WorldWideScience

Sample records for learning feedforward controller

  1. Structural learning in feedforward and feedback control.

    Science.gov (United States)

    Yousif, Nada; Diedrichsen, Jörn

    2012-11-01

    For smooth and efficient motor control, the brain needs to make fast corrections during the movement to resist possible perturbations. It also needs to adapt subsequent movements to improve future performance. It is important that both feedback corrections and feedforward adaptation need to be made based on noisy and often ambiguous sensory data. Therefore, the initial response of the motor system, both for online corrections and adaptive responses, is guided by prior assumptions about the likely structure of perturbations. In the context of correcting and adapting movements perturbed by a force field, we asked whether these priors are hard wired or whether they can be modified through repeated exposure to differently shaped force fields. We found that both feedback corrections to unexpected perturbations and feedforward adaptation to a new force field changed, such that they were appropriate to counteract the type of force field that participants had experienced previously. We then investigated whether these changes were driven by a common mechanism or by two separate mechanisms. Participants experienced force fields that were either temporally consistent, causing sustained adaptation, or temporally inconsistent, causing little overall adaptation. We found that the consistent force fields modified both feedback and feedforward responses. In contrast, the inconsistent force field modified the temporal shape of feedback corrections but not of the feedforward adaptive response. These results indicate that responses to force perturbations can be modified in a structural manner and that these modifications are at least partly dissociable for feedback and feedforward control.

  2. Application of parsimonious learning feedforward control to mechatronic systems

    NARCIS (Netherlands)

    de Vries, Theodorus J.A.; Velthuis, W.J.R.; Idema, L.J.

    2001-01-01

    For motion control, learning feedforward controllers (LFFCs) should be applied when accurate process modelling is difficult. When controlling such processes with LFFCs in the form of multidimensional B-spline networks, large network sizes and a poor generalising ability may result, known as the

  3. Biomimetic Hybrid Feedback Feedforward Neural-Network Learning Control.

    Science.gov (United States)

    Pan, Yongping; Yu, Haoyong

    2017-06-01

    This brief presents a biomimetic hybrid feedback feedforward neural-network learning control (NNLC) strategy inspired by the human motor learning control mechanism for a class of uncertain nonlinear systems. The control structure includes a proportional-derivative controller acting as a feedback servo machine and a radial-basis-function (RBF) NN acting as a feedforward predictive machine. Under the sufficient constraints on control parameters, the closed-loop system achieves semiglobal practical exponential stability, such that an accurate NN approximation is guaranteed in a local region along recurrent reference trajectories. Compared with the existing NNLC methods, the novelties of the proposed method include: 1) the implementation of an adaptive NN control to guarantee plant states being recurrent is not needed, since recurrent reference signals rather than plant states are utilized as NN inputs, which greatly simplifies the analysis and synthesis of the NNLC and 2) the domain of NN approximation can be determined a priori by the given reference signals, which leads to an easy construction of the RBF-NNs. Simulation results have verified the effectiveness of this approach.

  4. Learning feedback and feedforward control in a mirror-reversed visual environment.

    Science.gov (United States)

    Kasuga, Shoko; Telgen, Sebastian; Ushiba, Junichi; Nozaki, Daichi; Diedrichsen, Jörn

    2015-10-01

    When we learn a novel task, the motor system needs to acquire both feedforward and feedback control. Currently, little is known about how the learning of these two mechanisms relate to each other. In the present study, we tested whether feedforward and feedback control need to be learned separately, or whether they are learned as common mechanism when a new control policy is acquired. Participants were trained to reach to two lateral and one central target in an environment with mirror (left-right)-reversed visual feedback. One group was allowed to make online movement corrections, whereas the other group only received visual information after the end of the movement. Learning of feedforward control was assessed by measuring the accuracy of the initial movement direction to lateral targets. Feedback control was measured in the responses to sudden visual perturbations of the cursor when reaching to the central target. Although feedforward control improved in both groups, it was significantly better when online corrections were not allowed. In contrast, feedback control only adaptively changed in participants who received online feedback and remained unchanged in the group without online corrections. Our findings suggest that when a new control policy is acquired, feedforward and feedback control are learned separately, and that there may be a trade-off in learning between feedback and feedforward controllers. Copyright © 2015 the American Physiological Society.

  5. The Roles of Feedback and Feedforward as Humans Learn to Control Unknown Dynamic Systems.

    Science.gov (United States)

    Zhang, Xingye; Wang, Shaoqian; Hoagg, Jesse B; Seigler, T Michael

    2018-02-01

    We present results from an experiment in which human subjects interact with an unknown dynamic system 40 times during a two-week period. During each interaction, subjects are asked to perform a command-following (i.e., pursuit tracking) task. Each subject's performance at that task improves from the first trial to the last trial. For each trial, we use subsystem identification to estimate each subject's feedforward (or anticipatory) control, feedback (or reactive) control, and feedback time delay. Over the 40 trials, the magnitudes of the identified feedback controllers and the identified feedback time delays do not change significantly. In contrast, the identified feedforward controllers do change significantly. By the last trial, the average identified feedforward controller approximates the inverse of the dynamic system. This observation provides evidence that a fundamental component of human learning is updating the anticipatory control until it models the inverse dynamics.

  6. Learning feedforward controller for a mobile robot vehicle

    NARCIS (Netherlands)

    Starrenburg, J.G.; Starrenburg, J.G.; van Luenen, W.T.C.; van Luenen, W.T.C.; Oelen, W.; Oelen, W.; van Amerongen, J.

    1996-01-01

    This paper describes the design and realisation of an on-line learning posetracking controller for a three-wheeled mobile robot vehicle. The controller consists of two components. The first is a constant-gain feedback component, designed on the basis of a second-order model. The second is a learning

  7. Stochastic Feedforward Control Technique

    Science.gov (United States)

    Halyo, Nesim

    1990-01-01

    Class of commanded trajectories modeled as stochastic process. Advanced Transport Operating Systems (ATOPS) research and development program conducted by NASA Langley Research Center aimed at developing capabilities for increases in capacities of airports, safe and accurate flight in adverse weather conditions including shear, winds, avoidance of wake vortexes, and reduced consumption of fuel. Advances in techniques for design of modern controls and increased capabilities of digital flight computers coupled with accurate guidance information from Microwave Landing System (MLS). Stochastic feedforward control technique developed within context of ATOPS program.

  8. Batch-To-Batch Rational Feedforward Control : From Iterative Learning to Identification Approaches, with Application to a Wafer Stage

    NARCIS (Netherlands)

    Blanken, L.; Boeren, F.A.J.; Bruijnen, D.J.H.; Oomen, T.A.E.

    2017-01-01

    Feedforward control enables high performance for industrial motion systems that perform nonrepeating motion tasks. Recently, learning techniques have been proposed that improve both performance and flexibility to nonrepeating tasks in a batch-To-batch fashion by using a rational parameterization in

  9. An H(∞) control approach to robust learning of feedforward neural networks.

    Science.gov (United States)

    Jing, Xingjian

    2011-09-01

    A novel H(∞) robust control approach is proposed in this study to deal with the learning problems of feedforward neural networks (FNNs). The analysis and design of a desired weight update law for the FNN is transformed into a robust controller design problem for a discrete dynamic system in terms of the estimation error. The drawbacks of some existing learning algorithms can therefore be revealed, especially for the case that the output data is fast changing with respect to the input or the output data is corrupted by noise. Based on this approach, the optimal learning parameters can be found by utilizing the linear matrix inequality (LMI) optimization techniques to achieve a predefined H(∞) "noise" attenuation level. Several existing BP-type algorithms are shown to be special cases of the new H(∞)-learning algorithm. Theoretical analysis and several examples are provided to show the advantages of the new method. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Degraded expression of learned feedforward control in movements released by startle.

    Science.gov (United States)

    Wright, Zachary A; Carlsen, Anthony N; MacKinnon, Colum D; Patton, James L

    2015-08-01

    Recent work has shown that preplanned motor programs can be rapidly released via fast conducting pathways using a startling acoustic stimulus. Our question was whether the startle-elicited response might also release a recently learned internal model, which draws on experience to predict and compensate for expected perturbations in a feedforward manner. Our initial investigation using adaptation to robotically produced forces showed some evidence of this, but the results were potentially confounded by co-contraction caused by startle. In this study, we eliminated this confound by asking subjects to make reaching movements in the presence of a visual distortion. Results show that a startle stimulus (1) decreased performance of the recently learned task and (2) reduced after-effect magnitude. Since the recall of learned control was reduced, but not eliminated during startle trials, we suggest that multiple neural centers (cortical and subcortical) are involved in such learning and adaptation. These findings have implications for motor training in areas such as piloting, teleoperation, sports, and rehabilitation.

  11. Feedforward mapping for engine control

    OpenAIRE

    Aran, Volkan; Ünel, Mustafa; Unel, Mustafa

    2016-01-01

    Feedforward control is widely used in electronic control units of internal combustion engines besides feedback controls. However, almost all feedforward control values are used in table form, also called maps, having engine speed and engine torque in their axes. Table approach limits all inte ractions in two input dimensions. This paper focuses on application of Gaussian process modelling of errors of inverse parametric model of the valve position. Validation results based on ...

  12. Fast-Spiking Interneurons Supply Feedforward Control of Bursting, Calcium, and Plasticity for Efficient Learning.

    Science.gov (United States)

    Owen, Scott F; Berke, Joshua D; Kreitzer, Anatol C

    2018-02-08

    Fast-spiking interneurons (FSIs) are a prominent class of forebrain GABAergic cells implicated in two seemingly independent network functions: gain control and network plasticity. Little is known, however, about how these roles interact. Here, we use a combination of cell-type-specific ablation, optogenetics, electrophysiology, imaging, and behavior to describe a unified mechanism by which striatal FSIs control burst firing, calcium influx, and synaptic plasticity in neighboring medium spiny projection neurons (MSNs). In vivo silencing of FSIs increased bursting, calcium transients, and AMPA/NMDA ratios in MSNs. In a motor sequence task, FSI silencing increased the frequency of calcium transients but reduced the specificity with which transients aligned to individual task events. Consistent with this, ablation of FSIs disrupted the acquisition of striatum-dependent egocentric learning strategies. Together, our data support a model in which feedforward inhibition from FSIs temporally restricts MSN bursting and calcium-dependent synaptic plasticity to facilitate striatum-dependent sequence learning. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Controlling the chaotic discrete-Hénon system using a feedforward neural network with an adaptive learning rate

    OpenAIRE

    GÖKCE, Kürşad; UYAROĞLU, Yılmaz

    2013-01-01

    This paper proposes a feedforward neural network-based control scheme to control the chaotic trajectories of a discrete-Hénon map in order to stay within an acceptable distance from the stable fixed point. An adaptive learning back propagation algorithm with online training is employed to improve the effectiveness of the proposed method. The simulation study carried in the discrete-Hénon system verifies the validity of the proposed control system.

  14. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees.

    Science.gov (United States)

    Strbac, Matija; Isakovic, Milica; Belic, Minja; Popovic, Igor; Simanic, Igor; Farina, Dario; Keller, Thierry; Dosen, Strahinja

    2017-11-01

    Human motor control relies on a combination of feedback and feedforward strategies. The aim of this study was to longitudinally investigate artificial somatosensory feedback and feedforward control in the context of grasping with myoelectric prosthesis. Nine amputee subjects performed routine grasping trials, with the aim to produce four levels of force during four blocks of 60 trials across five days. The electrotactile force feedback was provided in the second and third block using multipad electrode and spatial coding. The first baseline and last validation block (open-loop control) evaluated the effects of long- (across sessions) and short-term (within session) learning, respectively. The outcome measures were the absolute error between the generated and target force, and the number of force saturations. The results demonstrated that the electrotactile feedback improved the performance both within and across sessions. In the validation block, the performance did not significantly decrease and the quality of open-loop control (baseline) improved across days, converging to the performance characterizing closed-loop control. This paper provides important insights into the feedback and feedforward processes in prosthesis control, contributing to the better understanding of the role and design of feedback in prosthetic systems.

  15. Jerk derivative feedforward control for motion systems

    NARCIS (Netherlands)

    Boerlage, M.L.G.; Tousain, R.L.; Steinbuch, M.

    2004-01-01

    This work discusses reference trajectory relevant model based feedforward design. For motion systems which contain at least one rigid body mode and which are subject to reference trajectories with mostly low frequency energy, the proposed feedforward controller improves tracking performance

  16. Feedforward Control of Magnetically Levitated Planar Actuators

    OpenAIRE

    Bloemers, T.; Proimadis, I.; Kasemsinsup, Y.; Tóth, R.

    2018-01-01

    The present report summarizes the work conducted during the internship on Feedforward Control of the Magnetic Levitation Setup. Different feedforward strategies, specifically tailored for this setup, are developed and reviewed. These feedforward methods explicitly take the intrinsic position-dependent behavior of the magnetic levitation setup into account. Additionally, closed-loop stability of the given setup is assessed. All investigations are carried out under the rigid-body assumption of ...

  17. An iterative learning strategy for the auto-tuning of the feedforward and feedback controller in type-1 diabetes.

    Science.gov (United States)

    Fravolini, M L; Fabietti, P G

    2014-01-01

    This paper proposes a scheme for the control of the blood glucose in subjects with type-1 diabetes mellitus based on the subcutaneous (s.c.) glucose measurement and s.c. insulin administration. The tuning of the controller is based on an iterative learning strategy that exploits the repetitiveness of the daily feeding habit of a patient. The control consists of a mixed feedback and feedforward contribution whose parameters are tuned through an iterative learning process that is based on the day-by-day automated analysis of the glucose response to the infusion of exogenous insulin. The scheme does not require any a priori information on the patient insulin/glucose response, on the meal times and on the amount of ingested carbohydrates (CHOs). Thanks to the learning mechanism the scheme is able to improve its performance over time. A specific logic is also introduced for the detection and prevention of possible hypoglycaemia events. The effectiveness of the methodology has been validated using long-term simulation studies applied to a set of nine in silico patients considering realistic uncertainties on the meal times and on the quantities of ingested CHOs.

  18. Output Control Using Feedforward And Cascade Controllers

    Science.gov (United States)

    Seraji, Homayoun

    1990-01-01

    Report presents theoretical study of open-loop control elements in single-input, single-output linear system. Focus on output-control (servomechanism) problem, in which objective is to find control scheme that causes output to track certain command inputs and to reject certain disturbance inputs in steady state. Report closes with brief discussion of characteristics and relative merits of feedforward, cascade, and feedback controllers and combinations thereof.

  19. On optimal feedforward and ILC : the role of feedback for optimal performance and inferential control

    NARCIS (Netherlands)

    van Zundert, J.C.D.; Oomen, T.A.E

    2017-01-01

    The combination of feedback control with inverse model feedforward control or iterative learning control is known to yield high performance. The aim of this paper is to clarify the role of feedback in the design of feedforward controllers, with specific attention to the inferential situation. Recent

  20. Feedforward temperature control using a heat flux microsensor

    OpenAIRE

    Lartz, Douglas John

    1993-01-01

    The concept of using heat flux measurements to provide the input for a feedforward temperature control loop is investigated. The feedforward loop is added to proportional and integral feedback control to increase the speed of the response to a disturbance. Comparison is made between the feedback and the feedback plus feedforward control laws. The control law with the feedforward control loop is also compared to the conventional approach of adding derivative control to speed up ...

  1. Design Of Feedforward Controllers For Multivariable Plants

    Science.gov (United States)

    Seraji, Homayoun

    1989-01-01

    Controllers based on simple low-order transfer functions. Mathematical criteria derived for design of feedforward controllers for class of multiple-input/multiple-output linear plants. Represented by simple low-order transfer functions, obtained without reconstruction of states of commands and disturbances. Enables plant to track command while remaining unresponsive to disturbance in steady state. Feedback controller added independently to stabilize plant or to make control system less susceptible to variations in parameters of plant.

  2. Low-order feedforward controllers: Optimal performance and practical considerations

    OpenAIRE

    Hast, Martin; Hägglund, Tore

    2014-01-01

    Feedforward control from measurable disturbances can significantly improve the performance in control loops. However, tuning rules for such controllers are scarce. In this paper design rules for how to choose optimal low-order feedforward controller parameter are presented. The parameters are chosen so that the integrated squared error, when the system is subject to a step disturbance, is minimized. The approach utilizes a controller structure that decouples the feedforward and the feedback c...

  3. Combined feedforward and feedback control of end milling system

    OpenAIRE

    Čuš, Franc; Župerl, Uroš; Balič, Jože

    2012-01-01

    Purpose: Purpose of this paper. An intelligent control system is presented that uses a combination of feedforward and feedback for cutting force control in end milling.Design/methodology/approach: The network is trained by the feedback output that is minimized during training and most control action for disturbance rejection is finally performed by the rapid feedforward action of the network.Findings: The feedback controller corrects for errors caused by external disturbances. The feedforward...

  4. Cerebellar contribution to feedforward control of locomotion.

    Science.gov (United States)

    Pisotta, Iolanda; Molinari, Marco

    2014-01-01

    The cerebellum is an important contributor to feedforward control mechanisms of the central nervous system, and sequencing-the process that allows spatial and temporal relationships between events to be recognized-has been implicated as the fundamental cerebellar mode of operation. By adopting such a mode and because cerebellar activity patterns are sensitive to a variety of sensorimotor-related tasks, the cerebellum is believed to support motor and cognitive functions that are encoded in the frontal and parietal lobes of the cerebral cortex. In this model, the cerebellum is hypothesized to make predictions about the consequences of a motor or cognitive command that originates from the cortex to prepare the entire system to cope with ongoing changes. In this framework, cerebellar predictive mechanisms for locomotion are addressed, focusing on sensorial and motoric sequencing. The hypothesis that sequence recognition is the mechanism by which the cerebellum functions in gait control is presented and discussed.

  5. Feed-Forward Control in Resonant DC Link Inverter

    OpenAIRE

    Apinan Aurasopon; Worawat Sa-ngiavibool

    2008-01-01

    This paper proposes a feed-forward control in resonant dc link inverter. The feed-forward control configuration is based on synchronous sigma-delta modulation. The simulation results showing the proposed technique can reject non-ideal dc bus improving the total harmonic distortion.

  6. Minimal-Inversion Feedforward-And-Feedback Control System

    Science.gov (United States)

    Seraji, Homayoun

    1990-01-01

    Recent developments in theory of control systems support concept of minimal-inversion feedforward-and feedback control system consisting of three independently designable control subsystems. Applicable to the control of linear, time-invariant plant.

  7. Feedforward Nonlinear Control Using Neural Gas Network

    Directory of Open Access Journals (Sweden)

    Iván Machón-González

    2017-01-01

    Full Text Available Nonlinear systems control is a main issue in control theory. Many developed applications suffer from a mathematical foundation not as general as the theory of linear systems. This paper proposes a control strategy of nonlinear systems with unknown dynamics by means of a set of local linear models obtained by a supervised neural gas network. The proposed approach takes advantage of the neural gas feature by which the algorithm yields a very robust clustering procedure. The direct model of the plant constitutes a piece-wise linear approximation of the nonlinear system and each neuron represents a local linear model for which a linear controller is designed. The neural gas model works as an observer and a controller at the same time. A state feedback control is implemented by estimation of the state variables based on the local transfer function that was provided by the local linear model. The gradient vectors obtained by the supervised neural gas algorithm provide a robust procedure for feedforward nonlinear control, that is, supposing the inexistence of disturbances.

  8. Nonlinear Feedforward Control for Wind Disturbance Rejection on Autonomous Helicopter

    DEFF Research Database (Denmark)

    Bisgaard, Morten; la Cour-Harbo, Anders; A. Danapalasingam, Kumeresan

    2010-01-01

    for the purpose. The model is inverted for the calculation of rotor collective and cyclic pitch angles given the wind disturbance. The control strategy is then applied on a small helicopter in a controlled wind environment and flight tests demonstrates the effectiveness and advantage of the feedforward controller.......This paper presents the design and verification of a model based nonlinear feedforward controller for wind disturbance rejection on autonomous helicopters. The feedforward control is based on a helicopter model that is derived using a number of carefully chosen simplifications to make it suitable...

  9. Experience with feedback and feedforward for plasma control in ASDEX

    International Nuclear Information System (INIS)

    Schneider, F.

    1983-01-01

    Experimental results of vertical and radial position feedback are shown and discussed. In particular, stability problems of vertical position control are studied in detail. A feedforward procedure for the process computer is described and proved by measurements. (author)

  10. On Optimal Input Design for Feed-forward Control

    OpenAIRE

    Hägg, Per; Wahlberg, Bo

    2013-01-01

    This paper considers optimal input design when the intended use of the identified model is to construct a feed-forward controller based on measurable disturbances. The objective is to find a minimum power excitation signal to be used in a system identification experiment, such that the corresponding model-based feed-forward controller guarantees, with a given probability, that the variance of the output signal is within given specifications. To start with, some low order model problems are an...

  11. Comparison between hybrid feedforward-feedback, feedforward, and feedback structures for active noise control of fMRI noise.

    Science.gov (United States)

    Reddy, Rajiv M; Panahi, Issa M S

    2008-01-01

    The performance of FIR feedforward, IIR feedforward, FIR feedback, hybrid FIR feedforward--FIR feedback, and hybrid IIR feedforward - FIR feedback structures for active noise control (ANC) are compared for an fMRI noise application. The filtered-input normalized least squares (FxNLMS) algorithm is used to update the coefficients of the adaptive filters in all these structures. Realistic primary and secondary paths of an fMRI bore are used by estimating them on a half cylindrical acrylic bore of 0.76 m (D)x1.52 m (L). Detailed results of the performance of the ANC system are presented in the paper for each of these structures. We find that the IIR feedforward structure produces most of the performance improvement in the hybrid IIR feedforward - FIR feedback structure and adding the feedback structure becomes almost redundant in the case of fMRI noise.

  12. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    International Nuclear Information System (INIS)

    Gering, Stefan; Adamy, Jürgen

    2014-01-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis

  13. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    Science.gov (United States)

    Gering, Stefan; Adamy, Jürgen

    2014-12-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.

  14. ACCPndn : adaptive congestion control protocol in named data networking by learning capacities using optimized time-lagged feedforward neural network

    OpenAIRE

    Karami, Amin

    2015-01-01

    Named Data Networking (NDN) is a promising network architecture being considered as a possible replacement for the current IP-based Internet infrastructure. However, NDN is subject to congestion when the number of data packets that reach one or various routers in a certain period of time is so high than its queue gets overflowed. To address this problem many congestion control protocols have been proposed in the literature which, however, they are highly sensitive to their control parameters ...

  15. Shared internal models for feedforward and feedback control.

    Science.gov (United States)

    Wagner, Mark J; Smith, Maurice A

    2008-10-15

    A child often learns to ride a bicycle in the driveway, free of unforeseen obstacles. Yet when she first rides in the street, we hope that if a car suddenly pulls out in front of her, she will combine her innate goal of avoiding an accident with her learned knowledge of the bicycle, and steer away or brake. In general, when we train to perform a new motor task, our learning is most robust if it updates the rules of online error correction to reflect the rules and goals of the new task. Here we provide direct evidence that, after a new feedforward motor adaptation, motor feedback responses to unanticipated errors become precisely task appropriate, even when such errors were never experienced during training. To study this ability, we asked how, if at all, do online responses to occasional, unanticipated force pulses during reaching arm movements change after adapting to altered arm dynamics? Specifically, do they change in a task-appropriate manner? In our task, subjects learned novel velocity-dependent dynamics. However, occasional force-pulse perturbations produced unanticipated changes in velocity. Therefore, after adaptation, task-appropriate responses to unanticipated pulses should compensate corresponding changes in velocity-dependent dynamics. We found that after adaptation, pulse responses precisely compensated these changes, although they were never trained to do so. These results provide evidence for a smart feedback controller which automatically produces responses specific to the learned dynamics of the current task. To accomplish this, the neural processes underlying feedback control must (1) be capable of accurate real-time state prediction for velocity via a forward model and (2) have access to recently learned changes in internal models of limb dynamics.

  16. A stochastic optimal feedforward and feedback control methodology for superagility

    Science.gov (United States)

    Halyo, Nesim; Direskeneli, Haldun; Taylor, Deborah B.

    1992-01-01

    A new control design methodology is developed: Stochastic Optimal Feedforward and Feedback Technology (SOFFT). Traditional design techniques optimize a single cost function (which expresses the design objectives) to obtain both the feedforward and feedback control laws. This approach places conflicting demands on the control law such as fast tracking versus noise atttenuation/disturbance rejection. In the SOFFT approach, two cost functions are defined. The feedforward control law is designed to optimize one cost function, the feedback optimizes the other. By separating the design objectives and decoupling the feedforward and feedback design processes, both objectives can be achieved fully. A new measure of command tracking performance, Z-plots, is also developed. By analyzing these plots at off-nominal conditions, the sensitivity or robustness of the system in tracking commands can be predicted. Z-plots provide an important tool for designing robust control systems. The Variable-Gain SOFFT methodology was used to design a flight control system for the F/A-18 aircraft. It is shown that SOFFT can be used to expand the operating regime and provide greater performance (flying/handling qualities) throughout the extended flight regime. This work was performed under the NASA SBIR program. ICS plans to market the software developed as a new module in its commercial CACSD software package: ACET.

  17. Design Of Combined Stochastic Feedforward/Feedback Control

    Science.gov (United States)

    Halyo, Nesim

    1989-01-01

    Methodology accommodates variety of control structures and design techniques. In methodology for combined stochastic feedforward/feedback control, main objectives of feedforward and feedback control laws seen clearly. Inclusion of error-integral feedback, dynamic compensation, rate-command control structure, and like integral element of methodology. Another advantage of methodology flexibility to develop variety of techniques for design of feedback control with arbitrary structures to obtain feedback controller: includes stochastic output feedback, multiconfiguration control, decentralized control, or frequency and classical control methods. Control modes of system include capture and tracking of localizer and glideslope, crab, decrab, and flare. By use of recommended incremental implementation, control laws simulated on digital computer and connected with nonlinear digital simulation of aircraft and its systems.

  18. Development of Feedforward Control in a Dynamic Manual Tracking Task

    Science.gov (United States)

    van Roon, Dominique; Caeyenberghs, Karen; Swinnen, Stephan P.; Smits-Engelsman, Bouwien C. M.

    2008-01-01

    To examine the development of feedforward control during manual tracking, 117 participants in 5 age groups (6 to 7, 8 to 9, 10 to 11, 12 to 14, and 15 to 17 years) tracked an accelerating dot presented on a monitor by moving an electronic pen on a digitizer. To remain successful at higher target velocities, they had to create a predictive model of…

  19. Regularization and Complexity Control in Feed-forward Networks

    OpenAIRE

    Bishop, C. M.

    1995-01-01

    In this paper we consider four alternative approaches to complexity control in feed-forward networks based respectively on architecture selection, regularization, early stopping, and training with noise. We show that there are close similarities between these approaches and we argue that, for most practical applications, the technique of regularization should be the method of choice.

  20. Adaptive feedforward in the LANL rf control system

    International Nuclear Information System (INIS)

    Ziomek, C.D.

    1992-01-01

    This paper describes an adaptive feedforward system that corrects repetitive errors in the amplitude and phase of the RF field of a pulsed accelerator. High-frequency disturbances that are beyond the effective bandwidth of the RF field feedback control system can be eliminated with a feedforward system. Many RF field disturbances for a pulsed accelerator are repetitive, occurring at the same relative time in every pulse. This design employs digital signal processing hardware to adaptively determine and track the control signals required to eliminate the repetitive errors in the feedback control system. In order to provide the necessary high-frequency response, the adaptive feedforward hardware provides the calculated control signal prior to the repetitive disturbance that it corrects. This system has been demonstrated to reduce the transient disturbances caused by beam pulses. Furthermore, it has been shown to negate high-frequency phase and amplitude oscillations in a high-power klystron amplifier caused by PFN ripple on the high-voltage. The design and results of the adaptive feedforward system are presented

  1. Feedforward/feedback control synthesis for performance and robustness

    Science.gov (United States)

    Wie, Bong; Liu, Qiang

    1990-01-01

    Both feedforward and feedback control approaches for uncertain dynamical systems are investigated. The control design objective is to achieve a fast settling time (high performance) and robustness (insensitivity) to plant modeling uncertainty. Preshapong of an ideal, time-optimal control input using a 'tapped-delay' filter is shown to provide a rapid maneuver with robust performance. A robust, non-minimum-phase feedback controller is synthesized with particular emphasis on its proper implementation for a non-zero set-point control problem. The proposed feedforward/feedback control approach is robust for a certain class of uncertain dynamical systems, since the control input command computed for a given desired output does not depend on the plant parameters.

  2. Fuzzy PID Feedback Control of Piezoelectric Actuator with Feedforward Compensation

    Directory of Open Access Journals (Sweden)

    Ziqiang Chi

    2014-01-01

    Full Text Available Piezoelectric actuator is widely used in the field of micro/nanopositioning. However, piezoelectric hysteresis introduces nonlinearity to the system, which is the major obstacle to achieve a precise positioning. In this paper, the Preisach model is employed to describe the hysteresis characteristic of piezoelectric actuator and an inverse Preisach model is developed to construct a feedforward controller. Considering that the analytical expression of inverse Preisach model is difficult to derive and not suitable for practical application, a digital inverse model is established based on the input and output data of a piezoelectric actuator. Moreover, to mitigate the compensation error of the feedforward control, a feedback control scheme is implemented using different types of control algorithms in terms of PID control, fuzzy control, and fuzzy PID control. Extensive simulation studies are carried out using the three kinds of control systems. Comparative investigation reveals that the fuzzy PID control system with feedforward compensation is capable of providing quicker response and better control accuracy than the other two ones. It provides a promising way of precision control for piezoelectric actuator.

  3. Predictive Feedback and Feedforward Control for Systems with Unknown Disturbances

    Science.gov (United States)

    Juang, Jer-Nan; Eure, Kenneth W.

    1998-01-01

    Predictive feedback control has been successfully used in the regulation of plate vibrations when no reference signal is available for feedforward control. However, if a reference signal is available it may be used to enhance regulation by incorporating a feedforward path in the feedback controller. Such a controller is known as a hybrid controller. This paper presents the theory and implementation of the hybrid controller for general linear systems, in particular for structural vibration induced by acoustic noise. The generalized predictive control is extended to include a feedforward path in the multi-input multi-output case and implemented on a single-input single-output test plant to achieve plate vibration regulation. There are cases in acoustic-induce vibration where the disturbance signal is not available to be used by the hybrid controller, but a disturbance model is available. In this case the disturbance model may be used in the feedback controller to enhance performance. In practice, however, neither the disturbance signal nor the disturbance model is available. This paper presents the theory of identifying and incorporating the noise model into the feedback controller. Implementations are performed on a test plant and regulation improvements over the case where no noise model is used are demonstrated.

  4. Feed-forward motor control of ultrafast, ballistic movements.

    Science.gov (United States)

    Kagaya, K; Patek, S N

    2016-02-01

    To circumvent the limits of muscle, ultrafast movements achieve high power through the use of springs and latches. The time scale of these movements is too short for control through typical neuromuscular mechanisms, thus ultrafast movements are either invariant or controlled prior to movement. We tested whether mantis shrimp (Stomatopoda: Neogonodactylus bredini) vary their ultrafast smashing strikes and, if so, how this control is achieved prior to movement. We collected high-speed images of strike mechanics and electromyograms of the extensor and flexor muscles that control spring compression and latch release. During spring compression, lateral extensor and flexor units were co-activated. The strike initiated several milliseconds after the flexor units ceased, suggesting that flexor activity prevents spring release and determines the timing of strike initiation. We used linear mixed models and Akaike's information criterion to serially evaluate multiple hypotheses for control mechanisms. We found that variation in spring compression and strike angular velocity were statistically explained by spike activity of the extensor muscle. The results show that mantis shrimp can generate kinematically variable strikes and that their kinematics can be changed through adjustments to motor activity prior to the movement, thus supporting an upstream, central-nervous-system-based control of ultrafast movement. Based on these and other findings, we present a shishiodoshi model that illustrates alternative models of control in biological ballistic systems. The discovery of feed-forward control in mantis shrimp sets the stage for the assessment of targets, strategic variation in kinematics and the role of learning in ultrafast animals. © 2016. Published by The Company of Biologists Ltd.

  5. Hybrid Feedforward-Feedback Noise Control Using Virtual Sensors

    Science.gov (United States)

    Bean, Jacob; Fuller, Chris; Schiller, Noah

    2016-01-01

    Several approaches to active noise control using virtual sensors are evaluated for eventual use in an active headrest. Specifically, adaptive feedforward, feedback, and hybrid control structures are compared. Each controller incorporates the traditional filtered-x least mean squares algorithm. The feedback controller is arranged in an internal model configuration to draw comparisons with standard feedforward control theory results. Simulation and experimental results are presented that illustrate each controllers ability to minimize the pressure at both physical and virtual microphone locations. The remote microphone technique is used to obtain pressure estimates at the virtual locations. It is shown that a hybrid controller offers performance benefits over the traditional feedforward and feedback controllers. Stability issues associated with feedback and hybrid controllers are also addressed. Experimental results show that 15-20 dB reduction in broadband disturbances can be achieved by minimizing the measured pressure, whereas 10-15 dB reduction is obtained when minimizing the estimated pressure at a virtual location.

  6. Enhanced HMAX model with feedforward feature learning for multiclass categorization

    Directory of Open Access Journals (Sweden)

    Yinlin eLi

    2015-10-01

    Full Text Available In recent years, the interdisciplinary research between neuroscience and computer vision has promoted the development in both fields. Many biologically inspired visual models are proposed, and among them, the Hierarchical Max-pooling model (HMAX is a feedforward model mimicking the structures and functions of V1 to posterior inferotemporal (PIT layer of the primate visual cortex, which could generate a series of position- and scale- invariant features. However, it could be improved with attention modulation and memory processing, which are two important properties of the primate visual cortex. Thus, in this paper, based on recent biological research on the primate visual cortex, we still mimic the first 100-150 milliseconds of visual cognition to enhance the HMAX model, which mainly focuses on the unsupervised feedforward feature learning process. The main modifications are as follows: 1 To mimic the attention modulation mechanism of V1 layer, a bottom-up saliency map is computed in the S1 layer of the HMAX model, which can support the initial feature extraction for memory processing; 2 To mimic the learning, clustering and short-term memory to long-term memory conversion abilities of V2 and IT, an unsupervised iterative clustering method is used to learn clusters with multiscale middle level patches, which are taken as long-term memory; 3 Inspired by the multiple feature encoding mode of the primate visual cortex, information including color, orientation, and spatial position are encoded in different layers of the HMAX model progressively. By adding a softmax layer at the top of the model, multiclass categorization experiments can be conducted, and the results on Caltech101 show that the enhanced model with a smaller memory size exhibits higher accuracy than the original HMAX model, and could also achieve better accuracy than other unsupervised feature learning methods in multiclass categorization task.

  7. Enhanced HMAX model with feedforward feature learning for multiclass categorization.

    Science.gov (United States)

    Li, Yinlin; Wu, Wei; Zhang, Bo; Li, Fengfu

    2015-01-01

    In recent years, the interdisciplinary research between neuroscience and computer vision has promoted the development in both fields. Many biologically inspired visual models are proposed, and among them, the Hierarchical Max-pooling model (HMAX) is a feedforward model mimicking the structures and functions of V1 to posterior inferotemporal (PIT) layer of the primate visual cortex, which could generate a series of position- and scale- invariant features. However, it could be improved with attention modulation and memory processing, which are two important properties of the primate visual cortex. Thus, in this paper, based on recent biological research on the primate visual cortex, we still mimic the first 100-150 ms of visual cognition to enhance the HMAX model, which mainly focuses on the unsupervised feedforward feature learning process. The main modifications are as follows: (1) To mimic the attention modulation mechanism of V1 layer, a bottom-up saliency map is computed in the S1 layer of the HMAX model, which can support the initial feature extraction for memory processing; (2) To mimic the learning, clustering and short-term memory to long-term memory conversion abilities of V2 and IT, an unsupervised iterative clustering method is used to learn clusters with multiscale middle level patches, which are taken as long-term memory; (3) Inspired by the multiple feature encoding mode of the primate visual cortex, information including color, orientation, and spatial position are encoded in different layers of the HMAX model progressively. By adding a softmax layer at the top of the model, multiclass categorization experiments can be conducted, and the results on Caltech101 show that the enhanced model with a smaller memory size exhibits higher accuracy than the original HMAX model, and could also achieve better accuracy than other unsupervised feature learning methods in multiclass categorization task.

  8. Feed-Forward Control of Kite Power Systems

    International Nuclear Information System (INIS)

    Fechner, Uwe; Schmehl, Roland

    2014-01-01

    Kite power technology is a novel solution to harvest wind energy from altitudes that can not be reached by conventional wind turbines. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor. This paper describes a method to estimate the wind velocity at the kite using measurement data at the kite and at the ground. Focussing on a kite power system, which is converting the traction power of a kite in a pumping mode of operation, a reel-out speed predictor is presented for use in feed-forward control of the tether reel-out speed of the winch. The results show, that the developed feedforward controller improves the force control accuracy by a factor of two compared to the previously used feedback controller. This allows to use a higher set force during the reel-out phase which in turn increases the average power output by more than 4%. Due to its straightforward implementation and low computational requirements feedforward control is considered a promising technique for the reliable and efficient operation of traction-based kite power systems

  9. Fuzzy PID Feedback Control of Piezoelectric Actuator with Feedforward Compensation

    OpenAIRE

    Ziqiang Chi; Minping Jia; Qingsong Xu

    2014-01-01

    Piezoelectric actuator is widely used in the field of micro/nanopositioning. However, piezoelectric hysteresis introduces nonlinearity to the system, which is the major obstacle to achieve a precise positioning. In this paper, the Preisach model is employed to describe the hysteresis characteristic of piezoelectric actuator and an inverse Preisach model is developed to construct a feedforward controller. Considering that the analytical expression of inverse Preisach model is difficult to deri...

  10. Direct adaptive control using feedforward neural networks

    OpenAIRE

    Cajueiro, Daniel Oliveira; Hemerly, Elder Moreira

    2003-01-01

    ABSTRACT: This paper proposes a new scheme for direct neural adaptive control that works efficiently employing only one neural network, used for simultaneously identifying and controlling the plant. The idea behind this structure of adaptive control is to compensate the control input obtained by a conventional feedback controller. The neural network training process is carried out by using two different techniques: backpropagation and extended Kalman filter algorithm. Additionally, the conver...

  11. Feedforward Nonlinear Control Using Neural Gas Network

    OpenAIRE

    Machón-González, Iván; López-García, Hilario

    2017-01-01

    Nonlinear systems control is a main issue in control theory. Many developed applications suffer from a mathematical foundation not as general as the theory of linear systems. This paper proposes a control strategy of nonlinear systems with unknown dynamics by means of a set of local linear models obtained by a supervised neural gas network. The proposed approach takes advantage of the neural gas feature by which the algorithm yields a very robust clustering procedure. The direct model of the ...

  12. Aversive Learning and Appetitive Motivation Toggle Feed-Forward Inhibition in the Drosophila Mushroom Body.

    Science.gov (United States)

    Perisse, Emmanuel; Owald, David; Barnstedt, Oliver; Talbot, Clifford B; Huetteroth, Wolf; Waddell, Scott

    2016-06-01

    In Drosophila, negatively reinforcing dopaminergic neurons also provide the inhibitory control of satiety over appetitive memory expression. Here we show that aversive learning causes a persistent depression of the conditioned odor drive to two downstream feed-forward inhibitory GABAergic interneurons of the mushroom body, called MVP2, or mushroom body output neuron (MBON)-γ1pedc>α/β. However, MVP2 neuron output is only essential for expression of short-term aversive memory. Stimulating MVP2 neurons preferentially inhibits the odor-evoked activity of avoidance-directing MBONs and odor-driven avoidance behavior, whereas their inhibition enhances odor avoidance. In contrast, odor-evoked activity of MVP2 neurons is elevated in hungry flies, and their feed-forward inhibition is required for expression of appetitive memory at all times. Moreover, imposing MVP2 activity promotes inappropriate appetitive memory expression in food-satiated flies. Aversive learning and appetitive motivation therefore toggle alternate modes of a common feed-forward inhibitory MVP2 pathway to promote conditioned odor avoidance or approach. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  13. Linearizing feedforward/feedback attitude control

    Science.gov (United States)

    Paielli, Russell A.; Bach, Ralph E.

    1991-01-01

    An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

  14. On spatial spillover in feedforward and feedback noise control

    Science.gov (United States)

    Xie, Antai; Bernstein, Dennis

    2017-03-01

    Active feedback noise control for rejecting broadband disturbances must contend with the Bode integral constraint, which implies that suppression over some frequency range gives rise to amplification over another range at the performance microphone. This is called spectral spillover. The present paper deals with spatial spillover, which refers to the amplification of noise at locations where no microphone is located. A spatial spillover function is defined, which is valid for both feedforward and feedback control with scalar and vector control inputs. This function is numerically analyzed and measured experimentally. Obstructions are introduced in the acoustic space to investigate their effect on spatial spillover.

  15. Objective Model Selection for Identifying the Human Feedforward Response in Manual Control

    OpenAIRE

    Drop, F.M.; Pool, D.M.; van Paassen, M.M.; Mulder, M.; Bülthoff, Heinrich H.

    2017-01-01

    Realistic manual control tasks typically involve predictable target signals and random disturbances. The human controller (HC) is hypothesized to use a feedforward control strategy for target-following, in addition to feedback control for disturbance-rejection. Little is known about human feedforward control, partly because common system identification methods have difficulty in identifying whether, and (if so) how, the HC applies a feedforward strategy. In this paper, an identification proce...

  16. Notions of local controllability and optimal feedforward control for quantum systems

    International Nuclear Information System (INIS)

    Chakrabarti, Raj

    2011-01-01

    Local controllability is an essential concept for regulation and control of time-varying nonlinear dynamical systems; in the classical control logic it is at the foundation of neighboring optimal feedback and feedforward control. We introduce notions of local controllability suited to feedforward control of classical input disturbances in bilinear quantum systems evolving on projective spaces and Lie groups. Tests for local controllability based on a Gramian matrix analogous to the nonlinear local controllability Gramian, which allow assessment of which trajectories can be regulated by perturbative feedforward in the presence of classical input noise, are presented. These notions explicitly incorporate system bilinearity and the geometry of quantum states into the definition of local controllability of quantum systems. Associated feedforward strategies are described.

  17. Notions of local controllability and optimal feedforward control for quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarti, Raj, E-mail: rchakra@purdue.edu [School of Chemical Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2011-05-06

    Local controllability is an essential concept for regulation and control of time-varying nonlinear dynamical systems; in the classical control logic it is at the foundation of neighboring optimal feedback and feedforward control. We introduce notions of local controllability suited to feedforward control of classical input disturbances in bilinear quantum systems evolving on projective spaces and Lie groups. Tests for local controllability based on a Gramian matrix analogous to the nonlinear local controllability Gramian, which allow assessment of which trajectories can be regulated by perturbative feedforward in the presence of classical input noise, are presented. These notions explicitly incorporate system bilinearity and the geometry of quantum states into the definition of local controllability of quantum systems. Associated feedforward strategies are described.

  18. Feedforward motor control in developmental dyslexia and developmental coordination disorder: Does comorbidity matter?

    Science.gov (United States)

    Cignetti, Fabien; Vaugoyeau, Marianne; Fontan, Aurelie; Jover, Marianne; Livet, Marie-Odile; Hugonenq, Catherine; Audic, Frédérique; Chabrol, Brigitte; Assaiante, Christine

    2018-05-01

    Feedforward and online controls are two facets of predictive motor control from internal models, which is suspected to be impaired in learning disorders. We examined whether the feedforward component is affected in children (8-12 years) with developmental dyslexia (DD) and/or with developmental coordination disorder (DCD) compared to typically developing (TD) children. Children underwent a bimanual unloading paradigm during which a load supported to one arm, the postural arm, was either unexpectedly unloaded by a computer or voluntary unloaded by the subject with the other arm. All children showed a better stabilization (lower flexion) of the postural arm and an earlier inhibition of the arm flexors during voluntary unloading, indicating anticipation of unloading. Between-group comparisons of kinematics and electromyographic activity of the postural arm revealed that the difference during voluntary unloading was between DD-DCD children and the other groups, with the former showing a delayed inhibition of the flexor muscles. Deficit of the feedforward component of motor control may particularly apply to comorbid subtypes, here the DD-DCD subtype. The development of a comprehensive framework for motor performance deficits in children with learning disorders will be achieved only by dissociating key components of motor prediction and focusing on subtypes and comorbidities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Feedforward Coordinate Control of a Robotic Cell Injection Catheter.

    Science.gov (United States)

    Cheng, Weyland; Law, Peter K

    2017-08-01

    Remote and robotically actuated catheters are the stepping-stones toward autonomous catheters, where complex intravascular procedures may be performed with minimal intervention from a physician. This article proposes a concept for the positional, feedforward control of a robotically actuated cell injection catheter used for the injection of myogenic or undifferentiated stem cells into the myocardial infarct boundary zones of the left ventricle. The prototype for the catheter system was built upon a needle-based catheter with a single degree of deflection, a 3-D printed handle combined with actuators, and the Arduino microcontroller platform. A bench setup was used to mimic a left ventricle catheter procedure starting from the femoral artery. Using Matlab and the open-source video modeling tool Tracker, the planar coordinates ( y, z) of the catheter position were analyzed, and a feedforward control system was developed based on empirical models. Using the Student's t test with a sample size of 26, it was determined that for both the y- and z-axes, the mean discrepancy between the calibrated and theoretical coordinate values had no significant difference compared to the hypothetical value of µ = 0. The root mean square error of the calibrated coordinates also showed an 88% improvement in the z-axis and 31% improvement in the y-axis compared to the unmodified trial run. This proof of concept investigation leads to the possibility of further developing a feedfoward control system in vivo using catheters with omnidirectional deflection. Feedforward positional control allows for more flexibility in the design of an automated catheter system where problems such as systemic time delay may be a hindrance in instances requiring an immediate reaction.

  20. Neural networks for feedback feedforward nonlinear control systems.

    Science.gov (United States)

    Parisini, T; Zoppoli, R

    1994-01-01

    This paper deals with the problem of designing feedback feedforward control strategies to drive the state of a dynamic system (in general, nonlinear) so as to track any desired trajectory joining the points of given compact sets, while minimizing a certain cost function (in general, nonquadratic). Due to the generality of the problem, conventional methods are difficult to apply. Thus, an approximate solution is sought by constraining control strategies to take on the structure of multilayer feedforward neural networks. After discussing the approximation properties of neural control strategies, a particular neural architecture is presented, which is based on what has been called the "linear-structure preserving principle". The original functional problem is then reduced to a nonlinear programming one, and backpropagation is applied to derive the optimal values of the synaptic weights. Recursive equations to compute the gradient components are presented, which generalize the classical adjoint system equations of N-stage optimal control theory. Simulation results related to nonlinear nonquadratic problems show the effectiveness of the proposed method.

  1. Anticipatory synergy adjustments reflect individual performance of feedforward force control.

    Science.gov (United States)

    Togo, Shunta; Imamizu, Hiroshi

    2016-10-06

    We grasp and dexterously manipulate an object through multi-digit synergy. In the framework of the uncontrolled manifold (UCM) hypothesis, multi-digit synergy is defined as the coordinated control mechanism of fingers to stabilize variable important for task success, e.g., total force. Previous studies reported anticipatory synergy adjustments (ASAs) that correspond to a drop of the synergy index before a quick change of the total force. The present study compared ASA's properties with individual performances of feedforward force control to investigate a relationship of those. Subjects performed a total finger force production task that consisted of a phase in which subjects tracked target line with visual information and a phase in which subjects produced total force pulse without visual information. We quantified their multi-digit synergy through UCM analysis and observed significant ASAs before producing total force pulse. The time of the ASA initiation and the magnitude of the drop of the synergy index were significantly correlated with the error of force pulse, but not with the tracking error. Almost all subjects showed a significant increase of the variance that affected the total force. Our study directly showed that ASA reflects the individual performance of feedforward force control independently of target-tracking performance and suggests that the multi-digit synergy was weakened to adjust the multi-digit movements based on a prediction error so as to reduce the future error. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. A Feed-forward Geometrical Compensation and Adaptive Feedback Control Algorithm for Hydraulic Robot Manipulators

    DEFF Research Database (Denmark)

    Conrad, Finn; Zhou, Jianjun; Gabacik, Andrzej

    1998-01-01

    Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control.......Invited paper presents a new control algorithm based on feed-forward geometrical compensation strategy combined with adaptive feedback control....

  3. Neural network based approach for tuning of SNS feedback and feedforward controllers

    International Nuclear Information System (INIS)

    Kwon, Sung-Il; Prokop, Mark S.; Regan, Amy H.

    2002-01-01

    The primary controllers in the SNS low level RF system are proportional-integral (PI) feedback controllers. To obtain the best performance of the linac control systems, approximately 91 individual PI controller gains should be optimally tuned. Tuning is time consuming and requires automation. In this paper, a neural network is used for the controller gain tuning. A neural network can approximate any continuous mapping through learning. In a sense, the cavity loop PI controller is a continuous mapping of the tracking error and its one-sample-delay inputs to the controller output. Also, monotonic cavity output with respect to its input makes knowing the detailed parameters of the cavity unnecessary. Hence the PI controller is a prime candidate for approximation through a neural network. Using mean square error minimization to train the neural network along with a continuous mapping of appropriate weights, optimally tuned PI controller gains can be determined. The same neural network approximation property is also applied to enhance the adaptive feedforward controller performance. This is done by adjusting the feedforward controller gains, forgetting factor, and learning ratio. Lastly, the automation of the tuning procedure data measurement, neural network training, tuning and loading the controller gain to the DSP is addressed.

  4. Learning to breathe? Feedforward regulation of the inspiratory motor drive.

    Science.gov (United States)

    Zaman, Jonas; Van den Bergh, Omer; Fannes, Stien; Van Diest, Ilse

    2014-09-15

    Claims have been made that breathing is in part controlled by feedforward regulation. In a classical conditioning paradigm, we investigated anticipatory increases in the inspiratory motor drive as measured by inspiratory occlusion pressure (P100). In an acquisition phase, an experimental group (N=13) received a low-intensity resistive load (5 cmH2O/l/s) for three consecutive inspirations as Conditioned Stimulus (CS), preceding a load of a stronger intensity (20 cmH2O/l/s) for three subsequent inspirations as unconditioned stimulus (US). The control group (N=11) received the low-intensity load for six consecutive inspirations. In a post-acquisition phase both groups received the low-intensity load for six consecutive inspirations. Responses to the CS-load only differed between groups during the first acquisition trials and a strong increase in P100 during the US-loads was observed, which habituated across the experiment. Our results suggest that the disruption caused by adding low to moderate resistive loads to three consecutive inspirations results in a short-lasting anticipatory increase in inspiratory motor drive. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control

    Directory of Open Access Journals (Sweden)

    René Felix Reinhart

    2017-02-01

    Full Text Available Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  6. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control.

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-02-08

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.

  7. Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control

    Science.gov (United States)

    Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob

    2017-01-01

    Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms. PMID:28208697

  8. Enhancing feedforward controller tuning via instrumental variables: with application to nanopositioning

    NARCIS (Netherlands)

    Boeren, F.A.J.; Bruijnen, D.J.H.; Oomen, T.A.E.

    2017-01-01

    Feedforward control enables high performance of a motion system. Recently, algorithms have been proposed that eliminate bias errors in tuning the parameters of a feedforward controller. The aim of this paper is to develop a new algorithm that combines unbiased parameter estimates with optimal

  9. Self-tuning MIMO disturbance feedforward control for active hard-mounted vibration isolators

    NARCIS (Netherlands)

    Beijen, M.A.; Heertjes, M.F.; van Dijk, J.W.; Hakvoort, W.B.J.

    2018-01-01

    This paper proposes a multi-input multi-output (MIMO) disturbance feedforward controller to improve the rejection of floor vibrations in active vibration isolation systems for high-precision machinery. To minimize loss of performance due to model uncertainties, the feedforward controller is

  10. Self-tuning disturbance feedforward control with drift prevention for air mount systems

    NARCIS (Netherlands)

    Beijen, M.A.; Heertjes, M.F.; Butler, H.

    2015-01-01

    A MIMO disturbance feedforward control strategy is presented to isolate an industrial active vibration isolation system with air mounts from broadband floor vibrations. The feedforward controller compensates for the static damping and stiffness of the air mount suspension, leading to significant

  11. Experimental evaluation of feedforward control for the trajectory tracking of power in nuclear reactors

    International Nuclear Information System (INIS)

    Lau, S.H.; Bernard, J.A.; Lanning, D.D.

    1991-01-01

    This paper reports on an experimental comparison of feedforward control techniques for the trajectory-tracking of neutronic power was performed on the 5-MWt MIT Research Reactor. Included in the comparison were pure feedforward control in which the actuator signal is found solely by processing a demanded output through a system model, hybrid feedforward/feedback control in which the actuator signal is obtained by summing feedforward and feedback components, and period-generated control in which feedback is used to update the demand trajectory prior to its being processed through the system model for calculation of the actuator signal. This latter approach was found to be the most effective. In addition to the experimental results, discussions are given of both the rationale for model-based, feedforward control and the designs of the various controllers

  12. Protecting nonlocality of multipartite states by feed-forward control

    Science.gov (United States)

    Li, Xiao-Gang; Zou, Jian; Shao, Bin

    2018-06-01

    Nonlocality is a useful resource in quantum communication and quantum information processing. In practical quantum communication, multipartite entangled states must be distributed between different users in different places through a channel. However, the channel is usually inevitably disturbed by the environment in quantum state distribution processing and then the nonlocality of states will be weakened and even lost. In this paper, we use a feed-forward control scheme to protect the nonlocality of the Bell and GHZ states against dissipation. We find that this protection scheme is very effective, specifically, for the Bell state, we can increase the noise threshold from 0.5 to 0.98, and for GHZ state from 0.29 to 0.96. And we also find that entanglement is relatively easier to be protected than nonlocality. For our scheme, protecting entanglement is equivalent to protecting the state in the case of Bell state, while protecting nonlocality is not.

