WorldWideScience

Sample records for learning environment created

  1. Creating a Total Quality Environment (TQE) for Learning

    Science.gov (United States)

    Freed, Jann E.

    2005-01-01

    This article describes a model for creating a total quality environment (TQE) for learning in which everyone is considered a learner. The model consists of 11 interrelated characteristics derived from the literature in the areas of continuous improvement, leadership, learning, learning organizations, and spirituality. The characteristics in the…

  2. Create a good learning environment and motivate active learning enthusiasm

    Science.gov (United States)

    Bi, Weihong; Fu, Guangwei; Fu, Xinghu; Zhang, Baojun; Liu, Qiang; Jin, Wa

    2017-08-01

    In view of the current poor learning initiative of undergraduates, the idea of creating a good learning environment and motivating active learning enthusiasm is proposed. In practice, the professional tutor is allocated and professional introduction course is opened for college freshman. It can promote communication between the professional teachers and students as early as possible, and guide students to know and devote the professional knowledge by the preconceived form. Practice results show that these solutions can improve the students interest in learning initiative, so that the active learning and self-learning has become a habit in the classroom.

  3. Creating adaptive environment for e-learning courses

    Directory of Open Access Journals (Sweden)

    Bozidar Radenkovic

    2009-06-01

    Full Text Available In this paper we provide an approach to creating adaptive environment for e-learning courses. In the context of e-education, successful adaptation has to be performed upon learners’ characteristics. Currently, modeling and discovering users’ needs, goals, knowledge preferences and motivations is one of the most challenging tasks in e-learning systems that deal with large volumes of information. Primary goal of the research is to perform personalizing of distance education system, according to students’ learning styles. Main steps and requirements in applying business intelligence techniques in process of personalization are identified. In addition, we propose generic model and architecture of an adaptive e-learning system by describing the structure of an adaptive course and exemplify correlations among e-learning course content and different learning styles. Moreover, research that dealt with application of data mining technique in a real e-learning system was carried out. We performed adaptation of our e-learning courses using the results from the research.

  4. Creating Learning Environment Connecting Engineering Design and 3D Printing

    Science.gov (United States)

    Pikkarainen, Ari; Salminen, Antti; Piili, Heidi

    Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.

  5. Creating sustainable learning environments in schools by means of ...

    African Journals Online (AJOL)

    Creating sustainable learning environments in schools by means of strategic ... be addressed by means of proper strategic planning of the education system as such ... The authors who are academics at a university and who are specializing in ...

  6. Medium-Based Design: Extending a Medium to Create an Exploratory Learning Environment

    Science.gov (United States)

    Rick, Jochen; Lamberty, K. K.

    2005-01-01

    This article introduces "medium-based" design -- an approach to creating "exploratory learning environments" using the method of "extending a medium". First, the characteristics of exploratory learning environments and medium-based design are described and grounded in related work. Particular attention is given to "extending a medium" --…

  7. DEVELOPMENT OF TEACHER COMP ETENCES IN CREATING POWERFUL LEARNING ENVIRONMENTS IN VOCATIONAL SECONDARY EDUCATION

    Directory of Open Access Journals (Sweden)

    Inge PLACKLÉ

    2010-01-01

    Full Text Available Background: At the end of Vocational Secondary Education students should be able to solve authentic problems individually and in group. Powerful learning environments could enforce these learning processes. Research question: “Which critical desirable design principles can we define to create a powerful learning environment in Secondary Vocational Education ? Method: We combine different perspectives of teachers, students and researchers to build a shared model of learning environments, which will be perceived as more powerful by all stakeholders. Based on literature we selected design principles followed by organizing focus groups with teacher educators and teachers to further adapt these principles. Preliminary results: We determined eight design pr inciples: Authenticity learning environment, differentiation, adapted evaluation, self-directed learning, problem solving, teamwork, shared responsibility design learning environment and (labour identity develop ment. Each principle has been further clarified in indicators. This study is part of a larger research project in developing teacher competences in creating powe rful learning enviro nments in Vocational Secondary Education.

  8. Creating a flexible learning environment.

    Science.gov (United States)

    Taylor, B A; Jones, S; Winters, P

    1990-01-01

    Lack of classroom space is a common problem for many hospital-based nurse educators. This article describes how nursing educators in one institution redesigned fixed classroom space into a flexible learning center that accommodates their various programs. Using the nursing process, the educators assessed their needs, planned the learning environment, implemented changes in the interior design, and evaluated the outcome of the project. The result was a learning environment conducive to teaching and learning.

  9. Creating Next Generation Blended Learning Environments Using Mixed Reality, Video Games and Simulations

    Science.gov (United States)

    Kirkley, Sonny E.; Kirkley, Jamie R.

    2005-01-01

    In this article, the challenges and issues of designing next generation learning environments using current and emerging technologies are addressed. An overview of the issues is provided as well as design principles that support the design of instruction and the overall learning environment. Specific methods for creating cognitively complex,…

  10. Creating Safe Spaces for Music Learning

    Science.gov (United States)

    Hendricks, Karin S.; Smith, Tawnya D.; Stanuch, Jennifer

    2014-01-01

    This article offers a practical model for fostering emotionally safe learning environments that instill in music students a positive sense of self-belief, freedom, and purpose. The authors examine the implications for music educators of creating effective learning environments and present recommendations for creating a safe space for learning,…

  11. Creating a Project-Based Learning Environment to Improve Project Management Skills of Graduate Students

    Science.gov (United States)

    Arantes do Amaral, Joao Alberto; Gonçalves, Paulo; Hess, Aurélio

    2015-01-01

    This article describes the project-based learning environment created to support project management graduate courses. The paper will focus on the learning context and procedures followed for 13 years, in 47 project-based learning MBA courses, involving approximately 1,400 students and 34 community partners.

  12. Creating sustainable empowering learning environments through ...

    African Journals Online (AJOL)

    ... as these impede optimal learning especially among rural and immigrant communities in South Africa, Canada and the world over. The primary focus of all papers herein therefore is on the creation of sustainable empowering learning environments through engaged scholarship spearheaded by the university.

  13. Creating a supportive learning environment for students with learning difficulties

    OpenAIRE

    Grah, Jana

    2013-01-01

    Co-building of supporting learning environment for the learners with learning difficulties is one of the 21st century inclusive school’s elements. Since the physical presence of learners with learning difficulties in the classroom does not self-evidently lead to an effective co-operation and implementation of 21st century inclusive school, I have dedicated my doctor thesis to the establishment of supporting learning environment for the learners with learning difficulties in primary school wit...

  14. Mechanisms for Creating a Psychologically Safe Learning Environment in an Educational Institution of General Education

    Directory of Open Access Journals (Sweden)

    Leonova O.I.,

    2014-11-01

    Full Text Available At the moment the question of how to create and maintain the psychological safety of the educational environment of the school is not sufficiently studied. Meanwhile, there has been proved its positive effect on the psychological health of students, their emotional and personal well-being, the formation of a meta-subjective and personal educational outcomes. This paper describes a study the purpose of which was to examine and verify empiricaly the features of management activities in the educational organization to create a psychologically safe learning environment. We studied personality traits of the Head of an educational organization by the procedure "Troubleshooting leadership abilities" (E. Zharikova, E. Krushelnytsky, techniques "Diagnosis of the level of burnout" (V.V. Boyko, methods of self-management style assessment (A.V. Agrashenkova, modified by E.P. Ilyin, and methods for rapid assessment of health, activity, mood (SAN. We proposed mechanisms to solve the problem of creating a comfortable and safe learning environment in the educational organization of general education

  15. Creating Effective Collaborative Learning Groups in an Online Environment

    Directory of Open Access Journals (Sweden)

    Jane E. Brindley

    2009-06-01

    Full Text Available Collaborative learning in an online classroom can take the form of discussion among the whole class or within smaller groups. This paper addresses the latter, examining first whether assessment makes a difference to the level of learner participation and then considering other factors involved in creating effective collaborative learning groups. Data collected over a three year period (15 cohorts from the Foundations course in the Master of Distance Education (MDE program offered jointly by University of Maryland University College (UMUC and the University of Oldenburg does not support the authors’ original hypothesis that assessment makes a significant difference to learner participation levels in small group learning projects and leads them to question how much emphasis should be placed on grading work completed in study groups to the exclusion of other strategies. Drawing on observations of two MDE courses, including the Foundations course, their extensive online teaching experience, and a review of the literature, the authors identify factors other than grading that contribute positively to the effectiveness of small collaborative learning groups in the online environment. In particular, the paper focuses on specific instructional strategies that facilitate learner participation in small group projects, which result in an enhanced sense of community, increased skill acquisition, and better learning outcomes.

  16. The Integration of Personal Learning Environments & Open Network Learning Environments

    Science.gov (United States)

    Tu, Chih-Hsiung; Sujo-Montes, Laura; Yen, Cherng-Jyh; Chan, Junn-Yih; Blocher, Michael

    2012-01-01

    Learning management systems traditionally provide structures to guide online learners to achieve their learning goals. Web 2.0 technology empowers learners to create, share, and organize their personal learning environments in open network environments; and allows learners to engage in social networking and collaborating activities. Advanced…

  17. Learning about “wicked” problems in the Global South. Creating a film-based learning environment with “Visual Problem Appraisal”

    Directory of Open Access Journals (Sweden)

    Loes Witteveen

    2012-03-01

    Full Text Available The current complexity of sustainable development in the Global South calls for the design of learning strategies that can deal with this complexity. One such innovative learning strategy, called Visual Problem Appraisal (VPA, is highlighted in this article. The strategy is termed visual as it creates a learning environment that is film-based. VPA enhances the analysis of complex issues, and facilitates stakeholder dialogue and action planning. The strategy is used in workshops dealing with problem analysis and policy design, and involves the participants “meeting” stakeholders through filmed narratives. The article demonstrates the value of using film in multi stakeholder learning environments addressing issues concerning sustainable development.

  18. Creating a Learning Environment for Engineering Education

    DEFF Research Database (Denmark)

    Christensen, Hans Peter

    2004-01-01

    Until recently discussions about improvement of educational quality have focussed on the teacher – it was as-sumed that by training the teacher you could increase the students’ learning outcome. Realising that other changes than better teaching were necessary to give the students more useful......? And the introduction of IT has highlighted the importance of the learning environment, but the focus has narrowly been on the physical environment. However, the mental frame-work is also very important. To assure educational quality it is necessary to take all these elements into account and consider the total...

  19. An Interdisciplinary Design Project in Second Life: Creating a Virtual Marine Science Learning Environment

    Science.gov (United States)

    Triggs, Riley; Jarmon, Leslie; Villareal, Tracy A.

    2010-01-01

    Virtual environments can resolve many practical and pedagogical challenges within higher education. Economic considerations, accessibility issues, and safety concerns can all be somewhat alleviated by creating learning activities in a virtual space. Because of the removal of real-world physical limitations like gravity, durability and scope,…

  20. Learning about “wicked” problems in the Global South. Creating a film-based learning environment with “Visual Problem Appraisal”

    OpenAIRE

    Loes Witteveen; Rico Lie

    2012-01-01

    The current complexity of sustainable development in the Global South calls for the design of learning strategies that can deal with this complexity. One such innovative learning strategy, called Visual Problem Appraisal (VPA), is highlighted in this article. The strategy is termed visual as it creates a learning environment that is film-based. VPA enhances the analysis of complex issues, and facilitates stakeholder dialogue and action planning. The strategy is used in workshops dealing with ...

  1. Creating Optimal Learning Environments through Invitational Education: An Alternative to Control Oriented School Reform

    Science.gov (United States)

    Fretz, Joan R.

    2015-01-01

    Understanding what motivates people to put forth effort, persevere in the face of obstacles, and choose their behaviors is key to creating an optimal learning environment--the type of school that policy makers desire, but are unknowingly sabotaging (Dweck, 2000). Many motivation and self-concept theories provide important insight with regard to…

  2. Immersive Virtual Reality in a University Setting: Creating an Authentic Learning Environment Through the Virtual Golden Foods Corporation

    Directory of Open Access Journals (Sweden)

    Ros A. Yahaya

    2009-12-01

    Full Text Available An authentic learning environment is learning that involves real world problems that are relevant to the learners and relate to their real life experience. Research indicates that Information and Communication Technology (ICT tools can facilitate in creating authentic learning environment, thus improving student learning, interaction and satisfaction. Previous research has focused on using various forms of ICT such as online learning and web-based learning into the classroom. However, little attempt has been made to investigate the effectiveness of incorporating immersive Virtual Reality (VR technology into the university classroom. Virtual Golden Foods Corporation (VGFC is a simulated Virtual Reality (VR organization being developed for use in teaching and learning at a large technology based university in Australia. This study focuses on authentic learning environment where students learn about decision making in complex business contexts throughout the semester which culminates in immersive VR exposure. The findings report that immersive VR environment helps to increase students’ understanding of decision making concepts.

  3. Creating Dynamic Learning Environment to Enhance Students’ Engagement in Learning Geometry

    Science.gov (United States)

    Sariyasa

    2017-04-01

    Learning geometry gives many benefits to students. It strengthens the development of deductive thinking and reasoning; it also provides an opportunity to improve visualisation and spatial ability. Some studies, however, have pointed out the difficulties that students encountered when learning geometry. A preliminary study by the author in Bali revealed that one of the main problems was teachers’ difficulties in delivering geometry instruction. It was partly due to the lack of appropriate instructional media. Coupling with dynamic geometry software, dynamic learning environments is a promising solution to this problem. Employing GeoGebra software supported by the well-designed instructional process may result in more meaningful learning, and consequently, students are motivated to engage in the learning process more deeply and actively. In this paper, we provide some examples of GeoGebra-aided learning activities that allow students to interactively explore and investigate geometry concepts and the properties of geometry objects. Thus, it is expected that such learning environment will enhance students’ internalisation process of geometry concepts.

  4. Creating an Authentic Learning Environment in the Foreign Language Classroom

    Directory of Open Access Journals (Sweden)

    Larisa Nikitina

    2011-01-01

    Full Text Available Theatrical activities are widely used by language educators to promote and facilitate language learning. Involving students in production of their own video or a short movie in the target language allows a seamless fusion of language learning, art, and popular culture. The activity is also conducive for creating an authentic learning situation where the real world becomes a part of the educational experience and necessitates the use of an authentic language by the learners. This article describes a video project carried out by Russian language learners at Universiti Malaysia Sabah (UMS. It examines how the work on the project created and supported authenticity of the learning experience. Though the article focuses on the video project done in the context of language learning and teaching this activity could be successfully implemented in teaching various subjects at both secondary and tertiary levels.

  5. How do we help students as newcomers to create and develop better communities of practice for learning in a Project based learning environment?

    DEFF Research Database (Denmark)

    Jensen, Lars Peter

    2007-01-01

    The question for debate in this paper, is how to help students creating and developing good communities of practice for learning in a Project based learning environment? At Aalborg University it has proven very helpful for students to have both a course addressing communication, collaboration......, learning and project management (CLP) and a reflection on these issues in a written process analysis....

  6. Creating an Authentic Learning Environment in the Foreign Language Classroom

    Science.gov (United States)

    Nikitina, Larisa

    2011-01-01

    Theatrical activities are widely used by language educators to promote and facilitate language learning. Involving students in production of their own video or a short movie in the target language allows a seamless fusion of language learning, art, and popular culture. The activity is also conducive for creating an authentic learning situation…

  7. Campus Retrofitting (CARE) Methodology: A Way to Co-Create Future Learning Environments

    DEFF Research Database (Denmark)

    Nenonen, Suvi; Eriksson, Robert; Niemi, Olli

    2016-01-01

    (CARE)- methodology for user-centric and co- creative campus retrofitting processes. The campus development research in Nordic countries and co-creation in retrofitting processes are discussed. The campus retrofitting cases in different countries are described by emphasising especially the methods...... of resources in form of both teachers and university facilities is challenged by development of integration of learning, teaching and the spaces where it takes place. The challenges are shared among users and owners of campus, where retrofitting is needed too. This paper aims to describe Campus Retrofitting...... they used. Based on the analysis of the methods the framework for Campus retrofitting (CARE) - methodology is presented and discussed. CARE-methodology is a tool to capture new logic to learning environment design. It has three key activities: co-creating, co-financing and co-evaluating. The integrated...

  8. Creating a Safe Environment for Women's Leadership Transformation

    Science.gov (United States)

    Debebe, Gelaye

    2011-01-01

    This study used qualitative data to describe how transformational learning was achieved in a women-only training (WOT) program. The article argues that an environment conducive to transformational learning for women was created from the harmonious coalescing of the presence of all-women participants and instructors with gender-sensitive teaching…

  9. Group Modeling in Social Learning Environments

    Science.gov (United States)

    Stankov, Slavomir; Glavinic, Vlado; Krpan, Divna

    2012-01-01

    Students' collaboration while learning could provide better learning environments. Collaboration assumes social interactions which occur in student groups. Social theories emphasize positive influence of such interactions on learning. In order to create an appropriate learning environment that enables social interactions, it is important to…

  10. Creating an Inclusive Collegiate Learning Environment for Students on the Autism Spectrum: A Participatory Action Research Study

    Science.gov (United States)

    Maxam, Susan L.

    2012-01-01

    Despite the growing number of students on the autism spectrum in postsecondary institutions around the nation, there is a paucity of literature dealing with issues and interventions related to creating inclusive, collegiate learning environments from the perspectives of both faculty and these students. Therefore, this study sought to gain a deeper…

  11. Designing Learning Resources in Synchronous Learning Environments

    DEFF Research Database (Denmark)

    Christiansen, Rene B

    2015-01-01

    Computer-mediated Communication (CMC) and synchronous learning environments offer new solutions for teachers and students that transcend the singular one-way transmission of content knowledge from teacher to student. CMC makes it possible not only to teach computer mediated but also to design...... and create new learning resources targeted to a specific group of learners. This paper addresses the possibilities of designing learning resources within synchronous learning environments. The empirical basis is a cross-country study involving students and teachers in primary schools in three Nordic...... Countries (Denmark, Sweden and Norway). On the basis of these empirical studies a set of design examples is drawn with the purpose of showing how the design fulfills the dual purpose of functioning as a remote, synchronous learning environment and - using the learning materials used and recordings...

  12. PUPIL-TEACHER ADJUSTEMENT AND MUTUAL ADAPTATION IN CREATING CLASSROOM LEARNING ENVIRONMENTS.

    Science.gov (United States)

    FOX, ROBERT S.; AND OTHERS

    AN ANALYSIS OF THE DYNAMICS OF THE LEARNING SITUATIONS IN A VARIETY OF PUBLIC SCHOOL CLASSROOMS WAS UNDERTAKEN. THE PROJECT MADE A COMPARATIVE ANALYSIS OF THE PATTERNS OF COOPERATION OR ALIENATION AMONG PARENTS, TEACHERS, PEERS, AND INDIVIDUAL PUPILS. THE PATTERNS CREATE LEARNING CULTURES OF DIFFERENT PRODUCTIVITY IN VARIOUS CLASSROOMS. THE DATA…

  13. Creating aesthetically resonant environments for the handicapped, elderly and rehabilitation: Sweden

    DEFF Research Database (Denmark)

    Brooks, Tony; Hasselblad, Stefan

    2005-01-01

    CARE HERE (Creating Aesthetically Resonant Environments for the Handicapped, Elderly and Rehabilitation) was realised as a full European IST (Information Society Technologies) project, involving adults and children with learning disability, PMLD (Profound and Multiple Learning Disability...

  14. DynaLearn-An Intelligent Learning Environment for Learning Conceptual Knowledge

    NARCIS (Netherlands)

    Bredeweg, Bert; Liem, Jochem; Beek, Wouter; Linnebank, Floris; Gracia, Jorge; Lozano, Esther; Wißner, Michael; Bühling, René; Salles, Paulo; Noble, Richard; Zitek, Andreas; Borisova, Petya; Mioduser, David

    2013-01-01

    Articulating thought in computerbased media is a powerful means for humans to develop their understanding of phenomena. We have created DynaLearn, an intelligent learning environment that allows learners to acquire conceptual knowledge by constructing and simulating qualitative models of how systems

  15. Creating collaborative learning environments for transforming primary care practices now.

    Science.gov (United States)

    Miller, William L; Cohen-Katz, Joanne

    2010-12-01

    The renewal of primary care waits just ahead. The patient-centered medical home (PCMH) movement and a refreshing breeze of collaboration signal its arrival with demonstration projects and pilots appearing across the country. An early message from this work suggests that the development of collaborative, cross-disciplinary teams may be essential for the success of the PCMH. Our focus in this article is on training existing health care professionals toward being thriving members of this transformed clinical care team in a relationship-centered PCMH. Our description of the optimal conditions for collaborative training begins with delineating three types of teams and how they relate to levels of collaboration. We then describe how to create a supportive, safe learning environment for this type of training, using a different model of professional socialization, and tools for building culture. Critical skills related to practice development and the cross-disciplinary collaborative processes are also included. Despite significant obstacles in readying current clinicians to be members of thriving collaborative teams, a few next steps toward implementing collaborative training programs for existing professionals are possible using competency-based and adult learning approaches. Grasping the long awaited arrival of collaborative primary health care will also require delivery system and payment reform. Until that happens, there is an abundance of work to be done envisioning new collaborative training programs and initiating a nation-wide effort to motivate and reeducate our colleagues. PsycINFO Database Record (c) 2010 APA, all rights reserved.

  16. Ustvarjanje produktivnega geografskega učnega okolja z vidika učnih stilov, oblik in metod = Creating the productive geographical learning environment from the point of view of learning-styles and learning-methods

    Directory of Open Access Journals (Sweden)

    Lea Nemec

    2008-01-01

    Full Text Available Experiences, which we receive in space (indirectly influence on education process respectivelyon learning-environment. Because of that is the most productive learning-environmentthose witch founded on experiential-learning. In this research experience took the leadingplace in forming didactical approaches in teaching geography and to define learning-stylesand methods respectively in the direction of creating representative geographical learningenvironment.

  17. Challenging Heteronormativity: Creating a Safe and Inclusive Environment for LGBTQ Students

    Science.gov (United States)

    Steck, Andy K.; Perry, David

    2018-01-01

    Lesbian, gay, bisexual, transgender, and queer/questioning (LGBTQ) youth face hostile and exclusionary learning environments. A qualitative phenomenographic method involving semistructured interviews of seven secondary school administrators was conducted to identify perceptions of experiences creating a safe and inclusive environment for students…

  18. Teaching & Learning for International Students in a 'Learning Community': Creating, Sharing and Building Knowledge

    Directory of Open Access Journals (Sweden)

    Linzi Kemp, PhD

    2010-08-01

    Full Text Available This article considers the culture of learning communities for effective teaching. A learning community is defined here as an environment where learners are brought together to share information, to learn from each other, and to create new knowledge. The individual student develops her/his own learning by building on learning from others. In a learning community approach to teaching, educators can ensure that students gain workplace skills such as collaboration, creativity, critical thinking, and problem solving. In this case study, it is shown how an active learning community, introduced into a blended teaching environment (face-to-face and virtual, effectively supported international undergraduates in the building of knowledge and workplace skills.

  19. Toward Project-based Learning and Team Formation in Open Learning Environments

    NARCIS (Netherlands)

    Spoelstra, Howard; Van Rosmalen, Peter; Sloep, Peter

    2014-01-01

    Open Learning Environments, MOOCs, as well as Social Learning Networks, embody a new approach to learning. Although both emphasise interactive participation, somewhat surprisingly, they do not readily support bond creating and motivating collaborative learning opportunities. Providing project-based

  20. Creating an effective learning environment through an E-Learning Instructional Programme (ELIP

    Directory of Open Access Journals (Sweden)

    Maria Jakovljevic

    2009-12-01

    Full Text Available Though numerous research reports have provided a body of information about benefits of e-learning there are barriers such as, asynchronous communication channels, lack of personalisation, which decrease the level of interaction between the learner and instructor [13].The aim of this paper is to discuss and outline a framework on e-learning pedagogical and technology issues which provide a basis for the creation of an e-learning instructional programme (ELIP. The Phase I of this research start with the creation of a framework for an e-learning environment and derivation of the e-learning instructional programme (ELIP; Phase II is aimed to implement a popular audio playback device (iPod and VoIP. In this phase 40 learners, one instructor and three tutors will be observed and their experiences will be evaluated through focus group interviews and documents analysis. This research was based on a qualitative research approach [78],[44].

  1. Online faculty development for creating E-learning materials.

    Science.gov (United States)

    Niebuhr, Virginia; Niebuhr, Bruce; Trumble, Julie; Urbani, Mary Jo

    2014-01-01

    Faculty who want to develop e-learning materials face pedagogical challenges of transforming instruction for the online environment, especially as many have never experienced online learning themselves. They face technical challenges of learning new software and time challenges of not all being able to be in the same place at the same time to learn these new skills. The objective of the Any Day Any Place Teaching (ADAPT) faculty development program was to create an online experience in which faculty could learn to produce e-learning materials. The ADAPT curriculum included units on instructional design, copyright principles and peer review, all for the online environment, and units on specific software tools. Participants experienced asynchronous and synchronous methods, including a learning management system, PC-based videoconferencing, online discussions, desktop sharing, an online toolbox and optional face-to-face labs. Project outcomes were e-learning materials developed and participants' evaluations of the experience. Likert scale responses for five instructional units (quantitative) were analyzed for distance from neutral using one-sample t-tests. Interview data (qualitative) were analyzed with assurance of data trustworthiness and thematic analysis techniques. Participants were 27 interprofessional faculty. They evaluated the program instruction as easy to access, engaging and logically presented. They reported increased confidence in new skills and increased awareness of copyright issues, yet continued to have time management challenges and remained uncomfortable about peer review. They produced 22 new instructional materials. Online faculty development methods are helpful for faculty learning to create e-learning materials. Recommendations are made to increase the success of such a faculty development program.

  2. Creating the Strategic Learning Environment at City University London

    Science.gov (United States)

    Quinsee, Susannah; Bullimore, Anise

    2011-01-01

    Purpose: This paper aims to describe the creation of a new approach to the implementation of educational technologies at a UK Higher Education Institution. Driven by changes in technology, an evaluation of the virtual learning environment (VLE) provided the opportunity to reassess the application of technology to the curriculum. However, such an…

  3. Assistive Technology for Young Children: Creating Inclusive Learning Environments

    Science.gov (United States)

    Sadao, Kathleen C.; Robinson, Nancy B.

    2010-01-01

    Assistive technology (AT) can help young children with disabilities fully participate in natural, inclusive learning environments--but many early childhood professionals don't get the training they need to harness the power of AT. Fill that gap with this unintimidating, reader-friendly resource, the go-to guide to recommended AT practice for…

  4. A Framework for Creating Semantically Adaptive Collaborative E-learning Environments

    Directory of Open Access Journals (Sweden)

    Marija Cubric

    2009-09-01

    Full Text Available In this paper we present a framework that can be used to generate web-based, semantically adaptive, e-learning and computer-assisted assessment (CAA tools for any given knowledge domain, based upon dynamic ontological modeling. We accomplish this by generating “learning ontologies” for a given knowledge domain. The generated learning ontologies are built upon our previous work on a domain “Glossary” ontology and augmented with additional conceptual relations from the WordNet 3.0 lexical database, using Text2Onto, an open source ontology extraction tool. The main novelty of this work is in “on the fly” generation of computer assisted assessments based on the underlying ontology and pre-defined question templates that are founded on the Bloom’s taxonomy of educational objectives. The main deployment scenario for the framework is a web-service providing collaborative e- learning and knowledge management capabilities to various learning communities. The framework can be extended to provide collection and exploitation of the users’ learning behaviour metrics, in order to further adapt the generated e-learning environment to the learners’ needs.

  5. EDUCATION REFORMS TOWARDS 21ST CENTURY SKILLS: TRANSFORMING STUDENTS' LEARNING EXPERIENCES THROUGH EFFECTIVE LEARNING ENVIRONMENTS

    OpenAIRE

    Harriet Wambui Njui

    2018-01-01

    This paper reviews literature on learning environments with a view to making recommendations on how teachers could create effective and high-quality learning environments that provide learners with transformative learning experiences as they go through the process of education. An effective learning environment is critical because quality education, which is essential to real learning and human development, is influenced by factors both inside and outside the classroom. Learning institutions ...

  6. Reflections from the Field: Creating an Elementary Living Learning Makerspace

    Science.gov (United States)

    Shively, Kathryn L.

    2017-01-01

    This article features the creation of a makerspace in the elementary education (ELED) living and learning community (LLC) residence hall. This space was created based on the growing body of literature demonstrating the rise of makerspaces across learning environments as well as the need to expose pre-service teachers (PSTs) to early field…

  7. Interactive learning environments in augmented reality technology

    Directory of Open Access Journals (Sweden)

    Rafał Wojciechowski

    2010-01-01

    Full Text Available In this paper, the problem of creation of learning environments based on augmented reality (AR is considered. The concept of AR is presented as a tool for safe and cheap experimental learning. In AR learning environments students may acquire knowledge by personally carrying out experiments on virtual objects by manipulating real objects located in real environments. In the paper, a new approach to creation of interactive educational scenarios, called Augmented Reality Interactive Scenario Modeling (ARISM, is mentioned. In this approach, the process of building learning environments is divided into three stages, each of them performed by users with different technical and domain knowledge. The ARISM approach enables teachers who are not computer science experts to create AR learning environments adapted to the needs of their students.

  8. Pupil-Teacher Adjustment and Mutual Adaptation in Creating Classroom Learning Environments. Final Report.

    Science.gov (United States)

    Fox, Robert S.; And Others

    This investigation is directed toward an analysis of the dynamics of the learning situations in a variety of public school elementary and secondary classrooms. The focus of the project is to make a comparative analysis of the patterns of cooperation or alienation among parents, teachers, peers and individual pupils which create learning cultures…

  9. Creating visual explanations improves learning.

    Science.gov (United States)

    Bobek, Eliza; Tversky, Barbara

    2016-01-01

    Many topics in science are notoriously difficult for students to learn. Mechanisms and processes outside student experience present particular challenges. While instruction typically involves visualizations, students usually explain in words. Because visual explanations can show parts and processes of complex systems directly, creating them should have benefits beyond creating verbal explanations. We compared learning from creating visual or verbal explanations for two STEM domains, a mechanical system (bicycle pump) and a chemical system (bonding). Both kinds of explanations were analyzed for content and learning assess by a post-test. For the mechanical system, creating a visual explanation increased understanding particularly for participants of low spatial ability. For the chemical system, creating both visual and verbal explanations improved learning without new teaching. Creating a visual explanation was superior and benefitted participants of both high and low spatial ability. Visual explanations often included crucial yet invisible features. The greater effectiveness of visual explanations appears attributable to the checks they provide for completeness and coherence as well as to their roles as platforms for inference. The benefits should generalize to other domains like the social sciences, history, and archeology where important information can be visualized. Together, the findings provide support for the use of learner-generated visual explanations as a powerful learning tool.

  10. Climate for Learning: A Symposium. Creating a Climate for Learning, and the Humanizing Process. The Principal and School Discipline. Curriculum Bulletin Vol. XXXII, No. 341.

    Science.gov (United States)

    Johnson, Simon O.; Chaky, June

    This publication contains two articles focusing on creating a climate for learning. In "Creating a Climate for Learning, and the Humanizing Process," Simon O. Johnson offers practical suggestions for creating a humanistic learning environment. The author begins by defining the basic concepts--humanism, affective education, affective situation,…

  11. Students' Conception of Learning Environment and Their Approach to Learning and Its Implication on Quality Education

    Science.gov (United States)

    Belaineh, Matheas Shemelis

    2017-01-01

    Quality of education in higher institutions can be affected by different factors. It partly rests on the learning environment created by teachers and the learning approach students are employing during their learning. The main purpose of this study is to examine the learning environment at Mizan Tepi University from students' perspective and their…

  12. Design Process for Online Websites Created for Teaching Turkish as a Foreign Language in Web Based Environments

    Science.gov (United States)

    Türker, Fatih Mehmet

    2016-01-01

    In today's world, where online learning environments have increased their efficiency in education and training, the design of the websites prepared for education and training purposes has become an important process. This study is about the teaching process of the online learning environments created to teach Turkish in web based environments, and…

  13. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  14. A Practical Guide, with Theoretical Underpinnings, for Creating Effective Virtual Reality Learning Environments

    Science.gov (United States)

    O'Connor, Eileen A.; Domingo, Jelia

    2017-01-01

    With the advent of open source virtual environments, the associated cost reductions, and the more flexible options, avatar-based virtual reality environments are within reach of educators. By using and repurposing readily available virtual environments, instructors can bring engaging, community-building, and immersive learning opportunities to…

  15. Leveraging 21st Century Learning & Technology to Create Caring Diverse Classroom Cultures

    Science.gov (United States)

    Tarbutton, Tanya

    2018-01-01

    Creating diverse caring classroom environments, for all students, using innovative technology, is the impetus of this article. Administrators and teachers in many states have worked to integrate 21st Century Learning Outcomes and Local Control and Accountability Plans (LCAP) into daily teaching and learning. These initiatives are designed to…

  16. A Simulated Learning Environment for Teaching Medicine Dispensing Skills.

    Science.gov (United States)

    McDowell, Jenny; Styles, Kim; Sewell, Keith; Trinder, Peta; Marriott, Jennifer; Maher, Sheryl; Naidu, Som

    2016-02-25

    To develop an authentic simulation of the professional practice dispensary context for students to develop their dispensing skills in a risk-free environment. A development team used an Agile software development method to create MyDispense, a web-based simulation. Modeled on virtual learning environments elements, the software employed widely available standards-based technologies to create a virtual community pharmacy environment. Assessment. First-year pharmacy students who used the software in their tutorials, were, at the end of the second semester, surveyed on their prior dispensing experience and their perceptions of MyDispense as a tool to learn dispensing skills. The dispensary simulation is an effective tool for helping students develop dispensing competency and knowledge in a safe environment.

  17. Learning Environments as Basis for Cognitive Achievements of Students in Basic Science Classrooms in Nigeria

    Science.gov (United States)

    Atomatofa, Rachel; Okoye, Nnamdi; Igwebuike, Thomas

    2016-01-01

    The nature of classroom learning environments created by teachers had been considered very important for learning to take place effectively. This study investigated the effect of creating constructivist and transmissive learning environments on achievements of science students of different ability levels. 243 students formed the entire study…

  18. Creating a learning health care organization for participatory management: a case analysis.

    Science.gov (United States)

    Ford, Randal; Angermeier, Ingo

    2008-01-01

    This paper aims to define a theory of practice in successfully implementing management-communication practices in the service of organizational learning. A combination of research methods, both quantitative and qualitative, was used in gathering and analyzing data. Three principles in creating a supportive environment conducive to employee empowerment and participative decision making enable organizational learning. The study provides empirical findings in support of current theoretic knowledge in organizational learning and empowerment. The paper partly rectifies that little research has investigated the enabling structures and processes to manage the environment that surrounds and supports employee participative decision making and new learning to occur at the individual and collective level within a health care setting.

  19. Profiling medical school learning environments in Malaysia: a validation study of the Johns Hopkins Learning Environment Scale

    Directory of Open Access Journals (Sweden)

    Sean Tackett

    2015-07-01

    Full Text Available Purpose: While a strong learning environment is critical to medical student education, the assessment of medical school learning environments has confounded researchers. Our goal was to assess the validity and utility of the Johns Hopkins Learning Environment Scale (JHLES for preclinical students at three Malaysian medical schools with distinct educational and institutional models. Two schools were new international partnerships, and the third was school leaver program established without international partnership. Methods: First- and second-year students responded anonymously to surveys at the end of the academic year. The surveys included the JHLES, a 28-item survey using five-point Likert scale response options, the Dundee Ready Educational Environment Measure (DREEM, the most widely used method to assess learning environments internationally, a personal growth scale, and single-item global learning environment assessment variables. Results: The overall response rate was 369/429 (86%. After adjusting for the medical school year, gender, and ethnicity of the respondents, the JHLES detected differences across institutions in four out of seven domains (57%, with each school having a unique domain profile. The DREEM detected differences in one out of five categories (20%. The JHLES was more strongly correlated than the DREEM to two thirds of the single-item variables and the personal growth scale. The JHLES showed high internal reliability for the total score (α=0.92 and the seven domains (α, 0.56-0.85. Conclusion: The JHLES detected variation between learning environment domains across three educational settings, thereby creating unique learning environment profiles. Interpretation of these profiles may allow schools to understand how they are currently supporting trainees and identify areas needing attention.

  20. Creating an Innovative Learning Organization

    Science.gov (United States)

    Salisbury, Mark

    2010-01-01

    This article describes how to create an innovative learning (iLearning) organization. It begins by discussing the life cycle of knowledge in an organization, followed by a description of the theoretical foundation for iLearning. Next, the article presents an example of iLearning, followed by a description of the distributed nature of work, the…

  1. Information literacy experiencies inside virtual learning environments

    Directory of Open Access Journals (Sweden)

    Patricia Hernández Salazar

    2016-03-01

    Full Text Available Objective. Suggest the use of virtual learning environments as an Information Literacy (IL alternative. Method. Analysis of the main elements of web sites. To achieve this purpose the article includes the relationship between IL and the learning virtual environment (by defining both phrases; phases to create virtual IL programs; processes to elaborate didactic media; the applications that may support this plan; and the description of eleven examples of learning virtual environments IL experiences from four countries (Mexico, United States of America, Spain and United Kingdom these examples fulfill the conditions expressed. Results. We obtained four comparative tables examining five elements of each experience: objectives; target community; institution; country; and platform used. Conclusions. Any IL proposal should have a clear definition; IL experiences have to follow a didactic systematic process; described experiences are based on IL definition; the experiences analyzed are similar; virtual learning environments can be used as alternatives of IL.

  2. Creating healthy work environments: a strategic perspective.

    Science.gov (United States)

    Adamson, Bonnie J

    2010-01-01

    Although I find Graham Lowe and Ben Chan's logic model and work environment metrics thought provoking, a healthy work environment framework must be more comprehensive and consider the addition of recommended diagnostic tools, vehicles to deliver the necessary change and a sustainability strategy that allows for the tweaking and refinement of ideas. Basic structure is required to frame and initiate an effective process, while allowing creativity and enhancements to be made by organizations as they learn. I support the construction of a suggested Canadian health sector framework for measuring the health of an organization, but I feel that organizations need to have some freedom in that design and the ability to incorporate their own indicators within the established proven drivers. Reflecting on my organization's experience with large-scale transformation efforts, I find that emotional intelligence along with formal leadership development and front-line engagement in Lean process improvement activities are essential for creating healthy work environments that produce the balanced set of outcomes listed in my hospital's Balanced Scorecard.

  3. Education tools for entrepreneurship creating an action-learning environment through educational learning tools

    CERN Document Server

    Gómez, Jaime; Vélez-Torres, Francisco; Rueda-Armengot, Carlos

    2016-01-01

    This book examines education in entrepreneurship through an action-learning environment that employs various education tools, technology tools and pedagogical methods being implemented into university curriculums around the world. Entrepreneurship in all of its aspects, connotations, and applications has undoubtedly become a major force for new and sustainable wealth creation in both emerging and developed economies. This notion has been encouraging universities to incorporate entrepreneurship-related competencies into the curriculums of almost all subjects, as researchers, educators, and administrators alike acknowledge that students must be fully engaged and prepared to thrive in a society increasingly defined by innovation. In this context, the primary challenge consists in how to inspire or work beyond the mental limits in the classroom; to determine which learning platforms are required or useful to unlock and stimulate creativity and eliminate the human aversion to failure. Featuring contributions and c...

  4. Using Facebook as an informal learning environment.

    Science.gov (United States)

    Cain, Jeff; Policastri, Anne

    2011-12-15

    To create, implement, and assess the effectiveness of an optional Facebook activity intended to expose students to contemporary business issues not covered in the core content of a pharmacy management and leadership course and to perspectives of experts and thought leaders external to their university. An informal learning strategy was used to create a Facebook group page and guest experts were identified and invited to submit posts pertaining to business-related topics. Students were given instructions for joining the Facebook group but informed that participation was optional. A mixed-methods approach using a student questionnaire, results on examination questions, and a student focus group was used to assess this activity. The informal design with no posting guidelines and no participation requirement was well received by students, who appreciated the unique learning environment and exposure to external experts. Facebook provides an informal learning environment for presenting contemporary topics and the thoughts of guest experts not affiliated with a college or school, thereby exposing students to relevant "real world" issues.

  5. Personal Learning Environments for Language Learning

    Directory of Open Access Journals (Sweden)

    Panagiotis Panagiotidis

    2013-02-01

    Full Text Available The advent of web 2.0 and the developments it has introduced both in everyday practice and in education have generated discussion and reflection concerning the technologies which higher education should rely on in order to provide the appropriate e-learning services to future students. In this context, the Virtual Learning Environments (VLEs, which are widely used in universities around the world to provide online courses to every specific knowledge area and of course in foreign languages, have started to appear rather outdated. Extensive research is under progress, concerning the ways in which educational practice will follow the philosophy of web 2.0 by adopting the more learner-centred and collaborative approach of e-learning 2.0 applications, without abandoning the existing investment of the academic institutions in VLEs, which belong to the e-learning 1.0 generation, and, thus, serve a teacher- or coursecentred approach. Towards this direction, a notably promising solution seems to be the exploitation of web 2.0 tools in order to form Personal Learning Environments (PLEs. These are systems specifically designed or created by the combined use of various external applications or tools that can be used independently or act as a supplement to existing VLE platforms, creating a personalized learning environment. In a PLE, students have the opportunity to form their own personal way of working, using the tools they feel are most appropriate to achieve their purpose. Regarding the subject of foreign language, in particular, the creation of such personalized and adaptable learning environments that extend the traditional approach of a course seems to promise a more holistic response to students’ needs, who, functioning in the PLE, could combine learning with their daily practice, communicating and collaborating with others, thus increasing the possibilities of access to multiple sources, informal communication and practice and eventually

  6. Personal Learning Environments for Language Learning

    Directory of Open Access Journals (Sweden)

    Panagiotis Panagiotidis

    2012-12-01

    Full Text Available The advent of web 2.0 and the developments it has introduced both in everyday practice and in education have generated discussion and reflection concerning the technologies which higher education should rely on in order to provide the appropriate e-learning services to future students.In this context, the Virtual Learning Environments (VLEs, which are widely used in universities around the world to provide online courses to every specific knowledge area and of course in foreign languages, have started to appear rather outdated. Extensive research is under progress, concerning the ways in which educational practice will follow the philosophy of web 2.0 by adopting the more learner-centred and collaborative approach of e-learning 2.0 applications, without abandoning the existing investment of the academic institutions in VLEs, which belong to the e-learning 1.0 generation, and, thus, serve a teacher- or coursecentred approach.Towards this direction, a notably promising solution seems to be the exploitation of web 2.0 tools in order to form Personal Learning Environments (PLEs. These are systems specifically designed or created by the combined use of various external applications or tools that can be used independently or act as a supplement to existing VLE platforms, creating a personalized learning environment. In a PLE, students have the opportunity to form their own personal way of working, using the tools they feel are most appropriate to achieve their purpose.Regarding the subject of foreign language, in particular, the creation of such personalized and adaptable learning environments that extend the traditional approach of a course seems to promise a more holistic response to students’ needs, who, functioning in the PLE, could combine learning with their daily practice, communicating and collaborating with others, thus increasing the possibilities of access to multiple sources, informal communication and practice and eventually acquiring

  7. Implementation of Collaborative Learning in Higher Education Environment

    OpenAIRE

    Soetam Rizky Wicaksono

    2013-01-01

    The need of improvement in learning process, especially in higher education environment, has already begun a dilemma for many lecturers. Many experts has already agreed that one of the success factor in learning process improvement is creating collaboration among students. This pre-eliminary action research tried to implement collaborative learning from small groups using simple task and escalating into large group with more complicated collaborative framework. Although there is no quantific...

  8. High-Quality Learning Environments for Engineering Design: Using Tablet PCs and Guidelines from Research on How People Learn

    OpenAIRE

    Enrique Palou; Lourdes Gazca; Juan Antonio Díaz García; José Andrés Rojas Lobato; Luis Geraldo Guerrero Ojeda; José Francisco Tamborero Arnal; María Teresa Jiménez Munguía; Aurelio López-Malo; Juan Manuel Garibay

    2012-01-01

    A team of several faculty members and graduate students at Universidad de las Amricas Puebla is improving engineering design teaching and learning by creating richer learning environments that promote an interactive classroom while integrating formative assessment into classroom practices by means of Tablet PCs and associated technologies. Learning environments that are knowledge-, learner-, community-, and assessment-centered as highlighted by the How People Learn framework, have been devel...

  9. Constructivist Learning Environment During Virtual and Real Laboratory Activities

    Directory of Open Access Journals (Sweden)

    Ari Widodo

    2017-04-01

    Full Text Available Laboratory activities and constructivism are two notions that have been playing significant roles in science education. Despite common beliefs about the importance of laboratory activities, reviews reported inconsistent results about the effectiveness of laboratory activities. Since laboratory activities can be expensive and take more time, there is an effort to introduce virtual laboratory activities. This study aims at exploring the learning environment created by a virtual laboratory and a real laboratory. A quasi experimental study was conducted at two grade ten classes at a state high school in Bandung, Indonesia. Data were collected using a questionnaire called Constructivist Learning Environment Survey (CLES before and after the laboratory activities. The results show that both types of laboratories can create constructivist learning environments. Each type of laboratory activity, however, may be stronger in improving certain aspects compared to the other. While a virtual laboratory is stronger in improving critical voice and personal relevance, real laboratory activities promote aspects of personal relevance, uncertainty and student negotiation. This study suggests that instead of setting one type of laboratory against the other, lessons and follow up studies should focus on how to combine both types of laboratories to support better learning.

  10. Can a Hypermedia Cooperative e-Learning Environment Stimulate Constructive Collaboration?

    Science.gov (United States)

    Pragnell, Mary Victoria; Roselli, Teresa; Rossano, Veronica

    2006-01-01

    The growing use of the Internet in learning environments has led to new models being created addressing specific learning domains, as well as more general educational goals. In particular, in recent years considerable attention has been paid to collaborative learning supported by technology, because this mode can enhance peer interaction and group…

  11. Creating e-learning games with Unity

    CERN Document Server

    Horachek, David

    2014-01-01

    Unity is a fully integrated development engine providing the required functionality to create games and interactive 3D content, while reducing the time, effort, and cost of developing the content. Nowadays, many people have started to use Unity in an eLearning setting as it allows them to create real-world scenarios, or models, for training purposes. With Unity, one can develop video games that are not only fun, but are also effective teaching and learning tools. When properly designed, an engaging game is an ideal platform for the presentation, testing, and application of learning objectives.

