.177) improved statistical modelling. Substantially different secondary flow patterns can be observed in the normal thoracic aorta. Age and the AAo diameter were the parameters correlating best with presence and amount of vortices. Findings underline the importance of age- and geometry-matched control groups for haemodynamic studies. (orig.)

  17. Interdependencies of aortic arch secondary flow patterns, geometry, and age analysed by 4-dimensional phase contrast magnetic resonance imaging at 3 Tesla

    International Nuclear Information System (INIS)

    Frydrychowicz, Alex; Berger, Alexander; Russe, Maximilian F.; Bock, Jelena; Munoz del Rio, Alejandro; Harloff, Andreas; Markl, Michael

    2012-01-01

    It was the aim to analyse the impact of age, aortic arch geometry, and size on secondary flow patterns such as helix and vortex flow derived from flow-sensitive magnetic resonance imaging (4D PC-MRI). 62 subjects (age range = 20-80 years) without circumscribed pathologies of the thoracic aorta (ascending aortic (AAo) diameter: 3.2 ± 0.6 cm [range 2.2-5.1]) were examined by 4D PC-MRI after IRB-approval and written informed consent. Blood flow visualisation based on streamlines and time-resolved 3D particle traces was performed. Aortic diameter, shape (gothic, crook-shaped, cubic), angle, and age were correlated with existence and extent of secondary flow patterns (helicity, vortices); statistical modelling was performed. Helical flow was the typical pattern in standard crook-shaped aortic arches. With altered shapes and increasing age, helicity was less common. AAo diameter and age had the highest correlation (r = 0.69 and 0.68, respectively) with number of detected vortices. None of the other arch geometric or demographic variables (for all, P ≥ 0.177) improved statistical modelling. Substantially different secondary flow patterns can be observed in the normal thoracic aorta. Age and the AAo diameter were the parameters correlating best with presence and amount of vortices. Findings underline the importance of age- and geometry-matched control groups for haemodynamic studies. (orig.)

  18. Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images

    Directory of Open Access Journals (Sweden)

    Marc Wieland

    2014-03-01

    Full Text Available In this study, a classification and performance evaluation framework for the recognition of urban patterns in medium (Landsat ETM, TM and MSS and very high resolution (WorldView-2, Quickbird, Ikonos multi-spectral satellite images is presented. The study aims at exploring the potential of machine learning algorithms in the context of an object-based image analysis and to thoroughly test the algorithm’s performance under varying conditions to optimize their usage for urban pattern recognition tasks. Four classification algorithms, Normal Bayes, K Nearest Neighbors, Random Trees and Support Vector Machines, which represent different concepts in machine learning (probabilistic, nearest neighbor, tree-based, function-based, have been selected and implemented on a free and open-source basis. Particular focus is given to assess the generalization ability of machine learning algorithms and the transferability of trained learning machines between different image types and image scenes. Moreover, the influence of the number and choice of training data, the influence of the size and composition of the feature vector and the effect of image segmentation on the classification accuracy is evaluated.

  19. Affinity flow fractionation of cells via transient interactions with asymmetric molecular patterns

    Science.gov (United States)

    Bose, Suman; Singh, Rishi; Hanewich-Hollatz, Mikhail; Shen, Chong; Lee, Chia-Hua; Dorfman, David M.; Karp, Jeffrey M.; Karnik, Rohit

    2013-07-01

    Flow fractionation of cells using physical fields to achieve lateral displacement finds wide applications, but its extension to surface molecule-specific separation requires labeling. Here we demonstrate affinity flow fractionation (AFF) where weak, short-range interactions with asymmetric molecular patterns laterally displace cells in a continuous, label-free process. We show that AFF can directly draw neutrophils out of a continuously flowing stream of blood with an unprecedented 400,000-fold depletion of red blood cells, with the sorted cells being highly viable, unactivated, and functionally intact. The lack of background erythrocytes enabled the use of AFF for direct enumeration of neutrophils by a downstream detector, which could distinguish the activation state of neutrophils in blood. The compatibility of AFF with capillary microfluidics and its ability to directly separate cells with high purity and minimal sample preparation will facilitate the design of simple and portable devices for point-of-care diagnostics and quick, cost-effective laboratory analysis.

  20. Can visual assessment of blood flow patterns by dynamic contrast-enhanced computed tomography distinguish between malignant and benign lung tumors?

    Science.gov (United States)

    Harders, Stefan Walbom; Madsen, Hans Henrik; Nellemann, Hanne Marie; Rasmussen, Torben Riis; Thygesen, Jesper; Hager, Henrik; Andersen, Niels Trolle; Rasmussen, Finn

    2017-05-01

    Dynamic contrast-enhanced computed tomography (DCE-CT) is a tool, which, in theory, can quantify the blood flow and blood volume of tissues. In structured qualitative analysis, parametric color maps yield a visual impression of the blood flow and blood volume within the tissue being studied, allowing for quick identification of the areas with the highest or lowest blood flow and blood volume. To examine whether DCE-CT could be used to distinguish between malignant and benign lung tumors in patients with suspected lung cancer. Fifty-nine patients with suspected lung cancer and a lung tumor on their chest radiograph were included for DCE-CT. The tumors were categorized using structured qualitative analysis of tumor blood flow patterns. Histopathology was used as reference standard. Using structured qualitative analysis of tumor blood flow patterns, it was possible to distinguish between malignant and benign lung tumors (Fisher-Freeman-Halton exact test, P  = 0.022). The inter-reader agreement of this method of analysis was slight to moderate (kappa = 0.30; 95% confidence interval [CI] = 0.13-0.46). DCE-CT in suspected lung cancer using structured qualitative analysis of tumor blood flow patterns is accurate as well as somewhat reproducible. However, there are significant limitations to DCE-CT.

  1. Authoring and Enactment of Mobile Pyramid-Based Collaborative Learning Activities

    Science.gov (United States)

    Manathunga, Kalpani; Hernández-Leo, Davinia

    2018-01-01

    Collaborative learning flow patterns (CLFPs) formulate best practices for the orchestration of activity sequences and collaboration mechanisms that can elicit fruitful social interactions. Mobile technology features offer opportunities to support interaction mediation and content accessibility. However, existing mobile collaborative learning…

  2. Control Theoretic Modeling and Generated Flow Patterns of a Fish-Tail Robot

    Science.gov (United States)

    Massey, Brian; Morgansen, Kristi; Dabiri, Dana

    2003-11-01

    Many real-world engineering problems involve understanding and manipulating fluid flows. One of the challenges to further progress in the area of active flow control is the lack of appropriate models that are amenable to control-theoretic studies and algorithm design and also incorporate reasonably realistic fluid dynamic effects. We focus here on modeling and model-verification of bio-inspired actuators (fish-fin type structures) used to control fluid dynamic artifacts that will affect speed, agility, and stealth of Underwater Autonomous Vehicles (UAVs). Vehicles using fish-tail type systems are more maneuverable, can turn in much shorter and more constrained spaces, have lower drag, are quieter and potentially more efficient than those using propellers. We will present control-theoretic models for a simple prototype coupled fluid and mechanical actuator where fluid effects are crudely modeled by assuming only lift, drag, and added mass, while neglecting boundary effects. These models will be tested with different control input parameters on an experimental fish-tail robot with the resulting flow captured with DPIV. Relations between the model, the control function choices, the obtained thrust and drag, and the corresponding flow patterns will be presented and discussed.

  3. Applying a Machine Learning Technique to Classification of Japanese Pressure Patterns

    Directory of Open Access Journals (Sweden)

    H Kimura

    2009-04-01

    Full Text Available In climate research, pressure patterns are often very important. When a climatologists need to know the days of a specific pressure pattern, for example "low pressure in Western areas of Japan and high pressure in Eastern areas of Japan (Japanese winter-type weather," they have to visually check a huge number of surface weather charts. To overcome this problem, we propose an automatic classification system using a support vector machine (SVM, which is a machine-learning method. We attempted to classify pressure patterns into two classes: "winter type" and "non-winter type". For both training datasets and test datasets, we used the JRA-25 dataset from 1981 to 2000. An experimental evaluation showed that our method obtained a greater than 0.8 F-measure. We noted that variations in results were based on differences in training datasets.

  4. A tool to estimate bar patterns and flow conditions in estuaries when limited data is available

    Science.gov (United States)

    Leuven, J.; Verhoeve, S.; Bruijns, A. J.; Selakovic, S.; van Dijk, W. M.; Kleinhans, M. G.

    2017-12-01

    The effects of human interventions, natural evolution of estuaries and rising sea-level on food security and flood safety are largely unknown. In addition, ecologists require quantified habitat area to study future evolution of estuaries, but they lack predictive capability of bathymetry and hydrodynamics. For example, crucial input required for ecological models are values of intertidal area, inundation time, peak flow velocities and salinity. While numerical models can reproduce these spatial patterns, their computational times are long and for each case a new model must be developed. Therefore, we developed a comprehensive set of relations that accurately predict the hydrodynamics and the patterns of channels and bars, using a combination of the empirical relations derived from approximately 50 estuaries and theory for bars and estuaries. The first step is to predict local tidal prisms, which is the tidal prism that flows through a given cross-section. Second, the channel geometry is predicted from tidal prism and hydraulic geometry relations. Subsequently, typical flow velocities can be estimated from the channel geometry and tidal prism. Then, an ideal estuary shape is fitted to the measured planform: the deviation from the ideal shape, which is defined as the excess width, gives a measure of the locations where tidal bars form and their summed width (Leuven et al., 2017). From excess width, typical hypsometries can be predicted per cross-section. In the last step, flow velocities are calculated for the full range of occurring depths and salinity is calculated based on the estuary shape. Here, we will present a prototype tool that predicts equilibrium bar patterns and typical flow conditions. The tool is easy to use because the only input required is the estuary outline and tidal amplitude. Therefore it can be used by policy makers and researchers from multiple disciplines, such as ecologists, geologists and hydrologists, for example for paleogeographic

  5. Thermal structure and flow patterns around Seychelles group of Islands (Indian Ocean) during austral autumn

    Digital Repository Service at National Institute of Oceanography (India)

    Vethamony, P.; RameshBabu, V.; RameshKumar, M.R.

    Properties of thermal structure in the upper 750 m around the Seychelles group of islands in the Indian Ocean, based on Expendable Bathythermograph (XBT) data collected in March 1984, are presented along with the inferred flow patterns...

  6. Cognitive Patterns of Learning Disability Subtypes as Measured by the Woodcock-Johnson Psycho-Educational Battery.

    Science.gov (United States)

    Breen, Michael J.

    1986-01-01

    The cognitive patterns of three learning disability subtypes were studied: (1) students with higher math than reading skills, (2) students with higher reading than math skills, and (3) students with equally low math and reading skills. Results indicated that although the three groups were characterized by a number of discrete or unique patterns,…

  7. Reverse inference of memory retrieval processes underlying metacognitive monitoring of learning using multivariate pattern analysis.

    Science.gov (United States)

    Stiers, Peter; Falbo, Luciana; Goulas, Alexandros; van Gog, Tamara; de Bruin, Anique

    2016-05-15

    Monitoring of learning is only accurate at some time after learning. It is thought that immediate monitoring is based on working memory, whereas later monitoring requires re-activation of stored items, yielding accurate judgements. Such interpretations are difficult to test because they require reverse inference, which presupposes specificity of brain activity for the hidden cognitive processes. We investigated whether multivariate pattern classification can provide this specificity. We used a word recall task to create single trial examples of immediate and long term retrieval and trained a learning algorithm to discriminate them. Next, participants performed a similar task involving monitoring instead of recall. The recall-trained classifier recognized the retrieval patterns underlying immediate and long term monitoring and classified delayed monitoring examples as long-term retrieval. This result demonstrates the feasibility of decoding cognitive processes, instead of their content. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot

    Science.gov (United States)

    2012-01-01

    Background To assess changes in right heart flow and pulmonary artery hemodynamics in patients with repaired Tetralogy of Fallot (rTOF) we used whole heart, four dimensional (4D) velocity mapping (VM) cardiovascular magnetic resonance (CMR). Methods CMR studies were performed in 11 subjects with rTOF (5M/6F; 20.1 ± 12.4 years) and 10 normal volunteers (6M/4F; 34.2 ± 13.4 years) on clinical 1.5T and 3.0T MR scanners. 4D VM-CMR was performed using PC VIPR (Phase Contrast Vastly undersampled Isotropic Projection Reconstruction). Interactive streamline and particle trace visualizations of the superior and inferior vena cava (IVC and SVC, respectively), right atrium (RA), right ventricle (RV), and pulmonary artery (PA) were generated and reviewed by three experienced readers. Main PA net flow, retrograde flow, peak flow, time-to-peak flow, peak acceleration, resistance index and mean wall shear stress were quantified. Differences in flow patterns between the two groups were tested using Fisher's exact test. Differences in quantitative parameters were analyzed with the Kruskal-Wallis rank sum test. Results 4D VM-CMR was successfully performed in all volunteers and subjects with TOF. Right heart flow patterns in rTOF subjects were characterized by (a) greater SVC/IVC flow during diastole than systole, (b) increased vortical flow patterns in the RA and in the RV during diastole, and (c) increased helical or vortical flow features in the PA's. Differences in main PA retrograde flow, resistance index, peak flow, time-to-peak flow, peak acceleration and mean wall shear stress were statistically significant. Conclusions Whole heart 4D VM-CMR with PC VIPR enables detection of both normal and abnormal right heart flow patterns, which may allow for comprehensive studies to evaluate interdependencies of post-surgically altered geometries and hemodynamics. PMID:22313680

  9. Computational modeling of lava domes using particle dynamics to investigate the effect of conduit flow mechanics on flow patterns

    Science.gov (United States)

    Husain, Taha Murtuza

    Large (1--4 x 106 m3) to major (> 4 x 106 m3) dome collapses for andesitic lava domes such as Soufriere Hills Volcano, Montserrat are observed for elevated magma discharge rates (6--13 m3/s). The gas rich magma pulses lead to pressure build up in the lava dome that result in structural failure of the over steepened canyon-like walls which may lead to rockfall or pyroclastic flow. This indicates that dome collapse intimately related to magma extrusion rate. Variation in magma extrusion rate for open-system magma chambers is observed to follow alternating periods of high and low activity. Periodic behavior of magma exhibits a rich diversity in the nature of its eruptive history due to variation in magma chamber size, total crystal content, linear crystal growth rate and magma replenishment rate. Distinguished patterns of growth were observed at different magma flow rates ranging from endogenous to exogenous dome growth for magma with varying strengths. Determining the key parameters that control the transition in flow pattern of the magma during its lava dome building eruption is the main focus. This dissertation examines the mechanical effects on the morphology of the evolving lava dome on the extrusion of magma from a central vent using a 2D particle dynamics model. The particle dynamics model is coupled with a conduit flow model that incorporates the kinetics of crystallization and rheological stiffening to investigate important mechanisms during lava dome building eruptions. Chapter I of this dissertation explores lava dome growth and failure mechanics using a two-dimensional particle-dynamics model. The model follows the evolution of fractured lava, with solidification driven by degassing induced crystallization of magma. The particle-dynamics model emulates the natural development of dome growth and rearrangement of the lava dome which is difficult in mesh-based analyses due to mesh entanglement effects. The deformable talus evolves naturally as a frictional

  10. Boiling on a tube bundle: heat transfer, pressure drop and flow patterns

    International Nuclear Information System (INIS)

    Agostini, F.

    2008-07-01

    The complexity of the two-phase flow in a tube bundle presents important problems in the design and understanding of the physical phenomena taking place. The working conditions of an evaporator depend largely on the dynamics of the two-phase flow that in turn influence the heat exchange and the pressure drop of the system. A characterization of the flow dynamics, and possibly the identification of the flow pattern in the tube bundle, is thus expected to lead to a better understanding of the phenomena and to reveal on the mechanisms governing the tube bundle. Therefore, the present study aims at providing further insights into two-phase bundle flow through a new visualization system able to provide for the first time a view of the flow in the core of a tube bundle. In addition, the measurement of the light attenuation of a laser beam through the two-phase flow and measurement of the high frequency pressure fluctuations with a piezo-electric pressure transducer are used to characterize the flow. The design and the validation of this new instrumentation also provided a method for the detection of dry-out in tube bundles. This was achieved by a laser attenuation technique, flow visualization, and estimation of the power spectrum of the pressure fluctuation. The current investigation includes results for two different refrigerants, R134a and R236fa, three saturations temperatures T sat = 5, 10 and 15 °C, mass velocities ranging from 4 to 40 kg/sm² in adiabatic and diabatic conditions (several heat fluxes). Measurement of the local heat transfer coefficient and two-phase frictional pressure drop were obtained and utilized to improve the current prediction methods. The heat transfer and pressure drop data were supported by extensive characterization of the two-phase flow, which was to improve the understanding of the two-phase flow occurring in tube bundles. (author)

  11. Fluid Flow Patterns During Production from Gas Hydrates in the Laboratory compared to Field Settings: LARS vs. Mallik

    Science.gov (United States)

    Strauch, B.; Heeschen, K. U.; Priegnitz, M.; Abendroth, S.; Spangenberg, E.; Thaler, J.; Schicks, J. M.

    2015-12-01

    The GFZ's LArge Reservoir Simulator LARS allows for the simulation of the 2008 Mallik gas hydrate production test and the comparison of fluid flow patterns and their driving forces. Do we see the gas flow pattern described for Mallik [Uddin, M. et al., J. Can. Petrol Tech, 50, 70-89, 2011] in a pilot scale test? If so, what are the driving forces? LARS has a network of temperature sensors and an electric resistivity tomography (ERT) enabling a good spatial resolution of gas hydrate occurrences, water and gas distribution, and changes in temperature in the sample. A gas flow meter and a water trap record fluid flow patterns and a backpressure valve has controlled the depressurization equivalent to the three pressure stages (7.0 - 5.0 - 4.2 MPa) applied in the Mallik field test. The environmental temperature (284 K) and confining pressure (13 MPa) have been constant. The depressurization induced immediate endothermic gas hydrate dissociation until re-establishment of the stability conditions by a consequent temperature decrease. Slight gas hydrate dissociation continued at the top and upper lateral border due to the constant heat input from the environment. Here transport pathways were short and permeability higher due to lower gas hydrate saturation. At pressures of 7.0 and 5.0 MPa the LARS tests showed high water flow rates and short irregular spikes of gas production. The gas flow patterns at 4.2 MPa and 3.0MPa resembled those of the Mallik test. In LARS the initial gas surges overlap with times of hydrate instability while water content and lengths of pathways had increased. Water production was at a minimum. A rapidly formed continuous gas phase caused the initial gas surges and only after gas hydrate dissociation decreased to a minimum the single gas bubbles get trapped before slowly coalescing again. In LARS, where pathways were short and no additional water was added, a transport of microbubbles is unlikely to cause a gas surge as suggested for Mallik.

  12. Systematic data mining using a pattern database to accelerate yield ramp

    Science.gov (United States)

    Teoh, Edward; Dai, Vito; Capodieci, Luigi; Lai, Ya-Chieh; Gennari, Frank

    2014-03-01

    Pattern-based approaches to physical verification, such as DRC Plus, which use a library of patterns to identify problematic 2D configurations, have been proven to be effective in capturing the concept of manufacturability where traditional DRC fails. As the industry moves to advanced technology nodes, the manufacturing process window tightens and the number of patterns continues to rapidly increase. This increase in patterns brings about challenges in identifying, organizing, and carrying forward the learning of each pattern from test chip designs to first product and then to multiple product variants. This learning includes results from printability simulation, defect scans and physical failure analysis, which are important for accelerating yield ramp. Using pattern classification technology and a relational database, GLOBALFOUNDRIES has constructed a pattern database (PDB) of more than one million potential yield detractor patterns. In PDB, 2D geometries are clustered based on similarity criteria, such as radius and edge tolerance. Each cluster is assigned a representative pattern and a unique identifier (ID). This ID is then used as a persistent reference for linking together information such as the failure mechanism of the patterns, the process condition where the pattern is likely to fail and the number of occurrences of the pattern in a design. Patterns and their associated information are used to populate DRC Plus pattern matching libraries for design-for-manufacturing (DFM) insertion into the design flow for auto-fixing and physical verification. Patterns are used in a production-ready yield learning methodology to identify and score critical hotspot patterns. Patterns are also used to select sites for process monitoring in the fab. In this paper, we describe the design of PDB, the methodology for identifying and analyzing patterns across multiple design and technology cycles, and the use of PDB to accelerate manufacturing process learning. One such

  13. Atypical performance patterns on Delis-Kaplan Executive Functioning System Color-Word Interference Test: Cognitive switching and learning ability in older adults.