  13. Effects of controlled element dynamics on human feedforward behavior in ramp-tracking tasks.

    Science.gov (United States)

    Laurense, Vincent A; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus René M; Mulder, Max

    2015-02-01

    In real-life manual control tasks, human controllers are often required to follow a visible and predictable reference signal, enabling them to use feedforward control actions in conjunction with feedback actions that compensate for errors. Little is known about human control behavior in these situations. This paper investigates how humans adapt their feedforward control dynamics to the controlled element dynamics in a combined ramp-tracking and disturbance-rejection task. A human-in-the-loop experiment is performed with a pursuit display and vehicle-like controlled elements, ranging from a single integrator through second-order systems with a break frequency at either 3, 2, or 1 rad/s, to a double integrator. Because the potential benefits of feedforward control increase with steeper ramp segments in the target signal, three steepness levels are tested to investigate their possible effect on feedforward control with the various controlled elements. Analyses with four novel models of the operator, fitted to time-domain data, reveal feedforward control for all tested controlled elements and both (nonzero) tested levels of ramp steepness. For the range of controlled element dynamics investigated, it is found that humans adapt to these dynamics in their feedforward response, with a close to perfect inversion of the controlled element dynamics. No significant effects of ramp steepness on the feedforward model parameters are found.

  14. Feed-Forward Neural Networks and Minimal Search Space Learning

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman

    2005-01-01

    Roč. 4, č. 12 (2005), s. 1867-1872 ISSN 1109-2750 R&D Projects: GA ČR GA201/05/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : search space * feed-forward networks * genetic algorithm s Subject RIV: BA - General Mathematics

  15. Self-tuning MIMO disturbance feedforward control for active hard-mounted vibration isolators

    NARCIS (Netherlands)

    Beijen, M.A.; Heertjes, M.F.; Van Dijk, J.; Hakvoort, W. B.J.

    2018-01-01

    © 2017 Elsevier Ltd This paper proposes a multi-input multi-output (MIMO) disturbance feedforward controller to improve the rejection of floor vibrations in active vibration isolation systems for high-precision machinery. To minimize loss of performance due to model uncertainties, the feedforward

  16. Reference-tracking feedforward control design for linear dynamical systems through signal decomposition

    NARCIS (Netherlands)

    Kasemsinsup, Y.; Romagnoli, R.; Heertjes, M.F.; Weiland, S.; Butler, H.

    2017-01-01

    In this work, we study a novel approach towards the reference-tracking feedforward control design for linear dynamical systems. By utilizing the superposition property and exploiting signal decomposition together with a quadratic optimization process, we obtain a feedforward design procedure for

  17. Impaired Feedforward Control and Enhanced Feedback Control of Speech in Patients with Cerebellar Degeneration.

    Science.gov (United States)

    Parrell, Benjamin; Agnew, Zarinah; Nagarajan, Srikantan; Houde, John; Ivry, Richard B

    2017-09-20

    The cerebellum has been hypothesized to form a crucial part of the speech motor control network. Evidence for this comes from patients with cerebellar damage, who exhibit a variety of speech deficits, as well as imaging studies showing cerebellar activation during speech production in healthy individuals. To date, the precise role of the cerebellum in speech motor control remains unclear, as it has been implicated in both anticipatory (feedforward) and reactive (feedback) control. Here, we assess both anticipatory and reactive aspects of speech motor control, comparing the performance of patients with cerebellar degeneration and matched controls. Experiment 1 tested feedforward control by examining speech adaptation across trials in response to a consistent perturbation of auditory feedback. Experiment 2 tested feedback control, examining online corrections in response to inconsistent perturbations of auditory feedback. Both male and female patients and controls were tested. The patients were impaired in adapting their feedforward control system relative to controls, exhibiting an attenuated anticipatory response to the perturbation. In contrast, the patients produced even larger compensatory responses than controls, suggesting an increased reliance on sensory feedback to guide speech articulation in this population. Together, these results suggest that the cerebellum is crucial for maintaining accurate feedforward control of speech, but relatively uninvolved in feedback control. SIGNIFICANCE STATEMENT Speech motor control is a complex activity that is thought to rely on both predictive, feedforward control as well as reactive, feedback control. While the cerebellum has been shown to be part of the speech motor control network, its functional contribution to feedback and feedforward control remains controversial. Here, we use real-time auditory perturbations of speech to show that patients with cerebellar degeneration are impaired in adapting feedforward control of

  18. Slewing maneuvers and vibration control of space structures by feedforward/feedback moment-gyro controls

    Science.gov (United States)

    Yang, Li-Farn; Mikulas, Martin M., Jr.; Park, K. C.; Su, Renjeng

    1993-01-01

    This paper presents a moment-gyro control approach to the maneuver and vibration suppression of a flexible truss arm undergoing a constant slewing motion. The overall slewing motion is triggered by a feedforward input, and a companion feedback controller is employed to augment the feedforward input and subsequently to control vibrations. The feedforward input for the given motion requirement is determined from the combined CMG (Control Momentum Gyro) devices and the desired rigid-body motion. The rigid-body dynamic model has enabled us to identify the attendant CMG momentum saturation constraints. The task for vibration control is carried out in two stages; first in the search of a suitable CMG placement along the beam span for various slewing maneuvers, and subsequently in the development of Liapunov-based control algorithms for CMG spin-stabilization. Both analytical and numerical results are presented to show the effectiveness of the present approach.

  19. Frequency-weighted feedforward control for dynamic compensation in ionic polymer–metal composite actuators

    International Nuclear Information System (INIS)

    Shan, Yingfeng; Leang, Kam K

    2009-01-01

    Ionic polymer–metal composites (IPMCs) are innovative materials that offer combined sensing and actuating ability in lightweight and flexible package. IPMCs have been exploited in robotics and a wide variety of biomedical devices, for example, as sensors for teleoperation, as actuators for positioning in active endoscopy, as fins for propelling aquatic robots, and as an injector for drug delivery. In the actuation mode, one of the main challenges is precise position control. In particular, IPMC actuators exhibit relaxation behavior and nonlinearities; and at relatively high operating frequencies dynamic effects limit accuracy and positioning bandwidth. A frequency-weighted feedforward controller is designed to account for the IPMC's structural dynamics to enable fast positioning. The control method is applied to a custom-made Nafion-based IPMC actuator. The controller takes into account the magnitude of the control input to avoid generating excessively large voltages which can damage the IPMC actuator. To account for unmodeled effects not captured by the dynamics model, a feedback controller is integrated with the feedforward controller. Experimental results show a significant improvement in the tracking performance when feedforward control is used. For instance, the feedforward controller shows over 75% reduction in the tracking error compared to the case without feedforward compensation. Finally, the integrated feedforward and feedback control system reduces the tracking error to less than 10% for tracking an 18-Hz triangle-like trajectory. Some of the advantages of feedforward control as well as its limitations are also discussed

  20. Performance assessment of static lead-lag feedforward controllers for disturbance rejection in PID control loops.

    Science.gov (United States)

    Yu, Zhenpeng; Wang, Jiandong

    2016-09-01

    This paper assesses the performance of feedforward controllers for disturbance rejection in univariate feedback plus feedforward control loops. The structures of feedback and feedforward controllers are confined to proportional-integral-derivative and static-lead-lag forms, respectively, and the effects of feedback controllers are not considered. The integral squared error (ISE) and total squared variation (TSV) are used as performance metrics. A performance index is formulated by comparing the current ISE and TSV metrics to their own lower bounds as performance benchmarks. A controller performance assessment (CPA) method is proposed to calculate the performance index from measurements. The proposed CPA method resolves two critical limitations in the existing CPA methods, in order to be consistent with industrial scenarios. Numerical and experimental examples illustrate the effectiveness of the obtained results. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Objective Model Selection for Identifying the Human Feedforward Response in Manual Control.

    Science.gov (United States)

    Drop, Frank M; Pool, Daan M; van Paassen, Marinus Rene M; Mulder, Max; Bulthoff, Heinrich H

    2018-01-01

    Realistic manual control tasks typically involve predictable target signals and random disturbances. The human controller (HC) is hypothesized to use a feedforward control strategy for target-following, in addition to feedback control for disturbance-rejection. Little is known about human feedforward control, partly because common system identification methods have difficulty in identifying whether, and (if so) how, the HC applies a feedforward strategy. In this paper, an identification procedure is presented that aims at an objective model selection for identifying the human feedforward response, using linear time-invariant autoregressive with exogenous input models. A new model selection criterion is proposed to decide on the model order (number of parameters) and the presence of feedforward in addition to feedback. For a range of typical control tasks, it is shown by means of Monte Carlo computer simulations that the classical Bayesian information criterion (BIC) leads to selecting models that contain a feedforward path from data generated by a pure feedback model: "false-positive" feedforward detection. To eliminate these false-positives, the modified BIC includes an additional penalty on model complexity. The appropriate weighting is found through computer simulations with a hypothesized HC model prior to performing a tracking experiment. Experimental human-in-the-loop data will be considered in future work. With appropriate weighting, the method correctly identifies the HC dynamics in a wide range of control tasks, without false-positive results.

  2. NREL Advances Feedforward Control in Turbines (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2015-01-01

    This NREL Highlight is being produced for the 2015 February Alliance S&T Board meeting, and describes research that uses lidar and feedforward algorithms to improve rotor speed regulation and reduce costs of maintenance and operation.

  3. Design and Validation of Optimized Feedforward with Robust Feedback Control of a Nuclear Reactor

    International Nuclear Information System (INIS)

    Shaffer, Roman; He Weidong; Edwards, Robert M.

    2004-01-01

    Design applications for robust feedback and optimized feedforward control, with confirming results from experiments conducted on the Pennsylvania State University TRIGA reactor, are presented. The combination of feedforward and feedback control techniques complement each other in that robust control offers guaranteed closed-loop stability in the presence of uncertainties, and optimized feedforward offers an approach to achieving performance that is sometimes limited by overly conservative robust feedback control. The design approach taken in this work combines these techniques by first designing robust feedback control. Alternative methods for specifying a low-order linear model and uncertainty specifications, while seeking as much performance as possible, are discussed and evaluated. To achieve desired performance characteristics, the optimized feedforward control is then computed by using the nominal nonlinear plant model that incorporates the robust feedback control

  4. Feedforward-feedback control of dissolved oxygen concentration in a predenitrification system.

    Science.gov (United States)

    Yong, Ma; Yongzhen, Peng; Shuying, Wang

    2005-07-01

    As the largest single energy-consuming component in most biological wastewater treatment systems, aeration control is of great interest from the point of view of saving energy and improving wastewater treatment plant efficiency. In this paper, three different strategies, including conventional constant dissolved oxygen (DO) set-point control, cascade DO set-point control, and feedforward-feedback DO set-point control were evaluated using the denitrification layout of the IWA simulation benchmark. Simulation studies showed that the feedforward-feedback DO set-point control strategy was better than the other control strategies at meeting the effluent standards and reducing operational costs. The control strategy works primarily by feedforward control based on an ammonium sensor located at the head of the aerobic process. It has an important advantage over effluent measurements in that there is no (or only a very short) time delay for information; feedforward control was combined with slow feedback control to compensate for model approximations. The feedforward-feedback DO control was implemented in a lab-scale wastewater treatment plant for a period of 60 days. Compared to operation with constant DO concentration, the required airflow could be reduced by up to 8-15% by employing the feedforward-feedback DO-control strategy, and the effluent ammonia concentration could be reduced by up to 15-25%. This control strategy can be expected to be accepted by the operating personnel in wastewater treatment plants.

  5. A self-adaptive feedforward rf control system for linacs

    International Nuclear Information System (INIS)

    Zhang Renshan; Ben-Zvi, I.; Xie Jialin

    1993-01-01

    The design and performance of a self-adaptive feedforward rf control system are reported. The system was built for the linac of the Accelerator Test Facility (ATF) at Brookhaven National Laboratory. Variables of time along the linac macropulse, such as field or phase are discretized and represented as vectors. Upon turn-on or after a large change in the operating-point, the control system acquires the response of the system to test signal vectors and generates a linearized system response matrix. During operation an error vector is generated by comparing the linac variable vectors and a target vector. The error vector is multiplied by the inverse of the system's matrix to generate a correction vector is added to an operating point vector. This control system can be used to control a klystron to produce flat rf amplitude and phase pulses, to control a rf cavity to reduce the rf field fluctuation, and to compensate the energy spread among bunches in a rf linac. Beam loading effects can be corrected and a programmed ramp can be produced. The performance of the control system has been evaluated on the control of a klystron's output as well as an rf cavity. Both amplitude and phase have been regulated simultaneously. In initial tests, the rf output from a klystron has been regulated to an amplitude fluctuation of less than ±0.3% and phase variation of less than ±0.6deg. The rf field of the ATF's photo-cathode microwave gun cavity has been regulated to ±5% in amplitude and simultaneously to ±1deg in phase. Regulating just the rf field amplitude in the rf gun cavity, we have achieved amplitude fluctuation of less than ±2%. (orig.)

  6. A fast and accurate online sequential learning algorithm for feedforward networks.

    Science.gov (United States)

    Liang, Nan-Ying; Huang, Guang-Bin; Saratchandran, P; Sundararajan, N

    2006-11-01

    In this paper, we develop an online sequential learning algorithm for single hidden layer feedforward networks (SLFNs) with additive or radial basis function (RBF) hidden nodes in a unified framework. The algorithm is referred to as online sequential extreme learning machine (OS-ELM) and can learn data one-by-one or chunk-by-chunk (a block of data) with fixed or varying chunk size. The activation functions for additive nodes in OS-ELM can be any bounded nonconstant piecewise continuous functions and the activation functions for RBF nodes can be any integrable piecewise continuous functions. In OS-ELM, the parameters of hidden nodes (the input weights and biases of additive nodes or the centers and impact factors of RBF nodes) are randomly selected and the output weights are analytically determined based on the sequentially arriving data. The algorithm uses the ideas of ELM of Huang et al. developed for batch learning which has been shown to be extremely fast with generalization performance better than other batch training methods. Apart from selecting the number of hidden nodes, no other control parameters have to be manually chosen. Detailed performance comparison of OS-ELM is done with other popular sequential learning algorithms on benchmark problems drawn from the regression, classification and time series prediction areas. The results show that the OS-ELM is faster than the other sequential algorithms and produces better generalization performance.

  7. Adaptive Feed-Forward Control of Low Frequency Interior Noise

    CERN Document Server

    Kletschkowski, Thomas

    2012-01-01

    This book presents a mechatronic approach to Active Noise Control (ANC). It describes the required elements of system theory, engineering acoustics, electroacoustics and adaptive signal processing in a comprehensive, consistent and systematic manner using a unified notation. Furthermore, it includes a design methodology for ANC-systems, explains its application and describes tools to be used for ANC-system design. From the research point of view, the book presents new approaches to sound source localization in weakly damped interiors. One is based on the inverse finite element method, the other is based on a sound intensity probe with an active free field. Furthermore, a prototype of an ANC-system able to reach the physical limits of local (feed-forward) ANC is described. This is one example for applied research in ANC-system design. Other examples are given for (i) local ANC in a semi-enclosed subspace of an aircraft cargo hold and (ii) for the combination of audio entertainment with ANC.

  8. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    Directory of Open Access Journals (Sweden)

    Miaolei Zhou

    Full Text Available As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  9. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    Science.gov (United States)

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  10. Feedforward neural control of toe walking in humans.

    Science.gov (United States)

    Lorentzen, Jakob; Willerslev-Olsen, Maria; Hüche Larsen, Helle; Svane, Christian; Forman, Christian; Frisk, Rasmus; Farmer, Simon Francis; Kersting, Uwe; Nielsen, Jens Bo

    2018-03-23

    Activation of ankle muscles at ground contact during toe walking is unaltered when sensory feedback is blocked or the ground is suddenly dropped. Responses in the soleus muscle to transcranial magnetic stimulation, but not peripheral nerve stimulation, are facilitated at ground contact during toe walking. We argue that toe walking is supported by feedforward control at ground contact. Toe walking requires careful control of the ankle muscles in order to absorb the impact of ground contact and maintain a stable position of the joint. The present study aimed to clarify the peripheral and central neural mechanisms involved. Fifteen healthy adults walked on a treadmill (3.0 km h -1 ). Tibialis anterior (TA) and soleus (Sol) EMG, knee and ankle joint angles, and gastrocnemius-soleus muscle fascicle lengths were recorded. Peripheral and central contributions to the EMG activity were assessed by afferent blockade, H-reflex testing, transcranial magnetic brain stimulation (TMS) and sudden unloading of the planter flexor muscle-tendon complex. Sol EMG activity started prior to ground contact and remained high throughout stance. TA EMG activity, which is normally seen around ground contact during heel strike walking, was absent. Although stretch of the Achilles tendon-muscle complex was observed after ground contact, this was not associated with lengthening of the ankle plantar flexor muscle fascicles. Sol EMG around ground contact was not affected by ischaemic blockade of large-diameter sensory afferents, or the sudden removal of ground support shortly after toe contact. Soleus motor-evoked potentials elicited by TMS were facilitated immediately after ground contact, whereas Sol H-reflexes were not. These findings indicate that at the crucial time of ankle stabilization following ground contact, toe walking is governed by centrally mediated motor drive rather than sensory driven reflex mechanisms. These findings have implications for our understanding of the control of

  11. MIMO FIR feedforward design for zero error tracking control

    NARCIS (Netherlands)

    Heertjes, M.F.; Bruijnen, D.J.H.

    2014-01-01

    This paper discusses a multi-input multi-output (MIMO) finite impulse response (FIR) feedforward design. The design is intended for systems that have (non-)minimum phase zeros in the plant description. The zeros of the plant (either minimum or non-minimum phase) are used in the shaping of the

  12. Hybrid feedback feedforward: An efficient design of adaptive neural network control.

    Science.gov (United States)

    Pan, Yongping; Liu, Yiqi; Xu, Bin; Yu, Haoyong

    2016-04-01

    This paper presents an efficient hybrid feedback feedforward (HFF) adaptive approximation-based control (AAC) strategy for a class of uncertain Euler-Lagrange systems. The control structure includes a proportional-derivative (PD) control term in the feedback loop and a radial-basis-function (RBF) neural network (NN) in the feedforward loop, which mimics the human motor learning control mechanism. At the presence of discontinuous friction, a sigmoid-jump-function NN is incorporated to improve control performance. The major difference of the proposed HFF-AAC design from the traditional feedback AAC (FB-AAC) design is that only desired outputs, rather than both tracking errors and desired outputs, are applied as RBF-NN inputs. Yet, such a slight modification leads to several attractive properties of HFF-AAC, including the convenient choice of an approximation domain, the decrease of the number of RBF-NN inputs, and semiglobal practical asymptotic stability dominated by control gains. Compared with previous HFF-AAC approaches, the proposed approach possesses the following two distinctive features: (i) all above attractive properties are achieved by a much simpler control scheme; (ii) the bounds of plant uncertainties are not required to be known. Consequently, the proposed approach guarantees a minimum configuration of the control structure and a minimum requirement of plant knowledge for the AAC design, which leads to a sharp decrease of implementation cost in terms of hardware selection, algorithm realization and system debugging. Simulation results have demonstrated that the proposed HFF-AAC can perform as good as or even better than the traditional FB-AAC under much simpler control synthesis and much lower computational cost. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Feedforward control of a closed-loop piezoelectric translation stage for atomic force microscope.

    Science.gov (United States)

    Li, Yang; Bechhoefer, John

    2007-01-01

    Simple feedforward ideas are shown to lead to a nearly tenfold increase in the effective bandwidth of a closed-loop piezoelectric positioning stage used in scanning probe microscopy. If the desired control signal is known in advance, the feedforward filter can be acausal: the information about the future can be used to make the output of the stage have almost no phase lag with respect to the input. This keeps in register the images assembled from right and left scans. We discuss the design constraints imposed by the need for the feedforward filter to work robustly under a variety of circumstances. Because the feedforward needs only to modify the input signal, it can be added to any piezoelectric stage, whether closed or open loop.

  14. A combined stochastic feedforward and feedback control design methodology with application to autoland design

    Science.gov (United States)

    Halyo, Nesim

    1987-01-01

    A combined stochastic feedforward and feedback control design methodology was developed. The objective of the feedforward control law is to track the commanded trajectory, whereas the feedback control law tries to maintain the plant state near the desired trajectory in the presence of disturbances and uncertainties about the plant. The feedforward control law design is formulated as a stochastic optimization problem and is embedded into the stochastic output feedback problem where the plant contains unstable and uncontrollable modes. An algorithm to compute the optimal feedforward is developed. In this approach, the use of error integral feedback, dynamic compensation, control rate command structures are an integral part of the methodology. An incremental implementation is recommended. Results on the eigenvalues of the implemented versus designed control laws are presented. The stochastic feedforward/feedback control methodology is used to design a digital automatic landing system for the ATOPS Research Vehicle, a Boeing 737-100 aircraft. The system control modes include localizer and glideslope capture and track, and flare to touchdown. Results of a detailed nonlinear simulation of the digital control laws, actuator systems, and aircraft aerodynamics are presented.

  15. An Introduction to Feedforward Control of Electric Drives

    Directory of Open Access Journals (Sweden)

    Michal Malek

    2010-01-01

    Full Text Available The field of electric drives provides a broad spectrum of applications with different power demands, utilized motor types or different environment requirements. Lot of applications are characterized by very high demands on accuracy and dynamic properties and have attribute of servo applications. This means that they are fully subordinate to wishes of the master. This rigorous condition is fulfill (with tolerated errors mainly thanks to the feedforward utilization.

  16. Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications

    International Nuclear Information System (INIS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich

    2015-01-01

    This paper presents the control system design for a piezoelectric actuator (PEA) for a high-speed trajectory scanning application. First nonlinear hysteresis is compensated for by using the Maxwell resistive capacitor model. Then the linear dynamics of the hysteresis-compensated piezoelectric actuator are identified. A proportional plus integral (PI) controller is designed based on the linear system, enhanced by feedforward hysteresis compensation. It is found that the feedback controller does not always improve tracking accuracy. When the input frequency exceeds a certain value, feedforward control only may result in better control performance. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach. (paper)

  17. Combined feedforward and feedback control of a redundant, nonlinear, dynamic musculoskeletal system.

    Science.gov (United States)

    Blana, Dimitra; Kirsch, Robert F; Chadwick, Edward K

    2009-05-01

    A functional electrical stimulation controller is presented that uses a combination of feedforward and feedback for arm control in high-level injury. The feedforward controller generates the muscle activations nominally required for desired movements, and the feedback controller corrects for errors caused by muscle fatigue and external disturbances. The feedforward controller is an artificial neural network (ANN) which approximates the inverse dynamics of the arm. The feedback loop includes a PID controller in series with a second ANN representing the nonlinear properties and biomechanical interactions of muscles and joints. The controller was designed and tested using a two-joint musculoskeletal model of the arm that includes four mono-articular and two bi-articular muscles. Its performance during goal-oriented movements of varying amplitudes and durations showed a tracking error of less than 4 degrees in ideal conditions, and less than 10 degrees even in the case of considerable fatigue and external disturbances.

  18. Robust wide-range control of nuclear reactors by using the feedforward-feedback concept

    International Nuclear Information System (INIS)

    Weng, C.K.; Edwards, R.M.; Ray, A.

    1994-01-01

    A robust feedforward-feedback controller is proposed for wide-range operations of nuclear reactors. This control structure provides (a) optimized performance over a wide operating range resulting form the feedforward element and (b) guaranteed robust stability and performance resulting from the feedback element. The feedforward control law is synthesized via nonlinear programming, which generates an optimal control sequence over a finite-time horizon under specified constraints. The feedback control is synthesized via the structured singular value μ approach to guarantee robustness in the presence of disturbances and modeling uncertainties. The results of simulation experiments are presented to demonstrate efficacy of the proposed control structure for a large rapid power reduction to avoid unnecessary plant trips

  19. Dynamic Optimization of Feedforward Automatic Gauge Control Based on Extended Kalman Filter

    Institute of Scientific and Technical Information of China (English)

    YANG Bin-hu; YANG Wei-dong; CHEN Lian-gui; QU Lei

    2008-01-01

    Automatic gauge control is an essentially nonlinear process varying with time delay, and stochastically varying input and process noise always influence the target gauge control accuracy. To improve the control capability of feedforward automatic gauge control, Kalman filter was employed to filter the noise signal transferred from one stand to another. The linearized matrix that the Kalman filter algorithm needed was concluded; thus, the feedforward automatic gauge control architecture was dynamically optimized. The theoretical analyses and simulation show that the proposed algorithm is reasonable and effective.

  20. A feedforward IMC structure for controlling the charging temperature of a TES system of a solar cooker

    International Nuclear Information System (INIS)

    Mawire, A.; McPherson, M.

    2008-01-01

    A feedforward internal model control (IMC) structure for controlling and maintaining the outlet charging temperature of a thermal energy storage (TES) system of a solar cooker is presented. The TES system consists of a packed pebble bed in thermal contact with a heat transfer oil contained in a storage tank. An electrical hot plate simulates the collector/concentrator which heats up the oil circulating in a hollow copper spiral coil thus charging the storage. A model for the collector/concentrator system is developed to enable simulation of the feedforward IMC structure. Using a Simulink block model, the simulation results reveal that a feedforward IMC structure performs better than a feedforward structure. The feedforward IMC structure is tested experimentally and the performance of the control structure is acceptable within a few degrees of the set temperatures. Experimental results are also compared with the simulation results. The simulated responses are found to relate closely to the experimental ones and any discrepancies between the two are discussed. Furthermore, the feedforward IMC structure is also compared experimentally with a combined feedforward and PID feedback structure. Results of the comparison indicate that the feedforward IMC structure performs better than the combined feedforward and PID feedback structure. The thermal profile of the storage during the charging experiment with the feedforward IMC structure is also presented and the results obtained from the storage profile indicate that the storage tank is thermally stratified

  1. A novel controller for bipedal locomotion integrating feed-forward and feedback mechanisms

    NARCIS (Netherlands)

    Xiong, Xiaofeng; Sartori, Massimo; Dosen, Strahinja; González-Vargas, José; Wörgötter, Florentin; Farina, Dario; Ibanez, J.; González-Vargas, J.; Azorin, J.M.; Akay, M.; Pons, J.L.

    2017-01-01

    It has been recognized that bipedal locomotion is controlled using feed-forward (e.g., patterned) and feedback (e.g., reflex) control schemes. However, most current controllers fail to integrate the two schemes to simplify speed control of bipedal locomotion. To solve this problem, we here propose a

  2. Movement goals and feedback and feedforward control mechanisms in speech production.

    Science.gov (United States)

    Perkell, Joseph S

    2012-09-01

    Studies of speech motor control are described that support a theoretical framework in which fundamental control variables for phonemic movements are multi-dimensional regions in auditory and somatosensory spaces. Auditory feedback is used to acquire and maintain auditory goals and in the development and function of feedback and feedforward control mechanisms. Several lines of evidence support the idea that speakers with more acute sensory discrimination acquire more distinct goal regions and therefore produce speech sounds with greater contrast. Feedback modification findings indicate that fluently produced sound sequences are encoded as feedforward commands, and feedback control serves to correct mismatches between expected and produced sensory consequences.

  3. Support surface related changes in feedforward and feedback control of standing posture.

    Science.gov (United States)

    Mohapatra, Sambit; Kukkar, Komal K; Aruin, Alexander S

    2014-02-01

    The aim of the study was to investigate the effect of different support surfaces on feedforward and feedback components of postural control. Nine healthy subjects were exposed to external perturbations applied to their shoulders while standing on a rigid platform, foam, and wobble board with eyes open or closed. Electrical activity of nine trunk and leg muscles and displacements of the center of pressure were recorded and analyzed during the time frames typical of feedforward and feedback postural adjustments. Feedforward control of posture was characterized by earlier activation of anterior muscles when the subjects stood on foam compared to a wobble board or a firm surface. In addition, the magnitude of feedforward muscle activity was the largest when the foam was used. During the feedback control, anterior muscles were activated prior to posterior muscles irrespective of the nature of surface. Moreover, the largest muscle activity was seen when the supporting surface was foam. Maximum CoP displacement occurred when subjects were standing on a rigid surface. Altering support surface affects both feedforward and feedback components of postural control. This information should be taken into consideration in planning rehabilitation interventions geared towards improvement of balance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Single-hidden-layer feed-forward quantum neural network based on Grover learning.

    Science.gov (United States)

    Liu, Cheng-Yi; Chen, Chein; Chang, Ching-Ter; Shih, Lun-Min

    2013-09-01

    In this paper, a novel single-hidden-layer feed-forward quantum neural network model is proposed based on some concepts and principles in the quantum theory. By combining the quantum mechanism with the feed-forward neural network, we defined quantum hidden neurons and connected quantum weights, and used them as the fundamental information processing unit in a single-hidden-layer feed-forward neural network. The quantum neurons make a wide range of nonlinear functions serve as the activation functions in the hidden layer of the network, and the Grover searching algorithm outstands the optimal parameter setting iteratively and thus makes very efficient neural network learning possible. The quantum neuron and weights, along with a Grover searching algorithm based learning, result in a novel and efficient neural network characteristic of reduced network, high efficient training and prospect application in future. Some simulations are taken to investigate the performance of the proposed quantum network and the result show that it can achieve accurate learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Fixed structure feedforward controller design exploiting iterative trials: application to a wafer stage and a desktop printer

    NARCIS (Netherlands)

    Meulen, van der S.H.; Tousain, R.L.; Bosgra, O.H.

    2008-01-01

    In this paper, the feedforward controller design problem for high-precision electromechanical servo systems that execute finite time tasks is addressed. The presented procedure combines the selection of the fixed structure of the feedforward controller and the optimization of the controller

  6. Subtractive, divisive and non-monotonic gain control in feedforward nets linearized by noise and delays.

    Science.gov (United States)

    Mejias, Jorge F; Payeur, Alexandre; Selin, Erik; Maler, Leonard; Longtin, André

    2014-01-01

    The control of input-to-output mappings, or gain control, is one of the main strategies used by neural networks for the processing and gating of information. Using a spiking neural network model, we studied the gain control induced by a form of inhibitory feedforward circuitry-also known as "open-loop feedback"-, which has been experimentally observed in a cerebellum-like structure in weakly electric fish. We found, both analytically and numerically, that this network displays three different regimes of gain control: subtractive, divisive, and non-monotonic. Subtractive gain control was obtained when noise is very low in the network. Also, it was possible to change from divisive to non-monotonic gain control by simply modulating the strength of the feedforward inhibition, which may be achieved via long-term synaptic plasticity. The particular case of divisive gain control has been previously observed in vivo in weakly electric fish. These gain control regimes were robust to the presence of temporal delays in the inhibitory feedforward pathway, which were found to linearize the input-to-output mappings (or f-I curves) via a novel variability-increasing mechanism. Our findings highlight the feedforward-induced gain control analyzed here as a highly versatile mechanism of information gating in the brain.

  7. Subtractive, divisive and non-monotonic gain control in feedforward nets linearized by noise and delays

    Directory of Open Access Journals (Sweden)

    Jorge F Mejias

    2014-02-01

    Full Text Available The control of input-to-output mappings, or gain control, is one of the main strategies used by neural networks for the processing and gating of information. Using a spiking neural network model, we studied the gain control induced by a form of inhibitory feedforward circuitry — also known as ’open-loop feedback’ —, which has been experimentally observed in a cerebellum-like structure in weakly electric fish. We found, both analytically and numerically, that this network displays three different regimes of gain control: subtractive, divisive, and non-monotonic. Subtractive gain control was obtained when noise is very low in the network. Also, it was possible to change from divisive to non-monotonic gain control by simply modulating the strength of the feedforward inhibition, which may be achieved via long-term synaptic plasticity. The particular case of divisive gain control has been previously observed in vivo in weakly electric fish. These gain control regimes were robust to the presence of temporal delays in the inhibitory feedforward pathway, which were found to linearize the input-to-output mappings (or f-I curves via a novel variability-increasing mechanism. Our findings highlight the feedforward-induced gain control analyzed here as a highly versatile mechanism of information gating in the brain.

  8. Identification of the feedforward component in manual control with predictable target signals.

    Science.gov (United States)

    Drop, Frank M; Pool, Daan M; Damveld, Herman J; van Paassen, Marinus M; Mulder, Max

    2013-12-01

    In the manual control of a dynamic system, the human controller (HC) often follows a visible and predictable reference path. Compared with a purely feedback control strategy, performance can be improved by making use of this knowledge of the reference. The operator could effectively introduce feedforward control in conjunction with a feedback path to compensate for errors, as hypothesized in literature. However, feedforward behavior has never been identified from experimental data, nor have the hypothesized models been validated. This paper investigates human control behavior in pursuit tracking of a predictable reference signal while being perturbed by a quasi-random multisine disturbance signal. An experiment was done in which the relative strength of the target and disturbance signals were systematically varied. The anticipated changes in control behavior were studied by means of an ARX model analysis and by fitting three parametric HC models: two different feedback models and a combined feedforward and feedback model. The ARX analysis shows that the experiment participants employed control action on both the error and the target signal. The control action on the target was similar to the inverse of the system dynamics. Model fits show that this behavior can be modeled best by the combined feedforward and feedback model.

  9. ISC feedforward control of gasoline engine. Adaptive system using neural network; Jidoshayo gasoline engine no ISC feedforward seigyo. Neural network wo mochiita tekioka

    Energy Technology Data Exchange (ETDEWEB)

    Kinugawa, N; Morita, S; Takiyama, T [Osaka City University, Osaka (Japan)

    1997-10-01

    For fuel economy and a good driver`s feeling, it is necessary for idle-speed to keep at a constant low speed. But keeping low speed has danger of engine stall when the engine torque is disturbed by the alternator, and so on. In this paper, adaptive feedforward idle-speed control system against electrical loads was investigated. This system was based on the reversed tansfer functions of the object system, and a neural network was used to adapt this system for aging. Then, this neural network was also used for creating feedforward table map. Good experimental results were obtained. 2 refs., 11 figs.

  10. Hypocortisolemic clamp unmasks jointly feedforward- and feedback-dependent control of overnight ACTH secretion.

    Science.gov (United States)

    Iranmanesh, Ali; Veldhuis, Johannes D

    2008-11-01

    ACTH secretion is under hypothalamic stimulatory (feedforward) and adrenal inhibitory (feedback) control. Assessment of overnight ACTH secretion during a hypocortisolemic clamp will permit the estimation of changing feedforward and feedback. Seven healthy men. An oral dose of placebo (PLAC), metyrapone (METY, 3 g), or ketoconazole (KTCZ, 1.2 g) was given at midnight (MN) to block glucocorticoid synthesis. Plasma ACTH was sampled every 10 min (MN to 0800 h). Variable-waveform deconvolution analysis of ACTH secretion and approximate entropy (ApEn) analysis of pattern regularity. Compared with PLAC, administration of METY and KTCZ reduced morning cortisol concentrations by >or=77 and 54% respectively (Pfeedforward coordination. The combined data predict overnight amplification and coordination of hypothalamic feedforward drive onto ACTH release. Therefore, disruption of either mechanism might contribute to clinical pathophysiology, such as late-day elevations of cortisol output in fasting, alcoholism, depression, or aging.

  11. Position Control of Servo Systems Using Feed-Forward Friction Compensation

    International Nuclear Information System (INIS)

    Park, Min Gyu; Kim, Han Me; Shin, Jong Min; Kim, Jong Shik

    2009-01-01

    Friction is an important factor for precise position tracking control of servo systems. Servo systems with highly nonlinear friction are sensitive to the variation of operating condition. To overcome this problem, we use the LuGre friction model which can consider dynamic characteristics of friction. The LuGre friction model is used as a feed-forward compensator to improve tracking performance of servo systems. The parameters of the LuGre friction model are identified through experiments. The experimental result shows that the tracking performance of servo systems with higherly nonlinear friction can be improved by using feed-forward friction compensation

  12. Reflexions on feedforward control strategies for a class of sailing vehicles

    DEFF Research Database (Denmark)

    Xiao, Lin; Jouffroy, Jerome

    2010-01-01

    Sailing vehicles, whether they are sea or land-based, share the unique property of exhibiting totally different trajectories depending on where their direction of travel is with respect to the wind. Following our previous work, this paper discusses a few points related to feedforward control...

  13. Sliding-mode control combined with improved adaptive feedforward for wafer scanner

    Science.gov (United States)

    Li, Xiaojie; Wang, Yiguang

    2018-03-01

    In this paper, a sliding-mode control method combined with improved adaptive feedforward is proposed for wafer scanner to improve the tracking performance of the closed-loop system. Particularly, In addition to the inverse model, the nonlinear force ripple effect which may degrade the tracking accuracy of permanent magnet linear motor (PMLM) is considered in the proposed method. The dominant position periodicity of force ripple is determined by using the Fast Fourier Transform (FFT) analysis for experimental data and the improved feedforward control is achieved by the online recursive least-squares (RLS) estimation of the inverse model and the force ripple. The improved adaptive feedforward is given in a general form of nth-order model with force ripple effect. This proposed method is motivated by the motion controller design of the long-stroke PMLM and short-stroke voice coil motor for wafer scanner. The stability of the closed-loop control system and the convergence of the motion tracking are guaranteed by the proposed sliding-mode feedback and adaptive feedforward methods theoretically. Comparative experiments on a precision linear motion platform can verify the correctness and effectiveness of the proposed method. The experimental results show that comparing to traditional method the proposed one has better performance of rapidity and robustness, especially for high speed motion trajectory. And, the improvements on both tracking accuracy and settling time can be achieved.

  14. Causal feedforward control of a stochastically excited fuselage structure with active sidewall panel.

    Science.gov (United States)

    Misol, Malte; Haase, Thomas; Monner, Hans Peter; Sinapius, Michael

    2014-10-01

    This paper provides experimental results of an aircraft-relevant double panel structure mounted in a sound transmission loss facility. The primary structure of the double panel system is excited either by a stochastic point force or by a diffuse sound field synthesized in the reverberation room of the transmission loss facility. The secondary structure, which is connected to the frames of the primary structure, is augmented by actuators and sensors implementing an active feedforward control system. Special emphasis is placed on the causality of the active feedforward control system and its implications on the disturbance rejection at the error sensors. The coherence of the sensor signals is analyzed for the two different disturbance excitations. Experimental results are presented regarding the causality, coherence, and disturbance rejection of the active feedforward control system. Furthermore, the sound transmission loss of the double panel system is evaluated for different configurations of the active system. A principal result of this work is the evidence that it is possible to strongly influence the transmission of stochastic disturbance sources through double panel configurations by means of an active feedforward control system.

  15. Time-optimal control of nuclear reactor power with adaptive proportional- integral-feedforward gains

    International Nuclear Information System (INIS)

    Park, Moon Ghu; Cho, Nam Zin

    1993-01-01

    A time-optimal control method which consists of coarse and fine control stages is described here. During the coarse control stage, the maximum control effort (time-optimal) is used to direct the system toward the switching boundary which is set near the desired power level. At this boundary, the controller is switched to the fine control stage in which an adaptive proportional-integral-feedforward (PIF) controller is used to compensate for any unmodeled reactivity feedback effects. This fine control is also introduced to obtain a constructive method for determining the (adaptive) feedback gains against the sampling effect. The feedforward control term is included to suppress the over-or undershoot. The estimation and feedback of the temperature-induced reactivity is also discussed

  16. Ammonia-based feedforward and feedback aeration control in activated sludge processes.

    Science.gov (United States)

    Rieger, Leiv; Jones, Richard M; Dold, Peter L; Bott, Charles B

    2014-01-01

    Aeration control at wastewater treatment plants based on ammonia as the controlled variable is applied for one of two reasons: (1) to reduce aeration costs, or (2) to reduce peaks in effluent ammonia. Aeration limitation has proven to result in significant energy savings, may reduce external carbon addition, and can improve denitrification and biological phosphorus (bio-P) performance. Ammonia control for limiting aeration has been based mainly on feedback control to constrain complete nitrification by maintaining approximately one to two milligrams of nitrogen per liter of ammonia in the effluent. Increased attention has been given to feedforward ammonia control, where aeration control is based on monitoring influent ammonia load. Typically, the intent is to anticipate the impact of sudden load changes, and thereby reduce effluent ammonia peaks. This paper evaluates the fundamentals of ammonia control with a primary focus on feedforward control concepts. A case study discussion is presented that reviews different ammonia-based control approaches. In most instances, feedback control meets the objectives for both aeration limitation and containment of effluent ammonia peaks. Feedforward control, applied specifically for switching aeration on or off in swing zones, can be beneficial when the plant encounters particularly unusual influent disturbances.

  17. Feedback and Feedforward Control During Walking in Individuals With Chronic Ankle Instability.

    Science.gov (United States)

    Yen, Sheng-Che; Corkery, Marie B; Donohoe, Amy; Grogan, Maddison; Wu, Yi-Ning

    2016-09-01

    Study Design Controlled laboratory study. Background Recurrent ankle sprains associated with chronic ankle instability (CAI) occur not only in challenging sports but also in daily walking. Understanding whether and how CAI alters feedback and feedforward controls during walking may be important for developing interventions for CAI prevention or treatment. Objective To understand whether CAI is associated with changes in feedback and feedforward control when individuals with CAI are subjected to experimental perturbation during walking. Methods Twelve subjects with CAI and 12 control subjects walked on a treadmill while adapting to external loading that generated inversion perturbation at the ankle joint. Ankle kinematics around heel contact during and after the adaptation were compared between the 2 groups. Results Both healthy and CAI groups showed an increase in eversion around heel contact in early adaptation to the external loading. However, the CAI group adapted back toward the baseline, while the healthy controls showed further increase in eversion in late adaptation. When the external loading was removed in the postadaptation period, healthy controls showed an aftereffect consisting of an increase in eversion around heel contact, but the CAI group showed no aftereffect. Conclusion The results provide preliminary evidence that CAI may alter individuals' feedback and feedforward control during walking. J Orthop Sports Phys Ther 2016;46(9):775-783. Epub 5 Aug 2016. doi:10.2519/jospt.2016.6403.

  18. Quantifying feedforward control: a linear scaling model for fingertip forces and object weight.

    Science.gov (United States)

    Lu, Ying; Bilaloglu, Seda; Aluru, Viswanath; Raghavan, Preeti

    2015-07-01

    The ability to predict the optimal fingertip forces according to object properties before the object is lifted is known as feedforward control, and it is thought to occur due to the formation of internal representations of the object's properties. The control of fingertip forces to objects of different weights has been studied extensively by using a custom-made grip device instrumented with force sensors. Feedforward control is measured by the rate of change of the vertical (load) force before the object is lifted. However, the precise relationship between the rate of change of load force and object weight and how it varies across healthy individuals in a population is not clearly understood. Using sets of 10 different weights, we have shown that there is a log-linear relationship between the fingertip load force rates and weight among neurologically intact individuals. We found that after one practice lift, as the weight increased, the peak load force rate (PLFR) increased by a fixed percentage, and this proportionality was common among the healthy subjects. However, at any given weight, the level of PLFR varied across individuals and was related to the efficiency of the muscles involved in lifting the object, in this case the wrist and finger extensor muscles. These results quantify feedforward control during grasp and lift among healthy individuals and provide new benchmarks to interpret data from neurologically impaired populations as well as a means to assess the effect of interventions on restoration of feedforward control and its relationship to muscular control. Copyright © 2015 the American Physiological Society.

  19. A combined feedforward and feedback control scheme for low-ripple fast-response switchmode magnet power supplies

    International Nuclear Information System (INIS)

    Jin, H.; Dewan, S.B.

    1994-01-01

    In this paper, a new feedforward technique is introduced, and a combined feedforward/feedback control scheme is applied to switchmode magnet power supplies for low-ripple fast-response performance. The purposes of the feedforward technique are two-fold: to reduce the effect of source variations and low-order harmonics, and to improve the reference tracking ability of the system. The algorithm of the proposed control scheme is presented in the paper, and results of a two-quadrant system are provided to verify the concept

  20. Feedforward self-modeling enhances skill acquisition in children learning trampoline skills.

    Science.gov (United States)

    Ste-Marie, Diane M; Vertes, Kelly; Rymal, Amanda M; Martini, Rose

    2011-01-01

    The purpose of this research was to examine whether children would benefit from a feedforward self-modeling (FSM) video and to explore possible explanatory mechanisms for the potential benefits, using a self-regulation framework. To this end, children were involved in learning two five-skill trampoline routines. For one of the routines, a FSM video was provided during acquisition, whereas only verbal instructions were provided for the alternate routine. The FSM involved editing video footage such that it showed the learner performing the trampoline routine at a higher skill level than their current capability. Analyses of the data showed that while physical performance benefits were observed for the routine that was learned with the FSM video, no differences were obtained in relation to the self-regulatory measures. Thus, the FSM video enhanced motor skill acquisition, but this could not be explained by changes to the varied self-regulatory processes examined.

  1. Feedforward self-modeling enhances skill acquisition in children learning trampoline skills

    Directory of Open Access Journals (Sweden)

    Diane M. Ste-Marie

    2011-07-01

    Full Text Available The purpose of this research was to examine whether children would benefit from a feedforward self-modeling (FSM video and to explore possible explanatory mechanisms for the potential benefits, using a self-regulation framework. To this end, children were involved in learning two five-skill trampoline routines. For one of the routines, a FSM video was provided during acquisition, whereas only verbal instructions were provided for the alternate routine. The FSM involved editing video footage such that it showed the learner performing the trampoline routine at a higher skill level than their current capability. Analyses of the data showed that while physical performance benefits were observed for the routine that was learned with the FSM video, no differences were obtained in relation to the self-regulatory measures. Thus, the FSM video enhanced motor skill acquisition, but this could not be explained by changes to the varied self-regulatory processes examined.

  2. Estimating feedforward vs. feedback control of speech production through kinematic analyses of unperturbed articulatory movements.

    Science.gov (United States)

    Kim, Kwang S; Max, Ludo

    2014-01-01

    To estimate the contributions of feedforward vs. feedback control systems in speech articulation, we analyzed the correspondence between initial and final kinematics in unperturbed tongue and jaw movements for consonant-vowel (CV) and vowel-consonant (VC) syllables. If movement extents and endpoints are highly predictable from early kinematic information, then the movements were most likely completed without substantial online corrections (feedforward control); if the correspondence between early kinematics and final amplitude or position is low, online adjustments may have altered the planned trajectory (feedback control) (Messier and Kalaska, 1999). Five adult speakers produced CV and VC syllables with high, mid, or low vowels while movements of the tongue and jaw were tracked electromagnetically. The correspondence between the kinematic parameters peak acceleration or peak velocity and movement extent as well as between the articulators' spatial coordinates at those kinematic landmarks and movement endpoint was examined both for movements across different target distances (i.e., across vowel height) and within target distances (i.e., within vowel height). Taken together, results suggest that jaw and tongue movements for these CV and VC syllables are mostly under feedforward control but with feedback-based contributions. One type of feedback-driven compensatory adjustment appears to regulate movement duration based on variation in peak acceleration. Results from a statistical model based on multiple regression are presented to illustrate how the relative strength of these feedback contributions can be estimated.

  3. [Feedforward control strategy and its application in quality improvement of ethanol precipitation process of danhong injection].

    Science.gov (United States)

    Yan, Bin-Jun; Guo, Zheng-Tai; Qu, Hai-Bin; Zhao, Bu-Chang; Zhao, Tao

    2013-06-01

    In this work, a feedforward control strategy basing on the concept of quality by design was established for the manufacturing process of traditional Chinese medicine to reduce the impact of the quality variation of raw materials on drug. In the research, the ethanol precipitation process of Danhong injection was taken as an application case of the method established. Box-Behnken design of experiments was conducted. Mathematical models relating the attributes of the concentrate, the process parameters and the quality of the supernatants produced were established. Then an optimization model for calculating the best process parameters basing on the attributes of the concentrate was built. The quality of the supernatants produced by ethanol precipitation with optimized and non-optimized process parameters were compared. The results showed that using the feedforward control strategy for process parameters optimization can control the quality of the supernatants effectively. The feedforward control strategy proposed can enhance the batch-to-batch consistency of the supernatants produced by ethanol precipitation.

  4. Differential contributions of the superior and inferior parietal cortex to feedback versus feedforward control of tools.

    Science.gov (United States)

    Macuga, Kristen L; Frey, Scott H

    2014-05-15

    Damage to the superior and/or inferior parietal lobules (SPL, IPL) (Sirigu et al., 1996) or cerebellum (Grealy and Lee, 2011) can selectively disrupt motor imagery, motivating the hypothesis that these regions participate in predictive (i.e., feedforward) control. If so, then the SPL, IPL, and cerebellum should show greater activity as the demands on feedforward control increase from visually-guided execution (closed-loop) to execution without visual feedback (open-loop) to motor imagery. Using fMRI and a Fitts' reciprocal aiming task with tools directed at targets in far space, we found that the SPL and cerebellum exhibited greater activity during closed-loop control. Conversely, open-loop and imagery conditions were associated with increased activity within the IPL and prefrontal areas. These results are consistent with a superior-to-inferior gradient in the representation of feedback-to-feedforward control within the posterior parietal cortex. Additionally, the anterior SPL displayed greater activity when aiming movements were performed with a stick vs. laser pointer. This may suggest that it is involved in the remapping of far into near (reachable) space (Maravita and Iriki, 2004), or in distalization of the end-effector from hand to stick (Arbib et al., 2009). Copyright © 2014 Elsevier Inc. All rights reserved.

  5. A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles

    Science.gov (United States)

    1994-05-02

    AD-A282 787 " A Feedforward Control Approach to the Local Navigation Problem for Autonomous Vehicles Alonzo Kelly CMU-RI-TR-94-17 The Robotics...follow, or a direction to prefer, it cannot generate its own strategic goals. Therefore, it solves the local planning problem for autonomous vehicles . The... autonomous vehicles . It is intelligent because it uses range images that are generated from either a laser rangefinder or a stereo triangulation

  6. Feedforward and feedback motor control abnormalities implicate cerebellar dysfunctions in autism spectrum disorder.

    Science.gov (United States)

    Mosconi, Matthew W; Mohanty, Suman; Greene, Rachel K; Cook, Edwin H; Vaillancourt, David E; Sweeney, John A

    2015-02-04

    Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. Copyright © 2015 the authors 0270-6474/15/352015-11$15.00/0.

  7. Adaptive feedforward control of exhaust recirculation in large diesel engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Eriksson, Lars

    2017-01-01

    is generalized to a class of first order Hammerstein systems with sensor delay and exponentially converging bounds of the control error are proven analytically. It is then shown how to apply the method to the EGR system of a two-stroke crosshead diesel engine. The controller is validated by closed loop......Environmental concern has led the International Maritime Organization to restrict NO푥 emissions from marine diesel engines. Exhaust gas recirculation (EGR) systems have been introduced in order to comply to the new standards. Traditional fixed-gain feedback methods are not able to control the EGR...

  8. Feedforward control strategy for the state-decoupling Stand-alone UPS with LC output filter

    DEFF Research Database (Denmark)

    Lu, Jinghang; Savaghebi, Mehdi; Guerrero, Josep M.

    2017-01-01

    . In order to further increase the load current disturbance rejection capability of the state-decoupling in UPS system, a feedforward control strategy is proposed. In addition, the design principle for the current and voltage regulators are discussed. Simulation and experimental results are provided......In this paper, the disturbance rejection performance of the cascaded control strategy for UPS system is investigated. The comparison of closed loop system performance between conventional cascaded control (CCC) strategy and state-decoupling cascaded control (SDCC) strategy are further explored...

  9. Feedforward Control of Gear Mesh Vibration Using Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Gerald T. Montague

    1994-01-01

    Full Text Available This article presents a novel means for suppressing gear mesh related vibrations. The key components in this approach are piezoelectric actuators and a high-frequency, analog feed forward controller. Test results are presented and show up to a 70% reduction in gear mesh acceleration and vibration control up to 4500 Hz. The principle of the approach is explained by an analysis of a harmonically excited, general linear vibratory system.

  10. A Constrained Multi-Objective Learning Algorithm for Feed-Forward Neural Network Classifiers

    Directory of Open Access Journals (Sweden)

    M. Njah

    2017-06-01

    Full Text Available This paper proposes a new approach to address the optimal design of a Feed-forward Neural Network (FNN based classifier. The originality of the proposed methodology, called CMOA, lie in the use of a new constraint handling technique based on a self-adaptive penalty procedure in order to direct the entire search effort towards finding only Pareto optimal solutions that are acceptable. Neurons and connections of the FNN Classifier are dynamically built during the learning process. The approach includes differential evolution to create new individuals and then keeps only the non-dominated ones as the basis for the next generation. The designed FNN Classifier is applied to six binary classification benchmark problems, obtained from the UCI repository, and results indicated the advantages of the proposed approach over other existing multi-objective evolutionary neural networks classifiers reported recently in the literature.

  11. Single-Iteration Learning Algorithm for Feed-Forward Neural Networks

    Energy Technology Data Exchange (ETDEWEB)

    Barhen, J.; Cogswell, R.; Protopopescu, V.

    1999-07-31

    A new methodology for neural learning is presented, whereby only a single iteration is required to train a feed-forward network with near-optimal results. To this aim, a virtual input layer is added to the multi-layer architecture. The virtual input layer is connected to the nominal input layer by a specird nonlinear transfer function, and to the fwst hidden layer by regular (linear) synapses. A sequence of alternating direction singular vrdue decompositions is then used to determine precisely the inter-layer synaptic weights. This algorithm exploits the known separability of the linear (inter-layer propagation) and nonlinear (neuron activation) aspects of information &ansfer within a neural network.

  12. Variable synaptic strengths controls the firing rate distribution in feedforward neural networks.

    Science.gov (United States)

    Ly, Cheng; Marsat, Gary

    2018-02-01

    Heterogeneity of firing rate statistics is known to have severe consequences on neural coding. Recent experimental recordings in weakly electric fish indicate that the distribution-width of superficial pyramidal cell firing rates (trial- and time-averaged) in the electrosensory lateral line lobe (ELL) depends on the stimulus, and also that network inputs can mediate changes in the firing rate distribution across the population. We previously developed theoretical methods to understand how two attributes (synaptic and intrinsic heterogeneity) interact and alter the firing rate distribution in a population of integrate-and-fire neurons with random recurrent coupling. Inspired by our experimental data, we extend these theoretical results to a delayed feedforward spiking network that qualitatively capture the changes of firing rate heterogeneity observed in in-vivo recordings. We demonstrate how heterogeneous neural attributes alter firing rate heterogeneity, accounting for the effect with various sensory stimuli. The model predicts how the strength of the effective network connectivity is related to intrinsic heterogeneity in such delayed feedforward networks: the strength of the feedforward input is positively correlated with excitability (threshold value for spiking) when firing rate heterogeneity is low and is negatively correlated with excitability with high firing rate heterogeneity. We also show how our theory can be used to predict effective neural architecture. We demonstrate that neural attributes do not interact in a simple manner but rather in a complex stimulus-dependent fashion to control neural heterogeneity and discuss how it can ultimately shape population codes.