  12. Learner Self-Regulation and Web 2.0 Tools Management in Personal Learning Environment

    Science.gov (United States)

    Yen, Cherng-Jyh; Tu, Chih-Hsiung; Sujo-Montes, Laura E.; Armfield, Shadow W. J.; Chan, Junn-Yih

    2013-01-01

    Web 2.0 technology integration requires a higher level of self-regulated learning skills to create a Personal Learning Environment (PLE). This study examined each of the four aspects of learner self-regulation in online learning (i.e., environment structuring, goal setting, time management, & task strategies) as the predictor for level of…

  13. The Relationship between Pre-Service Science Teachers' Epistemological Beliefs and Preferences for Creating a Constructivist Learning Environment

    Science.gov (United States)

    Saylan, Asli; Armagan, Fulya Öner; Bektas, Oktay

    2016-01-01

    The present study investigated the relationship between pre-service science teachers' epistemological beliefs and perceptions of a constructivist learning environment. The Turkish version of Constructivist Learning Environment Survey and Schommer's Epistemological Belief Questionnaire were administered to 531 pre-service science teachers attending…

  14. The clinical learning environment in nursing education: a concept analysis.

    Science.gov (United States)

    Flott, Elizabeth A; Linden, Lois

    2016-03-01

    The aim of this study was to report an analysis of the clinical learning environment concept. Nursing students are evaluated in clinical learning environments where skills and knowledge are applied to patient care. These environments affect achievement of learning outcomes, and have an impact on preparation for practice and student satisfaction with the nursing profession. Providing clarity of this concept for nursing education will assist in identifying antecedents, attributes and consequences affecting student transition to practice. The clinical learning environment was investigated using Walker and Avant's concept analysis method. A literature search was conducted using WorldCat, MEDLINE and CINAHL databases using the keywords clinical learning environment, clinical environment and clinical education. Articles reviewed were written in English and published in peer-reviewed journals between 1995-2014. All data were analysed for recurring themes and terms to determine possible antecedents, attributes and consequences of this concept. The clinical learning environment contains four attribute characteristics affecting student learning experiences. These include: (1) the physical space; (2) psychosocial and interaction factors; (3) the organizational culture and (4) teaching and learning components. These attributes often determine achievement of learning outcomes and student self-confidence. With better understanding of attributes comprising the clinical learning environment, nursing education programmes and healthcare agencies can collaborate to create meaningful clinical experiences and enhance student preparation for the professional nurse role. © 2015 John Wiley & Sons Ltd.

  15. Information and Communication Technologies in Schools A Handbook for Teachers or How ICT Can Create New, Open Learning Environments

    Directory of Open Access Journals (Sweden)

    Ramazan Güzel

    2017-02-01

    Full Text Available Information and Communication Technologies in Schools, a Handbook for Teachers or How ICT can Create New, Open Learning Environments delivers very detailed presentation and utilization of ICT in education. This publication is very good resource to teachers and teacher educators. In reviewing this book, the first thing that attracts the readers’ attention is the layout of the publication. Content, organization, and reference sources are efficient enough for this publication which aims to help teachers while forming new, open learning environments with ICT. However, the cover page image and watermark image in the first nine pages are not very relevant with use of ICT in education. Globe in the UNESCO Headquarter garden and the Eiffel Tower doesn’t make any sense with ICT. Instead of this image, more convenient image could have been selected.   This publication allows the reader to easily follow the use of ICT in the classroom by giving authentic examples. The book is divided into seven chapters and first chapter starts with the background information of the ICT. Second chapter explains very detailed ICT tools used for education. Some tools mentioned in this chapter under storage title have already been outdated. It shows that how fast technology changes and how fast it wears out the old technology. Third chapter mentions about the change in learning environment with the use of ICT by examining it from teachers’ and students’ view. In the fourth chapter, it proposes new pedagogical methods in learning and teaching. In my opinion, this chapter is foremost part of this publication. It explains the organization of the learning process with the use of ICT and examples are can easily be implemented in classrooms. Fifth Chapter describes the place of ICT in school learning activities. This chapter also defines how to structure ICT in school curricula. It gives very good examples but these examples do not relate directly to the teachers because

  16. [Learning about social determinants of health through chronicles, using a virtual learning environment].

    Science.gov (United States)

    Restrepo-Palacio, Sonia; Amaya-Guio, Jairo

    2016-01-01

    To describe the contributions of a pedagogical strategy based on the construction of chronicles, using a Virtual Learning Environment for training medical students from Universidad de La Sabana on social determinants of health. Descriptive study with a qualitative approach. Design and implementation of a Virtual Learning Environment based on the ADDIE instructional model. A Virtual Learning Environment was implemented with an instructional design based on the five phases of the ADDIE model, on the grounds of meaningful learning and social constructivism, and through the narration of chronicles or life stories as a pedagogical strategy. During the course, the structural determinants and intermediaries were addressed, and nine chronicles were produced by working groups made up of four or five students, who demonstrated meaningful learning from real life stories, presented a coherent sequence, and kept a thread; 82% of these students incorporated in their contents most of the social determinants of health, emphasizing on the concepts of equity or inequity, equality or inequality, justice or injustice and social cohesion. A Virtual Learning Environment, based on an appropriate instructional design, allows to facilitate learning of social determinants of health through a constructivist pedagogical approach by analyzing chronicles or life stories created by ninth-semester students of medicine from Universidad de La Sabana.

  17. What is the teachers’ role when students learn through design of learning games in a scaffolded gamified learning environment?

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke

    The aim of this research project is to create a reusable and flexible gamified learning design where the students are learning subject matters through the design of digital learning games. The students are their own learning designers forming teams that create games. The teams also peer review...... how the use of pre-build learning games in education can be taken a step further into the building of learning games while implementing subject matters from curriculum, not only focussing on the creative game design process. The aim of the form of this learning design is to scaffold the novice....../ play test each others games as a way to qualify the learning taking place around as well as inside the games they are building. The discussion is focusing on how the chosen pedagogical approach is framed within the gamified environment as well as on how the teachers can guide and scaffold the learning...

  18. Hipatia: a hypermedia learning environment in mathematics

    Directory of Open Access Journals (Sweden)

    Marisol Cueli

    2016-01-01

    Full Text Available Literature revealed the benefits of different instruments for the development of mathematical competence, problem solving, self-regulated learning, affective-motivational aspects and intervention in students with specific difficulties in mathematics. However, no one tool combined all these variables. The aim of this study is to present and describe the design and development of a hypermedia tool, Hipatia. Hypermedia environments are, by definición, adaptive learning systems, which are usually a web-based application program that provide a personalized learning environment. This paper describes the principles on which Hipatia is based as well as a review of available technologies developed in different academic subjects. Hipatia was created to boost self-regulated learning, develop specific math skills, and promote effective problem solving. It was targeted toward fifth and sixth grade students with and without learning difficulties in mathematics. After the development of the tool, we concluded that it aligned well with the logic underlying the principles of self-regulated learning. Future research is needed to test the efficacy of Hipatia with an empirical methodology.

  19. Online EEG-Based Workload Adaptation of an Arithmetic Learning Environment.

    Science.gov (United States)

    Walter, Carina; Rosenstiel, Wolfgang; Bogdan, Martin; Gerjets, Peter; Spüler, Martin

    2017-01-01

    In this paper, we demonstrate a closed-loop EEG-based learning environment, that adapts instructional learning material online, to improve learning success in students during arithmetic learning. The amount of cognitive workload during learning is crucial for successful learning and should be held in the optimal range for each learner. Based on EEG data from 10 subjects, we created a prediction model that estimates the learner's workload to obtain an unobtrusive workload measure. Furthermore, we developed an interactive learning environment that uses the prediction model to estimate the learner's workload online based on the EEG data and adapt the difficulty of the learning material to keep the learner's workload in an optimal range. The EEG-based learning environment was used by 13 subjects to learn arithmetic addition in the octal number system, leading to a significant learning effect. The results suggest that it is feasible to use EEG as an unobtrusive measure of cognitive workload to adapt the learning content. Further it demonstrates that a promptly workload prediction is possible using a generalized prediction model without the need for a user-specific calibration.

  20. Peer Learning in Social Media Enhanced Learning Environment

    Directory of Open Access Journals (Sweden)

    Anne-Maritta Tervakari

    2012-09-01

    Full Text Available TUT Circle, a dedicated social media service for students at Tampere University of Technology (TUT, was used as a learning environment for the purpose of enhancing students‘ collaboration, communication and networking skills required in business and working life and for promoting peer learning in small groups. Unfortunately, active conversation was limited. The students intensively read content created by other students, but they did not actively present their opinions, arguments or comments. Another reason for the lack of real conversation was procrastination. The students seemed to need more encouragement to comment on or question the ideas of others, more support to promote intergroup interaction and more assistance with time management.

  1. Design of Feedback in Interactive Multimedia Language Learning Environments

    Directory of Open Access Journals (Sweden)

    Vehbi Türel

    2012-01-01

    Full Text Available In interactive multimedia environments, different digital elements (i. e. video, audio, visuals, text, animations, graphics and glossary can be combined and delivered on the same digital computer screen (TDM 1997: 151, CCED 1987, Brett 1998: 81, Stenton 1998: 11, Mangiafico 1996: 46. This also enables effectively provision and presentation of feedback in pedagogically more efficient ways, which meets not only the requirement of different teaching and learning theories, but also the needs of language learners who vary in their learning-style preferences (Robinson 1991: 156, Peter 1994: 157f.. This study aims to bring out the pedagogical and design principles that might help us to more effectively design and customise feedback in interactive multimedia language learning environments. While so doing, some examples of thought out and customized computerised feedback from an interactive multimedia language learning environment, which were designed and created by the author of this study and were also used for language learning purposes, will be shown.

  2. The Effects of Study Tasks in a Computer-Based Chemistry Learning Environment

    Science.gov (United States)

    Urhahne, Detlef; Nick, Sabine; Poepping, Anna Christin; Schulz , Sarah Jayne

    2013-01-01

    The present study examines the effects of different study tasks on the acquisition of knowledge about acids and bases in a computer-based learning environment. Three different task formats were selected to create three treatment conditions: learning with gap-fill and matching tasks, learning with multiple-choice tasks, and learning only from text…

  3. TECHNOLOGY AND METHODS OF CREATING WEB-BASED LEARNING ENVIRONMENT FOR HUMANITIES EDUCATION

    Directory of Open Access Journals (Sweden)

    Вилена Александровна Брылева

    2013-04-01

    Full Text Available The purpose of the article is to describe the structure of web environment in frames of new educational paradigm in teaching Humanities, to clarify the scientifical and practical importance of using Web 2.0 technologies in higher education. This problem is of great importance due to the necessity of integration of modern IT into educational environment which needs to develop new methods of teaching.The model of educational environment presented in the article is based on the integration of LMS Moodle and PLE Mahara. The authors define the functional modules and means of the environment, describe its didactic qualities, organization requirements and usage advantages. The methodic model of teaching English worked out by the authors supposes step-by-step formation of professional as well as informational competence necessary to any modern specialist. The effectiveness of the model is verified by experiental learning, based on individual and group forms of work on educational site of Institute of Philology and Intercultural Communication of Volgograd State university.DOI: http://dx.doi.org/10.12731/2218-7405-2013-2-8

  4. CONCEPTS AND CHARACTERISTICS OF CLOUD ORIENTED LEARNING ENVIRONMENT OF SCHOOL

    Directory of Open Access Journals (Sweden)

    Svitlana G. Lytvynova

    2014-04-01

    Full Text Available The article deals with the basic concepts and characteristics of cloud oriented learning environment (COLE of secondary school. It is examined the concept of "cloud oriented learning environment", "mobility training", the requirements for COLE, the goal of creating, the structural components, model deployment, maintenance. Four cloud storages are compared; the subjects and objects of COLE are described; the meaning of spatial and semantic, content and methodical, communication and organizational components are clarified; the benefits and features of cloud computing are defined. It is found that COLE creates conditions for active cooperation, provides mobility of learning process participants, and objects’ virtualization. It is available anywhere and at any time, ensures the development of creativity and innovation, critical thinking, ability to solve problems, to develop communicative, cooperative, life and career skills, to work with data, media, to develop ICT competence either of students and teachers.

  5. Teaching strategies in web technologies for virtual learning environments

    Directory of Open Access Journals (Sweden)

    Ilber Dario Saza-Garzón

    2016-12-01

    Full Text Available The virtual learning environments (AVAs have been a subject of discussion and questions mainly on finding the best teaching practices, which tools you can use them and how to achieve optimum utilization have better results in virtual education, for Therefore in this paper some elements about the characteristics, history, teaching, studies have virtual environments and web applications as tools to support teaching and learning, are set for a virtual tutor note the when planning, designing, creating and implementing online courses. Thus the reader will find concepts, explanations and different evolutionary processes that wins ICT and how are you have been involved in the educational context, spotting potential applications from mediation of teaching, plus some suggestions of how to carry out exposed use thereof in virtual learning environments to strengthen the different processes of teaching and learning.

  6. Clinical learning environments: place, artefacts and rhythm.

    Science.gov (United States)

    Sheehan, Dale; Jowsey, Tanisha; Parwaiz, Mariam; Birch, Mark; Seaton, Philippa; Shaw, Susan; Duggan, Alison; Wilkinson, Tim

    2017-10-01

    Health care practitioners learn through experience in clinical environments in which supervision is a key component, but how that learning occurs outside the supervision relationship remains largely unknown. This study explores the environmental factors that inform and support workplace learning within a clinical environment. An observational study drawing on ethnographic methods was undertaken in a general medicine ward. Observers paid attention to interactions among staff members that involved potential teaching and learning moments that occurred and were visible in the course of routine work. General purpose thematic analysis of field notes was undertaken. A total of 376 observations were undertaken and documented. The findings suggest that place (location of interaction), rhythm (regularity of activities occurring in the ward) and artefacts (objects and equipment) were strong influences on the interactions and exchanges that occurred. Each of these themes had inherent tensions that could promote or inhibit engagement and therefore learning opportunities. Although many learning opportunities were available, not all were taken up or recognised by the participants. We describe and make explicit how the natural environment of a medical ward and flow of work through patient care contribute to the learning architecture, and how this creates or inhibits opportunities for learning. Awareness of learning opportunities was often tacit and not explicit for either supervisor or learner. We identify strategies through which tensions inherent within space, artefacts and the rhythms of work can be resolved and learning opportunities maximised. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  7. COOPERATIVE LEARNING ENVIRONMENT WITH THE WEB 2.0 TOOL E-PORTFOLIOS

    Directory of Open Access Journals (Sweden)

    Soh OR KAN

    2011-07-01

    Full Text Available In recent years, the development of information and communication technology (ICT in the world and Malaysia namely has created a significant impact on the methods of communicating information and knowledge to the learners and consequently, innovative teaching techniques have evolved to change the ways teachers teach and the ways students learn. This study main focuses are directed on developing a cooperative learning environment to promote an active learning environment of smart schools in Malaysia. Within this learning process, multimedia technology and Web 2.0 tools, namely, MyPortfolio were integrated to provide the students to learn on their own as well as to document their progress and experience within this cooperative learning environment. The core purpose of this study is to establish the impact on student learning, their perceptions and learning experiences of the cooperative learning environment using web 2.0 tools among the smart secondary schools students in Malaysia. Surveys were conducted to students to ascertain their reaction towards these learning environment activities. The results of this project were encouraging as the students managed to cope with each other to reach their common goal. The usage of blogs acts as an important tool to enhance team cooperation and to foster a learning community within the class.

  8. Student nurse dyads create a community of learning: proposing a holistic clinical education theory.

    Science.gov (United States)

    Ruth-Sahd, Lisa A

    2011-11-01

    This paper is a report of a qualitative study of students' experiences of cooperative learning in the clinical setting. Although cooperative learning is often used successfully in the classroom, it has not been documented in the clinical setting with sophomore nursing students being paired with other sophomore nursing students. Using a grounded theory methodology a sample of 64 participants (32 student nurse dyads, eight clinical groups, in two different acute care institutions) were observed on their first day in the clinical setting while working as cooperative partners. Interviews were also conducted with students, patients and staff preceptors. Data were collected in the fall of 2008, spring and fall of 2009 and the spring of 2010 using semi-structured interviews and reflective surveys. Data were analysed using the constant comparative method. A holistic clinical education theory for student nurses was identified from the data. This theory includes a reciprocal relationship among five categories relevant to a community of learning: supportive clinical experience; improved transition into practice; enhanced socialization into the profession; increased accountability and responsibility; and emergence of self-confidence as a beginning student nurse. The use of student dyads creates a supportive learning environment while students were able to meet the clinical learning objectives. Cooperative learning in the clinical setting creates a community of learning while instilling very early in the education process the importance of teamwork. This approach to clinical instruction eases the transition from the classroom to the clinical learning environment, and improves patient outcomes. © 2011 Blackwell Publishing Ltd.

  9. Developing 21st Century Skills through a Constructivist-Constructionist Learning Environment

    Directory of Open Access Journals (Sweden)

    Lay Ah-Nam

    2017-04-01

    Full Text Available Science and technology innovation and 21st century skills are increasingly important in the 21st century workplace. The purpose of this study is to propose an instructional strategy that develop constructivist-constructionist learning environment that simultaneously develop chemistry knowledge and 21st century skills. Based on constructivist and constructionist learning theories, we identified three central guiding principles for this study: (1 engage students in discovery and problem solving task through teamwork, (2 provide opportunities for communicating ideas, and (3 involve students in the process of design. An intervention module, Malaysian Kimia (chemistry Digital Game known as MyKimDG, was developed as a mechanism for creating the learning environment. In this study, students were required to work collaboratively to design educational media that help their peers who face difficulty in learning particular concept. They were guided to go through the IDPCR (Inquiry, Discover, Produce, Communicate and Review phases. It is hypothesized that MyKimDG can create learning environment that allows students to deepen subject content knowledge and practice various 21st century skills in real situation. This study employed quasi-experimental study with non-equivalent control group pretest-posttest control group design. Results suggest that this approach is able to improve the acquisition of chemistry knowledge and high productivity skill.

  10. Students' perceptions of learning environment in Guilan University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Mahdokht Taheri

    2013-05-01

    Full Text Available  Background and purpose: There is an increasing interest and concern regarding the role of learning environment in undergraduate medical education in recent years. Educational environment is one of the most important factors determining the success of an effective curriculum. The quality of educational environment has been identified to be crucial for effective learning.we compared the perceptions of Basic sciences students and clinical phase regarding the learning environment and also to identify the gender related differences in their perceptions.Method: In this study, the Dundee Ready Education Environment Measure (DREEM inventory was used. The total score for all subscales is 200. In this study, DREEM was administered to undergraduate medical students of basic sciences students (n=120, and clinical phase (n= 100 and the scores were compared using a nonparametric test.Results Between the two batches, basic sciences students were found to be more than satisfied with the learning environment at GUMS compared to the clinical phase. Gender wise, there was not much difference in the students' perceptions.Conclusion: This study revealed that both groups of students perceived learning environment relatively more Negative than Positive in GUMS. It is essential for faculty members to place more efforts on observing principals of instructional design and create an appropriate educational environment in order to provide a better learning for students.Keywords:LEARNING ENVIRONMENT,,MEDICAL SCHOOL

  11. Learning environments matter: Identifying influences on the motivation to learn science

    Directory of Open Access Journals (Sweden)

    Salomé Schulze

    2015-05-01

    Full Text Available In the light of the poor academic achievement in science by secondary school students in South Africa, students' motivation for science learning should be enhanced. It is argued that this can only be achieved with insight into which motivational factors to target, with due consideration of the diversity in schools. The study therefore explored the impact of six motivational factors for science learning in a sample of 380 Grade Nine boys and girls from three racial groups, in both public and independent schools. The students completed the Student Motivation for Science Learning questionnaire. Significant differences were identified between different groups and school types. The study is important for identifying the key role of achievement goals, science learning values and science self-efficacies. The main finding emphasises the significant role played by science teachers in motivating students for science in terms of the learning environments that they create. This has important implications for future research, aimed at a better understanding of these environments. Such insights are needed to promote scientific literacy among the school students, and so contribute to the improvement of science achievement in South Africa.

  12. Creating a space for creative learning: the importance of engaging management and teachers in the design process

    DEFF Research Database (Denmark)

    Bøjer, Bodil

    2018-01-01

    parties are engaged in the design process in order to ensure a common goal: creating the best frame for creative learning. In reality, this rarely happens and the users are left with a physical learning environment where the intentions do not match the expectations and established practises. To remedy...

  13. Creating the environment for innovation and entrepreneurship

    Directory of Open Access Journals (Sweden)

    Paul M. Lane

    2016-10-01

    Full Text Available Innovation generation and diffusion have been widely acknowledged as hinging upon the complex set of institutional, social and psychological processes. The objective of the paper is to examine the need and possibilities of creating the environment for innovation and entrepreneurship in the university setting. In particular, this paper focuses on interrelationships and roles of specific groups of university members: the administration, faculty and students. The study is exploratory in character, based on observations and literature review. It starts with defining modern-day university as home of innovation emphasizing the need for interdisciplinary and interinstitutional approaches. The paper discusses the need of faculty to learn to reach across the institution and beyond to work with others, working across silos of academia and meeting with others from very different disciplines. Second it examines ways the university administration support can encourage innovation among its faculty, staff and students. Third, it draws on existing research to identify key dimensions of change. The study proposes pathways that may activate the mechanisms of climate and infrastructure for innovation. The proposed dimensions and analyzed areas of change can potentially form the foundations of a framework for universities seeking to diagnose their existing condition and use such findings to enhance the generation and diffusion of innovation. The university quest to break down the barriers and reach across the disciplines to generate innovation takes commitment which needs to be coupled with administrative change such as the reward structures lined up with the vision and changes regarding the teaching and learning practices as well as the physical environment for the classes, the class rooms and meeting spaces of students and faculty.

  14. Creating by Reusing Learning Design Solutions

    NARCIS (Netherlands)

    Hernández-Leo, Davinia; Harrer, Andreas; Dodero, Juan Manuel; Asensio-Pérez, Juan; Burgos, Daniel

    2006-01-01

    Hernández-Leo, D., Harrer, A., Dodero, J. M., Asension-Pérez, J. I., & Burgos, D. (2006). Creating by reusing Learning Design solutions. Proceedings of 8th Simposo Internacional de Informática Educativa, León, Spain: IEEE Technical Committee on Learning Technology. Retrieved October 3rd, 2006, from

  15. The learning environment of paediatric interns in South Africa.

    Science.gov (United States)

    Naidoo, Kimesh L; Van Wyk, Jacqueline M; Adhikari, Miriam

    2017-11-29

    South African (SA) paediatric interns (recently qualified medical graduates) work in a high disease burdened and resource deficient environment for two years, prior to independent practice. Perceptions of this learning environment (LE) influences their approaches to training as well as the outcomes of this period of development. Obstacles to creating a supportive LE and supervisor interaction affects the quality of this training. Measuring perceptions of the LE with validated instruments can help inform improvements in learning during this crucial period of medical education. The aims of this study was to determine the psychometric qualities of the Postgraduate Hospital Educational Environment Measure (PHEEM) amongst paediatric interns across four hospital complexes in South Africa and to measure the LE as perceived by both interns and their supervisors. Construct validity was tested using factor analysis and internal consistency was measured with Cronbach's alpha. A total of 209 interns and 60 supervisors (69% intern response rate) responded to the questionnaire. The PHEEM was found to be very reliable with an overall Cronbach's alpha of 0.943 and 0.874 for intern and supervisors respectively. Factor analysis using a 3-factor solution accounted for 42% of the variance with the teaching subscale having the best fit compared with the other sub-scales of the original tool. Most interns perceived the learning environment as being more positive than negative however, their perceptions differed significantly from that of their supervisors. Poor infrastructural support from institutions, excessive workloads and inadequate supervision were factors preventing optimal training of paediatric interns. The SA version of the PHEEM tool used was found to be a reliable and valid instrument for use in interns amongst high disease burdened contexts. Various obstacles to creating an ideal learning environment for paediatric interns were identified to be in need of urgent review. Key

  16. Automation and Control Learning Environment with Mixed Reality Remote Experiments Architecture

    Directory of Open Access Journals (Sweden)

    Frederico M. Schaf

    2007-05-01

    Full Text Available This work aims to the use of remotely web-based experiments to improve the learning process of automation and control systems theory courses. An architecture combining virtual learning environments, remote experiments, students guide and experiments analysis is proposed based on a wide state of art study. The validation of the architecture uses state of art technologies and new simple developed programs to implement the case studies presented. All implementations presented use an internet accessible virtual learning environment providing educational resources, guides and learning material to create a distance learning course associated with the remote mixed reality experiment. This work is part of the RExNet consortium, supported by the European Alfa project.

  17. A Development of Game-Based Learning Environment to Activate Interaction among Learners

    Science.gov (United States)

    Takaoka, Ryo; Shimokawa, Masayuki; Okamoto, Toshio

    Many studies and systems that incorporate elements such as “pleasure” and “fun” in the game to improve a learner's motivation have been developed in the field of learning environments. However, few are the studies of situations where many learners gather at a single computer and participate in a game-based learning environment (GBLE), and where the GBLE designs the learning process by controlling the interactions between learners such as competition, collaboration, and learning by teaching. Therefore, the purpose of this study is to propose a framework of educational control that induces and activates interaction between learners intentionally to create a learning opportunity that is based on the knowledge understanding model of each learner. In this paper, we explain the design philosophy and the framework of our GBLE called “Who becomes the king in the country of mathematics?” from a game viewpoint and describe the method of learning support control in the learning environment. In addition, we report the results of the learning experiment with our GBLE, which we carried out in a junior high school, and include some comments by a principal and a teacher. From the results of the experiment and some comments, we noticed that a game may play a significant role in weakening the learning relationship among students and creating new relationships in the world of the game. Furthermore, we discovered that learning support control of the GBLE has led to activation of the interaction between learners to some extent.

  18. Learner-Responsive Instructional Strategies for Adults in Accelerated Classroom Formats: Creating Inclusive Learning Environments

    Science.gov (United States)

    Gupta, Kalpana

    2012-01-01

    This study was focused on investigating inclusive learning environments in accelerated classroom formats. Three 8-week sections of an undergraduate course at Regis University were examined. Results from observations and surveys were analyzed to determine the effectiveness and consistency of 13 inclusive strategies derived from Wlodkowski and…

  19. Pervasive Learning Environments

    DEFF Research Database (Denmark)

    Hundebøl, Jesper; Helms, Niels Henrik

    2006-01-01

    The potentials of pervasive communication in learning within industry and education are right now being explored through different R&D projects. This paper outlines the background for and the possible learning potentials in what we describe as pervasive learning environments (PLE). PLE?s differ...... from virtual learning environments (VLE) primarily because in PLE?s the learning content is very much related to the actual context in which the learner finds himself. Two local (Denmark) cases illustrate various aspects of pervasive learning. One is the eBag, a pervasive digital portfolio used...

  20. A model for hypermedia learning environments based on electronic books

    Directory of Open Access Journals (Sweden)

    Ignacio Aedo

    1997-12-01

    Full Text Available Current hypermedia learning environments do not have a common development basis. Their designers have often used ad-hoc solutions to solve the learning problems they have encountered. However, hypermedia technology can take advantage of employing a theoretical scheme - a model - which takes into account various kinds of learning activities, and solves some of the problems associated with its use in the learning process. The model can provide designers with the tools for creating a hypermedia learning system, by allowing the elements and functions involved in the definition of a specific application to be formally represented.

  1. Technology-Supported Learning Environments in Science Classrooms in India

    Science.gov (United States)

    Gupta, Adit; Fisher, Darrell

    2012-01-01

    The adoption of technology has created a major impact in the field of education at all levels. Technology-supported classroom learning environments, involving modern information and communication technologies, are also entering the Indian educational system in general and the schools in Jammu region (Jammu & Kashmir State, India) in…

  2. A Measurement Model of Gestures in an Embodied Learning Environment: Accounting for Temporal Dependencies

    Science.gov (United States)

    Andrade, Alejandro; Danish, Joshua A.; Maltese, Adam V.

    2017-01-01

    Interactive learning environments with body-centric technologies lie at the intersection of the design of embodied learning activities and multimodal learning analytics. Sensing technologies can generate large amounts of fine-grained data automatically captured from student movements. Researchers can use these fine-grained data to create a…

  3. Metacognitive components in smart learning environment

    Science.gov (United States)

    Sumadyo, M.; Santoso, H. B.; Sensuse, D. I.

    2018-03-01

    Metacognitive ability in digital-based learning process helps students in achieving learning goals. So that digital-based learning environment should make the metacognitive component as a facility that must be equipped. Smart Learning Environment is the concept of a learning environment that certainly has more advanced components than just a digital learning environment. This study examines the metacognitive component of the smart learning environment to support the learning process. A review of the metacognitive literature was conducted to examine the components involved in metacognitive learning strategies. Review is also conducted on the results of study smart learning environment, ranging from design to context in building smart learning. Metacognitive learning strategies certainly require the support of adaptable, responsive and personalize learning environments in accordance with the principles of smart learning. The current study proposed the role of metacognitive component in smart learning environment, which is useful as the basis of research in building environment in smart learning.

  4. Model-Based Learning Environment Based on The Concept IPS School-Based Management

    Directory of Open Access Journals (Sweden)

    Hamid Darmadi

    2017-03-01

    Full Text Available The results showed: (1 learning model IPS-oriented environment can grow and not you love the cultural values of the area as a basis for the development of national culture, (2 community participation, and the role of government in implementing learning model of IPS-based environment provides a positive impact for the improvement of management school resources, (3 learning model IPS-based environment effectively creating a way of life together peacefully, increase the intensity of togetherness and mutual respect (4 learning model IPS-based environment can improve student learning outcomes, (5 there are differences in the expression of attitudes and results learning among students who are located in the area of conflict with students who are outside the area of conflict (6 analysis of the scale of attitudes among school students da SMA result rewards high school students to the values of unity and nation, respect for diversity and peaceful coexistence, It is recommended that the Department of Education authority as an institution of Trustees and the development of social and cultural values in the province can apply IPS learning model based environments.

  5. Instructional Designers' Media Selection Practices for Distributed Problem-Based Learning Environments

    Science.gov (United States)

    Fells, Stephanie

    2012-01-01

    The design of online or distributed problem-based learning (dPBL) is a nascent, complex design problem. Instructional designers are challenged to effectively unite the constructivist principles of problem-based learning (PBL) with appropriate media in order to create quality dPBL environments. While computer-mediated communication (CMC) tools and…

  6. Bridging Theory and Practice: Developing Guidelines to Facilitate the Design of Computer-based Learning Environments

    Directory of Open Access Journals (Sweden)

    Lisa D. Young

    2003-10-01

    Full Text Available Abstract. The design of computer-based learning environments has undergone a paradigm shift; moving students away from instruction that was considered to promote technical rationality grounded in objectivism, to the application of computers to create cognitive tools utilized in constructivist environments. The goal of the resulting computer-based learning environment design principles is to have students learn with technology, rather than from technology. This paper reviews the general constructivist theory that has guided the development of these environments, and offers suggestions for the adaptation of modest, generic guidelines, not mandated principles, that can be flexibly applied and allow for the expression of true constructivist ideals in online learning environments.

  7. Digital Education With IT: How to Create Motivational and Inclusive Education in Blended Learning Environments Using Flipped Learning

    DEFF Research Database (Denmark)

    Pedersen, Annette; Nielsen, Annegrethe; Wahl, Christian

    2014-01-01

    The purpose of this paper is to examine how collaborative IT-design integrated in pedagogic designs can create motivation and transfer from an educational setting into the student’s clinical education. Learning design for higher education can be challenging, especially in subjects with great...... quantities of theoretical material and where students have difficulties in linking theory with practice. This paper reports a case study in the nurse bachelor education, in which the subject studied is “Organization, administration and management”. Former evaluations indicate great student dissatisfaction...

  8. Towards New Cultures of Learning: Personal Learning Environments as a Developmental Perspective for Improving Higher Education Language Courses

    Science.gov (United States)

    Laakkonen, Ilona; Taalas, Peppi

    2015-01-01

    This article provides readers with an understanding of the concept of the personal learning environment (PLE). It suggests that PLEs can be used in two complementary ways: as a developmental lens for integrating ICT and creating new pedagogical practices and digital literacies for academic language learning, and as a context in which learners can…

  9. Strategic planning for future learning environments: an exploration of interpersonal, interprofessional and political factors.

    Science.gov (United States)

    Schmidt, Cathrine

    2013-09-01

    This article, written from the stance of a public planner and a policy maker, explores the challenges and potential in creating future learning environments through the concept of a new learning landscape. It is based on the belief that physical planning can support the strategic goals of universities. In Denmark, a political focus on education as a mean to improve national capacity for innovation and growth are redefining the universities role in society. This is in turn changing the circumstances for the physical planning. Drawing on examples of physical initiatives in three different scales--city, building and room scale, the paper highlights how space and place matters on an interpersonal, an interprofessional and a political level. The article suggests that a wider understanding of how new learning landscapes are created--both as a material reality and a political discourse--can help frame an emerging community of practice. This involves university leaders, faculty and students, architects, designers and urban planners, citizens and policy makers with the common goal of creating future learning environments today.

  10. Pervasive Learning Environments

    DEFF Research Database (Denmark)

    Helms, Niels Henrik; Hundebøl, Jesper

    2006-01-01

    The potentials of pervasive communication in learning within industry and education are right know being explored through different R&D projects. This paper outlines the background for and the possible learning potentials in what we describe as pervasive learning environments (PLE). PLE's differ...... from virtual learning environments (VLE) primarily because in PLE's the learning content is very much related to the actual context in which the learner finds himself. Two local (Denmark) cases illustrate various aspects of pervasive learning. One is the eBag, a pervasive digital portfolio used...... in schools. The other is moreover related to work based learning in that it foresees a community of practitioners accessing, sharing and adding to knowledge and learning objects held within a pervasive business intelligence system. Limitations and needed developments of these and other systems are discussed...

  11. TELMA: Technology-enhanced learning environment for minimally invasive surgery.

    Science.gov (United States)

    Sánchez-González, Patricia; Burgos, Daniel; Oropesa, Ignacio; Romero, Vicente; Albacete, Antonio; Sánchez-Peralta, Luisa F; Noguera, José F; Sánchez-Margallo, Francisco M; Gómez, Enrique J

    2013-06-01

    Cognitive skills training for minimally invasive surgery has traditionally relied upon diverse tools, such as seminars or lectures. Web technologies for e-learning have been adopted to provide ubiquitous training and serve as structured repositories for the vast amount of laparoscopic video sources available. However, these technologies fail to offer such features as formative and summative evaluation, guided learning, or collaborative interaction between users. The "TELMA" environment is presented as a new technology-enhanced learning platform that increases the user's experience using a four-pillared architecture: (1) an authoring tool for the creation of didactic contents; (2) a learning content and knowledge management system that incorporates a modular and scalable system to capture, catalogue, search, and retrieve multimedia content; (3) an evaluation module that provides learning feedback to users; and (4) a professional network for collaborative learning between users. Face validation of the environment and the authoring tool are presented. Face validation of TELMA reveals the positive perception of surgeons regarding the implementation of TELMA and their willingness to use it as a cognitive skills training tool. Preliminary validation data also reflect the importance of providing an easy-to-use, functional authoring tool to create didactic content. The TELMA environment is currently installed and used at the Jesús Usón Minimally Invasive Surgery Centre and several other Spanish hospitals. Face validation results ascertain the acceptance and usefulness of this new minimally invasive surgery training environment. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. PROMOTING MEANINGFUL LEARNING THROUGH CREATE-SHARE-COLLABORATE

    OpenAIRE

    Sailin, Siti Nazuar; Mahmor, Noor Aida

    2017-01-01

    Students in this 21st century are required to acquire these 4C skills: Critical thinking, Communication, Collaboration and Creativity. These skills can be integrated in the teaching and learning through innovative teaching that promotes active and meaningful learning. One way of integrating these skills is through collaborative knowledge creation and sharing. This paper providesan example of meaningful teaching and learning activities designed within the Create-Share-Collaborate instructional...

  13. BOOK REVIEW STUDENT-TEACHER INTERACTION IN ONLINE LEARNING ENVIRONMENTS

    Directory of Open Access Journals (Sweden)

    Harun SERPIL

    2017-04-01

    Full Text Available As online learning environments do not lend themselves to face-to-face interaction between teachers and students, it is essential to understand how to ensure healthy social presence in online learning. This book provides a useful selection of both commonly used and recently developed theories by discussing current research and giving examples of social presence in latest Online Learning Environments (OLEs. The book examines how the appropriate use of technological tools can relate instructors, peers, and course content. The reports on successful implementations are reinforced with research involving pre-service teachers. Both experienced and inexperienced educators will benefit by being informed about the effective use of many valuable tools exemplified here. The last six chapters present an array of new models that support social presence, and demonstrate how traditional paradigms can be used to create online social presence.

  14. Cultivating ICT Students' Interpersonal Soft Skills in Online Learning Environments Using Traditional Active Learning Techniques

    Science.gov (United States)

    Myers, Trina S.; Blackman, Anna; Andersen, Trevor; Hay, Rachel; Lee, Ickjai; Gray, Heather

    2014-01-01

    Flexible online delivery of tertiary ICT programs is experiencing rapid growth. Creating an online environment that develops team building and interpersonal skills is difficult due to factors such as student isolation and the individual-centric model of online learning that encourages discrete study rather than teamwork. Incorporating teamwork…

  15. Creating Small Learning Communities: Lessons from the Project on High-Performing Learning Communities about "What Works" in Creating Productive, Developmentally Enhancing, Learning Contexts

    Science.gov (United States)

    Felner, Robert D.; Seitsinger, Anne M.; Brand, Stephen; Burns, Amy; Bolton, Natalie

    2007-01-01

    Personalizing the school environment is a central goal of efforts to transform America's schools. Three decades of work by the Project on High Performance Learning Communities are considered that demonstrate the potential impact and importance of the creation of "small learning environments" on student motivation, adjustment, and well-being.…

  16. Using a critical reflection process to create an effective learning community in the workplace.

    Science.gov (United States)

    Walker, Rachel; Cooke, Marie; Henderson, Amanda; Creedy, Debra K

    2013-05-01

    Learning circles are an enabling process to critically examine and reflect on practices with the purpose of promoting individual and organizational growth and change. The authors adapted and developed a learning circle strategy to facilitate open discourse between registered nurses, clinical leaders, clinical facilitators and students, to critically reflect on practice experiences to promote a positive learning environment. This paper reports on an analysis of field notes taken during a critical reflection process used to create an effective learning community in the workplace. A total of 19 learning circles were conducted during in-service periods (that is, the time allocated for professional education between morning and afternoon shifts) over a 3 month period with 56 nurses, 33 students and 1 university-employed clinical supervisor. Participation rates ranged from 3 to 12 individuals per discussion. Ten themes emerged from content analysis of the clinical learning issues identified through the four-step model of critical reflection used in learning circle discussions. The four-step model of critical reflection allowed participants to reflect on clinical learning issues, and raise them in a safe environment that enabled topics to be challenged and explored in a shared and cooperative manner. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Extending the "Knowledge Advantage": Creating Learning Chains

    Science.gov (United States)

    Maqsood, Tayyab; Walker, Derek; Finegan, Andrew

    2007-01-01

    Purpose: The purpose of this paper is to develop a synergy between the approaches of knowledge management in a learning organisation and supply chain management so that learning chains can be created in order to unleash innovation and creativity by managing knowledge in supply chains. Design/methodology/approach: Through extensive literature…

  18. The learning environment and medical student burnout: a multicentre study.

    Science.gov (United States)

    Dyrbye, Liselotte N; Thomas, Matthew R; Harper, William; Massie, F Stanford; Power, David V; Eacker, Anne; Szydlo, Daniel W; Novotny, Paul J; Sloan, Jeff A; Shanafelt, Tait D

    2009-03-01

    Little is known about specific personal and professional factors influencing student distress. The authors conducted a comprehensive assessment of how learning environment, clinical rotation factors, workload, demographics and personal life events relate to student burnout. All medical students (n = 3080) at five medical schools were surveyed in the spring of 2006 using a validated instrument to assess burnout. Students were also asked about the aforementioned factors. A total of 1701 medical students (response rate 55%) completed the survey. Learning climate factors were associated with student burnout on univariate analysis (odds ratio [OR] 1.36-2.07; all P burnout (ORs 1.69 and 1.48, respectively; both P student burnout. Students who experienced a positive personal life event had a lower frequency of burnout (OR 0.70; P burnout than students who did not experience a negative personal life event. On multivariate analysis personal characteristics, learning environment and personal life events were all independently related to student burnout. Although a complex array of personal and professional factors influence student well-being, student satisfaction with specific characteristics of the learning environment appears to be a critical factor. Studies determining how to create a learning environment that cultivates student well-being are needed.

  19. THE ENVIRONMENT AS A CRUCIAL LEARNING FACTOR AT PRE-SCHOOL

    Directory of Open Access Journals (Sweden)

    Snježana Močinić

    2016-01-01

    Full Text Available In this essay, the author hypothesizes that physical environment is an essential factor for developing an educational project. The environment is considered a sort of "third educator", playing a decisive role in determining the quality of learning. Classrooms, laboratory, the corridor, the structure of the building itself and the context in which the building is placed; the colours of the walls, the quality of natural and artificial light in the building, the furniture and materials for learning are variables which determine the environment where a child lives, learns, experiences, begins relationships with other people. The educator is very important in the process of a child's development. By means of direct and indirect action, he/she can create an attractive space in the building, more accessible for the processes of functional learning. The empirical research, described in the present survey, underlines the importance of pre-schools as an important place for meeting, interaction, listening and reciprocity leading toward an improvement in the relationship between the child and the school environment. In particular, this empirical research will show the diversity of the places and materials teachers made available to children.

  20. Pervasive Learning Environments

    DEFF Research Database (Denmark)

    Hundebøl, Jesper; Helms, Niels Henrik

    in schools. The other is moreover related to work based learning in that it foresees a community of practitioners accessing, sharing and adding to knowledge and learning objects held within a pervasive business intelligence system. Limitations and needed developments of these and other systems are discussed......Abstract: The potentials of pervasive communication in learning within industry and education are right know being explored through different R&D projects. This paper outlines the background for and the possible learning potentials in what we describe as pervasive learning environments (PLE). PLE......'s differ from virtual learning environments (VLE) primarily because in PLE's the learning content is very much related to the actual context in which the learner finds himself. Two local (Denmark) cases illustrate various aspects of pervasive learning. One is the eBag, a pervasive digital portfolio used...

  1. Enhancing Learning within the 3-D Virtual Learning Environment

    OpenAIRE

    Shirin Shafieiyoun; Akbar Moazen Safaei

    2013-01-01

    Today’s using of virtual learning environments becomes more remarkable in education. The potential of virtual learning environments has frequently been related to the expansion of sense of social presence which is obtained from students and educators. This study investigated the effectiveness of social presence within virtual learning environments and analysed the impact of social presence on increasing learning satisfaction within virtual learning environments. Second Life, as an example of ...

  2. Perceptions of Pre-Service Teachers on the Design of a Learning Environment Based on the Seven Principles of Good Practice

    Science.gov (United States)

    Al-Furaih, Suad Abdul Aziz

    2017-01-01

    This study explored the perceptions of 88 pre-service teachers on the design of a learning environment using the Seven Principles of Good Practice and its effect on participants' abilities to create their Cloud Learning Environment (CLE). In designing the learning environment, a conceptual model under the name 7 Principles and Integrated Learning…

  3. Nurses and Lifelong Learning: Creating "Makers and Shapers" or "Users and Choosers"?

    Science.gov (United States)

    Butcher, Diane; Bruce, Anne

    2016-04-01

    How have the meaning and goals of lifelong learning for nurses shifted under neoliberal political policy? This article critically scrutinizes the political undercurrents of lifelong learning. While the original intent of lifelong learning was to foster intellectual, critical, social, and political citizen engagement (creating "makers and shapers" of social policy), instrumental learning-learning to meet practical economic ends-has taken priority and is instead creating marketable workers (creating "users and choosers"). International educational neoliberal policy reform has altered the very nature of education. Under pervasive neoliberal political influence, lifelong learning has become distorted as the goals of learning have shifted towards creating marketable workers who are expected, while unsupported, to engage in learning to ensure ongoing employability in an open market. By examining new understandings of lifelong learning, nurses can make informed choices as to whether they aspire to be a "user and chooser" or "maker and shaper" of lifelong learning in their workplaces. © 2015 Wiley Periodicals, Inc.

  4. Experimenting on how to create a sustainable gamified learning design that supports adult students when learning through designing learning games

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke

    2014-01-01

    digital learning games (small games) in cross‐disciplinary subject matters. The experiment has focused on creating a game‐based learning design that enables the students to implement the learning goals into their games, and on making the game design process motivating and engaging. Another focus......This paper presents and discusses the first iteration of a design‐based research experiment focusing on how to create an overall gamified learning design (big Game) facilitating the learning process for adult students by letting them be their own learning designers through designing their own...... of the study has been to create a sustainable learning design that supports the learning game design process and gives teachers the ability to evaluate whether the students have been successful in learning their subject matter through this learning game design process. The findings are that this initial...

  5. Designing Science Learning Environments That Support Emerging Bilingual Students to Problematize Electrical Phenomena

    Science.gov (United States)

    Suarez, Enrique A.

    This dissertation investigates how emerging bilingual students make sense of natural phenomena through engaging in certain epistemic practices of science, and the elements of the learning environment that created those opportunities. Specifically, the dissertation focuses on how emerging bilingual students problematized electrical phenomena, like electric flow and electrical resistance, and how the design features of the environment (e.g., sequencing of activities, linguistic practices) may have supported students as they made sense of phenomena. The first study describes how for students presented and evaluated mechanistic models of electric flow, focusing specifically on how students identified and negotiated a disagreement between their explanatory models. The results from this study highlight the complexity of students' disagreements, not only because of the epistemological aspects related to presenting and evaluating knowledge, but also due to interpersonal dynamics and the discomfort associated with disagreeing with another person. The second study focuses on the design features of the learning environment that supported emerging bilingual students' investigations of electrical phenomena. The findings from this study highlight how a carefully designed set of activities, with the appropriate material resources (e.g., experimental tools), could support students to problematize electrical resistance. The third study describes how emerging bilingual students engaged in translanguaging practices and the contextual features of the learning environment that created and hindered opportunities for translanguaging. The findings from this study identify and articulate how emerging bilingual students engaged in translanguaging practices when problematizing electrical resistance, and strengthen the perspective that, in order to be equitable for emerging bilingual students, science learning environments need to act as translanguaging spaces. This dissertation makes three

  6. Developing a Supportive Learning Environment in a Newly Formed Organisation

    Science.gov (United States)

    Lancaster, Sue; Di Milia, Lee

    2015-01-01

    Purpose: The aim of this study was to examine the factors that employees perceived were important in creating a supportive learning environment in a recently merged organisation. The study provides rich qualitative data from the employees' perspective. Design/methodology/approach: This case study used a qualitative phenomenological constructivist…

  7. Mixed-reality Learning Environments: What Happens When You Move from a Laboratory to a Classroom?

    OpenAIRE

    King, Barbara; Smith, Carmen Petrick

    2018-01-01

    The advent ofmotion-controlled technologies has unlocked new possibilities for body-basedlearning in the mathematics classroom. For example, mixed-reality learning environments allow students theopportunity to embody a mathematical concept while simultaneously beingprovided a visual interface that represents their movement.  In the current study, we created amixed-reality environment to help children learn about angle measurement, andwe investigated similarities and differen...