    Science.gov (United States)

    Berg, Jody-Lynn; Swan, Natasha M; Banks, Sarah J; Miller, Justin B

    2016-09-01

    Cognitive set shifting requires flexible application of lower level processes. The Delis-Kaplan Executive Functioning System (DKEFS) Color-Word Interference Test (CWIT) is commonly used to clinically assess cognitive set shifting. An atypical pattern of performance has been observed on the CWIT; a subset of individuals perform faster, with equal or fewer errors, on the more difficult inhibition/switching than the inhibition trial. This study seeks to explore the cognitive underpinnings of this atypical pattern. It is hypothesized that atypical patterns on CWIT will be associated with better performance on underlying cognitive measures of attention, working memory, and learning when compared to typical CWIT patterns. Records from 239 clinical referrals (age: M = 68.09 years, SD = 10.62; education: M = 14.87 years, SD = 2.73) seen for a neuropsychological evaluation as part of diagnostic work up in an outpatient dementia and movement disorders clinic were sampled. The standard battery of tests included measures of attention, learning, fluency, executive functioning, and working memory. Analyses of variance (ANOVAs) were conducted to compare the cognitive performance of those with typical versus atypical CWIT patterns. An atypical pattern of performance was confirmed in 23% of our sample. Analyses revealed a significant group difference in acquisition of information on both nonverbal (Brief Visuospatial Memory Test-Revised, BVMT-R total recall), F(1, 213) = 16.61, p < .001, and verbal (Hopkins Verbal Learning Test-Revised, HVLT-R total recall) learning tasks, F(1, 181) = 6.43, p < .01, and semantic fluency (Animal Naming), F(1, 232) = 7.57, p = .006, with the atypical group performing better on each task. Effect sizes were larger for nonverbal (Cohen's d = 0.66) than verbal learning (Cohen's d = 0.47) and semantic fluency (Cohen's d = 0.43). Individuals demonstrating an atypical pattern of performance on the CWIT inhibition/switching trial also demonstrated relative

  14. Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate

    Science.gov (United States)

    Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei

    2018-05-01

    The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.

  15. In vivo visualization method by absolute blood flow velocity based on speckle and fringe pattern using two-beam multipoint laser Doppler velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kyoden, Tomoaki, E-mail: kyouden@nc-toyama.ac.jp; Naruki, Shoji; Akiguchi, Shunsuke; Momose, Noboru; Homae, Tomotaka; Hachiga, Tadashi [National Institute of Technology, Toyama College, 1-2 Ebie-Neriya, Imizu, Toyama 933-0293 (Japan); Ishida, Hiroki [Department of Applied Physics, Faculty of Science, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Andoh, Tsugunobu [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan); Takada, Yogo [Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)

    2016-08-28

    Two-beam multipoint laser Doppler velocimetry (two-beam MLDV) is a non-invasive imaging technique able to provide an image of two-dimensional blood flow and has potential for observing cancer as previously demonstrated in a mouse model. In two-beam MLDV, the blood flow velocity can be estimated from red blood cells passing through a fringe pattern generated in the skin. The fringe pattern is created at the intersection of two beams in conventional LDV and two-beam MLDV. Being able to choose the depth position is an advantage of two-beam MLDV, and the position of a blood vessel can be identified in a three-dimensional space using this technique. Initially, we observed the fringe pattern in the skin, and the undeveloped or developed speckle pattern generated in a deeper position of the skin. The validity of the absolute velocity value detected by two-beam MLDV was verified while changing the number of layers of skin around a transparent flow channel. The absolute velocity value independent of direction was detected using the developed speckle pattern, which is created by the skin construct and two beams in the flow channel. Finally, we showed the relationship between the signal intensity and the fringe pattern, undeveloped speckle, or developed speckle pattern based on the skin depth. The Doppler signals were not detected at deeper positions in the skin, which qualitatively indicates the depth limit for two-beam MLDV.

  16. A statistical learning strategy for closed-loop control of fluid flows

    Science.gov (United States)

    Guéniat, Florimond; Mathelin, Lionel; Hussaini, M. Yousuff

    2016-12-01

    This work discusses a closed-loop control strategy for complex systems utilizing scarce and streaming data. A discrete embedding space is first built using hash functions applied to the sensor measurements from which a Markov process model is derived, approximating the complex system's dynamics. A control strategy is then learned using reinforcement learning once rewards relevant with respect to the control objective are identified. This method is designed for experimental configurations, requiring no computations nor prior knowledge of the system, and enjoys intrinsic robustness. It is illustrated on two systems: the control of the transitions of a Lorenz'63 dynamical system, and the control of the drag of a cylinder flow. The method is shown to perform well.

  17. Inverse Problems in Geodynamics Using Machine Learning Algorithms

    Science.gov (United States)

    Shahnas, M. H.; Yuen, D. A.; Pysklywec, R. N.

    2018-01-01

    During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic-related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition-induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies.

  18. Heavy oil, water and air three-phase flow patterns in horizontal pipes; Padroes de escoamento trifasico de oleo pesado, agua e ar em tubulacoes horizontais

    Energy Technology Data Exchange (ETDEWEB)

    Trevisan, Francisco Exaltacao; Bannwart, Antonio Carlos [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil)

    2004-07-01

    A significant extent of the Brazilian oil reserves consists of heavy oil, and its importance and economic value have been increasing in the last years. However, these oils, besides their elevated densities (API degree lower than 20), have viscosities higher than 100 mPa.s, which make it more difficult their transportation in pipelines. A solution for this problem is the injection of water in the pipe, which causes a reduction of the friction factor and, consequently, of the energy expend for a given oil flow rate. The two-phase flow of heavy oil and water has been the object of a number of recent studies, and concepts such as the core-flow technology can be useful for heavy oil transportation. But in production operations, gas is also present, initially dissolved in the oil phase then leaving the solution to form a free gas phase if the pressure drops below the bubble point pressure, the study of three-phase flow of heavy oil, water and gas is in order. The present paper presents the experimental work developed to evaluate the effect that this third phase causes on the heavy oil-water two-phase flow pattern. Initially two-phase flow of heavy and gas-water was studied to establish the flow rate ranges that cover the main patterns already known. The superficial velocities used varied from 0,04 to 0,5 m/s for water, 0,01 to 22 m/s for gas and 0,02 to 1,2 m/s for oil. After that, three-phase flow patterns were visually determined through a 2,84 cm i.d. plexiglas tube using a high-speed camera. Nine three-phase flow patterns were identified which are presented visually and described. These flow-patterns are also presented in flow maps where the effect of the gas phase can be observed. Water was the continuous phase for all flow patterns observed, ensuring a low pressure drop along the pipe. (author)

  19. A novel method for flow pattern identification in unstable operational conditions using gamma ray and radial basis function

    International Nuclear Information System (INIS)

    Roshani, G.H.; Nazemi, E.; Roshani, M.M.

    2017-01-01

    Changes of fluid properties (especially density) strongly affect the performance of radiation-based multiphase flow meter and could cause error in recognizing the flow pattern and determining void fraction. In this work, we proposed a methodology based on combination of multi-beam gamma ray attenuation and dual modality densitometry techniques using RBF neural network in order to recognize the flow regime and determine the void fraction in gas-liquid two phase flows independent of the liquid phase changes. The proposed system is consisted of one 137 Cs source, two transmission detectors and one scattering detector. The registered counts in two transmission detectors were used as the inputs of one primary Radial Basis Function (RBF) neural network for recognizing the flow regime independent of liquid phase density. Then, after flow regime identification, three RBF neural networks were utilized for determining the void fraction independent of liquid phase density. Registered count in scattering detector and first transmission detector were used as the inputs of these three RBF neural networks. Using this simple methodology, all the flow patterns were correctly recognized and the void fraction was predicted independent of liquid phase density with mean relative error (MRE) of less than 3.28%. - Highlights: • Flow regime and void fraction were determined in two phase flows independent of the liquid phase density changes. • An experimental structure was set up and the required data was obtained. • 3 detectors and one gamma source were used in detection geometry. • RBF networks were utilized for flow regime and void fraction determination.

  20. Frequency and Pattern of Learner-Instructor Interaction in an Online English Language Learning Environment in Vietnam

    Science.gov (United States)

    Pham, Thach; Thalathoti, Vijay; Dakich, Eva

    2014-01-01

    This study examines the frequency and pattern of interpersonal interactions between the learners and instructors of an online English language learning course offered at a Vietnamese university. The paper begins with a review of literature on interaction type, pattern and model of interaction followed by a brief description of the online…

  1. A gaming approach to learning medical microbiology: students' experiences of flow.

    Science.gov (United States)

    Beylefeld, Adriana A; Struwig, Magdalena C

    2007-11-01

    There is a growing awareness in medical education of general skills(1) required for lifelong learning. Such skills are best achieved when students experience positive affective states while they are learning, as put forth by the Csikszentmihalyian theory of flow. This study describes how a quiz-type board game was used in the School of Medicine of the Faculty of Health Sciences at the University of the Free State to address students' negativity towards medical microbiology. The study population consisted of third-year medical students who had recently completed the Infections module of the undergraduate Learning Programme for Professional Medicine. Data gathered by means of two questionnaire surveys and direct observation showed that the game impacted positively on students' perceptions of and attitudes towards medical microbiology as a subject. A high perceived probability of the game contributing to the acquisition of general skills was recorded, since the experience of positive affect during the process of informal learning went hand-in-hand with heightened team effort and spontaneous communication. This article may be of value to health educators who wish to supplement formal teaching with informal learning so as to enhance not only the recall of factual knowledge, but also the advancement of general skills.

  2. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    Directory of Open Access Journals (Sweden)

    Huajun Li

    2016-01-01

    Full Text Available Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA. Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works.

  3. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    Science.gov (United States)

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  4. Functional blood flow patterns of the endolymphatic sac in the rat

    DEFF Research Database (Denmark)

    Friis, Morten; Qvortrup, Klaus

    2008-01-01

    Conclusion. Visualization of the endolymphatic sac vascular network under video fluorescence microscopy showed a typical microvascular organization. The microvascular arrangement and the microcirculation may reflect a functional state of the endolymphatic sac. Damage or change of the blood circul...... sac served as return paths for the microcirculation. The blood flow pattern was highly variable between rats.......Conclusion. Visualization of the endolymphatic sac vascular network under video fluorescence microscopy showed a typical microvascular organization. The microvascular arrangement and the microcirculation may reflect a functional state of the endolymphatic sac. Damage or change of the blood...

  5. Flow patterns in a slurry-bubble-column reactor under reaction conditions

    Energy Technology Data Exchange (ETDEWEB)

    Toselane, B.A.; Brown, D.M.; Zou, B.S.; Dudukovic, M.P. [Washington Univ., St. Louis, MO (United States)

    1995-12-31

    The gas and liquid radioactive tracer response curves obtained in an industrial bubble column reactor of height to diameter ratio of 10 are analyzed and the suitability of the axial dispersion model for interpretation of the results is discussed. The relationship between the tracer concentration distribution and measured detector response of the soluble gas tracer (Ar-41) is possibly dominated by the dissolved gas. The one dimensional axial dispersion model cannot match all the experimental observations well and the flow pattern of the undissolved gas cannot be determined with certainty.

  6. Perturbative calculations of flow patterns in free convection between coaxial cylinders. Non-linear temperature dependences of the fluid properties

    International Nuclear Information System (INIS)

    Navarro, J. A.; Madariaga, J. A.; Santamaria, C. M.; Saviron, J. M.

    1980-01-01

    10 refs. Flow pattern calculations in natural convection between two vertical coaxial cylinders are reported. It is assumed trough the paper. that fluid properties, viscosity, thermal conductivity and density, depend no-linearly on temperature and that the aspects (height/radius) ratio of the cylinders is high. Velocity profiles are calculated trough a perturbative scheme and analytic results for the three first perturbation orders are presented. We outline also an iterative method to estimate the perturbations on the flow patterns which arise when a radial composition gradient is established by external forces in a two-component fluid. This procedure, based on semiempirical basis, is applied to gaseous convection. The influence of the molecules gas properties on tho flow is also discussed. (Author) 10 refs

  7. FLOW PATTERNS OF VEHICULAR TRAFFIC ALONG HIGHWAY TOLL PLAZA IN OGUN STATE

    Directory of Open Access Journals (Sweden)

    Bashiru A. Raji

    2009-06-01

    Full Text Available Congestion on our highways, freeways and arterials are increasing at an alarming rate. This occurs because there is an increase in vehicular growth without a corresponding increase in road size, and this has made free flow of traffic a preponderant problem in our highways. Toll plaza causes delay on our highways and results are formation of queue. This paper examined how simple queuing model can be used to determine traffic intensity and the flow pattern of car traffic at a toll plaza. The study was carried out with twelve field assistants at Ogere toll plaza in Ogun State. Findings show a significant variation in the degree of hourly traffic intensities at the four pay points for cars at the toll plaza. However, variation in the daily traffic intensities at the four pay points for cars showed no significant variation. The study also revealed that bumps constructed to check vehicles speed, hawker’s trading activities are among other factors that constitute hindrance to free flow of traffic other than service time and inter-arrival time of cars at the toll plaza. It is therefore recommended that appropriate authority should look into these factors and take necessary steps towards ensuring free flow of traffic at the plaza.

  8. Patterns of interactions at grade 5 classroom in learning the topic of statistics viewed from cognitive load theory

    Science.gov (United States)

    Setianingsih, R.

    2018-01-01

    The nature of interactions that occurs among teacher, students, learning sources, and learning environment creates different settings to enhance learning. Any setting created by a teacher is affected by 3 (three) types of cognitive load: intrinsic cognitive load, extraneous cognitive load, and germane cognitive load. This study is qualitative in nature, aims to analyse the patterns of interaction that are constituted in mathematics instructions by taking into account the cognitive load theory. The subjects of this study are 21 fifth-grade students who learn mathematics in small groups and whole-class interactive lessons. The data were collected through classroom observations which were videotaped, while field notes were also taken. The data analysis revealed that students engaged in productive interaction and inquiry while they were learning mathematics in small groups or in whole class setting, in which there was a different type of cognitive load that dominantly affecting the learning processes at each setting. During learning mathematics in whole class setting, the most frequently found interaction patterns were to discuss and compare solution based on self-developed models, followed by expressing opinions. This is consistent with the principles of mathematics learning, which gives students wide opportunities to construct mathematical knowledge through individual learning, learning in small groups as well as learning in whole class settings. It means that by participating in interactive learning, the students are habitually engaged in productive interactions and high level of mathematical thinking.

  9. Broad-scale patterns of invertebrate richness and community composition in temporary rivers: effects of flow intermittence

    Science.gov (United States)

    A central goal in ecology is to identify general relationships between environmental drivers and community patterns. In this study, we investigated the relationships between aquatic invertebrate communities and river flow intermittence across multiple continents. Particularly, we...

  10. Exploring the Argumentation Pattern in Modeling-Based Learning about Apparent Motion of Mars

    Science.gov (United States)

    Park, Su-Kyeong

    2016-01-01

    This study proposed an analytic framework for coding students' dialogic argumentation and investigated the characteristics of the small-group argumentation pattern observed in modeling-based learning. The participants were 122 second grade high school students in South Korea divided into an experimental and a comparison group. Modeling-based…

  11. Influence of urban pattern on inundation flow in floodplains of lowland rivers.

    Science.gov (United States)

    Bruwier, M; Mustafa, A; Aliaga, D G; Archambeau, P; Erpicum, S; Nishida, G; Zhang, X; Pirotton, M; Teller, J; Dewals, B

    2018-05-01

    The objective of this paper is to investigate the respective influence of various urban pattern characteristics on inundation flow. A set of 2000 synthetic urban patterns were generated using an urban procedural model providing locations and shapes of streets and buildings over a square domain of 1×1km 2 . Steady two-dimensional hydraulic computations were performed over the 2000 urban patterns with identical hydraulic boundary conditions. To run such a large amount of simulations, the computational efficiency of the hydraulic model was improved by using an anisotropic porosity model. This model computes on relatively coarse computational cells, but preserves information from the detailed topographic data through porosity parameters. Relationships between urban characteristics and the computed inundation water depths have been based on multiple linear regressions. Finally, a simple mechanistic model based on two district-scale porosity parameters, combining several urban characteristics, is shown to capture satisfactorily the influence of urban characteristics on inundation water depths. The findings of this study give guidelines for more flood-resilient urban planning. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Lexical learning in mild aphasia: gesture benefit depends on patholinguistic profile and lesion pattern.

    Science.gov (United States)

    Kroenke, Klaus-Martin; Kraft, Indra; Regenbrecht, Frank; Obrig, Hellmuth

    2013-01-01

    Gestures accompany speech and enrich human communication. When aphasia interferes with verbal abilities, gestures become even more relevant, compensating for and/or facilitating verbal communication. However, small-scale clinical studies yielded diverging results with regard to a therapeutic gesture benefit for lexical retrieval. Based on recent functional neuroimaging results, delineating a speech-gesture integration network for lexical learning in healthy adults, we hypothesized that the commonly observed variability may stem from differential patholinguistic profiles in turn depending on lesion pattern. Therefore we used a controlled novel word learning paradigm to probe the impact of gestures on lexical learning, in the lesioned language network. Fourteen patients with chronic left hemispheric lesions and mild residual aphasia learned 30 novel words for manipulable objects over four days. Half of the words were trained with gestures while the other half were trained purely verbally. For the gesture condition, rootwords were visually presented (e.g., Klavier, [piano]), followed by videos of the corresponding gestures and the auditory presentation of the novel words (e.g., /krulo/). Participants had to repeat pseudowords and simultaneously reproduce gestures. In the verbal condition no gesture-video was shown and participants only repeated pseudowords orally. Correlational analyses confirmed that gesture benefit depends on the patholinguistic profile: lesser lexico-semantic impairment correlated with better gesture-enhanced learning. Conversely largely preserved segmental-phonological capabilities correlated with better purely verbal learning. Moreover, structural MRI-analysis disclosed differential lesion patterns, most interestingly suggesting that integrity of the left anterior temporal pole predicted gesture benefit. Thus largely preserved semantic capabilities and relative integrity of a semantic integration network are prerequisites for successful use of

  13. Application of computational fluid dynamics to closed-loop bioreactors: I. Characterization and simulation of fluid-flow pattern and oxygen transfer.

    Science.gov (United States)

    Littleton, Helen X; Daigger, Glen T; Strom, Peter F

    2007-06-01

    A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.

  14. Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST

    International Nuclear Information System (INIS)

    Stadlbauer, Andreas; Riet, Wilma van der; Crelier, Gerard; Salomonowitz, Erich

    2010-01-01

    Purpose: To assess the feasibility and potential limitations of the acceleration techniques SENSE and k-t BLAST for time-resolved three-dimensional (3D) velocity mapping of aortic blood flow. Furthermore, to quantify differences in peak velocity versus heart phase curves. Materials and methods: Time-resolved 3D blood flow patterns were investigated in eleven volunteers and two patients suffering from aortic diseases with accelerated PC-MR sequences either in combination with SENSE (R = 2) or k-t BLAST (6-fold). Both sequences showed similar data acquisition times and hence acceleration efficiency. Flow-field streamlines were calculated and visualized using the GTFlow software tool in order to reconstruct 3D aortic blood flow patterns. Differences between the peak velocities from single-slice PC-MRI experiments using SENSE 2 and k-t BLAST 6 were calculated for the whole cardiac cycle and averaged for all volunteers. Results: Reconstruction of 3D flow patterns in volunteers revealed attenuations in blood flow dynamics for k-t BLAST 6 compared to SENSE 2 in terms of 3D streamlines showing fewer and less distinct vortices and reduction in peak velocity, which is caused by temporal blurring. Solely by time-resolved 3D MR velocity mapping in combination with SENSE detected pathologic blood flow patterns in patients with aortic diseases. For volunteers, we found a broadening and flattering of the peak velocity versus heart phase diagram between the two acceleration techniques, which is an evidence for the temporal blurring of the k-t BLAST approach. Conclusion: We demonstrated the feasibility of SENSE and detected potential limitations of k-t BLAST when used for time-resolved 3D velocity mapping. The effects of higher k-t BLAST acceleration factors have to be considered for application in 3D velocity mapping.

  15. Transport on intermediate time scales in flows with cat's eye patterns

    Science.gov (United States)

    Pöschke, Patrick; Sokolov, Igor M.; Zaks, Michael A.; Nepomnyashchy, Alexander A.

    2017-12-01

    We consider the advection-diffusion transport of tracers in a one-parameter family of plane periodic flows where the patterns of streamlines feature regions of confined circulation in the shape of "cat's eyes," separated by meandering jets with ballistic motion inside them. By varying the parameter, we proceed from the regular two-dimensional lattice of eddies without jets to the sinusoidally modulated shear flow without eddies. When a weak thermal noise is added, i.e., at large Péclet numbers, several intermediate time scales arise, with qualitatively and quantitatively different transport properties: depending on the parameter of the flow, the initial position of a tracer, and the aging time, motion of the tracers ranges from subdiffusive to superballistic. We report on results of extensive numerical simulations of the mean-squared displacement for different initial conditions in ordinary and aged situations. These results are compared with a theory based on a Lévy walk that describes the intermediate-time ballistic regime and gives a reasonable description of the behavior for a certain class of initial conditions. The interplay of the walk process with internal circulation dynamics in the trapped state results at intermediate time scales in nonmonotonic characteristics of aging not captured by the Lévy walk model.

  16. Dynamic lymph flow scintigraphy in lymphoedema: Description of a new procedure and normal and abnormal patterns

    International Nuclear Information System (INIS)

    Nawaz, K.; Hamad, M.M.; Sadek, S.; Awdeh, M.; Eklof, B.; Abdel-Dayem, H.M.