  13. Extremum seeking control with data-based disturbance feedforward

    NARCIS (Netherlands)

    Marinkov, Sava; De Jager, Bram; Steinbuch, Maarten

    2014-01-01

    This paper presents a practical extension to the classical gradient-based extremum seeking control for the case when the disturbances responsible for the changes in the extremum of a related performance function can be measured. The additional information is used to improve accuracy, convergence

  14. Electrically-induced muscle fatigue affects feedforward mechanisms of control.

    Science.gov (United States)

    Monjo, F; Forestier, N

    2015-08-01

    To investigate the effects of focal muscle fatigue induced by electromyostimulation (EMS) on Anticipatory Postural Adjustments (APAs) during arm flexions performed at maximal velocity. Fifteen healthy subjects performed self-paced arm flexions at maximal velocity before and after the completion of fatiguing electromyostimulation programs involving the medial and anterior deltoids and aiming to degrade movement peak acceleration. APA timing and magnitude were measured using surface electromyography. Following muscle fatigue, despite a lower mechanical disturbance evidenced by significant decreased peak accelerations (-12%, pcontrol trials (p>.11 for all analyses). The fatigue signals evoked by externally-generated contractions seem to be gated by the Central Nervous System and result in postural strategy changes which aim to increase the postural safety margin. EMS is widely used in rehabilitation and training programs for its neuromuscular function-related benefits. However and from a motor control viewpoint, the present results show that the use of EMS can lead to acute inaccuracies in predictive motor control. We propose that clinicians should investigate the chronic and global effects of EMS on motor control. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Subtractive, divisive and non-monotonic gain control in feedforward nets linearized by noise and delays

    OpenAIRE

    Mejias, Jorge F.; Payeur, Alexandre; Selin, Erik; Maler, Leonard; Longtin, André

    2014-01-01

    The control of input-to-output mappings, or gain control, is one of the main strategies used by neural networks for the processing and gating of information. Using a spiking neural network model, we studied the gain control induced by a form of inhibitory feedforward circuitry—also known as “open-loop feedback”—, which has been experimentally observed in a cerebellum-like structure in weakly electric fish. We found, both analytically and numerically, that this network displays three different...

  16. Introduction to Feedforward Control of Electric Drives - Rules and Limits

    Directory of Open Access Journals (Sweden)

    Michal Malek

    2010-01-01

    Full Text Available Electric servodrives are characterized by precise tracking and its derivations. The way to meet this goal cost them a number of obstacles, whether variations associated with end-stage of astatism, changes in the positioning system parameters or to changes in load torque than the failing values. Problems arise in situations where the link between the servomotor and the load is not driven by "perfect" solid coupling. And the basic rules of control system affected by this phenomenon are given in this article.

  17. Active vibration control for piezoelectricity cantilever beam: an adaptive feedforward control method

    Science.gov (United States)

    Zhu, Qiao; Yue, Jun-Zhou; Liu, Wei-Qun; Wang, Xu-Dong; Chen, Jun; Hu, Guang-Di

    2017-04-01

    This work is focused on the active vibration control of piezoelectric cantilever beam, where an adaptive feedforward controller (AFC) is utilized to reject the vibration with unknown multiple frequencies. First, the experiment setup and its mathematical model are introduced. Due to that the channel between the disturbance and the vibration output is unknown in practice, a concept of equivalent input disturbance (EID) is employed to put an equivalent disturbance into the input channel. In this situation, the vibration control can be achieved by setting the control input be the identified EID. Then, for the EID with known multiple frequencies, the AFC is introduced to perfectly reject the vibration but is sensitive to the frequencies. In order to accurately identify the unknown frequencies of EID in presence of the random disturbances and un-modeled nonlinear dynamics, the time-frequency-analysis (TFA) method is employed to precisely identify the unknown frequencies. Consequently, a TFA-based AFC algorithm is proposed to the active vibration control with unknown frequencies. Finally, four cases are given to illustrate the efficiency of the proposed TFA-based AFC algorithm by experiment.

  18. Fusion of deep learning architectures, multilayer feedforward networks and learning vector quantizers for deep classification learning

    NARCIS (Netherlands)

    Villmann, T.; Biehl, M.; Villmann, A.; Saralajew, S.

    2017-01-01

    The advantage of prototype based learning vector quantizers are the intuitive and simple model adaptation as well as the easy interpretability of the prototypes as class representatives for the class distribution to be learned. Although they frequently yield competitive performance and show robust

  19. Flatness based feedforward control of a parallel hybrid drivetrain; Flachheitsbasierter Vorsteuerungsentwurf fuer den Antriebsstrang eines Parallelhybriden

    Energy Technology Data Exchange (ETDEWEB)

    Gasper, Rainer; Hesseler, Frank; Abel, Dirk [RWTH Aachen Univ. (Germany). Inst. fuer Regelungstechnik

    2010-10-15

    The advantages of Hybrid Electrical Vehicles (HEV) are fuel consumption reduction and minimization of exhaust emissions. Moreover, the drivability of a HEV is very important for the consumer acceptance. The gear shifts and the start of the internal combustion engine are very important for the drivability of a HEV. Because this two tasks are automated, oscillations in the vehicle would be uncomfortable for the driver. In the paper at hand, feedforward controllers for the drivetrain control of a parallel hybrid with an automated manual transmission and a dry clutch are presented. (orig.)

  20. On path generation and feedforward control for a class of surface sailing vessels

    DEFF Research Database (Denmark)

    Xiao, Lin; Jouffroy, Jerome

    2010-01-01

    Sailing vessels with wind as their main means of propulsion possess a unique property that the paths they take depend on the wind direction, which, in the literature, has attracted less attention than normal vehicles propelled by propellers or thrusters. This paper considers the problem of motion...... planning and controllability for sailing vehicles representing the no-sailing zone effect in sailing. Following our previous work, we present an extended algorithm for automatic path generation with a prescribed initial heading for a simple model of sailing vehicles, together with a feedforward controller...

  1. Feed-forward control of a solid oxide fuel cell system with anode offgas recycle

    Science.gov (United States)

    Carré, Maxime; Brandenburger, Ralf; Friede, Wolfgang; Lapicque, François; Limbeck, Uwe; da Silva, Pedro

    2015-05-01

    In this work a combined heat and power unit (CHP unit) based on the solid oxide fuel cell (SOFC) technology is analysed. This unit has a special feature: the anode offgas is partially recycled to the anode inlet. Thus it is possible to increase the electrical efficiency and the system can be operated without external water feeding. A feed-forward control concept which allows secure operating conditions of the CHP unit as well as a maximization of its electrical efficiency is introduced and validated experimentally. The control algorithm requires a limited number of measurement values and few deterministic relations for its description.

  2. Simulation of Feedforward-Feedback Control of Dissolved Oxygen of Microbial Repeated Fed-batch Culture

    Directory of Open Access Journals (Sweden)

    Ling Gao

    2016-09-01

    Full Text Available Fed-batch culture is often used in industry, and dissolved oxygen (DO concentration control is important in fermentation process control. DO control is often applied by using feedback (FB control strategy. But, feedforward-feedback (FF-FB control has the advantage in dealing with the time-varying characteristics resulted from the cell growth during the fermentation process. Mathematical modeling and computer simulation is a useful tool in analysis of the control system.  In this research, the FF-FB DO control and FB substrate control of repeated fed-batch culture process is modeled and simulated. The results showed the feasibility of the control strategy. These results are useful for control system development and process analyses and optimization.

  3. A Robust Multivariable Feedforward/Feedback Controller Design for Integrated Power Control of Boiling Water Reactor Power Plants

    International Nuclear Information System (INIS)

    Shyu, S.-S.; Edwards, Robert M.

    2002-01-01

    In this paper, a methodology for synthesizing a robust multivariable feedforward/feedback control (FF/FBC) strategy is proposed for an integrated control of turbine power, throttle pressure, and reactor water level in a nuclear power plant. In the proposed method, the FBC is synthesized by the robust control approach. The feedforward control, which is generated via nonlinear programming, is added to the robust FBC system to further improve the control performance. The plant uncertainties, including unmodeled dynamics, linearization, and model reduction, are characterized and estimated. The comparisons of simulation responses based on a nonlinear reactor model demonstrate the achievement of the proposed controller with specified performance and endurance under uncertainty. It is also important to note that all input variables are manipulated in an orchestrated manner in response to a single output's setpoint change

  4. A technique for improved stability of adaptive feedforward controllers without detailed uncertainty measurements

    International Nuclear Information System (INIS)

    Berkhoff, A P

    2012-01-01

    Model errors in adaptive controllers for the reduction of broadband noise and vibrations may lead to unstable systems or increased error signals. Previous research on active structures with small damping has shown that the addition of a low-authority controller which increases damping in the system may lead to improved performance of an adaptive, high-authority controller. Other researchers have suggested the use of frequency dependent regularization based on measured uncertainties. In this paper an alternative method is presented that avoids the disadvantages of these methods, namely the additional complex hardware and the need to obtain detailed information on the uncertainties. An analysis is made of an adaptive feedforward controller in which a difference exists between the secondary path and the model as used in the controller. The real parts of the eigenvalues that determine the stability of the system are expressed in terms of the amount of uncertainty and the singular values of the secondary path. Modifications of the feedforward control scheme are suggested that aim to improve performance without requiring detailed uncertainty measurements. (paper)

  5. Wind tunnel tests with combined pitch and free-floating flap control: data-driven iterative feedforward controller tuning

    Directory of Open Access Journals (Sweden)

    S. T. Navalkar

    2016-10-01

    Full Text Available Wind turbine load alleviation has traditionally been addressed in the literature using either full-span pitch control, which has limited bandwidth, or trailing-edge flap control, which typically shows low control authority due to actuation constraints. This paper combines both methods and demonstrates the feasibility and advantages of such a combined control strategy on a scaled prototype in a series of wind tunnel tests. The pitchable blades of the test turbine are instrumented with free-floating flaps close to the tip, designed such that they aerodynamically magnify the low stroke of high-bandwidth actuators. The additional degree of freedom leads to aeroelastic coupling with the blade flexible modes. The inertia of the flaps was tuned such that instability occurs just beyond the operational envelope of the wind turbine; the system can however be stabilised using collocated closed-loop control. A feedforward controller is shown to be capable of significant reduction of the deterministic loads of the turbine. Iterative feedforward tuning, in combination with a stabilising feedback controller, is used to optimise the controller online in an automated manner, to maximise load reduction. Since the system is non-linear, the controller gains vary with wind speed; this paper also shows that iterative feedforward tuning is capable of generating the optimal gain schedule online.

  6. Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes.

    Science.gov (United States)

    Foo, Mathias; Kim, Jongrae; Sawlekar, Rucha; Bates, Declan G

    2017-04-06

    Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a 'subtractor' that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.

  7. Force control of a magnetorheological damper using an elementary hysteresis model-based feedforward neural network

    International Nuclear Information System (INIS)

    Ekkachai, Kittipong; Nilkhamhang, Itthisek; Tungpimolrut, Kanokvate

    2013-01-01

    An inverse controller is proposed for a magnetorheological (MR) damper that consists of a hysteresis model and a voltage controller. The force characteristics of the MR damper caused by excitation signals are represented by a feedforward neural network (FNN) with an elementary hysteresis model (EHM). The voltage controller is constructed using another FNN to calculate a suitable input signal that will allow the MR damper to produce the desired damping force. The performance of the proposed EHM-based FNN controller is experimentally compared to existing control methodologies, such as clipped-optimal control, signum function control, conventional FNN, and recurrent neural network with displacement or velocity inputs. The results show that the proposed controller, which does not require force feedback to implement, provides excellent accuracy, fast response time, and lower energy consumption. (paper)

  8. Two aspects of feedforward postural control: anticipatory postural adjustments and anticipatory synergy adjustments.

    Science.gov (United States)

    Klous, Miriam; Mikulic, Pavle; Latash, Mark L

    2011-05-01

    We used the framework of the uncontrolled manifold hypothesis to explore the relations between anticipatory synergy adjustments (ASAs) and anticipatory postural adjustments (APAs) during feedforward control of vertical posture. ASAs represent a drop in the index of a multimuscle-mode synergy stabilizing the coordinate of the center of pressure in preparation to an action. ASAs reflect early changes of an index of covariation among variables reflecting muscle activation, whereas APAs reflect early changes in muscle activation levels averaged across trials. The assumed purpose of ASAs is to modify stability of performance variables, whereas the purpose of APAs is to change magnitudes of those variables. We hypothesized that ASAs would be seen before APAs and that this finding would be consistent with regard to the muscle-mode composition defined on the basis of different tasks and phases of action. Subjects performed a voluntary body sway task and a quick, bilateral shoulder flexion task under self-paced and reaction time conditions. Surface muscle activity of 12 leg and trunk muscles was analyzed to identify sets of 4 muscle modes for each task and for different phases within the shoulder flexion task. Variance components in the muscle-mode space and indexes of multimuscle-mode synergy stabilizing shift of the center of pressure were computed. ASAs were seen ∼ 100-150 ms prior to the task initiation, before APAs. The results were consistent with respect to different sets of muscle modes defined over the two tasks and different shoulder flexion phases. We conclude that the preparation for a self-triggered postural perturbation is associated with two types of anticipatory adjustments, ASAs and APAs. They reflect different feedforward processes within the hypothetical hierarchical control scheme, resulting in changes in patterns of covariation of elemental variables and in their patterns averaged across trials, respectively. The results show that synergies quantified

  9. Structural vibration control of micro/macro-manipulator using feedforward and feedback approaches

    International Nuclear Information System (INIS)

    Lew, J.Y.; Cannon, D.W.; Magee, D.P.; Book, W.J.

    1995-09-01

    Pacific Northwest Laboratory (PDL) researchers investigated the combined use of two control approaches to minimize micro/macro-manipulator structural vibration: (1) modified input shaping and (2) inertial force active damping control. Modified input shaping (MIS) is used as a feedforward controller to modify reference input by canceling the vibratory motion. Inertial force active damping (IFAD) is applied as a feedback controller to increase the system damping and robustness to unexpected disturbances. Researchers implemented both control schemes in the PNL micro/macro flexible-link manipulator testbed collaborating with Georgia Institute of Technology. The experiments successfully demonstrated the effectiveness of two control approaches in reducing structural vibration. Based on the results of the experiments, the combined use of two controllers is recommended for a micro/macro manipulator to achieve the fastest response to commands while canceling disturbances from unexpected forces

  10. Feedforward Control of a 3-D Physiological Articulatory Model for Vowel Production

    Institute of Scientific and Technical Information of China (English)

    FANG Qiang; Akikazu Nishikido; Jianwu Dang

    2009-01-01

    A three-dimensional (3-D) physiological articulatory model was developed to account for the bio-mechanical properties of the speech organs in speech production. Control of the model to investigate the mechanism of speech production requires an efficient control module to estimate muscle activation patterns, which is used to manipulate the 3-D physiological arUculatory model, according to the desired articulatory posture. For this purpose, a feedforward control strategy was developed by mapping the articulatory target to the corresponding muscle activation pattern via the intrinsic representation of vowel articulation. In this process, the articulatory postures are first mapped to the corresponding intrinsic representations; then, the articulatory postures are clustered in the intrinsic representations space and a nonlinear function is ap-proximated for each cluster to map the intrinsic representation of vowel articulation to the muscle activation pattern by using general regression neural networks (GRNN). The results show that the feedforward control module is able to manipulate the 3-D physiological articulatory model for vowel production with high accu-racy both acoustically and articulatodly.

  11. Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.

    Science.gov (United States)

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-04-01

    The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length.

  12. A Feed-Forward Control Realizing Fast Response for Three-Branch Interleaved DC-DC Converter in DC Microgrid

    Directory of Open Access Journals (Sweden)

    Haojie Wang

    2016-07-01

    Full Text Available It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC is proposed for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load changing. A prototype of the TIDC is developed and an experimental platform is built. The experiment results show that DC bus voltage sags or swells caused by load changing can be reduced and the time for voltage recovery can be decreased significantly with the proposed feed-forward control.

  13. A Feed-Forward Control Realizing Fast Response for Three-Branch Interleaved DC-DC Converter in DC Microgrid

    DEFF Research Database (Denmark)

    Wang, Haojie; Han, Minxiao; Yan, Wenli

    2016-01-01

    It is a common practice for storage batteries to be connected to DC microgrid buses through DC-DC converters for voltage support on islanded operation mode. A feed-forward control based dual-loop constant voltage PI control for three-branch interleaved DC-DC converters (TIDC) is proposed...... for storage batteries in DC microgrids. The working principle of TIDC is analyzed, and the factors influencing the response rate based on the dual-loop constant voltage control for TIDC are discussed, and then the method of feed-forward control for TIDC is studied to improve the response rate for load...... changing. A prototype of the TIDC is developed and an experimental platform is built. The experiment results show that DC bus voltage sags or swells caused by load changing can be reduced and the time for voltage recovery can be decreased significantly with the proposed feed-forward control....

  14. Robust sequential learning of feedforward neural networks in the presence of heavy-tailed noise.

    Science.gov (United States)

    Vuković, Najdan; Miljković, Zoran

    2015-03-01

    Feedforward neural networks (FFNN) are among the most used neural networks for modeling of various nonlinear problems in engineering. In sequential and especially real time processing all neural networks models fail when faced with outliers. Outliers are found across a wide range of engineering problems. Recent research results in the field have shown that to avoid overfitting or divergence of the model, new approach is needed especially if FFNN is to run sequentially or in real time. To accommodate limitations of FFNN when training data contains a certain number of outliers, this paper presents new learning algorithm based on improvement of conventional extended Kalman filter (EKF). Extended Kalman filter robust to outliers (EKF-OR) is probabilistic generative model in which measurement noise covariance is not constant; the sequence of noise measurement covariance is modeled as stochastic process over the set of symmetric positive-definite matrices in which prior is modeled as inverse Wishart distribution. In each iteration EKF-OR simultaneously estimates noise estimates and current best estimate of FFNN parameters. Bayesian framework enables one to mathematically derive expressions, while analytical intractability of the Bayes' update step is solved by using structured variational approximation. All mathematical expressions in the paper are derived using the first principles. Extensive experimental study shows that FFNN trained with developed learning algorithm, achieves low prediction error and good generalization quality regardless of outliers' presence in training data. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. System Dynamics and Feedforward Control for Tether-Net Space Robot System

    Directory of Open Access Journals (Sweden)

    Guang Zhai

    2009-06-01

    Full Text Available A new concept using flexible tether-net system to capture space debris is presented in this paper. With a mass point assumption the tether-net system dynamic model is established in orbital frame by applying Lagrange Equations. In order to investigate the net in-plane trajectories during after cast, the non-control R-bar and V-bar captures are simulated with ignoring the out-of-plane libration, the effect of in-plane libration on the trajectories of the capture net is demonstrated by simulation results. With an effort to damp the in-plane libration, the control scheme based on tether tension is investigated firstly, after that an integrated control scheme is proposed by introduced the thrusters into the system, the nonlinear close-loop dynamics is linearised by feedforward strategy, the simulation results show that feedforward controllor is effective for in-plane libration damping and enable the capture net to track an expected trajectory.

  16. Combined feedforward and model-assisted active disturbance rejection control for non-minimum phase system.

    Science.gov (United States)

    Sun, Li; Li, Donghai; Gao, Zhiqiang; Yang, Zhao; Zhao, Shen

    2016-09-01

    Control of the non-minimum phase (NMP) system is challenging, especially in the presence of modelling uncertainties and external disturbances. To this end, this paper presents a combined feedforward and model-assisted Active Disturbance Rejection Control (MADRC) strategy. Based on the nominal model, the feedforward controller is used to produce a tracking performance that has minimum settling time subject to a prescribed undershoot constraint. On the other hand, the unknown disturbances and uncertain dynamics beyond the nominal model are compensated by MADRC. Since the conventional Extended State Observer (ESO) is not suitable for the NMP system, a model-assisted ESO (MESO) is proposed based on the nominal observable canonical form. The convergence of MESO is proved in time domain. The stability, steady-state characteristics and robustness of the closed-loop system are analyzed in frequency domain. The proposed strategy has only one tuning parameter, i.e., the bandwidth of MESO, which can be readily determined with a prescribed robustness level. Some comparative examples are given to show the efficacy of the proposed method. This paper depicts a promising prospect of the model-assisted ADRC in dealing with complex systems. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Operating wind turbines in strong wind conditions by using feedforward-feedback control

    International Nuclear Information System (INIS)

    Feng, Ju; Sheng, Wen Zhong

    2014-01-01

    Due to the increasing penetration of wind energy into power systems, it becomes critical to reduce the impact of wind energy on the stability and reliability of the overall power system. In precedent works, Shen and his co-workers developed a re-designed operation schema to run wind turbines in strong wind conditions based on optimization method and standard PI feedback control, which can prevent the typical shutdowns of wind turbines when reaching the cut-out wind speed. In this paper, a new control strategy combing the standard PI feedback control with feedforward controls using the optimization results is investigated for the operation of variable-speed pitch-regulated wind turbines in strong wind conditions. It is shown that the developed control strategy is capable of smoothening the power output of wind turbine and avoiding its sudden showdown at high wind speeds without worsening the loads on rotor and blades

  18. Intelligence rules of hysteresis in the feedforward trajectory control of piezoelectrically-driven nanostagers

    Science.gov (United States)

    Bashash, Saeid; Jalili, Nader

    2007-02-01

    Piezoelectrically-driven nanostagers have limited performance in a variety of feedforward and feedback positioning applications because of their nonlinear hysteretic response to input voltage. The hysteresis phenomenon is well known for its complex and multi-path behavior. To realize the underlying physics of this phenomenon and to develop an efficient compensation strategy, the intelligence properties of hysteresis with the effects of non-local memories are discussed here. Through performing a set of experiments on a piezoelectrically-driven nanostager with a high resolution capacitive position sensor, it is shown that for the precise prediction of the hysteresis path, certain memory units are required to store the previous hysteresis trajectory data. Based on the experimental observations, a constitutive memory-based mathematical modeling framework is developed and trained for the precise prediction of the hysteresis path for arbitrarily assigned input profiles. Using the inverse hysteresis model, a feedforward control strategy is then developed and implemented on the nanostager to compensate for the ever-present nonlinearity. Experimental results demonstrate that the controller remarkably eliminates the nonlinear effect, if memory units are sufficiently chosen for the inverse model.

  19. Counteracting Rotor Imbalance in a Bearingless Motor System with Feedforward Control

    Science.gov (United States)

    Kascak, Peter Eugene; Jansen, Ralph H.; Dever, Timothy; Nagorny, Aleksandr; Loparo, Kenneth

    2012-01-01

    In standard motor applications, traditional mechanical bearings represent the most economical approach to rotor suspension. However, in certain high performance applications, rotor suspension without bearing contact is either required or highly beneficial. Such applications include very high speed, extreme environment, or limited maintenance access applications. This paper extends upon a novel bearingless motor concept, in which full five-axis levitation and rotation of the rotor is achieved using two motors with opposing conical air-gaps. By leaving the motors' pole-pairs unconnected, different d-axis flux in each pole-pair is created, generating a flux imbalance which creates lateral force. Note this is approach is different than that used in previous bearingless motors, which use separate windings for levitation and rotation. This paper will examine the use of feedforward control to counteract synchronous whirl caused by rotor imbalance. Experimental results will be presented showing the performance of a prototype bearingless system, which was sized for a high speed flywheel energy storage application, with and without feedforward control.

  20. Control of a flexible beam actuated by macro-fiber composite patches: I. Modeling and feedforward trajectory control

    International Nuclear Information System (INIS)

    Schröck, Johannes; Meurer, Thomas; Kugi, Andreas

    2011-01-01

    This paper considers a systematic approach for motion planning and feedforward control design for a flexible cantilever actuated by piezoelectric macro-fiber composite (MFC) patches. For accurate feedforward tracking control, special attention has to be paid to the inherent nonlinear hysteresis and creep behavior of these actuators. In order to account for these effects an appropriate compensator is applied which allows us to perform the tracking controller design on the basis of a linear infinite-dimensional model. A detailed analysis of the nonlinear actuator behavior as well as the compensator design and the overall experimental validation is presented in the companion paper (Schröck et al 2011 Smart Mater. Struct. 20 015016). The governing equations of motion of the hysteresis and creep compensated cantilever are determined by means of the extended Hamilton's principle. This allows us to consider the influence of the bonded patch actuators on the mechanical properties of the underlying beam structure in a straightforward manner and results in a model with spatially varying system parameters. For the solution of the motion planning and feedforward control problem a flatness-based methodology is proposed. In a first step, the infinite-dimensional system of the MFC-actuated flexible cantilever is approximated by a finite-dimensional model, where all system variables, i.e. the states, input and output, can be parameterized in terms of a so-called flat output. In a second step, it is shown by numerical simulations that these parameterizations converge with increasing system order of the finite-dimensional model such that the feedforward control input can be directly calculated in order to realize prescribed output trajectories

  1. GA-optimized feedforward-PID tracking control for a rugged electrohydraulic system design.

    Science.gov (United States)

    Sarkar, B K; Mandal, P; Saha, R; Mookherjee, S; Sanyal, D

    2013-11-01

    Rugged electrohydraulic systems are preferred for remote and harsh applications. Despite the low bandwidth, large deadband and flow nonlinearities in proportional valves valve and highly nonlinear friction in industry-grade cylinders that comprise rugged systems, their maintenance are much easier than very sophisticated and delicate servocontrol and servocylinder systems. With the target of making the easily maintainable system to perform comparably to a servosystem, a feedforward control has been designed here for compensating the nonlinearities. A PID feedback of the piston displacement has been employed in tandem for absorbing the unmodeled effects. All the controller parameters have been optimized by a real-coded genetic algorithm. The agreement between the achieved real-time responses for step and sinusoidal demands with those achieved by modern servosystems clearly establishes the acceptability of the controller design. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  2. Multiple-Input Subject-Specific Modeling of Plasma Glucose Concentration for Feedforward Control.

    Science.gov (United States)

    Kotz, Kaylee; Cinar, Ali; Mei, Yong; Roggendorf, Amy; Littlejohn, Elizabeth; Quinn, Laurie; Rollins, Derrick K

    2014-11-26

    The ability to accurately develop subject-specific, input causation models, for blood glucose concentration (BGC) for large input sets can have a significant impact on tightening control for insulin dependent diabetes. More specifically, for Type 1 diabetics (T1Ds), it can lead to an effective artificial pancreas (i.e., an automatic control system that delivers exogenous insulin) under extreme changes in critical disturbances. These disturbances include food consumption, activity variations, and physiological stress changes. Thus, this paper presents a free-living, outpatient, multiple-input, modeling method for BGC with strong causation attributes that is stable and guards against overfitting to provide an effective modeling approach for feedforward control (FFC). This approach is a Wiener block-oriented methodology, which has unique attributes for meeting critical requirements for effective, long-term, FFC.

  3. Thalamocortical control of feed-forward inhibition in awake somatosensory 'barrel' cortex.

    OpenAIRE

    Swadlow, Harvey A

    2002-01-01

    Intracortical inhibition plays a role in shaping sensory cortical receptive fields and is mediated by both feed-forward and feedback mechanisms. Feed-forward inhibition is the faster of the two processes, being generated by inhibitory interneurons driven by monosynaptic thalamocortical (TC) input. In principle, feed-forward inhibition can prevent targeted cortical neurons from ever reaching threshold when TC input is weak. To do so, however, inhibitory interneurons must respond to TC input at...

  4. Advances in data-driven optimization of parametric and non-parametric feedforward control designs with industrial applications

    NARCIS (Netherlands)

    Tousain, R.L.; Meulen, van der S.H.; Hof, van den P.M.J.; Scherer, C.; Heuberger, P.S.C.

    2009-01-01

    The performance of many industrial control systems is determined to a large extent by the quality of both setpoint and disturbance feedforward signals. The quality that is required for a high tracking performance is generally not achieved when the controller parameters are determined on the basis of

  5. A Novel Memristive Multilayer Feedforward Small-World Neural Network with Its Applications in PID Control

    Directory of Open Access Journals (Sweden)

    Zhekang Dong

    2014-01-01

    Full Text Available In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.

  6. A novel memristive multilayer feedforward small-world neural network with its applications in PID control.

    Science.gov (United States)

    Dong, Zhekang; Duan, Shukai; Hu, Xiaofang; Wang, Lidan; Li, Hai

    2014-01-01

    In this paper, we present an implementation scheme of memristor-based multilayer feedforward small-world neural network (MFSNN) inspirited by the lack of the hardware realization of the MFSNN on account of the need of a large number of electronic neurons and synapses. More specially, a mathematical closed-form charge-governed memristor model is presented with derivation procedures and the corresponding Simulink model is presented, which is an essential block for realizing the memristive synapse and the activation function in electronic neurons. Furthermore, we investigate a more intelligent memristive PID controller by incorporating the proposed MFSNN into intelligent PID control based on the advantages of the memristive MFSNN on computation speed and accuracy. Finally, numerical simulations have demonstrated the effectiveness of the proposed scheme.

  7. Increasing Fuel Efficiency of Direct Methanol Fuel Cell Systems with Feedforward Control of the Operating Concentration

    Directory of Open Access Journals (Sweden)

    Youngseung Na

    2015-09-01

    Full Text Available Most of the R&D on fuel cells for portable applications concentrates on increasing efficiencies and energy densities to compete with other energy storage devices, especially batteries. To improve the efficiency of direct methanol fuel cell (DMFC systems, several modifications to system layouts and operating strategies are considered in this paper, rather than modifications to the fuel cell itself. Two modified DMFC systems are presented, one with an additional inline mixer and a further modification of it with a separate tank to recover condensed water. The set point for methanol concentration control in the solution is determined by fuel efficiency and varies with the current and other process variables. Feedforward concentration control enables variable concentration for dynamic loads. Simulation results were validated experimentally with fuel cell systems.

  8. Reprint of "Learning to breathe? Feedforward regulation of the inspiratory motor drive".

    Science.gov (United States)

    Zaman, Jonas; Van den Bergh, Omer; Fannes, Stien; Van Diest, Ilse

    2014-12-01

    Claims have been made that breathing is in part controlled by feedforward regulation. In a classical conditioning paradigm, we investigated anticipatory increases in the inspiratory motor drive as measured by inspiratory occlusion pressure (P100). In an acquisition phase, an experimental group (N = 13) received a low-intensity resistive load (5 cmH2O/l/s) for three consecutive inspirations as Conditioned Stimulus (CS), preceding a load of a stronger intensity (20 cmH2O/l/s) for three subsequent inspirations as unconditioned stimulus (US). The control group (N = 11) received the low-intensity load for six consecutive inspirations. In a post-acquisition phase both groups received the low-intensity load for six consecutive inspirations. Responses to the CS-load only differed between groups during the first acquisition trials and a strong increase in P100 during the US-loads was observed, which habituated across the experiment. Our results suggest that the disruption caused by adding low to moderate resistive loads to three consecutive inspirations results in a short-lasting anticipatory increase in inspiratory motor drive. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Extended Stable Boundary of LCL-Filtered Grid-Connected Inverter Based on An Improved Grid-Voltage Feedforward Control

    DEFF Research Database (Denmark)

    Lu, Minghui; Xin, Zhen; Wang, Xiongfei

    2016-01-01

    should be designed under one-sixth of sampling frequency. However, the low resonance frequency leads to a comparatively large filter inductance or/and capacitance. To extend the stable boundary to the region above fs/6, this paper proposes a novel voltage feedforward scheme for the LCL-filtered inverter....... Theoretical analysis is then provided to validate its feasibility and stability. Compared to other widely used active damping strategies, no extra sensors are needed because the filter capacitor voltage, which is used for voltage feedforward control, is also sampled for phase-locked loop in this paper...

  10. Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater

    Energy Technology Data Exchange (ETDEWEB)

    David Yuill

    2008-06-30

    The following document is the final report for DE-FC26-05NT42327: Development of an Accurate Feed-Forward Temperature Control Tankless Water Heater. This work was carried out under a cooperative agreement from the Department of Energy's National Energy Technology Laboratory, with additional funding from Keltech, Inc. The objective of the project was to improve the temperature control performance of an electric tankless water heater (TWH). The reason for doing this is to minimize or eliminate one of the barriers to wider adoption of the TWH. TWH use less energy than typical (storage) water heaters because of the elimination of standby losses, so wider adoption will lead to reduced energy consumption. The project was carried out by Building Solutions, Inc. (BSI), a small business based in Omaha, Nebraska. BSI partnered with Keltech, Inc., a manufacturer of electric tankless water heaters based in Delton, Michigan. Additional work was carried out by the University of Nebraska and Mike Coward. A background study revealed several advantages and disadvantages to TWH. Besides using less energy than storage heaters, TWH provide an endless supply of hot water, have a longer life, use less floor space, can be used at point-of-use, and are suitable as boosters to enable alternative water heating technologies, such as solar or heat-pump water heaters. Their disadvantages are their higher cost, large instantaneous power requirement, and poor temperature control. A test method was developed to quantify performance under a representative range of disturbances to flow rate and inlet temperature. A device capable of conducting this test was designed and built. Some heaters currently on the market were tested, and were found to perform quite poorly. A new controller was designed using model predictive control (MPC). This control method required an accurate dynamic model to be created and required significant tuning to the controller before good control was achieved. The MPC

  11. Computer Simulation Tests of Feedback Error Learning Controller with IDM and ISM for Functional Electrical Stimulation in Wrist Joint Control

    OpenAIRE

    Watanabe, Takashi; Sugi, Yoshihiro

    2010-01-01

    Feedforward controller would be useful for hybrid Functional Electrical Stimulation (FES) system using powered orthotic devices. In this paper, Feedback Error Learning (FEL) controller for FES (FEL-FES controller) was examined using an inverse statics model (ISM) with an inverse dynamics model (IDM) to realize a feedforward FES controller. For FES application, the ISM was tested in learning off line using training data obtained by PID control of very slow movements. Computer simulation tests ...

  12. Effects of secondary loudspeaker properties on broadband feedforward active duct noise control.

    Science.gov (United States)

    Chan, Yum-Ji; Huang, Lixi; Lam, James

    2013-07-01

    Dependence of the performance of feedforward active duct noise control on secondary loudspeaker parameters is investigated. Noise reduction performance can be improved if the force factor of the secondary loudspeaker is higher. For example, broadband noise reduction improvement up to 1.6 dB is predicted by increasing the force factor by 50%. In addition, a secondary loudspeaker with a larger force factor was found to have quicker convergence in the adaptive algorithm in experiment. In simulations, noise reduction is improved in using an adaptive algorithm by using a secondary loudspeaker with a heavier moving mass. It is predicted that an extra broadband noise reduction of more than 7 dB can be gained using an adaptive filter if the force factor, moving mass and coil inductance of a commercially available loudspeaker are doubled. Methods to increase the force factor beyond those of commercially available loudspeakers are proposed.

  13. Increasing LIGO sensitivity by feedforward subtraction of auxiliary length control noise

    International Nuclear Information System (INIS)

    Meadors, Grant David; Riles, Keith; Kawabe, Keita

    2014-01-01

    LIGO, the Laser Interferometer Gravitational-wave Observatory, has been designed and constructed to measure gravitational wave strain via differential arm length. The LIGO 4 km Michelson arms with Fabry–Perot cavities have auxiliary length control servos for suppressing Michelson motion of the beam-splitter and arm cavity input mirrors, which degrades interferometer sensitivity. We demonstrate how a post facto pipeline improves a data sample from LIGO Science Run 6 with feedforward subtraction. Dividing data into 1024 s windows, we numerically fit filter functions representing the frequency-domain transfer functions from Michelson length channels into the gravitational-wave strain data channel for each window, then subtract the filtered Michelson channel noise (witness) from the strain channel (target). In this paper we describe the algorithm, assess achievable improvements in sensitivity to astrophysical sources, and consider relevance to future interferometry. (paper)

  14. Feedback-linearization and feedback-feedforward decentralized control for multimachine power system

    Energy Technology Data Exchange (ETDEWEB)

    De Tuglie, Enrico [Dipartimento di Ingegneria dell' Ambiente, e per lo Sviluppo Sostenibile - DIASS, Politecnico di Bari, Viale del Turismo 8, 74100 Taranto (Italy); Iannone, Silvio Marcello; Torelli, Francesco [Dipartimento di Elettrotecnica, ed Elettronica - DEE, Politecnico di Bari, Via Re David 200, 70125 Bari (Italy)

    2008-03-15

    In this paper a decentralized nonlinear controller for large-scale power systems is investigated. The proposed controller design is based on the input-output feedback linearization methodology. In order to overcome computational difficulties in adopting such methodology, the overall interconnected nonlinear system, given as n-order, is analyzed as a cascade connection of an n{sub 1}-order nonlinear subsystem and an n{sub 2}-order linear subsystem. The controller design is obtained by applying input-output feedback linearization to the nonlinear subsystem and adopting a tracking control scheme, based on feedback-feedforward technique, for the linear subsystem. In the assumed system model, which is characterised by an interconnected structure between generating units, a decentralised adaptive controller is implemented by decentralizing these constraints. The use of a totally decentralised controller implies a system performance decay with respect to performance when the system is equipped with a centralised controller. Fortunately, the robustness of the proposed controller, based on input-output feedback procedure, guarantees good performance in terms of disturbance even when disturbances are caused by decentralization of interconnection constraints. Test results, provided on the IEEE 30 bus test system, demonstrate the effectiveness and practical applicability of proposed methodology. (author)

  15. Non-predictor control of a class of feedforward nonlinear systems with unknown time-varying delays

    Science.gov (United States)

    Koo, Min-Sung; Choi, Ho-Lim

    2016-08-01

    This paper generalises the several recent results on the control of feedforward time-delay nonlinear systems. First, in view of system formulation, there are unknown time-varying delays in both states and main control input. Also, the considered nonlinear system has extended feedforward nonlinearities. Second, in view of control solution, our proposed controller is a non-predictor feedback controller whereas smith-predictor type controllers are used in the several existing results. Moreover, our controller does not need any information on the unknown delays except their upper bounds. Thus, our result has certain merits in both system formulation and control solution perspective. The analysis and example are given for clear illustration.

  16. Mitigation of ground motion effects in linear accelerators via feed-forward control

    Directory of Open Access Journals (Sweden)

    J. Pfingstner

    2014-12-01

    Full Text Available Ground motion is a severe problem for many particle accelerators, since it excites beam oscillations, which decrease the beam quality and create beam-beam offset (at colliders. Orbit feedback systems can only compensate ground motion effects at frequencies significantly smaller than the beam repetition rate. In linear colliders, where the repetition rate is low, additional counter measures have to be put in place. For this reason, a ground motion mitigation method based on feed-forward control is presented in this paper. It has several advantages compared to other techniques (stabilization systems and intratrain feedback systems such as cost reduction and potential performance improvement. An analytical model is presented that allows the derivation of hardware specification and performance estimates for a specific accelerator and ground motion model. At the Accelerator Test Facility (ATF2, ground motion sensors have been installed to verify the feasibility of important parts of the mitigation strategy. In experimental studies, it has been shown that beam excitations due to ground motion can be predicted from ground motion measurements on a pulse-to-pulse basis. Correlations of up to 80% between the estimated and measured orbit jitter have been observed. Additionally, an orbit jitter source was identified and has been removed, which halved the orbit jitter power at ATF2 and shows that the feed-forward scheme is also very useful for the detection of installation issues. We believe that the presented mitigation method has the potential to reduce costs and improve the performance of linear colliders and potentially other linear accelerators.

  17. Neural network feedforward control of a closed-circuit wind tunnel

    Science.gov (United States)

    Sutcliffe, Peter

    Accurate control of wind-tunnel test conditions can be dramatically enhanced using feedforward control architectures which allow operating conditions to be maintained at a desired setpoint through the use of mathematical models as the primary source of prediction. However, as the desired accuracy of the feedforward prediction increases, the model complexity also increases, so that an ever increasing computational load is incurred. This drawback can be avoided by employing a neural network that is trained offline using the output of a high fidelity wind-tunnel mathematical model, so that the neural network can rapidly reproduce the predictions of the model with a greatly reduced computational overhead. A novel neural network database generation method, developed through the use of fractional factorial arrays, was employed such that a neural network can accurately predict wind-tunnel parameters across a wide range of operating conditions whilst trained upon a highly efficient database. The subsequent network was incorporated into a Neural Network Model Predictive Control (NNMPC) framework to allow an optimised output schedule capable of providing accurate control of the wind-tunnel operating parameters. Facilitation of an optimised path through the solution space is achieved through the use of a chaos optimisation algorithm such that a more globally optimum solution is likely to be found with less computational expense than the gradient descent method. The parameters associated with the NNMPC such as the control horizon are determined through the use of a Taguchi methodology enabling the minimum number of experiments to be carried out to determine the optimal combination. The resultant NNMPC scheme was employed upon the Hessert Low Speed Wind Tunnel at the University of Notre Dame to control the test-section temperature such that it follows a pre-determined reference trajectory during changes in the test-section velocity. Experimental testing revealed that the

  18. An Active Seat Controller with Vehicle Suspension Feedforward and Feedback States: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Abdulaziz Alfadhli

    2018-04-01

    Full Text Available Active seat suspensions can be used to reduce the harmful vertical vibration of a vehicle’s seat by applying an external force using a closed loop controller. Many of the controllers found in the literature are difficult to implement practically, because they are based on using unavailable or difficult and costly measurements. This paper presents both simulation and experimental studies of five novel, simple, and cost-effective control strategies to be used for an active seat suspension in order to improve ride comfort at low frequencies below 20 Hz. These strategies use available and measurable feedforward (preview information states from the vehicle secondary suspension, as well as feedback states from the seat suspension, together with gains optimised to minimise the occupant vibration. The gains were optimised using a genetic algorithm (GA, with a fitness function based on the seat effective amplitude transmissibility (SEAT factor. Constraints on the control force and the seat suspension stroke were also included in the optimisation algorithm. Simulation and laboratory experimental tests were carried out to assess the performance of the proposed controllers according to the ISO 2631-1 standard, in both the frequency and time domains with a range of different road profiles. The experimental tests were performed using a multi-axis simulation table (MAST and a physical active seat suspension configured as a hardware-in-loop (HIL simulation with a virtual linear quarter vehicle model (QvM. The results demonstrate that the proposed controllers substantially attenuate the vertical vibration at the driver’s seat compared with both a passive and a proportional-integral-derivative (PID active seat suspension and thus improve ride comfort together with reducing vibration-linked health risks. Moreover, experimental results show that employing both feedforward information and feedback vehicle body and seat acceleration signals in the controller

  19. Multiple Model Predictive Hybrid Feedforward Control of Fuel Cell Power Generation System

    Directory of Open Access Journals (Sweden)

    Long Wu

    2018-02-01

    Full Text Available Solid oxide fuel cell (SOFC is widely considered as an alternative solution among the family of the sustainable distributed generation. Its load flexibility enables it adjusting the power output to meet the requirements from power grid balance. Although promising, its control is challenging when faced with load changes, during which the output voltage is required to be maintained as constant and fuel utilization rate kept within a safe range. Moreover, it makes the control even more intractable because of the multivariable coupling and strong nonlinearity within the wide-range operating conditions. To this end, this paper developed a multiple model predictive control strategy for reliable SOFC operation. The resistance load is regarded as a measurable disturbance, which is an input to the model predictive control as feedforward compensation. The coupling is accommodated by the receding horizon optimization. The nonlinearity is mitigated by the multiple linear models, the weighted sum of which serves as the final control execution. The merits of the proposed control structure are demonstrated by the simulation results.

  20. Field Testing of Feedforward Collective Pitch Control on the CART2 Using a Nacelle-Based Lidar Scanner

    International Nuclear Information System (INIS)

    Schlipf, David; Haizmann, Florian; Hofsäß, Martin; Cheng, Po Wen; Fleming, Paul; Scholbrock, Andrew; Wright, Alan

    2014-01-01

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, when the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Furthermore, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines

  1. Field Testing of Feedforward Collective Pitch Control on the CART2 Using a Nacelle-Based Lidar Scanner

    Science.gov (United States)

    Schlipf, David; Fleming, Paul; Haizmann, Florian; Scholbrock, Andrew; Hofsäß, Martin; Wright, Alan; Cheng, Po Wen

    2014-12-01

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, when the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Furthermore, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines.

  2. Video Feedforward for Rapid Learning of a Picture-Based Communication System

    Science.gov (United States)

    Smith, Jemma; Hand, Linda; Dowrick, Peter W.

    2014-01-01

    This study examined the efficacy of video self modeling (VSM) using feedforward, to teach various goals of a picture exchange communication system (PECS). The participants were two boys with autism and one man with Down syndrome. All three participants were non-verbal with no current functional system of communication; the two children had long…

  3. When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing.

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Yeo

    2016-12-01

    Full Text Available Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.

  4. When Optimal Feedback Control Is Not Enough: Feedforward Strategies Are Required for Optimal Control with Active Sensing.

    Science.gov (United States)

    Yeo, Sang-Hoon; Franklin, David W; Wolpert, Daniel M

    2016-12-01

    Movement planning is thought to be primarily determined by motor costs such as inaccuracy and effort. Solving for the optimal plan that minimizes these costs typically leads to specifying a time-varying feedback controller which both generates the movement and can optimally correct for errors that arise within a movement. However, the quality of the sensory feedback during a movement can depend substantially on the generated movement. We show that by incorporating such state-dependent sensory feedback, the optimal solution incorporates active sensing and is no longer a pure feedback process but includes a significant feedforward component. To examine whether people take into account such state-dependency in sensory feedback we asked people to make movements in which we controlled the reliability of sensory feedback. We made the visibility of the hand state-dependent, such that the visibility was proportional to the component of hand velocity in a particular direction. Subjects gradually adapted to such a sensory perturbation by making curved hand movements. In particular, they appeared to control the late visibility of the movement matching predictions of the optimal controller with state-dependent sensory noise. Our results show that trajectory planning is not only sensitive to motor costs but takes sensory costs into account and argues for optimal control of movement in which feedforward commands can play a significant role.

  5. Adaptive feedforward control for improving output power response of CO2 laser; Tekiogata feedforward ni yoru laser shutsuryoku oto no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Y.; Takahashi, t.; Morita, A. [Mitsubishi Electric Corp., Tokyo (Japan)

    1998-03-31

    Feedback control has been used to stabilize the steady-state output power of a CO2 laser to overcome the problems caused by the change in the temperature/deterioration of CO2 gas. The transient response, however, is as slow as a few hundred milliseconds because of the slow dynamics of a thermopile power sensor. When machining conditions of a CO2 laser are changed, this rather slow response requires an extra dwell time, resulting in low productivity of the machining. To cope with this problem, the authors have developed adaptive feedforward control for a CO2 laser in addition to conventional feedback control. The model of a CO2 laser is described as a gain, which is varied by the setting parameters; laser power, pulse frequency and duty factor, as well as gas conditions. In this paper, two new variables, effective discharge power and threshold discharge power, are introduced to obtain a compact and adjustable model. With the proposed control system, the step response time of a laser power is reduced to less than ten milliseconds without overshoot, and can be set to desired constant time. The effects of such a fast and stable response on the machining speed and machining quality are examined. The experimental results show that for thin metal line-cutting, neither the melt-off area nor dross is observed even in the no-dwell time case. For thin metal hole-cutting, the machining speed is improved by 30%. 11 refs., 14 figs., 3 tabs.

  6. Dead beat filling and feedforward rf control for the spallation neutron source SNQ

    International Nuclear Information System (INIS)

    Schulze, D.

    1982-01-01

    For the 1.1 GeV-100 mA Spallation Neutron Source SNQ operation costs and beam losses ask for the possible potential of rf control improvements. Two novel methods are investigated. First, in order to increase the overall rf efficiency, the cavity field is built up as fast as possible in the open loop state of feedback control and in detuned position of the cavity in such a manner that the cavity with beam is matched to the generator. It is shown that this requires the simulataneous application of a generator amplitude and a generator phase step. Secondly, a feedforward control system is proposed, which reduces the amplitude and phase control error caused by an arbitrary beam transient into the limits of +-0.1% and +-0.1 0 and maintains these error limits also in the presence of parameter drift. This is done by an adaptive parameter adjustment procedure using a digital model of the control system. The system structure and a promising digital simulation are discussed

  7. Dynamic Feedforward Control of a Diesel Engine Based on Optimal Transient Compensation Maps

    Directory of Open Access Journals (Sweden)

    Giorgio Mancini

    2014-08-01

    Full Text Available To satisfy the increasingly stringent emission regulations and a demand for an ever lower fuel consumption, diesel engines have become complex systems with many interacting actuators. As a consequence, these requirements are pushing control and calibration to their limits. The calibration procedure nowadays is still based mainly on engineering experience, which results in a highly iterative process to derive a complete engine calibration. Moreover, automatic tools are available only for stationary operation, to obtain control maps that are optimal with respect to some predefined objective function. Therefore, the exploitation of any leftover potential during transient operation is crucial. This paper proposes an approach to derive a transient feedforward (FF control system in an automated way. It relies on optimal control theory to solve a dynamic optimization problem for fast transients. A partially physics-based model is thereby used to replace the engine. From the optimal solutions, the relevant information is extracted and stored in maps spanned by the engine speed and the torque gradient. These maps complement the static control maps by accounting for the dynamic behavior of the engine. The procedure is implemented on a real engine and experimental results are presented along with the development of the methodology.

  8. Hybrid Vibration Control under Broadband Excitation and Variable Temperature Using Viscoelastic Neutralizer and Adaptive Feedforward Approach

    Directory of Open Access Journals (Sweden)

    João C. O. Marra

    2016-01-01

    Full Text Available Vibratory phenomena have always surrounded human life. The need for more knowledge and domain of such phenomena increases more and more, especially in the modern society where the human-machine integration becomes closer day after day. In that context, this work deals with the development and practical implementation of a hybrid (passive-active/adaptive vibration control system over a metallic beam excited by a broadband signal and under variable temperature, between 5 and 35°C. Since temperature variations affect directly and considerably the performance of the passive control system, composed of a viscoelastic dynamic vibration neutralizer (also called a viscoelastic dynamic vibration absorber, the associative strategy of using an active-adaptive vibration control system (based on a feedforward approach with the use of the FXLMS algorithm working together with the passive one has shown to be a good option to compensate the neutralizer loss of performance and generally maintain the extended overall level of vibration control. As an additional gain, the association of both vibration control systems (passive and active-adaptive has improved the attenuation of vibration levels. Some key steps matured over years of research on this experimental setup are presented in this paper.

  9. Limitations of Feedback, Feedforward and IMC Controller for a First Order Non-Linear Process with Dead Time

    Directory of Open Access Journals (Sweden)

    Maruthai Suresh

    2010-10-01

    Full Text Available A nonlinear process, the heat exchanger whose parameters vary with respect to the process variable, is considered. The time constant and gain of the chosen process vary as a function of temperature. The limitations of the conventional feedback controller tuned using Ziegler-Nichols settings for the chosen process are brought out. The servo and regulatory responses through simulation and experimentation for various magnitudes of set-point changes and load changes at various operating points with the controller tuned only at a chosen nominal operating point are obtained and analyzed. Regulatory responses for output load changes are studied. The efficiency of feedforward controller and the effects of modeling error have been brought out. An IMC based system is presented to understand clearly how variations of system parameters affect the performance of the controller. The present work illustrates the effectiveness of Feedforward and IMC controller.

  10. Load speed regulation in compliant mechanical transmission systems using feedback and feedforward control actions.

    Science.gov (United States)

    Raul, P R; Dwivedula, R V; Pagilla, P R

    2016-07-01

    The problem of controlling the load speed of a mechanical transmission system consisting of a belt-pulley and gear-pair is considered. The system is modeled as two inertia (motor and load) connected by a compliant transmission. If the transmission is assumed to be rigid, then using either the motor or load speed feedback provides the same result. However, with transmission compliance, due to belts or long shafts, the stability characteristics and performance of the closed-loop system are quite different when either motor or load speed feedback is employed. We investigate motor and load speed feedback schemes by utilizing the singular perturbation method. We propose and discuss a control scheme that utilizes both motor and load speed feedback, and design an adaptive feedforward action to reject load torque disturbances. The control algorithms are implemented on an experimental platform that is typically used in roll-to-roll manufacturing and results are shown and discussed. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Feedforward hysteresis compensation in trajectory control of piezoelectrically-driven nanostagers

    Science.gov (United States)

    Bashash, Saeid; Jalili, Nader

    2006-03-01

    Complex structural nonlinearities of piezoelectric materials drastically degrade their performance in variety of micro- and nano-positioning applications. From the precision positioning and control perspective, the multi-path time-history dependent hysteresis phenomenon is the most concerned nonlinearity in piezoelectric actuators to be analyzed. To realize the underlying physics of this phenomenon and to develop an efficient compensation strategy, the intelligent properties of hysteresis with the effects of non-local memories are discussed. Through performing a set of experiments on a piezoelectrically-driven nanostager with high resolution capacitive position sensor, it is shown that for the precise prediction of hysteresis path, certain memory units are required to store the previous hysteresis trajectory data. Based on the experimental observations, a constitutive memory-based mathematical modeling framework is developed and trained for the precise prediction of hysteresis path for arbitrarily assigned input profiles. Using the inverse hysteresis model, a feedforward control strategy is then developed and implemented on the nanostager to compensate for the system everpresent nonlinearity. Experimental results demonstrate that the controller remarkably eliminates the nonlinear effect if memory units are sufficiently chosen for the inverse model.