  8. Foreign language learning in immersive virtual environments

    Science.gov (United States)

    Chang, Benjamin; Sheldon, Lee; Si, Mei; Hand, Anton

    2012-03-01

    Virtual reality has long been used for training simulations in fields from medicine to welding to vehicular operation, but simulations involving more complex cognitive skills present new design challenges. Foreign language learning, for example, is increasingly vital in the global economy, but computer-assisted education is still in its early stages. Immersive virtual reality is a promising avenue for language learning as a way of dynamically creating believable scenes for conversational training and role-play simulation. Visual immersion alone, however, only provides a starting point. We suggest that the addition of social interactions and motivated engagement through narrative gameplay can lead to truly effective language learning in virtual environments. In this paper, we describe the development of a novel application for teaching Mandarin using CAVE-like VR, physical props, human actors and intelligent virtual agents, all within a semester-long multiplayer mystery game. Students travel (virtually) to China on a class field trip, which soon becomes complicated with intrigue and mystery surrounding the lost manuscript of an early Chinese literary classic. Virtual reality environments such as the Forbidden City and a Beijing teahouse provide the setting for learning language, cultural traditions, and social customs, as well as the discovery of clues through conversation in Mandarin with characters in the game.

  9. Energy-Smart Building Choices: How Parents and Teachers Are Helping to Create Better Environments for Learning

    International Nuclear Information System (INIS)

    Energy Smart Schools Team

    2001-01-01

    Most K-12 schools could save 25% of their energy costs by being smart about energy. Nationwide, the savings potential is$6 billion. While improving energy use in buildings and busses, schools are likely to create better places for teaching and learning, with better lighting, temperature control, acoustics, and air quality. This brochure, targeted to parents and teachers, describes how schools can become more energy efficient

  10. Effective Learning Environments in Relation to Different Learning Theories

    OpenAIRE

    Guney, Ali; Al, Selda

    2012-01-01

    There are diverse learning theories which explain learning processes which are discussed within this paper, through cognitive structure of learning process. Learning environments are usually described in terms of pedagogical philosophy, curriculum design and social climate. There have been only just a few studies about how physical environment is related to learning process. Many researchers generally consider teaching and learning issues as if independent from physical environment, whereas p...

  11. Constructing Liminal Blends in a Collaborative Augmented-Reality Learning Environment

    Science.gov (United States)

    Enyedy, Noel; Danish, Joshua A.; DeLiema, David

    2015-01-01

    In vision-based augmented-reality (AR) environments, users view the physical world through a video feed or device that "augments" the display with a graphical or informational overlay. Our goal in this manuscript is to ask "how" and "why" these new technologies create opportunities for learning. We suggest that AR is…

  12. Creating Participatory Online Learning Environments: A Social Learning Approach Revisited

    Science.gov (United States)

    Conley, Quincy; Lutz, Heather S.; Padgitt, Amanda J.

    2017-01-01

    Online learning has never been more popular than it is today. Due to the rapid growth of online instruction at colleges and universities, questions about the effectiveness of online courses have been raised. In this paper, we suggest guidelines for the selection and application of social media tools. In addition to describing the potential…

  13. Utilizing Twitter and #Hashtags toward Enhancing Student Learning in an Online Course Environment

    Science.gov (United States)

    Bledsoe, T. Scott; Harmeyer, Dave; Wu, Shuang Frances

    2014-01-01

    The authors offer an answer to the research question, To what extent and in what ways is Twitter helpful to student learning when group hashtags are created and used in collaborative educational environments? Sixty-two students in a spring 2012 graduate online Research Methodology course worked individually and in groups to create discussions on…

  14. Teachers' experiences of teaching in a blended learning environment.

    Science.gov (United States)

    Jokinen, Pirkko; Mikkonen, Irma

    2013-11-01

    This paper considers teachers' experiences of teaching undergraduate nursing students in a blended learning environment. The basic idea of the study programme was to support students to reflect on theory and practice, and provide with access to expert and professional knowledge in real-life problem-solving and decision making. Learning was organised to support learning in and about work: students worked full-time and this provided excellent opportunities for learning both in practice, online and face-to-face sessions. The aim of the study was to describe teachers' experiences of planning and implementing teaching and learning in a blended-learning-based adult nursing programme. The research method was qualitative, and the data were collected by three focus group interviews, each with four to six participants. The data were analysed using qualitative content analysis. The results show that the blended learning environment constructed by the combination of face-to-face learning and learning in practice with technology-mediated learning creates challenges that must be taken into consideration when planning and implementing blended teaching and learning. However, it provides good opportunities to enhance students' learning in and about work. This is because such programmes support student motivation through the presence of "real-life" and their relevance to the students' own places of work. Nevertheless, teachers require knowledge of different pedagogical approaches; they need professional development support in redesigning teaching and learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Designing new collaborative learning spaces in clinical environments: experiences from a children's hospital in Australia.

    Science.gov (United States)

    Bines, Julie E; Jamieson, Peter

    2013-09-01

    Hospitals are complex places that provide a rich learning environment for students, staff, patients and their families, professional groups and the community. The "new" Royal Children's Hospital opened in late 2011. Its mission is focused on improving health and well-being of children and adolescents through leadership in healthcare, research and education. Addressing the need to create "responsive learning environments" aligned with the shift to student-centred pedagogy, two distinct learning environments were developed within the new Royal Children's Hospital; (i) a dedicated education precinct providing a suite of physical environments to promote a more active, collaborative and social learning experience for education and training programs conducted on the Royal Children's Hospital campus and (ii) a suite of learning spaces embedded within clinical areas so that learning becomes an integral part of the daily activities of this busy Hospital environment. The aim of this article is to present the overarching educational principles that lead the design of these learning spaces and describe the opportunities and obstacles encountered in the development of collaborative learning spaces within a large hospital development.

  16. Talent Management for Creating a Performance Work Environment ...

    African Journals Online (AJOL)

    This article examines the extent to which talent management can contribute towards creating a performance work environment (PWE) that can enhance sustainable talent identifi cation and development in the public service. The literature analysis results reveal that talent management is essential in creating a PWE in the ...

  17. Challenges Encountered in Creating Personalised Learning Activities to Suit Students Learning Preferences

    OpenAIRE

    O'Donnell, Eileen; Wade, Vincent; Sharp, Mary; O'Donnell, Liam

    2013-01-01

    This book chapter reviews some of the challenges encountered by educators in creating personalised e-learning activities to suit students learning preferences. Technology-enhanced learning (TEL) alternatively known as e-learning has not yet reached its full potential in higher education. There are still many potential uses as yet undiscovered and other discovered uses which are not yet realisable by many educators. TEL is still predominantly used for e-dissemination and e-administration. This...

  18. Mapping Students’ Informal Learning Using Personal Learning Environment

    Directory of Open Access Journals (Sweden)

    Jelena Anđelković Labrović

    2014-07-01

    Full Text Available Personal learning environments are a widely spared ways of learning, especially for the informal learning process. The aim of this research is to identify the elements of studens’ personal learning environment and to identify the extent to which students use modern technology for learning as part of their non-formal learning. A mapping system was used for gathering data and an analysis of percentages and frequency counts was used for data analysis in the SPSS. The results show that students’ personal learning environment includes the following elements: Wikipedia, Google, YouTube and Facebook in 75% of all cases, and an interesting fact is that all of them belong to a group of Web 2.0 tools and applications.

  19. Maximising meaning : Creating a learning environment for reading comprehension of informative texts from a Vygotskian perspective

    NARCIS (Netherlands)

    van Rijk, Y.; Volman, M.; de Haan, D.; van Oers, B.

    Sociocultural theories based on the work of Vygotsky have been increasingly influential in educational sciences. Developmental education (DE) is a pedagogical approach based on Vygotskian theory that has inspired primary schools in the Netherlands to change the learning environment innovatively in a

  20. Conditions for Productive Learning in Network Learning Environments

    DEFF Research Database (Denmark)

    Ponti, M.; Dirckinck-Holmfeld, Lone; Lindström, B.

    2004-01-01

    are designed without a deep understanding of the pedagogical, communicative and collaborative conditions embedded in networked learning. Despite the existence of good theoretical views pointing to a social understanding of learning, rather than a traditional individualistic and information processing approach......The Kaleidoscope1 Jointly Executed Integrating Research Project (JEIRP) on Conditions for Productive Networked Learning Environments is developing and elaborating conceptual understandings of Computer Supported Collaborative Learning (CSCL) emphasizing the use of cross-cultural comparative......: Pedagogical design and the dialectics of the digital artefacts, the concept of collaboration, ethics/trust, identity and the role of scaffolding of networked learning environments.   The JEIRP is motivated by the fact that many networked learning environments in various European educational settings...

  1. Students’ Motivation for Learning in Virtual Learning Environments

    OpenAIRE

    Beluce, Andrea Carvalho; Oliveira, Katya Luciane de

    2015-01-01

    The specific characteristics of online education require of the student engagement and autonomy, factors which are related to motivation for learning. This study investigated students’ motivation in virtual learning environments (VLEs). For this, it used the Teaching and Learning Strategy and Motivation to Learn Scale in Virtual Learning Environments (TLSM-VLE). The scale presented 32 items and six dimensions, three of which aimed to measure the variables of autonomous motivation, controlled ...

  2. Generation and Application of Virtual Dynamic Learning Environments

    Directory of Open Access Journals (Sweden)

    Esther Zaretsky

    2009-04-01

    Full Text Available The generation of virtual dynamic learning environments by mental imagery improved physical education of student teachers. Up-to-date studies showed that training computerized simulations improved spatial abilities, especially visualization of the body's movements in space, and enhanced academic achievements. The main program of the research concentrated on creating teaching units focusing on a variety of physical skills through computerized dynamic presentations. The findings showed that as the student teachers practiced the creation of simulations through the PowerPoint Software, it became clear to them how the computer is related to physical activities. Consequently their presentations became highly animated, and applied to the natural environment. The student teachers applied their presentations in their practical classroom and reported about their pupils' progress in physical skills. Moreover the motivation of the student teachers and pupils to both modes of learning, manipulating virtually and physically, was enhanced.

  3. Evaluation Methods on Usability of M-Learning Environments

    Directory of Open Access Journals (Sweden)

    Teresa Magal-Royo

    2007-10-01

    Full Text Available Nowadays there are different evaluation methods focused in the assessment of the usability of telematic methods. The assessment of 3rd generation web environments evaluates the effectiveness and usability of application with regard to the user needs. Wireless usability and, specifically in mobile phones, is concentrated in the validation of the features and tools management using conventional interactive environments. There is not a specific and suitable criterion to evaluate created environments and m-learning platforms, where the restricted and sequential representation is a fundamental aspect to be considered.The present paper exposes the importance of the conventional usability methods to verify both: the employed contents in wireless formats, and the possible interfaces from the conception phases, to the validations of the platform with such characteristics.The development of usability adapted inspection could be complemented with the Remote’s techniques of usability testing, which are being carried out these days in the mobile devices field and which pointed out the need to apply common criteria in the validation of non-located learning scenarios.

  4. Facilitative and obstructive factors in the clinical learning environment: Experiences of pupil enrolled nurses.

    Science.gov (United States)

    Lekalakala-Mokgele, Eucebious; Caka, Ernestine M

    2015-03-31

    The clinical learning environment is a complex social entity that influences student learning outcomes in the clinical setting. Students can experience the clinical learning environment as being both facilitative and obstructive to their learning. The clinical environment may be a source of stress, creating feelings of fear and anxiety which in turn affect the students' responses to learning. Equally, the environment can enhance learning if experienced positively. This study described pupil enrolled nurses' experiences of facilitative and obstructive factors in military and public health clinical learning settings. Using a qualitative, contextual, exploratory descriptive design, three focus group interviews were conducted until data saturation was reached amongst pupil enrolled nurses in a military School of Nursing. Data analysed provided evidence that acceptance by clinical staff and affordance of self-directed learning facilitated learning. Students felt safe to practise when they were supported by the clinical staff. They felt a sense of belonging when the staff showed an interest in and welcomed them. Learning was obstructed when students were met with condescending comments. Wearing of a military uniform in the public hospital and horizontal violence obstructed learning in the clinical learning environment. Students cannot have effective clinical preparation if the environment is not conducive to and supportive of clinical learning, The study shows that military nursing students experience unique challenges as they are trained in two professions that are hierarchical in nature. The students experienced both facilitating and obstructing factors to their learning during their clinical practice. Clinical staff should be made aware of factors which can impact on students' learning. Policies need to be developed for supporting students in the clinical learning environment.

  5. Evaluation of a Learning Object Based Learning Environment in Different Dimensions

    Directory of Open Access Journals (Sweden)

    Ünal Çakıroğlu

    2009-11-01

    Full Text Available Learning Objects (LOs are web based learning resources presented by Learning Object Repositories (LOR. For recent years LOs have begun to take place on web and it is suggested that appropriate design of LOs can make positive impact on learning. In order to support learning, research studies recommends LOs should have been evaluated pedagogically and technologically, and the content design created by using LOs should have been designed through appropriate instructional models. Since the use of LOs have recently begun, an exact pedagogical model about efficient use of LOs has not been developed. In this study a LOR is designed in order to be used in mathematics education. The LOs in this LOR have been evaluated pedagogically and technologically by mathematics teachers and field experts. In order to evaluate the designed LO based environment, two different questionnaires have been used. These questionnaires are developed by using the related literature about web based learning environments evaluation criteria and also the items are discussed with the field experts for providing the validity. The reliability of the questionnaires is calculated cronbach alpha = 0.715 for the design properties evaluation survey and cronbach alpha =0.726 for pedagogic evaluation. Both of two questionnaires are five point Likert type. The first questionnaire has the items about “Learning Support of LOs, Competency of LOR, The importance of LOs in mathematics education, the usability of LOs by students”. “The activities on LOs are related to outcomes of subjects, there are activities for students have different learning styles. There are activities for wondering students.” are examples for items about learning support of LOs. “System helps for exploration of mathematical relations”, “I think teaching mathematics with this system will be enjoyable.” are example items for importance of LOs in mathematics education. In the competency of LOR title,

  6. Exploring Collaborative Learning Effect in Blended Learning Environments

    Science.gov (United States)

    Sun, Z.; Liu, R.; Luo, L.; Wu, M.; Shi, C.

    2017-01-01

    The use of new technology encouraged exploration of the effectiveness and difference of collaborative learning in blended learning environments. This study investigated the social interactive network of students, level of knowledge building and perception level on usefulness in online and mobile collaborative learning environments in higher…

  7. The learning environment and learning styles: a guide for mentors.

    Science.gov (United States)

    Vinales, James Jude

    The learning environment provides crucial exposure for the pre-registration nursing student. It is during this time that the student nurse develops his or her repertoire of skills, knowledge, attitudes and behaviour in order to meet competencies and gain registration with the Nursing and Midwifery Council. The role of the mentor is vital within the learning environment for aspiring nurses. The learning environment is a fundamental platform for student learning, with mentors key to identifying what is conducive to learning. This article will consider the learning environment and learning styles, and how these two essential elements guide the mentor in making sure they are conducive to learning.

  8. The influence of an online virtual situated environment on a Chinese learning community

    Directory of Open Access Journals (Sweden)

    Kuo-En Chang

    2012-03-01

    Full Text Available This study used an online virtual environment to create and develop a Chinese learning community. The purposes of research were (1 to enhance the Chinese learners’ oral Chinese communication skills and (2 to change the community members’ Chinese speaking and teaching behavior. This is an action research. The research tried to create a community in a virtual environment. The research results showed that (1 a virtual community can enhance learner’s Chinese competence, and (2 future Chinese teachers’ instructional and leading skills can be developed in a virtual community situation.

  9. Instant Messaging for Creating Interactive and Collaborative m-Learning Environments

    Directory of Open Access Journals (Sweden)

    James Kadirire

    2007-06-01

    Full Text Available 'Instant Messaging' (IM and 'Presence,' which is essentially the ability of being able to detect if other users are logged in on the network and send them messages in real time, has become one of the most popular applications of the Internet, causing people to want to stay connected to the Internet for inordinate amounts of time, a phenomena that also fosters a sense of "online community," that perhaps no other application has done previously (Alvestrand, 2002. This research looks at the use of mobile devices to send instant messages that can carry much more information than the short message service (SMS messages, but would be free to use, notwithstanding the price of getting online. We present a prototype IM system that can be used as a viable means of communicating and learning in higher education establishments. There is some evidence to show that learning using mobile devices reduces the formality of the learning experience, and helps engage reluctant learners and raise their self-confidence. In order for the learning process to be successful in online distance learning, unlike in the traditional face-to-face learning, attention must be paid to developing the participants' sense of community within their particular group. Instant messaging – or IM – is a natural medium for online community building and asynchronous/ synchronous peer discussions.

  10. "In Our Own Words": Creating Videos as Teaching and Learning Tools

    Directory of Open Access Journals (Sweden)

    Norda Majekodunmi

    2012-11-01

    Full Text Available Online videos, particularly those on YouTube, have proliferated on the internet; watching them has become part of our everyday activity. While libraries have often harnessed the power of videos to create their own promotional and informational videos, few have created their own teaching and learning tools beyond screencasting videos. In the summer of 2010, the authors, two librarians at York University, decided to work on a video project which culminated in a series of instructional videos entitled “Learning: In Our Own Words.” The purpose of the video project was twofold: to trace the “real” experience of incoming students and their development of academic literacies skills (research, writing and learning throughout their first year, and to create videos that librarians and other instructors could use as instructional tools to engage students in critical thinking and discussion. This paper outlines the authors’ experience filming the videos, creating a teaching guide, and screening the videos in the classroom. Lessons learned during this initiative are discussed in the hope that more libraries will develop videos as teaching and learning tools.

  11. Authentic leaders creating healthy work environments for nursing practice.

    Science.gov (United States)

    Shirey, Maria R

    2006-05-01

    Implementation of authentic leadership can affect not only the nursing workforce and the profession but the healthcare delivery system and society as a whole. Creating a healthy work environment for nursing practice is crucial to maintain an adequate nursing workforce; the stressful nature of the profession often leads to burnout, disability, and high absenteeism and ultimately contributes to the escalating shortage of nurses. Leaders play a pivotal role in retention of nurses by shaping the healthcare practice environment to produce quality outcomes for staff nurses and patients. Few guidelines are available, however, for creating and sustaining the critical elements of a healthy work environment. In 2005, the American Association of Critical-Care Nurses released a landmark publication specifying 6 standards (skilled communication, true collaboration, effective decision making, appropriate staffing, meaningful recognition, and authentic leadership) necessary to establish and sustain healthy work environments in healthcare. Authentic leadership was described as the "glue" needed to hold together a healthy work environment. Now, the roles and relationships of authentic leaders in the healthy work environment are clarified as follows: An expanded definition of authentic leadership and its attributes (eg, genuineness, trustworthiness, reliability, compassion, and believability) is presented. Mechanisms by which authentic leaders can create healthy work environments for practice (eg, engaging employees in the work environment to promote positive behaviors) are described. A practical guide on how to become an authentic leader is advanced. A research agenda to advance the study of authentic leadership in nursing practice through collaboration between nursing and business is proposed.

  12. Facilitative and obstructive factors in the clinical learning environment: Experiences of pupil enrolled nurses

    Directory of Open Access Journals (Sweden)

    Eucebious Lekalakala-Mokgele

    2015-03-01

    Full Text Available Background: The clinical learning environment is a complex social entity that influences student learning outcomes in the clinical setting. Students can experience the clinical learning environment as being both facilitative and obstructive to their learning. The clinical environment may be a source of stress, creating feelings of fear and anxiety which in turn affect the students’ responses to learning. Equally, the environment can enhance learning if experienced positively. Objectives: This study described pupil enrolled nurses’ experiences of facilitative and obstructive factors in military and public health clinical learning settings. Method: Using a qualitative, contextual, exploratory descriptive design, three focus group interviews were conducted until data saturation was reached amongst pupil enrolled nurses in a military School of Nursing. Results: Data analysed provided evidence that acceptance by clinical staff and affordance of self-directed learning facilitated learning. Students felt safe to practise when they were supported by the clinical staff. They felt a sense of belonging when the staff showed an interest in and welcomed them. Learning was obstructed when students were met with condescending comments. Wearing of a military uniform in the public hospital and horizontal violence obstructed learning in the clinical learning environment. Conclusion: Students cannot have effective clinical preparation if the environment is not conducive to and supportive of clinical learning, The study shows that military nursing students experience unique challenges as they are trained in two professions that are hierarchical in nature. The students experienced both facilitating and obstructing factors to their learning during their clinical practice. Clinical staff should be made aware of factors which can impact on students’ learning. Policies need to be developed for supporting students in the clinical learning

  13. Ubiquitous mobile knowledge construction in collaborative learning environments.

    Science.gov (United States)

    Baloian, Nelson; Zurita, Gustavo

    2012-01-01

    Knowledge management is a critical activity for any organization. It has been said to be a differentiating factor and an important source of competitiveness if this knowledge is constructed and shared among its members, thus creating a learning organization. Knowledge construction is critical for any collaborative organizational learning environment. Nowadays workers must perform knowledge creation tasks while in motion, not just in static physical locations; therefore it is also required that knowledge construction activities be performed in ubiquitous scenarios, and supported by mobile and pervasive computational systems. These knowledge creation systems should help people in or outside organizations convert their tacit knowledge into explicit knowledge, thus supporting the knowledge construction process. Therefore in our understanding, we consider highly relevant that undergraduate university students learn about the knowledge construction process supported by mobile and ubiquitous computing. This has been a little explored issue in this field. This paper presents the design, implementation, and an evaluation of a system called MCKC for Mobile Collaborative Knowledge Construction, supporting collaborative face-to-face tacit knowledge construction and sharing in ubiquitous scenarios. The MCKC system can be used by undergraduate students to learn how to construct knowledge, allowing them anytime and anywhere to create, make explicit and share their knowledge with their co-learners, using visual metaphors, gestures and sketches to implement the human-computer interface of mobile devices (PDAs).

  14. I’m just thinking - How learning opportunities are created in doctoral supervision

    DEFF Research Database (Denmark)

    Kobayashi, Sofie; Berge, Maria; Grout, Brian William Wilson

    for learning. Earlier research into doctoral supervision has been rather vague on how doctoral students learn to carry out research. Empirically, we have based the study on four cases each with one doctoral student and their supervisors. The supervision sessions were captured on video and audio to provide...... for verbatim transcripts that were subsequently analysed. Our results illustrate how supervisors and doctoral students create learning opportunities by varying aspects of research in the discussion. Better understanding of this mechanism whereby learning opportunities are created by bringing aspects......With this paper we aim to contribute towards an understanding of learning dynamics in doctoral supervision by analysing how learning opportunities are created in the interaction. We analyse interaction between supervisors and doctoral students using the notion of experiencing variation as a key...

  15. Nuclear Knowledge Creation and Transfer in Enriched Learning Environments: A Practical Approach

    International Nuclear Information System (INIS)

    Ruiz, F.; Gonzalez, J.; Delgado, J.L.

    2016-01-01

    Full text: Technology, the social nature of learning and the generational learning style are conforming new models of training that are changing the roles of the instructors, the channels of communication and the proper learning content of the knowledge to be transferred. New training methodologies are being using in the primary and secondary education and “Vintage” classroom learning does not meet the educational requirements of these methodologies; therefore, it’s necessary to incorporate them in the Knowledge Management processes used in the nuclear industry. This paper describes a practical approach of an enriched learning environment with the purpose of creating and transferring nuclear knowledge. (author

  16. Creating a Learning Community for Solutions to Climate Change

    Science.gov (United States)

    Bloom, A. J.; Benedict, B. A.; Blockstein, D. E.; Hassenzahl, D. M.; Hunter, A.; Jorgensen, A. D.; Pfirman, S. L.

    2011-12-01

    The rapidly evolving and interdisciplinary nature of climate change presents a challenge to colleges and universities as they seek to educate undergraduate students. To address this challenge, the National Council for Science and the Environment (NCSE) with NSF funding is creating a nationwide cyber-enabled learning community called CAMEL (Climate, Adaptation, and Mitigation e-Learning). CAMEL engages experts in science, policy and decision-making, education, and assessment in the production of a virtual toolbox of curricular resources designed for teaching climate change causes, consequences, and solutions. CAMEL is: ? Developing cyberinfrastructure that supports and promotes the creation of materials and community; ? Generating materials for the Encyclopedia of Earth, a site averaging 50,000 views per day; ? Ensuring that materials developed and shared are founded on the best available scientific information and follow the most appropriate educational practices; ? Assisting faculty at institutions of higher education across the United States as they create, improve, test, and share resources for teaching students not only how to diagnose climate change problems, but also to identify and effect solutions; ? Evaluating the determinants of successful community building using cybermedia. The community and resultant content range from general education to upper division courses for students in a variety of majors. At the center of the community are the 160 colleges and universities represented in NCSE's Council of Environmental Deans and Directors. Members of this group represent recognized expertise in virtually all areas of this project. A team with substantial experience with evaluating innovative initiatives in STEM education is administering the evaluation component.

  17. Learning strategies of workers in the knowledge creating company

    NARCIS (Netherlands)

    Poell, R.F.; van der Krogt, F.J.

    2003-01-01

    This study presents a critical examination of Nonaka and Takeuchi's theory about knowledge-creating companies (1995), taken as one example of contemporary management theories concerning innovation and learning. Two main questions are investigated. First, how is the learning of workers organized in

  18. High-Quality Learning Environments for Engineering Design: Using Tablet PCs and Guidelines from Research on How People Learn

    Directory of Open Access Journals (Sweden)

    Enrique Palou

    2012-04-01

    Full Text Available A team of several faculty members and graduate students at Universidad de las Amricas Puebla is improving engineering design teaching and learning by creating richer learning environments that promote an interactive classroom while integrating formative assessment into classroom practices by means of Tablet PCs and associated technologies. Learning environments that are knowledge-, learner-, community-, and assessment-centered as highlighted by the How People Learn framework, have been developed. To date, the redesign of the undergraduate course entitled Introduction to Engineering Design has signicantly (p<0.05 increased student participation; formative assessment and feedback are more common and rapid; and instructors are utilizing the information gained through real-time formative assessments to tailor instruction to meet student needs. Particularly important have been opportunities to make student thinking visible and to give them chances to revise, as well as opportunities for "what if" thinking.

  19. School and workplace as learning environments

    DEFF Research Database (Denmark)

    Jørgensen, Christian Helms

    In vocational education and training the school and the workplace are two different learning environments. But how should we conceive of a learning environment, and what characterizes the school and the workplace respectively as learning environments? And how can the two environ-ments be linked......? These questions are treated in this paper. School and workplace are assessed us-ing the same analytical approach. Thereby it is pointed out how different forms of learning are en-couraged in each of them and how different forms of knowledge are valued. On this basis sugges-tions are made about how to understand...

  20. Three Dimensional Virtual Environments as a Tool for Development of Personal Learning Networks

    Directory of Open Access Journals (Sweden)

    Aggeliki Nikolaou

    2013-01-01

    Full Text Available Technological advances have altered how, where, when, and what information is created, presented and diffused in working and social environments as well as how learners interact with that information. Virtual worlds constitute an emerging realm for collaborative play, learning and work. This paper describes how virtual worlds provide a mechanism to facilitate the creation and development of Personal Learning Networks. This qualitative investigation focuses on the role of three-dimensional virtual environments (3DVEs in the creation and development of Personal Learning Networks (PLNs. More specifically, this work investigates the reasons that drive members of Education Orientated Groups (hereafter “Groups” in Second Life (SL, to adopt a technological innovation as a milieu of learning, the ways they use it and the types of learning that are occurring in it. The authors also discuss the collaborative and social characteristics of these environments which, provide access to excellence of a specific area of interest and promote innovative ideas on a global scale, through sharing educational resources and developing good educational practices without spatial and temporal constraints.

  1. Designing Creative Learning Environments

    Directory of Open Access Journals (Sweden)

    Thomas Cochrane

    2015-05-01

    Full Text Available Designing creative learning environments involves not only facilitating student creativity, but also modeling creative pedagogical practice. In this paper we explore the implementation of a framework for designing creative learning environments using mobile social media as a catalyst for redefining both lecturer pedagogical practice, as well as redesigning the curriculum around student generated m-portfolios.

  2. The SAMPLE experience: The development of a rich media online mathematics learning environment

    OpenAIRE

    Chang, Jen

    2006-01-01

    This report documents the development of Sample Architecture for Mathematically Productive Learning Experiences (SAMPLE), a rich media, online, mathematics learning environment created to meet the needs of middle school educators. It explores some of the current pedagogical challenges in mathematics education, and their amplified impacts when coupled with under-prepared teachers, a decidedly wide-spread phenomenon. The SAMPLE publishing experience is discussed in terms of its instructional de...

  3. Learning Environment And Pupils Academic Performance ...

    African Journals Online (AJOL)

    Learning Environment And Pupils Academic Performance: Implications For Counselling. ... facilities as well as learning materials to make teaching and learning easy. In addition, teachers should provide conducive classroom environment to ...

  4. Effect of Cognitive Style on Learning and Retrieval of Navigational Environments

    Directory of Open Access Journals (Sweden)

    Maddalena Boccia

    2017-07-01

    Full Text Available Field independence (FI has been found to correlate with a wide range of cognitive processes requiring cognitive restructuring. Cognitive restructuring, that is going beyond the information given by the setting, is pivotal in creating stable mental representations of the environment, the so-called “cognitive maps,” and it affects visuo-spatial abilities underpinning environmental navigation. Here we evaluated whether FI, by fostering cognitive restructuring of environmental cues on the basis of an internal frame of reference, affects the learning and retrieval of a novel environment. Fifty-four participants were submitted to the Embedded Figure Test (EFT for assessing their Cognitive Style (CS and to the Perspective Taking/Spatial Orientation Test (PTSOT and the Santa Barbara Sense of Direction Scale (SBSOD for assessing their spatial perspective taking and orientation skills. They were also required to learn a path in a novel, real environment (route learning, RL, to recognize landmarks of this path among distracters (landmark recognition, LR, to order them (landmark ordering, LO and to draw the learned path on a map (map drawing, MD. Retrieval tasks were performed both immediately after learning (immediate-retrieval and the day after (24 h-retrieval. Performances on EFT significantly correlated with the time needed to learn the path, with MD (both in the immediate- and in the 24 h- retrievals, results on LR (in 24-retrieval and performances on PTSOT. Interestingly, we found that gender interacted with CS on RL (time of learning and MD. Females performed significantly worse than males only if they were classified as FD, but did not differ from males if they were classified as FI. These results suggest that CS affects learning and retrieval of navigational environment, especially when a map-like representation is required. We propose that CS may be pivotal in forming the cognitive map of the environment, likely due to the higher ability of FI

  5. ENERGY-NET (Energy, Environment and Society Learning Network): Best Practices to Enhance Informal Geoscience Learning

    Science.gov (United States)

    Rossi, R.; Elliott, E. M.; Bain, D.; Crowley, K. J.; Steiner, M. A.; Divers, M. T.; Hopkins, K. G.; Giarratani, L.; Gilmore, M. E.

    2014-12-01

    While energy links all living and non-living systems, the integration of energy, the environment, and society is often not clearly represented in 9 - 12 classrooms and informal learning venues. However, objective public learning that integrates these components is essential for improving public environmental literacy. ENERGY-NET (Energy, Environment and Society Learning Network) is a National Science Foundation funded initiative that uses an Earth Systems Science framework to guide experimental learning for high school students and to improve public learning opportunities regarding the energy-environment-society nexus in a Museum setting. One of the primary objectives of the ENERGY-NET project is to develop a rich set of experimental learning activities that are presented as exhibits at the Carnegie Museum of Natural History in Pittsburgh, Pennsylvania (USA). Here we detail the evolution of the ENERGY-NET exhibit building process and the subsequent evolution of exhibit content over the past three years. While preliminary plans included the development of five "exploration stations" (i.e., traveling activity carts) per calendar year, the opportunity arose to create a single, larger topical exhibit per semester, which was assumed to have a greater impact on museum visitors. Evaluative assessments conducted to date reveal important practices to be incorporated into ongoing exhibit development: 1) Undergraduate mentors and teen exhibit developers should receive additional content training to allow richer exhibit materials. 2) The development process should be distributed over as long a time period as possible and emphasize iteration. This project can serve as a model for other collaborations between geoscience departments and museums. In particular, these practices may streamline development of public presentations and increase the effectiveness of experimental learning activities.

  6. Students' Reaction to WebCT: Implications for Designing On-Line Learning Environments

    Science.gov (United States)

    Osman, Mohamed Eltahir

    2005-01-01

    There is a growing number of web-based and web-assisted course development tools and products that can be used to create on-line learning environment. The utility of these products, however, varies greatly depending on their feasibility, prerequisite infrastructure, technical features, interface, and course development and management tools. WebCT…

  7. Creating LGBTQ-Inclusive Care and Work Environments.

    Science.gov (United States)

    Jones-Schenk, Jan

    2018-04-01

    In considering the full depth of inclusion in care and work environments (and developing inclusive engagement skills for lesbian, gay, bisexual, transgender, queer or questioning [LGBTQ] patients and their families), professional development leaders must bring these discussions and shared learnings into the open. Understanding the LGBTQ population's unique needs is essential to providing personalized health care, and inclusive work environments help to foster more inclusive care for this population. J Contin Educ Nurs. 2018;49(4):151-153. Copyright 2018, SLACK Incorporated.

  8. Mentor experiences of international healthcare students' learning in a clinical environment: A systematic review.

    Science.gov (United States)

    Mikkonen, Kristina; Elo, Satu; Tuomikoski, Anna-Maria; Kääriäinen, Maria

    2016-05-01

    Globalisation has brought new possibilities for international growth in education and professional mobility among healthcare professionals. There has been a noticeable increase of international degree programmes in non-English speaking countries in Europe, creating clinical learning challenges for healthcare students. The aim of this systematic review was to describe mentors' experiences of international healthcare students' learning in a clinical environment. The objective of the review was to identify what influences the success or failure of mentoring international healthcare students when learning in the clinical environment, with the ultimate aim being to promote optimal mentoring practice. A systematic review was conducted according to the guidelines of the Centre for Reviews and Dissemination. Seven electronic databases were used to search for the published results of previous research: CINAHL, Medline Ovid, Scopus, the Web of Science, Academic Search Premiere, Eric, and the Cochrane Library. Search inclusion criteria were planned in the PICOS review format by including peer-reviewed articles published in any language between 2000 and 2014. Five peer-reviewed articles remained after the screening process. The results of the original studies were analysed using a thematic synthesis. The results indicate that a positive intercultural mentor enhanced reciprocal learning by improving the experience of international healthcare students and reducing stress in the clinical environment. Integrating international healthcare students into work with domestic students was seen to be important for reciprocal learning and the avoidance of discrimination. Many healthcare students were found to share similar experiences of mentoring and learning irrespective of their cultural background. However, the role of a positive intercultural mentor was found to make a significant difference for international students: such mentors advocated and mediated cultural differences and

  9. ANALYSIS OF VIRTUAL ENVIRONMENT BENEFIT IN E-LEARNING

    Directory of Open Access Journals (Sweden)

    NOVÁK, Martin

    2013-06-01

    Full Text Available The analysis of the virtual environment assets towards the e-learning process improvements is mentioned in this article. The virtual environment was created within the solution of the project ‘Virtualization’ at the Faculty of Economics and Administration, University of Pardubice. The aim of this project was to eliminate the disproportion of free access to licensed software between groups of part-time and full-time students. The research was realized within selected subjects of the study program System Engineering and Informatics. The subjects were connected to the informatics, applied informatics, control and decision making. Student subject results, student feedback based on electronic questionnaire and data from log file of virtual server usage were compared and analysed. Based on analysis of virtualization possibilities the solution of virtual environment was implemented through Microsoft Terminal Server.

  10. Category Learning Research in the Interactive Online Environment Second Life

    Science.gov (United States)

    Andrews, Jan; Livingston, Ken; Sturm, Joshua; Bliss, Daniel; Hawthorne, Daniel

    2011-01-01

    The interactive online environment Second Life allows users to create novel three-dimensional stimuli that can be manipulated in a meaningful yet controlled environment. These features suggest Second Life's utility as a powerful tool for investigating how people learn concepts for unfamiliar objects. The first of two studies was designed to establish that cognitive processes elicited in this virtual world are comparable to those tapped in conventional settings by attempting to replicate the established finding that category learning systematically influences perceived similarity . From the perspective of an avatar, participants navigated a course of unfamiliar three-dimensional stimuli and were trained to classify them into two labeled categories based on two visual features. Participants then gave similarity ratings for pairs of stimuli and their responses were compared to those of control participants who did not learn the categories. Results indicated significant compression, whereby objects classified together were judged to be more similar by learning than control participants, thus supporting the validity of using Second Life as a laboratory for studying human cognition. A second study used Second Life to test the novel hypothesis that effects of learning on perceived similarity do not depend on the presence of verbal labels for categories. We presented the same stimuli but participants classified them by selecting between two complex visual patterns designed to be extremely difficult to label. While learning was more challenging in this condition , those who did learn without labels showed a compression effect identical to that found in the first study using verbal labels. Together these studies establish that at least some forms of human learning in Second Life parallel learning in the actual world and thus open the door to future studies that will make greater use of the enriched variety of objects and interactions possible in simulated environments

  11. Classroom Environments That Promote Learning from the Perspective of School Children

    Directory of Open Access Journals (Sweden)

    Marianella Castro-Pérez

    2015-09-01

    Full Text Available The following paper is based on a research41 made on school environments that promote learning in children. Its objective was “to determine the physical and socio-emotional factors of school environments that promote learning.” To this end, the investigation had both an exploratory and descriptive approach in terms of the various physical and emotional elements that influence the classroom environment and, therefore, the learning process. In this paper, reference is made only to the data provided by the child population. Such group was comprised of 307 boys and girls of public schools from six provinces in the country, intentionally selected through coordination and negotiation with the authorities of schools that agreed to participate. The data collection instruments used were two questionnaires with closed and open questions, an anecdotal record, and a guide on which the observation technique was performed. The analysis of the information derived from the technique and instruments used was developed by complementing quantitative data with qualitative data. Emerging categories were created to interpret the latter. The information provided by the boys and girls will hopefully serve as input to raise awareness among universities, authorities and teachers about the imperative need for school environments that are aesthetic, pleasant, motivating, comfortable, clean and promote the emotional stability every human being requires for the learning process to be successful.

  12. Active learning machine learns to create new quantum experiments.

    Science.gov (United States)

    Melnikov, Alexey A; Poulsen Nautrup, Hendrik; Krenn, Mario; Dunjko, Vedran; Tiersch, Markus; Zeilinger, Anton; Briegel, Hans J

    2018-02-06

    How useful can machine learning be in a quantum laboratory? Here we raise the question of the potential of intelligent machines in the context of scientific research. A major motivation for the present work is the unknown reachability of various entanglement classes in quantum experiments. We investigate this question by using the projective simulation model, a physics-oriented approach to artificial intelligence. In our approach, the projective simulation system is challenged to design complex photonic quantum experiments that produce high-dimensional entangled multiphoton states, which are of high interest in modern quantum experiments. The artificial intelligence system learns to create a variety of entangled states and improves the efficiency of their realization. In the process, the system autonomously (re)discovers experimental techniques which are only now becoming standard in modern quantum optical experiments-a trait which was not explicitly demanded from the system but emerged through the process of learning. Such features highlight the possibility that machines could have a significantly more creative role in future research.

  13. Recommendations from the Field: Creating an LGBTQ Learning Community

    Science.gov (United States)

    Jaekel, Kathryn S.

    2015-01-01

    This article details the creation of a lesbian, gay, bisexual, transgender, and queer (LGBTQ) learning community. Created because of research that indicates chilly campus climates (Rankin, 2005), as well as particular needs of LGBTQ students in the classroom, this learning community focused upon LGBTQ topics in and out of the classroom. While…

  14. SCAFFOLDING IN CONNECTIVIST MOBILE LEARNING ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    Ozlem OZAN

    2013-04-01

    Full Text Available Social networks and mobile technologies are transforming learning ecology. In this changing learning environment, we find a variety of new learner needs. The aim of this study is to investigate how to provide scaffolding to the learners in connectivist mobile learning environment: Ø to learn in a networked environment, Ø to manage their networked learning process, Ø to interact in a networked society, and Ø to use the tools belonging to the network society. The researcher described how Vygotsky's “scaffolding” concept, Berge’s “learner support” strategies, and Siemens’ “connectivism” approach can be used together to satisfy mobile learners’ needs. A connectivist mobile learning environment was designed for the research, and the research was executed as a mixed-method study. Data collection tools were Facebook wall entries, personal messages, chat records; Twitter, Diigo, blog entries; emails, mobile learning management system statistics, perceived learning survey and demographic information survey. Results showed that there were four major aspects of scaffolding in connectivist mobile learning environment as type of it, provider of it, and timing of it and strategies of it. Participants preferred mostly social scaffolding, and then preferred respectively, managerial, instructional and technical scaffolding. Social scaffolding was mostly provided by peers, and managerial scaffolding was mostly provided by instructor. Use of mobile devices increased the learner motivation and interest. Some participants stated that learning was more permanent by using mobile technologies. Social networks and mobile technologies made it easier to manage the learning process and expressed a positive impact on perceived learning.

  15. Modeling Students' Problem Solving Performance in the Computer-Based Mathematics Learning Environment

    Science.gov (United States)

    Lee, Young-Jin

    2017-01-01

    Purpose: The purpose of this paper is to develop a quantitative model of problem solving performance of students in the computer-based mathematics learning environment. Design/methodology/approach: Regularized logistic regression was used to create a quantitative model of problem solving performance of students that predicts whether students can…

  16. Judgments of Learning in Collaborative Learning Environments

    NARCIS (Netherlands)

    Helsdingen, Anne

    2010-01-01

    Helsdingen, A. S. (2010, March). Judgments of Learning in Collaborative Learning Environments. Poster presented at the 1st International Air Transport and Operations Symposium (ATOS 2010), Delft, The Netherlands: Delft University of Technology.

  17. Experiential Learning and Learning Environments: The Case of Active Listening Skills

    Science.gov (United States)

    Huerta-Wong, Juan Enrique; Schoech, Richard

    2010-01-01

    Social work education research frequently has suggested an interaction between teaching techniques and learning environments. However, this interaction has never been tested. This study compared virtual and face-to-face learning environments and included active listening concepts to test whether the effectiveness of learning environments depends…

  18. Self-organized Learning Environments

    DEFF Research Database (Denmark)

    Dalsgaard, Christian; Mathiasen, Helle

    2007-01-01

    system actively. The two groups used the system in their own way to support their specific activities and ways of working. The paper concludes that self-organized learning environments can strengthen the development of students’ academic as well as social qualifications. Further, the paper identifies......The purpose of the paper is to discuss the potentials of using a conference system in support of a project based university course. We use the concept of a self-organized learning environment to describe the shape of the course. In the paper we argue that educational technology, such as conference...... systems, has a potential to support students’ development of self-organized learning environments and facilitate self-governed activities in higher education. The paper is based on an empirical study of two project groups’ use of a conference system. The study showed that the students used the conference...

  19. Blended Learning in Personalized Assistive Learning Environments

    Science.gov (United States)

    Marinagi, Catherine; Skourlas, Christos

    2013-01-01

    In this paper, the special needs/requirements of disabled students and cost-benefits for applying blended learning in Personalized Educational Learning Environments (PELE) in Higher Education are studied. The authors describe how blended learning can form an attractive and helpful framework for assisting Deaf and Hard-of-Hearing (D-HH) students to…

  20. Learning environment, learning styles and conceptual understanding

    Science.gov (United States)

    Ferrer, Lourdes M.

    1990-01-01

    In recent years there have been many studies on learners developing conceptions of natural phenomena. However, so far there have been few attempts to investigate how the characteristics of the learners and their environment influence such conceptions. This study began with an attempt to use an instrument developed by McCarthy (1981) to describe learners in Malaysian primary schools. This proved inappropriate as Asian primary classrooms do not provide the same kind of environment as US classrooms. It was decided to develop a learning style checklist to suit the local context and which could be used to describe differences between learners which teachers could appreciate and use. The checklist included four dimensions — perceptual, process, self-confidence and motivation. The validated instrument was used to determine the learning style preferences of primary four pupils in Penang, Malaysia. Later, an analysis was made regarding the influence of learning environment and learning styles on conceptual understanding in the topics of food, respiration and excretion. This study was replicated in the Philippines with the purpose of investigating the relationship between learning styles and achievement in science, where the topics of food, respiration and excretion have been taken up. A number of significant relationships were observed in these two studies.

  1. The Developing Infant Creates a Curriculum for Statistical Learning.

    Science.gov (United States)

    Smith, Linda B; Jayaraman, Swapnaa; Clerkin, Elizabeth; Yu, Chen

    2018-04-01

    New efforts are using head cameras and eye-trackers worn by infants to capture everyday visual environments from the point of view of the infant learner. From this vantage point, the training sets for statistical learning develop as the sensorimotor abilities of the infant develop, yielding a series of ordered datasets for visual learning that differ in content and structure between timepoints but are highly selective at each timepoint. These changing environments may constitute a developmentally ordered curriculum that optimizes learning across many domains. Future advances in computational models will be necessary to connect the developmentally changing content and statistics of infant experience to the internal machinery that does the learning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Second Life: Creating Worlds of Wonder for Language Learners

    Science.gov (United States)

    Ocasio, Michelle A.