    1986-01-01

    A dynamic study of lymphatic flow was performed in 23 patients complaining of lymphoedema of the lower limbs. All were injected intradermally with 1 mCi (37 MBq) of 99 Tcsup(m)-labelled human serum albumin (HSA) in the medial web on the dorsum of each foot. Image acquisition for the lower pelvis and both thighs was started within 5 min. A GE 500A gamma camera with an extra-large field of view and a low energy, all purpose collimator interfaced with a GE Star computer was used. Images were acquired in the dynamic mode with a 128x128 matrix every minute up to 40 min. Delayed images for the same region and for both legs were taken at 90 min. Time-activity curves for equal regions of interest over the inguinal regions on both sides were generated. Three patterns were recognized. (1) Normal flow (12 patients) with symmetrical or slightly increased or decreased flow on one side compared with the other, characterized by early appearance of medial bands and inguinal and pelvic lymph nodes in the early and delayed images. (2) An obstructed pattern (5 patients) characterized by subcutaneous pooling, absent medial bands in the dynamic part of the study, a flat curve on the affected side representing background activity, and absent inguinal and pelvic nodes in the delayed images. Occasionally the obstruction was incomplete and there was a delayed appearance of the nodes, which were less in number and smaller in size than on the normal side. (3) An enhanced pattern (6 patients) characterized by fast flow of lymph through the dilated lymphatics, occasionally subcutaneous pooling and an increase in the number and size of inguinal and pelvic lymph nodes on the affected side. The authors conclude that intradermal injection of 99 Tcsup(m)-HSA can be used to study the pathophysiology of lymphatic flow in the most difficult group of patients suffering from chronic lymphoedema of the lower limbs

  17. Design Pattern Mining Using Distributed Learning Automata and DNA Sequence Alignment

    Science.gov (United States)

    Esmaeilpour, Mansour; Naderifar, Vahideh; Shukur, Zarina

    2014-01-01

    Context Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem. Objective This paper describes a new method for pattern mining, isolating design patterns and relationship between them; and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable precision and recall instead of other evaluated tools based on distributed learning automata (DLA) and deoxyribonucleic acid (DNA) sequences alignment. Method The proposed method mines structural design patterns in the object oriented source code and extracts the strong and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each object, component, and other section of the code for parameter passing and modular programming. The proposed model can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their relationships. Results The result demonstrate that whenever the source code is build standard and non-standard, based on the design patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is tested on the several source codes and is compared with other related models and available tools those the results show the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than PTIDEJ and 3.3% and 2% are more than DPJF respectively. Conclusion The primary idea of the proposed method is organized in two following steps: the first step, elemental design patterns are identified, while at the second step, is composed to recognize actual design patterns. PMID:25243670

  18. Design pattern mining using distributed learning automata and DNA sequence alignment.

    Directory of Open Access Journals (Sweden)

    Mansour Esmaeilpour

    Full Text Available CONTEXT: Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem. OBJECTIVE: This paper describes a new method for pattern mining, isolating design patterns and relationship between them; and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable precision and recall instead of other evaluated tools based on distributed learning automata (DLA and deoxyribonucleic acid (DNA sequences alignment. METHOD: The proposed method mines structural design patterns in the object oriented source code and extracts the strong and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each object, component, and other section of the code for parameter passing and modular programming. The proposed model can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their relationships. RESULTS: The result demonstrate that whenever the source code is build standard and non-standard, based on the design patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is tested on the several source codes and is compared with other related models and available tools those the results show the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than PTIDEJ and 3.3% and 2% are more than DPJF respectively. CONCLUSION: The primary idea of the proposed method is organized in two following steps: the first step, elemental design patterns are identified, while at the second step, is composed to recognize actual design patterns.

  19. Design pattern mining using distributed learning automata and DNA sequence alignment.

    Science.gov (United States)

    Esmaeilpour, Mansour; Naderifar, Vahideh; Shukur, Zarina

    2014-01-01

    Over the last decade, design patterns have been used extensively to generate reusable solutions to frequently encountered problems in software engineering and object oriented programming. A design pattern is a repeatable software design solution that provides a template for solving various instances of a general problem. This paper describes a new method for pattern mining, isolating design patterns and relationship between them; and a related tool, DLA-DNA for all implemented pattern and all projects used for evaluation. DLA-DNA achieves acceptable precision and recall instead of other evaluated tools based on distributed learning automata (DLA) and deoxyribonucleic acid (DNA) sequences alignment. The proposed method mines structural design patterns in the object oriented source code and extracts the strong and weak relationships between them, enabling analyzers and programmers to determine the dependency rate of each object, component, and other section of the code for parameter passing and modular programming. The proposed model can detect design patterns better that available other tools those are Pinot, PTIDEJ and DPJF; and the strengths of their relationships. The result demonstrate that whenever the source code is build standard and non-standard, based on the design patterns, then the result of the proposed method is near to DPJF and better that Pinot and PTIDEJ. The proposed model is tested on the several source codes and is compared with other related models and available tools those the results show the precision and recall of the proposed method, averagely 20% and 9.6% are more than Pinot, 27% and 31% are more than PTIDEJ and 3.3% and 2% are more than DPJF respectively. The primary idea of the proposed method is organized in two following steps: the first step, elemental design patterns are identified, while at the second step, is composed to recognize actual design patterns.

  20. Effect of climate change on crop production patterns with implications to transport flows and inland waterways.

    Science.gov (United States)

    2011-12-01

    This project analyzed the demand for transportation capacity and changes in transportation flows on : inland waterways due to shifts in crop production patterns induced by climate change. Shifts in the crop : production mix have been observed in rece...

  1. Effect of hydrodynamic slippage on electro-osmotic flow in zeta potential patterned nanochannels

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S; Choudhary, J N, E-mail: subhra-datta@iitd.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India)

    2013-10-01

    The effect of hydrodynamic slippage on the electro-osmotic flow in a nanochannel with thick electrical double layers whose wall surface potential has a periodic axial variation is studied. The equations of Stokes flow are solved exactly with the help of the Navier slip boundary condition and the Debye-Huckel linearization of the equation governing the potential of the electrical double layer. Each periodic cell of the flow field consists of four counter-rotating vortices. The cross-channel profile of the axial velocity at the center of the cell exhibits three extrema and a reversed velocity zone near the channel axis of symmetry. The size of the extrema and that of the reversed velocity zone increases with increase in the degree of slippage. In the limit when the wavelength of axial variation in surface potential is much larger than the channel width, the flow characteristics are interpreted in terms of the lubrication approximation. In the limit when the electrical double layer is much thinner than the channel height, the effect of slip is modeled by a Helmholtz-Smoluchowski apparent slip boundary condition that depends on the pattern wavelength. (paper)

  2. Relation of Bicuspid Aortic Valve Morphology to the Dilatation Pattern of the Proximal Aorta: Focus on the Transvalvular Flow

    Directory of Open Access Journals (Sweden)

    Evaldas Girdauskas

    2012-01-01

    Full Text Available Whether the dilatation of proximal aorta in patients with bicuspid aortic valve is secondary to hemodynamic effects related to the abnormal aortic valve or a primary manifestation of the genetic disorder remains controversial. We discuss in this paper the recent data on the BAV function and transvalvular flow patterns in relation with the dilatation type of the proximal aorta. Different morphological forms of bicuspid aortic valve in relation with the specific transvalvular blood flow patterns are focus of the first paragraph of this paper. In the second part of this paper we present the pathogenetic insight into the different clinically observed phenotypes of bicuspid aortic valve disease (i.e., association of proximal aortic shapes with the specific cusp fusion patterns, based on the data from recent rheological studies.

  3. Determination of Groundwater Flows Pattern in Surakarta Region Using the Activity Ratio of Tritium

    International Nuclear Information System (INIS)

    Wisjachudin Faisal; Agus Sulistyono; Brotopuspito, Kirbani Sri; Budi Legowo

    2002-01-01

    Tritium activity analysis on groundwater samples has been carried out at 13 different locations in Surakarta regency in order to determine the groundwater flow pattern. Tritium activity in the groundwater is measured by LSC (Liquid Scintillation Counter) Tri-Carb 2700TR Measurement of the optimum activity is done on sample volume ratio with cocktail 7.4 : 12.6 in operation 0.5 - 4.5 keV. The highest result fulfilled in the location of Lor In Hotel for 1566 dpm and the lowest is in the location of Kadipiro for 0.03 dpm. Those data have shown that groundwater flow come from western area to eastern area of Surakarta city. (author)

  4. Learning Python design patterns

    CERN Document Server

    Zlobin, Gennadiy

    2013-01-01

    This book takes a tutorial-based and user-friendly approach to covering Python design patterns. Its concise presentation means that in a short space of time, you will get a good introduction to various design patterns.If you are an intermediate level Python user, this book is for you. Prior knowledge of Python programming is essential. Some knowledge of UML is also required to understand the UML diagrams which are used to describe some design patterns.

  5. Differences in aortic vortex flow pattern between normal and patients with stroke: qualitative and quantitative assessment using transesophageal contrast echocardiography.

    Science.gov (United States)

    Son, Jang-Won; Hong, Geu-Ru; Hong, Woosol; Kim, Minji; Houle, Helene; Vannan, Mani A; Pedrizzetti, Gianni; Chung, Namsik

    2016-06-01

    The flow in the aorta forms a vortex, which is a critical determinant of the flow dynamics in the aorta. Arteriosclerosis can alter the blood flow pattern of the aorta and cause characteristic alterations of the vortex. However, this change in aortic vortex has not yet been studied. This study aimed to characterize aortic vortex flow pattern using transesophageal contrast echocardiography in normal and stroke patients. A total of 85 patients who diagnosed with ischemic stroke and 16 normal controls were recruited for this study. The 16 normal control subjects were designated as the control group, and the 85 ischemic stroke patients were designated as the stroke group. All subjects underwent contrast transesophageal echocardiography (TEE), and particle image velocimetry was used to assess aortic vortex flow. Qualitative and quantitative analyses of vortex flow morphology, location, phasic variation, and pulsatility were undertaken and compared between the groups. In the control group, multiple irregularly-shaped vortices were observed in a peripheral location in the descending thoracic aorta. In contrast, the stroke group had a single, round, merged, and more centrally located aortic vortex flow. In the quantitative analysis of vortex, vortex depth, which represents the location of the major vortex in the aorta, was significantly higher in the control group than in the stroke group (0.599 ± 0.159 vs. 0.522 ± 0.101, respectively, P = 0.013). Vortex relative strength, which is the pulsatility parameter of the vortex itself, was significantly higher in the stroke group than in the control group (0.367 ± 0.148 vs. 0.304 ± 0.087, respectively, P = 0.025). It was feasible to visualize and quantify the characteristic morphology and pulsatility of the aortic vortex flow using contrast TEE, and aortic vortex pattern significantly differed between normal and stroke patients.

  6. The chronotron: a neuron that learns to fire temporally precise spike patterns.

    Directory of Open Access Journals (Sweden)

    Răzvan V Florian

    Full Text Available In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons, one that provides high memory capacity (E-learning, and one that has a higher biological plausibility (I-learning. With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm.

  7. Online Learners' Navigational Patterns Based on Data Mining in Terms of Learning Achievement

    Science.gov (United States)

    Keskin, Sinan; Sahin, Muhittin; Ozgur, Adem; Yurdugul, Halil

    2016-01-01

    The aim of this study is to determine navigational patterns of university students in a learning management system (LMS). It also investigates whether online learners' navigational behaviors differ in terms of their academic achievement (pass, fail). The data for the study comes from 65 third grade students enrolled in online Computer Network and…

  8. Development and performance evaluation of 32-channel gamma densitometer for the measurement of flow pattern and void fraction in the downcomer of MIDAS test facility

    International Nuclear Information System (INIS)

    Chu, In Cheol; Kim, Y. K.; Yun, B. J.; Kwon, T. S.; Euh, D. J.; Song, C.

    2002-03-01

    APR 1400, which adopts DVI type of ECCS, is expected to show its unique thermal hydraulic phenomena. Therefore, it is necessary to investigate whether existing safety analysis code can correctly predict the thermal hydraulic phenomena. Among the several phenomena, void fraction and flow pattern govern the other major phenomena. Therefore, the main objective of the present study is to develop the 32-channel gamma densitometer which can measure the void fraction and flow pattern in the downcomer at various locations. The 32-channel gamma densitometer for MIDAS test apparatus has been developed. Throughout the performance evaluation test, the integrity of the 32 channel gamma densitometer has been validated. The measurement error of water film thickness is expected to be less than ±0.5mm. Also, it can correctly predict the flow patterns and the transition location of flow pattern in the downcomer of MIDAS test apparatus

  9. Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.

    Science.gov (United States)

    Wongsuphasawat, Kanit; Smilkov, Daniel; Wexler, James; Wilson, Jimbo; Mane, Dandelion; Fritz, Doug; Krishnan, Dilip; Viegas, Fernanda B; Wattenberg, Martin

    2018-01-01

    We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model's modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback. Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.

  10. A numerical study of diurnally varying surface temperature on flow patterns and pollutant dispersion in street canyons

    Science.gov (United States)

    Tan, Zijing; Dong, Jingliang; Xiao, Yimin; Tu, Jiyuan

    2015-03-01

    The impacts of the diurnal variation of surface temperature on street canyon flow pattern and pollutant dispersion are investigated based on a two-dimensional street canyon model under different thermal stratifications. Uneven distributed street temperature conditions and a user-defined wall function representing the heat transfer between the air and the street canyon are integrated into the current numerical model. The prediction accuracy of this model is successfully validated against a published wind tunnel experiment. Then, a series of numerical simulations representing four time scenarios (Morning, Afternoon, Noon and Night) are performed at different Bulk Richardson number (Rb). The results demonstrate that uneven distributed street temperature conditions significantly alters street canyon flow structure and pollutant dispersion characteristics compared with conventional uniform street temperature assumption, especially for the morning event. Moreover, air flow patterns and pollutant dispersion are greatly influenced by diurnal variation of surface temperature under unstable stratification conditions. Furthermore, the residual pollutant in near-ground-zone decreases as Rb increases in noon, afternoon and night events under all studied stability conditions.

  11. In Vivo Pattern Classification of Ingestive Behavior in Ruminants Using FBG Sensors and Machine Learning

    Directory of Open Access Journals (Sweden)

    Vinicius Pegorini

    2015-11-01

    Full Text Available Pattern classification of ingestive behavior in grazing animals has extreme importance in studies related to animal nutrition, growth and health. In this paper, a system to classify chewing patterns of ruminants in in vivo experiments is developed. The proposal is based on data collected by optical fiber Bragg grating sensors (FBG that are processed by machine learning techniques. The FBG sensors measure the biomechanical strain during jaw movements, and a decision tree is responsible for the classification of the associated chewing pattern. In this study, patterns associated with food intake of dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior were monitored: rumination and idleness. Experimental results show that the proposed approach for pattern classification is capable of differentiating the five patterns involved in the chewing process with an overall accuracy of 94%.

  12. In Vivo Pattern Classification of Ingestive Behavior in Ruminants Using FBG Sensors and Machine Learning.

    Science.gov (United States)

    Pegorini, Vinicius; Karam, Leandro Zen; Pitta, Christiano Santos Rocha; Cardoso, Rafael; da Silva, Jean Carlos Cardozo; Kalinowski, Hypolito José; Ribeiro, Richardson; Bertotti, Fábio Luiz; Assmann, Tangriani Simioni

    2015-11-11

    Pattern classification of ingestive behavior in grazing animals has extreme importance in studies related to animal nutrition, growth and health. In this paper, a system to classify chewing patterns of ruminants in in vivo experiments is developed. The proposal is based on data collected by optical fiber Bragg grating sensors (FBG) that are processed by machine learning techniques. The FBG sensors measure the biomechanical strain during jaw movements, and a decision tree is responsible for the classification of the associated chewing pattern. In this study, patterns associated with food intake of dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior were monitored: rumination and idleness. Experimental results show that the proposed approach for pattern classification is capable of differentiating the five patterns involved in the chewing process with an overall accuracy of 94%.

  13. Rare Earth Element Concentrations and Fractionation Patterns Along Groundwater Flow Paths in Two Different Aquifer Types (i.e., Sand vs. Carbonate)

    Science.gov (United States)

    Johannesson, K. H.; Tang, J.

    2003-12-01

    Groundwater samples were collected in two different types of aquifer (i.e., Carrizo Sand Aquifer, Texas and Upper Floridan carbonate Aquifer, west-central Florida) to study the concentrations, fractionation, and speciation of rare earth elements (REE) along groundwater flow paths in each aquifer. Major solutes and dissolved organic carbon (DOC) were also measured in these groundwaters. The Carrizo Sand aquifer was sampled in October 2002 and June 2003, whereas, to date, we have only sampled the Floridan once (i.e., June 2003). The data reveal no significant seasonal differences in major solute and REE concentrations for the Carrizo. In Carrizo sand aquifer, groundwaters from relatively shallow wells (i.e., less than 167 m) in the recharge zone are chiefly Ca-Na-HCO3-Cl type waters. With flow down-gradient the groundwaters shift composition to the Na-HCO3 waters. pH and alkalinity initially decrease with flow away from the recharge zone before increasing again down-gradient. DOC is generally low (0.65 mg/L) along the flow path. REE concentrations are highest in groundwaters from the recharge zone (Nd 40.5 pmol/kg), and decrease substantially with flow down-gradient reaching relatively low and stable values (Nd 4.1-8.6 pmol/kg) roughly 10 km from the recharge zone. Generally, Carrizo groundwaters exhibit HREE-enriched shale-normalized patterns. The HREE enrichments are especially strong for waters from the recharge zone [(Yb/Nd)SN =1.7-5.6], whereas down-gradient (deep) groundwaters have flatter patterns [(Yb/Nd)SN =0.7-2.5]. All groundwaters have slightly positive Eu anomalies (Eu/Eu* 0.09-0.14) and negative Ce anomalies (Ce/Ce* -0.85 - -0.07). In the Upper Floridan Aquifer, Ca, Mg, SO4, and Cl concentrations generally increase along groundwater flow path, whereas pH and alkalinity generally decrease. DOC is higher (0.64 - 2.29 mg/L) than in the Carrizo and initially increases along the flow path and then decreases down-gradient. LREE (Nd) concentrations generally

  14. Measurement of turbulent flow fields in a agitated vessel with four baffles by laser-doppler velocimetry. Mean velocity fields and flow pattern; Buffle tsuki heiento kakuhan sonai nagare no LDV ni yoru keisoku. Heikin sokudoba to flow pattern

    Energy Technology Data Exchange (ETDEWEB)

    Suzukawa, K [Ube Industries, Ltd., Tokyo (Japan); hashimoto, T [Yamaguchi University, Yamaguchi (Japan); Osaka, H [Yamaguchi University, Yamaguchi (Japan). Faclty of Engineering

    1997-12-25

    The three dimensional complex turbulent flow fields induced by a four flat blade paddle impeller in agitated vessel were measured by laser Doppler velocimetry. Mixing vessel used was a closed cylindrical tank of 490 mm diameter with a flat bottom and four vertical buffles, giving water volumes of about 1001. The impellers were at the midnight of the water level in the tank. A height of liquid (water) was equal to the vessel diameter. Three components of mean velocity were measured at three vertical sections {theta}=7.5deg, 45deg and 85deg, in several horizontal planes. Mixing Reynolds number NRe was 1.2 times 10{sup 5}. It can be found from the results that circumferential mean velocity profiles show the symmetrical shape in the upper and lower sides of impeller. Secondary velocity components, such as axial and radial velocities, however, were not in symmetry. For this reason, the ratio of circulation flow volume which enter in upper and lower sides of impeller was roughly 7/3. In both the middle and buffle regions, mean flow velocities (flow patterns) were different, dependent of three vertical planes with different circumferential angle measured from buffle. 10 refs., 8 figs., 1 tab.

  15. Changing patterns of brain activation during maze learning.

    Science.gov (United States)

    Van Horn, J D; Gold, J M; Esposito, G; Ostrem, J L; Mattay, V; Weinberger, D R; Berman, K F

    1998-05-18

    Recent research has found that patterns of brain activation involving the frontal cortex during novel task performance change dramatically following practice and repeat performance. Evidence for differential left vs. right frontal lobe activation, respectively, during episodic memory encoding and retrieval has also been reported. To examine these potentially related issues regional cerebral blood flow (rCBF) was measured in 15 normal volunteers using positron emission tomography (PET) during the naive and practiced performance of a maze task paradigm. SPM analysis indicated a largely right-sided, frontal lobe activation during naive performance. Following training and practice, performance of the same maze task elicited a more posterior pattern of rCBF activation involving posterior cingulate and precuneus. The change in the pattern of rCBF activation between novel and practiced task conditions agrees with results found in previous studies using repeat task methodology, and indicates that the neural circuitry required for encoding novel task information differs from that required when the same task has become familiar and information is being recalled. The right-sided preponderance of activation during naive performance may relate to task novelty and the spatially-based nature of the stimuli, whereas posterior areas activated during repeat performance are those previously found to be associated with visuospatial memory recall. Activation of these areas, however, does not agree with previously reported findings of left-sided activation during verbal episodic memory encoding and right-sided activation during retrieval, suggesting different neural substrates for verbal and visuospatial processing within memory. Copyright 1998 Elsevier Science B.V.