  12. Modeling and inverse feedforward control for conducting polymer actuators with hysteresis

    International Nuclear Information System (INIS)

    Wang, Xiangjiang; Alici, Gursel; Tan, Xiaobo

    2014-01-01

    Conducting polymer actuators are biocompatible with a small footprint, and operate in air or liquid media under low actuation voltages. This makes them excellent actuators for macro- and micro-manipulation devices, however, their positioning ability or accuracy is adversely affected by their hysteresis non-linearity under open-loop control strategies. In this paper, we establish a hysteresis model for conducting polymer actuators, based on a rate-independent hysteresis model known as the Duhem model. The hysteresis model is experimentally identified and integrated with the linear dynamics of the actuator. This combined model is inverted to control the displacement of the tri-layer actuators considered in this study, without using any external feedback. The inversion requires an inverse hysteresis model which was experimentally identified using an inverse neural network model. Experimental results show that the position tracking errors are reduced by more than 50% when the hysteresis inverse model is incorporated into an inversion-based feedforward controller, indicating the potential of the proposed method in enabling wider use of such smart actuators. (paper)

  13. PREDICTIVE CONTROL OF A BATCH POLYMERIZATION SYSTEM USING A FEEDFORWARD NEURAL NETWORK WITH ONLINE ADAPTATION BY GENETIC ALGORITHM

    OpenAIRE

    Cancelier, A.; Claumann, C. A.; Bolzan, A.; Machado, R. A. F.

    2016-01-01

    Abstract This study used a predictive controller based on an empirical nonlinear model comprising a three-layer feedforward neural network for temperature control of the suspension polymerization process. In addition to the offline training technique, an algorithm was also analyzed for online adaptation of its parameters. For the offline training, the network was statically trained and the genetic algorithm technique was used in combination with the least squares method. For online training, ...

  14. On the use of iterative techniques for feedforward control of transverse angle and position jitter in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1995-01-01

    It is possible to use feedforward predictive control for transverse position and trajectory-angle jitter correction. The control procedure is straightforward, but creation of the predictive filter is not as obvious. The two process tested were the least mean squares (LMS) and Kalman filter methods. The controller parameters calculated offline are downloaded to a real-time analog correction system between macropulses. These techniques worked well for both interpulse (pulse-to-pulse) correction and intrapulse (within a pulse) correction with the Kalman filter method being the clear winner. A simulation based on interpulse data taken at the Stanford Linear Collider showed an improvement factor of almost three in the average rms jitter over standard feedback techniques for the Kalman filter. An improvement factor of over three was found for the Kalman filter on intrapulse data taken at the Los Alamos Meson Physics Facility. The feedforward systems also improved the correction bandwidth. copyright 1995 American Institute of Physics

  15. On the use of iterative techniques for feedforward control of transverse angle and position jitter in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1994-01-01

    It is possible to use feedforward predictive control for transverse position and trajectory-angle jitter correction. The control procedure is straightforward, but creation of the predictive filter is not as obvious. The two processes tested were the least mean squares (LMS) and Kalman inter methods. The controller parameters calculated offline are downloaded to a real-time analog correction system between macropulses. These techniques worked well for both interpulse (pulse-to-pulse) correction and intrapulse (within a pulse) correction with the Kalman filter method being the clear winner. A simulation based on interpulse data taken at the Stanford Linear Collider showed an improvement factor of almost three in the average rms jitter over standard feedback techniques for the Kalman filter. An improvement factor of over three was found for the Kalman filter on intrapulse data taken at the Los Alamos Meson Physics Facility. The feedforward systems also improved the correction bandwidth

  16. Periodic spring–mass running over uneven terrain through feedforward control of landing conditions

    International Nuclear Information System (INIS)

    III, Luther R Palmer; Eaton, Caitrin E

    2014-01-01

    This work pursues a feedforward control algorithm for high-speed legged locomotion over uneven terrain. Being able to rapidly negotiate uneven terrain without visual or a priori information about the terrain will allow legged systems to be used in time-critical applications and alongside fast-moving humans or vehicles. The algorithm is shown here implemented on a spring-loaded inverted pendulum model in simulation, and can be configured to approach fixed running height over uneven terrain or self-stable terrain following. Offline search identifies unique landing conditions that achieve a desired apex height with a constant stride period over varying ground levels. Because the time between the apex and touchdown events is directly related to ground height, the landing conditions can be computed in real time as continuous functions of this falling time. Enforcing a constant stride period reduces the need for inertial sensing of the apex event, which is nontrivial for physical systems, and allows for clocked feedfoward control of the swing leg. (paper)

  17. Periodic spring-mass running over uneven terrain through feedforward control of landing conditions.

    Science.gov (United States)

    Palmer, Luther R; Eaton, Caitrin E

    2014-09-01

    This work pursues a feedforward control algorithm for high-speed legged locomotion over uneven terrain. Being able to rapidly negotiate uneven terrain without visual or a priori information about the terrain will allow legged systems to be used in time-critical applications and alongside fast-moving humans or vehicles. The algorithm is shown here implemented on a spring-loaded inverted pendulum model in simulation, and can be configured to approach fixed running height over uneven terrain or self-stable terrain following. Offline search identifies unique landing conditions that achieve a desired apex height with a constant stride period over varying ground levels. Because the time between the apex and touchdown events is directly related to ground height, the landing conditions can be computed in real time as continuous functions of this falling time. Enforcing a constant stride period reduces the need for inertial sensing of the apex event, which is nontrivial for physical systems, and allows for clocked feedfoward control of the swing leg.

  18. Mitigating IPMC back relaxation through feedforward and feedback control of patterned electrodes

    International Nuclear Information System (INIS)

    Fleming, Maxwell J; Leang, Kam K; Kim, Kwang J

    2012-01-01

    With low driving voltage ( < 5 V) and the ability to be operated in aqueous environments, ionic polymer–metal composite (IPMC) materials are quickly gaining attention for use in many applications including soft bio-inspired actuators and sensors. There are, however, drawbacks to IPMC actuators, including the ‘back relaxation’ effect. Specifically, when subjected to an excessively slow input, the IPMC actuator will slowly relax back toward its original position. There is debate over the physical mechanism of back relaxation, although one prevalent theory describes an initial current, caused by the electrostatic forces of the charging electrodes, which drives water molecules across the ion exchange membrane and deforms the IPMC. Once the electrodes are fully charged, however, the dominant element of the motion is the osmotic pressure, driving the water molecules back to equilibrium, thus causing back relaxation. A new method to mitigate back relaxation is proposed, taking advantage of controlled activation of patterned (sectored) electrodes on the IPMC. By actuating sectors in opposing directions, back relaxation can be effectively canceled out. An integrated feedforward and feedback controller is employed based on this concept, and is shown to minimize back relaxation, while reducing the input voltage required, as compared to the case of the non-sectored IPMC. Experimental results show nearly an order of magnitude reduction in the tracking error compared to the uncompensated case, and that the IPMC’s position can be maintained over a period of 60 and 1200 s with minimal evidence of back relaxation. (paper)

  19. Demonstration of feed-forward control for linear optics quantum computation

    International Nuclear Information System (INIS)

    Pittman, T.B.; Jacobs, B.C.; Franson, J.D.

    2002-01-01

    One of the main requirements in linear optics quantum computing is the ability to perform single-qubit operations that are controlled by classical information fed forward from the output of single-photon detectors. These operations correspond to predetermined combinations of phase corrections and bit flips that are applied to the postselected output modes of nondeterministic quantum logic devices. Corrections of this kind are required in order to obtain the correct logical output for certain detection events, and their use can increase the overall success probability of the devices. In this paper, we report on the experimental demonstration of the use of this type of feed-forward system to increase the probability of success of a simple nondeterministic quantum logic operation from approximately (1/4) to (1/2). This logic operation involves the use of one target qubit and one ancilla qubit which, in this experiment, are derived from a parametric down-conversion photon pair. Classical information describing the detection of the ancilla photon is fed forward in real time and used to alter the quantum state of the output photon. A fiber-optic delay line is used to store the output photon until a polarization-dependent phase shift can be applied using a high-speed Pockels cell

  20. Rate of Torque Development and Feedforward Control of the Hip and Knee Extensors: Gender Differences.

    Science.gov (United States)

    Stearns-Reider, Kristen M; Powers, Christopher M

    2017-10-06

    The purpose of this study was to determine whether women demonstrate decreased rate of torque development (RTD) of the hip and knee extensors and altered onset timing of the vastus lateralis and gluteus maximus during a drop-jump task when compared with men. On average, women demonstrated significantly lower normalized RTD of the hip extensors (women: 11.6 ± 1.3 MVT.s -1 , men: 13.1 ± 0.9 MVT.s -1 ; p ≤ .01); however, there was no significant difference in knee extensor RTD. Women also demonstrated significantly earlier activation of their vastus lateralis (women: 206.0 ± 130.6 ms, men: 80.9 ± 69.6 ms; p ≤ .01) and gluteus maximus (women: 85.7 ± 58.6 ms, men: 54.5 ± 35.4 ms; p = .02). In both men and women, there was a significant negative correlation between the hip extensor RTD and the vastus lateralis electromyographic onset time (men: r = -.386, p = .046; women: r = -.531, p = .008). The study findings suggest that women may utilize a feedforward control strategy in which they activate their knee extensors earlier than men to compensate for deficits in hip extensor RTD. The impaired capacity to rapidly stabilize the hip and knee joints during dynamic maneuvers may contribute to the increased risk of anterior cruciate ligament injury observed in women.

  1. Spatial Multiplexing of Atom-Photon Entanglement Sources using Feedforward Control and Switching Networks.

    Science.gov (United States)

    Tian, Long; Xu, Zhongxiao; Chen, Lirong; Ge, Wei; Yuan, Haoxiang; Wen, Yafei; Wang, Shengzhi; Li, Shujing; Wang, Hai

    2017-09-29

    The light-matter quantum interface that can create quantum correlations or entanglement between a photon and one atomic collective excitation is a fundamental building block for a quantum repeater. The intrinsic limit is that the probability of preparing such nonclassical atom-photon correlations has to be kept low in order to suppress multiexcitation. To enhance this probability without introducing multiexcitation errors, a promising scheme is to apply multimode memories to the interface. Significant progress has been made in temporal, spectral, and spatial multiplexing memories, but the enhanced probability for generating the entangled atom-photon pair has not been experimentally realized. Here, by using six spin-wave-photon entanglement sources, a switching network, and feedforward control, we build a multiplexed light-matter interface and then demonstrate a ∼sixfold (∼fourfold) probability increase in generating entangled atom-photon (photon-photon) pairs. The measured compositive Bell parameter for the multiplexed interface is 2.49±0.03 combined with a memory lifetime of up to ∼51  μs.

  2. Feedforward compensation control of rotor imbalance for high-speed magnetically suspended centrifugal compressors using a novel adaptive notch filter

    Science.gov (United States)

    Zheng, Shiqiang; Feng, Rui

    2016-03-01

    This paper introduces a feedforward control strategy combined with a novel adaptive notch filter to solve the problem of rotor imbalance in high-speed Magnetically Suspended Centrifugal Compressors (MSCCs). Unbalance vibration force of rotor in MSCC is mainly composed of current stiffness force and displacement stiffness force. In this paper, the mathematical model of the unbalance vibration with the proportional-integral-derivative (PID) control laws is presented. In order to reduce the unbalance vibration, a novel adaptive notch filter is proposed to identify the synchronous frequency displacement of the rotor as a compensation signal to eliminate the current stiffness force. In addition, a feedforward channel from position component to control output is introduced to compensate displacement stiffness force to achieve a better performance. A simplified inverse model of power amplifier is included in the feedforward channel to reject the degrade performance caused by its low-pass characteristic. Simulation and experimental results on a MSCC demonstrate a significant effect on the synchronous vibration suppression of the magnetically suspended rotor at a high speed.

  3. Phase I to II cross-induction of xenobiotic metabolizing enzymes: A feedforward control mechanism for potential hormetic responses

    International Nuclear Information System (INIS)

    Zhang Qiang; Pi Jingbo; Woods, Courtney G.; Andersen, Melvin E.

    2009-01-01

    Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a

  4. Phase I to II cross-induction of xenobiotic metabolizing enzymes: a feedforward control mechanism for potential hormetic responses.

    Science.gov (United States)

    Zhang, Qiang; Pi, Jingbo; Woods, Courtney G; Andersen, Melvin E

    2009-06-15

    Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a

  5. Predictive zero-dimensional combustion model for DI diesel engine feed-forward control

    International Nuclear Information System (INIS)

    Catania, Andrea Emilio; Finesso, Roberto; Spessa, Ezio

    2011-01-01

    Highlights: → Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. → Feed-forward control of MFB50, p max and IMEP in both conventional and PCCI combustion modes. → Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. → Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q ch to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent evaluation of the in

  6. Predictive zero-dimensional combustion model for DI diesel engine feed-forward control

    Energy Technology Data Exchange (ETDEWEB)

    Catania, Andrea Emilio; Finesso, Roberto [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy); Spessa, Ezio, E-mail: ezio.spessa@polito.it [IC Engines Advanced Laboratory, Politecnico di Torino, c.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2011-09-15

    Highlights: {yields} Zero-dimensional low-throughput combustion model for real-time control in diesel engine applications. {yields} Feed-forward control of MFB50, p{sub max} and IMEP in both conventional and PCCI combustion modes. {yields} Capability of resolving the contribution to HRR of each injection pulse in multiple injection schedule. {yields} Ignition delay and model parameters estimated through physically consistent and easy-to-tune correlations. - Abstract: An innovative zero-dimensional predictive combustion model has been developed for the estimation of HRR (heat release rate) and in-cylinder pressure traces. This model has been assessed and applied to conventional and PCCI (premixed charge compression ignition) DI diesel engines for model-based feed-forward control purposes. The injection rate profile is calculated on the basis of the injected fuel quantities and on the injection parameters, such as SOI (start of injection), ET (energizing time), and DT (dwell time), taking the injector NOD (nozzle opening delay) and NCD (nozzle closure delay) into account. The injection rate profile in turn allows the released chemical energy Q{sub ch} to be estimated. The approach starts from the assumption that, at each time instant, the HRR is proportional to the energy associated with the accumulated fuel mass in the combustion chamber. The main novelties of the proposed approach consist of the method that is adopted to estimate the fuel ignition delay and of injection rate splitting for HRR estimation. The procedure allows an accurate calculation to be made of the different combustion parameters that are important for engine calibration, such as SOC (start of combustion) and MFB50 (50% of fuel mass fraction burned angle). On the basis of an estimation of the fuel released chemical energy, of the heat globally exchanged from the charge with the walls and of the energy associated with the fuel evaporation, the charge net energy is calculated, for a subsequent

  7. Proportional fuzzy feed-forward architecture control validation by wind tunnel tests of a morphing wing

    Directory of Open Access Journals (Sweden)

    Michel Joël Tchatchueng Kammegne

    2017-04-01

    wing for a specified flight condition. The feasibility and effectiveness of the developed control system by use of a proportional fuzzy feed-forward methodology are demonstrated experimentally through bench and wind tunnel tests of the morphing wing model.

  8. Feedforward and Feedback Control in Apraxia of Speech: Effects of Noise Masking on Vowel Production

    Science.gov (United States)

    Maas, Edwin; Mailend, Marja-Liisa; Guenther, Frank H.

    2015-01-01

    Purpose: This study was designed to test two hypotheses about apraxia of speech (AOS) derived from the Directions Into Velocities of Articulators (DIVA) model (Guenther et al., 2006): the feedforward system deficit hypothesis and the feedback system deficit hypothesis. Method: The authors used noise masking to minimize auditory feedback during…

  9. Control of a local neural network by feedforward and feedback inhibition

    NARCIS (Netherlands)

    Remme, M.W.H.; Wadman, W.J.

    2004-01-01

    The signal transfer of a neuronal network is shaped by the local interactions between the excitatory principal cells and the inhibitory interneurons. We investigated with a simple lumped model how feedforward and feedback inhibition in.uence the steady-state network signal transfer. We analyze how

  10. On the use of the autocorrelation and covariance methods for feedforward control of transverse angle and position jitter in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1994-01-01

    It is desired to design a predictive feedforward transverse jitter control system to control both angle and position jitter in pulsed linear accelerators. Such a system will increase the accuracy and bandwidth of correction over that of currently available feedback correction systems. Intrapulse correction is performed. An offline process actually ''learns'' the properties of the jitter, and uses these properties to apply correction to the beam. The correction weights calculated offline are downloaded to a real-time analog correction system between macropulses. Jitter data were taken at the Los Alamos National Laboratory (LANL) Ground Test Accelerator (GTA) telescope experiment at Argonne National Laboratory (ANL). The experiment consisted of the LANL telescope connected to the ANL ZGS proton source and linac. A simulation of the correction system using this data was shown to decrease the average rms jitter by a factor of two over that of a comparable standard feedback correction system. The system also improved the correction bandwidth

  11. Computer Simulation Tests of Feedback Error Learning Controller with IDM and ISM for Functional Electrical Stimulation in Wrist Joint Control

    Directory of Open Access Journals (Sweden)

    Takashi Watanabe

    2010-01-01

    Full Text Available Feedforward controller would be useful for hybrid Functional Electrical Stimulation (FES system using powered orthotic devices. In this paper, Feedback Error Learning (FEL controller for FES (FEL-FES controller was examined using an inverse statics model (ISM with an inverse dynamics model (IDM to realize a feedforward FES controller. For FES application, the ISM was tested in learning off line using training data obtained by PID control of very slow movements. Computer simulation tests in controlling wrist joint movements showed that the ISM performed properly in positioning task and that IDM learning was improved by using the ISM showing increase of output power ratio of the feedforward controller. The simple ISM learning method and the FEL-FES controller using the ISM would be useful in controlling the musculoskeletal system that has nonlinear characteristics to electrical stimulation and therefore is expected to be useful in applying to hybrid FES system using powered orthotic device.

  12. Wind Speed Preview Measurement and Estimation for Feedforward Control of Wind Turbines

    Science.gov (United States)

    Simley, Eric J.

    Wind turbines typically rely on feedback controllers to maximize power capture in below-rated conditions and regulate rotor speed during above-rated operation. However, measurements of the approaching wind provided by Light Detection and Ranging (lidar) can be used as part of a preview-based, or feedforward, control system in order to improve rotor speed regulation and reduce structural loads. But the effectiveness of preview-based control depends on how accurately lidar can measure the wind that will interact with the turbine. In this thesis, lidar measurement error is determined using a statistical frequency-domain wind field model including wind evolution, or the change in turbulent wind speeds between the time they are measured and when they reach the turbine. Parameters of the National Renewable Energy Laboratory (NREL) 5-MW reference turbine model are used to determine measurement error for a hub-mounted circularly-scanning lidar scenario, based on commercially-available technology, designed to estimate rotor effective uniform and shear wind speed components. By combining the wind field model, lidar model, and turbine parameters, the optimal lidar scan radius and preview distance that yield the minimum mean square measurement error, as well as the resulting minimum achievable error, are found for a variety of wind conditions. With optimized scan scenarios, it is found that relatively low measurement error can be achieved, but the attainable measurement error largely depends on the wind conditions. In addition, the impact of the induction zone, the region upstream of the turbine where the approaching wind speeds are reduced, as well as turbine yaw error on measurement quality is analyzed. In order to minimize the mean square measurement error, an optimal measurement prefilter is employed, which depends on statistics of the correlation between the preview measurements and the wind that interacts with the turbine. However, because the wind speeds encountered by

  13. Compensating for intersegmental dynamics across the shoulder, elbow, and wrist joints during feedforward and feedback control.

    Science.gov (United States)

    Maeda, Rodrigo S; Cluff, Tyler; Gribble, Paul L; Pruszynski, J Andrew

    2017-10-01

    Moving the arm is complicated by mechanical interactions that arise between limb segments. Such intersegmental dynamics cause torques applied at one joint to produce movement at multiple joints, and in turn, the only way to create single joint movement is by applying torques at multiple joints. We investigated whether the nervous system accounts for intersegmental limb dynamics across the shoulder, elbow, and wrist joints during self-initiated planar reaching and when countering external mechanical perturbations. Our first experiment tested whether the timing and amplitude of shoulder muscle activity account for interaction torques produced during single-joint elbow movements from different elbow initial orientations and over a range of movement speeds. We found that shoulder muscle activity reliably preceded movement onset and elbow agonist activity, and was scaled to compensate for the magnitude of interaction torques arising because of forearm rotation. Our second experiment tested whether elbow muscles compensate for interaction torques introduced by single-joint wrist movements. We found that elbow muscle activity preceded movement onset and wrist agonist muscle activity, and thus the nervous system predicted interaction torques arising because of hand rotation. Our third and fourth experiments tested whether shoulder muscles compensate for interaction torques introduced by different hand orientations during self-initiated elbow movements and to counter mechanical perturbations that caused pure elbow motion. We found that the nervous system predicted the amplitude and direction of interaction torques, appropriately scaling the amplitude of shoulder muscle activity during self-initiated elbow movements and rapid feedback control. Taken together, our results demonstrate that the nervous system robustly accounts for intersegmental dynamics and that the process is similar across the proximal to distal musculature of the arm as well as between feedforward (i

  14. The predictability of frequency-altered auditory feedback changes the weighting of feedback and feedforward input for speech motor control.

    Science.gov (United States)

    Scheerer, Nichole E; Jones, Jeffery A

    2014-12-01

    Speech production requires the combined effort of a feedback control system driven by sensory feedback, and a feedforward control system driven by internal models. However, the factors that dictate the relative weighting of these feedback and feedforward control systems are unclear. In this event-related potential (ERP) study, participants produced vocalisations while being exposed to blocks of frequency-altered feedback (FAF) perturbations that were either predictable in magnitude (consistently either 50 or 100 cents) or unpredictable in magnitude (50- and 100-cent perturbations varying randomly within each vocalisation). Vocal and P1-N1-P2 ERP responses revealed decreases in the magnitude and trial-to-trial variability of vocal responses, smaller N1 amplitudes, and shorter vocal, P1 and N1 response latencies following predictable FAF perturbation magnitudes. In addition, vocal response magnitudes correlated with N1 amplitudes, vocal response latencies, and P2 latencies. This pattern of results suggests that after repeated exposure to predictable FAF perturbations, the contribution of the feedforward control system increases. Examination of the presentation order of the FAF perturbations revealed smaller compensatory responses, smaller P1 and P2 amplitudes, and shorter N1 latencies when the block of predictable 100-cent perturbations occurred prior to the block of predictable 50-cent perturbations. These results suggest that exposure to large perturbations modulates responses to subsequent perturbations of equal or smaller size. Similarly, exposure to a 100-cent perturbation prior to a 50-cent perturbation within a vocalisation decreased the magnitude of vocal and N1 responses, but increased P1 and P2 latencies. Thus, exposure to a single perturbation can affect responses to subsequent perturbations. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  15. Global output feedback control for a class of high-order feedforward nonlinear systems with input delay.

    Science.gov (United States)

    Zha, Wenting; Zhai, Junyong; Fei, Shumin

    2013-07-01

    This paper investigates the problem of output feedback stabilization for a class of high-order feedforward nonlinear systems with time-varying input delay. First, a scaling gain is introduced into the system under a set of coordinate transformations. Then, the authors construct an observer and controller to make the nominal system globally asymptotically stable. Based on homogeneous domination approach and Lyapunov-Krasovskii functional, it is shown that the closed-loop system can be rendered globally asymptotically stable by the scaling gain. Finally, two simulation examples are provided to illustrate the effectiveness of the proposed scheme. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Control of horizontal plasma position by feedforward-feedback system with digital computer in JIPP T-II tokamak

    International Nuclear Information System (INIS)

    Toi, K.; Sakurai, K.; Itoh, S.; Matsuura, K.; Tanahashi, S.

    1980-01-01

    In the resistive shell tokamak, JIPP T-II, the control of horizontal plasma position is successfully carried out by calculating the equilibrium equation in a thin resistive shell from a large-aspect-ratio approximation every 1.39 msec with a digital computer. The iron core effect also is taken account by a simple form in the equation. The required strength of vertical field is determined by the control-demand composed of a ''feedback'' term with Proportion-Integration-Differentiation correction (PID-controller) and ''feedforward'' one in proportion to plasma current. The experimental results have a satisfactory agreement with the analysis of control system. By this control system, the horizontal displacement has been suppressed within 1 cm throughout a discharge for the plasma of 15 cm-radius with high density and low q(a)-value obtained by the second current rise and strong gas puffing. (author)

  17. Temperature control of functionally graded plates using a feedforward-feedback controller based on the inverse solution and proportional-derivative controller

    International Nuclear Information System (INIS)

    Golbahar Haghighi, M.R.; Eghtesad, M.; Necsulescu, D.S.; Malekzadeh, P.

    2010-01-01

    As a first endeavor, an approach for the two- and three-dimensional temperature control of functionally graded (FG) plates by using the inverse solution and the proportional-differential (PD) controller is provided. For this purpose, firstly, having the desired temperatures at different locations and times, heat fluxes at the boundaries of the plates are estimated by inverse solution techniques offline. Then, the estimated heat fluxes as feedforward control inputs are combined with a PD controller to introduce a hybrid feedforward-feedback control input to the FG domain in the presence of disturbance and noise. In order to show the efficiency and accuracy of the proposed (inverse + PD) controller in two- and three-dimensional domains, different distinct examples, which include different boundary conditions, material properties and disturbance sources are presented. It is shown that the presented approach can adjust heat fluxes for control of the temperature accurately; also, the PD controller gains do not need to be re-adjusted for different problems.

  18. Temperature control of functionally graded plates using a feedforward-feedback controller based on the inverse solution and proportional-derivative controller

    Energy Technology Data Exchange (ETDEWEB)

    Golbahar Haghighi, M.R. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Eghtesad, M. [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Necsulescu, D.S. [Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5 (Canada); Malekzadeh, P., E-mail: malekzadeh@pgu.ac.i [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Bushehr 75168 (Iran, Islamic Republic of); Center of Excellence for Computational Mechanics, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2010-01-15

    As a first endeavor, an approach for the two- and three-dimensional temperature control of functionally graded (FG) plates by using the inverse solution and the proportional-differential (PD) controller is provided. For this purpose, firstly, having the desired temperatures at different locations and times, heat fluxes at the boundaries of the plates are estimated by inverse solution techniques offline. Then, the estimated heat fluxes as feedforward control inputs are combined with a PD controller to introduce a hybrid feedforward-feedback control input to the FG domain in the presence of disturbance and noise. In order to show the efficiency and accuracy of the proposed (inverse + PD) controller in two- and three-dimensional domains, different distinct examples, which include different boundary conditions, material properties and disturbance sources are presented. It is shown that the presented approach can adjust heat fluxes for control of the temperature accurately; also, the PD controller gains do not need to be re-adjusted for different problems.

  19. LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011

    Energy Technology Data Exchange (ETDEWEB)

    Dunne, F.; Simley, E.; Pao, L.Y.

    2011-10-01

    This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of

  20. Incoherent feedforward control governs adaptation of activated ras in a eukaryotic chemotaxis pathway.

    Science.gov (United States)

    Takeda, Kosuke; Shao, Danying; Adler, Micha; Charest, Pascale G; Loomis, William F; Levine, Herbert; Groisman, Alex; Rappel, Wouter-Jan; Firtel, Richard A

    2012-01-03

    Adaptation in signaling systems, during which the output returns to a fixed baseline after a change in the input, often involves negative feedback loops and plays a crucial role in eukaryotic chemotaxis. We determined the dynamical response to a uniform change in chemoattractant concentration of a eukaryotic chemotaxis pathway immediately downstream from G protein-coupled receptors. The response of an activated Ras showed near-perfect adaptation, leading us to attempt to fit the results using mathematical models for the two possible simple network topologies that can provide perfect adaptation. Only the incoherent feedforward network accurately described the experimental results. This analysis revealed that adaptation in this Ras pathway is achieved through the proportional activation of upstream components and not through negative feedback loops. Furthermore, these results are consistent with a local excitation, global inhibition mechanism for gradient sensing, possibly with a Ras guanosine triphosphatase-activating protein acting as a global inhibitor.

  1. Results of adaptive feedforward on GTA

    International Nuclear Information System (INIS)

    Ziomek, C.D.; Denney, P.M.; Regan, A.H.; Lynch, M.T.; Jachim, S.P.; Eaton, L.E.; Natter, E.F.

    1993-01-01

    This paper presents the results of the adaptive feedforward system in use on the Ground Test Accelerator (GTA). The adaptive feedforward system was shown to correct repetitive, high-frequency errors in the amplitude and phase of the RF field of the pulsed accelerator. The adaptive feedforward system was designed as an augmentation to the RF field feedback control system and was able to extend the closed-loop bandwidth and disturbance rejection by a factor of ten. Within a second implementation, the adaptive feedforward hardware was implemented in place of the feedback control system and was shown to negate both beam transients and phase droop in the klystron amplifier

  2. Hybrid feedforward and feedback controller design for nuclear steam generators over wide range operation using genetic algorithm

    International Nuclear Information System (INIS)

    Zhao, Y.; Edwards, R.M.; Lee, K.Y.

    1997-01-01

    In this paper, a simplified model with a lower order is first developed for a nuclear steam generator system and verified against some realistic environments. Based on this simplified model, a hybrid multi-input and multi-out (MIMO) control system, consisting of feedforward control (FFC) and feedback control (FBC), is designed for wide range conditions by using the genetic algorithm (GA) technique. The FFC control, obtained by the GA optimization method, injects an a priori command input into the system to achieve an optimal performance for the designed system, while the GA-based FBC control provides the necessary compensation for any disturbances or uncertainties in a real steam generator. The FBC control is an optimal design of a PI-based control system which would be more acceptable for industrial practices and power plant control system upgrades. The designed hybrid MIMO FFC/FBC control system is first applied to the simplified model and then to a more complicated model with a higher order which is used as a substitute of the real system to test the efficacy of the designed control system. Results from computer simulations show that the designed GA-based hybrid MIMO FFC/FBC control can achieve good responses and robust performances. Hence, it can be considered as a viable alternative to the current control system upgrade

  3. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus

    Directory of Open Access Journals (Sweden)

    Miloslav eSedlacek

    2014-07-01

    Full Text Available Feedforward inhibition represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs, principal neurons of the dorsal cochlear nucleus (DCN that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and feed-forward inhibition in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven feed-forward inhibition (FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of feed-forward inhibition had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.

  4. Feedforward inhibitory control of sensory information in higher-order thalamic nuclei.

    Science.gov (United States)

    Lavallée, Philippe; Urbain, Nadia; Dufresne, Caroline; Bokor, Hajnalka; Acsády, László; Deschênes, Martin

    2005-08-17

    Sensory stimuli evoke strong responses in thalamic relay cells, which ensure a faithful relay of information to the neocortex. However, relay cells of the posterior thalamic nuclear group in rodents, despite receiving significant trigeminal input, respond poorly to vibrissa deflection. Here we show that sensory transmission in this nucleus is impeded by fast feedforward inhibition mediated by GABAergic neurons of the zona incerta. Intracellular recordings of posterior group neurons revealed that the first synaptic event after whisker deflection is a prominent inhibition. Whisker-evoked EPSPs with fast rise time and longer onset latency are unveiled only after lesioning the zona incerta. Excitation survives barrel cortex lesion, demonstrating its peripheral origin. Electron microscopic data confirm that trigeminal axons make large synaptic terminals on the proximal dendrites of posterior group cells and on the somata of incertal neurons. Thus, the connectivity of the system allows an unusual situation in which inhibition precedes ascending excitation resulting in efficient shunting of the responses. The dominance of inhibition over excitation strongly suggests that the paralemniscal pathway is not designed to relay inputs triggered by passive whisker deflection. Instead, we propose that this pathway operates through disinhibition, and that the posterior group forwards to the cerebral cortex sensory information that is contingent on motor instructions.

  5. Patient DF's visual brain in action: Visual feedforward control in visual form agnosia.

    Science.gov (United States)

    Whitwell, Robert L; Milner, A David; Cavina-Pratesi, Cristiana; Barat, Masihullah; Goodale, Melvyn A

    2015-05-01

    Patient DF, who developed visual form agnosia following ventral-stream damage, is unable to discriminate the width of objects, performing at chance, for example, when asked to open her thumb and forefinger a matching amount. Remarkably, however, DF adjusts her hand aperture to accommodate the width of objects when reaching out to pick them up (grip scaling). While this spared ability to grasp objects is presumed to be mediated by visuomotor modules in her relatively intact dorsal stream, it is possible that it may rely abnormally on online visual or haptic feedback. We report here that DF's grip scaling remained intact when her vision was completely suppressed during grasp movements, and it still dissociated sharply from her poor perceptual estimates of target size. We then tested whether providing trial-by-trial haptic feedback after making such perceptual estimates might improve DF's performance, but found that they remained significantly impaired. In a final experiment, we re-examined whether DF's grip scaling depends on receiving veridical haptic feedback during grasping. In one condition, the haptic feedback was identical to the visual targets. In a second condition, the haptic feedback was of a constant intermediate width while the visual target varied trial by trial. Despite this incongruent feedback, DF still scaled her grip aperture to the visual widths of the target blocks, showing only normal adaptation to the false haptically-experienced width. Taken together, these results strengthen the view that DF's spared grasping relies on a normal mode of dorsal-stream functioning, based chiefly on visual feedforward processing. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Control of horizontal plasma position by feedforward-feedback system with digital computer in the JIPP T-II tokamak

    International Nuclear Information System (INIS)

    Toi, Kazuo; Sakurai, Keiichi; Itoh, Satoshi; Matsuura, Kiyokata; Tanashi, Shugo

    1980-01-01

    In the resistive shell tokamak, JIPP T-II, the control of horizontal plasma position is successfully carried out by calculating the equilibrium equation of a large-aspect-ratio tokamak plasma surrounded by a thin resistive shell of a skin time of 5.2 ms, every 1.39 ms with a digital computer. The iron core effect is also taken into account by a simple form in the equation. The required strenght of vertical field is determined by the control demand composed of two groups; one is a ''feedback'' term expressed by the deviation of plasma position from the desired one and proportion-integration-differentiation correction (PID-controller), and the other is a ''feedforward'' term which is in proportion to the plasma current. The experimental results in a quasi-constant phase of plasma current are in good agreement with the stability analysis of the control system by using the so-called Bode-diagram which is calculated on the assumption that the plasma current is independent of time. By this control system, the horizontal plasma displacement has been suppressed within 1 cm of the initiation of discharge to the termination in the high-density and low-q(a) plasma of 15 cm radius which is obtained by both strong gas puffing and second current rise. (author)

  7. Control of horizontal plasma position by feedforward-feedback system with digital computer in the JIPP T-II tokamak

    International Nuclear Information System (INIS)

    Toi, K.; Itoh, S.; Sakurai, K.; Matsuura, K.; Tanahashi, S.

    1980-02-01

    In the resistive shell tokamak, JIPP T-II, the control of horizontal plasma position is successfully carried out by calculating the equilibrium equation of a large-aspect-ratio tokamak plasma surrounded by a thin resistive shell of a skin time of 5.2 msec, every 1.39 msec with a digital computer. The iron core effect is also taken into account by a simple form in the equation. The required strength of vertical field is determined by the control demand composed of two groups; one is a ''feedback'' term expressed by the deviation of plasma position from the desired one and proportion-integration-differentiation correction (PID-controller), and the other is a ''feedforward'' term which is in proportion to the plasma current. The experimental results have a good agreement with the stability analysis of the control system by using the so-called Bode-diagram. By this control system, the horizontal displacement has been suppressed within 1 cm from the initiation of discharge to the termination in the high-density and low-q(a) plasma of 15 cm-radius which is obtained by both strong gas puffing and second current rise. (author)

  8. A current mode feed-forward gain control system for a 0.8 V CMOS hearing aid

    Energy Technology Data Exchange (ETDEWEB)

    Li Fanyang; Yang Haigang; Liu Fei; Yin Tao, E-mail: yanghg@mail.ie.ac.cn [Institute of Electronics, Chinese Academy of Sciences, Beijing 100080 (China)

    2011-06-15

    A current mode feed-forward gain control (CMFGC) technique is presented, which is applied in the front-end system of a hearing aid chip. Compared with conventional automatic gain control (AGC), CMFGC significantly improves the total harmonic distortion (THD) by digital gain control. To attain the digital gain control codes according to the extremely weak output signal from the microphone, a rectifier and a state controller implemented in current mode are proposed. A prototype chip has been designed based on a 0.13 {mu}m standard CMOS process. The measurement results show that the supply voltage can be as low as 0.6 V. And with the 0.8 V supply voltage, the THD is improved and below 0.06% (-64 dB) at the output level of 500 mV{sub p-p}, yet the power consumption is limited to 40 {mu}W. In addition, the input referred noise is only 4 {mu}V{sub rms} and the maximum gain is maintained at 33 dB. (semiconductor integrated circuits)

  9. A current mode feed-forward gain control system for a 0.8 V CMOS hearing aid

    International Nuclear Information System (INIS)

    Li Fanyang; Yang Haigang; Liu Fei; Yin Tao

    2011-01-01

    A current mode feed-forward gain control (CMFGC) technique is presented, which is applied in the front-end system of a hearing aid chip. Compared with conventional automatic gain control (AGC), CMFGC significantly improves the total harmonic distortion (THD) by digital gain control. To attain the digital gain control codes according to the extremely weak output signal from the microphone, a rectifier and a state controller implemented in current mode are proposed. A prototype chip has been designed based on a 0.13 μm standard CMOS process. The measurement results show that the supply voltage can be as low as 0.6 V. And with the 0.8 V supply voltage, the THD is improved and below 0.06% (-64 dB) at the output level of 500 mV p-p , yet the power consumption is limited to 40 μW. In addition, the input referred noise is only 4 μV rms and the maximum gain is maintained at 33 dB. (semiconductor integrated circuits)

  10. PREDICTIVE CONTROL OF A BATCH POLYMERIZATION SYSTEM USING A FEEDFORWARD NEURAL NETWORK WITH ONLINE ADAPTATION BY GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    A. Cancelier

    Full Text Available Abstract This study used a predictive controller based on an empirical nonlinear model comprising a three-layer feedforward neural network for temperature control of the suspension polymerization process. In addition to the offline training technique, an algorithm was also analyzed for online adaptation of its parameters. For the offline training, the network was statically trained and the genetic algorithm technique was used in combination with the least squares method. For online training, the network was trained on a recurring basis and only the technique of genetic algorithms was used. In this case, only the weights and bias of the output layer neuron were modified, starting from the parameters obtained from the offline training. From the experimental results obtained in a pilot plant, a good performance was observed for the proposed control system, with superior performance for the control algorithm with online adaptation of the model, particularly with respect to the presence of off-set for the case of the fixed parameters model.

  11. Practical use of the amplitude and phase modulation of a high-power RF pulse via feed-forward control

    International Nuclear Information System (INIS)

    Kawase, Keigo; Kato, Ryukou; Irizawa, Akinori; Isoyama, Goro; Kashiwagi, Shigeru

    2013-01-01

    A new feed-forward control system to precisely control the amplitude and phase of the pulsed RF power in an electron linear accelerator (linac) is developed to make the accelerating field constant. Fast variations and ripples in the amplitude and phase in the RF pulses are compensated by modulating the amplitude and phase in the low-level system with a variable attenuator and phase shifter. The system is innovated the overdrive technique, which is commonly used in analog circuits, to speed up the slow response of the phase shifter, while the control signals are digitally processed; thus, the method is a hybrid of analog and digital techniques. By using the new control system, we find that the peak-to-peak variations in the amplitude and phase are reduced from 11.6% to 0.4% and from 6.1 degrees to 0.3 degrees, respectively, in 7.6-μs-long RF pulses for the L-band electron linac at Osaka University. (author)

  12. An open-closed-loop iterative learning control approach for nonlinear switched systems with application to freeway traffic control

    Science.gov (United States)

    Sun, Shu-Ting; Li, Xiao-Dong; Zhong, Ren-Xin

    2017-10-01

    For nonlinear switched discrete-time systems with input constraints, this paper presents an open-closed-loop iterative learning control (ILC) approach, which includes a feedforward ILC part and a feedback control part. Under a given switching rule, the mathematical induction is used to prove the convergence of ILC tracking error in each subsystem. It is demonstrated that the convergence of ILC tracking error is dependent on the feedforward control gain, but the feedback control can speed up the convergence process of ILC by a suitable selection of feedback control gain. A switched freeway traffic system is used to illustrate the effectiveness of the proposed ILC law.

  13. Density control in ITER: an iterative learning control and robust control approach

    Science.gov (United States)

    Ravensbergen, T.; de Vries, P. C.; Felici, F.; Blanken, T. C.; Nouailletas, R.; Zabeo, L.

    2018-01-01

    Plasma density control for next generation tokamaks, such as ITER, is challenging because of multiple reasons. The response of the usual gas valve actuators in future, larger fusion devices, might be too slow for feedback control. Both pellet fuelling and the use of feedforward-based control may help to solve this problem. Also, tight density limits arise during ramp-up, due to operational limits related to divertor detachment and radiative collapses. As the number of shots available for controller tuning will be limited in ITER, in this paper, iterative learning control (ILC) is proposed to determine optimal feedforward actuator inputs based on tracking errors, obtained in previous shots. This control method can take the actuator and density limits into account and can deal with large actuator delays. However, a purely feedforward-based density control may not be sufficient due to the presence of disturbances and shot-to-shot differences. Therefore, robust control synthesis is used to construct a robustly stabilizing feedback controller. In simulations, it is shown that this combined controller strategy is able to achieve good tracking performance in the presence of shot-to-shot differences, tight constraints, and model mismatches.

  14. A dynamic feedforward neural network based on gaussian particle swarm optimization and its application for predictive control.

    Science.gov (United States)

    Han, Min; Fan, Jianchao; Wang, Jun

    2011-09-01

    A dynamic feedforward neural network (DFNN) is proposed for predictive control, whose adaptive parameters are adjusted by using Gaussian particle swarm optimization (GPSO) in the training process. Adaptive time-delay operators are added in the DFNN to improve its generalization for poorly known nonlinear dynamic systems with long time delays. Furthermore, GPSO adopts a chaotic map with Gaussian function to balance the exploration and exploitation capabilities of particles, which improves the computational efficiency without compromising the performance of the DFNN. The stability of the particle dynamics is analyzed, based on the robust stability theory, without any restrictive assumption. A stability condition for the GPSO+DFNN model is derived, which ensures a satisfactory global search and quick convergence, without the need for gradients. The particle velocity ranges could change adaptively during the optimization process. The results of a comparative study show that the performance of the proposed algorithm can compete with selected algorithms on benchmark problems. Additional simulation results demonstrate the effectiveness and accuracy of the proposed combination algorithm in identifying and controlling nonlinear systems with long time delays.

  15. High-performance control of a three-phase voltage-source converter including feedforward compensation of the estimated load current

    International Nuclear Information System (INIS)

    Leon, Andres E.; Solsona, Jorge A.; Busada, Claudio; Chiacchiarini, Hector; Valla, Maria Ines

    2009-01-01

    In this paper a new control strategy for voltage-source converters (VSC) is introduced. The proposed strategy consists of a nonlinear feedback controller based on feedback linearization plus a feedforward compensation of the estimated load current. In our proposal an energy function and the direct-axis current are considered as outputs, in order to avoid the internal dynamics. In this way, a full linearization is obtained via nonlinear transformation and feedback. An estimate of the load current is feedforwarded to improve the performance of the whole system and to diminish the capacitor size. This estimation allows to obtain a more rugged and cheaper implementation. The estimate is calculated by using a nonlinear reduced-order observer. The proposal is validated through different tests. These tests include performance in presence of switching frequency, measurement filters delays, parameters uncertainties and disturbances in the input voltage.

  16. Mosaic model for sensorimotor learning and control.

    Science.gov (United States)

    Haruno, M; Wolpert, D M; Kawato, M

    2001-10-01

    Humans demonstrate a remarkable ability to generate accurate and appropriate motor behavior under many different and often uncertain environmental conditions. We previously proposed a new modular architecture, the modular selection and identification for control (MOSAIC) model, for motor learning and control based on multiple pairs of forward (predictor) and inverse (controller) models. The architecture simultaneously learns the multiple inverse models necessary for control as well as how to select the set of inverse models appropriate for a given environment. It combines both feedforward and feedback sensorimotor information so that the controllers can be selected both prior to movement and subsequently during movement. This article extends and evaluates the MOSAIC architecture in the following respects. The learning in the architecture was implemented by both the original gradient-descent method and the expectation-maximization (EM) algorithm. Unlike gradient descent, the newly derived EM algorithm is robust to the initial starting conditions and learning parameters. Second, simulations of an object manipulation task prove that the architecture can learn to manipulate multiple objects and switch between them appropriately. Moreover, after learning, the model shows generalization to novel objects whose dynamics lie within the polyhedra of already learned dynamics. Finally, when each of the dynamics is associated with a particular object shape, the model is able to select the appropriate controller before movement execution. When presented with a novel shape-dynamic pairing, inappropriate activation of modules is observed followed by on-line correction.

  17. Design of an embedded inverse-feedforward biomolecular tracking controller for enzymatic reaction processes

    OpenAIRE

    Foo, Mathias; Kim, Jongrae; Sawlekar, Rucha; Bates, Declan G.

    2017-01-01

    Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a ‘subtractor’ that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a b...

  18. Feedforward and feedback control of locked mode phase and rotation in DIII-D with application to modulated ECCD experiments

    Science.gov (United States)

    Choi, W.; La Haye, R. J.; Lanctot, M. J.; Olofsson, K. E. J.; Strait, E. J.; Sweeney, R.; Volpe, F. A.; The DIII-D Team

    2018-03-01

    The toroidal phase and rotation of otherwise locked magnetic islands of toroidal mode number n  =  1 are controlled in the DIII-D tokamak by means of applied magnetic perturbations of n  =  1. Pre-emptive perturbations were applied in feedforward to ‘catch’ the mode as it slowed down and entrain it to the rotating field before complete locking, thus avoiding the associated major confinement degradation. Additionally, for the first time, the phase of the perturbation was optimized in real-time, in feedback with magnetic measurements, in order for the mode’s phase to closely match a prescribed phase, as a function of time. Experimental results confirm the capability to hold the mode in a given fixed-phase or to rotate it at up to 20 Hz with good uniformity. The control-coil currents utilized in the experiments agree with the requirements estimated by an electromechanical model. Moreover, controlled rotation at 20 Hz was combined with electron cyclotron current drive (ECCD) modulated at the same frequency. This is simpler than regulating the ECCD modulation in feedback with spontaneous mode rotation, and enables repetitive, reproducible ECCD deposition at or near the island O-point, X-point and locations in between, for careful studies of how this affects the island stability. Current drive was found to be radially misaligned relative to the island, and resulting growth and shrinkage of islands matched expectations of the modified Rutherford equation for some discharges presented here. Finally, simulations predict the as designed ITER 3D coils can entrain a small island at sub-10 Hz frequencies.

  19. Steam turbine power plant having improved testing method and system for turbine inlet valves associated with downstream inlet valves preferably having feedforward position managed control

    International Nuclear Information System (INIS)

    Lardi, F.; Ronnen, U.G.

    1981-01-01

    A throttle valve test system for a large steam turbine functions in a turbine control system to provide throttle and governor valve test operations. The control system operates with a valve management capability to provide for pre-test governor valve mode transfer when desired, and it automatically generates feedforward valve position demand signals during and after valve tests to satisfy test and load control requirements and to provide smooth transition from valve test status to normal single or sequential governor valve operation. A digital computer is included in the control system to provide control and test functions in the generation of the valve position demand signals

  20. A Control Framework for Anthropomorphic Biped Walking Based on Stabilizing Feedforward Trajectories.

    Science.gov (United States)

    Rezazadeh, Siavash; Gregg, Robert D

    2016-10-01

    Although dynamic walking methods have had notable successes in control of bipedal robots in the recent years, still most of the humanoid robots rely on quasi-static Zero Moment Point controllers. This work is an attempt to design a highly stable controller for dynamic walking of a human-like model which can be used both for control of humanoid robots and prosthetic legs. The method is based on using time-based trajectories that can induce a highly stable limit cycle to the bipedal robot. The time-based nature of the controller motivates its use to entrain a model of an amputee walking, which can potentially lead to a better coordination of the interaction between the prosthesis and the human. The simulations demonstrate the stability of the controller and its robustness against external perturbations.

  1. Feedforward Synchronised PWM for Adjustable Speed AC Drives with Different Control Modes

    DEFF Research Database (Denmark)

    Oleschuk, Valentin; Blaabjerg, Frede; Jensen, Flemming Buus

    2002-01-01

    This paper presents a novel method of direct synchronised pulswidth modulation (PWM) for three-phase voltage source inverters, feeding induction motors with different control regimes. It is based on the universal algorithm with either simplified algebraic or accurate trigonometric control functions......, with vector approached for determination of the pulse patterns, with vector approach for determination of the pulse patterns. Different control modes of the drive system with synchronised PWM, including standard scalar V/F control, and also V2/F = constant and V/F2 = constant control regimes, have been...... analysed in the paper. Simulations give the behaviour of the PWM techniques proposed. Both continuous and discontinuous schemes of synchronised PWM, applied for the corresponding control regime, have been analysed and compared....

  2. LIDAR Correlation to Extreme Flapwise Moment : Gust Impact Prediction Time and Feedforward Control

    DEFF Research Database (Denmark)

    Meseguer Urban, Albert; Hansen, Morten Hartvig

    A Conventional wind turbine controller uses feedback parameters reacting to wind disturbances after they have already impacted the rotor. LIDARs are able to measure the wind speed before it reaches the wind turbine rotor. These anticipated values can be used in control systems designed to reduce...

  3. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance.

    Science.gov (United States)

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-06-03

    Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; approximately 10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. When initially exposed to a mid-stance force field (FF 20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF 20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over approximately 50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF 50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF 50% catch strides were not simply due to a large ankle impedance. Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle during

  4. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Directory of Open Access Journals (Sweden)

    Bouyer Laurent J

    2009-06-01

    Full Text Available Abstract Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min, during (5 min and after (5 min exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion. To evaluate modifications in feedforward control, strides with no force field ('catch strides' were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%, subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99. Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%, plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive

  5. Using an electrohydraulic ankle foot orthosis to study modifications in feedforward control during locomotor adaptation to force fields applied in stance

    Science.gov (United States)

    Noel, Martin; Fortin, Karine; Bouyer, Laurent J

    2009-01-01

    Background Adapting to external forces during walking has been proposed as a tool to improve locomotion after central nervous system injury. However, sensorimotor integration during walking varies according to the timing in the gait cycle, suggesting that adaptation may also depend on gait phases. In this study, an ElectroHydraulic AFO (EHO) was used to apply forces specifically during mid-stance and push-off to evaluate if feedforward movement control can be adapted in these 2 gait phases. Methods Eleven healthy subjects walked on a treadmill before (3 min), during (5 min) and after (5 min) exposure to 2 force fields applied by the EHO (mid-stance/push-off; ~10 Nm, towards dorsiflexion). To evaluate modifications in feedforward control, strides with no force field ('catch strides') were unexpectedly inserted during the force field walking period. Results When initially exposed to a mid-stance force field (FF20%), subjects showed a significant increase in ankle dorsiflexion velocity. Catches applied early into the FF20% were similar to baseline (P > 0.99). Subjects gradually adapted by returning ankle velocity to baseline over ~50 strides. Catches applied thereafter showed decreased ankle velocity where the force field was normally applied, indicating the presence of feedforward adaptation. When initially exposed to a push-off force field (FF50%), plantarflexion velocity was reduced in the zone of force field application. No adaptation occurred over the 5 min exposure. Catch strides kinematics remained similar to control at all times, suggesting no feedforward adaptation. As a control, force fields assisting plantarflexion (-3.5 to -9.5 Nm) were applied and increased ankle plantarflexion during push-off, confirming that the lack of kinematic changes during FF50% catch strides were not simply due to a large ankle impedance. Conclusion Together these results show that ankle exoskeletons such as the EHO can be used to study phase-specific adaptive control of the ankle

  6. Adaptation of feedforward movement control is abnormal in patients with cervical dystonia and tremor.

    Science.gov (United States)

    Avanzino, Laura; Ravaschio, Andrea; Lagravinese, Giovanna; Bonassi, Gaia; Abbruzzese, Giovanni; Pelosin, Elisa

    2018-01-01

    It is under debate whether the cerebellum plays a role in dystonia pathophysiology and in the expression of clinical phenotypes. We investigated a typical cerebellar function (anticipatory movement control) in patients with cervical dystonia (CD) with and without tremor. Twenty patients with CD, with and without tremor, and 17 healthy controls were required to catch balls of different load: 15 trials with a light ball, 25 trials with a heavy ball (adaptation) and 15 trials with a light ball (post-adaptation). Arm movements were recorded using a motion capture system. We evaluated: (i) the anticipatory adjustment (just before the impact); (ii) the extent and rate of the adaptation (at the impact) and (iii) the aftereffect in the post-adaptation phase. The anticipatory adjustment was reduced during adaptation in CD patients with tremor respect to CD patients without tremor and controls. The extent and rate of adaptation and the aftereffect in the post-adaptation phase were smaller in CD with tremor than in controls and CD without tremor. Patients with cervical dystonia and tremor display an abnormal predictive movement control. Our findings point to a possible role of cerebellum in the expression of a clinical phenotype in dystonia. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  7. [Membrane-bound cytokine and feedforward regulation].

    Science.gov (United States)

    Wu, Ke-Fu; Zheng, Guo-Guang; Ma, Xiao-Tong; Song, Yu-Hua

    2013-10-01

    Feedback and feedforward widely exist in life system, both of them are the basic processes of control system. While the concept of feedback has been widely used in life science, feedforward regulation was systematically studied in neurophysiology, awaiting further evidence and mechanism in molecular biology and cell biology. The authors put forward a hypothesis about the feedforward regulation of membrane bound macrophage colony stimulation factor (mM-CSF) on the basis of their previous work. This hypothesis might provide a new direction for the study on the biological effects of mM-CSF on leukemia and solid tumors, and contribute to the study on other membrane bound cytokines.

  8. SNS Superconducting RF cavity modeling-iterative learning control

    International Nuclear Information System (INIS)

    Kwon, S.-I.; Regan, Amy; Wang, Y.-M.