    2016-01-01

    This article describes Second Life, a three-dimensional virtual environment in which a user creates an avatar for the purpose of socializing, learning, developing skills, and exploring a variety of academic and social areas. Since its inception in 2003, Second Life has been used by educators to build and foster innovative learning environments and…

  3. Designing and Improving a Blended Synchronous Learning Environment: An Educational Design Research

    Science.gov (United States)

    Wang, Qiyun; Lang Quek, Choon; Hu, Xiaoyong

    2017-01-01

    In this study, a blended synchronous learning environment (BSLE) was created to support a group of graduate students when they were taking a course. Instruction was delivered to both face-to-face (F2F) and online students simultaneously. The purpose of this paper is to present how this BSLE was gradually designed, implemented, and improved by…

  4. Nursing students' perceptions of factors influencing their learning environment in a clinical skills laboratory: A qualitative study.

    Science.gov (United States)

    Haraldseid, Cecilie; Friberg, Febe; Aase, Karina

    2015-09-01

    The mastery of clinical skills learning is required to become a trained nurse. Due to limited opportunities for clinical skills training in clinical practice, undergraduate training at clinical skills laboratories (CSLs) is an essential part of nursing education. In a sociocultural learning perspective learning is situated in an environment. Growing student cohorts, rapid introduction of technology-based teaching methods and a shift from a teaching- to a learning-centered education all influence the environment of the students. These changes also affect CSLs and therefore compel nursing faculties to adapt to the changing learning environment. This study aimed to explore students' perceptions of their learning environment in a clinical skills laboratory, and to increase the knowledge base for improving CSL learning conditions identifying the most important environmental factors according to the students. An exploratory qualitative methodology was used. Nineteen second-year students enrolled in an undergraduate nursing program in Norway participated in the study. They took the same clinical skills course. Eight were part-time students (group A) and 11 were full-time students (group B). Focus group interviews and content analysis were conducted to capture the students' perception of the CSL learning environment. The study documents students' experience of the physical (facilities, material equipment, learning tools, standard procedures), psychosocial (expectations, feedback, relations) and organizational (faculty resources, course structure) factors that affect the CSL learning environment. Creating an authentic environment, facilitating motivation, and providing resources for multiple methods and repetitions within clinical skills training are all important for improving CSL learning environments from the student perspective. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. CREATING SUPPORTIVE LEARNING ENVIRONMENTS: EXPERIENCES OF LESBIAN AND GAY-PARENTED FAMILIES IN SOUTH AFRICAN SCHOOLS

    Directory of Open Access Journals (Sweden)

    Diana Breshears

    2016-06-01

    Full Text Available Through in-depth interviews with 21 parents and 12 children in lesbian/gayparented families, we explored the experiences of this unique family form in South African schools. Specifically, families reflected on their positive and negative experiences in the children’s education and used these reflections to offer advice to teachers and administrators wishing better to support lesbian/ gay-parented families. The results of our study offer an understanding of the challenges and needs of this diverse family in the school system, as well as a starting point for administrators and teachers wanting to create inclusive environments for all family types.

  6. Learning Networks Distributed Environment

    NARCIS (Netherlands)

    Martens, Harrie; Vogten, Hubert; Koper, Rob; Tattersall, Colin; Van Rosmalen, Peter; Sloep, Peter; Van Bruggen, Jan; Spoelstra, Howard

    2005-01-01

    Learning Networks Distributed Environment is a prototype of an architecture that allows the sharing and modification of learning materials through a number of transport protocols. The prototype implements a p2p protcol using JXTA.

  7. Student perceptions of a virtual learning environment for a problem-based learning undergraduate medical curriculum.

    Science.gov (United States)

    de Leng, Bas A; Dolmans, Diana H J M; Muijtjens, Arno M M; van der Vleuten, Cees P M

    2006-06-01

    To investigate the effects of a virtual learning environment (VLE) on group interaction and consultation of information resources during the preliminary phase, self-study phase and reporting phase of the problem-based learning process in an undergraduate medical curriculum. A questionnaire was administered to 355 medical students in Years 1 and 2 to ask them about the perceived usefulness of a virtual learning environment that was created with Blackboard for group interaction and the use of learning resources. The students indicated that the VLE supported face-to-face interaction in the preliminary discussion and in the reporting phase but did not stimulate computer-mediated distance interaction during the self-study phase. They perceived that the use of multimedia in case presentations led to a better quality of group discussion than if case presentations were exclusively text-based. They also indicated that the information resources that were hyperlinked in the VLE stimulated the consultation of these resources during self-study, but not during the reporting phase. Students indicated that the use of a VLE in the tutorial room and the inclusion of multimedia in case presentations supported processes of active learning in the tutorial groups. However, if we want to exploit the full potential of asynchronous computer-mediated communication to initiate in-depth discussion during the self-study phase, its application will have to be selective and deliberate. Students indicated that the links in the VLE to selected information in library repositories supported their learning.

  8. Learning Environment and Student Effort

    Science.gov (United States)

    Hopland, Arnt O.; Nyhus, Ole Henning

    2016-01-01

    Purpose: The purpose of this paper is to explore the relationship between satisfaction with learning environment and student effort, both in class and with homework assignments. Design/methodology/approach: The authors use data from a nationwide and compulsory survey to analyze the relationship between learning environment and student effort. The…

  9. Galileo Educational Network: Creating, Researching, and Supporting 21st Century Learning

    Science.gov (United States)

    Friesen, Sharon

    2009-01-01

    School and classroom structures designed to meet the needs of the industrial past cannot "maintain the temperature required for sustaining life." Recent learning sciences research findings compel educators to invent new learning environments better suited to meet the demands of the 21st century. These new learning environments require…

  10. The Learning Impact of a 4-Dimensional Digital Construction Learning Environment

    OpenAIRE

    Chris Landorf; Stephen Ward

    2017-01-01

    This paper addresses a virtual environment approach to work integrated learning for students in construction-related disciplines. The virtual approach provides a safe and pedagogically rigorous environment where students can apply theoretical knowledge in a simulated real-world context. The paper describes the development of a 4-dimensional digital construction environment and associated learning activities funded by the Australian Office for Learning and Teaching. The environment was trialle...

  11. Students’ digital learning environments

    DEFF Research Database (Denmark)

    Caviglia, Francesco; Dalsgaard, Christian; Davidsen, Jacob

    2018-01-01

    The objective of the paper is to examine the nature of students’ digital learning environments to understand the interplay of institutional systems and tools that are managed by the students themselves. The paper is based on a study of 128 students’ digital learning environments. The objectives...... used tools in the students’ digital learning environments are Facebook, Google Drive, tools for taking notes, and institutional systems. Additionally, the study shows that the tools meet some very basic demands of the students in relation to collaboration, communication, and feedback. Finally...... of the study are 1) to provide an overview of tools for students’ study activities, 2) to identify the most used and most important tools for students and 3) to discover which activities the tools are used for. The empirical study reveals that the students have a varied use of digital media. Some of the most...

  12. The digital Dalton Plan: Progressive education as integral part of web-based learning environments

    Directory of Open Access Journals (Sweden)

    Georg Weichhart

    2018-03-01

    Full Text Available e-Learning systems increasingly support learning management and self-organized learning processes. Since the latter have been studied in the field of progressive education extensively, it is worthwhile to consider them for developing digital learning environments to support self-regulated learning processes. In this paper we aim at transforming one of the most prominent and sustainable approaches to self-organized learning, the “Dalton Plan” as proposed by Helen Parkhurst. Its assignment structure supports learners when managing their learning tasks, thus triggering self-organized acquisition of knowledge, and its feedback graphs enable transparent learning processes. Since e-learning environments have become common use, rather than creating another system, we propose a modular approach that can be used for extending existing e-learning environments. In order to design a respective component, we interviewed experts in self-organized e-learning. Their input facilitated integrating the Dalton Plan with existing features of e-learning environments. After representing each interview in concept maps, we were able to aggregate them for deriving e-learning requirements conform to the Dalton Plan instruments. In the course of implementing them, particular attention had to be paid to the asynchrony of interaction during runtime. Java Server Faces technology enable the Dalton Plan component to be migrated into existing web 2.0 e-learning platforms. The result was evaluated based on the acquired concept maps, as they also captured the transformation process of the Dalton Plan to e-learning features. The findings encourage embodying further progressive education approaches in this way, since the structured (concept mapping of the Dalton Plan to e-learning features turned out to be accurate. The experts were able to recognize the potential of the approach both in terms of structuring the knowledge acquisition process, and in terms of developing

  13. Situation Creator: A Pedagogical Agent Creating Learning Opportunities

    NARCIS (Netherlands)

    Miao, Yongwu; Hoppe, Ulrich; Pinkwart, Niels

    2007-01-01

    Miao, Y., Hoppe, H. U., & Pinkwart, N. (2007). Situation Creator: A Pedagogical Agent Creating Learning Opportunities. In R. Luckin, K. Koedinger & J. Greer (Eds.), Proceedings of the 13th International Conference on Artificial Intelligence in Education (pp. 614-617). Amsterdam, The Netherlands: IOS

  14. Use of Online Learning Resources in the Development of Learning Environments at the Intersection of Formal and Informal Learning: The Student as Autonomous Designer

    Directory of Open Access Journals (Sweden)

    Maja Lebeničnik

    2015-06-01

    Full Text Available Learning resources that are used in the education of university students are often available online. The nature of new technologies causes an interweaving of formal and informal learning, with the result that a more active role is expected from students with regard to the use of ICT for their learning. The variety of online learning resources (learning content and learning tools facilitates informed use and enables students to create the learning environment that is most appropriate for their personal learning needs and preferences. In contemporary society, the creation of an inclusive learning environment supported by ICT is pervasive. The model of Universal Design for Learning is becoming increasingly significant in responding to the need for inclusive learning environments. In this article, we categorize different online learning activities into the principles of Universal Design for Learning. This study examines ICT use among university students (N = 138, comparing student teachers with students in other study programs. The findings indicate that among all students, activities with lower demands for engagement are most common. Some differences were observed between student teachers and students from other programs. Student teachers were more likely than their peers to perform certain activities aimed at meeting diverse learner needs, but the percentage of students performing more advanced activities was higher for students in other study programs than for student teachers. The categorization of activities revealed that student teachers are less likely to undertake activities that involve interaction with others. Among the sample of student teachers, we found that personal innovativeness is correlated with diversity of activities in only one category. The results show that student teachers should be encouraged to perform more advanced activities, especially activities involving interaction with others, collaborative learning and use of ICT to

  15. Constructivist learning theories and complex learning environments

    NARCIS (Netherlands)

    R-J. Simons; Dr. S. Bolhuis

    2004-01-01

    Learning theories broadly characterised as constructivist, agree on the importance to learning of the environment, but differ on what exactly it is that constitutes this importance. Accordingly, they also differ on the educational consequences to be drawn from the theoretical perspective. Cognitive

  16. Effective Learning Environments in Relation to Different Learning Theories

    NARCIS (Netherlands)

    Guney, A.; Al, S.

    2012-01-01

    There are diverse learning theories which explain learning processes which are discussed within this paper, through cognitive structure of learning process. Learning environments are usually described in terms of pedagogical philosophy, curriculum design and social climate. There have been only just

  17. Applying Andragogical Concepts in Creating a Sustainable Lifelong Learning Society

    Science.gov (United States)

    Charungkaittikul, Suwithida; Henschke, John A.

    2017-01-01

    Today, the world is changing, re-establishing the role of education to have a developed society. This article aims to explore the practical application of Andragogy as a key element for creating a sustainable lifelong learning society, to propose strategies for developing a lifelong learning society using andragogical concepts, to enhance…

  18. Influences of Formal Learning, Personal Learning Orientation, and Supportive Learning Environment on Informal Learning

    Science.gov (United States)

    Choi, Woojae; Jacobs, Ronald L.

    2011-01-01

    While workplace learning includes formal and informal learning, the relationship between the two has been overlooked, because they have been viewed as separate entities. This study investigated the effects of formal learning, personal learning orientation, and supportive learning environment on informal learning among 203 middle managers in Korean…

  19. Architecture for Collaborative Learning Activities in Hybrid Learning Environments

    OpenAIRE

    Ibáñez, María Blanca; Maroto, David; García Rueda, José Jesús; Leony, Derick; Delgado Kloos, Carlos

    2012-01-01

    3D virtual worlds are recognized as collaborative learning environments. However, the underlying technology is not sufficiently mature and the virtual worlds look cartoonish, unlinked to reality. Thus, it is important to enrich them with elements from the real world to enhance student engagement in learning activities. Our approach is to build learning environments where participants can either be in the real world or in its mirror world while sharing the same hybrid space in a collaborative ...

  20. Creating Instructional Environments that Keep Students on TARGET

    Science.gov (United States)

    Boyce, B. Ann

    2009-01-01

    Teachers' instructional decisions, such as lesson goals, how students are grouped, or how students are recognized and evaluated, can affect their students' level of motivation related to physical activity. A physical educator's primary responsibility is to create a classroom environment that enhances motivation and fosters positive attitudes and…

  1. Creating stories for learning about the neonatal care experience through the eyes of student nurses: An interpretive, narrative study.

    Science.gov (United States)

    Petty, Julia

    2017-01-01

    Storytelling is an increasingly well recognised and valued platform to learn about the human experience within healthcare. Little is known however about how stories can enhance understanding in neonatal care, a specialised field offering rich opportunities for learning. This study focuses on the creation of stories based on the experiences of student nurses to inform teaching and learning strategies in the neonatal field. The study aimed to create stories from the narratives of student nurses working within the neonatal field and identify what key themes for learning emerged in order to develop a storytelling resource to share experiences with their peers. An interpretive, constructivist approach was used to collect, analyse and create stories from student nurse's experiences, in line with narrative inquiry. Six pre-registration children's nursing students were selected by purposive sampling. Interviews were undertaken within six weeks following placement completion in an agreed location. Narratives were obtained by semi-structured interviews. Narrative analysis and core story creation was undertaken to construct stories and key learning themes emerged which provided the pedagogical basis for subsequent digital resource development. Key themes emerged relating to the insight and observances of student nurses and the neonatal journey they had experienced, including the nature of neonatal care, experiences of the neonate and parents, the environment and their own learning transition. Preliminary peer evaluation of the storytelling resource revealed storytelling as an interesting and novel approach to teaching & learning, learning from ones' peers, preparation for practice and a valuable insight into a new specialist area. The study has value to teaching and learning by enabling an appreciation of how narrative can be used to portray the experiences of learners. Findings also support an approach to analysing narrative to create stories for learning and inform

  2. Collaborations in Open Learning Environments

    NARCIS (Netherlands)

    Spoelstra, Howard

    2015-01-01

    This thesis researches automated services for professionals aiming at starting collaborative learning projects in open learning environments, such as MOOCs. It investigates the theoretical backgrounds of team formation for collaborative learning. Based on the outcomes, a model is developed

  3. Personalized learning Ecologies in Problem and Project Based Learning Environments

    DEFF Research Database (Denmark)

    Rongbutsri, Nikorn; Ryberg, Thomas; Zander, Pär-Ola

    2012-01-01

    is in contrast to an artificial learning setting often found in traditional education. As many other higher education institutions, Aalborg University aims at providing learning environments that support the underlying pedagogical approach employed, and which can lead to different online and offline learning.......g. coordination, communication, negotiation, document sharing, calendars, meetings and version control. Furthermore, the pedagogical fabric of LMSs/VLEs have recently been called into question and critiqued by proponents of Personal Learning Environments (PLEs)(Ryberg, Buus, & Georgsen, 2011) . In sum....... making it important to understand and conceptualise students’ use of technology. Ecology is the study of relationship between organisms in an environment which is the set of circumstances surrounding that organism. Learning ecologies are the study of the relationship of a learner or a group of learners...

  4. Web-Based Learning Environment Based on Students’ Needs

    Science.gov (United States)

    Hamzah, N.; Ariffin, A.; Hamid, H.

    2017-08-01

    Traditional learning needs to be improved since it does not involve active learning among students. Therefore, in the twenty-first century, the development of internet technology in the learning environment has become the main needs of each student. One of the learning environments to meet the needs of the teaching and learning process is a web-based learning environment. This study aims to identify the characteristics of a web-based learning environment that supports students’ learning needs. The study involved 542 students from fifteen faculties in a public higher education institution in Malaysia. A quantitative method was used to collect the data via a questionnaire survey by randomly. The findings indicate that the characteristics of a web-based learning environment that support students’ needs in the process of learning are online discussion forum, lecture notes, assignments, portfolio, and chat. In conclusion, the students overwhelmingly agreed that online discussion forum is the highest requirement because the tool can provide a space for students and teachers to share knowledge and experiences related to teaching and learning.

  5. E-Learning 2.0: Learning Redefined

    OpenAIRE

    Kumar, Rupesh

    2009-01-01

    The conventional e-learning approach emphasizes a learning system more than a learning environment. While traditional e-learning systems continue to be significant, there is a new set of services emerging, embracing the philosophy of Web 2.0. Known as e-learning 2.0, it aims to create a personalized learning environment. E-learning 2.0 combines the use of discrete but complementary tools and web services to support the creation of ad-hoc learning communities. This paper discusses the influenc...

  6. Students’ Motivation for Learning in Virtual Learning Environments

    Directory of Open Access Journals (Sweden)

    Andrea Carvalho Beluce

    2015-04-01

    Full Text Available The specific characteristics of online education require of the student engagement and autonomy, factors which are related to motivation for learning. This study investigated students’ motivation in virtual learning environments (VLEs. For this, it used the Teaching and Learning Strategy and Motivation to Learn Scale in Virtual Learning Environments (TLSM-VLE. The scale presented 32 items and six dimensions, three of which aimed to measure the variables of autonomous motivation, controlled motivation, and demotivation. The participants were 572 students from the Brazilian state of Paraná, enrolled on higher education courses on a continuous education course. The results revealed significant rates for autonomous motivational behavior. It is considered that the results obtained may provide contributions for the educators and psychologists who work with VLEs, leading to further studies of the area providing information referent to the issue investigated in this study.

  7. Developing "Emancipatory Interest": Learning to Create Social Change

    Science.gov (United States)

    Caspersz, Donella; Olaru, Doina

    2014-01-01

    Developing an emancipatory interest enables individuals to free themselves from the intersubjective or commonly held meanings that dominate their understanding of their current world, and subsequently change their practices. We argue that developing an emancipatory interest is critical in learning to create social change, that is, wanting to…

  8. Creating Student Engagement: The Kickstarter Active Learning Project

    Science.gov (United States)

    Manzon, Elliott

    2017-01-01

    Students can become disengaged from marketing material if they cannot see the direct application. Marketing material needs to be applied to a meaningful business task to engage and motivate students. This article introduces the Kickstarter Active Learning Project--an innovative semester-long project in which students create a Kickstarter…

  9. Relationship between learning environment characteristics and academic engagement

    NARCIS (Netherlands)

    Opdenakker, Marie-Christine; Minnaert, Alexander

    The relationship between learning environment characteristics and academic engagement of 777 Grade 6 children located in 41 learning environments was explored. Questionnaires were used to tap learning environment perceptions of children, their academic engagement, and their ethnic-cultural

  10. School and workplace as learning environments in VET

    DEFF Research Database (Denmark)

    Jørgensen, Christian Helms

    as limitations for learning, and thus frame the opportunities for learning. The second, the socio-cultural learning environment is constituted by the social and cultural relations and communities in the workplace and in school. I distinguish between three different types of social relations in the workplace......The aim of this paper is to present an analytical model to study school and workplace as different learning environments and discuss some findings from the application of the model on a case study. First the paper tries to answer the question: what is a learning environment? In most other studies...... schools and workplaces are not only considered to be different learning environment, but are also analysed using different approaches. In this paper I will propose a common model to analyse and compare the two learning environments, drawing on sociology of work (Kern & Schumann 1984; Braverman 1976...

  11. Factors Influencing Learning Environments in an Integrated Experiential Program

    Science.gov (United States)

    Koci, Peter

    The research conducted for this dissertation examined the learning environment of a specific high school program that delivered the explicit curriculum through an integrated experiential manner, which utilized field and outdoor experiences. The program ran over one semester (five months) and it integrated the grade 10 British Columbian curriculum in five subjects. A mixed methods approach was employed to identify the students' perceptions and provide richer descriptions of their experiences related to their unique learning environment. Quantitative instruments were used to assess changes in students' perspectives of their learning environment, as well as other supporting factors including students' mindfulness, and behaviours towards the environment. Qualitative data collection included observations, open-ended questions, and impromptu interviews with the teacher. The qualitative data describe the factors and processes that influenced the learning environment and give a richer, deeper interpretation which complements the quantitative findings. The research results showed positive scores on all the quantitative measures conducted, and the qualitative data provided further insight into descriptions of learning environment constructs that the students perceived as most important. A major finding was that the group cohesion measure was perceived by students as the most important attribute of their preferred learning environment. A flow chart was developed to help the researcher conceptualize how the learning environment, learning process, and outcomes relate to one another in the studied program. This research attempts to explain through the consideration of this case study: how learning environments can influence behavioural change and how an interconnectedness among several factors in the learning process is influenced by the type of learning environment facilitated. Considerably more research is needed in this area to understand fully the complexity learning

  12. A new DoD initiative: the Computational Research and Engineering Acquisition Tools and Environments (CREATE) program

    International Nuclear Information System (INIS)

    Arevalo, S; Atwood, C; Bell, P; Blacker, T D; Dey, S; Fisher, D; Fisher, D A; Genalis, P; Gorski, J; Harris, A; Hill, K; Hurwitz, M; Kendall, R P; Meakin, R L; Morton, S; Moyer, E T; Post, D E; Strawn, R; Veldhuizen, D v; Votta, L G

    2008-01-01

    In FY2008, the U.S. Department of Defense (DoD) initiated the Computational Research and Engineering Acquisition Tools and Environments (CREATE) program, a $360M program with a two-year planning phase and a ten-year execution phase. CREATE will develop and deploy three computational engineering tool sets for DoD acquisition programs to use to design aircraft, ships and radio-frequency antennas. The planning and execution of CREATE are based on the 'lessons learned' from case studies of large-scale computational science and engineering projects. The case studies stress the importance of a stable, close-knit development team; a focus on customer needs and requirements; verification and validation; flexible and agile planning, management, and development processes; risk management; realistic schedules and resource levels; balanced short- and long-term goals and deliverables; and stable, long-term support by the program sponsor. Since it began in FY2008, the CREATE program has built a team and project structure, developed requirements and begun validating them, identified candidate products, established initial connections with the acquisition programs, begun detailed project planning and development, and generated the initial collaboration infrastructure necessary for success by its multi-institutional, multidisciplinary teams

  13. The VREST learning environment.

    Science.gov (United States)

    Kunst, E E; Geelkerken, R H; Sanders, A J B

    2005-01-01

    The VREST learning environment is an integrated architecture to improve the education of health care professionals. It is a combination of a learning, content and assessment management system based on virtual reality. The generic architecture is now being build and tested around the Lichtenstein protocol for hernia inguinalis repair.

  14. The Perceptions of Prospective Teachers on the Democratic Aspects of the Constructivist Learning Environment

    Science.gov (United States)

    Bay, Erdal; Gundogdu, Kerim; Kaya, Halil Ibrahim

    2010-01-01

    Introduction: The nations which have the aim to create democratic societies should also realize the same ideals in educational practices. Related literature declare that learning environments based on constructivist approach is assumed to be democratic. In line with this frame, the aim of this study is to determine the perceptions of prospective…

  15. Creating conditions for cooperative learning: Basic elements

    Directory of Open Access Journals (Sweden)

    Ševkušić-Mandić Slavica G.

    2003-01-01

    Full Text Available Although a large number of research evidence speak out in favor of cooperative learning, its effectiveness in teaching does not depend only on teacher’s and students’ enthusiasm and willingness to work in such a manner. Creating cooperative situations in learning demands a serious preparation and engagement on the part of teacher who is structuring various aspects of work in the classroom. Although there exist a large number of models and techniques of cooperative learning, which vary in the way in which students work together, in the structure of learning tasks as well as in the degree to which cooperative efforts of students are coupled with competition among groups, some elements should be present in the structure of conditions irrespective of the type of group work in question. Potential effects of cooperation are not likely to emerge unless teachers apply five basic elements of cooperative structure: 1. structuring of the learning task and students’ positive interdependence, 2. individual responsibility, 3. upgrading of "face to face" interaction, 4. training of students’ social skills, and 5. evaluation of group processes. The paper discusses various strategies for establishing the mentioned elements and concrete examples for teaching practice are provided, which should be of assistance to teachers for as much successful cooperative learning application as possible in work with children.

  16. The Audience Wheel as a Technic to Create Transformative Learning

    DEFF Research Database (Denmark)

    Helth, Poula

    2016-01-01

    Purpose: The purpose of this chapter is to document how a new learning technic may create transformative learning in leadership in an organisational practice. Design/methodology/approach: The learning methods developed in the learning in practice (LIP) project include aesthetic performances...... combined with reflections. The intention has been to explore how leadership may be transformed, when leaders work as a collective of leaders. The learning methods developed and tested in the LIP project are art-informed learning methods, concepts of liminality and reflection processes carried out...... in the leaders’ organisational practice. Findings: One of the most important findings in the LIP project in relation to transformative learning is a new learning technique based on guided processes rooted in aesthetic performance combined with reflections and separation of roles as performer and audience...

  17. How People Learn in an Asynchronous Online Learning Environment: The Relationships between Graduate Students' Learning Strategies and Learning Satisfaction

    Science.gov (United States)

    Choi, Beomkyu

    2016-01-01

    The purpose of this study was to examine the relationships between learners' learning strategies and learning satisfaction in an asynchronous online learning environment. In an attempt to shed some light on how people learn in an online learning environment, one hundred and sixteen graduate students who were taking online learning courses…

  18. Creating an interactive environment for pediatric assessment.

    Science.gov (United States)

    de Armas Weber, D; Easley-Rosenberg, A

    2001-01-01

    An interactive assessment room (IAR) was conceived to explore the effect of a dynamic environment on the pediatric assessment process and subsequent individualized goal development. Selection of a central theme, creation of a multipurpose space, provision of multisensory experiences, maximization of environmental affordances, provision of effective motivators and opportunities for goal attainment, and facilitation of a transdisciplinary assessment were identified as integral to designing the IAR. A central farm theme was selected to create five task-oriented activity stations. The IAR offered a creative assessment environment for transdisciplinary, practice-based application of current motor development and behavioral models. In addition, the IAR facilitated exploratory play essential to promoting the client's optimal performance to arrive at the development of appropriate treatment goals.

  19. Student-Teacher Interaction in Online Learning Environments

    Science.gov (United States)

    Wright, Robert D., Ed.

    2015-01-01

    As face-to-face interaction between student and instructor is not present in online learning environments, it is increasingly important to understand how to establish and maintain social presence in online learning. "Student-Teacher Interaction in Online Learning Environments" provides successful strategies and procedures for developing…

  20. A Well Designed School Environment Facilitates Brain Learning.

    Science.gov (United States)

    Chan, Tak Cheung; Petrie, Garth

    2000-01-01

    Examines how school design facilitates learning by complementing how the brain learns. How the brain learns is discussed and how an artistic environment, spaciousness in the learning areas, color and lighting, and optimal thermal and acoustical environments aid student learning. School design suggestions conclude the article. (GR)

  1. CLEW: A Cooperative Learning Environment for the Web.

    Science.gov (United States)

    Ribeiro, Marcelo Blois; Noya, Ricardo Choren; Fuks, Hugo

    This paper outlines CLEW (collaborative learning environment for the Web). The project combines MUD (Multi-User Dimension), workflow, VRML (Virtual Reality Modeling Language) and educational concepts like constructivism in a learning environment where students actively participate in the learning process. The MUD shapes the environment structure.…

  2. Creating the learning situation to promote student deep learning: Data analysis and application case

    Science.gov (United States)

    Guo, Yuanyuan; Wu, Shaoyan

    2017-05-01

    How to lead students to deeper learning and cultivate engineering innovative talents need to be studied for higher engineering education. In this study, through the survey data analysis and theoretical research, we discuss the correlation of teaching methods, learning motivation, and learning methods. In this research, we find that students have different motivation orientation according to the perception of teaching methods in the process of engineering education, and this affects their choice of learning methods. As a result, creating situations is critical to lead students to deeper learning. Finally, we analyze the process of learning situational creation in the teaching process of «bidding and contract management workshops». In this creation process, teachers use the student-centered teaching to lead students to deeper study. Through the study of influence factors of deep learning process, and building the teaching situation for the purpose of promoting deep learning, this thesis provide a meaningful reference for enhancing students' learning quality, teachers' teaching quality and the quality of innovation talent.

  3. Creating a Transformational Learning Experience: Immersing Students in an Intensive Interdisciplinary Learning Environment

    Science.gov (United States)

    White, Shelley K.; Nitkin, Mindell Reiss

    2014-01-01

    The Simmons World Challenge is a unique, interdisciplinary program recently developed at Simmons College. It immerses students in an intensive winter-session course that challenges them to tackle a pressing social issue, such as poverty or hunger, and create actionable solutions to the problem. The program was conceived and designed to harness the…

  4. Learning Environments Designed According to Learning Styles and Its Effects on Mathematics Achievement

    Science.gov (United States)

    Özerem, Aysen; Akkoyunlu, Buket

    2015-01-01

    Problem Statement: While designing a learning environment it is vital to think about learner characteristics (learning styles, approaches, motivation, interests… etc.) in order to promote effective learning. The learning environment and learning process should be designed not to enable students to learn in the same manner and at the same level,…

  5. Interaction Creates Learning: Engaging Learners with Special Educational Needs through Orff-Schulwerk

    Directory of Open Access Journals (Sweden)

    Markku Kaikkonen

    2013-12-01

    Full Text Available We consider the individual and the collective as fundamentally interdependent. Interaction leads to learning and therefore theories of interaction are of importance. For a music teacher, the achieved awareness can lead to practical advances. Discovering the most productive interactional strategy and understanding the consequences of actions within the actual learning situation can be helpful in creating interaction and learning. However, as interaction is dynamic and complex, especially those practitioners working with students with Special Educational Needs (SEN may not be satisfied with the respective conceptual frameworks on interaction processes. In the present article, we reason that on close inspection it is possible to develop a conceptual approach that meets the diversified challenges of pedagogical interaction. We also suggest that pedagogical interaction with students with SEN can be grounded on the insights of Orff-Schulwerk. First, we briefly describe some of the key principles of Orff-Schulwerk. After the theoretical background the article continues with real case examples with a view to illustrating the applications of the approach and some of the advances of the Orff-Schulwerk perspective in special music educational environments. We close with a summary, presenting some views on the potential of Orff-Schulwerk in pedagogical interaction with students with SEN.

  6. Conceptualising and creating a global learning health system.

    Science.gov (United States)

    Friedman, Charles; Rigby, Michael

    2013-04-01

    In any country the health sector is important in terms of human wellbeing and large in terms of economics. The health sector might therefore be expected to be a finely tuned enterprise, utilising corporate knowledge in a constant process of critically reviewing and improving its activities and processes. However, this is seldom the case. Health systems and practice are highly variable and lag behind research discovery. This contrasts strongly with commercial bodies, and particularly service industries, where the concept of the learning organisation is strongly seen as the key to optimisation. A learning organisation accesses for analytic purposes operational data, which though captured and recorded for day-to-day transactions at the customer level, become also the basis of understanding changes in both demand and delivery process. In health care, the concept of the learning organisation is well grounded ethically. Anything which can improve health, including understanding of optimal care delivery processes and how to improve longer term outcomes, should be seized upon to drive service improvement - but currently this occurs haphazardly. The limitations of paper-based systems, priority given to digitalization of financial transactions, concerns about electronic data insecurity, and other factors have inhibited progress towards organisational learning at a national scale. But in recent years, new means of capturing, managing, and exchanging data have created new opportunities, while ever increasing pressures on health systems have produced strengthened incentive. In the United States, the current policy and investment impetus to electronic health records and concomitantly their 'meaningful use' create opportunities to build the foundations for data re-use for corporate learning - and thus for societal gain. In Europe and other settings there are islands of innovation, but not yet a coherent culture or impetus to build foundations for a learning health system. This

  7. The effects of a shared, Intranet science learning environment on the academic behaviors of problem-solving and metacognitive reflection

    Science.gov (United States)

    Parker, Mary Jo

    This study investigated the effects of a shared, Intranet science environment on the academic behaviors of problem-solving and metacognitive reflection. Seventy-eight subjects included 9th and 10th grade male and female biology students. A quasi-experimental design with pre- and post-test data collection and randomization occurring through assignment of biology classes to traditional or shared, Intranet learning groups was employed. Pilot, web-based distance education software (CourseInfo) created the Intranet learning environment. A modified ecology curriculum provided contextualization and content for traditional and shared learning environments. The effect of this environment on problem-solving, was measured using the standardized Watson-Glaser Critical Thinking Appraisal test. Metacognitive reflection, was measured in three ways: (a) number of concepts used, (b) number of concept links noted, and (c) number of concept nodes noted. Visual learning software, Inspiration, generated concept maps. Secondary research questions evaluated the pilot CourseInfo software for (a) tracked user movement, (b) discussion forum findings, and (c) difficulties experienced using CourseInfo software. Analysis of problem-solving group means reached no levels of significance resulting from the shared, Intranet environment. Paired t-Test of individual differences in problem-solving reached levels of significance. Analysis of metacognitive reflection by number of concepts reached levels of significance. Metacognitive reflection by number of concept links noted also reach significance. No significance was found for metacognitive reflection by number of concept nodes. No gender differences in problem-solving ability and metacognitive reflection emerged. Lack of gender differences in the shared, Intranet environment strongly suggests an equalizing effect due to the cooperative, collaborative nature of Intranet environments. Such environments appeal to, and rank high with, the female

  8. An Experimental Study of the Use of Design Thinking as a Requirements Elicitation Approach for Mobile Learning Environments

    Directory of Open Access Journals (Sweden)

    Carla Silva

    2015-04-01

    Full Text Available Mobile learning (m-learning is a research field that aims to analyze how mobile devices can contribute to learning. The development of software for mobile devices to support learning is essential for an effective implementation of m-learning or mobile learning environments (MLE. Requirements Engineering processes need to include activities that provoke creativity in the stakeholders to conceive MLEs that actually modify and improve the teaching and learning process. In this context, this paper presents a process for requirements elicitation and documentation of mobile learning environments. This process is based on the concepts of the Design Thinking process that provides a methodology to elicit customer needs, producing simple prototypes that eventually converge to innovative solutions. An experiment was conducted to evaluate if the proposed process contributes to create MLEs that present distinctive and interesting characteristics when compared to existing solutions for a specific problem.

  9. Creating a Role for Embedded Librarians Within an Active Learning Environment.

    Science.gov (United States)

    Hackman, Dawn E; Francis, Marcia J; Johnson, Erika; Nickum, Annie; Thormodson, Kelly

    2017-01-01

    In 2013, the librarians at a small academic health sciences library reevaluated their mission, vision, and strategic plan to expand their roles. The school was transitioning to a new pedagogical culture and a new building designed to emphasize interprofessional education and active learning methodologies. Subsequent efforts to implement the new strategic plan resulted in the librarians joining curriculum committees and other institutional initiatives, such as an Active Learning Task Force, and participating in faculty development workshops. This participation has increased visibility and led to new roles and opportunities for librarians.

  10. Learning Object Metadata in a Web-Based Learning Environment

    NARCIS (Netherlands)

    Avgeriou, Paris; Koutoumanos, Anastasios; Retalis, Symeon; Papaspyrou, Nikolaos

    2000-01-01

    The plethora and variance of learning resources embedded in modern web-based learning environments require a mechanism to enable their structured administration. This goal can be achieved by defining metadata on them and constructing a system that manages the metadata in the context of the learning

  11. Students' Perspectives on the Design and Implementation of a Blended Synchronous Learning Environment

    Science.gov (United States)

    Wang, Qiyun; Huang, Changquin; Quek, Choon Lang

    2018-01-01

    This study investigated a blended synchronous learning environment (BSLE), which was designed for a group of master's students taking a course at a teacher education institute. The BSLE was created for the majority of the students to attend the course face-to-face and at the same time allowed the rest to join the identical sessions using…

  12. Designing instruction to support mechanical reasoning: Three alternatives in the simple machines learning environment

    Science.gov (United States)

    McKenna, Ann Frances

    2001-07-01

    Creating a classroom environment that fosters a productive learning experience and engages students in the learning process is a complex endeavor. A classroom environment is dynamic and requires a unique synergy among students, teacher, classroom artifacts and events to achieve robust understanding and knowledge integration. This dissertation addresses this complex issue by developing, implementing, and investigating the simple machines learning environment (SIMALE) to support students' mechanical reasoning and understanding. SIMALE was designed to support reflection, collaborative learning, and to engage students in generative learning through multiple representations of concepts and successive experimentation and design activities. Two key components of SIMALE are an original web-based software tool and hands-on Lego activities. A research study consisting of three treatment groups was created to investigate the benefits of hands-on and web-based computer activities on students' analytic problem solving ability, drawing/modeling ability, and conceptual understanding. The study was conducted with two populations of students that represent a diverse group with respect to gender, ethnicity, academic achievement and social/economic status. One population of students in this dissertation study participated from the Mathematics, Engineering, and Science Achievement (MESA) program that serves minorities and under-represented groups in science and mathematics. The second group was recruited from the Academic Talent Development Program (ATDP) that is an academically competitive outreach program offered through the University of California at Berkeley. Results from this dissertation show success of the SIMALE along several dimensions. First, students in both populations achieved significant gains in analytic problem solving ability, drawing/modeling ability, and conceptual understanding. Second, significant differences that were found on pre-test measures were eliminated

  13. Interactive Learning Environment: Web-based Virtual Hydrological Simulation System using Augmented and Immersive Reality

    Science.gov (United States)

    Demir, I.

    2014-12-01

    Recent developments in internet technologies make it possible to manage and visualize large data on the web. Novel visualization techniques and interactive user interfaces allow users to create realistic environments, and interact with data to gain insight from simulations and environmental observations. The hydrological simulation system is a web-based 3D interactive learning environment for teaching hydrological processes and concepts. The simulation systems provides a visually striking platform with realistic terrain information, and water simulation. Students can create or load predefined scenarios, control environmental parameters, and evaluate environmental mitigation alternatives. The web-based simulation system provides an environment for students to learn about the hydrological processes (e.g. flooding and flood damage), and effects of development and human activity in the floodplain. The system utilizes latest web technologies and graphics processing unit (GPU) for water simulation and object collisions on the terrain. Users can access the system in three visualization modes including virtual reality, augmented reality, and immersive reality using heads-up display. The system provides various scenarios customized to fit the age and education level of various users. This presentation provides an overview of the web-based flood simulation system, and demonstrates the capabilities of the system for various visualization and interaction modes.

  14. How to Create Healthy Indoor Environments in Schools

    Science.gov (United States)

    Rhodes, Diane; Di Nella, Frank

    2012-01-01

    A green and healthy indoor environment should be a fundamental concern in the place where kids learn and grow. Good indoor air quality (IAQ) has been shown to have positive effects on student and staff productivity, performance, comfort and attendance. Conversely, poor IAQ in classrooms--caused by mold and moisture issues, problems with HVAC…

  15. Blended Learning

    Science.gov (United States)

    Imbriale, Ryan

    2013-01-01

    Teachers always have been and always will be the essential element in the classroom. They can create magic inside four walls, but they have never been able to create learning environments outside the classroom like they can today, thanks to blended learning. Blended learning allows students and teachers to break free of the isolation of the…

  16. Student Motivation in Constructivist Learning Environment

    Science.gov (United States)

    Cetin-Dindar, Ayla

    2016-01-01

    The purpose of this study was to investigate the relation between constructivist learning environment and students'motivation to learn science by testing whether students' self-efficacy in learning science, intrinsically and extrinsically motivated science learning increase and students' anxiety about science assessment decreases when more…

  17. The Predicaments of Language Learners in Traditional Learning Environments

    Science.gov (United States)

    Shafie, Latisha Asmaak; Mansor, Mahani

    2009-01-01

    Some public universities in developing countries have traditional language learning environments such as classrooms with only blackboards and furniture which do not provide conducive learning environments. These traditional environments are unable to cater for digital learners who need to learn with learning technologies. In order to create…

  18. Student creativity in creating cell organelles as media for learning

    Science.gov (United States)

    Fatmawati, B.

    2018-04-01

    Creativity is not formed by itself but it is influenced by some others factors. Creativity is a . person’s ability to create / generate an idea embodied in the form of a product to solve problems which is accepted socially, spiritually, artificially, scientifically, and technologically. Learning media is a means of communication to deliver learning materials. There are three kinds of learning media produced by students such as books story, playdough, and the utilization of inorganic waste. The focus of this research is to know the students’ creativity in producing learnning media to understand an Abstract material especially on topic of cell organelles of animal and plant cell. Data analysis is using two ways that calculate the score of mastery in terms of concepts and creativity. The results showed the score of students’ understanding was increasing from 15 (average score of pre-test) to 31.1 (average score of post-test). It was categorized into three level, that are, high level with 21.4% of participants, medium with 64.3%, and low with 14.3%). Seven groups of students make learning media made of waste, playdough, and waste made in story form. The assessment of creativity involved four aspects, namely, color combinations, stringing, tidiness, and make (the accuracy of the concept with the form). Thus, it can be argued that self-created learning media helps in understanding the Abstract concepts of cell organelles.

  19. Smile: Student Modification in Learning Environments. Establishing Congruence between Actual and Preferred Classroom Learning Environment.

    Science.gov (United States)

    Yarrow, Allan; Millwater, Jan

    1995-01-01

    This study investigated whether classroom psychosocial environment, as perceived by student teachers, could be improved to their preferred level. Students completed the College and University Classroom Environment Inventory, discussed interventions, then completed it again. Significant deficiencies surfaced in the learning environment early in the…

  20. A collaborative learning environment for Management Education based on Experiential Learning

    DEFF Research Database (Denmark)

    Lidón, Iván; Rebollar, Rubén; Møller, Charles

    2011-01-01

    from a student learning perspective. This paper presents the design and the operating principles of a learning environment that has been formulated in a joint development by teachers and researchers of the universities of Zaragoza (Spain) and Aalborg (Denmark). In this paper we describe what...... the learning environment developed consists in, beginning by presenting the theoretical foundation considered for its design, to then describe it in detail and present it. Finally, we will discuss the implications of this environment for researching and teaching in this field, and gather the conclusions...

  1. Clinical Learning Environment at Shiraz Medical School

    Directory of Open Access Journals (Sweden)

    Sedigheh Ebrahimi

    2013-01-01

    Full Text Available Clinical learning occurs in the context of a dynamic environment. Learning environment found to be one of the most important factors in determining the success of an effective teaching program. To investigate, from the attending and resident's perspective, factors that may affect student leaning in the educational hospital setting at Shiraz University of Medical Sciences (SUMS. This study combined qualitative and quantitative methods to determine factors affecting effective learning in clinical setting. Residents evaluated the perceived effectiveness of the university hospital learning environment. Fifty two faculty members and 132 residents participated in this study. Key determinants that contribute to an effective clinical teaching were autonomy, supervision, social support, workload, role clarity, learning opportunity, work diversity and physical facilities. In a good clinical setting, residents should be appreciated and given appropriate opportunities to study in order to meet their objectives. They require a supportive environment to consolidate their knowledge, skills and judgment.

  2. Clinical learning environment at Shiraz Medical School.

    Science.gov (United States)

    Rezaee, Rita; Ebrahimi, Sedigheh

    2013-01-01

    Clinical learning occurs in the context of a dynamic environment. Learning environment found to be one of the most important factors in determining the success of an effective teaching program. To investigate, from the attending and resident's perspective, factors that may affect student leaning in the educational hospital setting at Shiraz University of Medical Sciences (SUMS). This study combined qualitative and quantitative methods to determine factors affecting effective learning in clinical setting. Residents evaluated the perceived effectiveness of the university hospital learning environment. Fifty two faculty members and 132 residents participated in this study. Key determinants that contribute to an effective clinical teaching were autonomy, supervision, social support, workload, role clarity, learning opportunity, work diversity and physical facilities. In a good clinical setting, residents should be appreciated and given appropriate opportunities to study in order to meet their objectives. They require a supportive environment to consolidate their knowledge, skills and judgment. © 2013 Tehran University of Medical Sciences. All rights reserved.

  3. Active Learning Environment with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  4. Learning styles: individualizing computer-based learning environments

    Directory of Open Access Journals (Sweden)

    Tim Musson

    1995-12-01

    Full Text Available While the need to adapt teaching to the needs of a student is generally acknowledged (see Corno and Snow, 1986, for a wide review of the literature, little is known about the impact of individual learner-differences on the quality of learning attained within computer-based learning environments (CBLEs. What evidence there is appears to support the notion that individual differences have implications for the degree of success or failure experienced by students (Ford and Ford, 1992 and by trainee end-users of software packages (Bostrom et al, 1990. The problem is to identify the way in which specific individual characteristics of a student interact with particular features of a CBLE, and how the interaction affects the quality of the resultant learning. Teaching in a CBLE is likely to require a subset of teaching strategies different from that subset appropriate to more traditional environments, and the use of a machine may elicit different behaviours from those normally arising in a classroom context.

  5. The social and learning environments experienced by underrepresented minority medical students: a narrative review.

    Science.gov (United States)

    Orom, Heather; Semalulu, Teresa; Underwood, Willie

    2013-11-01

    To review the literature on the social and learning environments experienced by underrepresented minority (URM) medical students to determine what type of interventions are needed to eliminate potential barriers to enrolling and retaining URM students. The authors searched MEDLINE, PubMed, Ovid HealthStar, and Web of Science, and the reference lists of included studies, published between January 1, 1980, and September 15, 2012. Studies of the learning and social environments and of students' satisfaction, experiences with discrimination or unfair practices, and academic performance or progress, as well as assessments of programs or interventions to improve URM students' academic performance, were eligible for inclusion. The authors identified 28 studies (27 unique data sets) meeting the inclusion criteria. The results of the included studies indicated that URM students experienced less supportive social and less positive learning environments, were subjected to discrimination and racial harassment, and were more likely to see their race as having a negative impact on their medical school experiences than non-URM students. Academic performance on standardized exams was worse, progress less timely, and attrition higher for URM students as well. For URM students, an adverse climate may be decreasing the attractiveness of careers in medicine, impairing their academic performance, and increasing attrition. Improvements to the social and learning environments experienced by URM students are needed to make medicine a more inclusive profession. The current environment of health care reform creates an opportunity for institutions to implement strategies to achieve this goal.

  6. The sociability of computer-supported collaborative learning environments

    NARCIS (Netherlands)

    Kreijns, C.J.; Kirschner, P.A.; Jochems, W.M.G.