  16. Flow pattern-based mass and heat transfer and frictional drag of gas-non-Newtonian liquid flow in helical coil: two- and three-phase systems

    Science.gov (United States)

    Thandlam, Anil Kumar; Das, Chiranjib; Majumder, Subrata Kumar

    2017-04-01

    Investigation of wall-liquid mass transfer and heat transfer phenomena with gas-Newtonian and non-Newtonian fluids in vertically helical coil reactor have been reported in this article. Experiments were conducted to investigate the effect of various dynamic and geometric parameters on mass and heat transfer coefficients in the helical coil reactor. The flow pattern-based heat and mass transfer phenomena in the helical coil reactor are highlighted at different operating conditions. The study covered a wide range of geometric parameters such as diameter of the tube ( d t ), diameter of the coil ( D c ), diameter of the particle ( d p ), pitch difference ( p/D c ) and concentrations of non-Newtonian liquid. The correlation models for the heat and mass transfer coefficient based on the flow pattern are developed which may be useful in process scale-up of the helical coil reactor for industrial application. The frictional drag coefficient was also estimated and analyzed by mass transfer phenomena based on the electrochemical method.

  17. The relative contributions of thermo-solutal Marangoni convections on flow patterns in a liquid bridge

    Science.gov (United States)

    Minakuchi, H.; Takagi, Y.; Okano, Y.; Gima, S.; Dost, S.

    2014-01-01

    A numerical simulation study was carried out to investigate the relative contributions of thermal and solutal Marangoni convections on transport structures in a liquid bridge under zero gravity. The liquid bridge in the model represents a three dimensional half-zone configuration of the Floating Zone (FZ) growth system. Three dimensional field equations of the liquid zone, i.e. continuity, momentum, energy, and diffusion equations, were solved by the PISO algorithm. Computations were performed using the open source software OpenFOAM. The numerical simulation results show that the flow field becomes three-dimensional and time-depended when the solutal Marangoni number is larger than the critical value. It was also shown that not only flow patterns but also the azimuthal wave number (m) changes due to the competing contributions of thermal and solutal Marangoni convective flows.

  18. The golden-mean surface pattern to enhance flow mixing in micro-channel.

    Science.gov (United States)

    Wang, J F; Liu, Y; Xu, Y S

    2009-04-01

    Mixing of analytes and reagents in microfluidic devices is often crucial to the effective functioning of lab-on-a-chip. It is possible to affect the mixing in microfluidics by intelligently controlling the thermodynamic and chemical properties of the substrate surface. Numerous studies have shown that the phase behavior of mixtures is significantly affected by surface properties of microfluidics. For example, the phase separation between the fluids can be affected by heterogeneous patterns on the substrate. The patterned substrate can offer an effective means to control fluid behavior and in turn to enhance mixing. The golden mean is a ratio that is present in the growth patterns of many biological systems--the spiral formed by a shell or the curve of a fern, for example. The golden mean or golden section was derived by the ancient Greeks. Like "pi" the golden mean ratio is an irrational number 1.618, or (square root{5} + 1) / 2. It was found that the golden mean was an optimum ratio in natural convection heat transfer problem (Liu and Phan-Thien, Numer Heat Transf 37:613-630, 2000). In this study, we numerically studied the effect of optimum surface pattern on mixing in a micro channel and found that the flow oscillation and chaotic mixing were enhanced apparently when the ratio of hydrophobic and hydrophilic boundary follows the golden mean.

  19. submitter Studies of CMS data access patterns with machine learning techniques

    CERN Document Server

    De Luca, Silvia

    This thesis presents a study of the Grid data access patterns in distributed analysis in the CMS experiment at the LHC accelerator. This study ranges from the deep analysis of the historical patterns of access to the most relevant data types in CMS, to the exploitation of a supervised Machine Learning classification system to set-up a machinery able to eventually predict future data access patterns - i.e. the so-called dataset “popularity” of the CMS datasets on the Grid - with focus on specific data types. All the CMS workflows run on the Worldwide LHC Computing Grid (WCG) computing centers (Tiers), and in particular the distributed analysis systems sustains hundreds of users and applications submitted every day. These applications (or “jobs”) access different data types hosted on disk storage systems at a large set of WLCG Tiers. The detailed study of how this data is accessed, in terms of data types, hosting Tiers, and different time periods, allows to gain precious insight on storage occupancy ove...

  20. Inference from correlated patterns: a unified theory for perceptron learning and linear vector channels

    Energy Technology Data Exchange (ETDEWEB)

    Kabashima, Y [Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama 226-8502 (Japan)], E-mail: kaba@dis.titech.ac.jp

    2008-01-15

    A framework to analyze inference performance in densely connected single-layer feed-forward networks is developed for situations where a given data set is composed of correlated patterns. The framework is based on the assumption that the left and right singular value bases of the given pattern matrix are generated independently and uniformly from Haar measures. This assumption makes it possible to characterize the objective system by a single function of two variables which is determined by the eigenvalue spectrum of the cross-correlation matrix of the pattern matrix. Links to existing methods for analysis of perceptron learning and Gaussian linear vector channels and an application to a simple but nontrivial problem are also shown.

  1. Inference from correlated patterns: a unified theory for perceptron learning and linear vector channels

    International Nuclear Information System (INIS)

    Kabashima, Y

    2008-01-01

    A framework to analyze inference performance in densely connected single-layer feed-forward networks is developed for situations where a given data set is composed of correlated patterns. The framework is based on the assumption that the left and right singular value bases of the given pattern matrix are generated independently and uniformly from Haar measures. This assumption makes it possible to characterize the objective system by a single function of two variables which is determined by the eigenvalue spectrum of the cross-correlation matrix of the pattern matrix. Links to existing methods for analysis of perceptron learning and Gaussian linear vector channels and an application to a simple but nontrivial problem are also shown

  2. Inference from correlated patterns: a unified theory for perceptron learning and linear vector channels

    Science.gov (United States)

    Kabashima, Y.

    2008-01-01

    A framework to analyze inference performance in densely connected single-layer feed-forward networks is developed for situations where a given data set is composed of correlated patterns. The framework is based on the assumption that the left and right singular value bases of the given pattern matrix are generated independently and uniformly from Haar measures. This assumption makes it possible to characterize the objective system by a single function of two variables which is determined by the eigenvalue spectrum of the cross-correlation matrix of the pattern matrix. Links to existing methods for analysis of perceptron learning and Gaussian linear vector channels and an application to a simple but nontrivial problem are also shown.

  3. impact of vegetation on flow routing and sedimentation patterns : three-dimensional modeling for a tidal marsh

    NARCIS (Netherlands)

    Temmerman, S.; Bouma, T.J.; De Vries, M.B.; Wang, Z.B.; Govers, G.; Herman, P.M.J.

    2005-01-01

    A three-dimensional hydrodynamic and sediment transport model was used to study the relative impact of (1) vegetation, (2) micro-topography, and (3) water level fluctuations on the spatial flow and sedimentation patterns in a tidal marsh landscape during single inundation events. The model

  4. Impact of vegetation on flow routing and sedimentation patterns : three-dimensional modeling for a tidal marsh

    NARCIS (Netherlands)

    Temmerman, S.; Bouma, T.J.; Govers, G.; Wang, Z.B.; de Vries, M.B.; Herman, P.M.J.

    2005-01-01

    A three-dimensional hydrodynamic and sediment transport model was used to study the relative impact of (1) vegetation, (2) micro-topography, and (3) water level fluctuations on the spatial flow and sedimentation patterns in a tidal marsh landscape during single inundation events. The model

  5. Bannatyne-Recategorized WISC-R Patterns of Mentally Retarded, Learning Disabled, Normal, and Intellectually Superior Children: A Meta-Analysis.

    Science.gov (United States)

    Mueller, Horst H.; And Others

    1983-01-01

    Metaanalytical procedures examined the Wechsler Intelligence Scale-Revised subtest performance patterns of 36 samples of below average, normal average, learning disabled average, and above average IQ children from research. Relative patterning of WISC-R subtests as reflected in children's Bannatyne-recategorized performance profiles appeared to be…

  6. In Vivo Pattern Classification of Ingestive Behavior in Ruminants Using FBG Sensors and Machine Learning

    OpenAIRE

    Pegorini, Vinicius; Karam, Leandro Zen; Pitta, Christiano Santos Rocha; Cardoso, Rafael; da Silva, Jean Carlos Cardozo; Kalinowski, Hypolito Jos?; Ribeiro, Richardson; Bertotti, F?bio Luiz; Assmann, Tangriani Simioni

    2015-01-01

    Pattern classification of ingestive behavior in grazing animals has extreme importance in studies related to animal nutrition, growth and health. In this paper, a system to classify chewing patterns of ruminants in in vivo experiments is developed. The proposal is based on data collected by optical fiber Bragg grating sensors (FBG) that are processed by machine learning techniques. The FBG sensors measure the biomechanical strain during jaw movements, and a decision tree is responsible for th...

  7. Experimental study on blood flow patterns through the phantoms of the intracranial arterial aneurysms using color Doppler imaging

    International Nuclear Information System (INIS)

    Chung, Tae Sub; Jeong, Eun Kee; Rhim, Yoon Chul; Kim, Sung Bin; Lee, Dong Hoon; Kim, Dae In

    1994-01-01

    The occurrence, growth, thrombosis, and rupture of intracranial saccular aneurysms can be directly related to the effect of hemodynamic forces. We developed the phantom flow models and compared with the computer simulation program to analyse the flow pattern and hemodynamics that might be responsible for the intracranial arterial aneurysms. We designed the arterial phantoms of three major sites of intracranial arterial aneurysm ; 1) basilar artery tip, 2) internal carotid artery bifurcation, 3) curved area of internal carotid artery. Flow patterns in the aneurysmal portion of phantoms were evaluated with color Doppler system on the connection with automatic closed type of circulation system. Then, we compared the results with computer simulation. The hemodynamic characteristics of the phantoms were identical with those obtained by computerisation's. Three distinct zones of flow were identified by color Doppler studies on the aneurysm of the curved area of an internal carotid artery : 1) an inflow zone entering the aneurysm at the distal aspect of its orifice, 2) an outflow zone exiting the aneurysm at the proximal aspect of its orifice, 3) a central slow vortex.However, the phantoms of basilar artery tip and artery bifurcation showed a direct inflow stream at the dome of an aneurysm. Flow dynamics in the various phantoms of the aneurysms can be successfully evaluated with color Doppler imaging, and were consistent with those predicted by computer simulations

  8. Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery.

    Science.gov (United States)

    Liu, Biyue; Zheng, Jie; Bach, Richard; Tang, Dalin

    2015-01-01

    In literature, the effect of the inflow boundary condition was investigated by examining the impact of the waveform and the shape of the spatial profile of the inlet velocity on the cardiac hemodynamics. However, not much work has been reported on comparing the effect of the different combinations of the inlet/outlet boundary conditions on the quantification of the pressure field and flow distribution patterns in stenotic right coronary arteries. Non-Newtonian models were used to simulate blood flow in a patient-specific stenotic right coronary artery and investigate the influence of different boundary conditions on the phasic variation and the spatial distribution patterns of blood flow. The 3D geometry of a diseased artery segment was reconstructed from a series of IVUS slices. Five different combinations of the inlet and the outlet boundary conditions were tested and compared. The temporal distribution patterns and the magnitudes of the velocity, the wall shear stress (WSS), the pressure, the pressure drop (PD), and the spatial gradient of wall pressure (WPG) were different when boundary conditions were imposed using different pressure/velocity combinations at inlet/outlet. The maximum velocity magnitude in a cardiac cycle at the center of the inlet from models with imposed inlet pressure conditions was about 29% lower than that from models using fully developed inlet velocity data. Due to the fact that models with imposed pressure conditions led to blunt velocity profile, the maximum wall shear stress at inlet in a cardiac cycle from models with imposed inlet pressure conditions was about 29% higher than that from models with imposed inlet velocity boundary conditions. When the inlet boundary was imposed by a velocity waveform, the models with different outlet boundary conditions resulted in different temporal distribution patterns and magnitudes of the phasic variation of pressure. On the other hand, the type of different boundary conditions imposed at the

  9. Extended pattern recognition scheme for self-learning kinetic Monte Carlo simulations

    International Nuclear Information System (INIS)

    Shah, Syed Islamuddin; Nandipati, Giridhar; Kara, Abdelkader; Rahman, Talat S

    2012-01-01

    We report the development of a pattern recognition scheme that takes into account both fcc and hcp adsorption sites in performing self-learning kinetic Monte Carlo (SLKMC-II) simulations on the fcc(111) surface. In this scheme, the local environment of every under-coordinated atom in an island is uniquely identified by grouping fcc sites, hcp sites and top-layer substrate atoms around it into hexagonal rings. As the simulation progresses, all possible processes, including those such as shearing, reptation and concerted gliding, which may involve fcc-fcc, hcp-hcp and fcc-hcp moves are automatically found, and their energetics calculated on the fly. In this article we present the results of applying this new pattern recognition scheme to the self-diffusion of 9-atom islands (M 9 ) on M(111), where M = Cu, Ag or Ni.

  10. The Effects of Game Strategy and Preference-Matching on Flow Experience and Programming Performance in Game-Based Learning

    Science.gov (United States)

    Wang, Li-Chun; Chen, Ming-Puu

    2010-01-01

    Learning to program is difficult for novices, even for those undergraduates who have majored in computer science. The study described in this paper has investigated the effects of game strategy and preference-matching on novice learners' flow experience and performance in learning to program using an experiential gaming activity. One hundred and…

  11. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine.

    Directory of Open Access Journals (Sweden)

    Qiang Shang

    Full Text Available Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS. Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM is proposed based on singular spectrum analysis (SSA and kernel extreme learning machine (KELM. SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA. Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust.

  12. The Pd distribution and Cu flow pattern of the Pd-plated Cu wire bond and their effect on the nanoindentation

    International Nuclear Information System (INIS)

    Lin, Yu-Wei; Wang, Ren-You; Ke, Wun-Bin; Wang, I-Sheng; Chiu, Ying-Ta; Lu, Kuo-Chang; Lin, Kwang-Lung; Lai, Yi-Shao

    2012-01-01

    Highlights: ► Pd distribution in Pd-plated Cu wires reveals the whirlpool flow pattern of Cu. ► The mechanisms of the Cu flow behavior and Pd distribution are proposed. ► At Pd-rich phases, small voids formed and followed the direction of Cu flow. ► Nanoindentation studies show the Cu ball bond is harder in regions with Pd. - Abstract: The Pd plating on the 20 μm Cu wire dissolves in the free air ball (FAB) and the Cu ball bond during the wire bonding process without forming intermetallic compounds. The limiting supply of Pd and the short bonding process, 15 ms of thermosonic bonding, result in uneven distribution of Pd in the as produced Cu ball bond. Also, the Pd-rich phase may accompany small voids formed within the FAB and the wire bond, and following the direction of semi-solid Cu flow. The Pd distribution, as evidenced by the focused ion beam (FIB) and wavelength dispersive X-ray spectroscopy (WDS) mapping, reveals the whirlpool flow pattern of Cu within the FAB and the ball bond. Pd distributes within the copper ball through convective transport by the copper flow. Additionally, hardness measurements by nanoindentation testing show that the Cu ball bond is harder in the regions where Pd exists.

  13. Effect of perforation on flow past a conic cylinder at Re = 100: vortex-shedding pattern and force history

    Science.gov (United States)

    Lin, L. M.; Zhong, X. F.; Wu, Y. X.

    2017-09-01

    The flow past a circular-section cylinder with a conic shroud perforated with four holes at the peak was simulated numerically at Re=100 , considering two factors, viz. the angle of attack and the diameter of the holes. The effects of the perforated conic shroud on the vortex shedding pattern in the near wake was mainly investigated, as well as the time history of the drag and lift forces. In the investigated parameter space, three flow regimes were generally identified, corresponding to weak, moderate, and strong disturbance effects. In regime I, the wake can mainly be described by alternately shedding Kármán or Kármán-like vortices. In regime II, the spanwise vortices are obviously disturbed along the span due to the appearance of additional vorticity components and their interactions with the spanwise vortices, but still shed in synchronization along the spanwise direction. In regime III, the typical Kármán vortices partially or totally disappear, and some new vortex shedding patterns appear, such as Ω -type, obliquely shedding, and crossed spanwise vortices with opposite sign. Corresponding to these complex vortex shedding patterns in the near wake, the fluid forces no longer oscillate regularly at a single vortex shedding frequency, but rather with a lower modulation frequency and multiple amplitudes. An overview of these flow regimes is presented.

  14. Non-Invasive Mapping of Intraventricular Flow Patterns in Patients Treated with Left Ventricular Assist Devices

    Science.gov (United States)

    Miramontes, Marissa; Rossini, Lorenzo; Braun, Oscar; Brambatti, Michela; Almeida, Shone; Mizeracki, Adam; Martinez-Legazpi, Pablo; Benito, Yolanda; Bermejo, Javier; Kahn, Andrew; Adler, Eric; Del Álamo, Juan C.

    2017-11-01

    In heart failure patients, left ventricular (LV) assist devices (LVADs) decrease mortality and improve quality of life. We hypothesize echo color Doppler velocimetry (echo-CDV), an echocardiographic flow mapping modality, can non-invasively characterize the effect of LVAD support, optimize the device, thereby decreasing the stoke rate present in these patients. We used echo-CDV to image LV flow at baseline LVAD speed and during a ramp test in LVAD patients (Heartmate II, N =10). We tracked diastolic vortices and mapped blood stasis and cumulative shear. Compared to dilated cardiomyopathy (DCM) patients without LVADs, the flow had a less prominent diastolic vortex ring, and transited directly from mitral valve to cannula. Residence time and shear were significantly lower compared to healthy controls and DCMs. Aortic regurgitation and a large LV vortex presence or a direct mitral jet towards the cannula affected blood stasis region location and size. Flow patterns, residence time and shear depended on LV geometry, valve function and LVAD speed in a patient specific manner. This new methodology could be used with standard echo, hemodynamics and clinical information to find the flow optimizing LAVD setting minimizing stasis for each patient.

  15. Lattice Boltzmann Study of Bubbles on a Patterned Superhydrophobic Surface under Shear Flow

    Science.gov (United States)

    Chen, Wei; Wang, Kai; Hou, Guoxiang; Leng, Wenjun

    2018-01-01

    This paper studies shear flow over a 2D patterned superhydrophobic surface using lattice Boltzmann method (LBM). Single component Shan-Chen multiphase model and Carnahan-Starling EOS are adopted to handle the liquid-gas flow on superhydrophobic surface with entrapped micro-bubbles. The shape of bubble interface and its influence on slip length under different shear rates are investigated. With increasing shear rate, the bubble interface deforms. Then the contact lines are depinned from the slot edges and move downstream. When the shear rate is high enough, a continuous gas layer forms. If the protrusion angle is small, the gas layer forms and collapse periodically, and accordingly the slip length changes periodically. While if the protrusion angle is large, the gas layer is steady and separates the solid wall from liquid, resulting in a very large slip length.

  16. Coastal marsh degradation: modeling the influence of vegetation die-off patterns on flow and sedimentation

    Science.gov (United States)

    Schepers, Lennert; Wang, Chen; Kirwan, Matthew; Belluco, Enrica; D'Alpaos, Andrea; Temmerman, Stijn

    2014-05-01

    erosion, which may explain their lower surface elevation. Therefore the establishment of marsh plants will be unfavorable. So far, however, this hypothesis has not been verified. In order to investigate the influence of these different types of pool patterns on spatial flow and sedimentation patterns, we used an existing hydrodynamic and sediment transport model (Delft3D) that has been calibrated and validated against field data on tidal marsh flow and sedimentation. The model reproduces the bio-geomorphologic effects of complete vegetation removal, but different pool patterns have not been studied until now. By simulating different pool patterns, we are able to verify our hypothesis regarding elevation changes and marsh recovery potential in degraded marsh pools. This highlights the importance of bio-geomorphologic feedbacks for marsh degradation and recovery.

  17. Effect of adding a swirl on flow pattern and recirculation zone in ADS windowless spallation target

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jie, E-mail: nauty@ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, Beijing (China); Gao, Lei [School of Physics, University of Chinese Academy of Sciences, Beijing (China); Yang, Lei [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Lu, Wen-qiang [School of Physics, University of Chinese Academy of Sciences, Beijing (China)

    2014-09-15

    Highlights: • The reduction of the recirculation zone and the stability of the free surface are key issues in the target. • A swirl is numerically added in the target to make the recirculation zone small and stable. • Numerical simulation with different boundary conditions is carried out. • Physical analysis is presented to explain the numerical results. - Abstract: Aiming the key issues in the accelerator driven system (ADS), windowless spallation target focus on the minimization of the recirculation zone and on the stability of the free surface, an innovation has been made by numerically adding swirl to the fluid at the inlet. At first, two phase flow pattern in the simulation is compared with the experiments and numerical method is employed correctly. The results reveal that the recirculation zone and the flow pattern are greatly influenced when the swirl strength is changed from 1.0 rad/s to 2.5 rad/s. The height of the recirculation zone decreases with increase in swirl strength and completely disappears when the swirl strength reaches 2.0 rad/s. In addition, larger swirl strength leads to different flow pattern and a new cavitation zone is generated under the recirculation zone. The Bernoulli's equation and angular momentum conservation are applied to make it clear that this phenomena is due to the decrease of the axial pressure caused by the radial velocity. Moreover, the new cavitation zone totally links to the vapor area above the recirculation zone when the swirl strength is 2.5 rad/s. The results are very helpful to the design and optimization of the ADS windowless spallation target.