    2002-01-01

    The Spallation Neutron Source (SNS) Superconducting RF (SRF) linear accelerator is operated with a pulsed beam. For the SRF control system to track the repetitive electromagnetic field reference trajectory, both feedback and feedforward controllers have been proposed. The feedback controller is utilized to guarantee the closed loop system stability and the feedforward controller is used to improve the tracking performance for the repetitive reference trajectory and to suppress repetitive disturbances. As the iteration number increases, the feedforward controller decreases the tracking error. Numerical simulations demonstrate that inclusion of the feedforward controller significantly improves the control system performance over its performance with just the feedback controller

  9. SNS Superconducting RF cavity modeling-iterative learning control

    CERN Document Server

    Kwon, S I; Wang, Y M

    2002-01-01

    The Spallation Neutron Source (SNS) Superconducting RF (SRF) linear accelerator is operated with a pulsed beam. For the SRF control system to track the repetitive electromagnetic field reference trajectory, both feedback and feedforward controllers have been proposed. The feedback controller is utilized to guarantee the closed loop system stability and the feedforward controller is used to improve the tracking performance for the repetitive reference trajectory and to suppress repetitive disturbances. As the iteration number increases, the feedforward controller decreases the tracking error. Numerical simulations demonstrate that inclusion of the feedforward controller significantly improves the control system performance over its performance with just the feedback controller.

  10. Dynamic Feedforward Control of a Diesel Engine Based on Optimal Transient Compensation Maps

    OpenAIRE

    Mancini, Giorgio; Asprion, Jonas; Cavina, Nicolò; Onder, Christopher; Guzzella, Lino

    2014-01-01

    To satisfy the increasingly stringent emission regulations and a demand for an ever lower fuel consumption, diesel engines have become complex systems with many interacting actuators. As a consequence, these requirements are pushing control and calibration to their limits. The calibration procedure nowadays is still based mainly on engineering experience, which results in a highly iterative process to derive a complete engine calibration. Moreover, automatic tools are available only for stati...

  11. A Feed-Forward Controlled AC-DC Boost Converter for Biomedical Implants

    DEFF Research Database (Denmark)

    Jiang, Hao; Lan, Di; Lin, Dahsien

    2012-01-01

    Miniaturization is important to make implants clinic friendly. Wireless power transfer is an essential technology to miniaturize implants by reducing their battery size or completely eliminating their batteries. Traditionally, a pair of inductively-coupled coils operating at radio-frequency (RF...... than 2.1% of its mean. The measured load regulation is 0.4 V/kΩ. The estimated conversion efficiency excluding the power consumption of the control circuits reaches 75%. The converter in this paper has the potential to reduce the size of the receiving coil and yet achieve desirable DC output voltage...

  12. Evaluation of feedforward and feedback contributions to hand stiffness and variability in multijoint arm control.

    Science.gov (United States)

    He, Xin; Du, Yu-Fan; Lan, Ning

    2013-07-01

    The purpose of this study is to validate a neuromechanical model of the virtual arm (VA) by comparing emerging behaviors of the model to those of experimental observations. Hand stiffness of the VA model was obtained by either theoretical computation or simulated perturbations. Variability in hand position of the VA was generated by adding signal dependent noise (SDN) to the motoneuron pools of muscles. Reflex circuits of Ia, Ib and Renshaw cells were included to regulate the motoneuron pool outputs. Evaluation of hand stiffness and variability was conducted in simulations with and without afferent feedback under different patterns of muscle activations during postural maintenance. The simulated hand stiffness and variability ellipses captured the experimentally observed features in shape, magnitude and orientation. Steady state afferent feedback contributed significantly to the increase in hand stiffness by 35.75±16.99% in area, 18.37±7.80% and 16.15±7.15% in major and minor axes; and to the reduction of hand variability by 49.41±21.19% in area, 36.89±12.78% and 18.87±23.32% in major and minor axes. The VA model reproduced the neuromechanical behaviors that were consistent with experimental data, and it could be a useful tool for study of neural control of posture and movement, as well as for application to rehabilitation.

  13. Feedforward control strategies of subjects with transradial amputation in planar reaching.

    Science.gov (United States)

    Metzger, Anthony J; Dromerick, Alexander W; Schabowsky, Christopher N; Holley, Rahsaan J; Monroe, Brian; Lum, Peter S

    2010-01-01

    The rate of upper-limb amputations is increasing, and the rejection rate of prosthetic devices remains high. People with upper-limb amputation do not fully incorporate prosthetic devices into their activities of daily living. By understanding the reaching behaviors of prosthesis users, researchers can alter prosthetic devices and develop training protocols to improve the acceptance of prosthetic limbs. By observing the reaching characteristics of the nondisabled arms of people with amputation, we can begin to understand how the brain alters its motor commands after amputation. We asked subjects to perform rapid reaching movements to two targets with and without visual feedback. Subjects performed the tasks with both their prosthetic and nondisabled arms. We calculated endpoint error, trajectory error, and variability and compared them with those of nondisabled control subjects. We found no significant abnormalities in the prosthetic limb. However, we found an abnormal leftward trajectory error (in right arms) in the nondisabled arm of prosthetic users in the vision condition. In the no-vision condition, the nondisabled arm displayed abnormal leftward endpoint errors and abnormally higher endpoint variability. In the vision condition, peak velocity was lower and movement duration was longer in both arms of subjects with amputation. These abnormalities may reflect the cortical reorganization associated with limb loss.

  14. Control of CA3 output by feedforward inhibition despite developmental changes in the excitation-inhibition balance.

    Science.gov (United States)

    Torborg, Christine L; Nakashiba, Toshiaki; Tonegawa, Susumu; McBain, Chris J

    2010-11-17

    In somatosensory cortex, the relative balance of excitation and inhibition determines how effectively feedforward inhibition enforces the temporal fidelity of action potentials. Within the CA3 region of the hippocampus, glutamatergic mossy fiber (MF) synapses onto CA3 pyramidal cells (PCs) provide strong monosynaptic excitation that exhibit prominent facilitation during repetitive activity. We demonstrate in the juvenile CA3 that MF-driven polysynaptic IPSCs facilitate to maintain a fixed EPSC-IPSC ratio during short-term plasticity. In contrast, in young adult mice this MF-driven polysynaptic inhibitory input can facilitate or depress in response to short trains of activity. Transgenic mice lacking the feedback inhibitory loop continue to exhibit both facilitating and depressing polysynaptic IPSCs, indicating that this robust inhibition is not caused by the secondary engagement of feedback inhibition. Surprisingly, eliminating MF-driven inhibition onto CA3 pyramidal cells by blockade of GABA(A) receptors did not lead to a loss of temporal precision of the first action potential observed after a stimulus but triggered in many cases a long excitatory plateau potential capable of triggering repetitive action potential firing. These observations indicate that, unlike other regions of the brain, the temporal precision of single MF-driven action potentials is dictated primarily by the kinetics of MF EPSPs, not feedforward inhibition. Instead, feedforward inhibition provides a robust regulation of CA3 PC excitability across development to prevent excessive depolarization by the monosynaptic EPSP and multiple action potential firings.

  15. Quality by design for herbal drugs: a feedforward control strategy and an approach to define the acceptable ranges of critical quality attributes.

    Science.gov (United States)

    Yan, Binjun; Li, Yao; Guo, Zhengtai; Qu, Haibin

    2014-01-01

    The concept of quality by design (QbD) has been widely accepted and applied in the pharmaceutical manufacturing industry. There are still two key issues to be addressed in the implementation of QbD for herbal drugs. The first issue is the quality variation of herbal raw materials and the second issue is the difficulty in defining the acceptable ranges of critical quality attributes (CQAs). To propose a feedforward control strategy and a method for defining the acceptable ranges of CQAs for the two issues. In the case study of the ethanol precipitation process of Danshen (Radix Salvia miltiorrhiza) injection, regression models linking input material attributes and process parameters to CQAs were built first and an optimisation model for calculating the best process parameters according to the input materials was established. Then, the feasible material space was defined and the acceptable ranges of CQAs for the previous process were determined. In the case study, satisfactory regression models were built with cross-validated regression coefficients (Q(2) ) all above 91 %. The feedforward control strategy was applied successfully to compensate the quality variation of the input materials, which was able to control the CQAs in the 90-110 % ranges of the desired values. In addition, the feasible material space for the ethanol precipitation process was built successfully, which showed the acceptable ranges of the CQAs for the concentration process. The proposed methodology can help to promote the implementation of QbD for herbal drugs. Copyright © 2013 John Wiley & Sons, Ltd.

  16. Cell-type specific short-term plasticity at auditory nerve synapses controls feed-forward inhibition in the dorsal cochlear nucleus.

    Science.gov (United States)

    Sedlacek, Miloslav; Brenowitz, Stephan D

    2014-01-01

    Feed-forward inhibition (FFI) represents a powerful mechanism by which control of the timing and fidelity of action potentials in local synaptic circuits of various brain regions is achieved. In the cochlear nucleus, the auditory nerve provides excitation to both principal neurons and inhibitory interneurons. Here, we investigated the synaptic circuit associated with fusiform cells (FCs), principal neurons of the dorsal cochlear nucleus (DCN) that receive excitation from auditory nerve fibers and inhibition from tuberculoventral cells (TVCs) on their basal dendrites in the deep layer of DCN. Despite the importance of these inputs in regulating fusiform cell firing behavior, the mechanisms determining the balance of excitation and FFI in this circuit are not well understood. Therefore, we examined the timing and plasticity of auditory nerve driven FFI onto FCs. We find that in some FCs, excitatory and inhibitory components of FFI had the same stimulation thresholds indicating they could be triggered by activation of the same fibers. In other FCs, excitation and inhibition exhibit different stimulus thresholds, suggesting FCs and TVCs might be activated by different sets of fibers. In addition, we find that during repetitive activation, synapses formed by the auditory nerve onto TVCs and FCs exhibit distinct modes of short-term plasticity. Feed-forward inhibitory post-synaptic currents (IPSCs) in FCs exhibit short-term depression because of prominent synaptic depression at the auditory nerve-TVC synapse. Depression of this feedforward inhibitory input causes a shift in the balance of fusiform cell synaptic input towards greater excitation and suggests that fusiform cell spike output will be enhanced by physiological patterns of auditory nerve activity.

  17. Aircraft automatic-flight-control system with inversion of the model in the feed-forward path using a Newton-Raphson technique for the inversion

    Science.gov (United States)

    Smith, G. A.; Meyer, G.; Nordstrom, M.

    1986-01-01

    A new automatic flight control system concept suitable for aircraft with highly nonlinear aerodynamic and propulsion characteristics and which must operate over a wide flight envelope was investigated. This exact model follower inverts a complete nonlinear model of the aircraft as part of the feed-forward path. The inversion is accomplished by a Newton-Raphson trim of the model at each digital computer cycle time of 0.05 seconds. The combination of the inverse model and the actual aircraft in the feed-forward path alloys the translational and rotational regulators in the feedback path to be easily designed by linear methods. An explanation of the model inversion procedure is presented. An extensive set of simulation data for essentially the full flight envelope for a vertical attitude takeoff and landing aircraft (VATOL) is presented. These data demonstrate the successful, smooth, and precise control that can be achieved with this concept. The trajectory includes conventional flight from 200 to 900 ft/sec with path accelerations and decelerations, altitude changes of over 6000 ft and 2g and 3g turns. Vertical attitude maneuvering as a tail sitter along all axes is demonstrated. A transition trajectory from 200 ft/sec in conventional flight to stationary hover in the vertical attitude includes satisfactory operation through lift-cure slope reversal as attitude goes from horizontal to vertical at constant altitude. A vertical attitude takeoff from stationary hover to conventional flight is also demonstrated.

  18. Learning from neural control.

    Science.gov (United States)

    Wang, Cong; Hill, David J

    2006-01-01

    One of the amazing successes of biological systems is their ability to "learn by doing" and so adapt to their environment. In this paper, first, a deterministic learning mechanism is presented, by which an appropriately designed adaptive neural controller is capable of learning closed-loop system dynamics during tracking control to a periodic reference orbit. Among various neural network (NN) architectures, the localized radial basis function (RBF) network is employed. A property of persistence of excitation (PE) for RBF networks is established, and a partial PE condition of closed-loop signals, i.e., the PE condition of a regression subvector constructed out of the RBFs along a periodic state trajectory, is proven to be satisfied. Accurate NN approximation for closed-loop system dynamics is achieved in a local region along the periodic state trajectory, and a learning ability is implemented during a closed-loop feedback control process. Second, based on the deterministic learning mechanism, a neural learning control scheme is proposed which can effectively recall and reuse the learned knowledge to achieve closed-loop stability and improved control performance. The significance of this paper is that the presented deterministic learning mechanism and the neural learning control scheme provide elementary components toward the development of a biologically-plausible learning and control methodology. Simulation studies are included to demonstrate the effectiveness of the approach.

  19. Feedforward inhibition and synaptic scaling--two sides of the same coin?

    Directory of Open Access Journals (Sweden)

    Christian Keck

    Full Text Available Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions. The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may have important functional implications for general cortical processing.

  20. Feedforward inhibition and synaptic scaling--two sides of the same coin?

    Science.gov (United States)

    Keck, Christian; Savin, Cristina; Lücke, Jörg

    2012-01-01

    Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions. The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may have important functional implications for general cortical processing.

  1. Feedforward Inhibition and Synaptic Scaling – Two Sides of the Same Coin?

    Science.gov (United States)

    Lücke, Jörg

    2012-01-01

    Feedforward inhibition and synaptic scaling are important adaptive processes that control the total input a neuron can receive from its afferents. While often studied in isolation, the two have been reported to co-occur in various brain regions. The functional implications of their interactions remain unclear, however. Based on a probabilistic modeling approach, we show here that fast feedforward inhibition and synaptic scaling interact synergistically during unsupervised learning. In technical terms, we model the input to a neural circuit using a normalized mixture model with Poisson noise. We demonstrate analytically and numerically that, in the presence of lateral inhibition introducing competition between different neurons, Hebbian plasticity and synaptic scaling approximate the optimal maximum likelihood solutions for this model. Our results suggest that, beyond its conventional use as a mechanism to remove undesired pattern variations, input normalization can make typical neural interaction and learning rules optimal on the stimulus subspace defined through feedforward inhibition. Furthermore, learning within this subspace is more efficient in practice, as it helps avoid locally optimal solutions. Our results suggest a close connection between feedforward inhibition and synaptic scaling which may have important functional implications for general cortical processing. PMID:22457610

  2. On the use of the autocorrelation and covariance methods for feedforward control of transverse angle and position jitter in linear particle beam accelerators

    International Nuclear Information System (INIS)

    Barr, D.S.

    1993-01-01

    It is desired to design a predictive feedforward transverse jitter control system to control both angle and position jitter in pulsed linear accelerators. Such a system will increase the accuracy and bandwidth of correction over that of currently available feedback correction systems. Intrapulse correction is performed. An offline process actually open-quotes learnsclose quotes the properties of the jitter, and uses these properties to apply correction to the beam. The correction weights calculated offline are downloaded to a real-time analog correction system between macropulses. Jitter data were taken at the Los Alamos National Laboratory (LANL) Ground Test Accelerator (GTA) telescope experiment at Argonne National Laboratory (ANL). The experiment consisted of the LANL telescope connected to the ANL ZGS proton source and linac. A simulation of the correction system using this data was shown to decrease the average rms jitter by a factor of two over that of a comparable standard feedback correction system. The system also improved the correction bandwidth

  3. Model of rotary-actuated flexible beam with notch filter vibration suppression controller and torque feedforward load compensation controller

    International Nuclear Information System (INIS)

    Bills, K.C.; Kress, R.L.; Kwon, D.S.; Baker, C.P.

    1994-01-01

    This paper describes ORNL's development of an environment for the simulation of robotic manipulators. Simulation includes the modeling of kinematics, dynamics, sensors, actuators, control systems, operators, and environments. Models will be used for manipulator design, proposal evaluation, control system design and analysis, graphical preview of proposed motions, safety system development, and training. Of particular interest is the development of models for robotic manipulators having at least one flexible link. As a first application, models have been developed for the Pacific Northwest Laboratory's Flexible Beam Test Bed (PNL FBTB), which is a 1-Degree-of-Freedom, flexible arm with a hydraulic base actuator. ORNL transferred control algorithms developed for the PNL FBTB to controlling IGRIP models. A robust notch filter is running in IGRIP controlling a full dynamics model of the PNL test bed. Model results provide a reasonable match to the experimental results (quantitative results are being determined) and can run on ORNL's Onyx machine in approximately realtime. The flexible beam is modeled as six rigid sections with torsional springs between each segment. The spring constants were adjusted to match the physical response of the flexible beam model to the experimental results. The controller is able to improve performance on the model similar to the improvement seen on the experimental system. Some differences are apparent, most notably because the IGRIP model presently uses a different trajectory planner than the one used by ORNL on the PNL test bed. In the future, the trajectory planner will be modified so that the experiments and models are the same. The successful completion of this work provides the ability to link C code with IGRIP, thus allowing controllers to be developed, tested, and tuned in simulation and then ported directly to hardware systems using the C language

  4. Robust Position Tracking for Electro-Hydraulic Drives Based on Generalized Feedforward Compensation Approach

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.

    2012-01-01

    This paper presents a robust tracking control concept based on accurate feedforward compensation for hydraulic valve-cylinder drives. The proposed feedforward compensator is obtained utilizing a generalized description of the valve flow that takes into account any asymmetry of valves and...... constant gain type feedforward compensator, when subjected to strong perturbations in supply pressure and coulomb friction....

  5. RA Acts in a Coherent Feed-Forward Mechanism with Tbx5 to Control Limb Bud Induction and Initiation

    Directory of Open Access Journals (Sweden)

    Satoko Nishimoto

    2015-08-01

    Full Text Available The retinoic acid (RA- and β-catenin-signaling pathways regulate limb bud induction and initiation; however, their mechanisms of action are not understood and have been disputed. We demonstrate that both pathways are essential and that RA and β-catenin/TCF/LEF signaling act cooperatively with Hox gene inputs to directly regulate Tbx5 expression. Furthermore, in contrast to previous models, we show that Tbx5 and Tbx4 expression in forelimb and hindlimb, respectively, are not sufficient for limb outgrowth and that input from RA is required. Collectively, our data indicate that RA signaling and Tbx genes act in a coherent feed-forward loop to regulate Fgf10 expression and, as a result, establish a positive feedback loop of FGF signaling between the limb mesenchyme and ectoderm. Our results incorporate RA-, β-catenin/TCF/LEF-, and FGF-signaling pathways into a regulatory network acting to recruit cells of the embryo flank to become limb precursors.

  6. Simulation study on control of spill structure of slow extracted beam from a medical synchrotron with feed-forward and feedback using a fast quadruple magnet and RF-knockout system

    Energy Technology Data Exchange (ETDEWEB)

    Muraoka, Ryo; Nakanishi, Tetsuya, E-mail: nakanishi.tetsuya@nihon-u.ac.jp

    2017-02-21

    A feedback control of the spill structure for the slow beam extraction from the medical synchrotron using a fast quadruple and radio frequency (RF)-knockout (QAR method) is studied to obtain the designed spill structure. In addition the feed-forward control is used so that the feedback control is performed effectively. In this extraction method, the spill of several ms are extracted continuously with an interval time of less than 1 ms. Beam simulation showed that a flat spill structure was effectively obtained with feed-forward and feedback control system as well as a step-wise structure which is useful for the shortening of an irradiation time in a spot scanning operation. The effect of current ripples from main quadruple magnet's power supplies could be also reduced with the feedback control application.

  7. A new on-chip all-digital three-phase full-bridge dc/ac power inverter with feedforward and frequency control techniques.

    Science.gov (United States)

    Chen, Jiann-Jong; Kung, Che-Min

    2010-09-01

    The communication speed between components is far from satisfactory. To achieve high speed, simple control system configuration, and low cost, a new on-chip all-digital three-phase dc/ac power inverter using feedforward and frequency control techniques is proposed. The controller of the proposed power inverter, called the shift register, consists of six-stage D-latch flip-flops with a goal of achieving low-power consumption and area efficiency. Variable frequency is achieved by controlling the clocks of the shift register. One advantage regarding the data signal (D) and the common clock (CK) is that, regardless of the phase difference between the two, all of the D-latch flip-flops are capable of delaying data by one CK period. To ensure stability, the frequency of CK must be six times higher than that of D. The operation frequency of the proposed power inverter ranges from 10 Hz to 2 MHz, and the maximum output loading current is 0.8 A. The prototype of the proposed circuit has been fabricated with TSMC 0.35 μm 2P4M CMOS processes. The total chip area is 2.333 x 1.698 mm2. The three-phase dc/ac power inverter is applicable in uninterrupted power supplies, cold cathode fluorescent lamps, and motors, because of its ability to convert the dc supply voltage into the three-phase ac power sources.

  8. Joint input shaping and feedforward for point-to-point motion : automated tuning for an industrial nanopositioning system

    NARCIS (Netherlands)

    Boeren, F.A.J.; Bruijnen, D.J.H.; Dijk, van N.J.M.; Oomen, T.A.E.

    2014-01-01

    Feedforward control can effectively compensate for the servo error induced by the reference signal if it is tuned appropriately. This paper aims to introduce a new joint input shaping and feedforward parametrization in iterative feedforward control. Such a parametrization has the potential to

  9. Kinetic model-based feed-forward controlled fed-batch fermentation of Lactobacillus rhamnosus for the production of lactic acid from Arabic date juice.

    Science.gov (United States)

    Choi, Minsung; Al-Zahrani, Saeed M; Lee, Sang Yup

    2014-06-01

    Arabic date is overproduced in Arabic countries such as Saudi Arabia and Iraq and is mostly composed of sugars (70-80 wt%). Here we developed a fed-batch fermentation process by using a kinetic model for the efficient production of lactic acid to a high concentration from Arabic date juice. First, a kinetic model of Lactobacillus rhamnosus grown on date juice in batch fermentation was constructed in EXCEL so that the estimation of parameters and simulation of the model can be easily performed. Then, several fed-batch fermentations were conducted by employing different feeding strategies including pulsed feeding, exponential feeding, and modified exponential feeding. Based on the results of fed-batch fermentations, the kinetic model for fed-batch fermentation was also developed. This new model was used to perform feed-forward controlled fed-batch fermentation, which resulted in the production of 171.79 g l(-1) of lactic acid with the productivity and yield of 1.58 and 0.87 g l(-1) h(-1), respectively.

  10. Resource-efficient ILC for LTI/LTV systems through LQ tracking and stable inversion: enabling large feedforward tasks on a position-dependent printer

    NARCIS (Netherlands)

    van Zundert, J.; Bolder, J.J.; Koekebakker, S.H.; Oomen, T.A.E.

    Iterative learning control (ILC) enables high performance for systems that execute repeating tasks. Norm-optimal ILC based on lifted system representations provides an analytic expression for the optimal feedforward signal. However, for large tasks the computational load increases rapidly for

  11. A Novel Extreme Learning Control Framework of Unmanned Surface Vehicles.

    Science.gov (United States)

    Wang, Ning; Sun, Jing-Chao; Er, Meng Joo; Liu, Yan-Cheng

    2016-05-01

    In this paper, an extreme learning control (ELC) framework using the single-hidden-layer feedforward network (SLFN) with random hidden nodes for tracking an unmanned surface vehicle suffering from unknown dynamics and external disturbances is proposed. By combining tracking errors with derivatives, an error surface and transformed states are defined to encapsulate unknown dynamics and disturbances into a lumped vector field of transformed states. The lumped nonlinearity is further identified accurately by an extreme-learning-machine-based SLFN approximator which does not require a priori system knowledge nor tuning input weights. Only output weights of the SLFN need to be updated by adaptive projection-based laws derived from the Lyapunov approach. Moreover, an error compensator is incorporated to suppress approximation residuals, and thereby contributing to the robustness and global asymptotic stability of the closed-loop ELC system. Simulation studies and comprehensive comparisons demonstrate that the ELC framework achieves high accuracy in both tracking and approximation.

  12. ISO learning approximates a solution to the inverse-controller problem in an unsupervised behavioral paradigm.

    Science.gov (United States)

    Porr, Bernd; von Ferber, Christian; Wörgötter, Florentin

    2003-04-01

    In "Isotropic Sequence Order Learning" (pp. 831-864 in this issue), we introduced a novel algorithm for temporal sequence learning (ISO learning). Here, we embed this algorithm into a formal nonevaluating (teacher free) environment, which establishes a sensor-motor feedback. The system is initially guided by a fixed reflex reaction, which has the objective disadvantage that it can react only after a disturbance has occurred. ISO learning eliminates this disadvantage by replacing the reflex-loop reactions with earlier anticipatory actions. In this article, we analytically demonstrate that this process can be understood in terms of control theory, showing that the system learns the inverse controller of its own reflex. Thereby, this system is able to learn a simple form of feedforward motor control.

  13. Extended Model-Based Feedforward Compensation in L1 Adaptive Control for Mechanical Manipulators: Design and Experiments

    Directory of Open Access Journals (Sweden)

    Moussab eBennehar

    2015-12-01

    Full Text Available This paper deals with a new control scheme for Parallel Kinematic Manipulators (PKMs based on the L1 adaptive control theory. The original L1 adaptive controller is extended by including an adaptive loop based on the dynamics of the PKM. The additional model-based term is in charge of the compensation of the modeled nonlinear dynamics in the aim of improving the tracking performance. Moreover, the proposed controller is enhanced to reduce the internal forces, which may appear in the case of Redundantly Actuated PKMs (RA-PKMs. The generated control inputs are first regulated through a projection mechanism that reduces the antagonistic internal forces, before being applied to the manipulator. To validate the proposed controller and to show its effectiveness, real-time experiments are conducted on a new four degrees-of-freedom (4-DOFs RA-PKM developed in our laboratory.

  14. Simple feed-forward active control method for suppressing the shock response of a flexible cantilever beam

    International Nuclear Information System (INIS)

    Shin, Kihong; Pyo, Sangho; Lee, Young-Sup

    2009-01-01

    In this paper a 'simple' active control method (without using an error sensor and an adaptive algorithm) is proposed for reducing the residual vibration of a flexible cantilever beam excited by a shock impulse. It is assumed that the shock input can be measured and always occurs on the same point of the beam. In this case, it is shown that a much simpler active control strategy than conventional methods can be used if the system is well identified. The proposed method is verified experimentally with consideration of some practical aspects: the control performance with respect to the control point in time and the choice of frequency response function (FRF) estimators to cope with measurement noise. Experimental results show that a large attenuation of the residual vibration can be achieved using the proposed method. (technical note)

  15. Combining Charge Couple Devices and Rate Sensors for the Feedforward Control System of a Charge Coupled Device Tracking Loop.

    Science.gov (United States)

    Tang, Tao; Tian, Jing; Zhong, Daijun; Fu, Chengyu

    2016-06-25

    A rate feed forward control-based sensor fusion is proposed to improve the closed-loop performance for a charge couple device (CCD) tracking loop. The target trajectory is recovered by combining line of sight (LOS) errors from the CCD and the angular rate from a fiber-optic gyroscope (FOG). A Kalman filter based on the Singer acceleration model utilizes the reconstructive target trajectory to estimate the target velocity. Different from classical feed forward control, additive feedback loops are inevitably added to the original control loops due to the fact some closed-loop information is used. The transfer function of the Kalman filter in the frequency domain is built for analyzing the closed loop stability. The bandwidth of the Kalman filter is the major factor affecting the control stability and close-loop performance. Both simulations and experiments are provided to demonstrate the benefits of the proposed algorithm.

  16. Integrated module inverter using a zeta DC-DC converter with feedforward MPPT (Maximum Power Point Tracking) control; Inversor modulo integrado utilizando um conversor CC-CC zeta com controle MPPT feedforward

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Henrique Fioravanti Miguel

    2009-08-15

    This work presents the study and development of a processing power system that could be used in the connection of renewable energy sources to commercial power grid. The system consists of a ZETA converter associated with a bridge inverter operating at low frequency. The Zeta converter, operating in discontinuous conduction mode (DCM), plays the main role in this arrangement, producing a rectified sinusoidal current waveform synchronized with the electric grid. The function of the full-bridge inverter, connected in cascade with the Zeta converter, is to reverse every 180 deg the current generated by the Zeta converter. Initially it presents the analysis of the Zeta converter operating in DCM, as well as a design criterion. Following by the control strategy and the experimental results for the proposed system are presented and discussed. (author)

  17. Real-time Kalman filter implementation for active feedforward control of time-varying broadband noise and vibrations

    NARCIS (Netherlands)

    Ophem, S. van; Berkhoff, A.P.

    2012-01-01

    Tracking behavior and the rate of convergence are critical properties in active noise control applications with time-varying disturbance spectra. As compared to the standard filtered-reference Least Mean Square (LMS) algorithm, improved convergence can be obtained with schemes based on

  18. Grid-Voltage-Feedforward Active Damping for Grid-Connected Inverter with LCL Filter

    DEFF Research Database (Denmark)

    Lu, Minghui; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    For the grid-connected voltage source inverters, the feedforward scheme of grid voltage is commonly adopted to mitigate the current distortion caused by grid background voltages harmonics. This paper investigates the grid-voltage-feedforward active damping for grid connected inverter with LCL...... filter. It reveals that proportional feedforward control can not only fulfill the mitigation of grid disturbance, but also offer damping effects on the LCL filter resonance. Digital delays are intrinsic to digital controlled inverters; with these delays, the feedforward control can be equivalent...

  19. An sRNA and Cold Shock Protein Homolog-Based Feedforward Loop Post-transcriptionally Controls Cell Cycle Master Regulator CtrA.

    Science.gov (United States)

    Robledo, Marta; Schlüter, Jan-Philip; Loehr, Lars O; Linne, Uwe; Albaum, Stefan P; Jiménez-Zurdo, José I; Becker, Anke

    2018-01-01

    Adjustment of cell cycle progression is crucial for bacterial survival and adaptation under adverse conditions. However, the understanding of modulation of cell cycle control in response to environmental changes is rather incomplete. In α-proteobacteria, the broadly conserved cell cycle master regulator CtrA underlies multiple levels of control, including coupling of cell cycle and cell differentiation. CtrA levels are known to be tightly controlled through diverse transcriptional and post-translational mechanisms. Here, small RNA (sRNA)-mediated post-transcriptional regulation is uncovered as an additional level of CtrA fine-tuning. Computational predictions as well as transcriptome and proteome studies consistently suggested targeting of ctrA and the putative cold shock chaperone cspA5 mRNAs by the trans- encoded sRNA ( trans- sRNA) GspR (formerly SmelC775) in several Sinorhizobium species. GspR strongly accumulated in the stationary growth phase, especially in minimal medium (MM) cultures. Lack of the gspR locus confers a fitness disadvantage in competition with the wild type, while its overproduction hampers cell growth, suggesting that this riboregulator interferes with cell cycle progression. An eGFP-based reporter in vivo assay, involving wild-type and mutant sRNA and mRNA pairs, experimentally confirmed GspR-dependent post-transcriptional down-regulation of ctrA and cspA5 expression, which most likely occurs through base-pairing to the respective mRNA. The energetically favored secondary structure of GspR is predicted to comprise three stem-loop domains, with stem-loop 1 and stem-loop 3 targeting ctrA and cspA5 mRNA, respectively. Moreover, this work reports evidence for post-transcriptional control of ctrA by CspA5. Thus, this regulation and GspR-mediated post-transcriptional repression of ctrA and cspA5 expression constitute a coherent feed-forward loop, which may enhance the negative effect of GspR on CtrA levels. This novel regulatory circuit involving

  20. Application of a repetitive process setting to design of monotonically convergent iterative learning control

    Science.gov (United States)

    Boski, Marcin; Paszke, Wojciech

    2015-11-01

    This paper deals with the problem of designing an iterative learning control algorithm for discrete linear systems using repetitive process stability theory. The resulting design produces a stabilizing output feedback controller in the time domain and a feedforward controller that guarantees monotonic convergence in the trial-to-trial domain. The results are also extended to limited frequency range design specification. New design procedure is introduced in terms of linear matrix inequality (LMI) representations, which guarantee the prescribed performances of ILC scheme. A simulation example is given to illustrate the theoretical developments.

  1. Prediction of Bispectral Index during Target-controlled Infusion of Propofol and Remifentanil: A Deep Learning Approach.

    Science.gov (United States)

    Lee, Hyung-Chul; Ryu, Ho-Geol; Chung, Eun-Jin; Jung, Chul-Woo

    2018-03-01

    The discrepancy between predicted effect-site concentration and measured bispectral index is problematic during intravenous anesthesia with target-controlled infusion of propofol and remifentanil. We hypothesized that bispectral index during total intravenous anesthesia would be more accurately predicted by a deep learning approach. Long short-term memory and the feed-forward neural network were sequenced to simulate the pharmacokinetic and pharmacodynamic parts of an empirical model, respectively, to predict intraoperative bispectral index during combined use of propofol and remifentanil. Inputs of long short-term memory were infusion histories of propofol and remifentanil, which were retrieved from target-controlled infusion pumps for 1,800 s at 10-s intervals. Inputs of the feed-forward network were the outputs of long short-term memory and demographic data such as age, sex, weight, and height. The final output of the feed-forward network was the bispectral index. The performance of bispectral index prediction was compared between the deep learning model and previously reported response surface model. The model hyperparameters comprised 8 memory cells in the long short-term memory layer and 16 nodes in the hidden layer of the feed-forward network. The model training and testing were performed with separate data sets of 131 and 100 cases. The concordance correlation coefficient (95% CI) were 0.561 (0.560 to 0.562) in the deep learning model, which was significantly larger than that in the response surface model (0.265 [0.263 to 0.266], P deep learning model-predicted bispectral index during target-controlled infusion of propofol and remifentanil more accurately compared to the traditional model. The deep learning approach in anesthetic pharmacology seems promising because of its excellent performance and extensibility.

  2. MIMO feed-forward design in wafer scanners using a gradient approximation-based algorithm

    NARCIS (Netherlands)

    Heertjes, M.F.; Hennekens, D.W.T.; Steinbuch, M.

    2010-01-01

    An experimental demonstration is given of a data-based multi-input multi-output (MIMO) feed-forward control design applied to the motion systems of a wafer scanner. Atop a nominal single-input single-output (SISO) feed-forward controller, a MIMO controller is designed having a finite impulse

  3. Learning and Control Model of the Arm for Loading

    Science.gov (United States)

    Kim, Kyoungsik; Kambara, Hiroyuki; Shin, Duk; Koike, Yasuharu

    We propose a learning and control model of the arm for a loading task in which an object is loaded onto one hand with the other hand, in the sagittal plane. Postural control during object interactions provides important points to motor control theories in terms of how humans handle dynamics changes and use the information of prediction and sensory feedback. For the learning and control model, we coupled a feedback-error-learning scheme with an Actor-Critic method used as a feedback controller. To overcome sensory delays, a feedforward dynamics model (FDM) was used in the sensory feedback path. We tested the proposed model in simulation using a two-joint arm with six muscles, each with time delays in muscle force generation. By applying the proposed model to the loading task, we showed that motor commands started increasing, before an object was loaded on, to stabilize arm posture. We also found that the FDM contributes to the stabilization by predicting how the hand changes based on contexts of the object and efferent signals. For comparison with other computational models, we present the simulation results of a minimum-variance model.

  4. Encoding Time in Feedforward Trajectories of a Recurrent Neural Network Model.

    Science.gov (United States)

    Hardy, N F; Buonomano, Dean V

    2018-02-01

    Brain activity evolves through time, creating trajectories of activity that underlie sensorimotor processing, behavior, and learning and memory. Therefore, understanding the temporal nature of neural dynamics is essential to understanding brain function and behavior. In vivo studies have demonstrated that sequential transient activation of neurons can encode time. However, it remains unclear whether these patterns emerge from feedforward network architectures or from recurrent networks and, furthermore, what role network structure plays in timing. We address these issues using a recurrent neural network (RNN) model with distinct populations of excitatory and inhibitory units. Consistent with experimental data, a single RNN could autonomously produce multiple functionally feedforward trajectories, thus potentially encoding multiple timed motor patterns lasting up to several seconds. Importantly, the model accounted for Weber's law, a hallmark of timing behavior. Analysis of network connectivity revealed that efficiency-a measure of network interconnectedness-decreased as the number of stored trajectories increased. Additionally, the balance of excitation (E) and inhibition (I) shifted toward excitation during each unit's activation time, generating the prediction that observed sequential activity relies on dynamic control of the E/I balance. Our results establish for the first time that the same RNN can generate multiple functionally feedforward patterns of activity as a result of dynamic shifts in the E/I balance imposed by the connectome of the RNN. We conclude that recurrent network architectures account for sequential neural activity, as well as for a fundamental signature of timing behavior: Weber's law.

  5. Alignment Condition-Based Robust Adaptive Iterative Learning Control of Uncertain Robot System

    Directory of Open Access Journals (Sweden)

    Guofeng Tong

    2014-04-01

    Full Text Available This paper proposes an adaptive iterative learning control strategy integrated with saturation-based robust control for uncertain robot system in presence of modelling uncertainties, unknown parameter, and external disturbance under alignment condition. An important merit is that it achieves adaptive switching of gain matrix both in conventional PD-type feedforward control and robust adaptive control in the iteration domain simultaneously. The analysis of convergence of proposed control law is based on Lyapunov's direct method under alignment initial condition. Simulation results demonstrate the faster learning rate and better robust performance with proposed algorithm by comparing with other existing robust controllers. The actual experiment on three-DOF robot manipulator shows its better practical effectiveness.

  6. Feedforward somatosensory inhibition is normal in cervical dystonia.

    Science.gov (United States)

    Ferrè, Elisa R; Ganos, Christos; Bhatia, Kailash P; Haggard, Patrick

    2015-03-01

    Insufficient cortical inhibition is a key pathophysiological finding in dystonia. Subliminal sensory stimuli were reported to transiently inhibit somatosensory processing. Here we investigated whether such subliminal feedforward inhibition is reduced in patients with cervical dystonia. Sixteen cervical dystonia patients and 16 matched healthy controls performed a somatosensory detection task. We measured the drop in sensitivity to detect a threshold-level digital nerve shock when it was preceded by a subliminal conditioning shock, compared to when it was not. Subliminal conditioning shocks reduced sensitivity to threshold stimuli to a similar extent in both patients and controls, suggesting that somatosensory subliminal feedforward inhibition is normal in cervical dystonia. Somatosensory feedforward inhibition was normal in this group of cervical dystonia patients. Our results qualify previous concepts of a general dystonic deficit in sensorimotor inhibitory processing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Procedural learning during declarative control.

    Science.gov (United States)

    Crossley, Matthew J; Ashby, F Gregory

    2015-09-01

    There is now abundant evidence that human learning and memory are governed by multiple systems. As a result, research is now turning to the next question of how these putative systems interact. For instance, how is overall control of behavior coordinated, and does learning occur independently within systems regardless of what system is in control? Behavioral, neuroimaging, and neuroscience data are somewhat mixed with respect to these questions. Human neuroimaging and animal lesion studies suggest independent learning and are mostly agnostic with respect to control. Human behavioral studies suggest active inhibition of behavioral output but have little to say regarding learning. The results of two perceptual category-learning experiments are described that strongly suggest that procedural learning does occur while the explicit system is in control of behavior and that this learning might be just as good as if the procedural system was controlling the response. These results are consistent with the idea that declarative memory systems inhibit the ability of the procedural system to access motor output systems but do not prevent procedural learning. (c) 2015 APA, all rights reserved).

  8. Combined Effects of Feedforward Inhibition and Excitation in Thalamocortical Circuit on the Transitions of Epileptic Seizures

    Science.gov (United States)

    Fan, Denggui; Duan, Lixia; Wang, Qian; Luan, Guoming

    2017-01-01

    The mechanisms underlying electrophysiologically observed two-way transitions between absence and tonic-clonic epileptic seizures in cerebral cortex remain unknown. The interplay within thalamocortical network is believed to give rise to these epileptic multiple modes of activity and transitions between them. In particular, it is thought that in some areas of cortex there exists feedforward inhibition from specific relay nucleus of thalamus (TC) to inhibitory neuronal population (IN) which has even more stronger functions on cortical activities than the known feedforward excitation from TC to excitatory neuronal population (EX). Inspired by this, we proposed a modified computational model by introducing feedforward inhibitory connectivity within thalamocortical circuit, to systematically investigate the combined effects of feedforward inhibition and excitation on transitions of epileptic seizures. We first found that the feedforward excitation can induce the transition from tonic oscillation to spike and wave discharges (SWD) in cortex, i.e., the epileptic tonic-absence seizures, with the fixed weak feedforward inhibition. Thereinto, the phase of absence seizures corresponding to strong feedforward excitation can be further transformed into the clonic oscillations with the increasing of feedforward inhibition, representing the epileptic absence-clonic seizures. We also observed the other fascinating dynamical states, such as periodic 2/3/4-spike and wave discharges, reversed SWD and clonic oscillations, as well as saturated firings. More importantly, we can identify the stable parameter regions representing the tonic-clonic oscillations and SWD discharges of epileptic seizures on the 2-D plane composed of feedforward inhibition and excitation, where the physiologically plausible transition pathways between tonic-clonic and absence seizures can be figured out. These results indicate the functional role of feedforward pathways in controlling epileptic seizures and

  9. Combined Effects of Feedforward Inhibition and Excitation in Thalamocortical Circuit on the Transitions of Epileptic Seizures

    Directory of Open Access Journals (Sweden)

    Denggui Fan

    2017-07-01

    Full Text Available The mechanisms underlying electrophysiologically observed two-way transitions between absence and tonic-clonic epileptic seizures in cerebral cortex remain unknown. The interplay within thalamocortical network is believed to give rise to these epileptic multiple modes of activity and transitions between them. In particular, it is thought that in some areas of cortex there exists feedforward inhibition from specific relay nucleus of thalamus (TC to inhibitory neuronal population (IN which has even more stronger functions on cortical activities than the known feedforward excitation from TC to excitatory neuronal population (EX. Inspired by this, we proposed a modified computational model by introducing feedforward inhibitory connectivity within thalamocortical circuit, to systematically investigate the combined effects of feedforward inhibition and excitation on transitions of epileptic seizures. We first found that the feedforward excitation can induce the transition from tonic oscillation to spike and wave discharges (SWD in cortex, i.e., the epileptic tonic-absence seizures, with the fixed weak feedforward inhibition. Thereinto, the phase of absence seizures corresponding to strong feedforward excitation can be further transformed into the clonic oscillations with the increasing of feedforward inhibition, representing the epileptic absence-clonic seizures. We also observed the other fascinating dynamical states, such as periodic 2/3/4-spike and wave discharges, reversed SWD and clonic oscillations, as well as saturated firings. More importantly, we can identify the stable parameter regions representing the tonic-clonic oscillations and SWD discharges of epileptic seizures on the 2-D plane composed of feedforward inhibition and excitation, where the physiologically plausible transition pathways between tonic-clonic and absence seizures can be figured out. These results indicate the functional role of feedforward pathways in controlling epileptic

  10. Extracting functionally feedforward networks from a population of spiking neurons.

    Science.gov (United States)

    Vincent, Kathleen; Tauskela, Joseph S; Thivierge, Jean-Philippe

    2012-01-01

    Neuronal avalanches are a ubiquitous form of activity characterized by spontaneous bursts whose size distribution follows a power-law. Recent theoretical models have replicated power-law avalanches by assuming the presence of functionally feedforward connections (FFCs) in the underlying dynamics of the system. Accordingly, avalanches are generated by a feedforward chain of activation that persists despite being embedded in a larger, massively recurrent circuit. However, it is unclear to what extent networks of living neurons that exhibit power-law avalanches rely on FFCs. Here, we employed a computational approach to reconstruct the functional connectivity of cultured cortical neurons plated on multielectrode arrays (MEAs) and investigated whether pharmacologically induced alterations in avalanche dynamics are accompanied by changes in FFCs. This approach begins by extracting a functional network of directed links between pairs of neurons, and then evaluates the strength of FFCs using Schur decomposition. In a first step, we examined the ability of this approach to extract FFCs from simulated spiking neurons. The strength of FFCs obtained in strictly feedforward networks diminished monotonically as links were gradually rewired at random. Next, we estimated the FFCs of spontaneously active cortical neuron cultures in the presence of either a control medium, a GABA(A) receptor antagonist (PTX), or an AMPA receptor antagonist combined with an NMDA receptor antagonist (APV/DNQX). The distribution of avalanche sizes in these cultures was modulated by this pharmacology, with a shallower power-law under PTX (due to the prominence of larger avalanches) and a steeper power-law under APV/DNQX (due to avalanches recruiting fewer neurons) relative to control cultures. The strength of FFCs increased in networks after application of PTX, consistent with an amplification of feedforward activity during avalanches. Conversely, FFCs decreased after application of APV

  11. Learn How to Control Asthma

    Science.gov (United States)

    ... Guidelines Asthma & Community Health Learn How to Control Asthma Language: English (US) Español (Spanish) Arabic Chinese Français ... Is Asthma Treated? Select a Language What Is Asthma? Asthma is a disease that affects your lungs. ...

  12. Field Testing of LIDAR-Assisted Feedforward Control Algorithms for Improved Speed Control and Fatigue Load Reduction on a 600-kW Wind Turbine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Avishek A.; Bossanyi, Ervin A.; Scholbrock, Andrew K.; Fleming, Paul; Boquet, Mathieu; Krishnamurthy, Raghu

    2015-12-14

    A severe challenge in controlling wind turbines is ensuring controller performance in the presence of a stochastic and unknown wind field, relying on the response of the turbine to generate control actions. Recent technologies such as LIDAR, allow sensing of the wind field before it reaches the rotor. In this work a field-testing campaign to test LIDAR Assisted Control (LAC) has been undertaken on a 600-kW turbine using a fixed, five-beam LIDAR system. The campaign compared the performance of a baseline controller to four LACs with progressively lower levels of feedback using 35 hours of collected data.

  13. Voluntary Control of Residual Antagonistic Muscles in Transtibial Amputees: Feedforward Ballistic Contractions and Implications for Direct Neural Control of Powered Lower Limb Prostheses.

    Science.gov (United States)

    Huang, Stephanie; Huang, He

    2018-04-01

    Discrete, rapid (i.e., ballistic like) muscle activation patterns have been observed in ankle muscles (i.e., plantar flexors and dorsiflexors) of able-bodied individuals during voluntary posture control. This observation motivated us to investigate whether transtibial amputees are capable of generating such a ballistic-like activation pattern accurately using their residual ankle muscles in order to assess whether the volitional postural control of a powered ankle prosthesis using proportional myoelectric control via residual muscles could be feasible. In this paper, we asked ten transtibial amputees to generate ballistic-like activation patterns using their residual lateral gastrocnemius and residual tibialis anterior to control a computer cursor via proportional myoelectric control to hit targets positioned at 20% and 40% of maximum voluntary contraction of the corresponding residual muscle. During practice conditions, we asked amputees to hit a single target repeatedly. During testing conditions, we asked amputees to hit a random sequence of targets. We compared movement time to target and end-point accuracy. We also examined motor recruitment synchronization via time-frequency representations of residual muscle activation. The result showed that median end-point error ranged from -0.6% to 1% maximum voluntary contraction across subjects during practice, which was significantly lower compared to testing ( ). Average movement time for all amputees was 242 ms during practice and 272 ms during testing. Motor recruitment synchronization varied across subjects, and amputees with the highest synchronization achieved the fastest movement times. End-point accuracy was independent of movement time. Results suggest that it is feasible for transtibial amputees to generate ballistic control signals using their residual muscles. Future work on volitional control of powered power ankle prostheses might consider anticipatory postural control based on ballistic-like residual

  14. Motor control and learning with lower-limb myoelectric control in amputees.

    Science.gov (United States)

    Alcaide-Aguirre, Ramses E; Morgenroth, David C; Ferris, Daniel P

    2013-01-01

    Advances in robotic technology have recently enabled the development of powered lower-limb prosthetic limbs. A major hurdle in developing commercially successful powered prostheses is the control interface. Myoelectric signals are one way for prosthetic users to provide feedforward volitional control of prosthesis mechanics. The goal of this study was to assess motor learning in people with lower-limb amputation using proportional myoelectric control from residual-limb muscles. We examined individuals with transtibial amputation and nondisabled controls performing tracking tasks of a virtual object. We assessed how quickly the individuals with amputation improved their performance and whether years since amputation correlated with performance. At the beginning of training, subjects with amputation performed much worse than control subjects. By the end of a short training period, tracking error did not significantly differ between subjects with amputation and nondisabled subjects. Initial but not final performance correlated significantly with time since amputation. This study demonstrates that although subjects with amputation may initially have poor volitional control of their residual lower-limb muscles, training can substantially improve their volitional control. These findings are encouraging for the future use of proportional myoelectric control of powered lower-limb prostheses.

  15. Autonomic control of vasomotion in the porcine coronary circulation during treadmill exercise: evidence for feed-forward beta-adrenergic control

    NARCIS (Netherlands)

    D.J.G.M. Duncker (Dirk); R. Stubenitsky (René); P.D. Verdouw (Pieter)

    1998-01-01

    textabstractTo date, no studies have investigated coronary vasomotor control of myocardial O2 delivery (MDO2) and its modulation by the autonomic nervous system in the porcine heart during treadmill exercise. We studied 8 chronically instrumented swine under resting

  16. Iterative learning control with sampled-data feedback for robot manipulators

    Directory of Open Access Journals (Sweden)

    Delchev Kamen

    2014-09-01

    Full Text Available This paper deals with the improvement of the stability of sampled-data (SD feedback control for nonlinear multiple-input multiple-output time varying systems, such as robotic manipulators, by incorporating an off-line model based nonlinear iterative learning controller. The proposed scheme of nonlinear iterative learning control (NILC with SD feedback is applicable to a large class of robots because the sampled-data feedback is required for model based feedback controllers, especially for robotic manipulators with complicated dynamics (6 or 7 DOF, or more, while the feedforward control from the off-line iterative learning controller should be assumed as a continuous one. The robustness and convergence of the proposed NILC law with SD feedback is proven, and the derived sufficient condition for convergence is the same as the condition for a NILC with a continuous feedback control input. With respect to the presented NILC algorithm applied to a virtual PUMA 560 robot, simulation results are presented in order to verify convergence and applicability of the proposed learning controller with SD feedback controller attached

  17. Complexity control in statistical learning

    Indian Academy of Sciences (India)

    Then we describe how the method of regularization is used to control complexity in learning. We discuss two examples of regularization, one in which the function space used is finite dimensional, and another in which it is a reproducing kernel Hilbert space. Our exposition follows the formulation of Cucker and Smale.

  18. Feedback error learning controller for functional electrical stimulation assistance in a hybrid robotic system for reaching rehabilitation

    Directory of Open Access Journals (Sweden)

    Francisco Resquín

    2016-07-01

    Full Text Available Hybrid robotic systems represent a novel research field, where functional electrical stimulation (FES is combined with a robotic device for rehabilitation of motor impairment. Under this approach, the design of robust FES controllers still remains an open challenge. In this work, we aimed at developing a learning FES controller to assist in the performance of reaching movements in a simple hybrid robotic system setting. We implemented a Feedback Error Learning (FEL control strategy consisting of a feedback PID controller and a feedforward controller based on a neural network. A passive exoskeleton complemented the FES controller by compensating the effects of gravity. We carried out experiments with healthy subjects to validate the performance of the system. Results show that the FEL control strategy is able to adjust the FES intensity to track the desired trajectory accurately without the need of a previous mathematical model.

  19. Training feed-forward neural networks with gain constraints

    Science.gov (United States)

    Hartman

    2000-04-01

    Inaccurate input-output gains (partial derivatives of outputs with respect to inputs) are common in neural network models when input variables are correlated or when data are incomplete or inaccurate. Accurate gains are essential for optimization, control, and other purposes. We develop and explore a method for training feedforward neural networks subject to inequality or equality-bound constraints on the gains of the learned mapping. Gain constraints are implemented as penalty terms added to the objective function, and training is done using gradient descent. Adaptive and robust procedures are devised for balancing the relative strengths of the various terms in the objective function, which is essential when the constraints are inconsistent with the data. The approach has the virtue that the model domain of validity can be extended via extrapolation training, which can dramatically improve generalization. The algorithm is demonstrated here on artificial and real-world problems with very good results and has been advantageously applied to dozens of models currently in commercial use.

  20. Glucocorticoid and cytokine crosstalk: Feedback, feedforward, and co-regulatory interactions determine repression or resistance.

    Science.gov (United States)

    Newton, Robert; Shah, Suharsh; Altonsy, Mohammed O; Gerber, Antony N

    2017-04-28

    Inflammatory signals induce feedback and feedforward systems that provide temporal control. Although glucocorticoids can repress inflammatory gene expression, glucocorticoid receptor recruitment increases expression of negative feedback and feedforward regulators, including the phosphatase, DUSP1, the ubiquitin-modifying enzyme, TNFAIP3, or the mRNA-destabilizing protein, ZFP36. Moreover, glucocorticoid receptor cooperativity with factors, including nuclear factor-κB (NF-κB), may enhance regulator expression to promote repression. Conversely, MAPKs, which are inhibited by glucocorticoids, provide feedforward control to limit expression of the transcription factor IRF1, and the chemokine, CXCL10. We propose that modulation of feedback and feedforward control can determine repression or resistance of inflammatory gene expression toglucocorticoid. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. GA-based fuzzy reinforcement learning for control of a magnetic bearing system.

    Science.gov (United States)

    Lin, C T; Jou, C P

    2000-01-01

    This paper proposes a TD (temporal difference) and GA (genetic algorithm)-based reinforcement (TDGAR) learning method and applies it to the control of a real magnetic bearing system. The TDGAR learning scheme is a new hybrid GA, which integrates the TD prediction method and the GA to perform the reinforcement learning task. The TDGAR learning system is composed of two integrated feedforward networks. One neural network acts as a critic network to guide the learning of the other network (the action network) which determines the outputs (actions) of the TDGAR learning system. The action network can be a normal neural network or a neural fuzzy network. Using the TD prediction method, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network uses the GA to adapt itself according to the internal reinforcement signal. The key concept of the TDGAR learning scheme is to formulate the internal reinforcement signal as the fitness function for the GA such that the GA can evaluate the candidate solutions (chromosomes) regularly, even during periods without external feedback from the environment. This enables the GA to proceed to new generations regularly without waiting for the arrival of the external reinforcement signal. This can usually accelerate the GA learning since a reinforcement signal may only be available at a time long after a sequence of actions has occurred in the reinforcement learning problem. The proposed TDGAR learning system has been used to control an active magnetic bearing (AMB) system in practice. A systematic design procedure is developed to achieve successful integration of all the subsystems including magnetic suspension, mechanical structure, and controller training. The results show that the TDGAR learning scheme can successfully find a neural controller or a neural fuzzy controller for a self-designed magnetic bearing system.