    2002-01-01

    There is much positive research on computer-supported collaborative learning (CSCL) environments in asynchronous distributed learning groups (DLGs). There is also research that shows that contemporary CSCL environments do not completely fulfil expectations on supporting interactive group learning,

  7. Kaiser Permanente's performance improvement system, Part 4: Creating a learning organization.

    Science.gov (United States)

    Schilling, Lisa; Dearing, James W; Staley, Paul; Harvey, Patti; Fahey, Linda; Kuruppu, Francesca

    2011-12-01

    In 2006, recognizing variations in performance in quality, safety, service, and efficiency, Kaiser Permanente leaders initiated the development of a performance improvement (PI) system. Kaiser Permanente has implemented a strategy for creating the systemic capacity for continuous improvement that characterizes a learning organization. Six "building blocks" were identified to enable Kaiser Permanente to make the transition to becoming a learning organization: real-time sharing of meaningful performance data; formal training in problem-solving methodology; workforce engagement and informal knowledge sharing; leadership structures, beliefs, and behaviors; internal and external benchmarking; and technical knowledge sharing. Putting each building block into place required multiple complex strategies combining top-down and bottom-up approaches. Although the strategies have largely been successful, challenges remain. The demand for real-time meaningful performance data can conflict with prioritized changes to health information systems. It is an ongoing challenge to teach PI, change management, innovation, and project management to all managers and staff without consuming too much training time. Challenges with workforce engagement include low initial use of tools intended to disseminate information through virtual social networking. Uptake of knowledge-sharing technologies is still primarily by innovators and early adopters. Leaders adopt new behaviors at varying speeds and have a range of abilities to foster an environment that is psychologically safe and stimulates inquiry. A learning organization has the capability to improve, and it develops structures and processes that facilitate the acquisition and sharing of knowledge.

  8. Context-aware Cloud Computing for Personal Learning Environment

    OpenAIRE

    Chen, Feng; Al-Bayatti, Ali Hilal; Siewe, Francois

    2016-01-01

    Virtual learning means to learn from social interactions in a virtual platform that enables people to study anywhere and at any time. Current Virtual Learning Environments (VLEs) are a range of integrated web based applications to support and enhance the education. Normally, VLEs are institution centric; are owned by the institutions and are designed to support formal learning, which do not support lifelong learning. These limitations led to the research of Personal Learning Environments (PLE...

  9. Language Learning in Outdoor Environments: Perspectives of preschool staff

    Directory of Open Access Journals (Sweden)

    Martina Norling

    2015-03-01

    Full Text Available Language environment is highlighted as an important area in the early childhood education sector. The term language environment refers to language-promoting aspects of education, such as preschool staff’s use of verbal language in interacting with the children. There is a lack of research about language learning in outdoor environments; thus children’s language learning is mostly based on the indoor physical environment. The aim of this study is therefore to explore, analyse, and describe how preschool staff perceive language learning in outdoor environments. The data consists of focus-group interviews with 165 preschool staff members, conducted in three cities in Sweden. The study is meaningful, thus results contribute knowledge regarding preschool staffs’ understandings of language learning in outdoor environments and develop insights to help preschool staff stimulate children’s language learning in outdoor environments.

  10. Theoretical Foundations of Learning Environments. Second Edition

    Science.gov (United States)

    Jonassen, David, Ed.; Land, Susan, Ed.

    2012-01-01

    "Theoretical Foundations of Learning Environments" provides students, faculty, and instructional designers with a clear, concise introduction to the major pedagogical and psychological theories and their implications for the design of new learning environments for schools, universities, or corporations. Leading experts describe the most…

  11. The Internet: A Learning Environment.

    Science.gov (United States)

    McGreal, Rory

    1997-01-01

    The Internet environment is suitable for many types of learning activities and teaching and learning styles. Every World Wide Web-based course should provide: home page; introduction; course overview; course requirements, vital information; roles and responsibilities; assignments; schedule; resources; sample tests; teacher biography; course…

  12. The Relationship among Self-Regulated Learning, Procrastination, and Learning Behaviors in Blended Learning Environment

    Science.gov (United States)

    Yamada, Masanori; Goda, Yoshiko; Matsuda, Takeshi; Kato, Hiroshi; Miyagawa, Hiroyuki

    2015-01-01

    This research aims to investigate the relationship among the awareness of self-regulated learning (SRL), procrastination, and learning behaviors in blended learning environment. One hundred seventy nine freshmen participated in this research, conducted in the blended learning style class using learning management system. Data collection was…

  13. A Design Framework for Personal Learning Environments

    NARCIS (Netherlands)

    Rahimi, E.

    2015-01-01

    The purpose of our research was to develop a PLE (personal learning environment) design framework for workplace settings. By doing such, the research has answered this research question, how should a technology-based personal learning environment be designed, aiming at supporting learners to gain

  14. Prototype of Emapps.com Environment as Agent for Building the Learning Communities

    Directory of Open Access Journals (Sweden)

    Vilma Butkute

    2010-04-01

    Full Text Available The Information Society and Education need to be combined in order to achieve successful active citizenship and economical development with a natural and mutual interdependency. Project eMapps.com game platform can be an example of cross- connected eLearning, mobile and life environment contribution to education. It can increase effectiveness of education both for educational needs in XXI Century and to create a basis for further research on ICT mediation in Information Society. The positive outcomes on learners motivation are explored by the scientific modelling of the future educational environment prototype as agent for building up the learning communities of common intelligence at internal, local and international level. The key finding of this paper is that an eMapps.com game platform prototype can be used to ensure that technology, pedagogy and social networking context are closely aligned in order to realise the educational stimulation in secondary education.

  15. Students’ perceptions of the academic learning environment in seven medical sciences courses based on DREEM

    Science.gov (United States)

    Bakhshialiabad, Hamid; Bakhshi, Mohammadhosien; Hassanshahi, Gholamhossein

    2015-01-01

    Objective Learning environment has a significant role in determining students’ academic achievement and learning. The aim of this study is to investigate the viewpoints of undergraduate medical sciences students on the learning environment using the Dundee Ready Education Environment Measure (DREEM) at Rafsanjan University of Medical Sciences (RUMS). Methods The descriptive cross-sectional study was performed on 493 medical sciences students in the following majors: nursing, midwifery, radiology, operating room nursing, laboratory sciences, medical emergency, and anesthesia. The DREEM questionnaire was used as a standard tool. Data were analyzed using SPSS (v17) software. Student’s t-tests and analysis of variance (ANOVA) statistical tests were used. Results The mean of the achieved scores in the five domains was 113.5 out of 200 (56.74%), which was considered to be more positive than negative. The total mean scores for perception of learning, teaching, and atmosphere were 27.4/48 (57.24%), 24.60/44 (55.91%), and 26.8/48 (55.89%), respectively. Academic and social self-perceptions were 20.5/32 (64.11%) and 15.7/28 (56.36%), respectively. The total DREEM scores varied significantly between courses (Penvironment. The differences between courses and their study pathway should be further investigated by analysis of specific items. Our results showed that it is essential for faculty members and course managers to make more efforts toward observing principles of instructional designs, to create an appropriate educational environment, and to reduce deficits in order to provide a better learning environment with more facilities and supportive systems for the students. PMID:25848331

  16. A Study on Students’ Views On Blended Learning Environment

    Directory of Open Access Journals (Sweden)

    Meryem YILMAZ SOYLU

    2006-07-01

    Full Text Available In the 21st century, information and communication technologies (ICT have developed rapidly and influenced most of the fields and education as well. Then, ICT have offered a favorable environment for the development and use of various methods and tools. With the developments in technology, blended learning has gained considerable popularity in recent years. Together with the developments it brought along the description of particular forms of teaching with technology. Blended learning is defined simply as a learning environment that combines technology with face-to-face learning. In other words blended learning means using a variety of delivery methods to best meet the course objectives by combining face-to-face teaching in a traditional classroom with teaching online. This article examines students’ views on blended learning environment. The study was conducted on 64 students from Department of Computer Education and Instructional Technologies in 2005–2006 fall semester in Instructional Design and Authoring Languages in PC Environment at Hacettepe University. The results showed that the students enjoyed taking part in the blended learning environment. Students’ achievement levels and their frequency of participation to forum affected their views about blended learning environment. Face-to-face interaction in blended learning application had the highest score. This result demonstrated the importance of interaction and communication for the success of on-line learning.

  17. Personal Efficacy and Factors of Effective Learning Environment in Higher Education: Croatian and American Students

    Directory of Open Access Journals (Sweden)

    Violeta Vidaček - Hainš

    2010-06-01

    Full Text Available Successful learning in higher education incorporates various factors related to knowledge, skills, habits, and motivation. Additionally, students’ personalities and self-efficacy may contribute to their adjustment, planning of activities, and achieving success. The objective of this paper is to analyze students’ needs for support services, which enhance the effectiveness of their learning environment at higher education institutions. Answers received from a sample of undergraduate freshmen at one American University and one Croatian University were analyzed and compared. The students from both countries agree that there is a need for developing self-reliance and personal responsibility in using support services, as well as for the timely and accurate information on availability of these services. Students’ suggestions and their desire to enhance effectiveness of their learning environment may be used in creating and improving support services in higher education institutions as well as training their staff.

  18. Study Circles in Online Learning Environment in the Spirit of Learning-Centered Approach

    Directory of Open Access Journals (Sweden)

    Simándi Szilvia

    2017-08-01

    Full Text Available Introduction: In the era of information society and knowledge economy, learning in non-formal environments gets a highlighted role: it can supplement, replace or raise the knowledge and skills gained in the school system to a higher level (Forray & Juhász, 2008, as the so-called “valid” knowledge significantly changes due to the acceleration of development. With the appearance of information technology means and their booming development, the possibilities of gaining information have widened and, according to the forecasts, the role of learning communities will grow. Purpose: Our starting point is that today, with the involvement of community sites (e.g. Google+, Facebook etc. there is a new possibility for inspiring learning communities: by utilizing the power of community and the possibilities of network-based learning (Ollé & Lévai, 2013. Methods: We intend to make a synthesis based on former research and literature focusing on the learning-centered approach, online learning environment, learning communities and study circles (Noesgaard & Ørngreen, 2015; Biggs & Tang, 2007; Kindström, 2010 Conclusions: The online learning environment can be well utilized for community learning. In the online learning environment, the process of learning is built on activity-oriented work for which active participation, and an intensive, initiative communication are necessary and cooperative and collaborative learning get an important role.

  19. The effects of different learning environments on students' motivation for learning and their achievement.

    Science.gov (United States)

    Baeten, Marlies; Dochy, Filip; Struyven, Katrien

    2013-09-01

    Research in higher education on the effects of student-centred versus lecture-based learning environments generally does not take into account the psychological need support provided in these learning environments. From a self-determination theory perspective, need support is important to study because it has been associated with benefits such as autonomous motivation and achievement. The purpose of the study is to investigate the effects of different learning environments on students' motivation for learning and achievement, while taking into account the perceived need support. First-year student teachers (N= 1,098) studying a child development course completed questionnaires assessing motivation and perceived need support. In addition, a prior knowledge test and case-based assessment were administered. A quasi-experimental pre-test/post-test design was set up consisting of four learning environments: (1) lectures, (2) case-based learning (CBL), (3) alternation of lectures and CBL, and (4) gradual implementation with lectures making way for CBL. Autonomous motivation and achievement were higher in the gradually implemented CBL environment, compared to the CBL environment. Concerning achievement, two additional effects were found; students in the lecture-based learning environment scored higher than students in the CBL environment, and students in the gradually implemented CBL environment scored higher than students in the alternated learning environment. Additionally, perceived need support was positively related to autonomous motivation, and negatively to controlled motivation. The study shows the importance of gradually introducing students to CBL, in terms of their autonomous motivation and achievement. Moreover, the study emphasizes the importance of perceived need support for students' motivation. © 2012 The British Psychological Society.

  20. Personal Learning Environments: A Solution for Self-Directed Learners

    Science.gov (United States)

    Haworth, Ryan

    2016-01-01

    In this paper I discuss "personal learning environments" and their diverse benefits, uses, and implications for life-long learning. Personal Learning Environments (PLEs) are Web 2.0 and social media technologies that enable individual learners the ability to manage their own learning. Self-directed learning is explored as a foundation…

  1. Measuring the clinical learning environment in anaesthesia.

    Science.gov (United States)

    Smith, N A; Castanelli, D J

    2015-03-01

    The learning environment describes the way that trainees perceive the culture of their workplace. We audited the learning environment for trainees throughout Australia and New Zealand in the early stages of curriculum reform. A questionnaire was developed and sent electronically to a large random sample of Australian and New Zealand College of Anaesthetists trainees, with a 26% final response rate. This new instrument demonstrated good psychometric properties, with Cronbach's α ranging from 0.81 to 0.91 for each domain. The median score was equivalent to 78%, with the majority of trainees giving scores in the medium range. Introductory respondents scored their learning environment more highly than all other levels of respondents (P=0.001 for almost all comparisons). We present a simple questionnaire instrument that can be used to determine characteristics of the anaesthesia learning environment. The instrument can be used to help assess curricular change over time, alignment of the formal and informal curricula and strengths and weaknesses of individual departments.

  2. University Libraries and Digital Learning Environments

    OpenAIRE

    2011-01-01

    University libraries around the world have embraced the possibilities of the digital learning environment, facilitating its use and proactively seeking to develop the provision of electronic resources and services. The digital environment offers opportunities and challenges for librarians in all aspects of their work – in information literacy, virtual reference, institutional repositories, e-learning, managing digital resources and social media. The authors in this timely book are leading exp...

  3. Learning How to Design a Technology Supported Inquiry-Based Learning Environment

    Science.gov (United States)

    Hakverdi-Can, Meral; Sonmez, Duygu

    2012-01-01

    This paper describes a study focusing on pre-service teachers' experience of learning how to design a technology supported inquiry-based learning environment using the Internet. As part of their elective course, pre-service science teachers were asked to develop a WebQuest environment targeting middle school students. A WebQuest is an…

  4. Enterprise games: creating and implementing a model to simulate logistics operations

    Directory of Open Access Journals (Sweden)

    Alander Ornellas Ornellas

    2008-07-01

    Full Text Available This work proposes an enterprise game model to simulate the main logistics operations in a supply chain. The need of a simple tool, but well structured and able to create a dynamic learning environment without making it too complex motivated this study and development. The work begins with a comparative analysis between the main reference models about enterprise logistics, included in the bibliography related to best practices in logistics decision-making. Then, concepts of simulation and games are described, its interrelations, characteristics and importance as learning method. The definition of the best practices is, then, used to guide the construction of the main characteristics for the proposed model. The results obtained show the efficacy of the model as a tool capable of creating a dynamic environment for learning purposes to complement traditional teaching techniques. Key-words: Enterprise Games, Supply Chain, Logistics, Simulation, Learning.

  5. Reading a Story: Different Degrees of Learning in Different Learning Environments

    Directory of Open Access Journals (Sweden)

    Anna Maria Giannini

    2017-10-01

    Full Text Available The learning environment in which material is acquired may produce differences in delayed recall and in the elements that individuals focus on. These differences may appear even during development. In the present study, we compared three different learning environments in 450 normally developing 7-year-old children subdivided into three groups according to the type of learning environment. Specifically, children were asked to learn the same material shown in three different learning environments: reading illustrated books (TB; interacting with the same text displayed on a PC monitor and enriched with interactive activities (PC-IA; reading the same text on a PC monitor but not enriched with interactive narratives (PC-NoIA. Our results demonstrated that TB and PC-NoIA elicited better verbal memory recall. In contrast, PC-IA and PC-NoIA produced higher scores for visuo-spatial memory, enhancing memory for spatial relations, positions and colors with respect to TB. Interestingly, only TB seemed to produce a deeper comprehension of the story’s moral. Our results indicated that PC-IA offered a different type of learning that favored visual details. In this sense, interactive activities demonstrate certain limitations, probably due to information overabundance, emotional mobilization, emphasis on images and effort exerted in interactive activities. Thus, interactive activities, although entertaining, act as disruptive elements which interfere with verbal memory and deep moral comprehension.

  6. Reading a Story: Different Degrees of Learning in Different Learning Environments.

    Science.gov (United States)

    Giannini, Anna Maria; Cordellieri, Pierluigi; Piccardi, Laura

    2017-01-01

    The learning environment in which material is acquired may produce differences in delayed recall and in the elements that individuals focus on. These differences may appear even during development. In the present study, we compared three different learning environments in 450 normally developing 7-year-old children subdivided into three groups according to the type of learning environment. Specifically, children were asked to learn the same material shown in three different learning environments: reading illustrated books (TB); interacting with the same text displayed on a PC monitor and enriched with interactive activities (PC-IA); reading the same text on a PC monitor but not enriched with interactive narratives (PC-NoIA). Our results demonstrated that TB and PC-NoIA elicited better verbal memory recall. In contrast, PC-IA and PC-NoIA produced higher scores for visuo-spatial memory, enhancing memory for spatial relations, positions and colors with respect to TB. Interestingly, only TB seemed to produce a deeper comprehension of the story's moral. Our results indicated that PC-IA offered a different type of learning that favored visual details. In this sense, interactive activities demonstrate certain limitations, probably due to information overabundance, emotional mobilization, emphasis on images and effort exerted in interactive activities. Thus, interactive activities, although entertaining, act as disruptive elements which interfere with verbal memory and deep moral comprehension.

  7. The fluidities of digital learning environments and resources

    DEFF Research Database (Denmark)

    Hansbøl, Mikala

    2012-01-01

    The research project “Educational cultures and serious games on a global market place” (2009-2011) dealt with the challenge of the digital learning environment and hence it’s educational development space always existing outside the present space and hence scope of activities. With a reference...... and establishments of the virtual universe called Mingoville.com, the research shows a need to include in researchers’ conceptualizations of digital learning environments and resources, their shifting materialities and platformations and hence emerging (often unpredictable) agencies and educational development...... spaces. Keywords: Fluidity, digital learning environment, digital learning resource, educational development space...

  8. A full XML-based approach to creating hypermedia learning modules in web-based environments: application to a pathology course.

    Science.gov (United States)

    Staccini, Pascal; Dufour, Jean -Charles; Joubert, Michel; Michiels, Jean -François; Fieschi, Marius

    2003-01-01

    Nowadays, web-based learning services are a key topic in the pedagogical and learning strategies of universities. While organisational and teaching requirements of the learning environment are being evaluated, technical specifications are emerging, enabling educators to build advanced "units of learning". Changes, however, take a long time and cost-effective solutions have to be found to involve our institutions in such actions. In this paper, we present a model of the components of a course. We detail the method followed to implement this model in hypermedia modules with a viewer that can be played on line or from a CD-ROM. The XML technology has been used to implement all the data structures and a client-side architecture has been designed to build a course viewer. Standards of description of content (such as Dublin Core and DocBook) have been integrated into the data structures. This tool has been populated with data from a pathology course and supports other medical contents. The choice of the architecture and the usefulness of the programming tools are discussed. The means of migrating towards a server-side application are presented.

  9. E-Learning Systems, Environments and Approaches

    OpenAIRE

    Isaias, P.; Spector, J.M.; Ifenthaler, D.; Sampson, D.G.

    2015-01-01

    The volume consists of twenty-five chapters selected from among peer-reviewed papers presented at the CELDA (Cognition and Exploratory Learning in the Digital Age) 2013 Conference held in Fort Worth, Texas, USA, in October 2013 and also from world class scholars in e-learning systems, environments and approaches. The following sub-topics are included: Exploratory Learning Technologies (Part I), e-Learning social web design (Part II), Learner communities through e-Learning implementations (Par...

  10. Students’ Preferred Characteristics of Learning Environments in Vocational Secondary Education

    OpenAIRE

    Ingeborg Placklé; Karen D. Könings; Wolfgang Jacquet; Katrien Struyven; Arno Libotton; Jeroen J. G. van Merriënboer; Nadine Engels

    2014-01-01

    If teachers and teacher educators are willing to support the learning of students, it is important for them to learn what motivates students to engage in learning. Students have their own preferences on design characteristics of powerful learning environments in vocational education. We developed an instrument – the Inventory Powerful Learning Environments in Vocational Education - to measure students’ preferences on characteristics of powerful learning environments in vocational education. W...

  11. Students Preferred Characteristics of Learning Environments in Vocational Secondary Education

    OpenAIRE

    Placklé, Ingeborg

    2014-01-01

    If teachers and teacher educators are willing to support the learning of students, it is important for them to learn what motivates students to engage in learning. Students have their own preferences on design characteristics of powerful learning environments in vocational education. We developed an instrument - the Inventory Powerful Learning Environments in Vocational Education - to measure studentsâ preferences on characteristics of powerful learning environments in voca-tional education. ...

  12. Misconceptions in Astronomy: Before and After a Constructivist Learning Environment

    Science.gov (United States)

    Ruzhitskaya, Lanika; Speck, A.

    2009-01-01

    We present results of a pilot study on college students’ misconceptions in astronomy. The study was conducted on the campus of a Midwestern university among 43 non-science major students enrolled in an introductory astronomy laboratory course. The laboratory course was based on a constructivist learning environment where students learned astronomy by doing astronomy. During the course, students worked with educational simulations created by Project CLEA team and RedShift College Education Astronomy Workbook by Bill Walker as well as were involved in think-pair-share discussions based on Lecture-Tutorials (Prather et al 2008). Several laboratories were prompted by an instructor's brief presentations. On the first and last days of the course students were surveyed on what their beliefs were about causes of the seasons, the moon's apparent size in the sky and its phases, planetary orbits, structure of the solar system, the sun, distant stars, and the nature of light. The majority of the surveys’ questions were based on Neil Comins’ 50 most commonly cited misconceptions. The outcome of the study showed that while students constructed correct understanding of a number of phenomena, they also created a set of new misconceptions. For example, if on the first day of the course, nine out of 43 students knew what caused the seasons on Earth; on the last day of the course, 20 students gained the similar understanding. However, by the end of the course more students believed that smaller planets must rotate faster based on the conservation of angular momentum and Kepler's laws. Our findings suggest that misconceptions pointed out by Neil Comins over a decade ago are still relevant today; and that learning based exclusively on simulations and collaborative group discussions does not necessarily produce the best results, but may set a ground for creating new misconceptions.

  13. (Re)Counting Meaningful Learning Experiences: Using Student-Created Reflective Videos to Make Invisible Learning Visible during PjBL Experiences

    Science.gov (United States)

    Smith, Shaunna

    2016-01-01

    This ethnographic case study investigated how the process of learning during a yearlong after-school, project-based learning (PjBL) experience could be documented by student-created reflective videos. Guided by social constructivism, constant comparative analysis was used to explore the meaningful learning that took place in addition to the…

  14. Advanced Training Technologies and Learning Environments

    Science.gov (United States)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Advanced Training Technologies and Learning Environments held at NASA Langley Research Center, Hampton, Virginia, March 9-10, 1999. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objective of the workshop was to assess the status and effectiveness of different advanced training technologies and learning environments.

  15. Perceived Satisfaction, Perceived Usefulness and Interactive Learning Environments as Predictors to Self-Regulation in e-Learning Environments

    Science.gov (United States)

    Liaw, Shu-Sheng; Huang, Hsiu-Mei

    2013-01-01

    The research purpose is to investigate learner self-regulation in e-learning environments. In order to better understand learner attitudes toward e-learning, 196 university students answer a questionnaire survey after use an e-learning system few months. The statistical results showed that perceived satisfaction, perceived usefulness, and…

  16. iSee: Teaching Visual Learning in an Organic Virtual Learning Environment

    Science.gov (United States)

    Han, Hsiao-Cheng

    2017-01-01

    This paper presents a three-year participatory action research project focusing on the graduate level course entitled Visual Learning in 3D Animated Virtual Worlds. The purpose of this research was to understand "How the virtual world processes of observing and creating can best help students learn visual theories". The first cycle of…

  17. Learning from Experience: Creating Leadership Capabilities through Computer Simulated Leadership Challenges

    Science.gov (United States)

    Stewart, Alice C.; Black, Sylvia Sloan; Smith-Gratto, Karen; Williams, Jacqueline A.

    2007-01-01

    Leadership is often described as something that is learned from experience. However, experiences do not often occur within a controlled environment where learning and its impact can be evaluated. In this paper, we investigate the efficacy of two types of learning experiences. University students received leadership training of equal length through…

  18. The Effects of Integrating Social Learning Environment with Online Learning

    Science.gov (United States)

    Raspopovic, Miroslava; Cvetanovic, Svetlana; Medan, Ivana; Ljubojevic, Danijela

    2017-01-01

    The aim of this paper is to present the learning and teaching styles using the Social Learning Environment (SLE), which was developed based on the computer supported collaborative learning approach. To avoid burdening learners with multiple platforms and tools, SLE was designed and developed in order to integrate existing systems, institutional…

  19. Incremental learning of concept drift in nonstationary environments.

    Science.gov (United States)

    Elwell, Ryan; Polikar, Robi

    2011-10-01

    We introduce an ensemble of classifiers-based approach for incremental learning of concept drift, characterized by nonstationary environments (NSEs), where the underlying data distributions change over time. The proposed algorithm, named Learn(++). NSE, learns from consecutive batches of data without making any assumptions on the nature or rate of drift; it can learn from such environments that experience constant or variable rate of drift, addition or deletion of concept classes, as well as cyclical drift. The algorithm learns incrementally, as other members of the Learn(++) family of algorithms, that is, without requiring access to previously seen data. Learn(++). NSE trains one new classifier for each batch of data it receives, and combines these classifiers using a dynamically weighted majority voting. The novelty of the approach is in determining the voting weights, based on each classifier's time-adjusted accuracy on current and past environments. This approach allows the algorithm to recognize, and act accordingly, to the changes in underlying data distributions, as well as to a possible reoccurrence of an earlier distribution. We evaluate the algorithm on several synthetic datasets designed to simulate a variety of nonstationary environments, as well as a real-world weather prediction dataset. Comparisons with several other approaches are also included. Results indicate that Learn(++). NSE can track the changing environments very closely, regardless of the type of concept drift. To allow future use, comparison and benchmarking by interested researchers, we also release our data used in this paper. © 2011 IEEE

  20. A SIMULTANEOUS MOBILE E-LEARNING ENVIRONMENT AND APPLICATION

    Directory of Open Access Journals (Sweden)

    Hasan KARAL

    2010-04-01

    Full Text Available The purpose of the present study was to design a mobile learning environment that enables the use of a teleconference application used in simultaneous e-learning with mobile devices and to evaluate this mobile learning environment based on students’ views. With the mobile learning environment developed in the study, the students are able to follow a teleconference application realized by using appropriate mobile devices. The study was carried out with 8 post-graduate students enrolled in Karadeniz Technical University (KTU, Department of Computer Education and Instructional Technologies (CEIT, Graduate School of Natural and Applied Science. The students utilized this teleconference application using mobile devices supporting internet access and Adobe Flash technology. Of the 8 students, 4 accessed the system using EDGE technology and 4 used wireless internet technology. At the end of the application, the audio and display were delayed by 4-5 seconds with EDGE technology, and were delayed by 7-8 seconds with wireless internet technology. Based on the students’ views, it was concluded that the environment had some deficiencies in terms of quality, especially in terms of the screen resolution. Despite this, the students reported that this environment could provide more flexibility in terms of space and time when compared to other simultaneous distance education applications. Although the environment enables interaction, in particular, the problem of resolution caused by screen size is a disadvantage for the system. When this mobile learning application is compared to conventional education environments, it was found that mobile learning does have a role in helping the students overcome the problems of participating in learning activities caused by time and space constraints.

  1. Creating Learning Objects to Enhance the Educational Experiences of American Sign Language Learners: An Instructional Development Report

    Directory of Open Access Journals (Sweden)

    Simone Conceição

    2002-10-01

    Full Text Available Little attention has been given to involving the deaf community in distance teaching and learning or in designing courses that relate to their language and culture. This article reports on the design and development of video-based learning objects created to enhance the educational experiences of American Sign Language (ASL hearing participants in a distance learning course and, following the course, the creation of several new applications for use of the learning objects. The learning objects were initially created for the web, as a course component for review and rehearsal. The value of the web application, as reported by course participants, led us to consider ways in which the learning objects could be used in a variety of delivery formats: CD-ROM, web-based knowledge repository, and handheld device. The process to create the learning objects, the new applications, and lessons learned are described.

  2. Combining Digital Archives Content with Serious Game Approach to Create a Gamified Learning Experience

    Directory of Open Access Journals (Sweden)

    D.-T. Shih

    2015-08-01

    Full Text Available This paper presents an interdisciplinary to develop content-aware application that combines game with learning on specific categories of digital archives. The employment of content-oriented game enhances the gamification and efficacy of learning in culture education on architectures and history of Hsinchu County, Taiwan. The gamified form of the application is used as a backbone to support and provide a strong stimulation to engage users in learning art and culture, therefore this research is implementing under the goal of “The Digital ARt/ARchitecture Project”. The purpose of the abovementioned project is to develop interactive serious game approaches and applications for Hsinchu County historical archives and architectures. Therefore, we present two applications, “3D AR for Hukou Old ” and “Hsinchu County History Museum AR Tour” which are in form of augmented reality (AR. By using AR imaging techniques to blend real object and virtual content, the users can immerse in virtual exhibitions of Hukou Old Street and Hsinchu County History Museum, and to learn in ubiquitous computing environment. This paper proposes a content system that includes tools and materials used to create representations of digitized cultural archives including historical artifacts, documents, customs, religion, and architectures. The Digital ARt / ARchitecture Project is based on the concept of serious game and consists of three aspects: content creation, target management, and AR presentation. The project focuses on developing a proper approach to serve as an interactive game, and to offer a learning opportunity for appreciating historic architectures by playing AR cards. Furthermore, the card game aims to provide multi-faceted understanding and learning experience to help user learning through 3D objects, hyperlinked web data, and the manipulation of learning mode, and then effectively developing their learning levels on cultural and historical archives in

  3. Combining Digital Archives Content with Serious Game Approach to Create a Gamified Learning Experience

    Science.gov (United States)

    Shih, D.-T.; Lin, C. L.; Tseng, C.-Y.

    2015-08-01

    This paper presents an interdisciplinary to develop content-aware application that combines game with learning on specific categories of digital archives. The employment of content-oriented game enhances the gamification and efficacy of learning in culture education on architectures and history of Hsinchu County, Taiwan. The gamified form of the application is used as a backbone to support and provide a strong stimulation to engage users in learning art and culture, therefore this research is implementing under the goal of "The Digital ARt/ARchitecture Project". The purpose of the abovementioned project is to develop interactive serious game approaches and applications for Hsinchu County historical archives and architectures. Therefore, we present two applications, "3D AR for Hukou Old " and "Hsinchu County History Museum AR Tour" which are in form of augmented reality (AR). By using AR imaging techniques to blend real object and virtual content, the users can immerse in virtual exhibitions of Hukou Old Street and Hsinchu County History Museum, and to learn in ubiquitous computing environment. This paper proposes a content system that includes tools and materials used to create representations of digitized cultural archives including historical artifacts, documents, customs, religion, and architectures. The Digital ARt / ARchitecture Project is based on the concept of serious game and consists of three aspects: content creation, target management, and AR presentation. The project focuses on developing a proper approach to serve as an interactive game, and to offer a learning opportunity for appreciating historic architectures by playing AR cards. Furthermore, the card game aims to provide multi-faceted understanding and learning experience to help user learning through 3D objects, hyperlinked web data, and the manipulation of learning mode, and then effectively developing their learning levels on cultural and historical archives in Hsinchu County.

  4. Leading change to create a healthy and satisfying work environment.

    Science.gov (United States)

    Sanders, Carolyn L; Krugman, Mary; Schloffman, Danielle H

    2013-01-01

    Nurse executives must take a leadership role in creating a healthy work environment for nurses and all disciplines. Engaging in partnerships and empowering clinical nurses to construct the solutions to barriers that may stand in the way of the goal of a satisfied and healthy workforce are important strategies toward success. This publication outlines many projects a 3-time Magnet-designated academic hospital has implemented, working with our shared leadership councils, to meet the standards for a healthy work environment. These initiatives, from the unit to the hospital level, included standardizing a culture change of uninterrupted meal breaks, the creation of intensive care unit Zen rooms, strategies to better manage increased patient volumes, best practices for facility design, enhancing physician-nurse relations, and a hospital wellness program. Data were benchmarked against national nurse and employee surveys to compare progress and report outcomes. Two important nursing organization structures that have contributed to the success of a healthy and satisfied nursing work environment include UEXCEL, a longstanding clinical nurse professional practice program, and the hospital's 11-year participation in the University HealthSystem Consortium/American Association of Colleges of Nursing National Post-Baccalaureate Nurse Residency Program. A highly engaged, well-educated, and committed nursing workforce, nurtured by a strong leadership team, has created a positive work environment characterized by low turnover and high retention.

  5. Sociocultural Perspective of Science in Online Learning Environments. Communities of Practice in Online Learning Environments

    Science.gov (United States)

    Erdogan, Niyazi

    2016-01-01

    Present study reviews empirical research studies related to learning science in online learning environments as a community. Studies published between 1995 and 2015 were searched by using ERIC and EBSCOhost databases. As a result, fifteen studies were selected for review. Identified studies were analyzed with a qualitative content analysis method…

  6. Investigation of the Relationship between Learning Process and Learning Outcomes in E-Learning Environments

    Science.gov (United States)

    Yurdugül, Halil; Menzi Çetin, Nihal

    2015-01-01

    Problem Statement: Learners can access and participate in online learning environments regardless of time and geographical barriers. This brings up the umbrella concept of learner autonomy that contains self-directed learning, self-regulated learning and the studying process. Motivation and learning strategies are also part of this umbrella…

  7. Experiences with a simulated learning environment - the SimuScape©: Virtual environments in medical education

    Directory of Open Access Journals (Sweden)

    Anna-Lena Thies

    2014-03-01

    Full Text Available INTRODUCTION: Simulation as a tool for medical education has gained considerable importance in the past years. Various studies have shown that the mastering of basic skills happens best if taught in a realistic and workplace-based context. It is necessary that simulation itself takes place in the realistic background of a genuine clinical or in an accordingly simulated learning environment. METHODS: A panoramic projection system that allows the simulation of different scenarios has been created at the medical school of the Westphalian Wilhelms-University  Muenster/Germany. The SimuScape© is a circular training room of six meters in diameter and has the capacity to generate pictures or moving images as well as the corresponding background noises for medical students, who are then able to interact with simulated patients inside a realistic environment. RESULTS: About 1,000 students have been instructed using the SimuScape© in the courses of emergency medicine, family medicine and anesthesia. The SimuScape©, with its 270°-panoramic projection, gives the students the impression “of being right in the center of action”.  It is a flexible learning environment that can be easily integrated into curricular teaching and which is in full operation for 10 days per semester. CONCLUSION: The SimuScape© allows the establishment of new medical areas outside the hospital and surgery for simulation and it is an extremely adaptable and cost-effective utilization of a lecture room. In this simulated environment it is possible to teach objectives like self-protection and patient care during disturbing environmental influences in practice.

  8. Time Spent, Workload, and Student and Faculty Perceptions in a Blended Learning Environment

    Science.gov (United States)

    Schumacher, Christie; Arif, Sally

    2016-01-01

    Objective. To evaluate student perception and time spent on asynchronous online lectures in a blended learning environment (BLE) and to assess faculty workload and perception. Methods. Students (n=427) time spent viewing online lectures was measured in three courses. Students and faculty members completed a survey to assess perceptions of a BLE. Faculty members recorded time spent creating BLEs. Results. Total time spent in the BLE was less than the allocated time for two of the three courses by 3-15%. Students preferred online lectures for their flexibility, students’ ability to apply information learned, and congruence with their learning styles. Faculty members reported the BLE facilitated higher levels of learning during class sessions but noted an increase in workload. Conclusion. A BLE increased faculty workload but was well received by students. Time spent viewing online lectures was less than what was allocated in two of the three courses. PMID:27667839

  9. Learning Science through Creating a `Slowmation': A case study of preservice primary teachers

    Science.gov (United States)

    Hoban, Garry; Nielsen, Wendy

    2013-01-01

    Many preservice primary teachers have inadequate science knowledge, which often limits their confidence in implementing the subject. This paper proposes a new way for preservice teachers to learn science by designing and making a narrated stop-motion animation as an instructional resource to explain a science concept. In this paper, a simplified way for preservice teachers to design and make an animation called 'slowmation' (abbreviated from 'slow animation') is exemplified. A case study of three preservice primary teachers creating one from start to finish over 2 h was conducted to address the following research question: How do the preservice primary teachers create a slowmation and how does this process influence their science learning? The method of inquiry used a case study design involving pre- and post-individual interviews in conjunction with a discourse analysis of video and audio data recorded as they created a slowmation. The data illustrate how the preservice teachers' science learning was related to their prior knowledge and how they iteratively revisited the content through the construction of five representations as a cumulative semiotic progression: (i) research notes; (ii) storyboard; (iii) models; (iv) digital photographs; culminating in (v) the narrated animation. This progression enabled the preservice teachers to revisit the content in each representation and make decisions about which modes to use and promoted social interaction. Creating a slowmation facilitated the preservice teachers' learning about the life cycle of a ladybird beetle and revised their alternative conceptions.

  10. Creating sustainable performance.

    Science.gov (United States)

    Spreitzer, Gretchen; Porath, Christine

    2012-01-01

    What makes for sustainable individual and organizational performance? Employees who are thriving-not just satisfied and productive but also engaged in creating the future. The authors found that people who fit this description demonstrated 16% better overall performance, 125% less burnout, 32% more commitment to the organization, and 46% more job satisfaction than their peers. Thriving has two components: vitality, or the sense of being alive and excited, and learning, or the growth that comes from gaining knowledge and skills. Some people naturally build vitality and learning into their jobs, but most employees are influenced by their environment. Four mechanisms, none of which requires heroic effort or major resources, create the conditions for thriving: providing decision-making discretion, sharing information about the organization and its strategy, minimizing incivility, and offering performance feedback. Organizations such as Alaska Airlines, Zingerman's, Quicken Loans, and Caiman Consulting have found that helping people grow and remain energized at work is valiant on its own merits-but it can also boost performance in a sustainable way.

  11. Beliefs that manifest through newspaper items in relation to peoples’ life challenges and their potential to enhance a sustainable learning environment in school science

    Directory of Open Access Journals (Sweden)

    Thapelo L. Mamiala

    2013-12-01

    Full Text Available The paper documents beliefs that manifest themselves through newspaper items and elaborates on their potential to enhance a sustainable learning environment in a school science lesson. “Learning environment” is depicted from different angles and includes virtual and real learning environments, school environments and classroom environments. Descriptive and item analyses were conducted on sixty-eight newspaper items that were identified. The nature of problems and prescriptions/solutions was categorised for each item and the paper further provides elaboration on the types of problems and recommended solutions. The results show that the “believed” structure contents in their newspaper items to catch the attention of the “believer”. Lessons on the power of belief must be learnt by school science teachers if they are to succeed in creating a sustainable learning environment with improved performance in school science.

  12. Towards an intelligent environment for distance learning

    Directory of Open Access Journals (Sweden)

    Rafael Morales

    2009-12-01

    Full Text Available Mainstream distance learning nowadays is heavily influenced by traditional educational approaches that produceshomogenised learning scenarios for all learners through learning management systems. Any differentiation betweenlearners and personalisation of their learning scenarios is left to the teacher, who gets minimum support from the system inthis respect. This way, the truly digital native, the computer, is left out of the move, unable to better support the teachinglearning processes because it is not provided with the means to transform into knowledge all the information that it storesand manages. I believe learning management systems should care for supporting adaptation and personalisation of bothindividual learning and the formation of communities of learning. Open learner modelling and intelligent collaborativelearning environments are proposed as a means to care. The proposal is complemented with a general architecture for anintelligent environment for distance learning and an educational model based on the principles of self-management,creativity, significance and participation.

  13. From Assumptions to Practice: Creating and Supporting Robust Online Collaborative Learning

    Science.gov (United States)

    Lock, Jennifer; Johnson, Carol

    2017-01-01

    Collaboration is more than an activity. In the contemporary online learning environment, collaboration needs to be conceived as an overarching way of learning that fosters continued knowledge building. For this to occur, design of a learning task goes beyond students working together. There are integral nuances that give rise to: how the task is…

  14. Technically Speaking: Transforming Language Learning through Virtual Learning Environments (MOOs).

    Science.gov (United States)

    von der Emde, Silke; Schneider, Jeffrey; Kotter, Markus

    2001-01-01

    Draws on experiences from a 7-week exchange between students learning German at an American college and advanced students of English at a German university. Maps out the benefits to using a MOO (multiple user domains object-oriented) for language learning: a student-centered learning environment structured by such objectives as peer teaching,…

  15. INTUITEL and the Hypercube Model - Developing Adaptive Learning Environments

    Directory of Open Access Journals (Sweden)

    Kevin Fuchs

    2016-06-01

    Full Text Available In this paper we introduce an approach for the creation of adaptive learning environments that give human-like recommendations to a learner in the form of a virtual tutor. We use ontologies defining pedagogical, didactic and learner-specific data describing a learner's progress, learning history, capabilities and the learner's current state within the learning environment. Learning recommendations are based on a reasoning process on these ontologies and can be provided in real-time. The ontologies may describe learning content from any domain of knowledge. Furthermore, we describe an approach to store learning histories as spatio-temporal trajectories and to correlate them with influencing didactic factors. We show how such analysis of spatiotemporal data can be used for learning analytics to improve future adaptive learning environments.

  16. Engaging students in a community of learning: Renegotiating the learning environment.

    Science.gov (United States)

    Theobald, Karen A; Windsor, Carol A; Forster, Elizabeth M

    2018-03-01

    Promoting student engagement in a student led environment can be challenging. This article reports on the process of design, implementation and evaluation of a student led learning approach in a small group tutorial environment in a three year Bachelor of Nursing program at an Australian university. The research employed three phases of data collection. The first phase explored student perceptions of learning and engagement in tutorials. The results informed the development of a web based learning resource. Phase two centred on implementation of a community of learning approach where students were supported to lead tutorial learning with peers. The final phase constituted an evaluation of the new approach. Findings suggest that students have the capacity to lead and engage in a community of learning and to assume greater ownership and responsibility where scaffolding is provided. Nonetheless, an ongoing whole of course approach to pedagogical change would better support this form of teaching and learning innovation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Soft Systems Methodology for Personalized Learning Environment

    Science.gov (United States)

    Nair, Uday

    2015-01-01

    There are two sides to a coin when it comes to implementing technology at universities; on one side, there is the university using technologies via the virtual learning environment that seems to be outdated with the digital needs of the students, and on the other side, while implementing technology at the university learning environment the focus…

  18. Cyber-bullying and incivility in the online learning environment, Part 1: Addressing faculty and student perceptions.

    Science.gov (United States)

    Clark, Cynthia M; Werth, Loredana; Ahten, Sara

    2012-01-01

    Online learning has created another potential avenue for incivility. Cyber-bullying, a form of incivility that occurs in an electronic environment, includes posting rumors or misinformation, gossiping, or publishing materials that defame and humiliate others. This is the first of 2 articles detailing a study to empirically measure nursing faculty and student perceptions of incivility in an online learning environment (OLE). In this article, the authors discuss the quantitative results including the types and frequency of uncivil behaviors and the extent to which they are perceived to be a problem in online courses. Part 2 in the September/October issue will describe challenges and advantages of the OLE, discuss specific ways to foster civility, and present strategies to promote student success and retention.

  19. Multi-model-based interactive authoring environment for creating shareable medical knowledge.

    Science.gov (United States)

    Ali, Taqdir; Hussain, Maqbool; Ali Khan, Wajahat; Afzal, Muhammad; Hussain, Jamil; Ali, Rahman; Hassan, Waseem; Jamshed, Arif; Kang, Byeong Ho; Lee, Sungyoung

    2017-10-01

    Technologically integrated healthcare environments can be realized if physicians are encouraged to use smart systems for the creation and sharing of knowledge used in clinical decision support systems (CDSS). While CDSSs are heading toward smart environments, they lack support for abstraction of technology-oriented knowledge from physicians. Therefore, abstraction in the form of a user-friendly and flexible authoring environment is required in order for physicians to create shareable and interoperable knowledge for CDSS workflows. Our proposed system provides a user-friendly authoring environment to create Arden Syntax MLM (Medical Logic Module) as shareable knowledge rules for intelligent decision-making by CDSS. Existing systems are not physician friendly and lack interoperability and shareability of knowledge. In this paper, we proposed Intelligent-Knowledge Authoring Tool (I-KAT), a knowledge authoring environment that overcomes the above mentioned limitations. Shareability is achieved by creating a knowledge base from MLMs using Arden Syntax. Interoperability is enhanced using standard data models and terminologies. However, creation of shareable and interoperable knowledge using Arden Syntax without abstraction increases complexity, which ultimately makes it difficult for physicians to use the authoring environment. Therefore, physician friendliness is provided by abstraction at the application layer to reduce complexity. This abstraction is regulated by mappings created between legacy system concepts, which are modeled as domain clinical model (DCM) and decision support standards such as virtual medical record (vMR) and Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT). We represent these mappings with a semantic reconciliation model (SRM). The objective of the study is the creation of shareable and interoperable knowledge using a user-friendly and flexible I-KAT. Therefore we evaluated our system using completeness and user satisfaction

  20. Construction of a Digital Learning Environment Based on Cloud Computing

    Science.gov (United States)

    Ding, Jihong; Xiong, Caiping; Liu, Huazhong

    2015-01-01

    Constructing the digital learning environment for ubiquitous learning and asynchronous distributed learning has opened up immense amounts of concrete research. However, current digital learning environments do not fully fulfill the expectations on supporting interactive group learning, shared understanding and social construction of knowledge.…

  1. USING PCU-CAMEL, A WEB-BASED LEARNING ENVIRONMENT, IN EVALUATING TEACHING-LEARNING PROCESS

    Directory of Open Access Journals (Sweden)

    Arlinah Imam Rahardjo

    2008-01-01

    Full Text Available PCU-CAMEL (Petra Christian University-Computer Aided Mechanical Engineering Department Learning Environment has been developed to integrate the use of this web-based learning environment into the traditional, face-to-face setting of class activities. This integrated learning method is designed as an effort to enrich and improve the teaching-learning process at Petra Christian University. A study was conducted to introduce the use of PCU-CAMEL as a tool in evaluating teaching learning process. The study on this method of evaluation was conducted by using a case analysis on the integration of PCU-CAMEL to the traditional face-to-face meetings of LIS (Library Information System class at the Informatics Engineering Department of Petra Christian University. Students’ responses documented in some features of PCU-CAMEL were measured and analyzed to evaluate the effectiveness of this integrated system in developing intrinsic motivation of the LIS students of the first and second semester of 2004/2005 to learn. It is believed that intrinsic motivation can drive students to learn more. From the study conducted, it is concluded that besides its capability in developing intrinsic motivation, PCU-CAMEL as a web-based learning environment, can also serve as an effective tool for both students and instructors to evaluate the teaching-learning process. However, some weaknesses did exist in using this method of evaluating teaching-learning process. The free style and unstructured form of the documentation features of this web-based learning environment can lead to ineffective evaluation results

  2. Evaluation of students' perception of their learning environment and approaches to learning

    Science.gov (United States)

    Valyrakis, Manousos; Cheng, Ming

    2015-04-01

    This work presents the results of two case studies designed to assess the various approaches undergraduate and postgraduate students undertake for their education. The first study describes the results and evaluation of an undergraduate course in Water Engineering which aims to develop the fundamental background knowledge of students on introductory practical applications relevant to the practice of water and hydraulic engineering. The study assesses the effectiveness of the course design and learning environment from the perception of students using a questionnaire addressing several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning, and methods of communication and assessment. The second study investigates the effectiveness of supervisory arrangements based on the perceptions of engineering undergraduate and postgraduate students. Effective supervision requires leadership skills that are not taught in the University, yet there is rarely a chance to get feedback, evaluate this process and reflect. Even though the results are very encouraging there are significant lessons to learn in improving ones practice and develop an effective learning environment to student support and guidance. The findings from these studies suggest that students with high level of intrinsic motivation are deep learners and are also top performers in a student-centered learning environment. A supportive teaching environment with a plethora of resources and feedback made available over different platforms that address students need for direct communication and feedback has the potential to improve student satisfaction and their learning experience. Finally, incorporating a multitude of assessment methods is also important in promoting deep learning. These results have deep implications about student learning and can be used to further improve course design and delivery in the future.