  18. Effect of adding a swirl on flow pattern and recirculation zone in ADS windowless spallation target

    International Nuclear Information System (INIS)

    Liu, Jie; Gao, Lei; Yang, Lei; Lu, Wen-qiang

    2014-01-01

    Highlights: • The reduction of the recirculation zone and the stability of the free surface are key issues in the target. • A swirl is numerically added in the target to make the recirculation zone small and stable. • Numerical simulation with different boundary conditions is carried out. • Physical analysis is presented to explain the numerical results. - Abstract: Aiming the key issues in the accelerator driven system (ADS), windowless spallation target focus on the minimization of the recirculation zone and on the stability of the free surface, an innovation has been made by numerically adding swirl to the fluid at the inlet. At first, two phase flow pattern in the simulation is compared with the experiments and numerical method is employed correctly. The results reveal that the recirculation zone and the flow pattern are greatly influenced when the swirl strength is changed from 1.0 rad/s to 2.5 rad/s. The height of the recirculation zone decreases with increase in swirl strength and completely disappears when the swirl strength reaches 2.0 rad/s. In addition, larger swirl strength leads to different flow pattern and a new cavitation zone is generated under the recirculation zone. The Bernoulli's equation and angular momentum conservation are applied to make it clear that this phenomena is due to the decrease of the axial pressure caused by the radial velocity. Moreover, the new cavitation zone totally links to the vapor area above the recirculation zone when the swirl strength is 2.5 rad/s. The results are very helpful to the design and optimization of the ADS windowless spallation target

  19. Investigation of Flow Behavior around Corotating Blades in a Double-Spindle Lawn Mower Deck

    OpenAIRE

    Chon W.; Amano R. S.

    2005-01-01

    When the airflow patterns inside a lawn mower deck are understood, the deck can be redesigned to be efficient and have an increased cutting ability. To learn more, a combination of computational and experimental studies was performed to investigate the effects of blade and housing designs on a flow pattern inside a 1.1m wide corotating double-spindle lawn mower deck with side discharge. For the experimental portion of the study, air velocities inside the deck were measured using a laser Do...

  20. Physics and (patho)physiology in confined flows: from colloidal patterns to cytoplasmic rheology and sickle cell anemia

    Science.gov (United States)

    Mahadevan, L.

    2015-03-01

    I will discuss a few problems that involve the interaction of fluids and solids in confined spaces. (i) Jamming in pressure-driven suspension flows that show a transition from Stokes flows to Darcy flows as the solids start to lock, as in evaporative patterning in colloids (e.g. coffee stain formation) .(ii) Jamming and clogging of red blood cells, as in sickle-cell pathophysiology, with implications for other diseases that involve jamming. (iii) The mechanical response of crowded networks of filaments bathed in a fluid, as in the cytoskeleton, that can be described by poroelasticity theory. In each case, I will show how simple theories of multiphase flow and deformation can be used to explain a range of experimental observations, while failing to account for others, along with some thoughts on how to improve them.

  1. Patterns in groundwater chemistry resulting from groundwater flow

    Science.gov (United States)

    Stuyfzand, Pieter J.

    Groundwater flow influences hydrochemical patterns because flow reduces mixing by diffusion, carries the chemical imprints of biological and anthropogenic changes in the recharge area, and leaches the aquifer system. Global patterns are mainly dictated by differences in the flux of meteoric water passing through the subsoil. Within individual hydrosomes (water bodies with a specific origin), the following prograde evolution lines (facies sequence) normally develop in the direction of groundwater flow: from strong to no fluctuations in water quality, from polluted to unpolluted, from acidic to basic, from oxic to anoxic-methanogenic, from no to significant base exchange, and from fresh to brackish. This is demonstrated for fresh coastal-dune groundwater in the Netherlands. In this hydrosome, the leaching of calcium carbonate as much as 15m and of adsorbed marine cations (Na+, K+, and Mg2+) as much as 2500m in the flow direction is shown to correspond with about 5000yr of flushing since the beach barrier with dunes developed. Recharge focus areas in the dunes are evidenced by groundwater displaying a lower prograde quality evolution than the surrounding dune groundwater. Artificially recharged Rhine River water in the dunes provides distinct hydrochemical patterns, which display groundwater flow, mixing, and groundwater ages. Résumé Les écoulements souterrains influencent les différents types hydrochimiques, parce que l'écoulement réduit le mélange par diffusion, porte les marques chimiques de changements biologiques et anthropiques dans la zone d'alimentation et lessive le système aquifère. Ces types dans leur ensemble sont surtout déterminés par des différences dans le flux d'eau météorique traversant le sous-sol. Dans les "hydrosomes" (masses d'eau d'origine déterminée), les lignes marquant une évolution prograde (séquence de faciès) se développent normalement dans la direction de l'écoulement souterrain : depuis des fluctuations fortes de la

  2. Impacts of a jet's exit flow pattern on mixing and combustion performance

    Energy Technology Data Exchange (ETDEWEB)

    Nathan, G J; Mi, J; Newbold, G J.R.; Nobes, D S [Turbulence, Energy and Combustion Group, School of Mechanical Engineering, The University of Adelaide, South Australia 5005 (Australia); Alwahabi, Z T [Turbulence, Energy and Combustion Group, Chemical Engineering, The University of Adelaide, South Australia 5005 (Australia)

    2006-09-15

    The influence of modifying a jet's exit flow pattern on both the near and far-field turbulent mixing processes and on the resulting combustion performance, is explored. This reveals that, in contradiction to some common assumptions, increasing the coherence of large-scale motions can decrease molecular mixing rates, and yet can still be beneficial in some applications. Even relatively minor changes to the exit flow pattern of a non-reacting round jet, through changes to the nozzle profile are found to propagate downstream into the far field, apparently through the underlying turbulent structure. Importantly, while a jet from a smoothly contracting nozzle is found to have higher rates of entrainment, mean spread and mean decay of the scalar field than does a long pipe jet, it has a lower rate of molecular mixing. That is, increased large-scale mixing does not necessarily result in increased fine-scale mixing. A range of devices are reviewed which enhance, or stimulate the large-scale, coherent motions in an emerging jet using acoustic, mechanical or fluidic methods. The available evidence suggests that those methods which induce instantaneously asymmetric flow structure are more effective at increasing the near-field spreading than are those which induce instantaneously axisymmetric flow structure. Only limited data are available of the effects of such near-field changes on the far-field properties. Nevertheless, the available data reveal a clear trend that this near-field flow undergoes a transition to a far-field state whose spread and decay is comparable with that of a steady jet, albeit being indelibly altered by the near-field excitation. It also suggests that 'self-exciting' devices (i.e. that are not externally forced), cause a net reduction in the total entrainment relative to the unexcited jet, due to the losses induced by the device itself. Nevertheless, the changes which they can impart to the flow, such as redistributing the turbulent energy from the

  3. Learning new sequential stepping patterns requires striatal plasticity during the earliest phase of acquisition.

    Science.gov (United States)

    Nakamura, Toru; Nagata, Masatoshi; Yagi, Takeshi; Graybiel, Ann M; Yamamori, Tetsuo; Kitsukawa, Takashi

    2017-04-01

    Animals including humans execute motor behavior to reach their goals. For this purpose, they must choose correct strategies according to environmental conditions and shape many parameters of their movements, including their serial order and timing. To investigate the neurobiology underlying such skills, we used a multi-sensor equipped, motor-driven running wheel with adjustable sequences of foothold pegs on which mice ran to obtain water reward. When the peg patterns changed from a familiar pattern to a new pattern, the mice had to learn and implement new locomotor strategies in order to receive reward. We found that the accuracy of stepping and the achievement of water reward improved with the new learning after changes in the peg-pattern, and c-Fos expression levels assayed after the first post-switch session were high in both dorsolateral striatum and motor cortex, relative to post-switch plateau levels. Combined in situ hybridization and immunohistochemistry of striatal sections demonstrated that both enkephalin-positive (indirect pathway) neurons and substance P-positive (direct pathway) neurons were recruited specifically after the pattern switches, as were interneurons expressing neuronal nitric oxide synthase. When we blocked N-methyl-D-aspartate (NMDA) receptors in the dorsolateral striatum by injecting the NMDA receptor antagonist, D-2-amino-5-phosphonopentanoic acid (AP5), we found delays in early post-switch improvement in performance. These findings suggest that the dorsolateral striatum is activated on detecting shifts in environment to adapt motor behavior to the new context via NMDA-dependent plasticity, and that this plasticity may underlie forming and breaking skills and habits as well as to behavioral difficulties in clinical disorders. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    Science.gov (United States)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  5. Learning Design Patterns for Hybrid Synchronous Video-Mediated Learning Environments

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke

    2016-01-01

    This article describes an innovative learning environment where remote and face-to-face full-time general upper secondary adult students jointly participate in the same live classes at VUC Storstrøm, an adult learning centre in Denmark. The teachers developed new learning designs as a part of the...... activating and equal learning designs for the students. This article is written on the basis of a chapter in the PhD–thesis by the author....

  6. Learning to Learn Differently

    Science.gov (United States)

    Olsen, Trude Høgvold; Glad, Tone; Filstad, Cathrine

    2018-01-01

    Purpose: This paper aims to investigate whether the formal and informal learning patterns of community health-care nurses changed in the wake of a reform that altered their work by introducing new patient groups, and to explore whether conditions in the new workplaces facilitated or impeded shifts in learning patterns. Design/methodology/approach:…

  7. Effect of surface wettability on flow patterns in vertical gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Nakamura, D.

    2005-01-01

    To examine the effect of the surface characteristics on the flow regime in two-phase flow, visualization study was performed using three test pipes, namely a no-coating pipe, a water-attracting coating pipe, a water-shedding coating pipe. Three flow regime maps were obtained based on the visual observation in the three pipes. In the water-attracting coating pipe, the slug flow-to-churn flow transition boundary was shifted to higher gas velocity at a given liquid velocity, whereas the churn flow-to-annular flow transition boundary was shifted to lower gas velocity at a given liquid velocity. In the water shedding coating pipe, the inverted-churn flow regime was observed in the region where the churn flow regime was to be observed in a no-coating pipe, whereas the droplet flow regime was observed in the region where the annular flow regime was to be observed in a no-coating pipe. The criteria for the slug flow-to-inverted-churn flow transition and the inverted-churn flow-to-droplet flow transition were modeled by force balance approaches. The modeled transition criteria could predict the observed flow transition boundaries reasonably well. (authors)

  8. An open-source solution for advanced imaging flow cytometry data analysis using machine learning.

    Science.gov (United States)

    Hennig, Holger; Rees, Paul; Blasi, Thomas; Kamentsky, Lee; Hung, Jane; Dao, David; Carpenter, Anne E; Filby, Andrew

    2017-01-01

    Imaging flow cytometry (IFC) enables the high throughput collection of morphological and spatial information from hundreds of thousands of single cells. This high content, information rich image data can in theory resolve important biological differences among complex, often heterogeneous biological samples. However, data analysis is often performed in a highly manual and subjective manner using very limited image analysis techniques in combination with conventional flow cytometry gating strategies. This approach is not scalable to the hundreds of available image-based features per cell and thus makes use of only a fraction of the spatial and morphometric information. As a result, the quality, reproducibility and rigour of results are limited by the skill, experience and ingenuity of the data analyst. Here, we describe a pipeline using open-source software that leverages the rich information in digital imagery using machine learning algorithms. Compensated and corrected raw image files (.rif) data files from an imaging flow cytometer (the proprietary .cif file format) are imported into the open-source software CellProfiler, where an image processing pipeline identifies cells and subcellular compartments allowing hundreds of morphological features to be measured. This high-dimensional data can then be analysed using cutting-edge machine learning and clustering approaches using "user-friendly" platforms such as CellProfiler Analyst. Researchers can train an automated cell classifier to recognize different cell types, cell cycle phases, drug treatment/control conditions, etc., using supervised machine learning. This workflow should enable the scientific community to leverage the full analytical power of IFC-derived data sets. It will help to reveal otherwise unappreciated populations of cells based on features that may be hidden to the human eye that include subtle measured differences in label free detection channels such as bright-field and dark-field imagery

  9. Computational fluid dynamics modeling patterns and force characteristics of flow over in-line four square cylinders

    Directory of Open Access Journals (Sweden)

    Song Yidan

    2017-01-01

    Full Text Available The flow over four square cylinders in an in-line, square arrangement was numerically investigated by using the finite volume method with CFD techniques. The working fluid is an incompressible ideal gas. The length of the sides of the array, L, is equal. The analysis is carried out for a Reynolds number of 300, with center-to-center distance ratios, L/D, ranging from 1.5 to 8.0. To fully understand the flow mechanism, details in terms of lift and drag coefficients and Strouhal numbers of the unsteady wake frequencies are analyzed, and the vortex shedding patterns around the four square cylinders are described. It is concluded that L/D has important effects on the drag and lift coefficients, vortex shedding frequencies, and flow field characteristics.

  10. Heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube

    Science.gov (United States)

    Rollmann, P.; Spindler, K.; Müller-Steinhagen, H.

    2011-08-01

    The heat transfer, pressure drop and flow patterns during flow boiling of R407C in a horizontal microfin tube have been investigated. The microfin tube is made of copper with a total fin number of 55 and a helix angle of 15°. The fin height is 0.24 mm and the inner tube diameter at fin root is 8.95 mm. The test tube is 1 m long. It is heated electrically. The experiments have been performed at saturation temperatures between -30°C and +10°C. The mass flux was varied between 25 and 300 kg/m2/s, the heat flux from 20,000 W/m2 down to 1,000 W/m2. The vapour quality was kept constant at 0.1, 0.3, 0.5, 0.7 at the inlet and 0.8, 1.0 at the outlet, respectively. The measured heat transfer coefficient is compared with the correlations of Cavallini et al., Shah as well as Zhang et al. Cavallini's correlation contains seven experimental constants. After fitting these constants to our measured values, the correlation achieves good agreement. The measured pressure drop is compared to the correlations of Pierre, Kuo and Wang as well as Müller-Steinhagen and Heck. The best agreement is achieved with the correlation of Kuo and Wang. Almost all values are calculated within an accuracy of ±30%. The flow regimes were observed. It is shown, that changes in the flow regime affect the heat transfer coefficient significantly.

  11. Determination of flow patterns in gold leaching tanks using Computational Fluid Dynamics code Comsol multiphysics 3.4

    International Nuclear Information System (INIS)

    Donkor, M. O.

    2013-06-01

    Computational fluid dynamics (CFD) technique was adopted to investigate the hydrodynamics of gold leaching tanks. Comsol multiphysics code 3.4 provided the platform for modelling and simulation of the flow pattern of the gold leaching process. The impeller motion was integrated in the geometry using the simplified numerical method technique. The k-ε model was used to solve the Reynolds-averaged Navier-Stokes equations and velocity distributions in the vertical and horizontal section in the tank was obtained. It was found that the flow distribution in the simulated flow field was consistent with the characteristic down pumping flow pattern of the axial impellers. The convergence of the iterative procedure was tested and reasonable predictions were achieved for an industrial reactor. There were significant variations in velocity magnitudes with the impeller discharge region recording the highest. CFD modelling was consistent with the tracer test results and demonstrated the use of reactors active volume. The obtained CFD results showed a good agreement with literature information. Because CFD is capable of predicting the complete velocity distribution and simulating the tracer experiment in a tank, it provided a good alternative to carry out resistance time distribution (RDT) studies. CFD modelling was useful and informative tool for analyzing problematic hydrodynamics of gold leaching tanks and for the design of theoretical corrective measures and can be extended to other plants like water treatment plant and oil processing plant. (author)

  12. Hemodynamic study on flow patterns in the carotid bifurcation before and after carotid endarterectomy using cine magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Kanji; Shima, Takeshi; Okada, Yoshikazu; Nishida, Masahiro; Okita, Shinji; Hanaguri, Katsuro [Chugoku Rousai Hospital, Kure, Hiroshima (Japan)

    1993-11-01

    Blood flow in the cervical carotid bifurcation was investigated by cine magnetic resonance imaging. In patients with stenosis, a low-intensity stream was demonstrated from the beginning of the carotid bulb, which was more distinct in the systolic phase. In patients with stenotic carotid bifurcations,the low-intensity flow was also present but was more prominent than in the non-stenotic bifurcation. This low-intensity stream may be due to the change from steady to turbulent flow due to the geometric characteristics of the carotid bifurcation or atheromatous plaque, similar to the flow separation phenomenon in fluid dynamics because of the coincidence of location and flow pattern. After carotid endarterectomy, turbulent flow was seen at the proximal and distal ends of the endarterectomy. Close follow-up and administration of antiplatelet agents are necessary to prevent restenosis due to mural thrombosis induced by such turbulent flow. (author).

  13. Learning Programming Patterns Using Games

    Science.gov (United States)

    de Aquino Leal, Alexis Vinícius; Ferreira, Deller James

    2016-01-01

    There is still no pedagogy to teach programming that stands out significantly from others and no consensus on what is the best way for learning programming. There is still a need to develop new teaching methods for learning in introductory programming courses. This paper presents a pedagogic approach in support of creativity in programming and the…

  14. Automated measurement and classification of pulmonary blood-flow velocity patterns using phase-contrast MRI and correlation analysis.

    Science.gov (United States)

    van Amerom, Joshua F P; Kellenberger, Christian J; Yoo, Shi-Joon; Macgowan, Christopher K

    2009-01-01

    An automated method was evaluated to detect blood flow in small pulmonary arteries and classify each as artery or vein, based on a temporal correlation analysis of their blood-flow velocity patterns. The method was evaluated using velocity-sensitive phase-contrast magnetic resonance data collected in vitro with a pulsatile flow phantom and in vivo in 11 human volunteers. The accuracy of the method was validated in vitro, which showed relative velocity errors of 12% at low spatial resolution (four voxels per diameter), but was reduced to 5% at increased spatial resolution (16 voxels per diameter). The performance of the method was evaluated in vivo according to its reproducibility and agreement with manual velocity measurements by an experienced radiologist. In all volunteers, the correlation analysis was able to detect and segment peripheral pulmonary vessels and distinguish arterial from venous velocity patterns. The intrasubject variability of repeated measurements was approximately 10% of peak velocity, or 2.8 cm/s root-mean-variance, demonstrating the high reproducibility of the method. Excellent agreement was obtained between the correlation analysis and radiologist measurements of pulmonary velocities, with a correlation of R2=0.98 (P<.001) and a slope of 0.99+/-0.01.

  15. Flow patterns and heat transfer characteristics of flat plate pulsating heat pipes with various asymmetric and aspect ratios of the channels

    International Nuclear Information System (INIS)

    Jang, Dong Soo; Lee, Joo Seong; Ahn, Jae Hwan; Kim, Dongwoo; Kim, Yongchan

    2017-01-01

    Highlights: • Flat plate pulsating heat pipes with asymmetric and aspect ratios were tested. • Flow patterns were investigated according to channel geometry and flow condition. • Heat transfer characteristics were analyzed with various heat inputs. • Optimum asymmetric and aspect ratios were suggested for maximum thermal performance. - Abstract: The thermal performance of flat plate pulsating heat pipes (PHPs) in compact electronic devices can be improved by adopting asymmetric channels with increased pressure differences and an unbalanced driving force. The objective of this study is to investigate the heat transfer characteristics of flat plate PHPs with various asymmetric ratios and aspect ratios in the channels. The thermal performance and flow pattern of the flat plate PHPs were measured by varying the asymmetric ratio from 1.0 to 4.0, aspect ratio from 2.5 to 5.0, and heat input from 2 to 28 W. The effects of the asymmetric ratio and aspect ratio on the thermal resistance were analyzed with the measured evaporator temperature and flow patterns at various heat inputs. With heat inputs of 6 W and 12 W, the optimum asymmetric ratio and aspect ratio for the flat plate PHPs were determined to be 4.0 and 2.5, respectively. With the heat input of 18 W, the optimum asymmetric ratio and aspect ratio were determined to be 1.5 and 2.5, respectively.

  16. A Tour of TensorFlow

    OpenAIRE

    Goldsborough, Peter

    2016-01-01

    Deep learning is a branch of artificial intelligence employing deep neural network architectures that has significantly advanced the state-of-the-art in computer vision, speech recognition, natural language processing and other domains. In November 2015, Google released $\\textit{TensorFlow}$, an open source deep learning software library for defining, training and deploying machine learning models. In this paper, we review TensorFlow and put it in context of modern deep learning concepts and ...

  17. Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Aleš Procházka

    2018-05-01

    Full Text Available Multimodal signal analysis based on sophisticated sensors, efficient communicationsystems and fast parallel processing methods has a rapidly increasing range of multidisciplinaryapplications. The present paper is devoted to pattern recognition, machine learning, and the analysisof sleep stages in the detection of sleep disorders using polysomnography (PSG data, includingelectroencephalography (EEG, breathing (Flow, and electro-oculogram (EOG signals. The proposedmethod is based on the classification of selected features by a neural network system with sigmoidaland softmax transfer functions using Bayesian methods for the evaluation of the probabilities of theseparate classes. The application is devoted to the analysis of the sleep stages of 184 individualswith different diagnoses, using EEG and further PSG signals. Data analysis points to an averageincrease of the length of the Wake stage by 2.7% per 10 years and a decrease of the length of theRapid Eye Movement (REM stages by 0.8% per 10 years. The mean classification accuracy for givensets of records and single EEG and multimodal features is 88.7% ( standard deviation, STD: 2.1 and89.6% (STD:1.9, respectively. The proposed methods enable the use of adaptive learning processesfor the detection and classification of health disorders based on prior specialist experience andman–machine interaction.