  2. Biomechanical constraints on the feedforward regulation of endpoint stiffness.

    Science.gov (United States)

    Hu, Xiao; Murray, Wendy M; Perreault, Eric J

    2012-10-01

    Although many daily tasks tend to destabilize arm posture, it is still possible to have stable interactions with the environment by regulating the multijoint mechanics of the arm in a task-appropriate manner. For postural tasks, this regulation involves the appropriate control of endpoint stiffness, which represents the stiffness of the arm at the hand. Although experimental studies have been used to evaluate endpoint stiffness control, including the orientation of maximal stiffness, the underlying neural strategies remain unknown. Specifically, the relative importance of feedforward and feedback mechanisms has yet to be determined due to the difficulty separately identifying the contributions of these mechanisms in human experiments. This study used a previously validated three-dimensional musculoskeletal model of the arm to quantify the degree to which the orientation of maximal endpoint stiffness could be changed using only steady-state muscle activations, used to represent feedforward motor commands. Our hypothesis was that the feedforward control of endpoint stiffness orientation would be significantly constrained by the biomechanical properties of the musculoskeletal system. Our results supported this hypothesis, demonstrating substantial biomechanical constraints on the ability to regulate endpoint stiffness throughout the workspace. The ability to regulate stiffness orientation was further constrained by additional task requirements, such as the need to support the arm against gravity or exert forces on the environment. Together, these results bound the degree to which slowly varying feedforward motor commands can be used to regulate the orientation of maximum arm stiffness and provide a context for better understanding conditions in which feedback control may be needed.

  3. A novel feedforward compensation canceling input filter-regulator interaction

    Science.gov (United States)

    Kelkar, S. S.; Lee, F. C.

    1983-01-01

    The interaction between the input and the control loop of switching regulators often results in deterimental effects, such as loop instability, degradation of transient response, and audiosusceptibility, etc. The concept of pole-zero cancelation is employed to mitigate some of these detrimental effects and is implemented using a novel feedforward loop, in addition to existing feedback loops of a buck regulator. Experimental results are presented which show excellent correlation with theory.

  4. Designing Robustness to Temperature in a Feedforward Loop Circuit

    OpenAIRE

    Sen, Shaunak; Kim, Jongmin; Murray, Richard M.

    2013-01-01

    Incoherent feedforward loops represent important biomolecular circuit elements capable of a rich set of dynamic behavior including adaptation and pulsed responses. Temperature can modulate some of these properties through its effect on the underlying reaction rate parameters. It is generally unclear how to design such a circuit where the properties are robust to variations in temperature. Here, we address this issue using a combination of tools from control and dynamical systems theory as wel...

  5. Repetitive learning control of continuous chaotic systems

    International Nuclear Information System (INIS)

    Chen Maoyin; Shang Yun; Zhou Donghua

    2004-01-01

    Combining a shift method and the repetitive learning strategy, a repetitive learning controller is proposed to stabilize unstable periodic orbits (UPOs) within chaotic attractors in the sense of least mean square. If nonlinear parts in chaotic systems satisfy Lipschitz condition, the proposed controller can be simplified into a simple proportional repetitive learning controller

  6. Reinforcement learning for adaptive optimal control of unknown continuous-time nonlinear systems with input constraints

    Science.gov (United States)

    Yang, Xiong; Liu, Derong; Wang, Ding

    2014-03-01

    In this paper, an adaptive reinforcement learning-based solution is developed for the infinite-horizon optimal control problem of constrained-input continuous-time nonlinear systems in the presence of nonlinearities with unknown structures. Two different types of neural networks (NNs) are employed to approximate the Hamilton-Jacobi-Bellman equation. That is, an recurrent NN is constructed to identify the unknown dynamical system, and two feedforward NNs are used as the actor and the critic to approximate the optimal control and the optimal cost, respectively. Based on this framework, the action NN and the critic NN are tuned simultaneously, without the requirement for the knowledge of system drift dynamics. Moreover, by using Lyapunov's direct method, the weights of the action NN and the critic NN are guaranteed to be uniformly ultimately bounded, while keeping the closed-loop system stable. To demonstrate the effectiveness of the present approach, simulation results are illustrated.

  7. Performance improvement of VAV air conditioning system through feedforward compensation decoupling and genetic algorithm

    International Nuclear Information System (INIS)

    Wang Jun; Wang Yan

    2008-01-01

    VAV (variable air volume) control system has the feature of multi-control loops. While all the control loops are working together, they interfere and influence each other. This paper designs the decoupling compensation unit in VAV system in the method of feedforward compensation. This paper also designs the controller parameters of VAV system by means of inverse deducing and the genetic algorithm. Experimental results demonstrate that the combination of the feedforward compensation decoupling and the controller optimization by genetic algorithm can improve the performance of the VAV control system

  8. Proinflammatory Cytokine Infusion Attenuates LH's Feedforward on Testosterone Secretion: Modulation by Age

    Science.gov (United States)

    Yang, Rebecca; Roelfsema, Ferdinand; Takahashi, Paul

    2016-01-01

    Context: In the experimental animal, inflammatory signals quench LH's feedforward drive of testosterone (T) secretion and appear to impair GnRH-LH output. The degree to which such suppressive effects operate in the human is not known. Objective: To test the hypothesis that IL-2 impairs LH's feedforward drive on T and T's feedback inhibition of LH secretion in healthy men. Setting: Mayo Center for Translational Science Activities. Patients or Other Participants: A total of 35 healthy men, 17 young and 18 older. Interventions: Randomized prospective double-blind saline-controlled study of IL-2 infusion in 2 doses with concurrent 10-minute blood sampling for 24 hours. Main Outcome Measures: Deconvolution analysis of LH and T secretion. Results: After saline injection, older compared with young men exhibited reduced LH feedforward drive on T secretion (P feedback inhibition of LH secretion (P feedforward onto T secretion declined markedly especially in young subjects (P feedback on LH secretion especially in older volunteers. Conclusion: This investigation confirms combined feedforward and feedback deficits in older relative to young men given saline and demonstrates 1) joint mechanisms by which IL-2 enforces biochemical hypogonadism, viz, combined feedforward block and feedback amplification; and 2) unequal absolute inhibition of T and LH secretion by IL-2 in young and older men. These outcomes establish that the male gonadal axis is susceptible to dual-site suppression by a prototypic inflammatory mediator. Thus, we postulate that selected ILs might also enforce male hypogonadism in chronic systemic inflammation. PMID:26600270

  9. Precision requirements for single-layer feed-forward neural networks

    NARCIS (Netherlands)

    Annema, Anne J.; Hoen, K.; Hoen, Klaas; Wallinga, Hans

    1994-01-01

    This paper presents a mathematical analysis of the effect of limited precision analog hardware for weight adaptation to be used in on-chip learning feedforward neural networks. Easy-to-read equations and simple worst-case estimations for the maximum tolerable imprecision are presented. As an

  10. Machine learning and predictive data analytics enabling metrology and process control in IC fabrication

    Science.gov (United States)

    Rana, Narender; Zhang, Yunlin; Wall, Donald; Dirahoui, Bachir; Bailey, Todd C.

    2015-03-01

    Integrate circuit (IC) technology is going through multiple changes in terms of patterning techniques (multiple patterning, EUV and DSA), device architectures (FinFET, nanowire, graphene) and patterning scale (few nanometers). These changes require tight controls on processes and measurements to achieve the required device performance, and challenge the metrology and process control in terms of capability and quality. Multivariate data with complex nonlinear trends and correlations generally cannot be described well by mathematical or parametric models but can be relatively easily learned by computing machines and used to predict or extrapolate. This paper introduces the predictive metrology approach which has been applied to three different applications. Machine learning and predictive analytics have been leveraged to accurately predict dimensions of EUV resist patterns down to 18 nm half pitch leveraging resist shrinkage patterns. These patterns could not be directly and accurately measured due to metrology tool limitations. Machine learning has also been applied to predict the electrical performance early in the process pipeline for deep trench capacitance and metal line resistance. As the wafer goes through various processes its associated cost multiplies. It may take days to weeks to get the electrical performance readout. Predicting the electrical performance early on can be very valuable in enabling timely actionable decision such as rework, scrap, feedforward, feedback predicted information or information derived from prediction to improve or monitor processes. This paper provides a general overview of machine learning and advanced analytics application in the advanced semiconductor development and manufacturing.

  11. A comprehensive inversion approach for feedforward compensation of piezoactuator system at high frequency

    Science.gov (United States)

    Tian, Lizhi; Xiong, Zhenhua; Wu, Jianhua; Ding, Han

    2016-09-01

    Motion control of the piezoactuator system over broadband frequencies is limited due to its inherent hysteresis and system dynamics. One of the suggested ways is to use feedforward controller to linearize the input-output relationship of the piezoactuator system. Although there have been many feedforward approaches, it is still a challenge to develop feedforward controller for the piezoactuator system at high frequency. Hence, this paper presents a comprehensive inversion approach in consideration of the coupling of hysteresis and dynamics. In this work, the influence of dynamics compensation on the input-output relationship of the piezoactuator system is investigated first. With system dynamics compensation, the input-output relationship of the piezoactuator system will be further represented as rate-dependent nonlinearity due to the inevitable dynamics compensation error, especially at high frequency. Base on this result, the feedforward controller composed by a cascade of linear dynamics inversion and rate-dependent nonlinearity inversion is developed. Then, the system identification of the comprehensive inversion approach is proposed. Finally, experimental results show that the proposed approach can improve the performance on tracking of both periodic and non-periodic trajectories at medium and high frequency compared with the conventional feedforward approaches.

  12. Stochastic resonance in feedforward acupuncture networks

    Science.gov (United States)

    Qin, Ying-Mei; Wang, Jiang; Men, Cong; Deng, Bin; Wei, Xi-Le; Yu, Hai-Tao; Chan, Wai-Lok

    2014-10-01

    Effects of noises and some other network properties on the weak signal propagation are studied systematically in feedforward acupuncture networks (FFN) based on FitzHugh-Nagumo neuron model. It is found that noises with medium intensity can enhance signal propagation and this effect can be further increased by the feedforward network structure. Resonant properties in the noisy network can also be altered by several network parameters, such as heterogeneity, synapse features, and feedback connections. These results may also provide a novel potential explanation for the propagation of acupuncture signal.

  13. Statistical learning methods: Basics, control and performance

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: zimmerm@mppmu.mpg.de

    2006-04-01

    The basics of statistical learning are reviewed with a special emphasis on general principles and problems for all different types of learning methods. Different aspects of controlling these methods in a physically adequate way will be discussed. All principles and guidelines will be exercised on examples for statistical learning methods in high energy and astrophysics. These examples prove in addition that statistical learning methods very often lead to a remarkable performance gain compared to the competing classical algorithms.

  14. Statistical learning methods: Basics, control and performance

    International Nuclear Information System (INIS)

    Zimmermann, J.

    2006-01-01

    The basics of statistical learning are reviewed with a special emphasis on general principles and problems for all different types of learning methods. Different aspects of controlling these methods in a physically adequate way will be discussed. All principles and guidelines will be exercised on examples for statistical learning methods in high energy and astrophysics. These examples prove in addition that statistical learning methods very often lead to a remarkable performance gain compared to the competing classical algorithms

  15. Reinforcement Learning for Ramp Control: An Analysis of Learning Parameters

    Directory of Open Access Journals (Sweden)

    Chao Lu

    2016-08-01

    Full Text Available Reinforcement Learning (RL has been proposed to deal with ramp control problems under dynamic traffic conditions; however, there is a lack of sufficient research on the behaviour and impacts of different learning parameters. This paper describes a ramp control agent based on the RL mechanism and thoroughly analyzed the influence of three learning parameters; namely, learning rate, discount rate and action selection parameter on the algorithm performance. Two indices for the learning speed and convergence stability were used to measure the algorithm performance, based on which a series of simulation-based experiments were designed and conducted by using a macroscopic traffic flow model. Simulation results showed that, compared with the discount rate, the learning rate and action selection parameter made more remarkable impacts on the algorithm performance. Based on the analysis, some suggestionsabout how to select suitable parameter values that can achieve a superior performance were provided.

  16. Linear System Control Using Stochastic Learning Automata

    Science.gov (United States)

    Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.

    1998-01-01

    This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.

  17. Methods for control over learning individual trajectory

    Science.gov (United States)

    Mitsel, A. A.; Cherniaeva, N. V.

    2015-09-01

    The article discusses models, methods and algorithms of determining student's optimal individual educational trajectory. A new method of controlling the learning trajectory has been developed as a dynamic model of learning trajectory control, which uses score assessment to construct a sequence of studied subjects.

  18. Differences in feedforward trunk muscle activity in subgroups of patients with mechanical low back pain.

    Science.gov (United States)

    Silfies, Sheri P; Mehta, Rupal; Smith, Sue S; Karduna, Andrew R

    2009-07-01

    To investigate alterations in trunk muscle timing patterns in subgroups of patients with mechanical low back pain (MLBP). Our hypothesis was that subjects with MLBP would demonstrate delayed muscle onset and have fewer muscles functioning in a feedforward manner than the control group. We further hypothesized that we would find differences between subgroups of our patients with MLBP, grouped according to diagnosis (segmental instability and noninstability). Case-control. Laboratory. Forty-three patients with chronic MLBP (25 instability, 18 noninstability) and 39 asymptomatic controls. Not applicable. Surface electromyography was used to measure onset time of 10 trunk muscles during a self-perturbation task. Trunk muscle onset latency relative to the anterior deltoid was calculated and the number of muscles functioning in feedforward determined. Activation timing patterns (Pfeedforward (P=.02; eta=.30; 1-beta=.83) were statistically different between patients with MLBP and controls. The control group activated the external oblique, lumbar multifidus, and erector spinae muscles in a feedforward manner. The heterogeneous MLBP group did not activate the trunk musculature in feedforward, but responded with significantly delayed activations. MLBP subgroups demonstrated significantly different timing patterns. The noninstability MLBP subgroup activated trunk extensors in a feedforward manner, similar to the control group, but significantly earlier than the instability subgroup. Lack of feedforward activation of selected trunk musculature in patients with MLBP may result in a period of inefficient muscular stabilization. Activation timing was more impaired in the instability than the noninstability MLBP subgroup. Training specifically for recruitment timing may be an important component of the rehabilitation program.

  19. Training Feedforward Neural Networks Using Symbiotic Organisms Search Algorithm

    Directory of Open Access Journals (Sweden)

    Haizhou Wu

    2016-01-01

    Full Text Available Symbiotic organisms search (SOS is a new robust and powerful metaheuristic algorithm, which stimulates the symbiotic interaction strategies adopted by organisms to survive and propagate in the ecosystem. In the supervised learning area, it is a challenging task to present a satisfactory and efficient training algorithm for feedforward neural networks (FNNs. In this paper, SOS is employed as a new method for training FNNs. To investigate the performance of the aforementioned method, eight different datasets selected from the UCI machine learning repository are employed for experiment and the results are compared among seven metaheuristic algorithms. The results show that SOS performs better than other algorithms for training FNNs in terms of converging speed. It is also proven that an FNN trained by the method of SOS has better accuracy than most algorithms compared.

  20. Time series prediction by feedforward neural networks - is it difficult?

    International Nuclear Information System (INIS)

    Rosen-Zvi, Michal; Kanter, Ido; Kinzel, Wolfgang

    2003-01-01

    The difficulties that a neural network faces when trying to learn from a quasi-periodic time series are studied analytically using a teacher-student scenario where the random input is divided into two macroscopic regions with different variances, 1 and 1/γ 2 (γ >> 1). The generalization error is found to decrease as ε g ∝ exp(-α/γ 2 ), where α is the number of examples per input dimension. In contradiction to this very slow vanishing generalization error, the next output prediction is found to be almost free of mistakes. This picture is consistent with learning quasi-periodic time series produced by feedforward neural networks, which is dominated by enhanced components of the Fourier spectrum of the input. Simulation results are in good agreement with the analytical results

  1. Indirect learning control for nonlinear dynamical systems

    Science.gov (United States)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  2. Fear of movement modulates the feedforward motor control of the affected limb in complex regional pain syndrome (CRPS): A single-case study.

    Science.gov (United States)

    Osumi, Michihiro; Sumitani, Masahiko; Otake, Yuko; Morioka, Shu

    2018-01-01

    Pain-related fear can exacerbate physical disability and pathological pain in complex regional pain syndrome (CRPS) patients. We conducted a kinematic analysis of grasping movements with a pediatric patient suffering from CRPS in an upper limb to investigate how pain-related fear affects motor control. Using a three-dimensional measurement system, we recorded the patient's movement while grasping three vertical bars of different diameters (thin, middle, thick) with the affected and intact hands. We analyzed the maximum grasp distance between the thumb and the index finger (MGD), the peak velocity of the grasp movement (PV), and the time required for the finger opening phase (TOP) and closing phase (TCP). Consequently, the MGD and PV of grasp movements in the affected hand were significantly smaller than those of the intact hand when grasping the middle and thick bars. This might reflect pain-related fear against visual information of the target size which evokes sensation of difficulty in opening fingers widely to grasp the middle and thick bars. Although MGD and PV increased with target size, the TOP was longer in the affected hand when grasping the thick bar. These findings indicate that pain-related fear impairs motor commands that are sent to the musculoskeletal system, subsequently disrupting executed movements and their sensory feedback. Using kinematic analysis, we objectively demonstrated that pain-related fear affects the process of sending motor commands towards the musculoskeletal system in the CRPS-affected hand, providing a possible explanatory model of pathological pain. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2014-01-01

    A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach

  4. Synergetic motor control paradigm for optimizing energy efficiency of multijoint reaching via tacit learning.

    Science.gov (United States)

    Hayashibe, Mitsuhiro; Shimoda, Shingo

    2014-01-01

    A human motor system can improve its behavior toward optimal movement. The skeletal system has more degrees of freedom than the task dimensions, which incurs an ill-posed problem. The multijoint system involves complex interaction torques between joints. To produce optimal motion in terms of energy consumption, the so-called cost function based optimization has been commonly used in previous works.Even if it is a fact that an optimal motor pattern is employed phenomenologically, there is no evidence that shows the existence of a physiological process that is similar to such a mathematical optimization in our central nervous system.In this study, we aim to find a more primitive computational mechanism with a modular configuration to realize adaptability and optimality without prior knowledge of system dynamics.We propose a novel motor control paradigm based on tacit learning with task space feedback. The motor command accumulation during repetitive environmental interactions, play a major role in the learning process. It is applied to a vertical cyclic reaching which involves complex interaction torques.We evaluated whether the proposed paradigm can learn how to optimize solutions with a 3-joint, planar biomechanical model. The results demonstrate that the proposed method was valid for acquiring motor synergy and resulted in energy efficient solutions for different load conditions. The case in feedback control is largely affected by the interaction torques. In contrast, the trajectory is corrected over time with tacit learning toward optimal solutions.Energy efficient solutions were obtained by the emergence of motor synergy. During learning, the contribution from feedforward controller is augmented and the one from the feedback controller is significantly minimized down to 12% for no load at hand, 16% for a 0.5 kg load condition.The proposed paradigm could provide an optimization process in redundant system with dynamic-model-free and cost-function-free approach.

  5. Dialogic feedforward in group coaching

    DEFF Research Database (Denmark)

    Alrø, Helle; Dahl, Poul Nørgård

    2015-01-01

    The overall purpose of the article is to describe a joint learning process where both practicable and theoretically anchored knowledge are in the foreground. The empirical data derives from an EU project. In focus is a group of course leaders and their experiences of carrying out a training...... programme targeted for a group of individuals with a weak position on the labour market. The author brings out what happens when individuals try to understand perspectives from one another. The results demonstrate the knowledge that is developed when members of a project team are included in the entire...... research process, from the definition of problems to the analysis, presentation of results and suggestions of change. Further the outcome illustrates how an interactive research approach can be conducted in close co-operation with those concerned. Active participation, a structured learning process...

  6. Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons.

    Science.gov (United States)

    Tepper, James M; Wilson, Charles J; Koós, Tibor

    2008-08-01

    There are two distinct inhibitory GABAergic circuits in the neostriatum. The feedforward circuit consists of a relatively small population of GABAergic interneurons that receives excitatory input from the neocortex and exerts monosynaptic inhibition onto striatal spiny projection neurons. The feedback circuit comprises the numerous spiny projection neurons and their interconnections via local axon collaterals. This network has long been assumed to provide the majority of striatal GABAergic inhibition and to sharpen and shape striatal output through lateral inhibition, producing increased activity in the most strongly excited spiny cells at the expense of their less strongly excited neighbors. Recent results, mostly from recording experiments of synaptically connected pairs of neurons, have revealed that the two GABAergic circuits differ markedly in terms of the total number of synapses made by each, the strength of the postsynaptic response detected at the soma, the extent of presynaptic convergence and divergence and the net effect of the activation of each circuit on the postsynaptic activity of the spiny neuron. These data have revealed that the feedforward inhibition is powerful and widespread, with spiking in a single interneuron being capable of significantly delaying or even blocking the generation of spikes in a large number of postsynaptic spiny neurons. In contrast, the postsynaptic effects of spiking in a single presynaptic spiny neuron on postsynaptic spiny neurons are weak when measured at the soma, and unable to significantly affect spike timing or generation. Further, reciprocity of synaptic connections between spiny neurons is only rarely observed. These results suggest that the bulk of the fast inhibition that has the strongest effects on spiny neuron spike timing comes from the feedforward interneuronal system whereas the axon collateral feedback system acts principally at the dendrites to control local excitability as well as the overall level of

  7. Learning styles: The learning methods of air traffic control students

    Science.gov (United States)

    Jackson, Dontae L.

    In the world of aviation, air traffic controllers are an integral part in the overall level of safety that is provided. With a number of controllers reaching retirement age, the Air Traffic Collegiate Training Initiative (AT-CTI) was created to provide a stronger candidate pool. However, AT-CTI Instructors have found that a number of AT-CTI students are unable to memorize types of aircraft effectively. This study focused on the basic learning styles (auditory, visual, and kinesthetic) of students and created a teaching method to try to increase memorization in AT-CTI students. The participants were asked to take a questionnaire to determine their learning style. Upon knowing their learning styles, participants attended two classroom sessions. The participants were given a presentation in the first class, and divided into a control and experimental group for the second class. The control group was given the same presentation from the first classroom session while the experimental group had a group discussion and utilized Middle Tennessee State University's Air Traffic Control simulator to learn the aircraft types. Participants took a quiz and filled out a survey, which tested the new teaching method. An appropriate statistical analysis was applied to determine if there was a significant difference between the control and experimental groups. The results showed that even though the participants felt that the method increased their learning, there was no significant difference between the two groups.

  8. Low-Latency Digital Signal Processing for Feedback and Feedforward in Quantum Computing and Communication

    Science.gov (United States)

    Salathé, Yves; Kurpiers, Philipp; Karg, Thomas; Lang, Christian; Andersen, Christian Kraglund; Akin, Abdulkadir; Krinner, Sebastian; Eichler, Christopher; Wallraff, Andreas

    2018-03-01

    Quantum computing architectures rely on classical electronics for control and readout. Employing classical electronics in a feedback loop with the quantum system allows us to stabilize states, correct errors, and realize specific feedforward-based quantum computing and communication schemes such as deterministic quantum teleportation. These feedback and feedforward operations are required to be fast compared to the coherence time of the quantum system to minimize the probability of errors. We present a field-programmable-gate-array-based digital signal processing system capable of real-time quadrature demodulation, a determination of the qubit state, and a generation of state-dependent feedback trigger signals. The feedback trigger is generated with a latency of 110 ns with respect to the timing of the analog input signal. We characterize the performance of the system for an active qubit initialization protocol based on the dispersive readout of a superconducting qubit and discuss potential applications in feedback and feedforward algorithms.

  9. Evaluation of the Performance of Feedforward and Recurrent Neural Networks in Active Cancellation of Sound Noise

    Directory of Open Access Journals (Sweden)

    Mehrshad Salmasi

    2012-07-01

    Full Text Available Active noise control is based on the destructive interference between the primary noise and generated noise from the secondary source. An antinoise of equal amplitude and opposite phase is generated and combined with the primary noise. In this paper, performance of the neural networks is evaluated in active cancellation of sound noise. For this reason, feedforward and recurrent neural networks are designed and trained. After training, performance of the feedforwrad and recurrent networks in noise attenuation are compared. We use Elman network as a recurrent neural network. For simulations, noise signals from a SPIB database are used. In order to compare the networks appropriately, equal number of layers and neurons are considered for the networks. Moreover, training and test samples are similar. Simulation results show that feedforward and recurrent neural networks present good performance in noise cancellation. As it is seen, the ability of recurrent neural network in noise attenuation is better than feedforward network.

  10. Online reinforcement learning control for aerospace systems

    NARCIS (Netherlands)

    Zhou, Y.

    2018-01-01

    Reinforcement Learning (RL) methods are relatively new in the field of aerospace guidance, navigation, and control. This dissertation aims to exploit RL methods to improve the autonomy and online learning of aerospace systems with respect to the a priori unknown system and environment, dynamical

  11. Nonlinear programming with feedforward neural networks.

    Energy Technology Data Exchange (ETDEWEB)

    Reifman, J.

    1999-06-02

    We provide a practical and effective method for solving constrained optimization problems by successively training a multilayer feedforward neural network in a coupled neural-network/objective-function representation. Nonlinear programming problems are easily mapped into this representation which has a simpler and more transparent method of solution than optimization performed with Hopfield-like networks and poses very mild requirements on the functions appearing in the problem. Simulation results are illustrated and compared with an off-the-shelf optimization tool.

  12. Learning to Control Advanced Life Support Systems

    Science.gov (United States)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  13. Conjugate descent formulation of backpropagation error in feedforward neural networks

    Directory of Open Access Journals (Sweden)

    NK Sharma

    2009-06-01

    Full Text Available The feedforward neural network architecture uses backpropagation learning to determine optimal weights between different interconnected layers. This learning procedure uses a gradient descent technique applied to a sum-of-squares error function for the given input-output pattern. It employs an iterative procedure to minimise the error function for a given set of patterns, by adjusting the weights of the network. The first derivates of the error with respect to the weights identify the local error surface in the descent direction. Hence the network exhibits a different local error surface for every different pattern presented to it, and weights are iteratively modified in order to minimise the current local error. The determination of an optimal weight vector is possible only when the total minimum error (mean of the minimum local errors for all patterns from the training set may be minimised. In this paper, we present a general mathematical formulation for the second derivative of the error function with respect to the weights (which represents a conjugate descent for arbitrary feedforward neural network topologies, and we use this derivative information to obtain the optimal weight vector. The local error is backpropagated among the units of hidden layers via the second order derivative of the error with respect to the weights of the hidden and output layers independently and also in combination. The new total minimum error point may be evaluated with the help of the current total minimum error and the current minimised local error. The weight modification processes is performed twice: once with respect to the present local error and once more with respect to the current total or mean error. We present some numerical evidence that our proposed method yields better network weights than those determined via a conventional gradient descent approach.

  14. Feed-Forward versus Feedback Inhibition in a Basic Olfactory Circuit.

    Directory of Open Access Journals (Sweden)

    Tiffany Kee

    2015-10-01

    Full Text Available Inhibitory interneurons play critical roles in shaping the firing patterns of principal neurons in many brain systems. Despite difference in the anatomy or functions of neuronal circuits containing inhibition, two basic motifs repeatedly emerge: feed-forward and feedback. In the locust, it was proposed that a subset of lateral horn interneurons (LHNs, provide feed-forward inhibition onto Kenyon cells (KCs to maintain their sparse firing--a property critical for olfactory learning and memory. But recently it was established that a single inhibitory cell, the giant GABAergic neuron (GGN, is the main and perhaps sole source of inhibition in the mushroom body, and that inhibition from this cell is mediated by a feedback (FB loop including KCs and the GGN. To clarify basic differences in the effects of feedback vs. feed-forward inhibition in circuit dynamics we here use a model of the locust olfactory system. We found both inhibitory motifs were able to maintain sparse KCs responses and provide optimal odor discrimination. However, we further found that only FB inhibition could create a phase response consistent with data recorded in vivo. These findings describe general rules for feed-forward versus feedback inhibition and suggest GGN is potentially capable of providing the primary source of inhibition to the KCs. A better understanding of how inhibitory motifs impact post-synaptic neuronal activity could be used to reveal unknown inhibitory structures within biological networks.

  15. Global output feedback stabilisation of stochastic high-order feedforward nonlinear systems with time-delay

    Science.gov (United States)

    Zhang, Kemei; Zhao, Cong-Ran; Xie, Xue-Jun

    2015-12-01

    This paper considers the problem of output feedback stabilisation for stochastic high-order feedforward nonlinear systems with time-varying delay. By using the homogeneous domination theory and solving several troublesome obstacles in the design and analysis, an output feedback controller is constructed to drive the closed-loop system globally asymptotically stable in probability.

  16. A kinase-dependent feedforward loop affects CREBB stability and long term memory formation.

    Science.gov (United States)

    Lee, Pei-Tseng; Lin, Guang; Lin, Wen-Wen; Diao, Fengqiu; White, Benjamin H; Bellen, Hugo J

    2018-02-23

    In Drosophila , long-term memory (LTM) requires the cAMP-dependent transcription factor CREBB, expressed in the mushroom bodies (MB) and phosphorylated by PKA. To identify other kinases required for memory formation, we integrated Trojan exons encoding T2A-GAL4 into genes encoding putative kinases and selected for genes expressed in MB. These lines were screened for learning/memory deficits using UAS-RNAi knockdown based on an olfactory aversive conditioning assay. We identified a novel, conserved kinase, Meng-Po ( MP , CG11221 , SBK1 in human), the loss of which severely affects 3 hr memory and 24 hr LTM, but not learning. Remarkably, memory is lost upon removal of the MP protein in adult MB but restored upon its reintroduction. Overexpression of MP in MB significantly increases LTM in wild-type flies showing that MP is a limiting factor for LTM. We show that PKA phosphorylates MP and that both proteins synergize in a feedforward loop to control CREBB levels and LTM. key words: Drosophila, Mushroom bodies, SBK1, deGradFP, T2A-GAL4, MiMIC.

  17. Measuring strategic control in artificial grammar learning.

    Science.gov (United States)

    Norman, Elisabeth; Price, Mark C; Jones, Emma

    2011-12-01

    In response to concerns with existing procedures for measuring strategic control over implicit knowledge in artificial grammar learning (AGL), we introduce a more stringent measurement procedure. After two separate training blocks which each consisted of letter strings derived from a different grammar, participants either judged the grammaticality of novel letter strings with respect to only one of these two grammars (pure-block condition), or had the target grammar varying randomly from trial to trial (novel mixed-block condition) which required a higher degree of conscious flexible control. Random variation in the colour and font of letters was introduced to disguise the nature of the rule and reduce explicit learning. Strategic control was observed both in the pure-block and mixed-block conditions, and even among participants who did not realise the rule was based on letter identity. This indicated detailed strategic control in the absence of explicit learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. On equivalence classes in iterative learning control

    NARCIS (Netherlands)

    Verwoerd, M.H.A.; Meinsma, Gjerrit; de Vries, Theodorus J.A.

    2003-01-01

    This paper advocates a new approach to study the relation between causal iterative learning control (ILC) and conventional feedback control. Central to this approach is the introduction of the set of admissible pairs (of operators) defined with respect to a family of iterations. Considered are two

  19. AMYGDALA MICROCIRCUITS CONTROLLING LEARNED FEAR

    Science.gov (United States)

    Duvarci, Sevil; Pare, Denis

    2014-01-01

    We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning. PMID:24908482

  20. Adaptive Feedforward Cancellation of Sinusoidal Disturbances in Superconducting RF Cavities

    CERN Document Server

    Kandil, T H; Hartung, W; Khalil, H; Popielarski, J; Vincent, J; York, R C

    2004-01-01

    A control method, known as adaptive feedforward cancellation (AFC) is applied to damp sinusoidal disturbances due to microphonics in superconducting RF (SRF) cavities. AFC provides a method for damping internal, and external sinusoidal disturbances with known frequencies. It is preferred over other schemes because it uses rudimentary information about the frequency response at the disturbance frequencies, without the necessity of knowing an analytic model (transfer function) of the system. It estimates the magnitude and phase of the sinusoidal disturbance inputs and generates a control signal to cancel their effect. AFC, along with a frequency estimation process, is shown to be very successful in the cancellation of sinusoidal signals from different sources. The results of this research may significantly reduce the power requirements and increase the stability for lightly loaded continuous-wave SRF systems.

  1. Learning System Center App Controller

    CERN Document Server

    Naeem, Nasir

    2015-01-01

    This book is intended for IT professionals working with Hyper-V, Azure cloud, VMM, and private cloud technologies who are looking for a quick way to get up and running with System Center 2012 R2 App Controller. To get the most out of this book, you should be familiar with Microsoft Hyper-V technology. Knowledge of Virtual Machine Manager is helpful but not mandatory.

  2. Comparative experiments regarding approaches to feedforward hysteresis compensation for piezoceramic actuators

    International Nuclear Information System (INIS)

    Gu, Guo-Ying; Zhu, Li-Min

    2014-01-01

    Piezoceramic actuators (PCAs) are desired devices in many micro/nano-positioning applications. The performance of PCA-based applications is severely limited by the presence of hysteresis nonlinearity. To remedy the hysteresis nonlinearity in such systems, feedforward hysteresis compensation is the most common technique. In the literature, many different feedforward hysteresis compensation approaches have been developed, but there are no comparative studies of these approaches. Focusing on the modified Prandtl-Ishlinskii model (MPIM) for asymmetric hysteresis description of piezoceramic actuators, three feedforward hysteresis compensation approaches—inverse hysteresis compensation (IHC), without inverse hysteresis compensation (WIHC), and direct inverse hysteresis compensation (DIHC)—are developed and compared in this paper. Extensive comparative experiments were conducted on a PCA-actuated stage to verify the effectiveness of the three different feedforward control approaches to hysteresis compensation. The experimental results show that the performances among the three approaches are rather similar, and the main differences among them are due to the specific implementation of each approach. (paper)

  3. Proinflammatory Cytokine Infusion Attenuates LH's Feedforward on Testosterone Secretion: Modulation by Age.

    Science.gov (United States)

    Veldhuis, Johannes; Yang, Rebecca; Roelfsema, Ferdinand; Takahashi, Paul

    2016-02-01

    In the experimental animal, inflammatory signals quench LH's feedforward drive of testosterone (T) secretion and appear to impair GnRH-LH output. The degree to which such suppressive effects operate in the human is not known. To test the hypothesis that IL-2 impairs LH's feedforward drive on T and T's feedback inhibition of LH secretion in healthy men. Mayo Center for Translational Science Activities. A total of 35 healthy men, 17 young and 18 older. Randomized prospective double-blind saline-controlled study of IL-2 infusion in 2 doses with concurrent 10-minute blood sampling for 24 hours. Deconvolution analysis of LH and T secretion. After saline injection, older compared with young men exhibited reduced LH feedforward drive on T secretion (P enforces biochemical hypogonadism, viz, combined feedforward block and feedback amplification; and 2) unequal absolute inhibition of T and LH secretion by IL-2 in young and older men. These outcomes establish that the male gonadal axis is susceptible to dual-site suppression by a prototypic inflammatory mediator. Thus, we postulate that selected ILs might also enforce male hypogonadism in chronic systemic inflammation.

  4. Feedforward signal prediction for accurate motion systems using digital filters

    NARCIS (Netherlands)

    Butler, H.

    2012-01-01

    A positioning system that needs to accurately track a reference can benefit greatly from using feedforward. When using a force actuator, the feedforward needs to generate a force proportional to the reference acceleration, which can be measured by means of an accelerometer or can be created by

  5. Machine Learning for Flapping Wing Flight Control

    NARCIS (Netherlands)

    Goedhart, Menno; van Kampen, E.; Armanini, S.F.; de Visser, C.C.; Chu, Q.

    2018-01-01

    Flight control of Flapping Wing Micro Air Vehicles is challenging, because of their complex dynamics and variability due to manufacturing inconsistencies. Machine Learning algorithms can be used to tackle these challenges. A Policy Gradient algorithm is used to tune the gains of a

  6. Approaches to Learning to Control Dynamic Uncertainty

    Directory of Open Access Journals (Sweden)

    Magda Osman

    2015-10-01

    Full Text Available In dynamic environments, when faced with a choice of which learning strategy to adopt, do people choose to mostly explore (maximizing their long term gains or exploit (maximizing their short term gains? More to the point, how does this choice of learning strategy influence one’s later ability to control the environment? In the present study, we explore whether people’s self-reported learning strategies and levels of arousal (i.e., surprise, stress correspond to performance measures of controlling a Highly Uncertain or Moderately Uncertain dynamic environment. Generally, self-reports suggest a preference for exploring the environment to begin with. After which, those in the Highly Uncertain environment generally indicated they exploited more than those in the Moderately Uncertain environment; this difference did not impact on performance on later tests of people’s ability to control the dynamic environment. Levels of arousal were also differentially associated with the uncertainty of the environment. Going beyond behavioral data, our model of dynamic decision-making revealed that, in actual fact, there was no difference in exploitation levels between those in the highly uncertain or moderately uncertain environments, but there were differences based on sensitivity to negative reinforcement. We consider the implications of our findings with respect to learning and strategic approaches to controlling dynamic uncertainty.

  7. Game-Theoretic Learning in Distributed Control

    KAUST Repository

    Marden, Jason R.

    2018-01-05

    In distributed architecture control problems, there is a collection of interconnected decision-making components that seek to realize desirable collective behaviors through local interactions and by processing local information. Applications range from autonomous vehicles to energy to transportation. One approach to control of such distributed architectures is to view the components as players in a game. In this approach, two design considerations are the components’ incentives and the rules that dictate how components react to the decisions of other components. In game-theoretic language, the incentives are defined through utility functions, and the reaction rules are online learning dynamics. This chapter presents an overview of this approach, covering basic concepts in game theory, special game classes, measures of distributed efficiency, utility design, and online learning rules, all with the interpretation of using game theory as a prescriptive paradigm for distributed control design.

  8. A Feedforward Inhibitory Circuit Mediated by CB1-Expressing Fast-Spiking Interneurons in the Nucleus Accumbens.

    Science.gov (United States)

    Wright, William J; Schlüter, Oliver M; Dong, Yan

    2017-04-01

    The nucleus accumbens (NAc) gates motivated behaviors through the functional output of principle medium spiny neurons (MSNs), whereas dysfunctional output of NAc MSNs contributes to a variety of psychiatric disorders. Fast-spiking interneurons (FSIs) are sparsely distributed throughout the NAc, forming local feedforward inhibitory circuits. It remains elusive how FSI-based feedforward circuits regulate the output of NAc MSNs. Here, we investigated a distinct subpopulation of NAc FSIs that express the cannabinoid receptor type-1 (CB1). Using a combination of paired electrophysiological recordings and pharmacological approaches, we characterized and compared feedforward inhibition of NAc MSNs from CB1 + FSIs and lateral inhibition from recurrent MSN collaterals. We observed that CB1 + FSIs exerted robust inhibitory control over a large percentage of nearby MSNs in contrast to local MSN collaterals that provided only sparse and weak inhibitory input to their neighboring MSNs. Furthermore, CB1 + FSI-mediated feedforward inhibition was preferentially suppressed by endocannabinoid (eCB) signaling, whereas MSN-mediated lateral inhibition was unaffected. Finally, we demonstrated that CB1 + FSI synapses onto MSNs are capable of undergoing experience-dependent long-term depression in a voltage- and eCB-dependent manner. These findings demonstrated that CB1 + FSIs are a major source of local inhibitory control of MSNs and a critical component of the feedforward inhibitory circuits regulating the output of the NAc.

  9. Digital control for nuclear reactors - lessons learned

    International Nuclear Information System (INIS)

    Bernard, J.A.; Aviles, B.N.; Lanning, D.D.

    1992-01-01

    Lessons learned during the course of the now decade-old MIT program on the digital control of nuclear reactors are enumerated. Relative to controller structure, these include the importance of a separate safety system, the need for signal validation, the role of supervisory algorithms, the significance of command validation, and the relevance of automated reasoning. Relative to controller implementation, these include the value of nodal methods to the creation of real-time reactor physics and thermal hydraulic models, the advantages to be gained from the use of real-time system models, and the importance of a multi-tiered structure to the simultaneous achievement of supervisory, global, and local control. Block diagrams are presented of proposed controllers and selected experimental and simulation-study results are shown. In addition, a history is given of the MIT program on reactor digital control

  10. Concurrent Learning of Control in Multi agent Sequential Decision Tasks

    Science.gov (United States)

    2018-04-17

    Concurrent Learning of Control in Multi-agent Sequential Decision Tasks The overall objective of this project was to develop multi-agent reinforcement... learning (MARL) approaches for intelligent agents to autonomously learn distributed control policies in decentral- ized partially observable... learning of policies in Dec-POMDPs, established performance bounds, evaluated these algorithms both theoretically and empirically, The views

  11. Quantum generalisation of feedforward neural networks

    Science.gov (United States)

    Wan, Kwok Ho; Dahlsten, Oscar; Kristjánsson, Hlér; Gardner, Robert; Kim, M. S.

    2017-09-01

    We propose a quantum generalisation of a classical neural network. The classical neurons are firstly rendered reversible by adding ancillary bits. Then they are generalised to being quantum reversible, i.e., unitary (the classical networks we generalise are called feedforward, and have step-function activation functions). The quantum network can be trained efficiently using gradient descent on a cost function to perform quantum generalisations of classical tasks. We demonstrate numerically that it can: (i) compress quantum states onto a minimal number of qubits, creating a quantum autoencoder, and (ii) discover quantum communication protocols such as teleportation. Our general recipe is theoretical and implementation-independent. The quantum neuron module can naturally be implemented photonically.

  12. Measurable Disturbances Compensation: Analysis and Tuning of Feedforward Techniques for Dead-Time Processes

    Directory of Open Access Journals (Sweden)

    Andrzej Pawlowski

    2016-04-01

    Full Text Available In this paper, measurable disturbance compensation techniques are analyzed, focusing the problem on the input-output and disturbance-output time delays. The feedforward compensation method is evaluated for the common structures that appear between the disturbance and process dynamics. Due to the presence of time delays, the study includes causality and instability phenomena that can arise when a classical approach for disturbance compensation is used. Different feedforward configurations are analyzed for two feedback control techniques, PID (Proportional-Integral-Derivative and MPC (Model Predictive Control that are widely used for industrial process-control applications. The specific tuning methodology for the analyzed process structure is used to obtain improved disturbance rejection performance regarding classical approaches. The evaluation of the introduced disturbance rejection schemes is performed through simulation, considering process constraints in order to highlight the advantages and drawbacks in common scenarios. The performance of the analyzed structure is expressed with different indexes that allow us direct comparisons. The obtained results show that the proper design and tuning of the feedforward action helps to significantly improve the overall control performance in process control tasks.

  13. Measuring Feedforward Inhibition and Its Impact on Local Circuit Function.

    Science.gov (United States)

    Hull, Court

    2017-05-01

    This protocol describes a series of approaches to measure feedforward inhibition in acute brain slices from the cerebellar cortex. Using whole-cell voltage and current clamp recordings from Purkinje cells in conjunction with electrical stimulation of the parallel fibers, these methods demonstrate how to measure the relationship between excitation and inhibition in a feedforward circuit. This protocol also describes how to measure the impact of feedforward inhibition on Purkinje cell excitability, with an emphasis on spike timing. © 2017 Cold Spring Harbor Laboratory Press.

  14. Feed-forward and feedback projections of midbrain reticular formation neurons in the cat

    Directory of Open Access Journals (Sweden)

    Eddie ePerkins

    2014-01-01

    Full Text Available Gaze changes involving the eyes and head are orchestrated by brainstem gaze centers found within the superior colliculus (SC, paramedian pontine reticular formation (PPRF, and medullary reticular formation (MdRF. The mesencephalic reticular formation (MRF also plays a role in gaze. It receives a major input from the ipsilateral SC and contains cells that fire in relation to gaze changes. Moreover, it provides a feedback projection to the SC and feed-forward projections to the PPRF and MdRF. We sought to determine whether these MRF feedback and feed-forward projections originate from the same or different neuronal populations by utilizing paired fluorescent retrograde tracers in cats. Specifically, we tested: 1. whether MRF neurons that control eye movements form a single population by injecting the SC and PPRF with different tracers, and 2. whether MRF neurons that control head movements form a single population by injecting the SC and MdRF with different tracers. In neither case were double labeled neurons observed, indicating that feedback and feed-forward projections originate from separate MRF populations. In both cases, the labeled reticulotectal and reticuloreticular neurons were distributed bilaterally in the MRF. However, neurons projecting to the MdRF were generally constrained to the medial half of the MRF, while those projecting to the PPRF, like MRF reticulotectal neurons, were spread throughout the mediolateral axis. Thus, the medial MRF may be specialized for control of head movements, with control of eye movements being more widespread in this structure.

  15. Further results on global state feedback stabilization of nonlinear high-order feedforward systems.

    Science.gov (United States)

    Xie, Xue-Jun; Zhang, Xing-Hui

    2014-03-01

    In this paper, by introducing a combined method of sign function, homogeneous domination and adding a power integrator, and overcoming several troublesome obstacles in the design and analysis, the problem of state feedback control for a class of nonlinear high-order feedforward systems with the nonlinearity's order being relaxed to an interval rather than a fixed point is solved. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Evaluation of the Performance of Feedforward and Recurrent Neural Networks in Active Cancellation of Sound Noise

    OpenAIRE

    Mehrshad Salmasi; Homayoun Mahdavi-Nasab

    2012-01-01

    Active noise control is based on the destructive interference between the primary noise and generated noise from the secondary source. An antinoise of equal amplitude and opposite phase is generated and combined with the primary noise. In this paper, performance of the neural networks is evaluated in active cancellation of sound noise. For this reason, feedforward and recurrent neural networks are designed and trained. After training, performance of the feedforwrad and recurrent networks in n...

  17. Gaze stabilization in chronic vestibular-loss and in cerebellar ataxia: interactions of feedforward and sensory feedback mechanisms.

    Science.gov (United States)

    Sağlam, M; Lehnen, N

    2014-01-01

    During gaze shifts, humans can use visual, vestibular, and proprioceptive feedback, as well as feedforward mechanisms, for stabilization against active and passive head movements. The contributions of feedforward and sensory feedback control, and the role of the cerebellum, are still under debate. To quantify these contributions, we increased the head moment of inertia in three groups (ten healthy, five chronic vestibular-loss and nine cerebellar-ataxia patients) while they performed large gaze shifts to flashed targets in darkness. This induces undesired head oscillations. Consequently, both active (desired) and passive (undesired) head movements had to be compensated for to stabilize gaze. All groups compensated for active and passive head movements, vestibular-loss patients less than the other groups (P feedforward mechanisms substantially contribute to gaze stabilization. Proprioception alone is not sufficient (gain 0.2). Stabilization against active and passive head movements was not impaired in our cerebellar ataxia patients.

  18. Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.

    Science.gov (United States)

    Gordon, Keith E; Wu, Ming; Kahn, Jennifer H; Schmit, Brian D

    2010-09-01

    Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.

  19. Feedback enhances feedforward figure-ground segmentation by changing firing mode.

    Science.gov (United States)

    Supèr, Hans; Romeo, August

    2011-01-01

    In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforward spiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz) bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses with the responses to a homogenous texture. We propose that feedback controls figure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons.

  20. Feedback enhances feedforward figure-ground segmentation by changing firing mode.

    Directory of Open Access Journals (Sweden)

    Hans Supèr

    Full Text Available In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforward spiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses with the responses to a homogenous texture. We propose that feedback controls figure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons.

  1. A mixed incoherent feed-forward loop contributes to the regulation of bacterial photosynthesis genes.

    Science.gov (United States)

    Mank, Nils N; Berghoff, Bork A; Klug, Gabriele

    2013-03-01

    Living cells use a variety of regulatory network motifs for accurate gene expression in response to changes in their environment or during differentiation processes. In Rhodobacter sphaeroides, a complex regulatory network controls expression of photosynthesis genes to guarantee optimal energy supply on one hand and to avoid photooxidative stress on the other hand. Recently, we identified a mixed incoherent feed-forward loop comprising the transcription factor PrrA, the sRNA PcrZ and photosynthesis target genes as part of this regulatory network. This point-of-view provides a comparison to other described feed-forward loops and discusses the physiological relevance of PcrZ in more detail.

  2. Tunnel Ventilation Control Using Reinforcement Learning Methodology

    Science.gov (United States)

    Chu, Baeksuk; Kim, Dongnam; Hong, Daehie; Park, Jooyoung; Chung, Jin Taek; Kim, Tae-Hyung

    The main purpose of tunnel ventilation system is to maintain CO pollutant concentration and VI (visibility index) under an adequate level to provide drivers with comfortable and safe driving environment. Moreover, it is necessary to minimize power consumption used to operate ventilation system. To achieve the objectives, the control algorithm used in this research is reinforcement learning (RL) method. RL is a goal-directed learning of a mapping from situations to actions without relying on exemplary supervision or complete models of the environment. The goal of RL is to maximize a reward which is an evaluative feedback from the environment. In the process of constructing the reward of the tunnel ventilation system, two objectives listed above are included, that is, maintaining an adequate level of pollutants and minimizing power consumption. RL algorithm based on actor-critic architecture and gradient-following algorithm is adopted to the tunnel ventilation system. The simulations results performed with real data collected from existing tunnel ventilation system and real experimental verification are provided in this paper. It is confirmed that with the suggested controller, the pollutant level inside the tunnel was well maintained under allowable limit and the performance of energy consumption was improved compared to conventional control scheme.

  3. Processing oscillatory signals by incoherent feedforward loops

    Science.gov (United States)

    Zhang, Carolyn; Wu, Feilun; Tsoi, Ryan; Shats, Igor; You, Lingchong

    From the timing of amoeba development to the maintenance of stem cell pluripotency,many biological signaling pathways exhibit the ability to differentiate between pulsatile and sustained signals in the regulation of downstream gene expression.While networks underlying this signal decoding are diverse,many are built around a common motif, the incoherent feedforward loop (IFFL),where an input simultaneously activates an output and an inhibitor of the output.With appropriate parameters,this motif can generate temporal adaptation,where the system is desensitized to a sustained input.This property serves as the foundation for distinguishing signals with varying temporal profiles.Here,we use quantitative modeling to examine another property of IFFLs,the ability to process oscillatory signals.Our results indicate that the system's ability to translate pulsatile dynamics is limited by two constraints.The kinetics of IFFL components dictate the input range for which the network can decode pulsatile dynamics.In addition,a match between the network parameters and signal characteristics is required for optimal ``counting''.We elucidate one potential mechanism by which information processing occurs in natural networks with implications in the design of synthetic gene circuits for this purpose. This work was partially supported by the National Science Foundation Graduate Research Fellowship (CZ).

  4. Self-learning fuzzy logic controllers based on reinforcement

    International Nuclear Information System (INIS)

    Wang, Z.; Shao, S.; Ding, J.

    1996-01-01

    This paper proposes a new method for learning and tuning Fuzzy Logic Controllers. The self-learning scheme in this paper is composed of Bucket-Brigade and Genetic Algorithm. The proposed method is tested on the cart-pole system. Simulation results show that our approach has good learning and control performance

  5. Adaptive feedforward of estimated ripple improves the closed loop system performance significantly

    International Nuclear Information System (INIS)

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, A.S.

    1998-01-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of LLRF control system for LEDA. The authors propose an estimator of the ripple and its time derivative and a control law which is based on PID control and adaptive feedforward of estimated ripple. The control law reduces the effect of the deterministic cathode ripple that is due to high voltage power supply and achieves tracking of desired set points

  6. Online high voltage power supply ripple estimation and feedforward in LEDA

    International Nuclear Information System (INIS)

    Kwon, S.; Regan, A.; Wang, Y.M.; Rohlev, T.

    1999-01-01

    The Low Energy Demonstration Accelerator (LEDA) being constructed at Los Alamos National Laboratory will serve as the prototype for the low energy section of Acceleration Production of Tritium (APT) accelerator. This paper addresses the problem of LLRF control system for LEDA. They propose an estimator of the ripple and its time derivative and a control law which is based on PID control and adaptive feedforward of estimated ripple. The control law reduces the effect of the deterministic cathode ripple that is due to high voltage power supply and achieves tracking of desired set points

  7. Iterative learning control an optimization paradigm

    CERN Document Server

    Owens, David H

    2016-01-01

    This book develops a coherent theoretical approach to algorithm design for iterative learning control based on the use of optimization concepts. Concentrating initially on linear, discrete-time systems, the author gives the reader access to theories based on either signal or parameter optimization. Although the two approaches are shown to be related in a formal mathematical sense, the text presents them separately because their relevant algorithm design issues are distinct and give rise to different performance capabilities. Together with algorithm design, the text demonstrates that there are new algorithms that are capable of incorporating input and output constraints, enable the algorithm to reconfigure systematically in order to meet the requirements of different reference signals and also to support new algorithms for local convergence of nonlinear iterative control. Simulation and application studies are used to illustrate algorithm properties and performance in systems like gantry robots and other elect...

  8. Cognitive Models for Learning to Control Dynamic Systems

    National Research Council Canada - National Science Library

    Eberhart, Russ; Hu, Xiaohui; Chen, Yaobin

    2008-01-01

    Report developed under STTR contract for topic "Cognitive models for learning to control dynamic systems" demonstrated a swarm intelligence learning algorithm and its application in unmanned aerial vehicle (UAV) mission planning...

  9. Synaptic convergence regulates synchronization-dependent spike transfer in feedforward neural networks.

    Science.gov (United States)

    Sailamul, Pachaya; Jang, Jaeson; Paik, Se-Bum

    2017-12-01

    Correlated neural activities such as synchronizations can significantly alter the characteristics of spike transfer between neural layers. However, it is not clear how this synchronization-dependent spike transfer can be affected by the structure of convergent feedforward wiring. To address this question, we implemented computer simulations of model neural networks: a source and a target layer connected with different types of convergent wiring rules. In the Gaussian-Gaussian (GG) model, both the connection probability and the strength are given as Gaussian distribution as a function of spatial distance. In the Uniform-Constant (UC) and Uniform-Exponential (UE) models, the connection probability density is a uniform constant within a certain range, but the connection strength is set as a constant value or an exponentially decaying function, respectively. Then we examined how the spike transfer function is modulated under these conditions, while static or synchronized input patterns were introduced to simulate different levels of feedforward spike synchronization. We observed that the synchronization-dependent modulation of the transfer function appeared noticeably different for each convergence condition. The modulation of the spike transfer function was largest in the UC model, and smallest in the UE model. Our analysis showed that this difference was induced by the different spike weight distributions that was generated from convergent synapses in each model. Our results suggest that, the structure of the feedforward convergence is a crucial factor for correlation-dependent spike control, thus must be considered important to understand the mechanism of information transfer in the brain.