  3. Learning Design Patterns for Hybrid Synchronous Video-Mediated Learning Environments

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke

    2016-01-01

    This article describes an innovative learning environment where remote and face-to-face full-time general upper secondary adult students jointly participate in the same live classes at VUC Storstrøm, an adult learning centre in Denmark. The teachers developed new learning designs as a part of the...... activating and equal learning designs for the students. This article is written on the basis of a chapter in the PhD–thesis by the author....

  4. Ubiquitous Learning Environments in Higher Education: A Scoping Literature Review

    Science.gov (United States)

    Virtanen, Mari Aulikki; Haavisto, Elina; Liikanen, Eeva; Kääriäinen, Maria

    2018-01-01

    Ubiquitous learning and the use of ubiquitous learning environments heralds a new era in higher education. Ubiquitous learning environments enhance context-aware and seamless learning experiences available from any location at any time. They support smooth interaction between authentic and digital learning resources and provide personalized…

  5. Students’ Preferred Characteristics of Learning Environments in Vocational Secondary Education

    Directory of Open Access Journals (Sweden)

    Ingeborg Placklé

    2014-12-01

    Full Text Available If teachers and teacher educators are willing to support the learning of students, it is important for them to learn what motivates students to engage in learning. Students have their own preferences on design characteristics of powerful learning environments in vocational education. We developed an instrument - the Inventory Powerful Learning Environments in Vocational Education - to measure students’ preferences on characteristics of powerful learning environments in vocational education. We investigated whether student preferences on the design of their learning environments are in line with what is described in the literature as beneficial for learning. Data of 544 students show that the preferences of students support most characteristics of PLEs in vocational education. Looking through the eyes of students, teachers have to challenge their students and encourage them to take their learning in their own hands. Adaptive learning support is needed. Remarkable, students do not prefer having reflective dialogues with teachers or peers.

  6. U-CrAc Flexible Interior Doctrine, Agile Learning Environments

    DEFF Research Database (Denmark)

    Poulsen, Søren Bolvig; Rosenstand, Claus Andreas Foss

    2012-01-01

    The research domain of this article is flexible learning environment for immediate use. The research question is: How can the learning environment support an agile learning process? The research contribution of this article is a flexible interior doctrine. The research method is action research...

  7. Managerial strategies for creating an effective work environment.

    Science.gov (United States)

    Luse, Kimberly A

    2013-01-01

    To create a highly functioning medical imaging team, radiology managers must be able to analyze their departments and identify areas for improvement. This type of analysis means assessing front-line personnel who already work in the department, along with identifying staffing needs and recruiting talented new employees. In addition, managers must develop effective retention tools such as career ladders and mentorship programs to improve the overall working environment. This article discusses a variety of different strategies to help managers develop a more effective department.

  8. Nursing students' perceptions of learning in practice environments: a review.

    Science.gov (United States)

    Henderson, Amanda; Cooke, Marie; Creedy, Debra K; Walker, Rachel

    2012-04-01

    Effective clinical learning requires integration of nursing students into ward activities, staff engagement to address individual student learning needs, and innovative teaching approaches. Assessing characteristics of practice environments can provide useful insights for development. This study identified predominant features of clinical learning environments from nursing students' perspectives across studies using the same measure in different countries over the last decade. Six studies, from three different countries, using the Clinical Leaning Environment Inventory (CLEI) were reviewed. Studies explored consistent trends about learning environment. Students rated sense of task accomplishment high. Affiliation also rated highly though was influenced by models of care. Feedback measuring whether students' individual needs and views were accommodated consistently rated lower. Across different countries students report similar perceptions about learning environments. Clinical learning environments are most effective in promoting safe practice and are inclusive of student learners, but not readily open to innovation and challenges to routine practices. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  9. Personal Learning Environment – a Conceptual Study

    Directory of Open Access Journals (Sweden)

    Herbert Mühlburger

    2010-01-01

    Full Text Available The influence of digital technologies as well as the World Wide Web on education rises dramatically. In former years Learning Management Systems (LMS were introduced on educational institutes to address the needs both their institutions and their lecturers. Nowadays a shift from an institution-centered approach to a learner-centered one becomes necessary to allow individuality through the learning process and to think about learning strategies in general. In this paper a first approach of a Personal Learning Environment (PLE is described. The technological concept is pointed out as well as a study about the graphical user-interface done at Graz University of Technology (TU Graz. It can be concluded that PLEs are the next generation environments, which help to improve the learning and teaching behavior

  10. Students’ digital learning environments

    DEFF Research Database (Denmark)

    Caviglia, Francesco; Dalsgaard, Christian; Davidsen, Jacob

    2018-01-01

    used tools in the students’ digital learning environments are Facebook, Google Drive, tools for taking notes, and institutional systems. Additionally, the study shows that the tools meet some very basic demands of the students in relation to collaboration, communication, and feedback. Finally...

  11. LEADING THE LEARNING ORGANIZATION

    OpenAIRE

    Sapna Rijal

    2009-01-01

    Researchers have identified leadership as being one of the most important factors that influence the development of learning organization. They suggest that creating a collective vision of the future, empowering and developing employees so that they are better able to handle environmental challenges, modeling learning behavior and creating a learning environment, are crucial skills for leaders of learning organization. These roles are suitable to a transformational leader. Despite the potenti...

  12. Invited Reaction: Influences of Formal Learning, Personal Learning Orientation, and Supportive Learning Environment on Informal Learning

    Science.gov (United States)

    Cseh, Maria; Manikoth, Nisha N.

    2011-01-01

    As the authors of the preceding article (Choi and Jacobs, 2011) have noted, the workplace learning literature shows evidence of the complementary and integrated nature of formal and informal learning in the development of employee competencies. The importance of supportive learning environments in the workplace and of employees' personal learning…

  13. Mobile Learning for Higher Education in Problem-Based Learning Environments

    DEFF Research Database (Denmark)

    Rongbutsri, Nikorn

    2011-01-01

    This paper describes the PhD project on Mobile Learning for Higher Education in Problem-Based Learning Environment which aims to understand how students gain benefit from using mobile devices in the aspect of project work collaboration. It demonstrates research questions, theoretical perspective...

  14. What students really learn: contrasting medical and nursing students' experiences of the clinical learning environment.

    Science.gov (United States)

    Liljedahl, Matilda; Boman, Lena Engqvist; Fält, Charlotte Porthén; Bolander Laksov, Klara

    2015-08-01

    This paper explores and contrasts undergraduate medical and nursing students' experiences of the clinical learning environment. Using a sociocultural perspective of learning and an interpretative approach, 15 in-depth interviews with medical and nursing students were analysed with content analysis. Students' experiences are described using a framework of 'before', 'during' and 'after' clinical placements. Three major themes emerged from the analysis, contrasting the medical and nursing students' experiences of the clinical learning environment: (1) expectations of the placement; (2) relationship with the supervisor; and (3) focus of learning. The findings offer an increased understanding of how medical and nursing students learn in the clinical setting; they also show that the clinical learning environment contributes to the socialisation process of students not only into their future profession, but also into their role as learners. Differences between the two professions should be taken into consideration when designing interprofessional learning activities. Also, the findings can be used as a tool for clinical supervisors in the reflection on how student learning in the clinical learning environment can be improved.

  15. Mixed-Age Grouping in Early Childhood--Creating the Outdoor Learning Environment

    Science.gov (United States)

    Rouse, Elizabeth

    2015-01-01

    Children attending centre-based early childhood care and education programmes across Australia are most likely to be grouped according to age and development. While multi- or mixed-age grouping has been seen to have positive benefits on young children's learning and pro-social behaviours, this approach is not usually adopted in the organisation of…

  16. Enhancing the Learning Environment by Learning all the Students' Names

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    the method to learn all the students' names enhances the learning environment substantially.  ReferencesCranton, Patricia (2001) Becoming an authentic teacher in higher education. Malabar, Florida: Krieger Pub. Co.Wiberg, Merete (2011): Personal email communication June 22, 2011.Woodhead, M. M. and Baddeley......Short abstract This paper describes how the teaching environment can be enhanced significantly by a simple method: learning the names of all the students. The method is time-efficient: In a course with 33 students I used 65 minutes in total. My own view of the effect was confirmed in a small study......: The students felt more valued, secure and respected. They also made an effort to learn each other's names. Long abstract In high school teachers know the students' names very soon - anything else is unthinkable (Wiberg, 2011). Not so in universities where knowing the names of all the students is the exception...

  17. Blended learning in paediatric emergency medicine: preliminary analysis of a virtual learning environment.

    Science.gov (United States)

    Spedding, Ruth; Jenner, Rachel; Potier, Katherine; Mackway-Jones, Kevin; Carley, Simon

    2013-04-01

    Paediatric emergency medicine (PEM) currently faces many competing educational challenges. Recent changes to the working patterns have made the delivery of effective teaching to trainees extremely difficult. We developed a virtual learning environment, on the basis of socioconstructivist principles, which allows learning to take place regardless of time or location. The aim was to evaluate the effectiveness of a blended e-learning approach for PEM training. We evaluated the experiences of ST3 trainees in PEM using a multimodal approach. We classified and analysed message board discussions over a 6-month period to look for evidence of practice change and learning. We conducted semistructured qualitative interviews with trainees approximately 5 months after they completed the course. Trainees embraced the virtual learning environment and had positive experiences of the blended approach to learning. Socioconstructivist learning did take place through the use of message boards on the virtual learning environment. Despite their initial unfamiliarity with the online learning system, the participants found it easy to access and use. The participants found the learning relevant and there was an overlap between shop floor learning and the online content. Clinical discussion was often led by trainees on the forums and these were described as enjoyable and informative. A blended approach to e-learning in basic PEM is effective and enjoyable to trainees.

  18. A Preliminary Investigation of Self-Directed Learning Activities in a Non-Formal Blended Learning Environment

    Science.gov (United States)

    Schwier, Richard A.; Morrison, Dirk; Daniel, Ben K.

    2009-01-01

    This research considers how professional participants in a non-formal self-directed learning environment (NFSDL) made use of self-directed learning activities in a blended face-to-face and on line learning professional development course. The learning environment for the study was a professional development seminar on teaching in higher education…

  19. The new learning environment is personal

    NARCIS (Netherlands)

    De Vries, P.

    2013-01-01

    In a traditional sense the learning environment is qualified as the institutional setting for the teaching and learning to take place. This comprises the students, the teachers, management, the services and all the buildings, the classrooms, the equipment, the tools and laboratories that constitute

  20. Technology-supported environments for learning through cognitive conflict

    Directory of Open Access Journals (Sweden)

    Anne McDougall

    2002-12-01

    Full Text Available This paper examines ways in which the idea of cognitive conflict is used to facilitate learning, looking at the design and use of learning environments for this purpose. Drawing on previous work in science education and educational computing, three approaches to the design of learning environments utilizing cognitive conflict are introduced. These approaches are described as confrontational, guiding and explanatory, based on the level of the designer's concern with learners' pre-existing understanding, the extent of modification to the learner's conceptual structures intended by the designer, and the directness of steering the learner to the desired understanding. The examples used to illustrate the three approaches are taken from science education, specifically software for learning about Newtonian physics; it is contended however that the argument of the paper applies more broadly, to learning environments for many curriculum areas for school levels and in higher education.

  1. Mobile e-Learning for Next Generation Communication Environment

    Science.gov (United States)

    Wu, Tin-Yu; Chao, Han-Chieh

    2008-01-01

    This article develops an environment for mobile e-learning that includes an interactive course, virtual online labs, an interactive online test, and lab-exercise training platform on the fourth generation mobile communication system. The Next Generation Learning Environment (NeGL) promotes the term "knowledge economy." Inter-networking…

  2. Social Networks as Learning Environments for Higher Education

    Directory of Open Access Journals (Sweden)

    J.A.Cortés

    2014-09-01

    Full Text Available Learning is considered as a social activity, a student does not learn only of the teacher and the textbook or only in the classroom, learn also from many other agents related to the media, peers and society in general. And since the explosion of the Internet, the information is within the reach of everyone, is there where the main area of opportunity in new technologies applied to education, as well as taking advantage of recent socialization trends that can be leveraged to improve not only informing of their daily practices, but rather as a tool that explore different branches of education research. One can foresee the future of higher education as a social learning environment, open and collaborative, where people construct knowledge in interaction with others, in a comprehensive manner. The mobility and ubiquity that provide mobile devices enable the connection from anywhere and at any time. In modern educational environments can be expected to facilitate mobile devices in the classroom expansion in digital environments, so that students and teachers can build the teaching-learning process collectively, this partial derivative results in the development of draft research approved by the CONADI in “Universidad Cooperativa de Colombia”, "Social Networks: A teaching strategy in learning environments in higher education."

  3. Designing Virtual Learning Environments

    DEFF Research Database (Denmark)

    Veirum, Niels Einar

    2003-01-01

    The main objective of this working paper is to present a conceptual model for media integrated communication in virtual learning environments. The model for media integrated communication is very simple and identifies the necessary building blocks for virtual place making in a synthesis of methods...

  4. Education and the Environment: Creating Standards-Based Programs in Schools and Districts

    Science.gov (United States)

    Lieberman, Gerald A.

    2013-01-01

    In this timely book, curriculum expert Gerald A. Lieberman provides an innovative guide to creating and implementing a new type of environmental education that combines standards-based lessons on English language arts, math, history, and science with community investigations and service learning projects. By connecting academic content with local…

  5. Students’ perception of the learning environment in a distributed medical programme

    Directory of Open Access Journals (Sweden)

    Kiran Veerapen

    2010-09-01

    Full Text Available Background : The learning environment of a medical school has a significant impact on students’ achievements and learning outcomes. The importance of equitable learning environments across programme sites is implicit in distributed undergraduate medical programmes being developed and implemented. Purpose : To study the learning environment and its equity across two classes and three geographically separate sites of a distributed medical programme at the University of British Columbia Medical School that commenced in 2004. Method : The validated Dundee Ready Educational Environment Survey was sent to all students in their 2nd and 3rd year (classes graduating in 2009 and 2008 of the programme. The domains of the learning environment surveyed were: students’ perceptions of learning, students’ perceptions of teachers, students’ academic self-perceptions, students’ perceptions of the atmosphere, and students’ social self-perceptions. Mean scores, frequency distribution of responses, and inter- and intrasite differences were calculated. Results : The perception of the global learning environment at all sites was more positive than negative. It was characterised by a strongly positive perception of teachers. The work load and emphasis on factual learning were perceived negatively. Intersite differences within domains of the learning environment were more evident in the pioneer class (2008 of the programme. Intersite differences consistent across classes were largely related to on-site support for students. Conclusions : Shared strengths and weaknesses in the learning environment at UBC sites were evident in areas that were managed by the parent institution, such as the attributes of shared faculty and curriculum. A greater divergence in the perception of the learning environment was found in domains dependent on local arrangements and social factors that are less amenable to central regulation. This study underlines the need for ongoing

  6. Students' perception of the learning environment in a distributed medical programme.

    Science.gov (United States)

    Veerapen, Kiran; McAleer, Sean

    2010-09-24

    The learning environment of a medical school has a significant impact on students' achievements and learning outcomes. The importance of equitable learning environments across programme sites is implicit in distributed undergraduate medical programmes being developed and implemented. To study the learning environment and its equity across two classes and three geographically separate sites of a distributed medical programme at the University of British Columbia Medical School that commenced in 2004. The validated Dundee Ready Educational Environment Survey was sent to all students in their 2nd and 3rd year (classes graduating in 2009 and 2008) of the programme. The domains of the learning environment surveyed were: students' perceptions of learning, students' perceptions of teachers, students' academic self-perceptions, students' perceptions of the atmosphere, and students' social self-perceptions. Mean scores, frequency distribution of responses, and inter- and intrasite differences were calculated. The perception of the global learning environment at all sites was more positive than negative. It was characterised by a strongly positive perception of teachers. The work load and emphasis on factual learning were perceived negatively. Intersite differences within domains of the learning environment were more evident in the pioneer class (2008) of the programme. Intersite differences consistent across classes were largely related to on-site support for students. Shared strengths and weaknesses in the learning environment at UBC sites were evident in areas that were managed by the parent institution, such as the attributes of shared faculty and curriculum. A greater divergence in the perception of the learning environment was found in domains dependent on local arrangements and social factors that are less amenable to central regulation. This study underlines the need for ongoing comparative evaluation of the learning environment at the distributed sites and

  7. The development of the effective learning environment by creating an effective teaching in the classroom.

    Directory of Open Access Journals (Sweden)

    Sanchia Janita Prameswari

    2017-07-01

    Full Text Available The changes in learning management typically involve the introduction of various alternative learning methods. The development of an effective learning experience requires the modification of conventional learning. Teaching and learning constructively synchronize instructions and assessment toward the desired learning outcomes. Notwithstanding the vast literature on the creation of effective learning, the lack of explanation on how the relationship between effective teaching and effective classroom would likely leave practitioners and academia without a clear guidance on how to operationalize the creation of effective learning in real life. A systematic literature review procedure was conducted upon published papers between 2007 and 2015 in outstanding education journals. This paper contributes to the literature by amassing the knowledge on pedagogical practices in effective learning creation. In addition, to obtain a granular elaboration about the matter, a framework to operationalize the creation of effective learning is suggested. Three aspects compose the framework namely teachers' intrinsic capabilities, educational institution support, and student’s participative involvement. The roles of each party were extracted from the knowledge contained in the reviewed literature.   This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

  8. Effects of prior knowledge on learning from different compositions of representations in a mobile learning environment

    NARCIS (Netherlands)

    T.-C. Liu (Tzu-Chien); Y.-C. Lin (Yi-Chun); G.W.C. Paas (Fred)

    2014-01-01

    textabstractTwo experiments examined the effects of prior knowledge on learning from different compositions of multiple representations in a mobile learning environment on plant leaf morphology for primary school students. Experiment 1 compared the learning effects of a mobile learning environment

  9. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    Science.gov (United States)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-01-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment "StudentResearcher," which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum…

  10. Early results of experiments with responsive open learning environments

    OpenAIRE

    Friedrich, M.; Wolpers, M.; Shen, R.; Ullrich, C.; Klamma, R.; Renzel, D.; Richert, A.; Heiden, B. von der

    2011-01-01

    Responsive open learning environments (ROLEs) are the next generation of personal learning environments (PLEs). While PLEs rely on the simple aggregation of existing content and services mainly using Web 2.0 technologies, ROLEs are transforming lifelong learning by introducing a new infrastructure on a global scale while dealing with existing learning management systems, institutions, and technologies. The requirements engineering process in highly populated test-beds is as important as the t...

  11. HYPER-­TVT: Development and Implementation of an Interactive Learning Environment for Students of Chemical and Process Engineering

    Science.gov (United States)

    Santoro, Marina; Mazzotti, Marco

    2006-01-01

    Hyper-TVT is a computer-aided education system that has been developed at the Institute of Process Engineering at the ETH Zurich. The aim was to create an interactive learning environment for chemical and process engineering students. The topics covered are the most important multistage separation processes, i.e. fundamentals of separation…

  12. Interactive learning environments to support independent learning: the impact of discernability of embedded support devices

    NARCIS (Netherlands)

    Martens, Rob; Valcke, Martin; Portier, Stanley

    2017-01-01

    In this article the effectivity of prototypes of interactive learning environments (ILE) is investigated. These computer-based environments are used for independent learning. In the learning materials, represented in the prototypes, a clear distinction is made between the basic content and embedded

  13. A Collaborative Model for Ubiquitous Learning Environments

    Science.gov (United States)

    Barbosa, Jorge; Barbosa, Debora; Rabello, Solon

    2016-01-01

    Use of mobile devices and widespread adoption of wireless networks have enabled the emergence of Ubiquitous Computing. Application of this technology to improving education strategies gave rise to Ubiquitous e-Learning, also known as Ubiquitous Learning. There are several approaches to organizing ubiquitous learning environments, but most of them…

  14. Learning Design for a Successful Blended E-learning Environment: Cultural Dimensions

    OpenAIRE

    Al-Huwail, N.; Gulf Univ. for Science & Technology; Al-Sharhan, S.; Gulf Univ. for Science & Technology; Al-Hunaiyyan, A.; Gulf Univ. for Science & Technology

    2007-01-01

    Blended e-learning is becoming an educational issue especially with the new development of e-learning technology and globalization. This paper presents a new framework for delivery environment in blended e-learning. In addition, new concepts related to the learning strategies and multimedia design in blended e-learning are introduced. The work focuses on the critical cultural factors that affect a blended elearning system. Since it is common that good systems may fail due to cultural issues, ...

  15. Students’ digital learning environments

    DEFF Research Database (Denmark)

    Caviglia, Francesco; Dalsgaard, Christian; Davidsen, Jacob

    2018-01-01

    of the study are 1) to provide an overview of tools for students’ study activities, 2) to identify the most used and most important tools for students and 3) to discover which activities the tools are used for. The empirical study reveals that the students have a varied use of digital media. Some of the most......, the study shows that most of the important tools are not related to the systems provided by the educational institutions. Based on the study, the paper concludes with a discussion of how institutional systems connect to the other tools in the students’ practices, and how we can qualify students’ digital......The objective of the paper is to examine the nature of students’ digital learning environments to understand the interplay of institutional systems and tools that are managed by the students themselves. The paper is based on a study of 128 students’ digital learning environments. The objectives...

  16. Practical Applications and Experiences in K-20 Blended Learning Environments

    Science.gov (United States)

    Kyei-Blankson, Lydia, Ed.; Ntuli, Esther, Ed.

    2014-01-01

    Learning environments continue to change considerably and is no longer confined to the face-to-face classroom setting. As learning options have evolved, educators must adopt a variety of pedagogical strategies and innovative technologies to enable learning. "Practical Applications and Experiences in K-20 Blended Learning Environments"…

  17. Distributed Scaffolding: Synergy in Technology-Enhanced Learning Environments

    Science.gov (United States)

    Ustunel, Hale H.; Tokel, Saniye Tugba

    2018-01-01

    When technology is employed challenges increase in learning environments. Kim et al. ("Sci Educ" 91(6):1010-1030, 2007) presented a pedagogical framework that provides a valid technology-enhanced learning environment. The purpose of the present design-based study was to investigate the micro context dimension of this framework and to…

  18. Digital Communication Applications in the Online Learning Environment

    Science.gov (United States)

    Lambeth, Krista Jill

    2011-01-01

    Scope and method of study. The purpose of this study was for the researcher to obtain a better understanding of the online learning environment, to explore the various ways online class instructors have incorporated digital communication applications to try and provide learner-centered online learning environments, and to examine students'…

  19. Creating technical heritage object replicas in a virtual environment

    Science.gov (United States)

    Egorova, Olga; Shcherbinin, Dmitry

    2016-03-01

    The paper presents innovative informatics methods for creating virtual technical heritage replicas, which are of significant scientific and practical importance not only to researchers but to the public in general. By performing 3D modeling and animation of aircrafts, spaceships, architectural-engineering buildings, and other technical objects, the process of learning is achieved while promoting the preservation of the replicas for future generations. Modern approaches based on the wide usage of computer technologies attract a greater number of young people to explore the history of science and technology and renew their interest in the field of mechanical engineering.

  20. Cascade Model for Online Discussion Boards in an E-Learning Environment

    Directory of Open Access Journals (Sweden)

    Vibha Kumar

    2010-03-01

    Full Text Available This report is an outcome of five years of teaching and managing groups of students in an online learning environment. Some course management software allow the user to create groups and add different links within each group. Distinct platforms, with various sections, can be formed within those links for any given project. Students, as well as instructors, can manage the project for 6 to 8 weeks, cascading one discussion board into one or multiple platforms. This provides better understanding of the project material due to the step by step layout of the given exercise, leading to increased group management and greater communication among the student group members. This report provides the step-by-step procedure for cascading one discussion board into platforms, to manage online projects and provide a more controlled online environment for students in higher education.

  1. Student-Centred Learning Environments: An Investigation into Student Teachers' Instructional Preferences and Approaches to Learning

    Science.gov (United States)

    Baeten, Marlies; Dochy, Filip; Struyven, Katrien; Parmentier, Emmeline; Vanderbruggen, Anne

    2016-01-01

    The use of student-centred learning environments in education has increased. This study investigated student teachers' instructional preferences for these learning environments and how these preferences are related to their approaches to learning. Participants were professional Bachelor students in teacher education. Instructional preferences and…

  2. Preparing Teachers for Emerging Blended Learning Environments

    Science.gov (United States)

    Oliver, Kevin M.; Stallings, Dallas T.

    2014-01-01

    Blended learning environments that merge learning strategies, resources, and modes have been implemented in higher education settings for nearly two decades, and research has identified many positive effects. More recently, K-12 traditional and charter schools have begun to experiment with blended learning, but to date, research on the effects of…

  3. Digital Learning Environments: New possibilities and opportunities

    Directory of Open Access Journals (Sweden)

    Otto Peters

    2000-06-01

    Full Text Available This paper deals with the general problem whether and, if so, how far the impact of the digitised learning environment on our traditional distance education will change the way in which teachers teach and learners learn. Are the dramatic innovations a menace to established ways of learning and teaching or are they the panacea to overcome some of the difficulties of our system of higher learning and to solve some of our educational problems caused by the big and far-reaching educational paradigm shift? This paper will not deal with technical or technological achievements in the field of information and communication which are, of course, revolutionary and to be acknowledged and admired. Rather, the digital learning environment will be analysed from a pedagogical point of view in order to find out what exactly are the didactic possibilities and opportunities and what are its foreseeable disadvantages.

  4. Learning in the e-environment: new media and learning for the future

    Directory of Open Access Journals (Sweden)

    Milan Matijević

    2015-03-01

    Full Text Available We live in times of rapid change in all areas of science, technology, communication and social life. Every day we are asked to what extent school prepares us for these changes and for life in a new, multimedia environment. Children and adolescents spend less time at school or in other settings of learning than they do outdoors or within other social communities (family, clubs, societies, religious institutions and the like. Experts must constantly inquire about what exactly influences learning and development in our rich media environment. The list of the most important life competences has significantly changed and expanded since the last century. Educational experts are attempting to predict changes in the content and methodology of learning at the beginning of the 21st century. Answers are sought to key questions such as: what should one learn; how should one learn; where should one learn; why should one learn; and how do these answers relate to the new learning environment? In his examination of the way children and young people learn and grow up, the author places special attention on the relationship between personal and non-personal communication (e.g. the internet, mobile phones and different types of e-learning. He deals with today's questions by looking back to some of the more prominent authors and studies of the past fifty years that tackled identical or similar questions (Alvin Toffler, Ivan Illich, George Orwell, and the members of the Club of Rome. The conclusion reached is that in today's world of rapid and continuous change, it is much more crucial than in the last century, both, to be able to learn, and to adapt to learning with the help of new media.

  5. INFORMATION EDUCATIONAL ENVIRONMENT AS A PLATFORM FOR IMPLEMENTING BLENDED LEARNING IN HIGHER EDUCATION INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Alla P. Kobysia

    2017-02-01

    Full Text Available The article deals with the organization of blended learning for students on the basis of information educational environment using electronic teaching methods courses. It was considered the use of modern information technology, interactive learning, the use of computer-oriented technologies for structuring educational information and presenting it in different formats, creating an electronic notebook - portfolio of student’s work on appropriate discipline. The portfolio does not only qualitatively assess the performance of students and their level of competence, but also intensify educational interests through the reflection of their professional activity, self-control and self-monitoring their achievement, analysis, reasoning and planning future actions, decisions, and finally changes personal success.

  6. Gendered learning environments in managerial work

    OpenAIRE

    Gustavsson, Maria; Fogelberg Eriksson, Anna

    2010-01-01

    The aim is to investigate female and male managers’ learning environments with particular focus on their opportunities for and barriers to learning and career development in the managerial work of a male-dominated industrial company. In the case study 42 managers, 15 women and 27 men in the company were interviewed. The findings demonstrate that the male managers were provided with significantly richer opportunities to participate in activities conducive to learning and career development tha...

  7. Education for Knowledge Society: Learning and Scientific Innovation Environment

    Directory of Open Access Journals (Sweden)

    Alexander O. Karpov

    2017-11-01

    Full Text Available Cognitive-active learning research-type environment is the fundamental component of the education system for the knowledge society. The purpose of the research is the development of conceptual bases and a constructional model of a cognitively active learning environment that stimulates the creation of new knowledge and its socio-economic application. Research methods include epistemic-didactic analysis of empirical material collected as a result of the study of research environments at schools and universities; conceptualization and theoretical modeling of the cognitively active surrounding, which provides an infrastructure of the research-type cognitive process. The empirical material summarized in this work was collected in the research-cognitive space of the “Step into the Future” program, which is one of the most powerful systems of research education in present-day Russia. The article presents key points of the author's concept of generative learning environments and a model of learning and scientific innovation environment implemented at Russian schools and universities.

  8. Creating Learning Experiences that Promote Informal Science Education: Designing Conservation-Focused Interactive Zoo Exhibits through Action Research

    Science.gov (United States)

    Kalenda, Peter

    Research on exhibit design over the past twenty years has started to identify many different methods to increase the learning that occurs in informal education environments. This study utilized relevant research on exhibit design to create and study the effectiveness of a mobile interactive exhibit at the Seneca Park Zoo that promotes socialization, engagement in science, and conservation-related practices among guests. This study will serve as one component of a major redesign project at the Seneca Park Zoo for their Rocky Coasts exhibit. This action research study targeted the following question, "How can interactive exhibits be designed to promote socialization, engagement in science, and real-world conservation-related practices (RCPs) among zoo guests?" Specific research questions included: 1. In what ways did guests engage with the exhibit? 2. In what ways were guests impacted by the exhibit? a) What evidence exists, if any, of guests learning science content from the exhibit? b) What evidence exists, if any, of guests being emotionally affected by the exhibit? c) What evidence exists, if any, of guests changing their RCPs after visiting the exhibit? Data were collected through zoo guest surveys completed by zoo guests comparing multiple exhibits, interviews with guests before and after they used the prototype exhibit, observations and audio recordings of guests using the prototype exhibit, and follow-up phone interviews with guests who volunteered to participate. Data were analyzed collaboratively with members of the zoo's exhibit Redesign Team using grounded theory qualitative data analysis techniques to find patterns and trends among data. Initial findings from data analysis were used to develop shifts in the exhibit in order to increase visitor engagement and learning. This process continued for two full action research spirals, which resulted in three iterations of the prototype exhibit. The overall findings of this study highlight the ways in which

  9. From Personal to Social: Learning Environments that Work

    Science.gov (United States)

    Camacho, Mar; Guilana, Sonia

    2011-01-01

    VLE (Virtual Learning Environments) are rapidly falling short to meet the demands of a networked society. Web 2.0 and social networks are proving to offer a more personalized, open environment for students to learn formally as they are already doing informally. With the irruption of social media into society, and therefore, education, many voices…

  10. Co-Creating Curriculum in Higher Education: Promoting Democratic Values and a Multidimensional View on Learning

    Science.gov (United States)

    Bergmark, Ulrika; Westman, Susanne

    2016-01-01

    This paper discusses a case study in teacher education in Sweden, focusing on creating spaces for student engagement through co-creating curriculum. It highlights democratic values and a multidimensional learning view as underpinning such endeavors. The main findings are that co-creating curriculum is an ambiguous process entailing unpredictable,…

  11. Virtual Learning Environments and Learning Forms -experiments in ICT-based learning

    DEFF Research Database (Denmark)

    Helbo, Jan; Knudsen, Morten

    2004-01-01

    This paper report the main results of a three year experiment in ICT-based distance learning. The results are based on a full scale experiment in the education, Master of Industrial Information Technology (MII) and is one of many projects deeply rooted in the project Virtual Learning Environments...... and Learning forms (ViLL). The experiment was to transfer a well functioning on-campus engineering program based on project organized collaborative learning to a technology supported distance education program. After three years the experiments indicate that adjustments are required in this transformation....... The main problem is that we do not find the same self regulatoring learning effect in the group work among the off-campus students as is the case for on-campus students. Based on feedback from evaluation questionnaires and discussions with the students didactic adjustments have been made. The revised...

  12. Ethnography in the Danish Veterinary Learning Environment

    Directory of Open Access Journals (Sweden)

    Camilla Kirketerp Nielsen

    2015-11-01

    Full Text Available The overall objective of this project is research-based development, implementation and evaluation of a game-based learning concept to be used in the veterinary education. Herd visits and animal contact are essential for the development of veterinary competences and skills during education. Yet veterinary students have little occasion to reach/attain a proper level of confidence in their own skills/abilities, as they have limited “training-facilities” (Kneebone & Baillie, 2008. One possible solution mightbe to provide a safe, virtual environment (game-based where students could practise interdisciplinary clinical skills in an easily-accessible, interactive setting. A playable demo using Classical Swine Fever in a pig herd as an example has been produced for this purpose. In order totailor the game concept to the specific veterinary learning environment and to ensure compliance with both learning objectives and the actual learning processes/procedures of the veterinary students, the project contains both a developmental aspect (game development and an exploration of the academic (scholastic and profession (practice oriented learning context. The initial phase of the project was a preliminary exploration of the actual learning context, providing an important starting point for the upcoming phase in which I will concentrate on research-based development, implementation and evaluation of a game-based virtual environment in this course context. In the academic (scholastic and profession (practice oriented learning context of a veterinary course in Herd Health Management (Pig module,ethnographic studies have been conducted by using multiple data collection methods; participant observation, spontaneous dialogues and interviews (Borgnakke, 1996; Hammersley & Atkinson, 2007. All courserelated activities in the different learning spaces (commercial pig herds, auditoriums, post-mortem examinations, independent group work were followed.This paper will

  13. Tracking Student Mistreatment Data to Improve the Emergency Medicine Clerkship Learning Environment

    Directory of Open Access Journals (Sweden)

    Joseph B. House

    2017-12-01

    Full Text Available Introduction Medical student mistreatment is a prevalent and significant challenge for medical schools across the country, associated with negative emotional and professional consequences for students. The Association of American Medical Colleges and Liaison Committee on Medical Education have increasingly emphasized the issue of mistreatment in recent years, and medical schools are tasked with creating a positive learning climate. Methods The authors describe the efforts of an emergency department (ED to improve its clerkship learning environment, using a multifaceted approach for collecting mistreatment data and relaying them to educators and clerkship leadership. Data are gathered through end-of-rotation evaluations, teaching evaluations, and an online reporting system available to medical students. Mistreatment data are then relayed to the ED during semi-annual meetings between clerkship leadership and medical school assistant deans, and through annual mistreatment reports provided to department chairs. Results Over a two-year period, students submitted a total of 56 narrative comments related to mistreatment or unprofessional behavior during their emergency medicine (EM clerkship. Of these comments, 12 were submitted in 2015–16 and 44 were submitted in 2016–17. The most frequently observed themes were students feeling ignored or marginalized by faculty (14 comments; students being prevented from speaking or working with patients and/or attending faculty (11 comments; and students being treated in an unprofessional manner by staff (other than faculty, 8 comments. Conclusion This article details an ED’s efforts to improve its EM clerkship learning environment by tracking mistreatment data and intentionally communicating the results to educators and clerkship leadership. Continued mistreatment data collection and faculty development will be necessary for these efforts to have a measurable effect on the learning environment.

  14. Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments.

    NARCIS (Netherlands)

    Dewiyanti, Silvia; Brand-Gruwel, Saskia; Jochems, Wim; Broers, Nick

    2008-01-01

    Dewiyanti, S., Brand-Gruwel, S., Jochems, W., & Broers, N. (2007). Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments. Computers in Human Behavior, 23, 496-514.

  15. Virtual language learning environments: the standardization of evaluation

    Directory of Open Access Journals (Sweden)

    Francesca Romero Forteza

    2014-03-01

    Full Text Available Nowadays there are many approaches aimed at helping learners acquire knowledge through the Internet. Virtual Learning Environments (VLE facilitate the acquisition and practice of skills, but some of these learning platforms are not evaluated or do not follow a standard that guarantees the quality of the tasks involved. In this paper, we set out a proposal for the standardization of the evaluation of VLEs available on the World Wide Web. Thus, the main objective of this study is to establish an evaluation template with which to test whether a VLE is appropriate for computer-assisted language learning (CALL. In the methodology section, a learning platform is analysed and tested to establish the characteristics learning platforms must have. Having established the design of the template for language learning environments, we concluded that a VLE must be versatile enough for application with different language learning and teaching approaches.

  16. A Semi-Open Learning Environment for Mobile Robotics

    Directory of Open Access Journals (Sweden)

    Enrique Sucar

    2007-05-01

    Full Text Available We have developed a semi-open learning environment for mobile robotics, to learn through free exploration, but with specific performance criteria that guides the learning process. The environment includes virtual and remote robotics laboratories, and an intelligent virtual assistant the guides the students using the labs. A series of experiments in the virtual and remote labs are designed to gradually learn the basics of mobile robotics. Each experiment considers exploration and performance aspects, which are evaluated by the virtual assistant, giving feedback to the user. The virtual laboratory has been incorporated to a course in mobile robotics and used by a group of students. A preliminary evaluation shows that the intelligent tutor combined with the virtual laboratory can improve the learning process.

  17. Gendered Learning Environments in Managerial Work

    Science.gov (United States)

    Gustavsson, Maria; Eriksson, Anna Fogelberg

    2010-01-01

    The aim is to investigate female and male managers' learning environments with particular focus on their opportunities for and barriers to learning and career development in the managerial work of a male-dominated industrial company. In the case study 42 managers, 15 women and 27 men in the company were interviewed. The findings demonstrate that…

  18. Appreciation of learning environment and development of higher-order learning skills in a problem-based learning medical curriculum.

    Science.gov (United States)

    Mala-Maung; Abdullah, Azman; Abas, Zoraini W

    2011-12-01

    This cross-sectional study determined the appreciation of the learning environment and development of higher-order learning skills among students attending the Medical Curriculum at the International Medical University, Malaysia which provides traditional and e-learning resources with an emphasis on problem based learning (PBL) and self-directed learning. Of the 708 participants, the majority preferred traditional to e-resources. Students who highly appreciated PBL demonstrated a higher appreciation of e-resources. Appreciation of PBL is positively and significantly correlated with higher-order learning skills, reflecting the inculcation of self-directed learning traits. Implementers must be sensitive to the progress of learners adapting to the higher education environment and innovations, and to address limitations as relevant.

  19. Nigerian Physiotherapy Clinical Students' Perception of Their Learning Environment Measured by the Dundee Ready Education Environment Measure Inventory

    Science.gov (United States)

    Odole, Adesola C.; Oyewole, Olufemi O.; Ogunmola, Oluwasolape T.

    2014-01-01

    The identification of the learning environment and the understanding of how students learn will help teacher to facilitate learning and plan a curriculum to achieve the learning outcomes. The purpose of this study was to investigate undergraduate physiotherapy clinical students' perception of University of Ibadan's learning environment. Using the…

  20. The role of physicality in rich programming environments

    Science.gov (United States)

    Liu, Allison S.; Schunn, Christian D.; Flot, Jesse; Shoop, Robin

    2013-12-01

    Computer science proficiency continues to grow in importance, while the number of students entering computer science-related fields declines. Many rich programming environments have been created to motivate student interest and expertise in computer science. In the current study, we investigated whether a recently created environment, Robot Virtual Worlds (RVWs), can be used to teach computer science principles within a robotics context by examining its use in high-school classrooms. We also investigated whether the lack of physicality in these environments impacts student learning by comparing classrooms that used either virtual or physical robots for the RVW curriculum. Results suggest that the RVW environment leads to significant gains in computer science knowledge, that virtual robots lead to faster learning, and that physical robots may have some influence on algorithmic thinking. We discuss the implications of physicality in these programming environments for learning computer science.

  1. Improvement of Inquiry in a Complex Technology-Enhanced Learning Environment

    NARCIS (Netherlands)

    Pedaste, Margus; Kori, Külli; Maeots, Mario; de Jong, Anthonius J.M.; Riopel, Martin; Smyrnaiou, Zacharoula

    2016-01-01

    Inquiry learning is an effective approach in science education. Complex technology-enhanced learning environments are needed to apply inquiry worldwide to support knowledge gain and improvement of inquiry skills. In our study, we applied an ecology mission in the SCY-Lab learning environment and

  2. Personal Learning Environments for Supporting Out-of-Class Language Learning

    Science.gov (United States)

    Reinders, Hayo

    2014-01-01

    A Personal Learning Environment (PLE) it is a combination of tools (usually digital) and resources chosen by the learner to support different aspects of the learning process, from goal setting to materials selection to assessment. The importance of PLEs for teachers lies in their ability to help students develop autonomy and prepare them for…

  3. Learning in Non-Stationary Environments Methods and Applications

    CERN Document Server

    Lughofer, Edwin

    2012-01-01

    Recent decades have seen rapid advances in automatization processes, supported by modern machines and computers. The result is significant increases in system complexity and state changes, information sources, the need for faster data handling and the integration of environmental influences. Intelligent systems, equipped with a taxonomy of data-driven system identification and machine learning algorithms, can handle these problems partially. Conventional learning algorithms in a batch off-line setting fail whenever dynamic changes of the process appear due to non-stationary environments and external influences.   Learning in Non-Stationary Environments: Methods and Applications offers a wide-ranging, comprehensive review of recent developments and important methodologies in the field. The coverage focuses on dynamic learning in unsupervised problems, dynamic learning in supervised classification and dynamic learning in supervised regression problems. A later section is dedicated to applications in which dyna...

  4. Personal Learning Environments in Black and White

    NARCIS (Netherlands)

    Kalz, Marco

    2010-01-01

    Kalz, M. (2010, 22 January). Personal Learning Environments in Black and White. Presentation provided during the workshop "Informal Learning and the use of social software in veterinary medicine" of the Noviceproject (http://www.noviceproject.eu), Utrecht, The Netherlands.

  5. Supporting Student Learning in Computer Science Education via the Adaptive Learning Environment ALMA

    Directory of Open Access Journals (Sweden)

    Alexandra Gasparinatou

    2015-10-01

    Full Text Available This study presents the ALMA environment (Adaptive Learning Models from texts and Activities. ALMA supports the processes of learning and assessment via: (1 texts differing in local and global cohesion for students with low, medium, and high background knowledge; (2 activities corresponding to different levels of comprehension which prompt the student to practically implement different text-reading strategies, with the recommended activity sequence adapted to the student’s learning style; (3 an overall framework for informing, guiding, and supporting students in performing the activities; and; (4 individualized support and guidance according to student specific characteristics. ALMA also, supports students in distance learning or in blended learning in which students are submitted to face-to-face learning supported by computer technology. The adaptive techniques provided via ALMA are: (a adaptive presentation and (b adaptive navigation. Digital learning material, in accordance with the text comprehension model described by Kintsch, was introduced into the ALMA environment. This material can be exploited in either distance or blended learning.

  6. Nursing students' satisfaction of the clinical learning environment: a research study.

    Science.gov (United States)

    Papastavrou, Evridiki; Dimitriadou, Maria; Tsangari, Haritini; Andreou, Christos

    2016-01-01

    The acquisition of quality clinical experience within a supportive and pedagogically adjusted clinical learning environment is a significant concern for educational institutions. The quality of clinical learning usually reflects the quality of the curriculum structure. The assessment of the clinical settings as learning environment is a significant concern within the contemporary nursing education. The nursing students' satisfaction is considered as an important factor of such assessment, contributing to any potential reforms in order to optimize the learning activities and achievements within clinical settings. The aim of the study was to investigate nursing students' satisfaction of the clinical settings as learning environments. A quantitative descriptive, correlational design was used. A sample of 463 undergraduate nursing students from the three universities in Cyprus were participated. Data were collected using the Clinical Learning Environment, Supervision and Nurse Teacher (CLES + T). Nursing students were highly satisfied with the clinical learning environment and their satisfaction has been positively related to all clinical learning environment constructs namely the pedagogical atmosphere, the Ward Manager's leadership style, the premises of Nursing in the ward, the supervisory relationship (mentor) and the role of the Nurse Teacher (p relationship. The frequency of meetings among the students and the mentors increased the students' satisfaction with the clinical learning environment. It was also revealed that 1st year students were found to be more satisfied than the students in other years. The supervisory relationship was evaluated by the students as the most influential factor in their satisfaction with the clinical learning environment. Student's acceptance within the nursing team and a well-documented individual nursing care is also related with students' satisfaction. The pedagogical atmosphere is considered pivotal, with reference to

  7. Stealth Learning: Unexpected Learning Opportunities through Games

    Science.gov (United States)

    Sharp, Laura A.