  18. Effect of feed flow pattern on the distribution of permeate fluxes in desalination by direct contact membrane distillation

    KAUST Repository

    Soukane, Sofiane; Naceur, Mohamed W.; Francis, Lijo; Alsaadi, Ahmad Salem; Ghaffour, NorEddine

    2017-01-01

    The current study aims to highlight the effect of flow pattern on the variations of permeate fluxes over the membrane surface during desalination in a direct contact membrane distillation (DCMD) flat module. To do so, a three dimensional (3D

  19. Holographic aids for internal combustion engine flow studies

    Science.gov (United States)

    Regan, C.

    1984-01-01

    Worldwide interest in improving the fuel efficiency of internal combustion (I.C.) engines has sparked research efforts designed to learn more about the flow processes of these engines. The flow fields must be understood prior to fuel injection in order to design efficient valves, piston geometries, and fuel injectors. Knowledge of the flow field is also necessary to determine the heat transfer to combustion chamber surfaces. Computational codes can predict velocity and turbulence patterns, but experimental verification is mandatory to justify their basic assumptions. Due to their nonintrusive nature, optical methods are ideally suited to provide the necessary velocity verification data. Optical sytems such as Schlieren photography, laser velocimetry, and illuminated particle visualization are used in I.C. engines, and now their versatility is improved by employing holography. These holographically enhanced optical techniques are described with emphasis on their applications in I.C. engines.

  20. Near-Horizontal, Two-Phase Flow Patterns of Nitrogen and Hydrogen at Low Mass Heat and Flux Supplement

    Science.gov (United States)

    VanDresar, Neil T.; Siegwarth, James D.

    2001-01-01

    This CD is a companion to NASA/TP-2001-210380. It contains digitized movies of particular flow patterns observed in experimental work. The movies have been provided in QuickTime format, encoded at 320w x 240h pixels, 15 fps, using the Sorenson Video Codec for compression.

  1. A probabilistic approach to quantifying spatial patterns of flow regimes and network-scale connectivity

    Science.gov (United States)

    Garbin, Silvia; Alessi Celegon, Elisa; Fanton, Pietro; Botter, Gianluca

    2017-04-01

    The temporal variability of river flow regime is a key feature structuring and controlling fluvial ecological communities and ecosystem processes. In particular, streamflow variability induced by climate/landscape heterogeneities or other anthropogenic factors significantly affects the connectivity between streams with notable implication for river fragmentation. Hydrologic connectivity is a fundamental property that guarantees species persistence and ecosystem integrity in riverine systems. In riverine landscapes, most ecological transitions are flow-dependent and the structure of flow regimes may affect ecological functions of endemic biota (i.e., fish spawning or grazing of invertebrate species). Therefore, minimum flow thresholds must be guaranteed to support specific ecosystem services, like fish migration, aquatic biodiversity and habitat suitability. In this contribution, we present a probabilistic approach aiming at a spatially-explicit, quantitative assessment of hydrologic connectivity at the network-scale as derived from river flow variability. Dynamics of daily streamflows are estimated based on catchment-scale climatic and morphological features, integrating a stochastic, physically based approach that accounts for the stochasticity of rainfall with a water balance model and a geomorphic recession flow model. The non-exceedance probability of ecologically meaningful flow thresholds is used to evaluate the fragmentation of individual stream reaches, and the ensuing network-scale connectivity metrics. A multi-dimensional Poisson Process for the stochastic generation of rainfall is used to evaluate the impact of climate signature on reach-scale and catchment-scale connectivity. The analysis shows that streamflow patterns and network-scale connectivity are influenced by the topology of the river network and the spatial variability of climatic properties (rainfall, evapotranspiration). The framework offers a robust basis for the prediction of the impact of

  2. Observational fear learning in degus is correlated with temporal vocalization patterns.

    Science.gov (United States)

    Lidhar, Navdeep K; Insel, Nathan; Dong, June Yue; Takehara-Nishiuchi, Kaori

    2017-08-14

    Some animals learn to fear a situation after observing another individual come to harm, and this learning is influenced by the animals' social relationship and history. An important but sometimes overlooked factor in studies of observational fear learning is that social context not only affects observers, but may also influence the behavior and communications expressed by those being observed. Here we sought to investigate whether observational fear learning in the degu (Octodon degus) is affected by social familiarity, and the degree to which vocal expressions of alarm or distress contribute. 'Demonstrator' degus underwent contextual fear conditioning in the presence of a cagemate or stranger observer. Among the 15 male pairs, observers of familiar demonstrators exhibited higher freezing rates than observers of strangers when returned to the conditioning environment one day later. Observer freezing during testing was, however, also related to the proportion of short- versus long- inter-call-intervals (ICIs) in vocalizations recorded during prior conditioning. In a regression model that included both social relationship and ICI patterns, only the latter was significant. Further investigation of vocalizations, including use of a novel, directed k-means clustering approach, suggested that temporal structure rather than tonal variations may have been responsible for communicating danger. These data offer insight into how different expressions of distress or fear may impact an observer, adding to the complexity of social context effects in studies of empathy and social cognition. The experiments also offer new data on degu alarm calls and a potentially novel methodological approach to complex vocalizations. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Nets solution of flow for gases, using the Balance Pattern of Nodes and the method of linealization of equations

    International Nuclear Information System (INIS)

    Narvaez, Paulo Cesar

    1999-01-01

    The dimension of nets of distribution of gases is a complex problem, so much for the diversity of the phenomena that they are presented, like for the variation of the properties of the fluids, especially, the density for effect of the changes in the pressure along the net. This work presents a model for its simulation starting from the deduction of the general equation of flow in stable and isothermal state, its inclusion in the pattern of balance of nodes and the solution of this for the method of linealization of equations. Additionally, a summary of the empiric equations more used is made for the calculation of the fall of pressure for gases flowing in pipes and an example that it illustrates the application of the pattern and the developed method

  4. Learning to spell from reading: general knowledge about spelling patterns influences memory for specific words.

    Science.gov (United States)

    Pacton, Sébastien; Borchardt, Gaëlle; Treiman, Rebecca; Lété, Bernard; Fayol, Michel

    2014-05-01

    Adults often learn to spell words during the course of reading for meaning, without intending to do so. We used an incidental learning task in order to study this process. Spellings that contained double n, r and t which are common doublets in French, were learned more readily by French university students than spellings that contained less common but still legal doublets. When recalling or recognizing the latter, the students sometimes made transposition errors, doubling a consonant that often doubles in French rather than the consonant that was originally doubled (e.g., tiddunar recalled as tidunnar). The results, found in three experiments using different nonwords and different types of instructions, show that people use general knowledge about the graphotactic patterns of their writing system together with word-specific knowledge to reconstruct spellings that they learn from reading. These processes contribute to failures and successes in memory for spellings, as in other domains.

  5. Intracardiac flow patterns studied by cine MR flow imaging

    International Nuclear Information System (INIS)

    Underwood, S.R.; Firmin, D.N.; Klipstein, R.H.; Rees, R.S.O.; Longmore, D.B.

    1986-01-01

    Velocity mapping by means of cine-MR imaging allows accurate measurement of velocity and flow within the cardiovascular system. A cine display and color coding simplify interpretation. The author have used the technique in a variety of patients to illustrate its potential. Velocity mapping in coronary artery by pass grafts in six patients provided a measure of graft function. Coronary artery velocities were measured in three subjects. Flow was measured through defects in the atrial septum, the ventricular septum, and a Gerbode defect. Velocity was reduced distal to coarctation of the aorta and was increased at the level of a partial venous occlusion by thrombosis. In a patient with isomerism, velocity mapping in the central vessels aided interpretation. Cine-MR imaging velocity mapping combined with conventional imaging yields important functional information on the cardiovascular system

  6. Modelling of sludge blanket height and flow pattern in UASB reactors treating municipal wastewater

    International Nuclear Information System (INIS)

    Singh, K.S.; Viraraghavan, T.

    2002-01-01

    Two upflow anaerobic sludge blanket (UASB) reactors were started-up and operated for approximately 900 days to examine the feasibility of treating municipal wastewater under low temperature conditions. A modified solid distribution model was formulated by incorporating the variation of biogas production rate with a change in temperature. This model was used to optimize the sludge blanket height of UASB reactors for an effective operation of gas-liquid-solid (GLS) separation device. This model was found to simulate well the solid distribution as confirmed experimental observation of solid profile along the height of the reactor. Mathematical analysis of tracer curves indicated the presence of a mixed type of flow pattern in the sludge-bed zone of the reactor. It was found that the dead-zone and by-pass flow fraction were impacted by the change in operating temperatures. (author)

  7. Pilot Study of Flow and Meaningfulness as Psychological Learning Concepts in Patient Education: A Short Report

    DEFF Research Database (Denmark)

    Nicic, Sara; Nørby, Karina; Bruun Johansen, Clea

    2014-01-01

    of this study was to investigate the applicability of these concepts of positive psychological theory in a patient education setting. Methods: This pilot study combines participating observation of group based patient education and 8 qualitative interviews with 4 patients with type 2 diabetes. Meaning......Abstract Background: The aim of this pilot study was to explore patient experiences of meaningfulness and flow related to group based patient education in type 2 diabetes. Meaningfulness and flow are underexposed as psychological learning concepts in patient education, and the ambition...

  8. Spatio-temporal cerebral blood flow perfusion patterns in cortical spreading depression

    Science.gov (United States)

    Verisokin, Andrey Yu.; Verveyko, Darya V.; Postnov, Dmitry E.

    2017-04-01

    Cortical spreading depression (CSD) is an example of one of the most common abnormalities in biophysical brain functioning. Despite the fact that there are many mathematical models describing the cortical spreading depression (CSD), most of them do not take into consideration the role of redistribution of cerebral blood flow (CBF), that results in the formation of spatio-temporal patterns. The paper presents a mathematical model, which successfully explains the CBD role in the CSD process. Numerical study of this model has revealed the formation of stationary dissipative structures, visually analogous to Turing structures. However, the mechanism of their formation is not diffusion. We show these structures occur due to another type of spatial coupling, that is related to tissue perfusion rate. The proposed model predicts that at similar state of neurons the distribution of blood flow and oxygenation may by different. Currently, this effect is not taken into account when the Blood oxygen-level dependent (BOLD) contrast imaging used in functional magnetic resonance imaging (fMRI). Thus, the diagnosis on the BOLD signal can be ambiguous. We believe that our results can be used in the future for a more correct interpretation of the data obtained with fMRI, NIRS and other similar methods for research of the brain activity.

  9. Multi-level learning: improving the prediction of protein, domain and residue interactions by allowing information flow between levels

    Directory of Open Access Journals (Sweden)

    McDermott Drew

    2009-08-01

    Full Text Available Abstract Background Proteins interact through specific binding interfaces that contain many residues in domains. Protein interactions thus occur on three different levels of a concept hierarchy: whole-proteins, domains, and residues. Each level offers a distinct and complementary set of features for computationally predicting interactions, including functional genomic features of whole proteins, evolutionary features of domain families and physical-chemical features of individual residues. The predictions at each level could benefit from using the features at all three levels. However, it is not trivial as the features are provided at different granularity. Results To link up the predictions at the three levels, we propose a multi-level machine-learning framework that allows for explicit information flow between the levels. We demonstrate, using representative yeast interaction networks, that our algorithm is able to utilize complementary feature sets to make more accurate predictions at the three levels than when the three problems are approached independently. To facilitate application of our multi-level learning framework, we discuss three key aspects of multi-level learning and the corresponding design choices that we have made in the implementation of a concrete learning algorithm. 1 Architecture of information flow: we show the greater flexibility of bidirectional flow over independent levels and unidirectional flow; 2 Coupling mechanism of the different levels: We show how this can be accomplished via augmenting the training sets at each level, and discuss the prevention of error propagation between different levels by means of soft coupling; 3 Sparseness of data: We show that the multi-level framework compounds data sparsity issues, and discuss how this can be dealt with by building local models in information-rich parts of the data. Our proof-of-concept learning algorithm demonstrates the advantage of combining levels, and opens up

  10. AN UNUSUAL PATTERN OF GENE FLOW BETWEEN THE TWO SOCIAL FORMS OF THE FIRE ANT SOLENOPSIS INVICTA.

    Science.gov (United States)

    Ross, Kenneth G; Shoemaker, D DeWayne

    1993-10-01

    Uncertainty over the role of shifts in social behavior in the process of speciation in social insects has stimulated interest in determining the extent of gene flow between conspecific populations differing in colony social organization. Allele and genotype frequencies at 12 neutral polymorphic protein markers, as well as the numbers of alleles at the sex-determining locus (loci), are shown here to be consistent with significant ongoing gene flow between two geographically adjacent populations of Solenopsis invicta that differ in colony queen number. Data from a thirteenth protein marker that is under strong differential selection in the two social forms confirm that such gene flow occurs. Data from this selected locus, combined with knowledge of the reproductive biology of the two social forms, further suggest that interform gene flow is largely unidirectional and mediated through males only. This unusual pattern of gene flow results from the influence of the unique social enviroments of the two forms on the behavior of workers and on the reproductive physiology of sexuals. © 1993 The Society for the Study of Evolution.

  11. ClimateNet: A Machine Learning dataset for Climate Science Research

    Science.gov (United States)

    Prabhat, M.; Biard, J.; Ganguly, S.; Ames, S.; Kashinath, K.; Kim, S. K.; Kahou, S.; Maharaj, T.; Beckham, C.; O'Brien, T. A.; Wehner, M. F.; Williams, D. N.; Kunkel, K.; Collins, W. D.

    2017-12-01

    Deep Learning techniques have revolutionized commercial applications in Computer vision, speech recognition and control systems. The key for all of these developments was the creation of a curated, labeled dataset ImageNet, for enabling multiple research groups around the world to develop methods, benchmark performance and compete with each other. The success of Deep Learning can be largely attributed to the broad availability of this dataset. Our empirical investigations have revealed that Deep Learning is similarly poised to benefit the task of pattern detection in climate science. Unfortunately, labeled datasets, a key pre-requisite for training, are hard to find. Individual research groups are typically interested in specialized weather patterns, making it hard to unify, and share datasets across groups and institutions. In this work, we are proposing ClimateNet: a labeled dataset that provides labeled instances of extreme weather patterns, as well as associated raw fields in model and observational output. We develop a schema in NetCDF to enumerate weather pattern classes/types, store bounding boxes, and pixel-masks. We are also working on a TensorFlow implementation to natively import such NetCDF datasets, and are providing a reference convolutional architecture for binary classification tasks. Our hope is that researchers in Climate Science, as well as ML/DL, will be able to use (and extend) ClimateNet to make rapid progress in the application of Deep Learning for Climate Science research.

  12. Boiling on a tube bundle: heat transfer, pressure drop and flow patterns

    International Nuclear Information System (INIS)

    Royen Van, E.

    2011-11-01

    The complexity of two-phase flow boiling on a tube bundle presents many challenges to the understanding of the physical phenomena taking place. It is important to quantify these numerous heat flow mechanisms in order to better describe the performance of tube bundles as a function of the operational conditions. In the present study, the bundle boiling facility at the Laboratory of Heat and Mass Transfer (LTCM) was modified to obtain high-speed videos to characterise the two-phase regimes and some bubble dynamics of the boiling process. It was then used to measure heat transfer on single tubes and in bundle boiling conditions. Pressure drop measurements were also made during adiabatic and diabatic bundle conditions. New enhanced boiling tubes from Wolverine Tube Inc. (Turbo-B5) and the Wieland-Werke AG (Gewa-B5) were investigated using R134a and R236fa as test fluids. The tests were carried out at saturation temperatures T sat of 5 °C and 15 °C, mass flow rates from 4 to 35 kg/m 2 s and heat fluxes from 15 to 70 kW/m 2 , typical of actual operating conditions. The flow pattern investigation was conducted using visual observations from a borescope inserted in the middle of the bundle. Measurements of the light attenuation of a laser beam through the intertube two-phase flow and local pressure fluctuations with piezo-electric pressure transducers were also taken to further help in characterising the complex flow. Pressure drop measurements and data reduction procedures were revised and used to develop new, improved frictional pressure drop prediction methods for adiabatic and diabatic two-phase conditions. The physical phenomena governing the enhanced tube evaporation process and their effects on the performance of tube bundles were investigated and insight gained. A new method based on a theoretical analysis of thin film evaporation was used to propose a new correlating parameter. A large new database of local heat transfer coefficients were obtained and then

  13. Regional cerebral blood flow patterns in extremely elderly patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Hirao, Kentaro; Hanyu, Haruo; Kanetaka, Hidekazu; Shimizu, Soichiro; Sato, Tomohiko; Iwamoto, Toshihiko

    2008-01-01

    Clinical and pathologic features in Alzheimer's disease (AD) patients differ depending on the age of onset. The aim of our study was to compare the regional cerebral blood flow (rCBF) patterns of younger, elderly, and extremely elderly patients with AD with that of controls to characterize the rCBF patterns in extremely elderly patients with AD. Single photon emission CT (SPECT) was performed in 113 patients with probable AD, including 34 younger (<70 years), 41 elderly (70-84 years), and 38 extremely elderly (≥85 years) patients divided according to age at examination. The SPECT data were analyzed using three-dimensional stereotactic surface projection (3D-SSP). No significant differences regarding gender, duration of disease, education, and Mini-Mental State Examination score were found among the groups. As compared with controls, younger and elderly AD demonstrated significant reduction of rCBF in the temporo-parietal areas, posterior cingulate cortices and precunei, which is considered to be a characteristic rCBF pattern in AD. On the other hand, the extremely elderly AD group demonstrated significant reduction of rCBF in the frontal and medial temporal areas, in addition to the temporo-parietal areas, posterior cingulate cortices and precunei, but the reductions were milder than in those in younger and elderly AD groups. The extremely elderly patients with AD showed atypical rCBF patterns in AD compared to younger and elderly patients with AD. Our data suggest that pathological features in extremely elderly AD may be different from those in younger and elderly AD and that diseases different from AD, such as senile dementia of the neurofibrillary tangle type may be clinically diagnosed as extremely elderly AD. (author)

  14. Water flow patterns induced by bridge oscillation of magnetic fluid between two permanent magnets subjected to alternating magnetic field

    International Nuclear Information System (INIS)

    Sudo, Seiichi; Yamamoto, Kazuki; Ishimoto, Yukitaka; Nix, Stephanie

    2017-01-01

    This paper describes the characteristics of water flow induced by the bridge oscillation of magnetic fluid between two permanent magnets subject to an external alternating magnetic field. The magnetic fluid bridge is formed in the space between a pair of identical coaxial cylindrical permanent magnets submerged in water. The direction of alternating magnetic field is parallel /antiparallel to the magnetic field produced by two permanent magnets. The magnetic fluid bridge responds to the external alternating magnetic field with harmonic oscillation. The oscillation of magnetic fluid bridge generates water flow around the bridge. Water flow is visualized using a thin milk film at the container bottom. Water flows are observed with a high-speed video camera analysis system. The experimental results show that the flow pattern induced by the bridge oscillation depends on the Keulegan–Carpenter number.

  15. Water flow patterns induced by bridge oscillation of magnetic fluid between two permanent magnets subjected to alternating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Sudo, Seiichi, E-mail: sudo@akita-pu.ac.jp [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan); Yamamoto, Kazuki [Graduate School of Engineering, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Ishimoto, Yukitaka; Nix, Stephanie [Faculty of Systems Science and Technology, Akita Prefectural University, Ebinokuchi 84-4, Yurihonjo 015-0055 (Japan)

    2017-06-01

    This paper describes the characteristics of water flow induced by the bridge oscillation of magnetic fluid between two permanent magnets subject to an external alternating magnetic field. The magnetic fluid bridge is formed in the space between a pair of identical coaxial cylindrical permanent magnets submerged in water. The direction of alternating magnetic field is parallel /antiparallel to the magnetic field produced by two permanent magnets. The magnetic fluid bridge responds to the external alternating magnetic field with harmonic oscillation. The oscillation of magnetic fluid bridge generates water flow around the bridge. Water flow is visualized using a thin milk film at the container bottom. Water flows are observed with a high-speed video camera analysis system. The experimental results show that the flow pattern induced by the bridge oscillation depends on the Keulegan–Carpenter number.

  16. Traffic Management as a Service: The Traffic Flow Pattern Classification Problem

    Directory of Open Access Journals (Sweden)

    Carlos T. Calafate

    2015-01-01

    Full Text Available Intelligent Transportation System (ITS technologies can be implemented to reduce both fuel consumption and the associated emission of greenhouse gases. However, such systems require intelligent and effective route planning solutions to reduce travel time and promote stable traveling speeds. To achieve such goal these systems should account for both estimated and real-time traffic congestion states, but obtaining reliable traffic congestion estimations for all the streets/avenues in a city for the different times of the day, for every day in a year, is a complex task. Modeling such a tremendous amount of data can be time-consuming and, additionally, centralized computation of optimal routes based on such time-dependencies has very high data processing requirements. In this paper we approach this problem through a heuristic to considerably reduce the modeling effort while maintaining the benefits of time-dependent traffic congestion modeling. In particular, we propose grouping streets by taking into account real traces describing the daily traffic pattern. The effectiveness of this heuristic is assessed for the city of Valencia, Spain, and the results obtained show that it is possible to reduce the required number of daily traffic flow patterns by a factor of 4210 while maintaining the essence of time-dependent modeling requirements.