  10. Locus of control and online learning

    Directory of Open Access Journals (Sweden)

    Suretha Esterhuysen

    2004-10-01

    Full Text Available The integration of online learning in university courses is considered to be both inevitable and necessary. Thus there is an increasing need to raise awareness among educators and course designers about the critical issues impacting on online learning. The aim of this study, therefore, was to assess the differences between two groups of first-year Business Sciences learners (online and conventional learners in terms of biographic and demographic characteristics and locus of control. The study population consisted of 586 first-year learners of whom 185 completed the Locus of Control Inventory (LCI. The results show that the two groups of learners do not differ statistically significantly from each other with respect to locus of control. The findings and their implications are also discussed. Opsomming Die integrasie van aanlyn-leer in universiteitskursusse word beskou as sowel onafwendbaar as noodsaaklik. Daar is dus ’n toenemende behoefte om bewustheid onder opvoedkundiges en kursusontwerpers te kweek oor die kritiese aspekte wat ’n impak op aanlyn-leer het (Morgan, 1996. Daarom was die doel van hierdie ondersoek om die verskille tussen twee groepe eerstejaarleerders in Bestuurs- en Ekonomiese Wetenskap (aanlyn en konvensionele leerders te bepaal ten opsigte van biografiese en demografiese eienskappe en lokus van beheer. Die populasie het bestaan uit 586 eerstejaarleerders waarvan 185 die Lokus van Beheer Vraelys voltooi het. Die resultate toon dat die twee groepe leerders nie statisties beduidend van mekaar verskil het met betrekking tot lokus van beheer nie. Die bevindinge en implikasies word ook bespreek.

  11. An incoherent feedforward loop facilitates adaptive tuning of gene expression.

    Science.gov (United States)

    Hong, Jungeui; Brandt, Nathan; Abdul-Rahman, Farah; Yang, Ally; Hughes, Tim; Gresham, David

    2018-04-05

    We studied adaptive evolution of gene expression using long-term experimental evolution of Saccharomyces cerevisiae in ammonium-limited chemostats. We found repeated selection for non-synonymous variation in the DNA binding domain of the transcriptional activator, GAT1, which functions with the repressor, DAL80 in an incoherent type-1 feedforward loop (I1-FFL) to control expression of the high affinity ammonium transporter gene, MEP2. Missense mutations in the DNA binding domain of GAT1 reduce its binding to the GATAA consensus sequence. However, we show experimentally, and using mathematical modeling, that decreases in GAT1 binding result in increased expression of MEP2 as a consequence of properties of I1-FFLs. Our results show that I1-FFLs, one of the most commonly occurring network motifs in transcriptional networks, can facilitate adaptive tuning of gene expression through modulation of transcription factor binding affinities. Our findings highlight the importance of gene regulatory architectures in the evolution of gene expression. © 2018, Hong et al.

  12. Prediction of metal corrosion using feed-forward neural networks

    International Nuclear Information System (INIS)

    Mahjani, M.G.; Jalili, S.; Jafarian, M.; Jaberi, A.

    2004-01-01

    The reliable prediction of corrosion behavior for the effective control of corrosion is a fundamental requirement. Since real world corrosion never seems to involve quite the same conditions that have previously been tested, using corrosion literature does not provide the necessary answers. In order to provide a methodology for predicting corrosion in real and complex situations, artificial neural networks can be utilized. Feed-forward artificial neural network (FFANN) is an information-processing paradigm inspired by the way the densely interconnected, parallel structure of the human brain process information.The aim of the present work is to predict corrosion behavior in critical conditions, such as industrial applications, based on some laboratory experimental data. Electrochemical behavior of stainless steel in different conditions were studied, using polarization technique and Tafel curves. Back-propagation neural networks models were developed to predict the corrosion behavior. The trained networks result in predicted value in good comparison to the experimental data. They have generally been claimed to be successful in modeling the corrosion behavior. The results are presented in two tables. Table 1 gives corrosion behavior of stainless-steel as a function of pH and CuSO 4 concentration and table 2 gives corrosion behavior of stainless - steel as a function of electrode surface area and CuSO 4 concentration. (authors)

  13. Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)

    Science.gov (United States)

    Niewoehner, Kevin R.; Carter, John (Technical Monitor)

    2001-01-01

    The research accomplishments for the cooperative agreement 'Online Learning Flight Control for Intelligent Flight Control Systems (IFCS)' include the following: (1) previous IFC program data collection and analysis; (2) IFC program support site (configured IFC systems support network, configured Tornado/VxWorks OS development system, made Configuration and Documentation Management Systems Internet accessible); (3) Airborne Research Test Systems (ARTS) II Hardware (developed hardware requirements specification, developing environmental testing requirements, hardware design, and hardware design development); (4) ARTS II software development laboratory unit (procurement of lab style hardware, configured lab style hardware, and designed interface module equivalent to ARTS II faceplate); (5) program support documentation (developed software development plan, configuration management plan, and software verification and validation plan); (6) LWR algorithm analysis (performed timing and profiling on algorithm); (7) pre-trained neural network analysis; (8) Dynamic Cell Structures (DCS) Neural Network Analysis (performing timing and profiling on algorithm); and (9) conducted technical interchange and quarterly meetings to define IFC research goals.

  14. Feedforward Object-Vision Models Only Tolerate Small Image Variations Compared to Human

    Directory of Open Access Journals (Sweden)

    Masoud eGhodrati

    2014-07-01

    Full Text Available Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modelling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well when images with more complex variations of the same object are applied to them. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e. briefly presented masked stimuli with complex image variations, human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modelling. We show that this approach is not of significant help in solving the computational crux of object recognition (that is invariant object recognition when the identity-preserving image variations become more complex.

  15. Learning, Leading and Letting go of Control

    DEFF Research Database (Denmark)

    Jensen, Annie Aarup; Kjær-Rasmussen, Lone Krogh; Iversen, Ann-Merete

    Learning, leading and letting go of control – Learner Led Approaches in Education Annie Aarup Jensen, Lone Krogh Kjær-Rasmussen, Ann-Merete Iversen and Anni Stavnskær Pedersen Abstract The aim of the paper is to introduce a new term in teaching in Higher Education: Learner Led Approaches...... in Education: LED. The sources of inspiration are many as are the experiences we draw from. Problem-based project work (PBL) being one, various classical teacher centered methods, and last but not least a variety of methods aiming towards developing creativity, innovational skills and entrepreneurship. LED...... is inspired by collaboration between professors from Aalborg University, Cornwall College and University College of Northern Denmark. Moravec (2008) claims that educational systems still operate in 1.0 or perhaps 2.0 mode while the surrounding cultures and societies operate in 3.0 mode. The amount...

  16. Extreme learning machines 2013 algorithms and applications

    CERN Document Server

    Toh, Kar-Ann; Romay, Manuel; Mao, Kezhi

    2014-01-01

    In recent years, ELM has emerged as a revolutionary technique of computational intelligence, and has attracted considerable attentions. An extreme learning machine (ELM) is a single layer feed-forward neural network alike learning system, whose connections from the input layer to the hidden layer are randomly generated, while the connections from the hidden layer to the output layer are learned through linear learning methods. The outstanding merits of extreme learning machine (ELM) are its fast learning speed, trivial human intervene and high scalability.   This book contains some selected papers from the International Conference on Extreme Learning Machine 2013, which was held in Beijing China, October 15-17, 2013. This conference aims to bring together the researchers and practitioners of extreme learning machine from a variety of fields including artificial intelligence, biomedical engineering and bioinformatics, system modelling and control, and signal and image processing, to promote research and discu...

  17. Exploring Learner Autonomy: Language Learning Locus of Control in Multilinguals

    Science.gov (United States)

    Peek, Ron

    2016-01-01

    By using data from an online language learning beliefs survey (n?=?841), defining language learning experience in terms of participants' multilingualism, and using a domain-specific language learning locus of control (LLLOC) instrument, this article examines whether more experienced language learners can also be seen as more autonomous language…

  18. Ensemble learning in fixed expansion layer networks for mitigating catastrophic forgetting.

    Science.gov (United States)

    Coop, Robert; Mishtal, Aaron; Arel, Itamar

    2013-10-01

    Catastrophic forgetting is a well-studied attribute of most parameterized supervised learning systems. A variation of this phenomenon, in the context of feedforward neural networks, arises when nonstationary inputs lead to loss of previously learned mappings. The majority of the schemes proposed in the literature for mitigating catastrophic forgetting were not data driven and did not scale well. We introduce the fixed expansion layer (FEL) feedforward neural network, which embeds a sparsely encoding hidden layer to help mitigate forgetting of prior learned representations. In addition, we investigate a novel framework for training ensembles of FEL networks, based on exploiting an information-theoretic measure of diversity between FEL learners, to further control undesired plasticity. The proposed methodology is demonstrated on a basic classification task, clearly emphasizing its advantages over existing techniques. The architecture proposed can be enhanced to address a range of computational intelligence tasks, such as regression problems and system control.

  19. The control of tonic pain by active relief learning.

    Science.gov (United States)

    Zhang, Suyi; Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W; Seymour, Ben

    2018-02-27

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty ('associability') signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. © 2018, Zhang et al.

  20. The control of tonic pain by active relief learning

    Science.gov (United States)

    Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W

    2018-01-01

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty (‘associability’) signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. PMID:29482716

  1. Feedforward responses of transversus abdominis are directionally specific and act asymmetrically: implications for core stability theories.

    Science.gov (United States)

    Allison, Garry T; Morris, Sue L; Lay, Brendan

    2008-05-01

    Experimental laboratory study supplemented with a repeated case study. To examine bilateral muscle activity of the deep abdominals in response to rapid arm raising, specifically to examine the laterality and directional specificity of feedforward responses of the transversus abdominis (TrA). Based on the feedforward responses of trunk muscles during rapid arm movements, authors have concluded that the deep trunk muscles have different control mechanisms compared to the more superficial muscles. It has been proposed that deep trunk muscles such as TrA contribute substantially to the stability of the lumbar spine and that this is achieved through simultaneous bilateral feedforward activation. These inferences are based on unilateral fine-wire electromyographic (EMG) data and there are limited investigations of bilateral responses of the TrA during unilateral arm raising. Bilateral fine-wire and surface EMG data from the anterior deltoid, TrA, obliquus internus (OI), obliquus externus, biceps femoris, erector spinae, and rectus abdominis during repeated arm raises were recorded at 2 kHz. EMG signal linear envelopes were synchronized to the onset of the anterior deltoid. A feedforward window was defined as the period up to 50 ms after the onset of the anterior deltoid, and paired onsets for bilateral muscles were plotted for both left and right arm movements. Trunk muscles from the group data demonstrated differences between sides (laterality), which were systematically altered when alternate arms were raised (directional specificity). This was clearly evident for the TrA but less obvious for the erector spinae. The ipsilateral biceps femoris and obliquus externus, and contralateral OI and TrA, were activated earlier than the alternate side for both right and left arm movements. This was a consistent pattern over a 7-year period for the case study. Data for the rectus abdominis derived from the case study demonstrated little laterality or directionally specific

  2. Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation

    DEFF Research Database (Denmark)

    Csikász-Nagy, Attila; Kapuy, Orsolya; Tóth, Attila

    2009-01-01

    of these EPs. From genome-scale data sets of budding yeast, we identify 126 EPs that are regulated by Cdk1 both through direct phosphorylation of the EP and through phosphorylation of the transcription factors that control expression of the EP, so that each of these EPs is regulated by a feed-forward loop (FFL......) from Cdk1. By mathematical modelling, we show that such FFLs can activate EPs at different phases of the cell cycle depending of the effective signs (+ or -) of the regulatory steps of the FFL. We provide several case studies of EPs that are controlled by FFLs exactly as our models predict. The signal...

  3. Active controllers and the time duration to learn a task

    Science.gov (United States)

    Repperger, D. W.; Goodyear, C.

    1986-01-01

    An active controller was used to help train naive subjects involved in a compensatory tracking task. The controller is called active in this context because it moves the subject's hand in a direction to improve tracking. It is of interest here to question whether the active controller helps the subject to learn a task more rapidly than the passive controller. Six subjects, inexperienced to compensatory tracking, were run to asymptote root mean square error tracking levels with an active controller or a passive controller. The time required to learn the task was defined several different ways. The results of the different measures of learning were examined across pools of subjects and across controllers using statistical tests. The comparison between the active controller and the passive controller as to their ability to accelerate the learning process as well as reduce levels of asymptotic tracking error is reported here.

  4. Decoding small surface codes with feedforward neural networks

    Science.gov (United States)

    Varsamopoulos, Savvas; Criger, Ben; Bertels, Koen

    2018-01-01

    Surface codes reach high error thresholds when decoded with known algorithms, but the decoding time will likely exceed the available time budget, especially for near-term implementations. To decrease the decoding time, we reduce the decoding problem to a classification problem that a feedforward neural network can solve. We investigate quantum error correction and fault tolerance at small code distances using neural network-based decoders, demonstrating that the neural network can generalize to inputs that were not provided during training and that they can reach similar or better decoding performance compared to previous algorithms. We conclude by discussing the time required by a feedforward neural network decoder in hardware.

  5. Learning-based identification and iterative learning control of direct-drive robots

    NARCIS (Netherlands)

    Bukkems, B.H.M.; Kostic, D.; Jager, de A.G.; Steinbuch, M.

    2005-01-01

    A combination of model-based and Iterative Learning Control is proposed as a method to achieve high-quality motion control of direct-drive robots in repetitive motion tasks. We include both model-based and learning components in the total control law, as their individual properties influence the

  6. Predictive Variable Gain Iterative Learning Control for PMSM

    Directory of Open Access Journals (Sweden)

    Huimin Xu

    2015-01-01

    Full Text Available A predictive variable gain strategy in iterative learning control (ILC is introduced. Predictive variable gain iterative learning control is constructed to improve the performance of trajectory tracking. A scheme based on predictive variable gain iterative learning control for eliminating undesirable vibrations of PMSM system is proposed. The basic idea is that undesirable vibrations of PMSM system are eliminated from two aspects of iterative domain and time domain. The predictive method is utilized to determine the learning gain in the ILC algorithm. Compression mapping principle is used to prove the convergence of the algorithm. Simulation results demonstrate that the predictive variable gain is superior to constant gain and other variable gains.

  7. Continuous residual reinforcement learning for traffic signal control optimization

    NARCIS (Netherlands)

    Aslani, Mohammad; Seipel, Stefan; Wiering, Marco

    2018-01-01

    Traffic signal control can be naturally regarded as a reinforcement learning problem. Unfortunately, it is one of the most difficult classes of reinforcement learning problems owing to its large state space. A straightforward approach to address this challenge is to control traffic signals based on

  8. Adaptive learning fuzzy control of a mobile robot

    International Nuclear Information System (INIS)

    Tsukada, Akira; Suzuki, Katsuo; Fujii, Yoshio; Shinohara, Yoshikuni

    1989-11-01

    In this report a problem is studied to construct a fuzzy controller for a mobile robot to move autonomously along a given reference direction curve, for which control rules are generated and acquired through an adaptive learning process. An adaptive learning fuzzy controller has been developed for a mobile robot. Good properties of the controller are shown through the travelling experiments of the mobile robot. (author)

  9. Integrated Programme Control Systems: Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C. W. [Babcock International Group PLC (formerly UKAEA Ltd) B21 Forss, Thurso, Caithness, Scotland (United Kingdom)

    2013-08-15

    Dounreay was the UK's centre of fast reactor research and development from 1955 until 1994 and is now Scotland's largest nuclear clean up and demolition project. After four decades of research, Dounreay is now a site of construction, demolition and waste management, designed to return the site to as near as practicable to its original condition. Dounreay has a turnover in the region of Pounds 150 million a year and employs approximately 900 people. It subcontracts work to 50 or so companies in the supply chain and this provides employment for a similar number of people. The plan for decommissioning the site anticipates all redundant buildings will be cleared in the short term. The target date to achieve interim end state by 2039 is being reviewed in light of Government funding constraints, and will be subject to change through the NDA led site management competition. In the longer term, controls will be put in place on the use of contaminated land until 2300. In supporting the planning, management and organisational aspects for this complex decommissioning programme an integrated programme controls system has been developed and deployed. This consists of a combination of commercial and bespoke tools integrated to support all aspects of programme management, namely scope, schedule, cost, estimating and risk in order to provide baseline and performance management data based upon the application of earned value management principles. Through system evolution and lessons learned, the main benefits of this approach are management data consistency, rapid communication of live information, and increased granularity of data providing summary and detailed reports which identify performance trends that lead to corrective actions. The challenges of such approach are effective use of the information to realise positive changes, balancing the annual system support and development costs against the business needs, and maximising system performance. (author)

  10. Postural threat differentially affects the feedforward and feedback components of the vestibular-evoked balance response.

    Science.gov (United States)

    Osler, Callum J; Tersteeg, M C A; Reynolds, Raymond F; Loram, Ian D

    2013-10-01

    Circumstances may render the consequence of falling quite severe, thus maximising the motivation to control postural sway. This commonly occurs when exposed to height and may result from the interaction of many factors, including fear, arousal, sensory information and perception. Here, we examined human vestibular-evoked balance responses during exposure to a highly threatening postural context. Nine subjects stood with eyes closed on a narrow walkway elevated 3.85 m above ground level. This evoked an altered psycho-physiological state, demonstrated by a twofold increase in skin conductance. Balance responses were then evoked by galvanic vestibular stimulation. The sway response, which comprised a whole-body lean in the direction of the edge of the walkway, was significantly and substantially attenuated after ~800 ms. This demonstrates that a strong reason to modify the balance control strategy was created and subjects were highly motivated to minimise sway. Despite this, the initial response remained unchanged. This suggests little effect on the feedforward settings of the nervous system responsible for coupling pure vestibular input to functional motor output. The much stronger, later effect can be attributed to an integration of balance-relevant sensory feedback once the body was in motion. These results demonstrate that the feedforward and feedback components of a vestibular-evoked balance response are differently affected by postural threat. Although a fear of falling has previously been linked with instability and even falling itself, our findings suggest that this relationship is not attributable to changes in the feedforward vestibular control of balance. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Classes of feedforward neural networks and their circuit complexity

    NARCIS (Netherlands)

    Shawe-Taylor, John S.; Anthony, Martin H.G.; Kern, Walter

    1992-01-01

    This paper aims to place neural networks in the context of boolean circuit complexity. We define appropriate classes of feedforward neural networks with specified fan-in, accuracy of computation and depth and using techniques of communication complexity proceed to show that the classes fit into a

  12. Automated optimal coordination of multiple-DOF neuromuscular actions in feedforward neuroprostheses.

    Science.gov (United States)

    Lujan, J Luis; Crago, Patrick E

    2009-01-01

    This paper describes a new method for designing feedforward controllers for multiple-muscle, multiple-DOF, motor system neural prostheses. The design process is based on experimental measurement of the forward input/output properties of the neuromechanical system and numerical optimization of stimulation patterns to meet muscle coactivation criteria, thus resolving the muscle redundancy (i.e., overcontrol) and the coupled DOF problems inherent in neuromechanical systems. We designed feedforward controllers to control the isometric forces at the tip of the thumb in two directions during stimulation of three thumb muscles as a model system. We tested the method experimentally in ten able-bodied individuals and one patient with spinal cord injury. Good control of isometric force in both DOFs was observed, with rms errors less than 10% of the force range in seven experiments and statistically significant correlations between the actual and target forces in all ten experiments. Systematic bias and slope errors were observed in a few experiments, likely due to the neuromuscular fatigue. Overall, the tests demonstrated the ability of a general design approach to satisfy both control and coactivation criteria in multiple-muscle, multiple-axis neuromechanical systems, which is applicable to a wide range of neuromechanical systems and stimulation electrodes.

  13. Episodic reinforcement learning control approach for biped walking

    Directory of Open Access Journals (Sweden)

    Katić Duško

    2012-01-01

    Full Text Available This paper presents a hybrid dynamic control approach to the realization of humanoid biped robotic walk, focusing on the policy gradient episodic reinforcement learning with fuzzy evaluative feedback. The proposed structure of controller involves two feedback loops: a conventional computed torque controller and an episodic reinforcement learning controller. The reinforcement learning part includes fuzzy information about Zero-Moment- Point errors. Simulation tests using a medium-size 36-DOF humanoid robot MEXONE were performed to demonstrate the effectiveness of our method.

  14. Stability identification for grid-connected inverters with LCL filters considering grid-voltage feedforward regulator

    DEFF Research Database (Denmark)

    Lu, Minghui; Blaabjerg, Frede

    2017-01-01

    This paper identifies stable resonance frequency range for grid-connected inverter with Grid-Voltage Feedforward Regulator (GVFR). Beginning with the current loop stability analysis without GVFR, system poles distribution is analytically studied in z-domain, the critical frequency is therefore...... calculated as well as the control gain limit. Then, this paper reveals the GVFR would change the system stability in the weak power system, two frequency boundaries and three typical resonance frequency ranges are identified and compared. System poles distribution shows that GVFR can offer damping effects...

  15. Boundedness and convergence of online gradient method with penalty for feedforward neural networks.

    Science.gov (United States)

    Zhang, Huisheng; Wu, Wei; Liu, Fei; Yao, Mingchen

    2009-06-01

    In this brief, we consider an online gradient method with penalty for training feedforward neural networks. Specifically, the penalty is a term proportional to the norm of the weights. Its roles in the method are to control the magnitude of the weights and to improve the generalization performance of the network. By proving that the weights are automatically bounded in the network training with penalty, we simplify the conditions that are required for convergence of online gradient method in literature. A numerical example is given to support the theoretical analysis.

  16. A fuzzy controller with a robust learning function

    International Nuclear Information System (INIS)

    Tanji, Jun-ichi; Kinoshita, Mitsuo

    1987-01-01

    A self-organizing fuzzy controller is able to use linguistic decision rules of control strategy and has a strong adaptive property by virture of its rule learning function. While a simple linguistic description of the learning algorithm first introduced by Procyk, et al. has much flexibility for applications to a wide range of different processes, its detailed formulation, in particular with control stability and learning process convergence, is not clear. In this paper, we describe the formulation of an analytical basis for a self-organizing fuzzy controller by using a method of model reference adaptive control systems (MRACS) for which stability in the adaptive loop is theoretically proven. A detailed formulation is described regarding performance evaluation and rule modification in the rule learning process of the controller. Furthermore, an improved learning algorithm using adaptive rule is proposed. An adaptive rule gives a modification coefficient for a rule change estimating the effect of disturbance occurrence in performance evaluation. The effect of introducing an adaptive rule to improve the learning convergency is described by using a simple iterative formulation. Simulation tests are presented for an application of the proposed self-organizing fuzzy controller to the pressure control system in a Boiling Water Reactor (BWR) plant. Results with the tests confirm the improved learning algorithm has strong convergent properties, even in a very disturbed environment. (author)

  17. Adaptive Trajectory Tracking Control using Reinforcement Learning for Quadrotor

    Directory of Open Access Journals (Sweden)

    Wenjie Lou

    2016-02-01

    Full Text Available Inaccurate system parameters and unpredicted external disturbances affect the performance of non-linear controllers. In this paper, a new adaptive control algorithm under the reinforcement framework is proposed to stabilize a quadrotor helicopter. Based on a command-filtered non-linear control algorithm, adaptive elements are added and learned by policy-search methods. To predict the inaccurate system parameters, a new kernel-based regression learning method is provided. In addition, Policy learning by Weighting Exploration with the Returns (PoWER and Return Weighted Regression (RWR are utilized to learn the appropriate parameters for adaptive elements in order to cancel the effect of external disturbance. Furthermore, numerical simulations under several conditions are performed, and the ability of adaptive trajectory-tracking control with reinforcement learning are demonstrated.

  18. Investigation of Drive-Reinforcement Learning and Application of Learning to Flight Control

    Science.gov (United States)

    1993-08-01

    WL-TR-93-1153 INVESTIGATION OF DRIVE-REINFORCEMEN% LEARNING AND APPLICATION OF LEARNING TO FLIGHT CONTROL AD-A277 442 WALTER L. BAKER (ED), STEPHEN ...OF LEARNING TO FUIGHT CONTROL PE 62204 ___ ___ ___ ___ __ ___ ___ ___ ___ ___ ___ __ PR 2003 6. AUTHOR(S) TA 05 WALTER L. BAKER (ED), STEPHEN C. ATKINS...34 Computers and Thought, E. A. Freigenbaum and J. Feldman (eds.), Mc- Graw Hill, New York, (1959). [19] Holland, J. H., "Escaping Brittleness: The Possibility

  19. Feedforward correction of mirror misalignment fluctuations for the GEO 600 gravitational wave detector

    International Nuclear Information System (INIS)

    Smith, J R; Grote, H; Hewitson, M; Hild, S; Lueck, H; Parsons, M; Strain, K A; Willke, B

    2005-01-01

    The core instrument of the GEO 600 gravitational wave detector is a Michelson interferometer with folded arms. The five main optics that form this interferometer are suspended in vacuum by triple pendulums with quasi-monolithic lower stages of fused silica. After installation of these pendulums in early 2003, a larger than expected coupling of longitudinal ground motion to tilt misalignment of the suspended optics was observed. Because of this, the uncontrolled misalignment of the optics during average conditions was several μrad Hz -1/2 in the frequency band around the pendulum resonance frequencies (0.5-4 Hz). In addition, it was found that longitudinal control signals applied to the intermediate pendulum stages also resulted in excessive mirror tilt. The resulting misalignment exceeded the level tolerable for stable operation of GEO 600. In order to reduce the level of mirror tilt, a bipartite feedforward system was implemented. One part feeds signals derived from seismic measurements to piezo-electric crystals in the stacks supporting the suspensions, reducing the longitudinal motion of the uppermost suspension points. The other applies tilt correction signals, derived from longitudinal control signals, to the intermediate level of the suspensions. The seismic feedforward correction reduces the root-mean-squared tilt misalignment of each main optic between 0.1 and 5 Hz by about 10 dB, typically. The intermediate-mass feedforward correction reduces the differential tilt misalignment of the Michelson interferometer by about 10 dB between 0.1 and 0.8 Hz, typically

  20. Feedforward: helping students interpret written feedback

    OpenAIRE

    Hurford, Donna; Read, Andrew

    2008-01-01

    "Assessment for Learning is the process of seeking and interpreting evidence for use by learners... "(Assessment Reform Group, 2002, p.2): for the Higher Education tutor, written feedback forms an integral part of this. This short article reports on teaching methods to engage students in feedback and assessment of their written work.

  1. Integrated hybrid vibration isolator with feedforward compensation for fast high-precision positioning X/Y tables

    International Nuclear Information System (INIS)

    Yan, T H; Li, Q; Xu, C; Pu, H Y; Chen, X D

    2010-01-01

    The design, realization and control technologies of a high-performance hybrid microvibration isolator for ultra-high-precision high-speed moving X/Y tables are presented in this paper—the novel isolator with integrated passive–active high level of damping. The passive damping was implemented using air-springs in both vertical and horizontal directions, with parallel linear motors in two directions to realize the active damping and the positioning functions. It is an actual hybrid isolation system because its air-spring can also be controlled through the pneumatic loop. The isolation servo system also has fast positioning capability via the feedforward compensation for the moving tables. Compared with the conventional filtered reference type control algorithms that rely on the assumption for the adaptive filter and the controlled system, in which the disturbance is estimated from the residual signal, the feedforward compensation here shows high effectiveness of vibration isolation and high-precision positioning performance for its platform. The performance of feedforward compensation has been enhanced via an efficient state estimation adaptive algorithm, the fast Kalman filter. Finally, experimental demonstration has been shown for the prototype system and the results have verified the effectiveness of the proposed isolator system design and the adaptive control algorithm for substantially enhanced damping of the platform system with the moving X/Y tables

  2. Efficient model learning methods for actor-critic control.

    Science.gov (United States)

    Grondman, Ivo; Vaandrager, Maarten; Buşoniu, Lucian; Babuska, Robert; Schuitema, Erik

    2012-06-01

    We propose two new actor-critic algorithms for reinforcement learning. Both algorithms use local linear regression (LLR) to learn approximations of the functions involved. A crucial feature of the algorithms is that they also learn a process model, and this, in combination with LLR, provides an efficient policy update for faster learning. The first algorithm uses a novel model-based update rule for the actor parameters. The second algorithm does not use an explicit actor but learns a reference model which represents a desired behavior, from which desired control actions can be calculated using the inverse of the learned process model. The two novel methods and a standard actor-critic algorithm are applied to the pendulum swing-up problem, in which the novel methods achieve faster learning than the standard algorithm.

  3. Learning, Leading, and Letting Go of Control

    DEFF Research Database (Denmark)

    Iversen, Ann-Merete; Pedersen, Anni Stavnskær; Kjær-Rasmussen, Lone Krogh

    2015-01-01

    The article introduces a new term in higher education: learner-led approaches in education (LED). This does not represent a single approach or dogma to replace existing dogmas, but a way of approaching learning and education that mirrors the complexity of society as it develops. LED is based...... on the assumption that all students have their own unique approach to learning and therefore have the potential to design learning processes that are meaningful for them. This removes focus from the teacher and the teaching to the learner and the learning. It builds on the student’s motivation and experienced...... meaningfulness as a driving force, and hence the term learner led. The methods applied in LED change over time, as different learners and teachers together co-create and design methods and approaches appropriate at that particular time, in that particular context and for that particular student or group...

  4. Measuring strategic control in implicit learning: how and why?

    OpenAIRE

    Norman, Elisabeth

    2015-01-01

    Several methods have been developed for measuring the extent to which implicitly learned knowledge can be applied in a strategic, flexible manner. Examples include generation exclusion tasks in Serial Reaction Time (SRT) learning (Goschke, 1998; Destrebecqz and Cleeremans, 2001) and 2-grammar classification tasks in Artificial Grammar Learning (AGL; Dienes et al., 1995; Norman et al., 2011). Strategic control has traditionally been used as a criterion for determining whether acquired knowledg...

  5. Discrete Learning Control with Application to Hydraulic Actuators

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Hansen, Michael R.

    2015-01-01

    In this paper the robustness of a class of learning control algorithms to state disturbances, output noise, and errors in initial conditions is studied. We present a simple learning algorithm and exhibit, via a concise proof, bounds on the asymptotic trajectory errors for the learned input...... and the corresponding state and output trajectories. Furthermore, these bounds are continuous functions of the bounds on the initial condition errors, state disturbance, and output noise, and the bounds are zero in the absence of these disturbances....

  6. Optimal and Autonomous Control Using Reinforcement Learning: A Survey.

    Science.gov (United States)

    Kiumarsi, Bahare; Vamvoudakis, Kyriakos G; Modares, Hamidreza; Lewis, Frank L

    2018-06-01

    This paper reviews the current state of the art on reinforcement learning (RL)-based feedback control solutions to optimal regulation and tracking of single and multiagent systems. Existing RL solutions to both optimal and control problems, as well as graphical games, will be reviewed. RL methods learn the solution to optimal control and game problems online and using measured data along the system trajectories. We discuss Q-learning and the integral RL algorithm as core algorithms for discrete-time (DT) and continuous-time (CT) systems, respectively. Moreover, we discuss a new direction of off-policy RL for both CT and DT systems. Finally, we review several applications.

  7. Towards autonomous neuroprosthetic control using Hebbian reinforcement learning.

    Science.gov (United States)

    Mahmoudi, Babak; Pohlmeyer, Eric A; Prins, Noeline W; Geng, Shijia; Sanchez, Justin C

    2013-12-01

    Our goal was to design an adaptive neuroprosthetic controller that could learn the mapping from neural states to prosthetic actions and automatically adjust adaptation using only a binary evaluative feedback as a measure of desirability/undesirability of performance. Hebbian reinforcement learning (HRL) in a connectionist network was used for the design of the adaptive controller. The method combines the efficiency of supervised learning with the generality of reinforcement learning. The convergence properties of this approach were studied using both closed-loop control simulations and open-loop simulations that used primate neural data from robot-assisted reaching tasks. The HRL controller was able to perform classification and regression tasks using its episodic and sequential learning modes, respectively. In our experiments, the HRL controller quickly achieved convergence to an effective control policy, followed by robust performance. The controller also automatically stopped adapting the parameters after converging to a satisfactory control policy. Additionally, when the input neural vector was reorganized, the controller resumed adaptation to maintain performance. By estimating an evaluative feedback directly from the user, the HRL control algorithm may provide an efficient method for autonomous adaptation of neuroprosthetic systems. This method may enable the user to teach the controller the desired behavior using only a simple feedback signal.

  8. Simultaneous feedforward recruitment of the vasti in untrained postural tasks can be restored by physical therapy.

    Science.gov (United States)

    Cowan, Sallie M; Bennell, Kim L; Hodges, Paul W; Crossley, Kay M; McConnell, Jenny

    2003-05-01

    Physical therapy rehabilitation strategies are commonly directed at the alteration of muscle recruitment in functional movements. The aim of this study was to investigate whether feedforward strategies of the vasti in people with patellofemoral pain syndrome can be changed by a physical therapy treatment program in a randomised, double blind, placebo controlled trial. Forty (25 female, 15 male) subjects aged 40 yrs or less (27.2+/-7.8 yrs). Subjects were allocated to either a placebo treatment or a physical therapy intervention program. The postural challenge used as the outcome measure was not included in the training program. Electromyography (EMG) onsets of vastus medialis obliquus (VMO), vastus lateralis (VL), tibialis anterior and soleus were assessed before and after the six week standardised treatment programs. At baseline the EMG onset of VL occurred prior to that of VMO in both subject groups. Following physical therapy intervention there was a significant change in the time of onset of EMG of VMO compared to VL with the onsets occurring simultaneously. This change was associated with a reduction in symptoms. In contrast, following placebo intervention the EMG onset of VL still occurred prior to that of VMO. The results indicate that the feedforward strategy used by the central nervous system to control the patella can be restored. Importantly, the data suggest that this intervention produced a change that was transferred to a task that was not specifically included in the training program. Furthermore, the change in motor control was associated with clinical improvement in symptoms.

  9. Locus of control and learning strategies as predictors of academic ...

    African Journals Online (AJOL)

    The aim of the research was to determine the relationships which exist between academic success, learning strategies and locus of control. In order to achieve this aim a small-scale quantitative study, utilising two inventories, was done. The first measuring instrument is the Learning and Study Strategies Inventory, which is ...

  10. Short-Term Memory, Executive Control, and Children's Route Learning

    Science.gov (United States)

    Purser, Harry R. M.; Farran, Emily K.; Courbois, Yannick; Lemahieu, Axelle; Mellier, Daniel; Sockeel, Pascal; Blades, Mark

    2012-01-01

    The aim of this study was to investigate route-learning ability in 67 children aged 5 to 11 years and to relate route-learning performance to the components of Baddeley's model of working memory. Children carried out tasks that included measures of verbal and visuospatial short-term memory and executive control and also measures of verbal and…

  11. Learned Helplessness: A Theory for the Age of Personal Control.

    Science.gov (United States)

    Peterson, Christopher; And Others

    Experiences with uncontrollable events may lead to the expectation that future events will elude control, resulting in disruptions in motivation, emotion, and learning. This text explores this phenomenon, termed learned helplessness, tracking it from its discovery to its entrenchment in the psychological canon. The volume summarizes and integrates…

  12. Indicators for successful learning in air traffic control training

    NARCIS (Netherlands)

    Van Meeuwen, Ludo; Brand-Gruwel, Saskia; Van Merriënboer, Jeroen; De Bock, Jeano; Kirschner, Paul A.

    2011-01-01

    Van Meeuwen, L. W., Brand-Gruwel, S., Van Merriënboer, J. J. G., De Bock, J. J. P. R., & Kirschner, P. A. (2010, August). Indicators for successful learning in air traffic control training. Paper presented at the 5th EARLI SIG 14 Learning and Professional Development Conference. Munich, Germany.

  13. Systems control with generalized probabilistic fuzzy-reinforcement learning

    NARCIS (Netherlands)

    Hinojosa, J.; Nefti, S.; Kaymak, U.

    2011-01-01

    Reinforcement learning (RL) is a valuable learning method when the systems require a selection of control actions whose consequences emerge over long periods for which input-output data are not available. In most combinations of fuzzy systems and RL, the environment is considered to be

  14. Fuzzy self-learning control for magnetic servo system

    Science.gov (United States)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  15. The role of multisensor data fusion in neuromuscular control of a sagittal arm with a pair of muscles using actor-critic reinforcement learning method.

    Science.gov (United States)

    Golkhou, V; Parnianpour, M; Lucas, C

    2004-01-01

    In this study, we consider the role of multisensor data fusion in neuromuscular control using an actor-critic reinforcement learning method. The model we use is a single link system actuated by a pair of muscles that are excited with alpha and gamma signals. Various physiological sensor information such as proprioception, spindle sensors, and Golgi tendon organs have been integrated to achieve an oscillatory movement with variable amplitude and frequency, while achieving a stable movement with minimum metabolic cost and coactivation. The system is highly nonlinear in all its physical and physiological attributes. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops. This paper proposes a reinforcement learning method with an Actor-Critic architecture instead of middle and low level of central nervous system (CNS). The Actor in this structure is a two layer feedforward neural network and the Critic is a model of the cerebellum. The Critic is trained by the State-Action-Reward-State-Action (SARSA) method. The Critic will train the Actor by supervisory learning based on previous experiences. The reinforcement signal in SARSA is evaluated based on available alternatives concerning the concept of multisensor data fusion. The effectiveness and the biological plausibility of the present model are demonstrated by several simulations. The system showed excellent tracking capability when we integrated the available sensor information. Addition of a penalty for activation of muscles resulted in much lower muscle coactivation while keeping the movement stable.

  16. Traffic light control by multiagent reinforcement learning systems

    NARCIS (Netherlands)

    Bakker, B.; Whiteson, S.; Kester, L.; Groen, F.C.A.; Babuška, R.; Groen, F.C.A.

    2010-01-01

    Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of

  17. Traffic Light Control by Multiagent Reinforcement Learning Systems

    NARCIS (Netherlands)

    Bakker, B.; Whiteson, S.; Kester, L.J.H.M.; Groen, F.C.A.

    2010-01-01

    Traffic light control is one of the main means of controlling road traffic. Improving traffic control is important because it can lead to higher traffic throughput and reduced traffic congestion. This chapter describes multiagent reinforcement learning techniques for automatic optimization of

  18. Project-Based Learning in Programmable Logic Controller

    Science.gov (United States)

    Seke, F. R.; Sumilat, J. M.; Kembuan, D. R. E.; Kewas, J. C.; Muchtar, H.; Ibrahim, N.

    2018-02-01

    Project-based learning is a learning method that uses project activities as the core of learning and requires student creativity in completing the project. The aims of this study is to investigate the influence of project-based learning methods on students with a high level of creativity in learning the Programmable Logic Controller (PLC). This study used experimental methods with experimental class and control class consisting of 24 students, with 12 students of high creativity and 12 students of low creativity. The application of project-based learning methods into the PLC courses combined with the level of student creativity enables the students to be directly involved in the work of the PLC project which gives them experience in utilizing PLCs for the benefit of the industry. Therefore, it’s concluded that project-based learning method is one of the superior learning methods to apply on highly creative students to PLC courses. This method can be used as an effort to improve student learning outcomes and student creativity as well as to educate prospective teachers to become reliable educators in theory and practice which will be tasked to create qualified human resources candidates in order to meet future industry needs.

  19. Changing pulse-shape basis for molecular learning control

    International Nuclear Information System (INIS)

    Cardoza, David; Langhojer, Florian; Trallero-Herrero, Carlos; Weinacht, Thomas; Monti, Oliver L.A.

    2004-01-01

    We interpret the results of a molecular fragmentation learning control experiment. We show that in the case of a system where control can be related to the structure of the optimal pulse matching the vibrational dynamics of the molecule, a simple change of pulse-shape basis in which the learning algorithm performs the search can reduce the dimensionality of the search space to one or two degrees of freedom

  20. Regulation of Cortical Dynamic Range by Background Synaptic Noise and Feedforward Inhibition.

    Science.gov (United States)

    Khubieh, Ayah; Ratté, Stéphanie; Lankarany, Milad; Prescott, Steven A

    2016-08-01

    The cortex encodes a broad range of inputs. This breadth of operation requires sensitivity to weak inputs yet non-saturating responses to strong inputs. If individual pyramidal neurons were to have a narrow dynamic range, as previously claimed, then staggered all-or-none recruitment of those neurons would be necessary for the population to achieve a broad dynamic range. Contrary to this explanation, we show here through dynamic clamp experiments in vitro and computer simulations that pyramidal neurons have a broad dynamic range under the noisy conditions that exist in the intact brain due to background synaptic input. Feedforward inhibition capitalizes on those noise effects to control neuronal gain and thereby regulates the population dynamic range. Importantly, noise allows neurons to be recruited gradually and occludes the staggered recruitment previously attributed to heterogeneous excitation. Feedforward inhibition protects spike timing against the disruptive effects of noise, meaning noise can enable the gain control required for rate coding without compromising the precise spike timing required for temporal coding. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Learning, attentional control, and action video games.

    Science.gov (United States)

    Green, C S; Bavelier, D

    2012-03-20

    While humans have an incredible capacity to acquire new skills and alter their behavior as a result of experience, enhancements in performance are typically narrowly restricted to the parameters of the training environment, with little evidence of generalization to different, even seemingly highly related, tasks. Such specificity is a major obstacle for the development of many real-world training or rehabilitation paradigms, which necessarily seek to promote more general learning. In contrast to these typical findings, research over the past decade has shown that training on 'action video games' produces learning that transfers well beyond the training task. This has led to substantial interest among those interested in rehabilitation, for instance, after stroke or to treat amblyopia, or training for various precision-demanding jobs, for instance, endoscopic surgery or piloting unmanned aerial drones. Although the predominant focus of the field has been on outlining the breadth of possible action-game-related enhancements, recent work has concentrated on uncovering the mechanisms that underlie these changes, an important first step towards the goal of designing and using video games for more definite purposes. Game playing may not convey an immediate advantage on new tasks (increased performance from the very first trial), but rather the true effect of action video game playing may be to enhance the ability to learn new tasks. Such a mechanism may serve as a signature of training regimens that are likely to produce transfer of learning. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Learning, attentional control and action video games

    Science.gov (United States)

    Green, C.S.; Bavelier, D.

    2012-01-01

    While humans have an incredible capacity to acquire new skills and alter their behavior as a result of experience, enhancements in performance are typically narrowly restricted to the parameters of the training environment, with little evidence of generalization to different, even seemingly highly related, tasks. Such specificity is a major obstacle for the development of many real-world training or rehabilitation paradigms, which necessarily seek to promote more general learning. In contrast to these typical findings, research over the past decade has shown that training on ‘action video games’ produces learning that transfers well beyond the training task. This has led to substantial interest among those interested in rehabilitation, for instance, after stroke or to treat amblyopia, or training for various precision-demanding jobs, for instance, endoscopic surgery or piloting unmanned aerial drones. Although the predominant focus of the field has been on outlining the breadth of possible action-game-related enhancements, recent work has concentrated on uncovering the mechanisms that underlie these changes, an important first step towards the goal of designing and using video games for more definite purposes. Game playing may not convey an immediate advantage on new tasks (increased performance from the very first trial), but rather the true effect of action video game playing may be to enhance the ability to learn new tasks. Such a mechanism may serve as a signature of training regimens that are likely to produce transfer of learning. PMID:22440805

  3. Efficient Feedforward Linearization Technique Using Genetic Algorithms for OFDM Systems

    Directory of Open Access Journals (Sweden)

    García Paloma

    2010-01-01

    Full Text Available Feedforward is a linearization method that simultaneously offers wide bandwidth and good intermodulation distortion suppression; so it is a good choice for Orthogonal Frequency Division Multiplexing (OFDM systems. Feedforward structure consists of two loops, being necessary an accurate adjustment between them along the time, and when temperature, environmental, or operating changes are produced. Amplitude and phase imbalances of the circuit elements in both loops produce mismatched effects that lead to degrade its performance. A method is proposed to compensate these mismatches, introducing two complex coefficients calculated by means of a genetic algorithm. A full study is carried out to choose the optimal parameters of the genetic algorithm applied to wideband systems based on OFDM technologies, which are very sensitive to nonlinear distortions. The method functionality has been verified by means of simulation.

  4. Robust Control Methods for On-Line Statistical Learning

    Directory of Open Access Journals (Sweden)

    Capobianco Enrico

    2001-01-01

    Full Text Available The issue of controlling that data processing in an experiment results not affected by the presence of outliers is relevant for statistical control and learning studies. Learning schemes should thus be tested for their capacity of handling outliers in the observed training set so to achieve reliable estimates with respect to the crucial bias and variance aspects. We describe possible ways of endowing neural networks with statistically robust properties by defining feasible error criteria. It is convenient to cast neural nets in state space representations and apply both Kalman filter and stochastic approximation procedures in order to suggest statistically robustified solutions for on-line learning.

  5. Generalized projective synchronization of chaotic systems via adaptive learning control

    International Nuclear Information System (INIS)

    Yun-Ping, Sun; Jun-Min, Li; Hui-Lin, Wang; Jiang-An, Wang

    2010-01-01

    In this paper, a learning control approach is applied to the generalized projective synchronisation (GPS) of different chaotic systems with unknown periodically time-varying parameters. Using the Lyapunov–Krasovskii functional stability theory, a differential-difference mixed parametric learning law and an adaptive learning control law are constructed to make the states of two different chaotic systems asymptotically synchronised. The scheme is successfully applied to the generalized projective synchronisation between the Lorenz system and Chen system. Moreover, numerical simulations results are used to verify the effectiveness of the proposed scheme. (general)

  6. Natural Language Processing with Small Feed-Forward Networks

    OpenAIRE

    Botha, Jan A.; Pitler, Emily; Ma, Ji; Bakalov, Anton; Salcianu, Alex; Weiss, David; McDonald, Ryan; Petrov, Slav

    2017-01-01

    We show that small and shallow feed-forward neural networks can achieve near state-of-the-art results on a range of unstructured and structured language processing tasks while being considerably cheaper in memory and computational requirements than deep recurrent models. Motivated by resource-constrained environments like mobile phones, we showcase simple techniques for obtaining such small neural network models, and investigate different tradeoffs when deciding how to allocate a small memory...

  7. Motor skill learning, retention, and control deficits in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Lisa Katharina Pendt

    Full Text Available Parkinson's disease, which affects the basal ganglia, is known to lead to various impairments of motor control. Since the basal ganglia have also been shown to be involved in learning processes, motor learning has frequently been investigated in this group of patients. However, results are still inconsistent, mainly due to skill levels and time scales of testing. To bridge across the time scale problem, the present study examined de novo skill learning over a long series of practice sessions that comprised early and late learning stages as well as retention. 19 non-demented, medicated, mild to moderate patients with Parkinson's disease and 19 healthy age and gender matched participants practiced a novel throwing task over five days in a virtual environment where timing of release was a critical element. Six patients and seven control participants came to an additional long-term retention testing after seven to nine months. Changes in task performance were analyzed by a method that differentiates between three components of motor learning prominent in different stages of learning: Tolerance, Noise and Covariation. In addition, kinematic analysis related the influence of skill levels as affected by the specific motor control deficits in Parkinson patients to the process of learning. As a result, patients showed similar learning in early and late stages compared to the control subjects. Differences occurred in short-term retention tests; patients' performance constantly decreased after breaks arising from poorer release timing. However, patients were able to overcome the initial timing problems within the course of each practice session and could further improve their throwing performance. Thus, results demonstrate the intact ability to learn a novel motor skill in non-demented, medicated patients with Parkinson's disease and indicate confounding effects of motor control deficits on retention performance.

  8. Finite-time stabilization of uncertain nonholonomic systems in feedforward-like form by output feedback.

    Science.gov (United States)

    Gao, Fangzheng; Wu, Yuqiang; Zhang, Zhongcai

    2015-11-01

    This paper investigates the problem of finite-time stabilization by output feedback for a class of nonholonomic systems in chained form with uncertainties. Comparing with the existing relevant literature, a distinguishing feature of the systems under investigation is that the x-subsystem is a feedforward-like rather than feedback-like system. This renders the existing control methods inapplicable to the control problems of the systems. A constructive design procedure for output feedback control is given. The designed controller renders that the states of closed-loop system are regulated to zero in a finite time. Two simulation examples are provided to illustrate the effectiveness of the proposed approach. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Finite-time stabilization for a class of nonholonomic feedforward systems subject to inputs saturation.

    Science.gov (United States)

    Gao, Fangzheng; Yuan, Ye; Wu, Yuqiang

    2016-09-01

    This paper studies the problem of finite-time stabilization by state feedback for a class of uncertain nonholonomic systems in feedforward-like form subject to inputs saturation. Under the weaker homogeneous condition on systems growth, a saturated finite-time control scheme is developed by exploiting the adding a power integrator method, the homogeneous domination approach and the nested saturation technique. Together with a novel switching control strategy, the designed saturated controller guarantees that the states of closed-loop system are regulated to zero in a finite time without violation of the constraint. As an application of the proposed theoretical results, the problem of saturated finite-time control for vertical wheel on rotating table is solved. Simulation results are given to demonstrate the effectiveness of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. E-learning: controlling costs and increasing value.

    Science.gov (United States)

    Walsh, Kieran

    2015-04-01

    E-learning now accounts for a substantial proportion of medical education provision. This progress has required significant investment and this investment has in turn come under increasing scrutiny so that the costs of e-learning may be controlled and its returns maximised. There are multiple methods by which the costs of e-learning can be controlled and its returns maximised. This short paper reviews some of those methods that are likely to be most effective and that are likely to save costs without compromising quality. Methods might include accessing free or low-cost resources from elsewhere; create short learning resources that will work on multiple devices; using open source platforms to host content; using in-house faculty to create content; sharing resources between institutions; and promoting resources to ensure high usage. Whatever methods are used to control costs or increase value, it is most important to evaluate the impact of these methods.

  11. Recurrent fuzzy neural network by using feedback error learning approaches for LFC in interconnected power system

    International Nuclear Information System (INIS)

    Sabahi, Kamel; Teshnehlab, Mohammad; Shoorhedeli, Mahdi Aliyari

    2009-01-01

    In this study, a new adaptive controller based on modified feedback error learning (FEL) approaches is proposed for load frequency control (LFC) problem. The FEL strategy consists of intelligent and conventional controllers in feedforward and feedback paths, respectively. In this strategy, a conventional feedback controller (CFC), i.e. proportional, integral and derivative (PID) controller, is essential to guarantee global asymptotic stability of the overall system; and an intelligent feedforward controller (INFC) is adopted to learn the inverse of the controlled system. Therefore, when the INFC learns the inverse of controlled system, the tracking of reference signal is done properly. Generally, the CFC is designed at nominal operating conditions of the system and, therefore, fails to provide the best control performance as well as global stability over a wide range of changes in the operating conditions of the system. So, in this study a supervised controller (SC), a lookup table based controller, is addressed for tuning of the CFC. During abrupt changes of the power system parameters, the SC adjusts the PID parameters according to these operating conditions. Moreover, for improving the performance of overall system, a recurrent fuzzy neural network (RFNN) is adopted in INFC instead of the conventional neural network, which was used in past studies. The proposed FEL controller has been compared with the conventional feedback error learning controller (CFEL) and the PID controller through some performance indices

  12. Reconfigurable control of a power plant deaerator using learning automata

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1991-01-01

    A deaerating feedwater heater, equipped with a water level controller and a pressure controller, has been chosen to investigate the feasibility of a reconfigurable control scheme for power plants by incorporating the concept of learning automata. In this paper simulation results based on a model of the Experimental Breeder Reactor (EBR-II) at the Argonne National Laboratory site in Idaho are presented to demonstrate the efficacy of the reconfigurable control scheme

  13. A Parametric Learning and Identification Based Robust Iterative Learning Control for Time Varying Delay Systems

    Directory of Open Access Journals (Sweden)

    Lun Zhai

    2014-01-01

    Full Text Available A parametric learning based robust iterative learning control (ILC scheme is applied to the time varying delay multiple-input and multiple-output (MIMO linear systems. The convergence conditions are derived by using the H∞ and linear matrix inequality (LMI approaches, and the convergence speed is analyzed as well. A practical identification strategy is applied to optimize the learning laws and to improve the robustness and performance of the control system. Numerical simulations are illustrated to validate the above concepts.

  14. Statistical learning problem of artificial neural network to control roofing process

    Directory of Open Access Journals (Sweden)

    Lapidus Azariy

    2017-01-01

    Full Text Available Now software developed on the basis of artificial neural networks (ANN has been actively implemented in construction companies to support decision-making in organization and management of construction processes. ANN learning is the main stage of its development. A key question for supervised learning is how many number of training examples we need to approximate the true relationship between network inputs and output with the desired accuracy. Also designing of ANN architecture is related to learning problem known as “curse of dimensionality”. This problem is important for the study of construction process management because of the difficulty to get training data from construction sites. In previous studies the authors have designed a 4-layer feedforward ANN with a unit model of 12-5-4-1 to approximate estimation and prediction of roofing process. This paper presented the statistical learning side of created ANN with simple-error-minimization algorithm. The sample size to efficient training and the confidence interval of network outputs defined. In conclusion the authors predicted successful ANN learning in a large construction business company within a short space of time.

  15. Design of fuzzy learning control systems for steam generator water level control

    International Nuclear Information System (INIS)

    Park, Gee Yong

    1996-02-01

    A fuzzy learning algorithm is developed in order to construct the useful control rules and tune the membership functions in the fuzzy logic controller used for water level control of nuclear steam generator. The fuzzy logic controllers have shown to perform better than conventional controllers for ill-defined or complex processes such as nuclear steam generator. Whereas the fuzzy logic controller does not need a detailed mathematical model of a plant to be controlled, its structure is to be made on the basis of the operator's linguistic information experienced from the plant operations. It is not an easy work and also there is no systematic way to translate the operator's linguistic information into quantitative information. When the linguistic information of operators is incomplete, tuning the parameters of fuzzy controller is to be performed for better control performance. It is the time and effort consuming procedure that controller designer has to tune the structure of fuzzy logic controller for optimal performance. And if the number of control inputs is many and the rule base is constructed in multidimensional space, it is very difficult for a controller designer to tune the fuzzy controller structure. Hence, the difficulty in putting the experimental knowledge into quantitative (or numerical) data and the difficulty in tuning the rules are the major problems in designing fuzzy logic controller. In order to overcome the problems described above, a learning algorithm by gradient descent method is included in the fuzzy control system such that the membership functions are tuned and the necessary rules are created automatically for good control performance. For stable learning in gradient descent method, the optimal range of learning coefficient not to be trapped and not to provide too slow learning speed is investigated. With the optimal range of learning coefficient, the optimal value of learning coefficient is suggested and with this value, the gradient

  16. A new subspace based approach to iterative learning control

    NARCIS (Netherlands)

    Nijsse, G.; Verhaegen, M.; Doelman, N.J.