    2012-01-01

    Educators across the country struggle to create engaging, motivating learning environments for their Net Gen students. These learners expect instant gratification that traditional lectures do not provide. This leaves educators searching for innovative ways to engage students in order to encourage learning. One solution is for educators to use…

  8. Mobile Learning Environment System (MLES): The Case of Android-based Learning Application on Undergraduates' Learning

    OpenAIRE

    Hanafi, Hafizul Fahri; Samsudin, Khairulanuar

    2012-01-01

    Of late, mobile technology has introduced new, novel environment that can be capitalized to further enrich the teaching and learning process in classrooms. Taking cognizance of this promising setting, a study was undertaken to investigate the impact of such an environment enabled by android platform on the learning process among undergraduates of Sultan Idris Education University, Malaysia; in particular, this paper discusses critical aspects of the design and implementation of the android le...

  9. Self-enhancement learning: target-creating learning and its application to self-organizing maps.

    Science.gov (United States)

    Kamimura, Ryotaro

    2011-05-01

    In this article, we propose a new learning method called "self-enhancement learning." In this method, targets for learning are not given from the outside, but they can be spontaneously created within a neural network. To realize the method, we consider a neural network with two different states, namely, an enhanced and a relaxed state. The enhanced state is one in which the network responds very selectively to input patterns, while in the relaxed state, the network responds almost equally to input patterns. The gap between the two states can be reduced by minimizing the Kullback-Leibler divergence between the two states with free energy. To demonstrate the effectiveness of this method, we applied self-enhancement learning to the self-organizing maps, or SOM, in which lateral interactions were added to an enhanced state. We applied the method to the well-known Iris, wine, housing and cancer machine learning database problems. In addition, we applied the method to real-life data, a student survey. Experimental results showed that the U-matrices obtained were similar to those produced by the conventional SOM. Class boundaries were made clearer in the housing and cancer data. For all the data, except for the cancer data, better performance could be obtained in terms of quantitative and topological errors. In addition, we could see that the trustworthiness and continuity, referring to the quality of neighborhood preservation, could be improved by the self-enhancement learning. Finally, we used modern dimensionality reduction methods and compared their results with those obtained by the self-enhancement learning. The results obtained by the self-enhancement were not superior to but comparable with those obtained by the modern dimensionality reduction methods.

  10. Personalised Peer-Supported Learning: The Peer-to-Peer Learning Environment (P2PLE)

    Science.gov (United States)

    Corneli, Joseph; Mikroyannidis, Alexander

    2011-01-01

    The Peer-to-Peer Learning Environment (P2PLE) is a proposed approach to helping learners co-construct their learning environment using recommendations about people, content, and tools. The work draws on current research on PLEs, and participant observation at the Peer-to-Peer University (P2PU). We are particularly interested in ways of eliciting…

  11. Personalized e-Learning Environments: Considering Students' Contexts

    Science.gov (United States)

    Eyharabide, Victoria; Gasparini, Isabela; Schiaffino, Silvia; Pimenta, Marcelo; Amandi, Analía

    Personalization in e-learning systems is vital since they are used by a wide variety of students with different characteristics. There are several approaches that aim at personalizing e-learning environments. However, they focus mainly on technological and/or networking aspects without caring of contextual aspects. They consider only a limited version of context while providing personalization. In our work, the objective is to improve e-learning environment personalization making use of a better understanding and modeling of the user’s educational and technological context using ontologies. We show an example of the use of our proposal in the AdaptWeb system, in which content and navigation recommendations are provided depending on the student’s context.

  12. Miscellany of Students' Satisfaction in an Asynchronous Learning Environment

    Science.gov (United States)

    Larbi-Siaw, Otu; Owusu-Agyeman, Yaw

    2017-01-01

    This study investigates the determinants of students' satisfaction in an asynchronous learning environment using seven key considerations: the e-learning environment, student-content interaction, student and student interaction, student-teacher interaction, group cohesion and timely participation, knowledge of Internet usage, and satisfaction. The…

  13. Virtual Learning Environments and Learning Forms -experiments in ICT-based learning

    DEFF Research Database (Denmark)

    Helbo, Jan; Knudsen, Morten

    2004-01-01

    This paper report the main results of a three year experiment in ICT-based distance learning. The results are based on a full scale experiment in the education, Master of Industrial Information Technology (MII) and is one of many projects deeply rooted in the project Virtual Learning Environments...... didactic model has until now been a positive experience........ The main problem is that we do not find the same self regulatoring learning effect in the group work among the off-campus students as is the case for on-campus students. Based on feedback from evaluation questionnaires and discussions with the students didactic adjustments have been made. The revised...

  14. Creative and Playful Learning: Learning through Game Co-Creation and Games in a Playful Learning Environment

    Science.gov (United States)

    Kangas, Marjaana

    2010-01-01

    This paper reports on a pilot study in which children aged 7-12 (N = 68) had an opportunity to study in a novel formal and informal learning setting. The learning activities were extended from the classroom to the playful learning environment (PLE), an innovative playground enriched by technological tools. Curriculum-based learning was intertwined…

  15. Applying a Framework for Student Modeling in Exploratory Learning Environments: Comparing Data Representation Granularity to Handle Environment Complexity

    Science.gov (United States)

    Fratamico, Lauren; Conati, Cristina; Kardan, Samad; Roll, Ido

    2017-01-01

    Interactive simulations can facilitate inquiry learning. However, similarly to other Exploratory Learning Environments, students may not always learn effectively in these unstructured environments. Thus, providing adaptive support has great potential to help improve student learning with these rich activities. Providing adaptive support requires a…

  16. Postgraduate trainees' perceptions of the learning environment in a ...

    African Journals Online (AJOL)

    Increased performance in both areas requires routine assessment of the learning environment to identify components that need attention. Objective. To evaluate the perception of junior doctors undergoing specialist training regarding the learning environment in a teaching hospital. Methods. This was a single-centre, ...

  17. Mobile Voting Tools for Creating Collaboration Environment and a New Educational Design of the University Lecture

    Science.gov (United States)

    Titova, Svetlana

    2014-01-01

    Mobile devices can enhance learning experience in many ways: provide instant feedback and better diagnosis of learning problems; enhance learner autonomy; create mobile networking collaboration; help design enquiry-based activities based on augmented reality, geo-location awareness and video-capture. One of the main objectives of the international…

  18. ADILE: Architecture of a database-supported learning environment

    NARCIS (Netherlands)

    Hiddink, G.W.

    2001-01-01

    This article proposes an architecture for distributed learning environments that use databases to store learning material. As the layout of learning material can inhibit reuse, the ar-chitecture implements the notion of "separation of layout and structure" using XML technology. Also, the

  19. Learning from data for aquatic and geothenical environments

    NARCIS (Netherlands)

    Bhattacharya, B.

    2005-01-01

    The book presents machine learning as an approach to build models that learn from data, and that can be used to complement the existing modelling practice in aquatic and geotechnical environments. It provides concepts of learning from data, and identifies segmentation (clustering), classification,

  20. Burnout and the learning environment of anaesthetic trainees.

    Science.gov (United States)

    Castanelli, D J; Wickramaarachchi, S A; Wallis, S

    2017-11-01

    Burnout has a high prevalence among healthcare workers and is increasingly recognised as an environmental problem rather than reflecting a personal inability to cope with work stress. We distributed an electronic survey, which included the Maslach Burnout Inventory Health Services Survey and a previously validated learning environment instrument, to 281 Victorian anaesthetic trainees. The response rate was 50%. We found significantly raised rates of burnout in two of three subscales. Ninety-one respondents (67%) displayed evidence of burnout in at least one domain, with 67 (49%) reporting high emotional exhaustion and 57 (42%) reporting high depersonalisation. The clinical learning environment tool demonstrated a significant negative correlation with burnout (r=-0.56, P Burnout was significantly more common than when previously measured in Victoria in 2008 (62% versus 38%). Trainees rated examination preparation the most stressful aspect of the training program. There is a high prevalence of burnout among Victorian anaesthetic trainees. We have shown a significant correlation exists between the clinical learning environment measure and the presence of burnout. This correlation supports the development of interventions to improve the clinical learning environment, as a means to improve trainee wellbeing and address the high prevalence of burnout.

  1. Muddy Learning: Evaluating Learning in Multi-User Computer-Based Environments

    National Research Council Canada - National Science Library

    McArthur, David

    1998-01-01

    ... (Multiple User Synthetic Environments), and MOOs (Multi-User Object Oriented), enables users to create new "rooms" in virtual worlds, define their own personnaes, and engage visitors in rich dialogues...

  2. Training ELF Teachers to Create a Blended Learning Environment: Encouraging CMS Adoption and Implementation

    Science.gov (United States)

    Cote, Travis; Milliner, Brett

    2015-01-01

    E-learning has become a crucial component of most tertiary institution's education initiatives (Park, Lee, & Cheong, 2007) and core to most e-learning strategies is the institution's Content Management System (CMS). A CMS has the potential to enhance language courses by facilitating engagement with class content, providing students with…

  3. The influence of leadership in the working environment, teamwork and organisational learning : a theoretical review

    OpenAIRE

    Lacedón Montemayor, Marta

    2016-01-01

    Treball Final de Grau en Administració d'Empreses. Codi: AE1049. Curs: 2015/2016 The objective of this paper is to examine the influence that leadership has on creating a good working environment, on work teams and on organisational learning, through a theoretical revision. For this, concepts are addressed related to leadership such as the leader's profile, the role he represents within an organisation, his functions and skills, which will help us understand the importance of ...

  4. The Culture of Academic Medicine: Faculty Behaviors Impacting the Learning Environment.

    Science.gov (United States)

    Moutier, Christine; Wingard, Deborah; Gudea, Monica; Jeste, Dilip; Goodman, Seneca; Reznik, Vivian

    2016-12-01

    The culture of academic medical institutions impacts trainee education, among many other faculty and patient outcomes. Disrespectful behavior by faculty is one of the most challenging and common problems that, left unattended, disrupts healthy work and learning environments. Conversely, a respectful environment facilitates learning, creates a sense of safety, and rewards professionalism. The authors developed surveys and an intervention in an effort to better understand and improve climate concerns among health sciences faculty at the University of California, San Diego (UCSD), a research-intense, public, academic medical center. An online "climate survey" of all UC San Diego health sciences faculty was conducted in 2011-2012. A strategic campaign to address the behavioral issues identified in the initial survey was subsequently launched. In 2015, the climate was re-evaluated in order to assess the effectiveness of the intervention. A total of 478 faculty members (223 women, 235 men, 35 % of faculty) completed the baseline survey, reporting relatively low levels of observed sexual harassment (7 %). However, faculty reported concerning rates of other disruptive behaviors: derogatory comments (29 %), anger outbursts (25 %), and hostile communication (25 %). Women and mid-level faculty were more likely to report these behavioral concerns than men and junior or senior colleagues. Three years after an institutional strategy was initiated, 729 faculty members (50 % of the faculty) completed a follow-up survey. The 2015 survey results indicate significant improvement in numerous climate factors, including overall respectful behaviors, as well as behaviors related to gender. In order to enhance a culture of respect in the learning environment, institutions can effectively engage academic leaders and faculty at all levels to address disruptive behavior and enhance positive climate factors.

  5. Examining the Usefulness of Student-Produced PSAs to Learn Advocacy in a Human Behavior and the Social Environment Course

    Science.gov (United States)

    Chu, Yee Han; Quinn, Andrew

    2018-01-01

    Advocacy is a complex set of applications that applies knowledge of human behavior in the social environment to promote the rights of others. The purpose of this study was to explore the usefulness of student-created public service announcements (PSAs) to help BSW students learn cause-based advocacy. Our results suggest that assigning a PSA…

  6. Virtual Learning Environment for Interactive Engagement with Advanced Quantum Mechanics

    Science.gov (United States)

    Pedersen, Mads Kock; Skyum, Birk; Heck, Robert; Müller, Romain; Bason, Mark; Lieberoth, Andreas; Sherson, Jacob F.

    2016-06-01

    A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  7. The Effects of Different Learning Environments on Students' Motivation for Learning and Their Achievement

    Science.gov (United States)

    Baeten, Marlies; Dochy, Filip; Struyven, Katrien

    2013-01-01

    Background: Research in higher education on the effects of student-centred versus lecture-based learning environments generally does not take into account the psychological need support provided in these learning environments. From a self-determination theory perspective, need support is important to study because it has been associated with…

  8. Theoretical framework on selected core issues on conditions for productive learning in networked learning environments

    DEFF Research Database (Denmark)

    Dirckinck-Holmfeld, Lone; Svendsen, Brian Møller; Ponti, Marisa

    The report documents and summarises the elements and dimensions that have been identified to describe and analyse the case studies collected in the Kaleidoscope Jointly Executed Integrating Research Project (JEIRP) on Conditions for productive learning in network learning environments.......The report documents and summarises the elements and dimensions that have been identified to describe and analyse the case studies collected in the Kaleidoscope Jointly Executed Integrating Research Project (JEIRP) on Conditions for productive learning in network learning environments....

  9. Creating a learning organization to help meet the needs of multihospital health systems.

    Science.gov (United States)

    Ward, Angela; Berensen, Nannette; Daniels, Rowell

    2018-04-01

    The considerations that leaders of multihospital health systems must take into account in developing and implementing initiatives to build and maintain an exceptional pharmacy workforce are described. Significant changes that require constant individual and organizational learning are occurring throughout healthcare and within the profession of pharmacy. These considerations include understanding why it is important to have a succession plan and determining what types of education and training are important to support that plan. Other considerations include strategies for leveraging learners, dealing with a large geographic footprint, adjusting training opportunities to accommodate the ever-evolving demands on pharmacy staffs in terms of skill mix, and determining ways to either budget for or internally develop content for staff development. All of these methods are critically important to ensuring an optimized workforce. Especially for large health systems operating multiple sites across large distances, the use of technology-enabled solutions to provide effective delivery of programming to multiple sites is critical. Commonly used tools include live webinars, live "telepresence" programs, prerecorded programming that is available through an on-demand repository, and computer-based training modules. A learning management system is helpful to assign and document completion of educational requirements, especially those related to regulatory requirements (e.g., controlled substances management, sterile and nonsterile compounding, competency assessment). Creating and sustaining an environment where all pharmacy caregivers feel invested in and connected to ongoing learning is a powerful motivator for performance, engagement, and retention. Copyright © 2018 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  10. LEARNING TOOLS INTEROPERABILITY – A NEW STANDARD FOR INTEGRATION OF DISTANCE LEARNING PLATFORMS

    Directory of Open Access Journals (Sweden)

    Oleksandr A. Shcherbyna

    2015-06-01

    Full Text Available For information technology in education there is always an issue of re-usage of electronic educational resources, their transferring possibility from one virtual learning environment to another. Previously, standardized sets of files were used to serve this purpose, for example, SCORM-packages. In this article the new standard Learning Tools Interoperability (LTI is reviewed, which allows users from one environment to access resources from another environment. This makes it possible to integrate them into a single distributed learning environment that is created and shared. The article gives examples of the practical use of standard LTI in Moodle learning management system using External tool and LTI provider plugins.

  11. Communicating the Library as a Learning Environment

    Science.gov (United States)

    Nitecki, Danuta A.; Simpson, Katherine

    2016-01-01

    Lack of commonly used vocabulary for informal learning environments hinders precise communication concerning what is observed, assessed, and understood about the relationship between space and learning. This study empirically extends taxonomies of terms and phrases that describe such relationships through content analysis of descriptions of…

  12. The Effectiveness of Blended Learning Environments

    Science.gov (United States)

    Eryilmaz, Meltem

    2015-01-01

    The object of this experimental study is to measure the effectiveness of a blended learning environment which is laid out on the basis of features for face to face and online environments. The study was applied to 110 students who attend to Atilim University, Ankara, Turkey and take Introduction to Computers Course. During the application,…

  13. Living and learning in a rural environment: a nursing student perspective.

    Science.gov (United States)

    Pront, Leeanne; Kelton, Moira; Munt, Rebecca; Hutton, Alison

    2013-03-01

    This study investigates the influences on nursing student learning who live and learn in the same rural environment. A declining health workforce has been identified both globally and in Australia, the effects of which have become significantly apparent in the rural nursing sector. In support of rural educational programs the literature portrays rural clinical practice experiences as significant to student learning. However, there is little available research on what influences learning for the nursing student who studies in their own rural community. The aim of this study was to understand what influences student learning in the rural clinical environment. Through a multiple case study design five nursing students and two clinical preceptors from a rural clinical venue were interviewed. The interviews were transcribed and thematically analysed to identify factors that influenced student learning outcomes. The most significant influence on nursing student learning in the rural clinical environment was found to include the environment itself, the complex relationships unique to living and studying in a rural community along with the capacity to link theory to practice. The rural environment influences those in it, the demands placed on them, the relationships they form, the ability to promote learning and the time to teach and learn. Copyright © 2012. Published by Elsevier Ltd.

  14. The Impact of Multitasking Learning Environments in the Middle Grades

    Science.gov (United States)

    Drinkwine, Timothy

    2013-01-01

    This research study considers the status of middle school students in the 21st century in terms of their tendency to multitask in their daily lives and the overall influence this multitasking has on teaching and learning environments. Student engagement in the learning environment and students' various learning styles are discussed as primary…

  15. Use of Heuristics to Facilitate Scientific Discovery Learning in a Simulation Learning Environment in a Physics Domain

    Science.gov (United States)

    Veermans, Koen; van Joolingen, Wouter; de Jong, Ton

    2006-01-01

    This article describes a study into the role of heuristic support in facilitating discovery learning through simulation-based learning. The study compares the use of two such learning environments in the physics domain of collisions. In one learning environment (implicit heuristics) heuristics are only used to provide the learner with guidance…

  16. Creating neighbourhood groupings based on built environment features to facilitate health promotion activities.

    Science.gov (United States)

    Schopflocher, Donald; VanSpronsen, Eric; Spence, John C; Vallianatos, Helen; Raine, Kim D; Plotnikoff, Ronald C; Nykiforuk, Candace I J

    2012-07-26

    Detailed assessments of the built environment often resist data reduction and summarization. This project sought to develop a method of reducing built environment data to an extent that they can be effectively communicated to researchers and community stakeholders. We aim to help in an understanding of how these data can be used to create neighbourhood groupings based on built environment characteristics and how the process of discussing these neighbourhoods with community stakeholders can result in the development of community-informed health promotion interventions. We used the Irvine Minnesota Inventory (IMI) to assess 296 segments of a semi-rural community in Alberta. Expert raters "created" neighbourhoods by examining the data. Then, a consensus grouping was developed using cluster analysis, and the number of IMI variables to characterize the neighbourhoods was reduced by multiple discriminant function analysis. The 296 segments were reduced to a consensus set of 10 neighbourhoods, which could be separated from each other by 9 functions constructed from 24 IMI variables. Biplots of these functions were an effective means of summarizing and presenting the results of the community assessment, and stimulated community action. It is possible to use principled quantitative methods to reduce large amounts of information about the built environment into meaningful summaries. These summaries, or built environment neighbourhoods, were useful in catalyzing action with community stakeholders and led to the development of health-promoting built environment interventions.

  17. Bully Prevention: Creating Safe and Inclusive Environments for Youth

    Directory of Open Access Journals (Sweden)

    Kimberly Allen

    2012-09-01

    Full Text Available Bullying is a major issue facing youth of all ages, backgrounds, and walks of life. In fact, 30% of youth report experiencing bullying on a monthly basis (Nansel, Overpeck, Pilla, Ruan, Simons-Murton & Scheidt, 2001. As a consequence, these youth are at much greater risk for a host of mental and physical problems (Ttofi & Farrington, 2008. Parents, teachers, educators and youth advocates all agree that this issue merits time and attention, yet many professionals are at a loss for understanding the issue or what resources might be most effective with their young audience. With the increased rates of bullying behaviors and growing research about effective prevention and intervention strategies, youth development professionals need guidance for creating and sustaining bully prevention efforts. The purpose of this article is to highlight the growing research on bully prevention and provide information for practitioners working to create safe and inclusive environments for youth.

  18. promoting self directed learning in simulation based discovery learning environments through intelligent support.

    NARCIS (Netherlands)

    Veermans, K.H.; de Jong, Anthonius J.M.; van Joolingen, Wouter

    2000-01-01

    Providing learners with computer-generated feedback on their learning process in simulationbased discovery environments cannot be based on a detailed model of the learning process due to the “open” character of discovery learning. This paper describes a method for generating adaptive feedback for

  19. Virtual learning environment for interactive engagement with advanced quantum mechanics

    Directory of Open Access Journals (Sweden)

    Mads Kock Pedersen

    2016-04-01

    Full Text Available A virtual learning environment can engage university students in the learning process in ways that the traditional lectures and lab formats cannot. We present our virtual learning environment StudentResearcher, which incorporates simulations, multiple-choice quizzes, video lectures, and gamification into a learning path for quantum mechanics at the advanced university level. StudentResearcher is built upon the experiences gathered from workshops with the citizen science game Quantum Moves at the high-school and university level, where the games were used extensively to illustrate the basic concepts of quantum mechanics. The first test of this new virtual learning environment was a 2014 course in advanced quantum mechanics at Aarhus University with 47 enrolled students. We found increased learning for the students who were more active on the platform independent of their previous performances.

  20. The Influence of Virtual Learning Environments in Students' Performance

    Science.gov (United States)

    Alves, Paulo; Miranda, Luísa; Morais, Carlos

    2017-01-01

    This paper focuses mainly on the relation between the use of a virtual learning environment (VLE) and students' performance. Therefore, virtual learning environments are characterised and a study is presented emphasising the frequency of access to a VLE and its relation with the students' performance from a public higher education institution…

  1. The virtual driving instructor : Creating awareness in a multi-agent system

    NARCIS (Netherlands)

    Weevers, Ivo; Kuipers, Jorrit; Brugman, Arnd O.; Zwiers, Job; van Dijk, Elisabeth M.A.G.; Nijholt, Anton; Xiang, Y.; Chaib-draa, B.

    2003-01-01

    Driving simulators need an Intelligent Tutoring System (ITS). Simulators provide ways to conduct objective measurements on students’ driving behavior and opportunities for creating the best possible learning environment. The generated traffic situations can be influenced directly according to the

  2. Improving the basic skills of teaching mathematics through learning with search-solve-create-share strategy

    Science.gov (United States)

    Rahayu, D. V.; Kusumah, Y. S.; Darhim

    2018-05-01

    This study examined to see the improvement of prospective teachers’ basic skills of teaching mathematics through search-solve-create-share learning strategy based on overall and Mathematical Prior Knowledge (MPK) and interaction of both. Quasi experiments with the design of this experimental-non-equivalent control group design involved 67 students at the mathematics program of STKIP Garut. The instrument used in this study included pre-test and post-test. The result of this study showed that: (1) The improvement and achievement of the basic skills of teaching mathematics of the prospective teachers who get the learning of search-solve-create-share strategy is better than the improvement and achievement of the prospective teachers who get the conventional learning as a whole and based on MPK; (2) There is no interaction between the learning used and MPK on improving and achieving basic skills of teaching mathematics.

  3. Test-retest reliability of the Clinical Learning Environment, Supervision and Nurse Teacher (CLES + T) scale.

    Science.gov (United States)

    Gustafsson, Margareta; Blomberg, Karin; Holmefur, Marie

    2015-07-01

    The Clinical Learning Environment, Supervision and Nurse Teacher (CLES + T) scale evaluates the student nurses' perception of the learning environment and supervision within the clinical placement. It has never been tested in a replication study. The aim of the present study was to evaluate the test-retest reliability of the CLES + T scale. The CLES + T scale was administered twice to a group of 42 student nurses, with a one-week interval. Test-retest reliability was determined by calculations of Intraclass Correlation Coefficients (ICCs) and weighted Kappa coefficients. Standard Error of Measurements (SEM) and Smallest Detectable Difference (SDD) determined the precision of individual scores. Bland-Altman plots were created for analyses of systematic differences between the test occasions. The results of the study showed that the stability over time was good to excellent (ICC 0.88-0.96) in the sub-dimensions "Supervisory relationship", "Pedagogical atmosphere on the ward" and "Role of the nurse teacher". Measurements of "Premises of nursing on the ward" and "Leadership style of the manager" had lower but still acceptable stability (ICC 0.70-0.75). No systematic differences occurred between the test occasions. This study supports the usefulness of the CLES + T scale as a reliable measure of the student nurses' perception of the learning environment within the clinical placement at a hospital. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Education for Knowledge Society: Learning and Scientific Innovation Environment

    OpenAIRE

    Alexander O. Karpov

    2017-01-01

    Cognitive-active learning research-type environment is the fundamental component of the education system for the knowledge society. The purpose of the research is the development of conceptual bases and a constructional model of a cognitively active learning environment that stimulates the creation of new knowledge and its socio-economic application. Research methods include epistemic-didactic analysis of empirical material collected as a result of the study of research environments at school...

  5. Peer Evaluation in CMC Learning Environment and Writing Skill

    Directory of Open Access Journals (Sweden)

    Morteza Mellati

    2014-09-01

    Full Text Available Peer evaluation and technology-based instruction as the various domains of language teaching perspectives might affect language development. Group work in a technology-based environment might be more successful when learners are involved in developing the assessment process particularly peer assessment. This study investigated the effectiveness of peer evaluation in technology-based language environment and its effects on English writing ability. To reach this goal, 70 Iranian learners were participated in English language writing context. They were divided into two groups, one group assigned to CMC (Computer-Mediated Communication language learning context and the other assigned to a traditional learning environment. Both groups were encouraged to evaluate their classmates’ writing tasks. In addition, interviews were conducted with two learners. Comparing these two groups provides comprehensive guidelines for teachers as well as curriculum designers to set adjusted writing language environment for more effective and creative language teaching and learning. E-collaboration classroom tasks have high intrinsic motivation as well as significant effects on learners’ outcomes. Cooperative tasks specifically in technology-based environment lead learners to group working and consequently group learning. Computer-Mediated Communication is meaningful, especially in contexts in which teachers stimulate group work activities.

  6. Reconfiguring Course Design in Virtual Learning Environments

    DEFF Research Database (Denmark)

    Mullins, Michael; Zupancic, Tadeja

    2007-01-01

    for architectural students offers some innovative insights into experientially oriented educational interfaces. A comparative analysis of VIPA courses and project results are presented in the paper. Special attention in the discussion is devoted to the improvements of e-learning solutions in architecture......Although many administrators and educators are familiar with e-learning programs, learning management systems and portals, fewer may have experience with virtual distributed learning environments and their academic relevance. The blended learning experience of the VIPA e-learning project....... The criterion of the relation between the actual applicability of selected e-learning solutions and elements of collaborative educational interfaces with VR are taken into account. A system of e-learning applicability levels in program and course development and implementation of architectural tectonics...

  7. The Role of the Constructivist Learning Theory and Collaborative Learning Environment on Wiki Classroom, and the Relationship between Them

    Science.gov (United States)

    Alzahrani, Ibraheem; Woollard, John

    2013-01-01

    This paper seeks to discover the relationship between both the social constructivist learning theory and the collaborative learning environment. This relationship can be identified by giving an example of the learning environment. Due to wiki characteristics, Wiki technology is one of the most famous learning environments that can show the…

  8. Creating a Learning Organisation within the Family Business: An Irish Perspective

    Science.gov (United States)

    Birdthistle, Naomi; Fleming, Patricia

    2005-01-01

    Purpose--The purpose of this paper is to investigate how a learning organisation can be created within the framework of the family SME in Ireland. Design/methodology/approach--No comprehensive list of independent family businesses in Ireland was available. To overcome this problem a pragmatic approach was taken in the construction of a sampling…

  9. Human Machine Learning Symbiosis

    Science.gov (United States)

    Walsh, Kenneth R.; Hoque, Md Tamjidul; Williams, Kim H.

    2017-01-01

    Human Machine Learning Symbiosis is a cooperative system where both the human learner and the machine learner learn from each other to create an effective and efficient learning environment adapted to the needs of the human learner. Such a system can be used in online learning modules so that the modules adapt to each learner's learning state both…

  10. Distributed interactive virtual environments for collaborative experiential learning and training independent of distance over Internet2.

    Science.gov (United States)

    Alverson, Dale C; Saiki, Stanley M; Jacobs, Joshua; Saland, Linda; Keep, Marcus F; Norenberg, Jeffrey; Baker, Rex; Nakatsu, Curtis; Kalishman, Summers; Lindberg, Marlene; Wax, Diane; Mowafi, Moad; Summers, Kenneth L; Holten, James R; Greenfield, John A; Aalseth, Edward; Nickles, David; Sherstyuk, Andrei; Haines, Karen; Caudell, Thomas P

    2004-01-01

    Medical knowledge and skills essential for tomorrow's healthcare professionals continue to change faster than ever before creating new demands in medical education. Project TOUCH (Telehealth Outreach for Unified Community Health) has been developing methods to enhance learning by coupling innovations in medical education with advanced technology in high performance computing and next generation Internet2 embedded in virtual reality environments (VRE), artificial intelligence and experiential active learning. Simulations have been used in education and training to allow learners to make mistakes safely in lieu of real-life situations, learn from those mistakes and ultimately improve performance by subsequent avoidance of those mistakes. Distributed virtual interactive environments are used over distance to enable learning and participation in dynamic, problem-based, clinical, artificial intelligence rules-based, virtual simulations. The virtual reality patient is programmed to dynamically change over time and respond to the manipulations by the learner. Participants are fully immersed within the VRE platform using a head-mounted display and tracker system. Navigation, locomotion and handling of objects are accomplished using a joy-wand. Distribution is managed via the Internet2 Access Grid using point-to-point or multi-casting connectivity through which the participants can interact. Medical students in Hawaii and New Mexico (NM) participated collaboratively in problem solving and managing of a simulated patient with a closed head injury in VRE; dividing tasks, handing off objects, and functioning as a team. Students stated that opportunities to make mistakes and repeat actions in the VRE were extremely helpful in learning specific principles. VRE created higher performance expectations and some anxiety among VRE users. VRE orientation was adequate but students needed time to adapt and practice in order to improve efficiency. This was also demonstrated successfully

  11. Mining Learning Social Networks for Cooperative Learning with Appropriate Learning Partners in a Problem-Based Learning Environment

    Science.gov (United States)

    Chen, Chih-Ming; Chang, Chia-Cheng

    2014-01-01

    Many studies have identified web-based cooperative learning as an increasingly popular educational paradigm with potential to increase learner satisfaction and interactions. However, peer-to-peer interaction often suffers barriers owing to a failure to explore useful social interaction information in web-based cooperative learning environments.…

  12. Linking Classroom Environment with At-Risk Engagement in Science: A Mixed Method Approach

    Science.gov (United States)

    Collins, Stephen Craig

    This explanatory sequential mixed-method study analyzed how the teacher created learning environment links to student engagement for students at-risk across five science classroom settings. The learning environment includes instructional strategies, differentiated instruction, positive learning environment, and an academically challenging environment. Quantitative and qualitative data were gathered in the form of self-reporting surveys and a follow-up interview. The researcher aimed to use the qualitative results to explain the quantitative data. The general research question was "What are the factors of the teacher-created learning environment that were best suited to maximize engagement of students at-risk?" Specifically explaining, (1) How do the measured level of teacher created learning environment link to the engagement level of students at-risk in science class? and (2) What relationship exists between the student perception of the science classroom environment and the level of behavioral, cognitive, emotional, and social engagement for students at-risk in science class? This study took place within a large school system with more than 20 high schools, most having 2000-3000 students. Participating students were sent to a panel hearing that determined them unfit for the regular educational setting, and were given the option of attending one of the two alternative schools within the county. Students in this alternative school were considered at-risk due to the fact that 98% received free and reduced lunch, 97% were minority population, and all have been suspended from the regular educational setting. Pairwise comparisons of the SPS questions between teachers using t-test from 107 students at-risk and 40 interviews suggest that each category of the learning environment affects the level of behavioral, cognitive, emotional, and social engagement in science class for students at-risk in an alternative school setting. Teachers with higher student perceptions of

  13. A SCALE-UP Mock-Up: Comparison of Student Learning Gains in High- and Low-Tech Active-Learning Environments

    Science.gov (United States)

    Soneral, Paula A. G.; Wyse, Sara A.

    2017-01-01

    Student-centered learning environments with upside-down pedagogies (SCALE-UP) are widely implemented at institutions across the country, and learning gains from these classrooms have been well documented. This study investigates the specific design feature(s) of the SCALE-UP classroom most conducive to teaching and learning. Using pilot survey data from instructors and students to prioritize the most salient SCALE-UP classroom features, we created a low-tech “Mock-up” version of this classroom and tested the impact of these features on student learning, attitudes, and satisfaction using a quasi-­experimental setup. The same instructor taught two sections of an introductory biology course in the SCALE-UP and Mock-up rooms. Although students in both sections were equivalent in terms of gender, grade point average, incoming ACT, and drop/fail/withdraw rate, the Mock-up classroom enrolled significantly more freshmen. Controlling for class standing, multiple regression modeling revealed no significant differences in exam, in-class, preclass, and Introduction to Molecular and Cellular Biology Concept Inventory scores between the SCALE-UP and Mock-up classrooms. Thematic analysis of student comments highlighted that collaboration and whiteboards enhanced the learning experience, but technology was not important. Student satisfaction and attitudes were comparable. These results suggest that the benefits of a SCALE-UP experience can be achieved at lower cost without technology features. PMID:28213582

  14. Effect of Practice Ownership on Work Environment, Learning Culture, Psychological Safety, and Burnout.

    Science.gov (United States)

    Cuellar, Alison; Krist, Alex H; Nichols, Len M; Kuzel, Anton J

    2018-04-01

    Physicians have joined larger groups and hospital systems in the face of multiple environmental challenges. We examine whether there are differences across practice ownership in self-reported work environment, a practice culture of learning, psychological safety, and burnout. Using cross-sectional data from staff surveys of small and medium-size practices that participated in EvidenceNOW in Virginia, we tested for differences in work environment, culture of learning, psychological safety, and burnout by practice type. We conducted weighted multivariate linear regression of outcomes on ownership, controlling for practice size, specialty mix, payer mix, and whether the practice was located in a medically underserved area. We further analyzed clinician and staff responses separately. Participating were 104 hospital-owned and 61 independent practices and 24 federally qualified health centers (FQHCs). We analyzed 2,005 responses from practice clinicians and staff, a response rate of 49%. Working in a hospital-owned practice was associated with favorable ratings of work environment, psychological safety, and burnout compared with independent practices. When we examined separately the responses of clinicians vs staff, however, the association appears to be largely driven by staff. Hospital ownership was associated with positive perceptions of practice work environment and lower burnout for staff relative to independent ownership, whereas clinicians in FQHCs perceive a more negative, less joyful work environment and burnout. Our findings are suggestive that clinician and nonclinician staff perceive practice adaptive reserve differently, which may have implications for creating the energy for ongoing quality improvement work. © 2018 Annals of Family Medicine, Inc.

  15. Non-formal Learning through Ludic Engagement within Interactive Environments

    DEFF Research Database (Denmark)

    Petersson, Eva

    Adaptive responsive environments that encourage interaction for children with severe disabilities offer a distinct potential for play and learning in rehabilitation. Physical training and therapy for these children is often enduring, tedious, and boring through repetition – and this is often...... the case for both the child and the facilitator/therapist. Despite this, little is yet known about how the utilization of empowering technology influences the users’ communication and learning. The aim of this thesis is twofold: to contribute to the understanding of the role of action and interaction...... in the learning involved when people with different abilities are using interactive environments, and to make a contribution to the research field by concluding at tentative generalizations on design for non-formal learning in interactive environments.      The thesis consists of seven studies which analyze...

  16. Maintaining collaborative, democratic and dialogue-based learning processes in virtual and game-based learning environments

    DEFF Research Database (Denmark)

    Gyldendahl Jensen, Camilla; Sorensen, Elsebeth Korsgaard

    2017-01-01

    The incorporation and use of virtual learning platforms, including computer games, in the education sector, challenge these years the complexity of the learning environment regarding maintaining collaborative, democratic and dialogue-based learning processes that support a high degree of reflection....... When virtual learning platforms are used in an educational context, a fundamental paradox appears as the student needs an active and practice-oriented participation identity to learn while at the same time needing to learn to acquire a participation identity. This identity is raised and trained...... by being a continuous part of a community that recalls the scenarios of reality. It is therefore crucial that the learning environment reflects the reality of which the students' professionalism is unfolded. Learning is, therefore, something more and not just the acquisition of knowledge and past actions...

  17. THE BLENDED LEARNING ENVIRONMENT ON THE FOREIGN LANGUAGE LEARNING PROCESS: A Balance for Motivation and Achievement

    Directory of Open Access Journals (Sweden)

    Bahar ISIGUZEL

    2014-07-01

    Full Text Available The purpose of this study is to determine the effects on motivation and success within the application of blended learning environments in the foreign language class. The research sample is formed by third grade students studying in the tourism and hotel management programs of the faculty for tourism and the faculty of economics and administrative sciences at the Nevsehir Hacı Bektas Veli University (Turkey in fall semester of the 2012-2013 academic year. The research group consists of 62 students and there of 35 students belong to the experimental group and the other 27 persons belong to the control group. While the experimental group was subject to 14 hours online and 6 hours traditional face to face learning, the control group was subject to only 6 hours traditional face to face learning. The research has been completed after a 10 week application. The data on the research have been collected with German course achievement tests via the German Language Learning Motivation Scale. The results reveal that the experimental group of students attending the German classes in blended learning environments has more success and higher motivation compared to the control group attending German language classes in the traditional learning environment. Even if the learners achieve certain success and motivation findings in the classroom and face to face environments performed along with teaching-learning activities mainly in control of the instructor, the success and motivation effect of the blended learning environment could not be achieved.

  18. Understanding and Predicting Student Self-Regulated Learning Strategies in Game-Based Learning Environments

    Science.gov (United States)

    Sabourin, Jennifer L.; Shores, Lucy R.; Mott, Bradford W.; Lester, James C.

    2013-01-01

    Self-regulated learning behaviors such as goal setting and monitoring have been found to be crucial to students' success in computer-based learning environments. Consequently, understanding students' self-regulated learning behavior has been the subject of increasing attention. Unfortunately, monitoring these behaviors in real-time has…

  19. Mapping Students Use of Technologies in Problem Based Learning Environments

    DEFF Research Database (Denmark)

    Rongbutsri, Nikorn; Khalid, Md. Saifuddin; Ryberg, Thomas

    2011-01-01

    This paper aims to understand how students use technology to enhance their learning in problem-based learning environments. The research methodology is based on both qualitative and quantitative studies. The results are based on students’ interviews, a survey and students’ reflections in course......-related blog posts; they show that students have positive perceptions toward using technologies in problem-based learning environments....

  20. STUDENTS’ PERCEPTION ABOUT CLINICAL LEARNING ENVIRONMENT IN THE PRIMARY, SECONDARY AND TERTIARY MEDICAL FACILITIES

    OpenAIRE

    Dewi, Dian Puspita; Rahayu, Gandes Retno; Kristina, Tri Nur

    2018-01-01

    Background: Learning environment is an important factor in learning process and can affect students' competence and work-readiness. Learning environment is not only about physical facilities but also social and psychological condition. The complexity of clinical learning environments pose challenges and problems that may affect students learning process so it is necessary to monitoring and evaluating students learning environments. This study aims to assess students' perception of their learn...

  1. Engaging Students' Learning Through a Blended Environment

    Directory of Open Access Journals (Sweden)

    Andrew Stuart

    2013-05-01

    Full Text Available Within the furniture manufacturing industry a high proportion of occupational accidents are as a result of non-compliance to machining regulations and incorrect work practices. Safety training plays an important role in reducing accidents and promoting a safety culture within this sector. This article details an action research study undertaken during the first year of a new Degree in Timber Product Technology, which set out to evaluate the impact a blended learning environment and reusable learning objects (RLOs could have on promoting safe work practices and a safety culture amongst students. A constructivist approach was taken and the module design was underpinned by Kolb’s model of experiential learning, placing more responsibility on the learners for their own learning and encouraging them to reflect upon their experiences. The findings of this study suggest that students with prior industry machining experience required a change in their attitude to machining which was achieved within the practical labs, while students with no machining experiences were intimidated by the learning environment in the practical labs but whose learning experience was enhanced through the use of RLOs and other eLearning resources. In order to reduce occupational accidents in the furniture manufacturing industry the promotion of continuing professional development (CPD training courses is required in order to change workers’ behaviour to machine safety and encourage lifelong learning so as to promote a safety culture within the furniture manufacturing industry.

  2. Design of a virtual PBL learning environment

    DEFF Research Database (Denmark)

    Kolmos, Anette; Qvist, Palle; Du, Xiangyun

    2006-01-01

    The technological development has created a need for engineers who are oriented towards a global market, have the ability to be involved in interdisciplinary professional and intercultural teams, and who possess lifelong learning competencies. This entails a demand for new educational programmes...... that are more student-centred. In order to support that development, a new master programme (60 European Credit Transfer System) the Master of Problem Based Learning (MPBL) has been established with the aim to improve engineering education. The master programme addresses staff and is an international distance...... programme capable of recruiting participants from all over the world. In terms of contents, it is organized exemplary according to the problem-based and project-based learning method and the participants have to experiment and develop their own teaching and curriculum. On the virtual learning side...

  3. CreatIng Web-based Math learnIng tool for TURKISH mIddle school students: Webquest

    Directory of Open Access Journals (Sweden)

    Aytac KURTULUS

    2009-04-01

    Full Text Available Internet is the most important product for the computer technology and it began to be used in many fields. Especially in the recent years, the usage of Internet has increased in the fields of communication, entertainment, advertisement, media, and technology. In Turkey, the usage of Internet is not used very common and active in primary and secondary education. The fast developments of the new technologies and the Web-Based Education Systems must be increased the importance of giving courses. In this study, the information to be aimed at is to introduce the WebQuest system, which was developed at San Diego State University by Bernie Dodge. A webQuest can be used web-based math learning tool for Turkish middle school students. Therefore, an example of geometry education WebQuest is given to introduce WebQuest system because WebQuest will be active in geometry teaching similar to the other subjects. An overview of WebQuest technology application and several resources for teachers and students interested in creating WebQuests can be found on The WebQutest Page (Dodge, 2001. Table 1 lists web sites that have many of these resources.

  4. Creating a Learner-Centered Environment in Nursing Education: An Immersion Experience

    Science.gov (United States)

    Steiner, Susan H.; Floyd, Evelyn; Hewett, Beverly J.; Lewis, Nicole C.; Walker, Eldon H.

    2010-01-01

    A call for change in nursing education has been issued in order to prepare the nurse of the future in a changing health care delivery system with increasing complexity. The learning environment is changing, including the faculty role. Innovative research-based pedagogies are suggested as a way to challenge traditional nursing education. The…

  5. Big Data X-Learning Resources Integration and Processing in Cloud Environments

    Directory of Open Access Journals (Sweden)

    Kong Xiangsheng

    2014-09-01

    Full Text Available The cloud computing platform has good flexibility characteristics, more and more learning systems are migrated to the cloud platform. Firstly, this paper describes different types of educational environments and the data they provide. Then, it proposes a kind of heterogeneous learning resources mining, integration and processing architecture. In order to integrate and process the different types of learning resources in different educational environments, this paper specifically proposes a novel solution and massive storage integration algorithm and conversion algorithm to the heterogeneous learning resources storage and management cloud environments.

  6. Extended Immersive Learning Environment: A Hybrid Remote/Virtual Laboratory

    Directory of Open Access Journals (Sweden)

    Lírio Shaeffer

    2010-09-01

    Full Text Available This paper presents a collaborative virtual learning environment, which includes technologies such as 3D virtual representations, learning and content management systems, remote experiments, and collaborative learning spaces, among others. It intends to facilitate the construction, management and sharing of knowledge among teachers and students, in a global perspective. The environment proposes the use of 3D social representations for accessing learning materials in a dynamic and interactive form, which is regarded to be closer to the physical reality experienced by teachers and students in a learning context. A first implementation of the proposed extended immersive learning environment, in the area of solid mechanics, is also described, including the access to theoretical contents and a remote experiment to determine the elastic modulus of a given object.These instructions give you basic guidelines for preparing camera-ready papers for conference proceedings. Use this document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further. Define all symbols used in the abstract. Do not cite references in the abstract.

  7. The networked student: A design-based research case study of student constructed personal learning environments in a middle school science course

    Science.gov (United States)

    Drexler, Wendy

    This design-based research case study applied a networked learning approach to a seventh grade science class at a public school in the southeastern United States. Students adapted emerging Web applications to construct personal learning environments for in-depth scientific inquiry of poisonous and venomous life forms. The personal learning environments constructed used Application Programming Interface (API) widgets to access, organize, and synthesize content from a number of educational Internet resources and social network connections. This study examined the nature of personal learning environments; the processes students go through during construction, and patterns that emerged. The project was documented from both an instructional and student-design perspective. Findings revealed that students applied the processes of: practicing digital responsibility; practicing digital literacy; organizing content; collaborating and socializing; and synthesizing and creating. These processes informed a model of the networked student that will serve as a framework for future instructional designs. A networked learning approach that incorporates these processes into future designs has implications for student learning, teacher roles, professional development, administrative policies, and delivery. This work is significant in that it shifts the focus from technology innovations based on tools to student empowerment based on the processes required to support learning. It affirms the need for greater attention to digital literacy and responsibility in K12 schools as well as consideration for those skills students will need to achieve success in the 21st century. The design-based research case study provides a set of design principles for teachers to follow when facilitating student construction of personal learning environments.

  8. Nursing students' assessment of the learning environment in different clinical settings.

    Science.gov (United States)

    Bisholt, Birgitta; Ohlsson, Ulla; Engström, Agneta Kullén; Johansson, Annelie Sundler; Gustafsson, Margareta

    2014-05-01

    Nursing students perform their clinical practice in different types of clinical settings. The clinical learning environment is important for students to be able to achieve desired learning outcomes. Knowledge is lacking about the learning environment in different clinical settings. The aim was to compare the learning environment in different clinical settings from the perspective of the nursing students. A cross-sectional study with comparative design was conducted. Data was collected from 185 nursing students at three universities by means of a questionnaire involving the Clinical Learning Environment, Supervision and Nurse Teacher (CLES + T) evaluation scale. An open-ended question was added in order to ascertain reasons for dissatisfaction with the clinical placement. The nursing students' satisfaction with the placement did not differ between clinical settings. However, those with clinical placement in hospital departments agreed more strongly that sufficient meaningful learning situations occurred and that learning situations were multi-dimensional. Some students reported that the character of the clinical setting made it difficult to achieve the learning objectives. In the planning of the clinical placement, attention must be paid to whether the setting offers the student a meaningful learning situation where the appropriate learning outcome may be achieved. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. It's Safe to Be Smart: Strategies for Creating a Supportive Classroom Environment

    Science.gov (United States)

    Hébert, Thomas P.; Corcoran, Jamie A.; Coté, John M.; Ene, Mihaela C.; Leighton, Elizabeth A.; Holmes, Ashley M.; Padula, Diane D.