  17. The pattern of performance management of community service learning empowerment in improving the entrepreneurship on the graduation candidate of Vocational Technology Education Institution

    Science.gov (United States)

    Hadromi

    2017-03-01

    The purpose of this research is to evaluate the pattern of performance management of Community Service Empowerment Learning-Universitas Negeri Semarang in improving the entrepreneurship of the graduate candidate of Vocational Technology Education Institution. This evaluation research uses Context Evaluation, Input evaluation, Process evaluation and Product evaluation method (CIPP) to evaluate the performance management of Community Service of Empowerment Learning-Universitas Negeri Semarang. The location of research was in Kandri Subdistrict-Indonesia. The subject of research is the Kandri Subdistrict community, especially the groups of the youth, students, subdistrict organizers, community organization, and culinery and handicraft industry, as well as the students who join the program of Community Service of Empowerment Learning-Universitas Negeri Semarang. The object of research is the pattern of perfomance management of Community Service Empowerment Learning-Universitas Negeri Semarang in improving the entrepreneurship of the graduation candidate of Vocational Technology Education Institution. The research result shows the pattern of Community Service Empowerment Learning-Universitas Negeri Semarang is able to improve the enterpreneurship of graduate candidate of Vocational Technology Education Institution. The pattern of Community Service Empowerment Community-Universitas Negeri Semarang which is Education for Sustainable Development (ESD)in the field of education, training, and assistance continuously can grasp and develop competency and balance mindset of students including triple bottom line which mutually connectedamong the sectors of social, economic, cultural, and environment so that it can increase the entrerpreneurship on the graduates candidate of Vocational Technology Education Institution

  18. OAuth 2.0 identity and access management patterns

    CERN Document Server

    Spasovski, Martin

    2013-01-01

    This is a practical and fast-paced guide that gives you all the information you need to start implementing secure OAuth 2.0 implementations in your web applications.OAuth 2.0 Identity and Access Management Patterns is intended for software developers, software architects, and enthusiasts working with the OAuth 2.0 framework.In order to learn and understand the OAuth 2.0 grant flow, it is assumed that you have some basic knowledge of HTTP communication. For the practical examples, basic knowledge of HTML templating, programming languages, and executing commands in the command line terminal is a

  19. Correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size

    Directory of Open Access Journals (Sweden)

    Chenshi ZHANG

    2008-02-01

    Full Text Available Background and Objective The solitary pulmonary nodules (SPNs is one of the most common findings on chest radiographs. It becomes possible to provide more accurately quantitative information about blood flow patterns of solitary pulmonary nodules (SPNs with multi-slice spiral computed tomography (MSCT. The aim of this study is to evaluate the correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size. Methods 68 patients with maliagnant solitary pulmonary nodules (SPNs (diameter <=4 cmunderwent multi-location dynamic contrast material-enhanced (nonionic contrast material was administrated via the antecubital vein at a rate of 4mL/s by an autoinjector, 4*5mm or 4*2.5mm scanning mode with stable table were performed. serial CT. Precontrast and postcontrast attenuation on every scan was recorded. Perfusion (PSPN, peak height (PHSPNratio of peak height of the SPN to that of the aorta (SPN-to-A ratioand mean transit time(MTT were calculated. The correlation between the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules and tumor size were assessed by means of linear regression analysis. Results No significant correlations were found between the tumor size and each of the peak height (PHSPN ratio of peak height of the SPN to that of the aorta (SPN-to-A ratio perfusion(PSPNand mean transit time (r=0.18, P=0.14; r=0.20,P=0.09; r=0.01, P=0.95; r=0.01, P=0.93. Conclusion No significant correlation is found between the tumor size and each of the quantifiable parameters of blood flow pattern derived with dynamic CT in maliagnant solitary pulmonary nodules.

  20. Elevated dopamine alters consummatory pattern generation and increases behavioral variability during learning

    Directory of Open Access Journals (Sweden)

    Mark A. Rossi

    2015-05-01

    Full Text Available The role of dopamine in controlling behavior remains poorly understood. In this study we examined licking behavior in an established hyperdopaminergic mouse model—dopamine transporter knockout (DAT KO mice. DAT KO mice showed higher rates of licking, which is due to increased perseveration of licking in a bout. By contrast, they showed increased individual lick durations, and reduced inter-lick-intervals. During extinction, both KO and control mice transiently increased variability in lick pattern generation while reducing licking rate, yet they showed very different behavioral patterns. Control mice gradually increased lick duration as well as variability. By contrast, DAT KO mice exhibited more immediate (within 10 licks adjustments—an immediate increase in lick duration variability, as well as more rapid extinction. These results suggest that the level of dopamine can modulate the persistence and pattern generation of a highly stereotyped consummatory behavior like licking, as well as new learning in response to changes in environmental feedback. Increased dopamine in DAT KO mice not only increased perseveration of bouts and individual lick duration, but also increased the behavioral variability in response to the extinction contingency and the rate of extinction.

  1. Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition.

    Science.gov (United States)

    Hansen, Mirko; Zahari, Finn; Ziegler, Martin; Kohlstedt, Hermann

    2017-01-01

    The use of interface-based resistive switching devices for neuromorphic computing is investigated. In a combined experimental and numerical study, the important device parameters and their impact on a neuromorphic pattern recognition system are studied. The memristive cells consist of a layer sequence Al/Al 2 O 3 /Nb x O y /Au and are fabricated on a 4-inch wafer. The key functional ingredients of the devices are a 1.3 nm thick Al 2 O 3 tunnel barrier and a 2.5 mm thick Nb x O y memristive layer. Voltage pulse measurements are used to study the electrical conditions for the emulation of synaptic functionality of single cells for later use in a recognition system. The results are evaluated and modeled in the framework of the plasticity model of Ziegler et al. Based on this model, which is matched to experimental data from 84 individual devices, the network performance with regard to yield, reliability, and variability is investigated numerically. As the network model, a computing scheme for pattern recognition and unsupervised learning based on the work of Querlioz et al. (2011), Sheridan et al. (2014), Zahari et al. (2015) is employed. This is a two-layer feedforward network with a crossbar array of memristive devices, leaky integrate-and-fire output neurons including a winner-takes-all strategy, and a stochastic coding scheme for the input pattern. As input pattern, the full data set of digits from the MNIST database is used. The numerical investigation indicates that the experimentally obtained yield, reliability, and variability of the memristive cells are suitable for such a network. Furthermore, evidence is presented that their strong I - V non-linearity might avoid the need for selector devices in crossbar array structures.

  2. Forecasting freight flows

    DEFF Research Database (Denmark)

    Lyk-Jensen, Stéphanie

    2011-01-01

    Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...... constitute a valuable input to freight models for forecasting future capacity problems.......Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...

  3. Conduction Delay Learning Model for Unsupervised and Supervised Classification of Spatio-Temporal Spike Patterns.

    Science.gov (United States)

    Matsubara, Takashi

    2017-01-01

    Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.

  4. Kernel Learning of Histogram of Local Gabor Phase Patterns for Face Recognition

    Directory of Open Access Journals (Sweden)

    Bineng Zhong

    2008-06-01

    Full Text Available This paper proposes a new face recognition method, named kernel learning of histogram of local Gabor phase pattern (K-HLGPP, which is based on Daugman’s method for iris recognition and the local XOR pattern (LXP operator. Unlike traditional Gabor usage exploiting the magnitude part in face recognition, we encode the Gabor phase information for face classification by the quadrant bit coding (QBC method. Two schemes are proposed for face recognition. One is based on the nearest-neighbor classifier with chi-square as the similarity measurement, and the other makes kernel discriminant analysis for HLGPP (K-HLGPP using histogram intersection and Gaussian-weighted chi-square kernels. The comparative experiments show that K-HLGPP achieves a higher recognition rate than other well-known face recognition systems on the large-scale standard FERET, FERET200, and CAS-PEAL-R1 databases.

  5. Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems

    International Nuclear Information System (INIS)

    Zhang, Xiaoshun; Yu, Tao; Yang, Bo; Zheng, Limin; Huang, Linni

    2015-01-01

    Highlights: • A novel optimal carbon-energy combined-flow (OCECF) model is firstly established. • A novel approximate ideal multi-objective solution Q(λ) learning is designed. • The proposed algorithm has a high convergence stability and reliability. • The proposed algorithm can be applied for OCECF in a large-scale power grid. - Abstract: This paper proposes a novel approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems. The carbon emissions, fuel cost, active power loss, voltage deviation and carbon emission loss are chosen as the optimization objectives, which are simultaneously optimized by five different Q-value matrices. The dynamic optimal weight of each objective is calculated online from the entire Q-value matrices such that the greedy action policy can be obtained. Case studies are carried out to evaluate the optimization performance for carbon-energy combined-flow in an IEEE 118-bus system and the regional power grid of southern China.

  6. Moderated mediation to identify the knowledge stocks, learning flows and barriers at a Dutch telecom operator

    NARCIS (Netherlands)

    de Schryver, Tom; Rosendaal, Bas

    2013-01-01

    Drawing on the 4I-model of Crossan et al. (1999), we have identified the knowledge stocks, learning flows and barriers at a Dutch telecom operator by means of moderated mediation. In this company, the strategic relevant knowledge stocks move in the same direction and many processes support their

  7. Aggradational lobe fringes : The influence of subtle intrabasinal seabed topography on sediment gravity flow processes and lobe stacking patterns

    NARCIS (Netherlands)

    Spychala, Yvonne T.; Hodgson, David M.; Stevenson, Christopher J.; Flint, Stephen S.

    Seabed topography is ubiquitous across basin-floor environments, and influences sediment gravity flows and sediment dispersal patterns. The impact of steep (several degrees) confining slopes on sedimentary facies and depositional architecture has been widely documented. However, the influence of

  8. Computational neuroanatomy using brain deformations: From brain parcellation to multivariate pattern analysis and machine learning.

    Science.gov (United States)

    Davatzikos, Christos

    2016-10-01

    The past 20 years have seen a mushrooming growth of the field of computational neuroanatomy. Much of this work has been enabled by the development and refinement of powerful, high-dimensional image warping methods, which have enabled detailed brain parcellation, voxel-based morphometric analyses, and multivariate pattern analyses using machine learning approaches. The evolution of these 3 types of analyses over the years has overcome many challenges. We present the evolution of our work in these 3 directions, which largely follows the evolution of this field. We discuss the progression from single-atlas, single-registration brain parcellation work to current ensemble-based parcellation; from relatively basic mass-univariate t-tests to optimized regional pattern analyses combining deformations and residuals; and from basic application of support vector machines to generative-discriminative formulations of multivariate pattern analyses, and to methods dealing with heterogeneity of neuroanatomical patterns. We conclude with discussion of some of the future directions and challenges. Copyright © 2016. Published by Elsevier B.V.

  9. Embedding responses in spontaneous neural activity shaped through sequential learning.

    Directory of Open Access Journals (Sweden)

    Tomoki Kurikawa

    Full Text Available Recent experimental measurements have demonstrated that spontaneous neural activity in the absence of explicit external stimuli has remarkable spatiotemporal structure. This spontaneous activity has also been shown to play a key role in the response to external stimuli. To better understand this role, we proposed a viewpoint, "memories-as-bifurcations," that differs from the traditional "memories-as-attractors" viewpoint. Memory recall from the memories-as-bifurcations viewpoint occurs when the spontaneous neural activity is changed to an appropriate output activity upon application of an input, known as a bifurcation in dynamical systems theory, wherein the input modifies the flow structure of the neural dynamics. Learning, then, is a process that helps create neural dynamical systems such that a target output pattern is generated as an attractor upon a given input. Based on this novel viewpoint, we introduce in this paper an associative memory model with a sequential learning process. Using a simple hebbian-type learning, the model is able to memorize a large number of input/output mappings. The neural dynamics shaped through the learning exhibit different bifurcations to make the requested targets stable upon an increase in the input, and the neural activity in the absence of input shows chaotic dynamics with occasional approaches to the memorized target patterns. These results suggest that these dynamics facilitate the bifurcations to each target attractor upon application of the corresponding input, which thus increases the capacity for learning. This theoretical finding about the behavior of the spontaneous neural activity is consistent with recent experimental observations in which the neural activity without stimuli wanders among patterns evoked by previously applied signals. In addition, the neural networks shaped by learning properly reflect the correlations of input and target-output patterns in a similar manner to those designed in

  10. Path Analysis on the Factors Influencing Learning Outcome for Hospitality Interns--From the Flow Theory Perspective

    Science.gov (United States)

    Wang, Shu-Tai; Chen, Cheng-Chung

    2015-01-01

    Learning outcome is an important indicator for educators in evaluating curriculum design. The focus of this study has been to examine the factors within internship programs, recognizing the complex nature of knowledge application in a practical industry environment. Flow theory was adopted to explain the psychological state of hospitality students…

  11. Blood flow patterns of solitary pulmonary nodules with enhancement: clinical value of multi-slice spiral CT

    International Nuclear Information System (INIS)

    Li Shenjiang; Xiao Xiangsheng; Liu Shiyuan; Liu Huimin; Li Yuli; Li Huimin; Li Chengzhou; Zhang Chenshi; Tao Zhiwei; Yang Chunshan; Jiang Qingjun; Ouyang Lin; Yu Hong

    2004-01-01

    Objective: To evaluate the efficacy of dynamic multi-slice spiral computed tomography (MSCT) for providing quantitative information about blood flow patterns of solitary pulmonary nodules (SPNs) and the correlation of vascular endothelial growth factor (VEGF)-positive tumor angiogenesis and the quantifiable parameters of blood flow pattern in solitary bronchogenic adenocarcinoma. Methods Seventy-eight patients with SPNs (with strong enhancement) (diameter ≤4 cm; 68 malignant; 10 active inflammatory) underwent multi-location dynamic contrast enhanced (nonionic contrast material was administrated via the antecubital vein at a rate of 4 ml/s by using an autoinjector) serial CT. Precontrast and postcontrast attenuation on every scan was recorded. Perfusion, peak height, and ratio of peak height of the SPN to that of the aorta were calculated. Perfusion was calculated from the maximum gradient of the time-attenuation curve and the peak height of the aorta. The quantifiable parameters (perfusion, peak height, ratio of peak height of the bronchogenic adenocarcinoma to that of the aorta and mean transit time) of blood flow pattern in 30 VEGF-positive solitary bronchogenic adenocarcinoma were compared with microvessel densities (MVD) and VEGF expression by immunohistochemistry. Results: No statistically significant difference in the peak height was found between malignant (35.79 ± 10.76) HU and active inflammatory (39.76 ± 4.59) HU nodules (t=1.148, P=0.255). SPN-to-aorta ratio (14.27 ± 4.37)% and perfusion value (3.02 ± 0.96)ml -1 ·min -1 ·kg -1 in malignant SPNs were significantly lower than those of active inflammatory nodules(18.51 ± 2.71)%, (6.34 ± 4.39)ml -1 ·min -1 ·kg -1 (t=2.978, P=0.004, t=5.590, P -1 ·min -1 ·kg -1 , mean transit time (14.86 ± 5.84) s, and MVD (70.15 ± 20.03). Each of peak height, ratio of peak height of the bronchogenic adenocarcinoma to that of the aorta, and perfusion correlated positively with MVD (r=0.781, P<0.0001; r=0

  12. Numerical modelling of flow pattern for high swirling flows

    Directory of Open Access Journals (Sweden)

    Parra Teresa

    2015-01-01

    Full Text Available This work focuses on the interaction of two coaxial swirling jets. High swirl burners are suitable for lean flames and produce low emissions. Computational Fluid Dynamics has been used to study the isothermal behaviour of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model is a Total Variation Diminishing and PISO is used to pressure velocity coupling. Transient analysis let identify the non-axisymmetric region of reverse flow. The center of instantaneous azimuthal velocities is not located in the axis of the chamber. The temporal sampling evidences this center spins around the axis of the device forming the precessing vortex core (PVC whose Strouhal numbers are more than two for Swirl numbers of one. Influence of swirl number evidences strong swirl numbers are precursor of large vortex breakdown. Influence of conical diffusers evidence the reduction of secondary flows associated to boundary layer separation.

  13. Applying Learning Analytics to Explore the Effects of Motivation on Online Students' Reading Behavioral Patterns

    Science.gov (United States)

    Sun, Jerry Chih-Yuan; Lin, Che-Tsun; Chou, Chien

    2018-01-01

    This study aims to apply a sequential analysis to explore the effect of learning motivation on online reading behavioral patterns. The study's participants consisted of 160 graduate students who were classified into three group types: low reading duration with low motivation, low reading duration with high motivation, and high reading duration…

  14. Idealized flow patterns and transit times in gas/liquid contacting trays with multiple box downcomers

    International Nuclear Information System (INIS)

    D'Arcy, D.

    1977-08-01

    Trays with multiple box downcomers are often used in chemical process plants nowadays. In order to make a theoretical assessment of the mass transfer efficiency of such trays, knowledge is needed of the time spent by the liquid at various parts of the tray. An idealized but reasonable flow pattern has been assumed and the local velocities and transit times along ten equally-spaced stream lines have been computed. Numerical and graphical results are presented. (author)

  15. Patterns for Designing Learning Management Systems

    NARCIS (Netherlands)

    Avgeriou, Paris; Retalis, Symeon; Papasalouros, Andreas

    2003-01-01

    Learning Management Systems are sophisticated web-based applications that are being engineered today in increasing numbers by numerous institutions and companies that want to get involved in e-learning either for providing services to third parties, or for educating and training their own people.

  16. Characterization of fracture patterns and hygric properties for moisture flow modelling in cracked concrete

    DEFF Research Database (Denmark)

    Rouchier, Simon; Janssen, Hans; Rode, Carsten

    2012-01-01

    porous media. Digital Image Correlation was performed during the fracturing of concrete samples, in which moisture uptake was then monitored using X-ray radiography. Finite-element simulations were then performed based on the measurements of the fracture patterns, in order to recreate the measured......Several years after their installation, building materials such as concrete present signs of ageing in the form of fractures covering a wide range of sizes, from microscopic to macroscopic cracks. All sizes of fractures can have a strong influence on heat and moisture flow in the building envelope...

  17. Flow patterns in radio hot spots - A study of 3C 33 north

    International Nuclear Information System (INIS)

    Rudnick, L.; Anderson, M.

    1990-01-01

    High-resolution (0.36 arcsec, 0.41 kpc) observations of the northern hot spot of the radio galaxy 3C 33 show a symmetric mushroom cap structure, with a centrally placed H-shaped feature and two opposed small bright regions. Two models for the flow patterns in this hot spot are explored. The first is the 'splash' picture, in which the brightest compact feature is identified as the primary hot spot and the rest of the structures result from the jet's expanded, deflected flow. Although most observed features are consistent with this picture, they do not help discriminate against alternative models. The second, axisymmetric, picture compares the observations with numerical simulations of jets with helical magnetic fields. Good agreement was found with the geometrical and magnetic field properties, although significant questions remain about the synchrotron emissivity characteristics. The differences between the northern and southern hot spots of 3C 33 are briefly discussed, and it is suggested that there are no good explanations for these differences in the context of current models. 28 refs

  18. Span: spike pattern association neuron for learning spatio-temporal spike patterns.

    Science.gov (United States)

    Mohemmed, Ammar; Schliebs, Stefan; Matsuda, Satoshi; Kasabov, Nikola

    2012-08-01

    Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN - a spiking neuron that is able to learn associations of arbitrary spike trains in a supervised fashion allowing the processing of spatio-temporal information encoded in the precise timing of spikes. The idea of the proposed algorithm is to transform spike trains during the learning phase into analog signals so that common mathematical operations can be performed on them. Using this conversion, it is possible to apply the well-known Widrow-Hoff rule directly to the transformed spike trains in order to adjust the synaptic weights and to achieve a desired input/output spike behavior of the neuron. In the presented experimental analysis, the proposed learning algorithm is evaluated regarding its learning capabilities, its memory capacity, its robustness to noisy stimuli and its classification performance. Differences and similarities of SPAN regarding two related algorithms, ReSuMe and Chronotron, are discussed.

  19. KARATE WITH CONSTRUCTIVE LEARNING

    Directory of Open Access Journals (Sweden)

    Srikrishna Karanam

    2012-02-01

    Full Text Available Any conventional learning process involves the traditional hierarchy of garnering of information and then recall gathered information. Constructive learning is an important research area having wide impact on teaching methods in education, learning theories, and plays a major role in many education reform movements. It is observed that constructive learning advocates the interconnection between emotions and learning. Human teachers identify the emotions of students with varying degrees of accuracy and can improve the learning rate of the students by motivating them. In learning with computers, computers also should be given the capability to recognize emotions so as to optimize the learning process. Image Processing is a very popular tool used in the process of establishing the theory of Constructive Learning. In this paper we use the Optical Flow computation in image sequences to analyze the accuracy of the moves of a karate player. We have used the Lucas-Kanade method for computing the optical flow in image sequences. A database consisting of optical flow images by a group of persons learning karate is formed and the learning rates are analyzed in order to main constructive learning. The contours of flow images are compared with the standard images and the error graphs are plotted. Analysis of the emotion of the amateur karate player is made by observing the error plots.

  20. Copepod feeding currents : flow patterns, filtration rates and energetics

    NARCIS (Netherlands)

    van Duren, L.A; Stamhuis, E.J; Videler, J.J

    Particle image velocimetry was used to construct a quasi 3-dimensional image of the flow generated by the feeding appendages of the calanoid copepod Temora longicornis. By scanning layers of flow, detailed information was obtained on flow velocity and velocity gradients. The flow around feeding T.