    2001-01-01

    This paper1 presents an iterative learning control (ILC) procedure based on an inverse model of the plant under control. Our first contribution is that we formulate the inversion procedure as a Kalman smoothing problem: based on a compact state space model of a possibly non-minimum phase system,

  17. A control center design revisited: learning from users’ appropriation

    DEFF Research Database (Denmark)

    Souza da Conceição, Carolina; Cordeiro, Cláudia

    2014-01-01

    This paper aims to present the lessons learned during a control center design project by revisiting another control center from the same company designed two and a half years before by the same project team. In light of the experience with the first project and its analysis, the designers and res...

  18. Impact on learning of an e-learning module on leukaemia: a randomised controlled trial.

    Science.gov (United States)

    Morgulis, Yuri; Kumar, Rakesh K; Lindeman, Robert; Velan, Gary M

    2012-05-28

    e-learning resources may be beneficial for complex or conceptually difficult topics. Leukaemia is one such topic, yet there are no reports on the efficacy of e-learning for leukaemia. This study compared the learning impact on senior medical students of a purpose-built e-learning module on leukaemia, compared with existing online resources. A randomised controlled trial was performed utilising volunteer senior medical students. Participants were randomly allocated to Study and Control groups. Following a pre-test on leukaemia administered to both groups, the Study group was provided with access to the new e-learning module, while the Control group was directed to existing online resources. A post-test and an evaluation questionnaire were administered to both groups at the end of the trial period. Study and Control groups were equivalent in gender distribution, mean academic ability, pre-test performance and time studying leukaemia during the trial. The Study group performed significantly better than the Control group in the post-test, in which the group to which the students had been allocated was the only significant predictor of performance. The Study group's evaluation of the module was overwhelmingly positive. A targeted e-learning module on leukaemia had a significant effect on learning in this cohort, compared with existing online resources. We believe that the interactivity, dialogic feedback and integration with the curriculum offered by the e-learning module contributed to its impact. This has implications for e-learning design in medicine and other disciplines.

  19. Impact on learning of an e-learning module on leukaemia: a randomised controlled trial

    Directory of Open Access Journals (Sweden)

    Morgulis Yuri

    2012-05-01

    Full Text Available Abstract Background e-learning resources may be beneficial for complex or conceptually difficult topics. Leukaemia is one such topic, yet there are no reports on the efficacy of e-learning for leukaemia. This study compared the learning impact on senior medical students of a purpose-built e-learning module on leukaemia, compared with existing online resources. Methods A randomised controlled trial was performed utilising volunteer senior medical students. Participants were randomly allocated to Study and Control groups. Following a pre-test on leukaemia administered to both groups, the Study group was provided with access to the new e-learning module, while the Control group was directed to existing online resources. A post-test and an evaluation questionnaire were administered to both groups at the end of the trial period. Results Study and Control groups were equivalent in gender distribution, mean academic ability, pre-test performance and time studying leukaemia during the trial. The Study group performed significantly better than the Control group in the post-test, in which the group to which the students had been allocated was the only significant predictor of performance. The Study group’s evaluation of the module was overwhelmingly positive. Conclusions A targeted e-learning module on leukaemia had a significant effect on learning in this cohort, compared with existing online resources. We believe that the interactivity, dialogic feedback and integration with the curriculum offered by the e-learning module contributed to its impact. This has implications for e-learning design in medicine and other disciplines.

  20. Impact on learning of an e-learning module on leukaemia: a randomised controlled trial

    Science.gov (United States)

    2012-01-01

    Background e-learning resources may be beneficial for complex or conceptually difficult topics. Leukaemia is one such topic, yet there are no reports on the efficacy of e-learning for leukaemia. This study compared the learning impact on senior medical students of a purpose-built e-learning module on leukaemia, compared with existing online resources. Methods A randomised controlled trial was performed utilising volunteer senior medical students. Participants were randomly allocated to Study and Control groups. Following a pre-test on leukaemia administered to both groups, the Study group was provided with access to the new e-learning module, while the Control group was directed to existing online resources. A post-test and an evaluation questionnaire were administered to both groups at the end of the trial period. Results Study and Control groups were equivalent in gender distribution, mean academic ability, pre-test performance and time studying leukaemia during the trial. The Study group performed significantly better than the Control group in the post-test, in which the group to which the students had been allocated was the only significant predictor of performance. The Study group’s evaluation of the module was overwhelmingly positive. Conclusions A targeted e-learning module on leukaemia had a significant effect on learning in this cohort, compared with existing online resources. We believe that the interactivity, dialogic feedback and integration with the curriculum offered by the e-learning module contributed to its impact. This has implications for e-learning design in medicine and other disciplines. PMID:22640463

  1. Amygdala subsystems and control of feeding behavior by learned cues.

    Science.gov (United States)

    Petrovich, Gorica D; Gallagher, Michela

    2003-04-01

    A combination of behavioral studies and a neural systems analysis approach has proven fruitful in defining the role of the amygdala complex and associated circuits in fear conditioning. The evidence presented in this chapter suggests that this approach is also informative in the study of other adaptive functions that involve the amygdala. In this chapter we present a novel model to study learning in an appetitive context. Furthermore, we demonstrate that long-recognized connections between the amygdala and the hypothalamus play a crucial role in allowing learning to modulate feeding behavior. In the first part we describe a behavioral model for motivational learning. In this model a cue that acquires motivational properties through pairings with food delivery when an animal is hungry can override satiety and promote eating in sated rats. Next, we present evidence that a specific amygdala subsystem (basolateral area) is responsible for allowing such learned cues to control eating (override satiety and promote eating in sated rats). We also show that basolateral amygdala mediates these actions via connectivity with the lateral hypothalamus. Lastly, we present evidence that the amygdalohypothalamic system is specific for the control of eating by learned motivational cues, as it does not mediate another function that depends on intact basolateral amygdala, namely, the ability of a conditioned cue to support new learning based on its acquired value. Knowledge about neural systems through which food-associated cues specifically control feeding behavior provides a defined model for the study of learning. In addition, this model may be informative for understanding mechanisms of maladaptive aspects of learned control of eating that contribute to eating disorders and more moderate forms of overeating.

  2. Short-term memory, executive control, and children's route learning

    OpenAIRE

    Purser, H. R.; Farran, E. K.; Courbois, Y.; Lemahieu, A.; Mellier, D.; Sockeel, P.; Blades, M.

    2012-01-01

    The aim of this study was to investigate route-learning ability in 67 children aged 5 to 11years and to relate route-learning performance to the components of Baddeley's model of working memory. Children carried out tasks that included measures of verbal and visuospatial short-term memory and executive control and also measures of verbal and visuospatial long-term memory; the route-learning task was conducted using a maze in a virtual environment. In contrast to previous research, correlation...

  3. A Robust Cooperated Control Method with Reinforcement Learning and Adaptive H∞ Control

    Science.gov (United States)

    Obayashi, Masanao; Uchiyama, Shogo; Kuremoto, Takashi; Kobayashi, Kunikazu

    This study proposes a robust cooperated control method combining reinforcement learning with robust control to control the system. A remarkable characteristic of the reinforcement learning is that it doesn't require model formula, however, it doesn't guarantee the stability of the system. On the other hand, robust control system guarantees stability and robustness, however, it requires model formula. We employ both the actor-critic method which is a kind of reinforcement learning with minimal amount of computation to control continuous valued actions and the traditional robust control, that is, H∞ control. The proposed system was compared method with the conventional control method, that is, the actor-critic only used, through the computer simulation of controlling the angle and the position of a crane system, and the simulation result showed the effectiveness of the proposed method.

  4. Causal Learning in Gambling Disorder: Beyond the Illusion of Control.

    Science.gov (United States)

    Perales, José C; Navas, Juan F; Ruiz de Lara, Cristian M; Maldonado, Antonio; Catena, Andrés

    2017-06-01

    Causal learning is the ability to progressively incorporate raw information about dependencies between events, or between one's behavior and its outcomes, into beliefs of the causal structure of the world. In spite of the fact that some cognitive biases in gambling disorder can be described as alterations of causal learning involving gambling-relevant cues, behaviors, and outcomes, general causal learning mechanisms in gamblers have not been systematically investigated. In the present study, we compared gambling disorder patients against controls in an instrumental causal learning task. Evidence of illusion of control, namely, overestimation of the relationship between one's behavior and an uncorrelated outcome, showed up only in gamblers with strong current symptoms. Interestingly, this effect was part of a more complex pattern, in which gambling disorder patients manifested a poorer ability to discriminate between null and positive contingencies. Additionally, anomalies were related to gambling severity and current gambling disorder symptoms. Gambling-related biases, as measured by a standard psychometric tool, correlated with performance in the causal learning task, but not in the expected direction. Indeed, performance of gamblers with stronger biases tended to resemble the one of controls, which could imply that anomalies of causal learning processes play a role in gambling disorder, but do not seem to underlie gambling-specific biases, at least in a simple, direct way.

  5. Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method.

    Science.gov (United States)

    Golkhou, Vahid; Parnianpour, Mohamad; Lucas, Caro

    2005-04-01

    In this study, we have used a single link system with a pair of muscles that are excited with alpha and gamma signals to achieve both point to point and oscillatory movements with variable amplitude and frequency.The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear muscle-like-actuators for control purposes, existence of nonlinear spindle-like sensors and Golgi tendon organ-like sensor, actions of gravity and external loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex loops.A reinforcement learning method with an actor-critic (AC) architecture instead of middle and low level of central nervous system (CNS), is used to track a desired trajectory. The actor in this structure is a two layer feedforward neural network and the critic is a model of the cerebellum. The critic is trained by state-action-reward-state-action (SARSA) method. The critic will train the actor by supervisory learning based on the prior experiences. Simulation studies of oscillatory movements based on the proposed algorithm demonstrate excellent tracking capability and after 280 epochs the RMS error for position and velocity profiles were 0.02, 0.04 rad and rad/s, respectively.

  6. Controller Design for Accurate Antenna Pointing Onboard a Spacecraft

    National Research Council Canada - National Science Library

    Barba, Victor M

    2007-01-01

    .... Simulations are conducted to show that the integration of feedforward control action and feedback compensation produces better responses than the implementation of either individual control system...

  7. Game-Theoretic Learning in Distributed Control

    KAUST Repository

    Marden, Jason R.; Shamma, Jeff S.

    2018-01-01

    from autonomous vehicles to energy to transportation. One approach to control of such distributed architectures is to view the components as players in a game. In this approach, two design considerations are the components’ incentives and the rules

  8. Reinforcement learning for optimal control of low exergy buildings

    International Nuclear Information System (INIS)

    Yang, Lei; Nagy, Zoltan; Goffin, Philippe; Schlueter, Arno

    2015-01-01

    Highlights: • Implementation of reinforcement learning control for LowEx Building systems. • Learning allows adaptation to local environment without prior knowledge. • Presentation of reinforcement learning control for real-life applications. • Discussion of the applicability for real-life situations. - Abstract: Over a third of the anthropogenic greenhouse gas (GHG) emissions stem from cooling and heating buildings, due to their fossil fuel based operation. Low exergy building systems are a promising approach to reduce energy consumption as well as GHG emissions. They consists of renewable energy technologies, such as PV, PV/T and heat pumps. Since careful tuning of parameters is required, a manual setup may result in sub-optimal operation. A model predictive control approach is unnecessarily complex due to the required model identification. Therefore, in this work we present a reinforcement learning control (RLC) approach. The studied building consists of a PV/T array for solar heat and electricity generation, as well as geothermal heat pumps. We present RLC for the PV/T array, and the full building model. Two methods, Tabular Q-learning and Batch Q-learning with Memory Replay, are implemented with real building settings and actual weather conditions in a Matlab/Simulink framework. The performance is evaluated against standard rule-based control (RBC). We investigated different neural network structures and find that some outperformed RBC already during the learning phase. Overall, every RLC strategy for PV/T outperformed RBC by over 10% after the third year. Likewise, for the full building, RLC outperforms RBC in terms of meeting the heating demand, maintaining the optimal operation temperature and compensating more effectively for ground heat. This allows to reduce engineering costs associated with the setup of these systems, as well as decrease the return-of-invest period, both of which are necessary to create a sustainable, zero-emission building

  9. A neural fuzzy controller learning by fuzzy error propagation

    Science.gov (United States)

    Nauck, Detlef; Kruse, Rudolf

    1992-01-01

    In this paper, we describe a procedure to integrate techniques for the adaptation of membership functions in a linguistic variable based fuzzy control environment by using neural network learning principles. This is an extension to our work. We solve this problem by defining a fuzzy error that is propagated back through the architecture of our fuzzy controller. According to this fuzzy error and the strength of its antecedent each fuzzy rule determines its amount of error. Depending on the current state of the controlled system and the control action derived from the conclusion, each rule tunes the membership functions of its antecedent and its conclusion. By this we get an unsupervised learning technique that enables a fuzzy controller to adapt to a control task by knowing just about the global state and the fuzzy error.

  10. Arm dominance affects feedforward strategy more than feedback sensitivity during a postural task.

    Science.gov (United States)

    Walker, Elise H E; Perreault, Eric J

    2015-07-01

    Handedness is a feature of human motor control that is still not fully understood. Recent work has demonstrated that the dominant and nondominant arm each excel at different behaviors and has proposed that this behavioral asymmetry arises from lateralization in the cerebral cortex: the dominant side specializes in predictive trajectory control, while the nondominant side is specialized for impedance control. Long-latency stretch reflexes are an automatic mechanism for regulating posture and have been shown to contribute to limb impedance. To determine whether long-latency reflexes also contribute to asymmetric motor behavior in the upper limbs, we investigated the effect of arm dominance on stretch reflexes during a postural task that required varying degrees of impedance control. Our results demonstrated slightly but significantly larger reflex responses in the biarticular muscles of the nondominant arm, as would be consistent with increased impedance control. These differences were attributed solely to higher levels of voluntary background activity in the nondominant biarticular muscles, indicating that feedforward strategies for postural stability may differ between arms. Reflex sensitivity, which was defined as the magnitude of the reflex response for matched levels of background activity, was not significantly different between arms for a broad subject population ranging from 23 to 51 years of age. These results indicate that inter-arm differences in feedforward strategies are more influential during posture than differences in feedback sensitivity, in a broad subject population. Interestingly, restricting our analysis to subjects under 40 years of age revealed a small increase in long-latency reflex sensitivity in the nondominant arm relative to the dominant arm. Though our subject numbers were small for this secondary analysis, it suggests that further studies may be required to assess the influence of reflex lateralization throughout development.

  11. Feedback and feedforward adaptation to visuomotor delay during reaching and slicing movements.

    Science.gov (United States)

    Botzer, Lior; Karniel, Amir

    2013-07-01

    It has been suggested that the brain and in particular the cerebellum and motor cortex adapt to represent the environment during reaching movements under various visuomotor perturbations. It is well known that significant delay is present in neural conductance and processing; however, the possible representation of delay and adaptation to delayed visual feedback has been largely overlooked. Here we investigated the control of reaching movements in human subjects during an imposed visuomotor delay in a virtual reality environment. In the first experiment, when visual feedback was unexpectedly delayed, the hand movement overshot the end-point target, indicating a vision-based feedback control. Over the ensuing trials, movements gradually adapted and became accurate. When the delay was removed unexpectedly, movements systematically undershot the target, demonstrating that adaptation occurred within the vision-based feedback control mechanism. In a second experiment designed to broaden our understanding of the underlying mechanisms, we revealed similar after-effects for rhythmic reversal (out-and-back) movements. We present a computational model accounting for these results based on two adapted forward models, each tuned for a specific modality delay (proprioception or vision), and a third feedforward controller. The computational model, along with the experimental results, refutes delay representation in a pure forward vision-based predictor and suggests that adaptation occurred in the forward vision-based predictor, and concurrently in the state-based feedforward controller. Understanding how the brain compensates for conductance and processing delays is essential for understanding certain impairments concerning these neural delays as well as for the development of brain-machine interfaces. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Self-teaching neural network learns difficult reactor control problem

    International Nuclear Information System (INIS)

    Jouse, W.C.

    1989-01-01

    A self-teaching neural network used as an adaptive controller quickly learns to control an unstable reactor configuration. The network models the behavior of a human operator. It is trained by allowing it to operate the reactivity control impulsively. It is punished whenever either the power or fuel temperature stray outside technical limits. Using a simple paradigm, the network constructs an internal representation of the punishment and of the reactor system. The reactor is constrained to small power orbits

  13. Inverse-based feedforward control for an inkjet printhead

    NARCIS (Netherlands)

    Ezzeldin Mahdy Abdelmonem, M.; Bosch, van den P.P.J.; Weiland, S.

    2011-01-01

    Inkjet is an important technology in document printing and many new industrial applications. As inkjet developments are moving towards higher productivity and quality, it is required to achieve droplets which are small and fired at a high jetting frequency. Inkjet printers are now widely used to

  14. Feedback and feedforward control of frequency tuning to naturalistic stimuli.

    Science.gov (United States)

    Chacron, Maurice J; Maler, Leonard; Bastian, Joseph

    2005-06-08

    Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.

  15. An iterative learning controller for nonholonomic mobile robots

    International Nuclear Information System (INIS)

    Oriolo, G.; Panzieri, S.; Ulivi, G.

    1998-01-01

    The authors present an iterative learning controller that applies to nonholonomic mobile robots, as well as other systems that can be put in chained form. The learning algorithm exploits the fact that chained-form. The learning algorithm exploits the fact that chained-form systems are linear under piecewise-constant inputs. The proposed control scheme requires the execution of a small number of experiments to drive the system to the desired state in finite time, with nice convergence and robustness properties with respect to modeling inaccuracies as well as disturbances. To avoid the necessity of exactly reinitializing the system at each iteration, the basic method is modified so as to obtain a cyclic controller, by which the system is cyclically steered through an arbitrary sequence of states. As a case study, a carlike mobile robot is considered. Both simulation and experimental results are reported to show the performance of the method

  16. Can we (control) Engineer the degree learning process?

    Science.gov (United States)

    White, A. S.; Censlive, M.; Neilsen, D.

    2014-07-01

    This paper investigates how control theory could be applied to learning processes in engineering education. The initial point for the analysis is White's Double Loop learning model of human automation control modified for the education process where a set of governing principals is chosen, probably by the course designer. After initial training the student decides unknowingly on a mental map or model. After observing how the real world is behaving, a strategy to achieve the governing variables is chosen and a set of actions chosen. This may not be a conscious operation, it maybe completely instinctive. These actions will cause some consequences but not until a certain time delay. The current model is compared with the work of Hollenbeck on goal setting, Nelson's model of self-regulation and that of Abdulwahed, Nagy and Blanchard at Loughborough who investigated control methods applied to the learning process.

  17. Can we (control) Engineer the degree learning process?

    International Nuclear Information System (INIS)

    White, A S; Censlive, M; Neilsen, D

    2014-01-01

    This paper investigates how control theory could be applied to learning processes in engineering education. The initial point for the analysis is White's Double Loop learning model of human automation control modified for the education process where a set of governing principals is chosen, probably by the course designer. After initial training the student decides unknowingly on a mental map or model. After observing how the real world is behaving, a strategy to achieve the governing variables is chosen and a set of actions chosen. This may not be a conscious operation, it maybe completely instinctive. These actions will cause some consequences but not until a certain time delay. The current model is compared with the work of Hollenbeck on goal setting, Nelson's model of self-regulation and that of Abdulwahed, Nagy and Blanchard at Loughborough who investigated control methods applied to the learning process

  18. Recent developments in learning control and system identification for robots and structures

    Science.gov (United States)

    Phan, M.; Juang, J.-N.; Longman, R. W.

    1990-01-01

    This paper reviews recent results in learning control and learning system identification, with particular emphasis on discrete-time formulation, and their relation to adaptive theory. Related continuous-time results are also discussed. Among the topics presented are proportional, derivative, and integral learning controllers, time-domain formulation of discrete learning algorithms. Newly developed techniques are described including the concept of the repetition domain, and the repetition domain formulation of learning control by linear feedback, model reference learning control, indirect learning control with parameter estimation, as well as related basic concepts, recursive and non-recursive methods for learning identification.

  19. A Novel Feed-Forward Modeling System Leads to Sustained Improvements in Attention and Academic Performance.

    Science.gov (United States)

    McDermott, Ashley F; Rose, Maya; Norris, Troy; Gordon, Eric

    2016-01-28

    This study tested a novel feed-forward modeling (FFM) system as a nonpharmacological intervention for the treatment of ADHD children and the training of cognitive skills that improve academic performance. This study implemented a randomized, controlled, parallel design comparing this FFM with a nonpharmacological community care intervention. Improvements were measured on parent- and clinician-rated scales of ADHD symptomatology and on academic performance tests completed by the participant. Participants were followed for 3 months after training. Participants in the FFM training group showed significant improvements in ADHD symptomatology and academic performance, while the control group did not. Improvements from FFM were sustained 3 months later. The FFM appeared to be an effective intervention for the treatment of ADHD and improving academic performance. This FFM training intervention shows promise as a first-line treatment for ADHD while improving academic performance. © The Author(s) 2016.

  20. Learning control for batch thermal sterilization of canned foods.

    Science.gov (United States)

    Syafiie, S; Tadeo, F; Villafin, M; Alonso, A A

    2011-01-01

    A control technique based on Reinforcement Learning is proposed for the thermal sterilization of canned foods. The proposed controller has the objective of ensuring a given degree of sterilization during Heating (by providing a minimum temperature inside the cans during a given time) and then a smooth Cooling, avoiding sudden pressure variations. For this, three automatic control valves are manipulated by the controller: a valve that regulates the admission of steam during Heating, and a valve that regulate the admission of air, together with a bleeder valve, during Cooling. As dynamical models of this kind of processes are too complex and involve many uncertainties, controllers based on learning are proposed. Thus, based on the control objectives and the constraints on input and output variables, the proposed controllers learn the most adequate control actions by looking up a certain matrix that contains the state-action mapping, starting from a preselected state-action space. This state-action matrix is constantly updated based on the performance obtained with the applied control actions. Experimental results at laboratory scale show the advantages of the proposed technique for this kind of processes. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  1. Application of a fuzzy control algorithm with improved learning speed to nuclear steam generator level control

    International Nuclear Information System (INIS)

    Park, Gee Yong; Seong, Poong Hyun

    1994-01-01

    In order to reduce the load of tuning works by trial-and-error for obtaining the best control performance of conventional fuzzy control algorithm, a fuzzy control algorithm with learning function is investigated in this work. This fuzzy control algorithm can make its rule base and tune the membership functions automatically by use of learning function which needs the data from the control actions of the plant operator or other controllers. Learning process in fuzzy control algorithm is to find the optimal values of parameters, which consist of the membership functions and the rule base, by gradient descent method. Learning speed of gradient descent is significantly improved in this work with the addition of modified momentum. This control algorithm is applied to the steam generator level control by computer simulations. The simulation results confirm the good performance of this control algorithm for level control and show that the fuzzy learning algorithm has the generalization capability for the relation of inputs and outputs and it also has the excellent capability of disturbance rejection

  2. A new 2-d approach to iterative , learning control system

    International Nuclear Information System (INIS)

    Ashraf, S.; Muhammad, E.; Tasleem, M.

    2004-01-01

    The well known two-dimensional system theory is used to analyze and develop a class of learning control system. In this paper we first explore and test a method given by ZHENG and JAMSHIDI. In that paper all the input samples are treated at once. In comparison our paper presents a scheme in which one sample at a time is treated. The 2- D state-space model of proposed learning control scheme is given. An important consequence of the proposed scheme is that given the right choice of gain matrix and sampling time the system's output can be made to converge to any degree of accuracy. (author)

  3. Learning control of a flight simulator stick

    NARCIS (Netherlands)

    Velthuis, W.J.R.; de Vries, Theodorus J.A.; Vrielink, Koen H.J.; Wierda, G.J.; Borghuis, André

    1998-01-01

    Aimportant part of a flight simulator is its control loading system, which is the part that emulates the behaviour of an aircraft as experienced by the pilot through the stick. Such a system consists of a model of the aircraft that is to be simulated and a stick that is driven by an electric motor.

  4. Adaptive training of feedforward neural networks by Kalman filtering

    International Nuclear Information System (INIS)

    Ciftcioglu, Oe.

    1995-02-01

    Adaptive training of feedforward neural networks by Kalman filtering is described. Adaptive training is particularly important in estimation by neural network in real-time environmental where the trained network is used for system estimation while the network is further trained by means of the information provided by the experienced/exercised ongoing operation. As result of this, neural network adapts itself to a changing environment to perform its mission without recourse to re-training. The performance of the training method is demonstrated by means of actual process signals from a nuclear power plant. (orig.)

  5. Instructional control of reinforcement learning: a behavioral and neurocomputational investigation.

    Science.gov (United States)

    Doll, Bradley B; Jacobs, W Jake; Sanfey, Alan G; Frank, Michael J

    2009-11-24

    Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is "overridden" at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract "Q-learning" and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a "confirmation bias" in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes.

  6. Fuzzy gain scheduling of velocity PI controller with intelligent learning algorithm for reactor control

    International Nuclear Information System (INIS)

    Dong Yun Kim; Poong Hyun Seong; .

    1997-01-01

    In this research, we propose a fuzzy gain scheduler (FGS) with an intelligent learning algorithm for a reactor control. In the proposed algorithm, the gradient descent method is used in order to generate the rule bases of a fuzzy algorithm by learning. These rule bases are obtained by minimizing an objective function, which is called a performance cost function. The objective of the FGS with an intelligent learning algorithm is to generate gains, which minimize the error of system. The proposed algorithm can reduce the time and effort required for obtaining the fuzzy rules through the intelligent learning function. It is applied to reactor control of nuclear power plant (NPP), and the results are compared with those of a conventional PI controller with fixed gains. As a result, it is shown that the proposed algorithm is superior to the conventional PI controller. (author)

  7. Plasma control techniques of the ASDEX feedback system

    International Nuclear Information System (INIS)

    Schneider, F.

    1981-01-01

    In the ASDEX tokamak the shots are exactly preprogrammed and most of the disturbances are reproducible. So a computer can learn from one shot how to correct the next one. With this sort of disturbance feedforward one can also introduce a 'negative delay' in the program to compensate even fast and strong disturbances withous unwanted overswing or oscillations. The feedforward in conjunction with feedback control allows production of a magnetically limited plasma from the very beginning without any wall or limiter contact. This is a reason why in ASDEX the loop voltage on breakdown can be as low as 5 V/sup 2/. The plasma column can be controlled in the vacuum vessel even after disruptions have occurred

  8. Measuring strategic control in implicit learning: how and why?

    Science.gov (United States)

    Norman, Elisabeth

    2015-01-01

    Several methods have been developed for measuring the extent to which implicitly learned knowledge can be applied in a strategic, flexible manner. Examples include generation exclusion tasks in Serial Reaction Time (SRT) learning (Goschke, 1998; Destrebecqz and Cleeremans, 2001) and 2-grammar classification tasks in Artificial Grammar Learning (AGL; Dienes et al., 1995; Norman et al., 2011). Strategic control has traditionally been used as a criterion for determining whether acquired knowledge is conscious or unconscious, or which properties of knowledge are consciously available. In this paper I first summarize existing methods that have been developed for measuring strategic control in the SRT and AGL tasks. I then address some methodological and theoretical questions. Methodological questions concern choice of task, whether the measurement reflects inhibitory control or task switching, and whether or not strategic control should be measured on a trial-by-trial basis. Theoretical questions concern the rationale for including measurement of strategic control, what form of knowledge is strategically controlled, and how strategic control can be combined with subjective awareness measures.

  9. Random neural Q-learning for obstacle avoidance of a mobile robot in unknown environments

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2016-07-01

    Full Text Available The article presents a random neural Q-learning strategy for the obstacle avoidance problem of an autonomous mobile robot in unknown environments. In the proposed strategy, two independent modules, namely, avoidance without considering the target and goal-seeking without considering obstacles, are first trained using the proposed random neural Q-learning algorithm to obtain their best control policies. Then, the two trained modules are combined based on a switching function to realize the obstacle avoidance in unknown environments. For the proposed random neural Q-learning algorithm, a single-hidden layer feedforward network is used to approximate the Q-function to estimate the Q-value. The parameters of the single-hidden layer feedforward network are modified using the recently proposed neural algorithm named the online sequential version of extreme learning machine, where the parameters of the hidden nodes are assigned randomly and the sample data can come one by one. However, different from the original online sequential version of extreme learning machine algorithm, the initial output weights are estimated subjected to quadratic inequality constraint to improve the convergence speed. Finally, the simulation results demonstrate that the proposed random neural Q-learning strategy can successfully solve the obstacle avoidance problem. Also, the higher learning efficiency and better generalization ability are achieved by the proposed random neural Q-learning algorithm compared with the Q-learning based on the back-propagation method.

  10. Fixed Point Learning Based Intelligent Traffic Control System

    Science.gov (United States)

    Zongyao, Wang; Cong, Sui; Cheng, Shao

    2017-10-01

    Fixed point learning has become an important tool to analyse large scale distributed system such as urban traffic network. This paper presents a fixed point learning based intelligence traffic network control system. The system applies convergence property of fixed point theorem to optimize the traffic flow density. The intelligence traffic control system achieves maximum road resources usage by averaging traffic flow density among the traffic network. The intelligence traffic network control system is built based on decentralized structure and intelligence cooperation. No central control is needed to manage the system. The proposed system is simple, effective and feasible for practical use. The performance of the system is tested via theoretical proof and simulations. The results demonstrate that the system can effectively solve the traffic congestion problem and increase the vehicles average speed. It also proves that the system is flexible, reliable and feasible for practical use.

  11. The effects of control versus autonomy in hypermedia learning environments

    NARCIS (Netherlands)

    Gorissen, Chantal; Kester, Liesbeth; Brand-Gruwel, Saskia; Martens, Rob

    2010-01-01

    Gorissen, C. J. J., Kester, L., Brand-Gruwel, S., & Martens, R. L. (2010, 13-16 May). The effects of control versus autonomy in hypermedia learning environments. Poster presented at the 4th International Self-Determination Theory Conference, Ghent, Belgium: Kennisnet.

  12. Optimal Control via Reinforcement Learning with Symbolic Policy Approximation

    NARCIS (Netherlands)

    Kubalìk, Jiřì; Alibekov, Eduard; Babuska, R.; Dochain, Denis; Henrion, Didier; Peaucelle, Dimitri

    2017-01-01

    Model-based reinforcement learning (RL) algorithms can be used to derive optimal control laws for nonlinear dynamic systems. With continuous-valued state and input variables, RL algorithms have to rely on function approximators to represent the value function and policy mappings. This paper

  13. Instructional control of reinforcement learning: A behavioral and neurocomputational investigation

    NARCIS (Netherlands)

    Doll, B.B.; Jacobs, W.J.; Sanfey, A.G.; Frank, M.J.

    2009-01-01

    Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S (Ed) 1989. Rule-governed behavior:

  14. A Robust Feedforward Model of the Olfactory System.

    Directory of Open Access Journals (Sweden)

    Yilun Zhang

    2016-04-01

    Full Text Available Most natural odors have sparse molecular composition. This makes the principles of compressed sensing potentially relevant to the structure of the olfactory code. Yet, the largely feedforward organization of the olfactory system precludes reconstruction using standard compressed sensing algorithms. To resolve this problem, recent theoretical work has shown that signal reconstruction could take place as a result of a low dimensional dynamical system converging to one of its attractor states. However, the dynamical aspects of optimization slowed down odor recognition and were also found to be susceptible to noise. Here we describe a feedforward model of the olfactory system that achieves both strong compression and fast reconstruction that is also robust to noise. A key feature of the proposed model is a specific relationship between how odors are represented at the glomeruli stage, which corresponds to a compression, and the connections from glomeruli to third-order neurons (neurons in the olfactory cortex of vertebrates or Kenyon cells in the mushroom body of insects, which in the model corresponds to reconstruction. We show that should this specific relationship hold true, the reconstruction will be both fast and robust to noise, and in particular to the false activation of glomeruli. The predicted connectivity rate from glomeruli to third-order neurons can be tested experimentally.

  15. Controlling Uncertainty Decision Making and Learning in Complex Worlds

    CERN Document Server

    Osman, Magda

    2010-01-01

    Controlling Uncertainty: Decision Making and Learning in Complex Worlds reviews and discusses the most current research relating to the ways we can control the uncertain world around us.: Features reviews and discussions of the most current research in a number of fields relevant to controlling uncertainty, such as psychology, neuroscience, computer science and engineering; Presents a new framework that is designed to integrate a variety of disparate fields of research; Represents the first book of its kind to provide a general overview of work related to understanding control

  16. Propagation of spiking regularity and double coherence resonance in feedforward networks.

    Science.gov (United States)

    Men, Cong; Wang, Jiang; Qin, Ying-Mei; Deng, Bin; Tsang, Kai-Ming; Chan, Wai-Lok

    2012-03-01

    We investigate the propagation of spiking regularity in noisy feedforward networks (FFNs) based on FitzHugh-Nagumo neuron model systematically. It is found that noise could modulate the transmission of firing rate and spiking regularity. Noise-induced synchronization and synfire-enhanced coherence resonance are also observed when signals propagate in noisy multilayer networks. It is interesting that double coherence resonance (DCR) with the combination of synaptic input correlation and noise intensity is finally attained after the processing layer by layer in FFNs. Furthermore, inhibitory connections also play essential roles in shaping DCR phenomena. Several properties of the neuronal network such as noise intensity, correlation of synaptic inputs, and inhibitory connections can serve as control parameters in modulating both rate coding and the order of temporal coding.

  17. Modeling of an industrial process of pleuromutilin fermentation using feed-forward neural networks

    Directory of Open Access Journals (Sweden)

    L. Khaouane

    2013-03-01

    Full Text Available This work investigates the use of artificial neural networks in modeling an industrial fermentation process of Pleuromutilin produced by Pleurotus mutilus in a fed-batch mode. Three feed-forward neural network models characterized by a similar structure (five neurons in the input layer, one hidden layer and one neuron in the output layer are constructed and optimized with the aim to predict the evolution of three main bioprocess variables: biomass, substrate and product. Results show a good fit between the predicted and experimental values for each model (the root mean squared errors were 0.4624% - 0.1234 g/L and 0.0016 mg/g respectively. Furthermore, the comparison between the optimized models and the unstructured kinetic models in terms of simulation results shows that neural network models gave more significant results. These results encourage further studies to integrate the mathematical formulae extracted from these models into an industrial control loop of the process.

  18. Multi Car Elevator Control by using Learning Automaton

    Science.gov (United States)

    Shiraishi, Kazuaki; Hamagami, Tomoki; Hirata, Hironori

    We study an adaptive control technique for multi car elevators (MCEs) by adopting learning automatons (LAs.) The MCE is a high performance and a near-future elevator system with multi shafts and multi cars. A strong point of the system is that realizing a large carrying capacity in small shaft area. However, since the operation is too complicated, realizing an efficient MCE control is difficult for top-down approaches. For example, “bunching up together" is one of the typical phenomenon in a simple traffic environment like the MCE. Furthermore, an adapting to varying environment in configuration requirement is a serious issue in a real elevator service. In order to resolve these issues, having an autonomous behavior is required to the control system of each car in MCE system, so that the learning automaton, as the solutions for this requirement, is supposed to be appropriate for the simple traffic control. First, we assign a stochastic automaton (SA) to each car control system. Then, each SA varies its stochastic behavior distributions for adapting to environment in which its policy is evaluated with each passenger waiting times. That is LA which learns the environment autonomously. Using the LA based control technique, the MCE operation efficiency is evaluated through simulation experiments. Results show the technique enables reducing waiting times efficiently, and we confirm the system can adapt to the dynamic environment.

  19. Control in the Chemical Industry

    Science.gov (United States)

    Jones, R. G.

    1974-01-01

    Discusses various control techniques used in chemical processes, including measuring devices, controller functions, control valves, and feedforward and feedback actions. Applications of control to a real chemical plant are exemplified. (CC)

  20. Splendidly blended: a machine learning set up for CDU control

    Science.gov (United States)

    Utzny, Clemens

    2017-06-01

    As the concepts of machine learning and artificial intelligence continue to grow in importance in the context of internet related applications it is still in its infancy when it comes to process control within the semiconductor industry. Especially the branch of mask manufacturing presents a challenge to the concepts of machine learning since the business process intrinsically induces pronounced product variability on the background of small plate numbers. In this paper we present the architectural set up of a machine learning algorithm which successfully deals with the demands and pitfalls of mask manufacturing. A detailed motivation of this basic set up followed by an analysis of its statistical properties is given. The machine learning set up for mask manufacturing involves two learning steps: an initial step which identifies and classifies the basic global CD patterns of a process. These results form the basis for the extraction of an optimized training set via balanced sampling. A second learning step uses this training set to obtain the local as well as global CD relationships induced by the manufacturing process. Using two production motivated examples we show how this approach is flexible and powerful enough to deal with the exacting demands of mask manufacturing. In one example we show how dedicated covariates can be used in conjunction with increased spatial resolution of the CD map model in order to deal with pathological CD effects at the mask boundary. The other example shows how the model set up enables strategies for dealing tool specific CD signature differences. In this case the balanced sampling enables a process control scheme which allows usage of the full tool park within the specified tight tolerance budget. Overall, this paper shows that the current rapid developments off the machine learning algorithms can be successfully used within the context of semiconductor manufacturing.

  1. [Lessons learned from tobacco control in Spain].

    Science.gov (United States)

    Fernández, Esteve; Villalbí, Joan R; Córdoba, Rodrigo

    2006-01-01

    The growing involvement in Spain by civil society in the demand for tobacco control policies has been notable. The basis for the creation of the National Committee for Tobacco Prevention was established in 2004. At the end of that year, an intensive intervention was aimed at specifying, in law, the regulatory actions in the National Plan for Tobacco Prevention. This would facilitate a qualitative leap, taking advantage of the legal transposition of the European directive on advertising. With broad political consensus, the Law 28/2005 was established regarding sanitary measures for tobacco and the regulation of the sale, supply and consumption of tobacco products. The objective stated in this law is to prevent the initiation of tobacco consumption, especially among youth, guarantee the right of non-smokers to breathe air free from tobacco smoke and make quitting this habit easier for people who wish to do so. The main issues included are the prohibition of tobacco advertising and the limitation of tobacco consumption in common work areas and enclosed public spaces. The new law has replaced the previous rules in Spain, which were some of the most permissive in the European Union in terms of tobacco sales, advertising limitations and restrictions on smoking locations. It is clear that there is still much to be done. At this time, more social support needs to be generated in favor of the new regulations, and an important effort needs to be made to educate the public.

  2. GABA(B) receptor modulation of feedforward inhibition through hippocampal neurogliaform cells.

    Science.gov (United States)

    Price, Christopher J; Scott, Ricardo; Rusakov, Dmitri A; Capogna, Marco

    2008-07-02

    Feedforward inhibition of neurons is a fundamental component of information flow control in the brain. We studied the roles played by neurogliaform cells (NGFCs) of stratum lacunosum moleculare of the hippocampus in providing feedforward inhibition to CA1 pyramidal cells. We recorded from synaptically coupled pairs of anatomically identified NGFCs and CA1 pyramidal cells and found that, strikingly, a single presynaptic action potential evoked a biphasic unitary IPSC (uIPSC), consisting of two distinct components mediated by GABA(A) and GABA(B) receptors. A GABA(B) receptor-mediated unitary response has not previously been observed in hippocampal excitatory neurons. The decay of the GABA(A) receptor-mediated response was slow (time constant = 50 ms), and was tightly regulated by presynaptic GABA(B) receptors. Surprisingly, the GABA(B) receptor ligands baclofen and (2S)-3-{[(1S)-1-(3,4-dichlorophenyl)ethyl]amino-2-hydroxypropyl}(phenylmethyl)phosphinic acid (CGP55845), while affecting the NGFC-mediated uIPSCs, had no effect on action potential-evoked presynaptic Ca2+ signals monitored in individual axonal boutons of NGFCs with two-photon microscopy. In contrast, baclofen clearly depressed presynaptic Ca2+ transients in non-NGF interneurons. Changes in extracellular Ca2+ concentration that mimicked the effects of baclofen or CGP55845 on uIPSCs significantly altered presynaptic Ca2+ transients. Electrophysiological data suggest that GABA(B) receptors expressed by NGFCs contribute to the dynamic control of the excitatory input to CA1 pyramidal neurons from the temporoammonic path. The NGFC-CA1 pyramidal cell connection therefore provides a unique and subtle mechanism to shape the integration time domain for signals arriving via a major excitatory input to CA1 pyramidal cells.

  3. Human-level control through deep reinforcement learning

    Science.gov (United States)

    Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A.; Veness, Joel; Bellemare, Marc G.; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K.; Ostrovski, Georg; Petersen, Stig; Beattie, Charles; Sadik, Amir; Antonoglou, Ioannis; King, Helen; Kumaran, Dharshan; Wierstra, Daan; Legg, Shane; Hassabis, Demis

    2015-02-01

    The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

  4. Human-level control through deep reinforcement learning.

    Science.gov (United States)

    Mnih, Volodymyr; Kavukcuoglu, Koray; Silver, David; Rusu, Andrei A; Veness, Joel; Bellemare, Marc G; Graves, Alex; Riedmiller, Martin; Fidjeland, Andreas K; Ostrovski, Georg; Petersen, Stig; Beattie, Charles; Sadik, Amir; Antonoglou, Ioannis; King, Helen; Kumaran, Dharshan; Wierstra, Daan; Legg, Shane; Hassabis, Demis

    2015-02-26

    The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.

  5. Neuromodulatory adaptive combination of correlation-based learning in cerebellum and reward-based learning in basal ganglia for goal-directed behavior control.

    Science.gov (United States)

    Dasgupta, Sakyasingha; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    Goal-directed decision making in biological systems is broadly based on associations between conditional and unconditional stimuli. This can be further classified as classical conditioning (correlation-based learning) and operant conditioning (reward-based learning). A number of computational and experimental studies have well established the role of the basal ganglia in reward-based learning, where as the cerebellum plays an important role in developing specific conditioned responses. Although viewed as distinct learning systems, recent animal experiments point toward their complementary role in behavioral learning, and also show the existence of substantial two-way communication between these two brain structures. Based on this notion of co-operative learning, in this paper we hypothesize that the basal ganglia and cerebellar learning systems work in parallel and interact with each other. We envision that such an interaction is influenced by reward modulated heterosynaptic plasticity (RMHP) rule at the thalamus, guiding the overall goal directed behavior. Using a recurrent neural network actor-critic model of the basal ganglia and a feed-forward correlation-based learning model of the cerebellum, we demonstrate that the RMHP rule can effectively balance the outcomes of the two learning systems. This is tested using simulated environments of increasing complexity with a four-wheeled robot in a foraging task in both static and dynamic configurations. Although modeled with a simplified level of biological abstraction, we clearly demonstrate that such a RMHP induced combinatorial learning mechanism, leads to stabler and faster learning of goal-directed behaviors, in comparison to the individual systems. Thus, in this paper we provide a computational model for adaptive combination of the basal ganglia and cerebellum learning systems by way of neuromodulated plasticity for goal-directed decision making in biological and bio-mimetic organisms.

  6. Biomimetic approach to tacit learning based on compound control.

    Science.gov (United States)

    Shimoda, Shingo; Kimura, Hidenori

    2010-02-01

    The remarkable capability of living organisms to adapt to unknown environments is due to learning mechanisms that are totally different from the current artificial machine-learning paradigm. Computational media composed of identical elements that have simple activity rules play a major role in biological control, such as the activities of neurons in brains and the molecular interactions in intracellular control. As a result of integrations of the individual activities of the computational media, new behavioral patterns emerge to adapt to changing environments. We previously implemented this feature of biological controls in a form of machine learning and succeeded to realize bipedal walking without the robot model or trajectory planning. Despite the success of bipedal walking, it was a puzzle as to why the individual activities of the computational media could achieve the global behavior. In this paper, we answer this question by taking a statistical approach that connects the individual activities of computational media to global network behaviors. We show that the individual activities can generate optimized behaviors from a particular global viewpoint, i.e., autonomous rhythm generation and learning of balanced postures, without using global performance indices.

  7. Adaptive control for accelerators

    International Nuclear Information System (INIS)

    Eaton, L.E.; Jachim, S.P.; Natter, E.F.

    1991-01-01

    This patent describes an adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity

  8. Adaptive control for accelerators

    Science.gov (United States)

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  9. Learning to Learn Online: Using Locus of Control to Help Students Become Successful Online Learners

    Science.gov (United States)

    Lowes, Susan; Lin, Peiyi

    2015-01-01

    In this study, approximately 600 online high school students were asked to take Rotter's locus of control questionnaire and then reflect on the results, with the goal of helping them think about their ability to regulate their learning in this new environment. In addition, it was hoped that the results could provide a diagnostic for teachers who…

  10. The Effectiveness of E-Learning Systems: A Review of the Empirical Literature on Learner Control

    Science.gov (United States)

    Sorgenfrei, Christian; Smolnik, Stefan

    2016-01-01

    E-learning systems are considerably changing education and organizational training. With the advancement of online-based learning systems, learner control over the instructional process has emerged as a decisive factor in technology-based forms of learning. However, conceptual work on the role of learner control in e-learning has not advanced…

  11. Machine learning control taming nonlinear dynamics and turbulence

    CERN Document Server

    Duriez, Thomas; Noack, Bernd R

    2017-01-01

    This is the first book on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG). In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading r...

  12. Measuring strategic control in implicit learning: How and why?

    Directory of Open Access Journals (Sweden)

    Elisabeth eNorman

    2015-09-01

    Full Text Available Several methods have been developed for measuring the extent to which implicitly learned knowledge can be applied in a strategic, flexible manner. Examples include generation exclusion tasks in SRT learning (Destrebecqz & Cleeremans, 2001; Goschke, 1998 and 2-grammar classification tasks in AGL (Dienes, Altmann, Kwan, & Goode, 1995; Norman, Price, & Jones, 2011. Strategic control has traditionally been used as a criterion for determining whether acquired knowledge is conscious or unconscious, or which properties of knowledge is consciously available. In this paper I first summarize existing methods that have been developed for measuring strategic control in the SRT and AGL tasks. I then address some methodologial and theoretical questions. Methodological questions concern choice of task, whether the measurement reflects inhibitory control or task switching, and whether or not strategic control should be measured on a trial-by-trial basis. Theoretical questions concern the rationale for including measurement of strategic control, what form of knowledge is strategically controlled, and how strategic control can be combined with subjective awareness measures.

  13. Effects of Locus of Control and Learner-Control on Web-Based Language Learning

    Science.gov (United States)

    Chang, Mei-Mei; Ho, Chiung-Mei

    2009-01-01

    The study explored the effects of students' locus of control and types of control over instruction on their self-efficacy and performance in a web-based language learning environment. A web-based interactive instructional program focusing on the comprehension of news articles for English language learners was developed in two versions: learner-…

  14. Design issues of a reinforcement-based self-learning fuzzy controller for petrochemical process control

    Science.gov (United States)

    Yen, John; Wang, Haojin; Daugherity, Walter C.

    1992-01-01

    Fuzzy logic controllers have some often-cited advantages over conventional techniques such as PID control, including easier implementation, accommodation to natural language, and the ability to cover a wider range of operating conditions. One major obstacle that hinders the broader application of fuzzy logic controllers is the lack of a systematic way to develop and modify their rules; as a result the creation and modification of fuzzy rules often depends on trial and error or pure experimentation. One of the proposed approaches to address this issue is a self-learning fuzzy logic controller (SFLC) that uses reinforcement learning techniques to learn the desirability of states and to adjust the consequent part of its fuzzy control rules accordingly. Due to the different dynamics of the controlled processes, the performance of a self-learning fuzzy controller is highly contingent on its design. The design issue has not received sufficient attention. The issues related to the design of a SFLC for application to a petrochemical process are discussed, and its performance is compared with that of a PID and a self-tuning fuzzy logic controller.

  15. The mechanism of synchronization in feed-forward neuronal networks

    International Nuclear Information System (INIS)

    Goedeke, S; Diesmann, M

    2008-01-01

    Synchronization in feed-forward subnetworks of the brain has been proposed to explain the precisely timed spike patterns observed in experiments. While the attractor dynamics of these networks is now well understood, the underlying single neuron mechanisms remain unexplained. Previous attempts have captured the effects of the highly fluctuating membrane potential by relating spike intensity f(U) to the instantaneous voltage U generated by the input. This article shows that f is high during the rise and low during the decay of U(t), demonstrating that the U-dot-dependence of f, not refractoriness, is essential for synchronization. Moreover, the bifurcation scenario is quantitatively described by a simple f(U,U-dot) relationship. These findings suggest f(U,U-dot) as the relevant model class for the investigation of neural synchronization phenomena in a noisy environment

  16. Learning from authoritarian teachers: Controlling the situation or controlling yourself can sustain motivation

    Directory of Open Access Journals (Sweden)

    Kathryn Everhart Chaffee

    2014-01-01

    Full Text Available Positive psychology encompasses the study of positive outcomes, optimal functioning, and resilience in difficult circumstances. In the context of language learning, positive outcomes include academic engagement, self-determined motivation, persistence in language learning, and eventually becoming a proficient user of the language. These questionnaire studies extend previous research by addressing how these positive outcomes can be achieved even in adverse circumstances. In Study 1, the primary and secondary control scales of interest were validated using 2468 students at a Canadian university. Study 2 examined the capacity of 100 Canadian language learners to adjust themselves to fit in with their environment, termed secondary control, and how it was related to their motivation for and engagement in language learning and their feelings of anxiety speaking in the classroom. Secondary control in the form of adjusting one’s attitude towards language learning challenges through positive reappraisals was positively associated with self-determined motivation, need satisfaction, and engagement. analyses, positive reappraisals were also found to buffer the negative effects of having a controlling instructor on students’ engagement and anxiety. These findings suggest that personal characteristics interact with the learning environment to allow students to function optimally in their language courses even when the teacher is controlling.

  17. Iterative learning control for electrical stimulation and stroke rehabilitation

    CERN Document Server

    Freeman, Chris T; Burridge, Jane H; Hughes, Ann-Marie; Meadmore, Katie L

    2015-01-01

    Iterative learning control (ILC) has its origins in the control of processes that perform a task repetitively with a view to improving accuracy from trial to trial by using information from previous executions of the task. This brief shows how a classic application of this technique – trajectory following in robots – can be extended to neurological rehabilitation after stroke. Regaining upper limb movement is an important step in a return to independence after stroke, but the prognosis for such recovery has remained poor. Rehabilitation robotics provides the opportunity for repetitive task-oriented movement practice reflecting the importance of such intense practice demonstrated by conventional therapeutic research and motor learning theory. Until now this technique has not allowed feedback from one practice repetition to influence the next, also implicated as an important factor in therapy. The authors demonstrate how ILC can be used to adjust external functional electrical stimulation of patients’ mus...

  18. Self-learning fuzzy controllers based on temporal back propagation

    Science.gov (United States)

    Jang, Jyh-Shing R.

    1992-01-01

    This paper presents a generalized control strategy that enhances fuzzy controllers with self-learning capability for achieving prescribed control objectives in a near-optimal manner. This methodology, termed temporal back propagation, is model-insensitive in the sense that it can deal with plants that can be represented in a piecewise-differentiable format, such as difference equations, neural networks, GMDH structures, and fuzzy models. Regardless of the numbers of inputs and outputs of the plants under consideration, the proposed approach can either refine the fuzzy if-then rules if human experts, or automatically derive the fuzzy if-then rules obtained from human experts are not available. The inverted pendulum system is employed as a test-bed to demonstrate the effectiveness of the proposed control scheme and the robustness of the acquired fuzzy controller.

  19. Emotional Learning Based Intelligent Controllers for Rotor Flux Oriented Control of Induction Motor

    Science.gov (United States)

    Abdollahi, Rohollah; Farhangi, Reza; Yarahmadi, Ali

    2014-08-01

    This paper presents design and evaluation of a novel approach based on emotional learning to improve the speed control system of rotor flux oriented control of induction motor. The controller includes a neuro-fuzzy system with speed error and its derivative as inputs. A fuzzy critic evaluates the present situation, and provides the emotional signal (stress). The controller modifies its characteristics so that the critics stress is reduced. The comparative simulation results show that the proposed controller is more robust and hence found to be a suitable replacement of the conventional PI controller for the high performance industrial drive applications.

  20. Reinforcement learning techniques for controlling resources in power networks

    Science.gov (United States)

    Kowli, Anupama Sunil

    As power grids transition towards increased reliance on renewable generation, energy storage and demand response resources, an effective control architecture is required to harness the full functionalities of these resources. There is a critical need for control techniques that recognize the unique characteristics of the different resources and exploit the flexibility afforded by them to provide ancillary services to the grid. The work presented in this dissertation addresses these needs. Specifically, new algorithms are proposed, which allow control synthesis in settings wherein the precise distribution of the uncertainty and its temporal statistics are not known. These algorithms are based on recent developments in Markov decision theory, approximate dynamic programming and reinforcement learning. They impose minimal assumptions on the system model and allow the control to be "learned" based on the actual dynamics of the system. Furthermore, they can accommodate complex constraints such as capacity and ramping limits on generation resources, state-of-charge constraints on storage resources, comfort-related limitations on demand response resources and power flow limits on transmission lines. Numerical studies demonstrating applications of these algorithms to practical control problems in power systems are discussed. Results demonstrate how the proposed control algorithms can be used to improve the performance and reduce the computational complexity of the economic dispatch mechanism in a power network. We argue that the proposed algorithms are eminently suitable to develop operational decision-making tools for large power grids with many resources and many sources of uncertainty.