  1. The Impact of Operating Room Layout on Circulating Nurse's Work Patterns and Flow Disruptions: A Behavioral Mapping Study.

    Science.gov (United States)

    Bayramzadeh, Sara; Joseph, Anjali; San, Dee; Khoshkenar, Amin; Taaffe, Kevin; Jafarifiroozabadi, Roxana; Neyens, David M

    2018-01-01

    To assess how the adjacencies of functionally different areas within operating rooms (ORs) can influence the circulating nurse's (CN) workflow patterns and disruptions. The CN plays a significant role in promoting patient safety during surgical procedures by observing, monitoring, and managing potential threats at and around the surgical field. Their work requires constant movement to different parts of the OR to support team members. The layout of the OR and crowded and cluttered environment might impact the CN's workflow and cause disruptions during the surgery. A convenience sample of 25 surgeries were video recorded and thematically coded for CN's activities, locations, and flow disruptions. The OR layout was categorized into transitional zones and functional zones (workstations, supply zones, support zones, and sterile areas around the surgical table). CN's activities were classified into patient-, equipment-, material-, and information-related activities. Flow disruptions included those related to environmental hazards and layout. The CN traveled through multiple zones during 91% of the activities. The CN's workstation acted as a main hub from which the CN made frequent trips to both sides of the surgical table, the foot of the OR table, supply zones, and support zones. Transitional zones accounted for 58.3% of all flow disruption that the CN was involved in whereas 28% occurred in areas surrounding the OR bed. The similarity of the movement and flow disruption patterns, despite variations in OR layout, highlighted the adjacencies required between major zones that CNs regularly visit. These optimum adjacencies should be considered while designing ORs such that they are more efficient and safer.

  2. The pretzel sign: angiographic pattern of tortuous intra-aneurysmal blood flow in a giant serpentine aneurysm.

    LENUS (Irish Health Repository)

    Fanning, N F

    2012-02-03

    Giant serpentine aneurysms (GSAs) form a specific subgroup of giant cerebral aneurysms that have pathognomonic angiographic features. We report the angiographic findings of a GSA demonstrating a striking convoluted dynamic flow pattern, which we have called the \\'pretzel sign\\'. The aneurysm was successfully treated by permanent occlusion of the parent vessel using a detachable balloon. GSAs should be identified prior to treatment in view of their particular management requirements.

  3. Feedback Design Patterns for Math Online Learning Systems

    Science.gov (United States)

    Inventado, Paul Salvador; Scupelli, Peter; Heffernan, Cristina; Heffernan, Neil

    2017-01-01

    Increasingly, computer-based learning systems are used by educators to facilitate learning. Evaluations of several math learning systems show that they result in significant student learning improvements. Feedback provision is one of the key features in math learning systems that contribute to its success. We have recently been uncovering feedback…

  4. Horizontal two phase flow pattern identification by neural networks

    International Nuclear Information System (INIS)

    Crivelaro, Kelen Cristina Oliveira; Seleghim Junior, Paulo; Hervieu, Eric

    1999-01-01

    A multiphase fluid can flow according to several flow regimes. The problem associated with multiphase systems are basically related to the behavior of macroscopic parameters, such as pressure drop, thermal exchanges and so on, and their strong correlation to the flow regime. From the industrial applications point of view, the safety and longevity of equipment and systems can only be assured when they work according to the flow regimes for which they were designed to. This implies in the need to diagnose flow regimes in real time. The automatic diagnosis of flow regimes represents an objective of extreme importance, mainly for applications on nuclear and petrochemical industries. In this work, a neural network is used in association to a probe of direct visualization for the identification of a gas-liquid flow horizontal regimes, developed in an experimental circuit. More specifically, the signals produced by the probe are used to compose a qualitative image of the flow, which is promptly sent to the network for the recognition of the regimes. Results are presented for different transitions among the flow regimes, which demonstrate the extremely satisfactory performance of the diagnosis system. (author)

  5. Improving Simulations of Extreme Flows by Coupling a Physically-based Hydrologic Model with a Machine Learning Model

    Science.gov (United States)

    Mohammed, K.; Islam, A. S.; Khan, M. J. U.; Das, M. K.

    2017-12-01

    With the large number of hydrologic models presently available along with the global weather and geographic datasets, streamflows of almost any river in the world can be easily modeled. And if a reasonable amount of observed data from that river is available, then simulations of high accuracy can sometimes be performed after calibrating the model parameters against those observed data through inverse modeling. Although such calibrated models can succeed in simulating the general trend or mean of the observed flows very well, more often than not they fail to adequately simulate the extreme flows. This causes difficulty in tasks such as generating reliable projections of future changes in extreme flows due to climate change, which is obviously an important task due to floods and droughts being closely connected to people's lives and livelihoods. We propose an approach where the outputs of a physically-based hydrologic model are used as an input to a machine learning model to try and better simulate the extreme flows. To demonstrate this offline-coupling approach, the Soil and Water Assessment Tool (SWAT) was selected as the physically-based hydrologic model, the Artificial Neural Network (ANN) as the machine learning model and the Ganges-Brahmaputra-Meghna (GBM) river system as the study area. The GBM river system, located in South Asia, is the third largest in the world in terms of freshwater generated and forms the largest delta in the world. The flows of the GBM rivers were simulated separately in order to test the performance of this proposed approach in accurately simulating the extreme flows generated by different basins that vary in size, climate, hydrology and anthropogenic intervention on stream networks. Results show that by post-processing the simulated flows of the SWAT models with ANN models, simulations of extreme flows can be significantly improved. The mean absolute errors in simulating annual maximum/minimum daily flows were minimized from 4967

  6. Heat flow pattern in the gas hydrate drilling areas of northern south china sea and the implication for further study

    Science.gov (United States)

    Wang, Lifeng; Sha, Zhibin

    2015-04-01

    Numerous seismic reflection profiles have been acquired by China Geological Survey (CGS) in the Northern Slope of South China Sea (SCS), clearly indicating widespread occurrence of free gases and/or gas hydrates in the sediments. In the year 2007 and 2013 respectively the gas hydrate samples are successfully recovered during two offshore drilling exploratory programs. Results of geothermal data during previous field studies along the north continental margin, however, show that the gas hydrate sites are associated with high geothermal background in contrast to the other offshore ones where the gas hydrates are more likely to be found in the low geothermal regional backgrounds. There is a common interesting heat flow pattern during the two drilling expeditions that the gas hydrate occurrences coincide with the presences of comparatively low geothermal anomalies against the high thermal background which is mainly caused by concentrated fluid upward movements into the stability zone (GHSZ) detected by the surface heat flow measurements over the studied fields. The key point for understanding the coupling between the presences of the gas hydrates and heat flow pattern at regional scale is to know the cause of high heat flows and the origin of forming gases at depth. We propose that these high heat flows are attributed to elevated shallow fault-fissure system due to the tectonic activities. A remarkable series of vertical faults and fissures are common on the upper continental slope and the forming gases are thought to have migrated with hot advective fluid flows towards seafloor mainly via fault-fissure system from underlying source rocks which are deeper levels than those of the GHSZ. The present study is based on an extensive dataset on hydrate distribution and associated temperature field measurements collected in the vicinity of studied areas during a series of field expeditions organized within the framework of national widely collaborative projects. Those

  7. Availability of MCNP and MATLAB for reconstructing the water-vapor two-phase flow pattern in neutron radiography

    International Nuclear Information System (INIS)

    Feng Qixi; Feng Quanke; Takeshi, K.

    2008-01-01

    The China Advanced Research Reactor (CARR) is scheduled to be operated in the autumn of 2008. In this paper, we report preparations for installing the neutron radiography instrument (NRI) and for utilizing it efficiently. The 2-D relative neutron intensity profiles for the water-vapor two-phase flow inside the tube were obtained using the MCNP code without influence of γ-ray and electronic-noise. The MCNP simulation of the 2-D neutron intensity profile for the water-vapor two-phase flow was demonstrated. The simulated 2-D neutron intensity profiles could be used as the benchmark data base by calibrating part of the data measured by the CARR-NRI. The 3-D objective images allow us to understand the flow pattern more clearly and it is reconstructed using the MATLAB through the threshold transformation techniques. And thus it is concluded that the MCNP code and the MATLAB are very useful for constructing the benchmark data base for the investigation of the water-vapor two-phase flow using the CARR-NRI. (authors)

  8. Angular pattern of minijet transverse energy flow in hadron and nuclear collisions

    International Nuclear Information System (INIS)

    Leonidov, A.V.; Ostrovsky, D.M.

    2002-01-01

    The azimuthal asymmetry of a minijet system produced at the early stage of nucleon-nucleon and nuclear collisions in a central rapidity window is studied. We show that, in pp collisions, the minijet-transverse-energy production in a central rapidity window is essentially unbalanced in azimuth because of asymmetric contributions in which only one minijet hits the acceptance window. We further study the angular pattern of the transverse-energy flow generated by semihard degrees of freedom at the early stage of high-energy nuclear collisions and its dependence on the number of semihard collisions in the models either including or neglecting soft contributions to the inelastic cross section at RHIC and LHC energies, as well as on the choice of infrared cutoff

  9. Angular pattern of minijet transverse energy flow in hadron and nuclear collisions

    International Nuclear Information System (INIS)

    Leonidov, A.V.; Ostrovsky, D.M.

    2000-01-01

    The azimuthal asymmetry of a minijet system produced at the early stage of nucleon-nucleon and nuclear collisions in a central rapidity window is studied. We show that in pp collisions the minijet transverse energy production in a central rapidity window is essentially unbalanced in the azimuth due to asymmetric contributions in which only one minijet hits the acceptance window. We further study the angular pattern of the transverse energy flow generated by the semihard degrees of freedom at the early stage of high energy nuclear collisions and its dependence on the number of semihard collisions in the models both including and neglecting soft contributions to the inelastic cross section at RHIC and LHC energies as well as on the choice of the infrared cutoff. (orig.)

  10. Should I use TensorFlow

    OpenAIRE

    Schrimpf, Martin

    2016-01-01

    Google's Machine Learning framework TensorFlow was open-sourced in November 2015 [1] and has since built a growing community around it. TensorFlow is supposed to be flexible for research purposes while also allowing its models to be deployed productively. This work is aimed towards people with experience in Machine Learning considering whether they should use TensorFlow in their environment. Several aspects of the framework important for such a decision are examined, such as the heterogenity,...

  11. Phonological Concept Learning.

    Science.gov (United States)

    Moreton, Elliott; Pater, Joe; Pertsova, Katya

    2017-01-01

    Linguistic and non-linguistic pattern learning have been studied separately, but we argue for a comparative approach. Analogous inductive problems arise in phonological and visual pattern learning. Evidence from three experiments shows that human learners can solve them in analogous ways, and that human performance in both cases can be captured by the same models. We test GMECCS (Gradual Maximum Entropy with a Conjunctive Constraint Schema), an implementation of the Configural Cue Model (Gluck & Bower, ) in a Maximum Entropy phonotactic-learning framework (Goldwater & Johnson, ; Hayes & Wilson, ) with a single free parameter, against the alternative hypothesis that learners seek featurally simple algebraic rules ("rule-seeking"). We study the full typology of patterns introduced by Shepard, Hovland, and Jenkins () ("SHJ"), instantiated as both phonotactic patterns and visual analogs, using unsupervised training. Unlike SHJ, Experiments 1 and 2 found that both phonotactic and visual patterns that depended on fewer features could be more difficult than those that depended on more features, as predicted by GMECCS but not by rule-seeking. GMECCS also correctly predicted performance differences between stimulus subclasses within each pattern. A third experiment tried supervised training (which can facilitate rule-seeking in visual learning) to elicit simple rule-seeking phonotactic learning, but cue-based behavior persisted. We conclude that similar cue-based cognitive processes are available for phonological and visual concept learning, and hence that studying either kind of learning can lead to significant insights about the other. Copyright © 2015 Cognitive Science Society, Inc.

  12. Interdependences between flow patterns and oxygen entry in aeration tanks of wastewater treatment plants; Der Zusammenhang von Stroemungsstrukturen und Sauerstoffeintrag bei druckbeluefteten Belebungsbecken

    Energy Technology Data Exchange (ETDEWEB)

    Thiersch, B.

    2001-07-01

    The flow field, turbulence intensities and the distribution of the relative gas-holdup of aeration tanks of operating wastewater treatment plants were investigated experimentally with Acoustic-Doppler-Velocimeter probes. Based on the experimental results a hydrodynamical model in Euler-Euler-Formulation was developed and numerical studies of different tank and diffuser arrangements were performed. It was found that the flow pattern is mainly influenced by the gas sparger arrangement and the tank aspect-ratio. Combining the experimental and numerical results reasons for different aeration efficiencies were identified. Increasing the diffuser density changed the flow field from the spiral type to the cellular pattern with instable and dynamical structures. These flow patterns improved the aeration efficiency by increasing the residence time of the bubbles and the recirculating flows. (orig.) [German] In der vorliegenden Arbeit werden grundlegende Stroemungsstrukturen von druckbeluefteten Belebungsbecken anhand messtechnischer Untersuchungen der Geschwindigkeitsverteilungen, Turbulenzgroessen und relativer Gasgehaltsverteilungen von Belebungsbecken im Betriebszustand aufgezeigt. Vorab wird die Einsatzfaehigkeit von Akkustik-Doppler-Sonden in dispersen Zweiphasenstroemungen detailliert ueberprueft. Aufbauend auf den Messergebnissen wird ein numerisches Simulationsprogramm zur dynamischen Berechnung unterschiedlicher Beckenkonfigurationen entwickelt. Aus den experimentellen Ergebnissen in Verbindung mit den Berechnungsergebnissen sowie den Auswertungen frueherer Untersuchungen konnten hydromechanische Ursachen der unterschiedlichen Sauerstoffeintragseffizienz bei verschiedenen Beckenkonzeptionen abgeleitet werden. Dabei stellen die Anordnung sowie Gleichverteilung der Belueftungselemente sowie das Querschnittsverhaeltnis der Belebungsbecken die wesentlichen Einflussgroessen auf die Ausbildung der Stroemungsstrukturen dar. Mit zunehmender Belegungsdichte und

  13. Impacts of changing cropping pattern on virtual water flows related to crops transfer: a case study for the Hetao irrigation district, China.

    Science.gov (United States)

    Liu, Jing; Wu, Pute; Wang, Yubao; Zhao, Xining; Sun, Shikun; Cao, Xinchun

    2014-11-01

    Analysis of cropping patterns is a prerequisite for their optimisation, and evaluation of virtual water flows could shed new light on water resources management. This study is intended to explore the effects of cropping pattern changes between 1960 and 2008 on virtual water flows related to crops transfer in the Hetao irrigation district, China. (1) The sown area of crops increased at an average rate of 3.57 × 10(3) ha year(-1) while the proportion of sown grain crops decreased from 92.83% in the 1960s to 50.22% in the 2000s. (2) Virtual water content decreased during the study period while net virtual water exports increased since the 1980s. (3) Assuming that the cropping pattern was constant and was equal to the average 1960s value, accumulated net virtual water export in 1980-2008 would have been 4.76 × 10(9) m(3) greater than that in the actual cropping pattern scenario. Cropping pattern changes in the Hetao irrigation district could not only be seen as resulting from the pursuit for higher economic returns, but also as a feedback response to limited water resources. A systematic framework is still needed for future cropping pattern planning by taking food security, continued agricultural expansion and other constraints into consideration. © 2014 Society of Chemical Industry.

  14. Altitude control in honeybees: joint vision-based learning and guidance.

    Science.gov (United States)

    Portelli, Geoffrey; Serres, Julien R; Ruffier, Franck

    2017-08-23

    Studies on insects' visual guidance systems have shed little light on how learning contributes to insects' altitude control system. In this study, honeybees were trained to fly along a double-roofed tunnel after entering it near either the ceiling or the floor of the tunnel. The honeybees trained to hug the ceiling therefore encountered a sudden change in the tunnel configuration midways: i.e. a "dorsal ditch". Thus, the trained honeybees met a sudden increase in the distance to the ceiling, corresponding to a sudden strong change in the visual cues available in their dorsal field of view. Honeybees reacted by rising quickly and hugging the new, higher ceiling, keeping a similar forward speed, distance to the ceiling and dorsal optic flow to those observed during the training step; whereas bees trained to follow the floor kept on following the floor regardless of the change in the ceiling height. When trained honeybees entered the tunnel via the other entry (the lower or upper entry) to that used during the training step, they quickly changed their altitude and hugged the surface they had previously learned to follow. These findings clearly show that trained honeybees control their altitude based on visual cues memorized during training. The memorized visual cues generated by the surfaces followed form a complex optic flow pattern: trained honeybees may attempt to match the visual cues they perceive with this memorized optic flow pattern by controlling their altitude.

  15. Comparison of Shallow and Deep Learning Methods on Classifying the Regional Pattern of Diffuse Lung Disease.

    Science.gov (United States)

    Kim, Guk Bae; Jung, Kyu-Hwan; Lee, Yeha; Kim, Hyun-Jun; Kim, Namkug; Jun, Sanghoon; Seo, Joon Beom; Lynch, David A

    2017-10-17

    This study aimed to compare shallow and deep learning of classifying the patterns of interstitial lung diseases (ILDs). Using high-resolution computed tomography images, two experienced radiologists marked 1200 regions of interest (ROIs), in which 600 ROIs were each acquired using a GE or Siemens scanner and each group of 600 ROIs consisted of 100 ROIs for subregions that included normal and five regional pulmonary disease patterns (ground-glass opacity, consolidation, reticular opacity, emphysema, and honeycombing). We employed the convolution neural network (CNN) with six learnable layers that consisted of four convolution layers and two fully connected layers. The classification results were compared with the results classified by a shallow learning of a support vector machine (SVM). The CNN classifier showed significantly better performance for accuracy compared with that of the SVM classifier by 6-9%. As the convolution layer increases, the classification accuracy of the CNN showed better performance from 81.27 to 95.12%. Especially in the cases showing pathological ambiguity such as between normal and emphysema cases or between honeycombing and reticular opacity cases, the increment of the convolution layer greatly drops the misclassification rate between each case. Conclusively, the CNN classifier showed significantly greater accuracy than the SVM classifier, and the results implied structural characteristics that are inherent to the specific ILD patterns.

  16. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  17. Pattern recognition

    CERN Document Server

    Theodoridis, Sergios

    2003-01-01

    Pattern recognition is a scientific discipline that is becoming increasingly important in the age of automation and information handling and retrieval. Patter Recognition, 2e covers the entire spectrum of pattern recognition applications, from image analysis to speech recognition and communications. This book presents cutting-edge material on neural networks, - a set of linked microprocessors that can form associations and uses pattern recognition to ""learn"" -and enhances student motivation by approaching pattern recognition from the designer's point of view. A direct result of more than 10

  18. Motor learning in childhood reveals distinct mechanisms for memory retention and re-learning.

    Science.gov (United States)

    Musselman, Kristin E; Roemmich, Ryan T; Garrett, Ben; Bastian, Amy J

    2016-05-01

    Adults can easily learn and access multiple versions of the same motor skill adapted for different conditions (e.g., walking in water, sand, snow). Following even a single session of adaptation, adults exhibit clear day-to-day retention and faster re-learning of the adapted pattern. Here, we studied the retention and re-learning of an adapted walking pattern in children aged 6-17 yr. We found that all children, regardless of age, showed adult-like patterns of retention of the adapted walking pattern. In contrast, children under 12 yr of age did not re-learn faster on the next day after washout had occurred-they behaved as if they had never adapted their walking before. Re-learning could be improved in younger children when the adaptation time on day 1 was increased to allow more practice at the plateau of the adapted pattern, but never to adult-like levels. These results show that the ability to store a separate, adapted version of the same general motor pattern does not fully develop until adolescence, and furthermore, that the mechanisms underlying the retention and rapid re-learning of adapted motor patterns are distinct. © 2016 Musselman et al.; Published by Cold Spring Harbor Laboratory Press.

  19. Excitation of nonlinear wave patterns in flowing complex plasmas

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2018-01-01

    We describe experimental observations of nonlinear wave structures excited by a supersonic mass flow of dust particles over an electrostatic potential hill in a dusty plasma medium. The experiments have been carried out in a Π- shaped experimental (DPEx) device in which micron sized Kaolin particles are embedded in a DC glow discharge Argon plasma. An equilibrium dust cloud is formed by maintaining the pumping speed and gas flow rate and the dust flow is induced either by suddenly reducing the height of a potential hill or by suddenly reducing the gas flow rate. For a supersonic flow of the dust fluid precursor solitons are seen to propagate in the upstream direction while wake structures propagate in the downstream direction. For flow speeds with a Mach number greater than 2 the dust particles flowing over the potential hill give rise to dispersive dust acoustic shock waves. The experimental results compare favorably with model theories based on forced K-dV and K-dV Burger's equations.

  20. 2007 Estimated International Energy Flows

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-10

    An energy flow chart or 'atlas' for 136 countries has been constructed from data maintained by the International Energy Agency (IEA) and estimates of energy use patterns for the year 2007. Approximately 490 exajoules (460 quadrillion BTU) of primary energy are used in aggregate by these countries each year. While the basic structure of the energy system is consistent from country to country, patterns of resource use and consumption vary. Energy can be visualized as it flows from resources (i.e. coal, petroleum, natural gas) through transformations such as electricity generation to end uses (i.e. residential, commercial, industrial, transportation). These flow patterns are visualized in this atlas of 136 country-level energy flow charts.