    2014-01-01

    Gifted teenagers in middle and high school benefit from classroom environments that support their social and emotional development. Teachers of gifted adolescents may create classroom environments in which young people know it is safe to be smart and where they feel valued and respected for their intellect, creativity, and passions. By utilizing…

  10. Undergraduate Groupwork Revisited: the Use of the Scrum Model to Create Agile Learning Environments

    DEFF Research Database (Denmark)

    Jurado-Navas, Antonio; Munoz-Luna, Rosa

    2016-01-01

    The present paper aims to analyse the impact of an innovative teaching model in the learning outcomes of a group of undergraduate students at the University of Malaga (Spain). Based on agile scrum models adopted in the engineering industry, the authors have extraposed the scrum methodology...... to pedagogical contexts at university level. This paper describes the impact of the innovative Scrum model in relation to groupwork management in undergraduate education. The already existing communication problems when working in group yield slow cooperation among group members and therefore, poorer learning...... outcomes. Such communication deficiency can be alleviated with the introduction of short and frequent meetings in each group of 4-5 members so that learning objectives are short-termed and attainable. The scrum model offers the procedural framework where to insert those frequent meetings and where all...

  11. Pupils' Views on an ICT-Based Learning Environment in Health Learning

    Science.gov (United States)

    Räihä, Teija; Tossavainen, Kerttu; Enkenberg, Jorma; Turunen, Hannele

    2014-01-01

    This paper presents a study that examined pupils' views on an ICT-based learning environment in health learning. The study was a part of the wider European Network of Health Promoting Schools programme (ENHPS; since 2008, Schools for Health in Europe, SHE) in Finland, and particularly its sub-project, From Puijo to the World with Health Lunch,…

  12. Linkages between motivation, self-efficacy, self-regulated learning and preferences for traditional learning environments or those with an online component

    Directory of Open Access Journals (Sweden)

    Daniel Auld

    2010-10-01

    Full Text Available This study assessed 96 law school students’ preferences for online, hybrid, or traditional learning environments, and their reasons for these preferences, learning strategies, and motivational orientations. A discriminant analysis revealed that non-traditional learning environment familiarity, self-efficacy, and employment status were the strongest predictors of preferences for non-traditional learning environments. Preferences for traditional environments were attributed to students’ familiarity and ability to engage in and foster personal interaction. Preferences for hybrid and online environments were attributed to opportunities for enhanced learning given the convenience and flexible manner in which students with time and familial constraints could access these environments.

  13. Creating a Learning Culture for Medical Consortia in China.

    Science.gov (United States)

    He, Guozhong; Chen, Zimin

    In China's recent health care reforms, both individuals and organizations have shown an ever-growing desire and demand for new knowledge and skills. A health care delivery system (HCDS) should explore new ways for creating a learning organization (LO) and should organically combine HCDS culture construction with the LO construction to build a cultural atmosphere that is conducive to the development of the LO. This article describes the implementation phase, characteristics, and realization strategy of an HCDS construction for the ultimate purpose of enhancing HCDS cohesion, solidarity, and sustainable development.

  14. Resident burnout: evaluating the role of the learning environment.

    Science.gov (United States)

    van Vendeloo, Stefan N; Godderis, Lode; Brand, Paul L P; Verheyen, Kees C P M; Rowell, Suria A; Hoekstra, Harm

    2018-03-27

    Although burnout is viewed as a syndrome rooted in the working environment and organizational culture, the role of the learning environment in the development of resident burnout remains unclear. We aimed to evaluate the association between burnout and the learning environment in a cohort of Belgian residents. We conducted a cross-sectional online survey among residents in a large university hospital in Belgium. We used the Dutch version of the Maslach Burnout Inventory (UBOS-C) to assess burnout and the Dutch Residency Educational Climate Test (D-RECT) to assess the learning environment. A total of 236 residents (29 specialties) completed the survey (response rate 34.6%), of which 98 (41.5%) met standard criteria for burnout. After multivariate regression analysis adjusting for hours worked per week, quality of life and satisfaction with work-life balance, we found an inverse association between D-RECT scores and the risk of burnout (adjusted odds ratio; 0.47 for each point increase in D-RECT score; 95% CI, 0.23 - 0.95; p = 0.01). Resident burnout is highly prevalent in our cohort of Belgian residents. Our results suggest that the learning environment plays an important role in reducing the risk of burnout among residents.

  15. Managing the Collaborative Learning Environment.

    Science.gov (United States)

    Wagner, June G.

    2002-01-01

    The feature story in this issue, "Managing the Collaborative Learning Environment," focuses on the growing emphasis on teamwork in the workplace. It discusses how the concept of empowering employees in the workplace is evolving and the benefits--faster decision making, lower costs and absenteeism, higher productivity and quality, and…

  16. MUUX-E, a framework of criteria for evaluating the usability, user experience and educational features of m-learning environments

    Directory of Open Access Journals (Sweden)

    Patricia-Ann Harpur

    2015-07-01

    Full Text Available Higher education students use mobile phones, equipped for Internet access. Mobile technologies can offer effective, satisfying and accessible m-learning experiences. A contribution has been made to knowledge on evaluating m-learning environments and to mobile human-computer interaction (MHCI, with the innovative synthesis of the MUUX-E Framework, which fills a gap in the domain of m-learning. MUUX-E is a single comprehensive, multi-faceted instrument for evaluating m-learning environments, emphasising usability and user experience in mobile educational contexts. It was developed by extensive literature studies on each aspect, and has five categories, 31 criteria and numerous sub-criteria. Using a design-based research paradigm, MUUX-E was applied iteratively to evaluate and enhance successive versions of m-LR, a mobile application created for a Software Engineering module. Participants were students and expert evaluators. MUUX-E served well to identify problems and strengths. The students were more positive than the experts regarding the benefits of m-LR, yet insightfully reported more system problems.

  17. Investigating the Role of Minecraft in Educational Learning Environments

    Science.gov (United States)

    Callaghan, Noelene

    2016-01-01

    This research paper identifies the way in which Minecraft Edu can be used to contribute to the teaching and learning of secondary students via a multiple case research study. Minecraft Edu is recognised as a gamification tool that enables its users to create and evaluate project-based learning activities within a classroom context. Learning…

  18. Observing the coach-created motivational environment across training and competition in youth sport.

    Science.gov (United States)

    Smith, Nathan; Quested, Eleanor; Appleton, Paul R; Duda, Joan L

    2017-01-01

    Adopting an integrated achievement goal (Nicholls, J. G. (1989). The competitive ethos and democratic education. Cambridge, MA: Harvard University Press.) and self-determination theory (Deci, E. L., & Ryan, R. M. (2000). The "what" and "why" of goal pursuits: Human needs and the self-determination of behavior. Psychological Inquiry, 11, 227-268. doi:10.1207/S15327965PLI1104_01) perspective as proffered by Duda, J. L. (2013). (The conceptual and empirical foundations of empowering coaching TM : Setting the stage for the PAPA project. International Journal of Sport and Exercise Psychology, 11, 311-318. doi:10.1080/1612197X.2013.839414), the aim of the current study was to observe empowering and disempowering features of the multidimensional motivational coaching environment in training and competition in youth sport. Seventeen grass-roots soccer coaches were observed and rated in training and competitive settings using the multidimensional motivational climate observation system (MMCOS; Smith, N., Tessier, D., Tzioumakis, Y., Quested, E., Appleton, P., Sarrazin, P., … Duda, J. L. (2015). Development and validation of the multidimensional motivational climate observation system (MMCOS). Journal of Sport and Exercise Psychology, 37, 4-22. doi:10.1123/jsep.2014-0059). In line with our hypotheses, coaches created different motivational environments in the two contexts. More specifically, coaches were observed to create a less empowering and more disempowering environment in competition compared to in training. The observed differences were underpinned by distinctive motivational strategies used by coaches in the two contexts. Findings have implications for the assessment of the coach-created motivational environment and the promotion of quality motivation for young athletes taking part in grass-roots-level sport.

  19. Playing SNES in the Retro Learning Environment

    OpenAIRE

    Bhonker, Nadav; Rozenberg, Shai; Hubara, Itay

    2016-01-01

    Mastering a video game requires skill, tactics and strategy. While these attributes may be acquired naturally by human players, teaching them to a computer program is a far more challenging task. In recent years, extensive research was carried out in the field of reinforcement learning and numerous algorithms were introduced, aiming to learn how to perform human tasks such as playing video games. As a result, the Arcade Learning Environment (ALE) (Bellemare et al., 2013) has become a commonly...

  20. The Army Learning Organisation Workshop

    Science.gov (United States)

    2013-06-01

    learning • Sharing information • Learning resulting in purposeful action • Creating environments that promote learning • Technology and resources...individual and collective learning • Exploiting and investing in technology to facilitate learning (i.e. blended and E- learning ) • Lifelong or...opportunities provided by training and education programs. More significantly, participants noted the multi-layered nature of informal and formal learning

  1. Motor learning from virtual reality to natural environments in individuals with Duchenne muscular dystrophy.

    Science.gov (United States)

    Quadrado, Virgínia Helena; Silva, Talita Dias da; Favero, Francis Meire; Tonks, James; Massetti, Thais; Monteiro, Carlos Bandeira de Mello

    2017-11-10

    To examine whether performance improvements in the virtual environment generalize to the natural environment. we had 64 individuals, 32 of which were individuals with DMD and 32 were typically developing individuals. The groups practiced two coincidence timing tasks. In the more tangible button-press task, the individuals were required to 'intercept' a falling virtual object at the moment it reached the interception point by pressing a key on the computer. In the more abstract task, they were instructed to 'intercept' the virtual object by making a hand movement in a virtual environment using a webcam. For individuals with DMD, conducting a coincidence timing task in a virtual environment facilitated transfer to the real environment. However, we emphasize that a task practiced in a virtual environment should have higher rates of difficulties than a task practiced in a real environment. IMPLICATIONS FOR REHABILITATION Virtual environments can be used to promote improved performance in ?real-world? environments. Virtual environments offer the opportunity to create paradigms similar ?real-life? tasks, however task complexity and difficulty levels can be manipulated, graded and enhanced to increase likelihood of success in transfer of learning and performance. Individuals with DMD, in particular, showed immediate performance benefits after using virtual reality.

  2. Students’ goal orientations and learning strategies in a powerful learning environment : a case study

    NARCIS (Netherlands)

    Koopman, M.; Bakx, A.W.E.A.; Beijaard, D.

    2014-01-01

    In Dutch secondary education, experiments with powerful social constructivist learning environments are conducted that aim to appeal to students’ intrinsic goal orientations, use of deep cognitive learning strategies, and self-direction of meta-cognitive learning strategies. The aim of this study is

  3. Using evidence-based leadership initiatives to create a healthy nursing work environment.

    Science.gov (United States)

    Nayback-Beebe, Ann M; Forsythe, Tanya; Funari, Tamara; Mayfield, Marie; Thoms, William; Smith, Kimberly K; Bradstreet, Harry; Scott, Pamela

    2013-01-01

    In an effort to create a healthy nursing work environment in a military hospital Intermediate Care Unit (IMCU), a facility-level Evidence Based Practice working group composed of nursing.Stakeholders brainstormed and piloted several unit-level evidence-based leadership initiatives to improve the IMCU nursing work environment. These initiatives were guided by the American Association of Critical Care Nurses Standards for Establishing and Sustaining Healthy Work Environments which encompass: (1) skilled communication, (2) true collaboration, (3) effective decision making, (4) appropriate staffing, (5) meaningful recognition, and (6) authentic leadership. Interim findings suggest implementation of these six evidence-based, relationship-centered principals, when combined with IMCU nurses' clinical expertise, management experience, and personal values and preferences, improved staff morale, decreased staff absenteeism, promoted a healthy nursing work environment, and improved patient care.

  4. Pre-registration nursing student's quality of practice learning: Clinical learning environment inventory (actual) questionnaire.

    Science.gov (United States)

    Shivers, Eleanor; Hasson, Felicity; Slater, Paul

    2017-08-01

    Clinical learning is a vital component of nurse education and assessing student's experiences can provide useful insights for development. Whilst most research in this area has focused on the acute setting little attention has been given to all pre-registration nurses' experience across the clinical placements arenas. To examine of pre-registration nursing students (first, second and third year) assessment of their actual experiences of their most recent clinical learning clinical learning experience. A cross sectional survey involving a descriptive online anonymous questionnaire based on the clinical learning environment inventory tool. One higher education institution in the United Kingdom. Nursing students (n=147) enrolled in an undergraduate nursing degree. This questionnaire included demographic questions and the Clinical Learning Environment Inventory (CLEI) a 42 item tool measuring student's satisfaction with clinical placement. SPPS version 22 was employed to analyse data with descriptive and inferential statistics. Overall students were satisfied with their clinical learning experience across all placement areas. This was linked to the 6 constructs of the clinical learning environment inventory; personalization, innovation, individualization, task orientation, involvement, satisfaction. Significant differences in student experience were noted between age groups and student year but there was no difference noted between placement type, age and gender. Nursing students had a positive perception of their clinical learning experience, although there remains room for improvement. Enabling a greater understanding of students' perspective on the quality of clinical education is important for nursing education and future research. Copyright © 2017. Published by Elsevier Ltd.

  5. Creating a Framework of a Resource-Based E-Learning Environment for Science Learning in Primary Classrooms

    Science.gov (United States)

    So, Winnie W. M.

    2012-01-01

    Advancements in information and communications technology and the rapid expansion of the Internet have changed the nature and the mode of the presentation and delivery of teaching and learning resources. This paper discusses the results of a study aimed at investigating how five teachers planned to integrate online resources in their teaching of…

  6. Implementing an Active Learning Environment to Influence Students' Motivation in Biochemistry

    Science.gov (United States)

    Cicuto, Camila Aparecida Tolentino; Torres, Bayardo Baptista

    2016-01-01

    The Biochemistry: Biomolecules Structure and Metabolism course's goal is to promote meaningful learning through an active learning environment. Thus, study periods (SP) and discussion groups (DG) are used as a substitute for lecture classes. The goal of this study was to evaluate how this learning environment influences students' motivation (n =…

  7. Seamless Learning Environments in Higher Education with Mobile Devices and Examples

    Science.gov (United States)

    Marín, Victoria I.; Jääskelä, Päivikki; Häkkinen, Päivi; Juntunen, Merja; Rasku-Puttonen, Helena; Vesisenaho, Mikko

    2016-01-01

    The use of seamless learning environments that have the potential to support lifelong learning anytime and anywhere has become a reality. In this sense, many educational institutions have started to consider introducing seamless learning environments into their programs. The aim of this study is to analyze how various educational university…

  8. Flexible Learning Environments: Leveraging the Affordances of Flexible Delivery and Flexible Learning

    Science.gov (United States)

    Hill, Janette R.

    2006-01-01

    The purpose of this article is to explore the key features of "flexible learning environments" (FLEs). Key principles associated with FLEs are explained. Underlying tenets and support mechanisms necessary for the implementation of FLEs are described. Similarities and differences in traditional learning and FLEs are explored. Finally, strategies…

  9. Blended synchronous learning environment: Student perspectives

    Directory of Open Access Journals (Sweden)

    Conklina Sheri

    2017-06-01

    Full Text Available Distance education environments can take many forms, from asynchronous to blended synchronous environments. Blended synchronous learning environment (BSLE can be defined as an innovative setting in which students can decide to attend classes either face-to-face or via a synchronous virtual connection. Many educators are unfamiliar teaching in BSLE because of lack of experience or exposure to this delivery method. Thus, it is important to understand the optimal organisational structures and the effective management of BSLE courses to facilitate student learning and interaction. Seeking to understand this teaching method, an exploratory mixed-method study was conducted to examine graduate students’ perceptions of the BSLE. Quantitative and qualitative data was collected from a questionnaire and analysed. The findings revealed that students were satisfied with the BSLE, interactions, and the instructor. However, findings showed that the instructor divided attention between face-to-face and online synchronous students, which can cause cognitive overload and compromise the quality of instruction. Additionally, this study suggests that technical difficulties can affect students’ satisfaction with BSLE courses. Implications for further research and limitations are discussed.

  10. Theoretical Foundations for Enhancing Social Connectedness in Online Learning Environments

    Science.gov (United States)

    Slagter van Tryon, Patricia J.; Bishop, M. J.

    2009-01-01

    Group social structure provides a comfortable and predictable context for interaction in learning environments. Students in face-to-face learning environments process social information about others in order to assess traits, predict behaviors, and determine qualifications for assuming particular responsibilities within a group. In online learning…

  11. Cyber-bullying and incivility in an online learning environment, part 2: promoting student success in the virtual classroom.

    Science.gov (United States)

    Clark, Cynthia M; Ahten, Sara; Werth, Loredana

    2012-01-01

    The appeal of online learning has increased dramatically among nurses who are pursuing higher-education opportunities. However, online learning has created potential avenues for uncivil behaviors that can affect student satisfaction, performance, and retention. This is the second of 2 articles detailing a study to empirically measure nursing faculty and student perceptions of an online learning environment (OLE). Part 1, in the July/August 2012 issue, described the quantitative results including the types and frequency of uncivil behaviors and the extent to which they are perceived to be a problem in online courses. In this portion of the study, the authors discuss the qualitative findings, including the challenges and advantages of the OLE, specific ways to foster civility, and strategies to promote student success and retention.

  12. Learning activities in a political context - development of the working environment

    DEFF Research Database (Denmark)

    Ledskov, Annette

    2002-01-01

    are identified – ‘the politically actors’ and ‘the translator’. When facilitating learning activities in the management of work environment it is necessary to be aware of this political nature of the actions .In understanding learning in the management of work environment it is beneficial to look at the concept......This paper addresses a learning approach as a method for developing new strategies for managing work environment. On the basis of interviews in two companies an analysis of how actors involved in the management of work environment act concerning their task and role is conducted. Two roles...

  13. Effects of Collaborative Learning Styles on Performance of Students in a Ubiquitous Collaborative Mobile Learning Environment

    Science.gov (United States)

    Fakomogbon, Michael Ayodele; Bolaji, Hameed Olalekan

    2017-01-01

    Collaborative learning is an approach employed by instructors to facilitate learning and improve learner's performance. Mobile learning can accommodate a variety of learning approaches. This study, therefore, investigated the effects of collaborative learning styles on performance of students in a mobile learning environment. The specific purposes…

  14. Learning Abilities and Disabilities: Generalist Genes, Specialist Environments.

    Science.gov (United States)

    Kovas, Yulia; Plomin, Robert

    2007-10-01

    Twin studies comparing identical and fraternal twins consistently show substantial genetic influence on individual differences in learning abilities such as reading and mathematics, as well as in other cognitive abilities such as spatial ability and memory. Multivariate genetic research has shown that the same set of genes is largely responsible for genetic influence on these diverse cognitive areas. We call these "generalist genes." What differentiates these abilities is largely the environment, especially nonshared environments that make children growing up in the same family different from one another. These multivariate genetic findings of generalist genes and specialist environments have far-reaching implications for diagnosis and treatment of learning disabilities and for understanding the brain mechanisms that mediate these effects.

  15. Creating pedestrian crash scenarios in a driving simulator environment.

    Science.gov (United States)

    Chrysler, Susan T; Ahmad, Omar; Schwarz, Chris W

    2015-01-01

    In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 ). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track. An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20-30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area. Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to

  16. A Working Model for Intercultural Learning and Engagement in Collaborative Online Language Learning Environments

    Science.gov (United States)

    Lawrence, Geoff

    2013-01-01

    Given the emerging focus on the intercultural dimension in language teaching and learning, language educators have been exploring the use of information and communications technology ICT-mediated language learning environments to link learners in intercultural language learning communities around the globe. Despite the potential promise of…

  17. Stimulating Collaboration and Discussion in Online Learning Environments.

    Science.gov (United States)

    Clark, Jim

    2001-01-01

    Discussion of the advantages of online learning environments (OLEs) for distance education focuses on the importance of collaboration and discussion to make the students feel more central to the learning process. Presents methods to stimulate collaboration and discussion in OLEs. (Author/LRW)

  18. Putting Structure to Flipped Classrooms Using Team-Based Learning

    Science.gov (United States)

    Jakobsen, Krisztina V.; Knetemann, Megan

    2017-01-01

    Current educational practices and cognitive-developmental theories emphasize the importance of active participation in the learning environment, and they suggest that the first, and arguably most important, step to creating a better learning environment is to make learning an active and reciprocal process. Flipped classrooms, in which students…

  19. Evaluation of Hybrid and Distance Education Learning Environments in Spain

    Science.gov (United States)

    Ferrer-Cascales, Rosario; Walker, Scott L.; Reig-Ferrer, Abilio; Fernandez-Pascual, Maria Dolores; Albaladejo-Blazquez, Natalia

    2011-01-01

    This article describes the adaptation and validation of the "Distance Education Learning Environments Survey" (DELES) for use in investigating the qualities found in distance and hybrid education psycho-social learning environments in Spain. As Europe moves toward post-secondary student mobility, equanimity in access to higher education,…

  20. Learning Tools for Knowledge Nomads: Using Personal Digital Assistants (PDAs) in Web-based Learning Environments.

    Science.gov (United States)

    Loh, Christian Sebastian

    2001-01-01

    Examines how mobile computers, or personal digital assistants (PDAs), can be used in a Web-based learning environment. Topics include wireless networks on college campuses; online learning; Web-based learning technologies; synchronous and asynchronous communication via the Web; content resources; Web connections; and collaborative learning. (LRW)

  1. Studying the mechanisms of language learning by varying the learning environment and the learner.

    Science.gov (United States)

    Goldin-Meadow, Susan

    Language learning is a resilient process, and many linguistic properties can be developed under a wide range of learning environments and learners. The first goal of this review is to describe properties of language that can be developed without exposure to a language model - the resilient properties of language - and to explore conditions under which more fragile properties emerge. But even if a linguistic property is resilient, the developmental course that the property follows is likely to vary as a function of learning environment and learner, that is, there are likely to be individual differences in the learning trajectories children follow. The second goal is to consider how the resilient properties are brought to bear on language learning when a child is exposed to a language model. The review ends by considering the implications of both sets of findings for mechanisms, focusing on the role that the body and linguistic input play in language learning.

  2. A Neural Network Model to Learn Multiple Tasks under Dynamic Environments

    Science.gov (United States)

    Tsumori, Kenji; Ozawa, Seiichi

    When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.

  3. Nursing students' perceptions of hospital learning environments--an Australian perspective.

    Science.gov (United States)

    Chan, Dominic S

    2004-01-01

    Clinical education is a vital component in the curricula of pre-registration nursing courses and provides student nurses with the opportunity to combine cognitive, psychomotor, and affective skills. Various studies have suggested that not all practice settings are able to provide nursing students with a positive learning environment. In order to maximize nursing students' clinical learning outcomes, there is a need to examine the clinical learning environment. The purpose of this study was to assess pre-registration nursing students' perceptions of hospital learning environments during clinical field placement. Quantitative and qualitative methodology was used. One hundred and eight students provided quantitative data through completion of the survey instrument, the Clinical Learning Environment Inventory (Actual and Preferred forms). Each form is a 5-point Likert-type questionnaire, made up of 35 items consisted of 5 scales with 7 items per scale. Qualitative data, obtained through semi-structured interview of 21 students from the same cohort, were used to explain and support the quantitative findings. There were significant differences between students' actual and preferred perceptions of the clinical learning environments. Generally students preferred a more positive and favourable clinical environment than they perceived as being actually present. Since participants consisted of nursing students from just one university nursing school in South Australia, the findings may not be representative of all nursing students in general with respect to their clinical placement. However, the value of this study lies in the resulting implication for nursing education and future research. A better understanding of what constitutes quality clinical education from the students' perspective would be valuable in providing better educational experiences.

  4. Supporting cognitive engagement in a learning-by-doing learning environment: Case studies of participant engagement and social configurations in Kitchen Science Investigators

    Science.gov (United States)

    Gardner, Christina M.

    Learning-by-doing learning environments support a wealth of physical engagement in activities. However, there is also a lot of variability in what participants learn in each enactment of these types of environments. Therefore, it is not always clear how participants are learning in these environments. In order to design technologies to support learning in these environments, we must have a greater understanding of how participants engage in learning activities, their goals for their engagement, and the types of help they need to cognitively engage in learning activities. To gain a greater understanding of participant engagement and factors and circumstances that promote and inhibit engagement, this dissertation explores and answers several questions: What are the types of interactions and experiences that promote and /or inhibit learning and engagement in learning-by-doing learning environments? What are the types of configurations that afford or inhibit these interactions and experiences in learning-by-doing learning environments? I explore answers to these questions through the context of two enactments of Kitchen Science Investigators (KSI), a learning-by-doing learning environment where middle-school aged children learn science through cooking from customizing recipes to their own taste and texture preferences. In small groups, they investigate effects of ingredients through the design of cooking and science experiments, through which they experience and learn about chemical, biological, and physical science phenomena and concepts (Clegg, Gardner, Williams, & Kolodner, 2006). The research reported in this dissertation sheds light on the different ways participant engagement promotes and/or inhibits cognitive engagement in by learning-by-doing learning environments through two case studies. It also provides detailed descriptions of the circumstances (social, material, and physical configurations) that promote and/or inhibit participant engagement in these

  5. Veterinary students' perceptions of their learning environment as measured by the Dundee Ready Education Environment Measure.

    Science.gov (United States)

    Pelzer, Jacquelyn M; Hodgson, Jennifer L; Werre, Stephen R

    2014-03-24

    The Dundee Ready Education Environment Measure (DREEM) has been widely used to evaluate the learning environment within health sciences education, however, this tool has not been applied in veterinary medical education. The aim of this study was to evaluate the reliability and validity of the DREEM tool in a veterinary medical program and to determine veterinary students' perceptions of their learning environment. The DREEM is a survey tool which quantitatively measures students' perceptions of their learning environment. The survey consists of 50 items, each scored 0-4 on a Likert Scale. The 50 items are subsequently analysed within five subscales related to students' perceptions of learning, faculty (teachers), academic atmosphere, and self-perceptions (academic and social). An overall score is obtained by summing the mean score for each subscale, with an overall possible score of 200. All students in the program were asked to complete the DREEM. Means and standard deviations were calculated for the 50 items, the five subscale scores and the overall score. Cronbach's alpha was determined for the five subscales and overall score to evaluate reliability. Confirmatory factor analysis was used to evaluate construct validity. 224 responses (53%) were received. The Cronbach's alpha for the overall score was 0.93 and for the five subscales were; perceptions of learning 0.85, perceptions of faculty 0.79, perceptions of atmosphere 0.81, academic self-perceptions 0.68, and social self-perceptions 0.72. Construct validity was determined to be acceptable (p education programs. Four individual items of concern were identified by students. In this setting the DREEM was a reliable and valid tool to measure veterinary students' perceptions of their learning environment. The four items identified as concerning originated from four of the five subscales, but all related to workload. Negative perceptions regarding workload is a common concern of students in health education

  6. Knowledge Building in an Online Environment: A Design-Based Research Study

    Science.gov (United States)

    Li, Qing

    2009-01-01

    This article explores knowledge-building in an online distance-learning environment. The research examines how knowledge-building principles can be translated into online classroom practice for graduate students. Specifically, how do the course components and the online learning environments created in two online graduate courses contribute to…

  7. Nursing Students' Clinical Learning Environment in Norwegian Nursing Homes: Lack of Innovative Teaching and Learning Strategies

    OpenAIRE

    Berntsen, Karin; Bjørk, Ida Torunn; Brynildsen, Grethe

    2017-01-01

    Background: Nursing students hesitate to choose aged care as a career, and the aged care sectors are on an edge regarding nursing positions. Clinical learning environments may influence nursing students’ career choices. Few studies have explored learning environments in nursing homes, although students increasingly have placements there. Objectives: The aim was to produce information for developing nursing students’ learning opportunities in nursing homes. Design: A cross-sectional survey des...

  8. The Videoconferencing Learning Environment: Technology, Interaction and Learning Intersect

    Science.gov (United States)

    Saw, K. G.; Majid, Omar; Ghani, N. Abdul; Atan, H.; Idrus, R. M.; Rahman, Z. A.; Tan, K. E.

    2008-01-01

    This paper is a study on the interaction patterns of distance learners enrolled in the Mathematics and Physics programmes of Universiti Sains Malaysia in the videoconferencing learning environment (VCLE). Interaction patterns are analysed in six randomly chosen videoconferencing sessions within one academic year. The findings show there are more…

  9. Formative assessment in an online learning environment to support flexible on-the-job learning in complex professional domains

    NARCIS (Netherlands)

    Tamara van Gog; Desirée Joosten-ten Brinke; F. J. Prins; Dominique Sluijsmans

    2010-01-01

    This article describes a blueprint for an online learning environment that is based on prominent instructional design and assessment theories for supporting learning in complex domains. The core of this environment consists of formative assessment tasks (i.e., assessment for learning) that center on

  10. Interactive eLearning - a safe place to practice.

    Science.gov (United States)

    Einarson, Elisabeth; Moen, Anne; Kolberg, Ragnhild; Flingtorp, Gry; Linnerud, Eva

    2009-01-01

    Interactive web-based learning environment offers refreshing opportunities to create innovative solutions to explore and exploit informatics support on-the-job training. We report from a study where a hospital is created a interactive eLearning resource. The modules are creating a safe place to practice - to be used for introduction to the work and preparation for certification or re-certification of competencies.

  11. Designing a Secure Exam Management System (SEMS) for M-Learning Environments

    Science.gov (United States)

    Kaiiali, Mustafa; Ozkaya, Armagan; Altun, Halis; Haddad, Hatem; Alier, Marc

    2016-01-01

    M-learning has enhanced the e-learning by making the learning process learner-centered. However, enforcing exam security in open environments where each student has his/her own mobile/tablet device connected to a Wi-Fi network through which it is further connected to the Internet can be one of the most challenging tasks. In such environments,…

  12. Differentiated Learning Environment--A Classroom for Quadratic Equation, Function and Graphs

    Science.gov (United States)

    Dinç, Emre

    2017-01-01

    This paper will cover the design of a learning environment as a classroom regarding the Quadratic Equations, Functions and Graphs. The goal of the learning environment offered in the paper is to design a classroom where students will enjoy the process, use their skills they already have during the learning process, control and plan their learning…

  13. Knowledge Sharing Practice in a Play-Like Learning Environment

    DEFF Research Database (Denmark)

    Benjaminsen, Nana

    2007-01-01

    The topic of this paper is play-like learning as it occurs when technology based learning environments is invited into the classroom. Observations of 5th grade classes playing with Lego Robolab, is used to illustrate that different ways of learning becomes visible when digital technology...

  14. Extending human potential in a technical learning environment

    Science.gov (United States)

    Fielden, Kay A.

    This thesis is a report of a participatory inquiry process looking at enhancing the learning process in a technical academic field in high education by utilising tools and techniques which go beyond the rational/logical, intellectual domain in a functional, objective world. By empathising with, nurturing and sustaining the whole person, and taking account of past patterning as well as future visions including technological advances to augment human awareness, the scene is set for depth learning. Depth learning in a tertiary environment can only happen as a result of the dynamic that exists between the dominant, logical/rational, intellectual paradigm and the experiential extension of the boundaries surrounding this domain. Any experiences which suppress the full, holistic expression of our being alienate us from the fullness of the expression and hence from depth learning. Depth learning is indicated by intrinsic motivation, which is more likely to occur in a trusting and supporting environment. The research took place within a systemic intellectual framework, where emergence is the prime characteristic used to evaluate results.

  15. E-Learning Environments in Academy: Technology, Pedagogy and Thinking Dispositions

    Science.gov (United States)

    Bouhnik, Dan; Carmi, Golan

    2012-01-01

    Around two decades have passed since higher education institutions began incorporating the internet as an alternative studying environment, together with frontal class teaching and learning. This kind of environment still poses meaningful challenges for students and teachers that take an active part in E-learning courses. Today it is quite clear…

  16. Does social environment influence learning ability in a family-living lizard?

    Science.gov (United States)

    Riley, Julia L; Noble, Daniel W A; Byrne, Richard W; Whiting, Martin J

    2017-05-01

    Early developmental environment can have profound effects on individual physiology, behaviour, and learning. In birds and mammals, social isolation during development is known to negatively affect learning ability; yet in other taxa, like reptiles, the effect of social isolation during development on learning ability is unknown. We investigated how social environment affects learning ability in the family-living tree skink (Egernia striolata). We hypothesized that early social environment shapes cognitive development in skinks and predicted that skinks raised in social isolation would have reduced learning ability compared to skinks raised socially. Offspring were separated at birth into two rearing treatments: (1) raised alone or (2) in a pair. After 1 year, we quantified spatial learning ability of skinks in these rearing treatments (N = 14 solitary, 14 social). We found no effect of rearing treatment on learning ability. The number of skinks to successfully learn the task, the number of trials taken to learn the task, the latency to perform the task, and the number of errors in each trial did not differ between isolated and socially reared skinks. Our results were unexpected, yet the facultative nature of this species' social system may result in a reduced effect of social isolation on behaviour when compared to species with obligate sociality. Overall, our findings do not provide evidence that social environment affects development of spatial learning ability in this family-living lizard.

  17. The learning environment and resident burnout: a national study.

    Science.gov (United States)

    van Vendeloo, Stefan N; Prins, David J; Verheyen, Cees C P M; Prins, Jelle T; van den Heijkant, Fleur; van der Heijden, Frank M M A; Brand, Paul L P

    2018-04-01

    Concerns exist about the negative impact of burnout on the professional and personal lives of residents. It is suggested that the origins of burnout among residents are rooted in the learning environment. We aimed to evaluate the association between the learning environment and burnout in a national sample of Dutch residents. We conducted a cross-sectional online survey among all Dutch residents in September 2015. We measured the learning environment using the three domain scores on content, organization, and atmosphere from the Scan of Postgraduate Educational Environment Domains (SPEED) and burnout using the Dutch version of the Maslach Burnout Inventory (UBOS-C). Of 1,231 responding residents (33 specialties), 185 (15.0%) met criteria for burnout. After adjusting for demographic (age, gender and marital status) and work-related factors (year of training, type of teaching hospital and type of specialty), we found a consistent inverse association between SPEED scores and the risk of burnout (aOR 0.54, 95% CI 0.46 to 0.62, p burnout among residents. This suggests that the learning environment is of key importance in preventing resident burnout.

  18. How Nurses Experience Their Work as a Learning Environment

    OpenAIRE

    Skår, Randi

    2010-01-01

    This article explores and illuminates the meaning of nurses’ experiences with their work as a learning environment. A qualitative hermeneutic approach guided the research process and the analysis and interpretation of the transcribed interview-texts of eleven graduate nurses. Three core themes emerged from these informants’ descriptions of their work as a learning environment: ‘participation in the work community’, ‘to engage in interpersonal relations’ and ‘accessing important...

  19. Learning under uncertainty in smart home environments.

    Science.gov (United States)

    Zhang, Shuai; McClean, Sally; Scotney, Bryan; Nugent, Chris

    2008-01-01

    Technologies and services for the home environment can provide levels of independence for elderly people to support 'ageing in place'. Learning inhabitants' patterns of carrying out daily activities is a crucial component of these technological solutions with sensor technologies being at the core of such smart environments. Nevertheless, identifying high-level activities from low-level sensor events can be a challenge, as information may be unreliable resulting in incomplete data. Our work addresses the issues of learning in the presence of incomplete data along with the identification and the prediction of inhabitants and their activities under such uncertainty. We show via the evaluation results that our approach also offers the ability to assess the impact of various sensors in the activity recognition process. The benefit of this work is that future predictions can be utilised in a proposed intervention mechanism in a real smart home environment.

  20. The Usability Analysis of An E-Learning Environment

    Directory of Open Access Journals (Sweden)

    Fulya TORUN

    2015-10-01

    Full Text Available In this research, an E-learning environment is developed for the teacher candidates taking the course on Scientific Research Methods. The course contents were adapted to one of the constructivist approach models referred to as 5E, and an expert opinion was received for the compliance of this model. An usability analysis was also performed to determine the usability of the e-learning environment. The participants of the research comprised 42 teacher candidates. The mixed method was used in the research. 3 different data collection tools were used in order to measure the three basic concepts of usability analyses, which are the dimensions of effectiveness, efficiency and satisfaction. Two of the data collection tools were the scales developed by different researchers and were applied with the approval received from the researchers involved. On the other hand, the usability test as another data tool was prepared by the researchers who conducted this study for the purpose of determining the participants’ success in handling the twelve tasks assigned to them with respect to the use of elearning environment, the seconds they spent on that environment and the number of clicks they performed. Considering the results of the analyses performed within the data obtained, the usability of the developed e-learning environment proved to be at a higher rate.

  1. Rasch measurement of self-regulated learning in an information and communication technology (ICT)-rich environment.

    Science.gov (United States)

    Njiru, Joseph N; Waugh, Russell F

    2007-01-01

    This report describes how a linear scale of self-regulated learning in an ICT-rich environment was created by analysing student data using the Rasch measurement model. A person convenience sample of (N = 409) university students in Western Australia was used. The stem-item sample was initially 41, answered in two perspectives ("I aim for this" and "I actually do this"), and reduced to 16 that fitted the measurement model to form a unidimensional scale. Items for motivation (extrinsic rewards, intrinsic rewards, and social rewards), academic goals (fear of performing poorly) (but not standards), self-learning beliefs (ability and interest), task management (strategies and time management) (but not cooperative learning), Volition (action control (but not environmental control), and self-evaluation (cognitive self-evaluation and metacognition) fitted the measurement model. The proportion of observed variance considered true was 0.90. A new instrument is proposed to handle the conceptually valid but non-fitting items. Characteristics of high self-regulated learners are measured.

  2. The Effects of Project APPLE (Autistic Preadolescent Proactive Learning Environments) on Academic, Behavioral, and Transitional Needs of Students with Autism Spectrum Disorder

    Science.gov (United States)

    Cayce, Robin M.

    2012-01-01

    This study addressed the effects of Project APPLE, an intervention created by the researcher and supported by the Guide to Project APPLE, a handbook which provided research-based teaching strategies, modificaitons to the learning environment, and transitional supports for students with ASD, and the teachers with whom their care and education is…

  3. Students' use of social software in self-organized learning environment

    DEFF Research Database (Denmark)

    Mathiasen, Helle; Dalsgaard, Christian

    2006-01-01

    The paper will argue that new possibilities of digital media, especially social software, have a potential regarding development of self-organized learning environments and facilitating self-governed activities. Based on a sociological perspective, the paper will clarify the concepts of informal...... and formal learning used in this paper. It is argued that formal and informal conditions of learning can supplement each other within an educational setting. A formal setting of project work forms the basis of informal, selfgoverned activities of students. The paper will argue that social software tools can...... support students' self-governed activities and their development of self-organized learning environments....

  4. The nurse manager's role in creating a healthy work environment.

    Science.gov (United States)

    Whiley, K

    2001-08-01

    The role of nurse manager of an acute or critical care unit is one of the most difficult roles in healthcare today. This individual must juggle patient care issues, staff concerns, medical staff relationships, supply inadequacies, and organizational initiatives--and then balance all of this with a personal life. The only way in which any of this is remotely possible is if the patient care unit provides a supportive environment for patients, families, and staff. The nurse manager is a pivotal person in this effort: research repeatedly shows that people don't leave their jobs, they leave their managers. This article describes how the nurse manager of an acute neurosciences unit worked with her staff to define, create, and maintain a work environment in which patient care improved, people enjoyed working, and retention of staff increased.

  5. An Interactive Learning Environment for Information and Communication Theory

    Science.gov (United States)

    Hamada, Mohamed; Hassan, Mohammed

    2017-01-01

    Interactive learning tools are emerging as effective educational materials in the area of computer science and engineering. It is a research domain that is rapidly expanding because of its positive impacts on motivating and improving students' performance during the learning process. This paper introduces an interactive learning environment for…

  6. Why so GLUMM? Detecting depression clusters through graphing lifestyle-environs using machine-learning methods (GLUMM).

    Science.gov (United States)

    Dipnall, J F; Pasco, J A; Berk, M; Williams, L J; Dodd, S; Jacka, F N; Meyer, D

    2017-01-01

    Key lifestyle-environ risk factors are operative for depression, but it is unclear how risk factors cluster. Machine-learning (ML) algorithms exist that learn, extract, identify and map underlying patterns to identify groupings of depressed individuals without constraints. The aim of this research was to use a large epidemiological study to identify and characterise depression clusters through "Graphing lifestyle-environs using machine-learning methods" (GLUMM). Two ML algorithms were implemented: unsupervised Self-organised mapping (SOM) to create GLUMM clusters and a supervised boosted regression algorithm to describe clusters. Ninety-six "lifestyle-environ" variables were used from the National health and nutrition examination study (2009-2010). Multivariate logistic regression validated clusters and controlled for possible sociodemographic confounders. The SOM identified two GLUMM cluster solutions. These solutions contained one dominant depressed cluster (GLUMM5-1, GLUMM7-1). Equal proportions of members in each cluster rated as highly depressed (17%). Alcohol consumption and demographics validated clusters. Boosted regression identified GLUMM5-1 as more informative than GLUMM7-1. Members were more likely to: have problems sleeping; unhealthy eating; ≤2 years in their home; an old home; perceive themselves underweight; exposed to work fumes; experienced sex at ≤14 years; not perform moderate recreational activities. A positive relationship between GLUMM5-1 (OR: 7.50, Pdepression was found, with significant interactions with those married/living with partner (P=0.001). Using ML based GLUMM to form ordered depressive clusters from multitudinous lifestyle-environ variables enabled a deeper exploration of the heterogeneous data to uncover better understandings into relationships between the complex mental health factors. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Estimating Students’ Satisfaction with Web Based Learning System in Blended Learning Environment

    Directory of Open Access Journals (Sweden)

    Sanja Bauk

    2014-01-01

    Full Text Available Blended learning became the most popular educational model that universities apply for teaching and learning. This model combines online and face-to-face learning environments, in order to enhance learning with implementation of new web technologies and tools in learning process. In this paper principles of DeLone and Mclean success model for information system are applied to Kano two-dimensional model, for categorizing quality attributes related to satisfaction of students with web based learning system used in blended learning model. Survey results are obtained among the students at “Mediterranean” University in Montenegro. The (dysfunctional dimensions of Kano model, including Kano basic matrix for assessment of the degree of students’ satisfaction level, have been considered in some more detail through corresponding numerical, graphical, and statistical analysis.

  8. Analysis of students’ generated questions in laboratory learning environments

    Directory of Open Access Journals (Sweden)

    Juan Antonio Llorens-Molina

    2012-03-01

    Full Text Available In order to attain a reliable laboratory work assessment, we argue taking the Learning Environment as a core concept and a research paradigm that considers the factors affecting the laboratory as a particularly complex educational context. With regard to Laboratory Learning Environments (LLEs, a well known approach is the SLEI (Science Laboratory Environment Inventory. The aim of this research is to design and apply an alternative and qualitative assessment tool to characterize Laboratory Learning Environments in an introductory course of organic chemistry. An alternative and qualitative assessment tool would be useful for providing feed-back for experimental learning improvement; serving as a complementary triangulation tool in educational research on LLEs; and generating meaningful categories in order to design quantitative research instruments. Toward this end, spontaneous questions by students have been chosen as a reliable source of information. To process these questions, a methodology based on the Grounded Theory has been developed to provide a framework for characterizing LLEs. This methodology has been applied in two case studies. The conclusions lead us to argue for using more holistic assessment tools in both everyday practice and research. Likewise, a greater attention should be paid to metacognition to achieve suitable self-perception concerning students’ previous knowledge and manipulative skills.

  9. Gamified Pedagogy: From Gaming Theory to Creating a Self-Motivated Learning Environment in Studio Art

    Science.gov (United States)

    Han, Hsiao-Cheng

    2015-01-01

    This research is an empirical study using gamified pedagogy in a 3-D animation course in a Visual Communication Design Department. By conducting this research, I hope to increase student interest in learning 3-D animation and to decrease student fears of learning professional 3-D software. Through this research, I have developed a theory of…

  10. Family, Learning Environments, Learning Approaches, and Student Outcomes in a Malaysian Private University

    Science.gov (United States)

    Kek, Megan A. Yih Chyn; Darmawan, I. Gusti Ngurah; Chen, Yu Sui

    2007-01-01

    This article presents the quantitative findings from a mixed methods study of students and faculty at a private medical university in Malaysia. In particular, the relationships among students' individual characteristics, general self-efficacy, family context, university and classroom learning environments, curriculum, approaches to learning, and…

  11. From Young Children's Ideas about Germs to Ideas Shaping a Learning Environment

    Science.gov (United States)

    Ergazaki, Marida; Saltapida, Konstantina; Zogza, Vassiliki

    2010-11-01

    This paper is concerned with highlighting young children’s ideas about the nature, location and appearance of germs, as well as their reasoning strands about germs’ ontological category and biological functions. Moreover, it is concerned with exploring how all these could be taken into account for shaping a potentially fruitful learning environment. Conducting individual, semi-structured interviews with 35 preschoolers (age 4.5-5.5) of public kindergartens in the broader area of Patras, we attempted to trace their ideas about what germs are, where they may be found, whether they are good or bad and living or non-living and how they might look like in a drawing. Moreover, children were required to attribute a series of biological functions to dogs, chairs and germs, and finally to create a story with germs holding a key-role. The analysis of our qualitative data within the “NVivo” software showed that the informants make a strong association of germs with health and hygiene issues, locate germs mostly in our body and the external environment, are not familiar with the ‘good germs’-idea, and draw germs as ‘human-like’, ‘animal-like’ or ‘abstract’ entities. Moreover, they have significant difficulties not only in employing biological functions as criteria for classifying germs in the category of ‘living’, but also in just attributing such functions to germs using a warrant. Finally, the shift from our findings to a 3-part learning environment aiming at supporting preschoolers in refining their initial conceptualization of germs is thoroughly discussed in the paper.

  12. Optimising the Blended Learning Environment: The Arab Open University Experience

    Science.gov (United States)

    Hamdi, Tahrir; Abu Qudais, Mohammed

    2018-01-01

    This paper will offer some insights into possible ways to optimise the blended learning environment based on experience with this modality of teaching at Arab Open University/Jordan branch and also by reflecting upon the results of several meta-analytical studies, which have shown blended learning environments to be more effective than their face…

  13. Anatomy education environment measurement inventory: A valid tool to measure the anatomy learning environment.

    Science.gov (United States)

    Hadie, Siti Nurma Hanim; Hassan, Asma'; Ismail, Zul Izhar Mohd; Asari, Mohd Asnizam; Khan, Aaijaz Ahmed; Kasim, Fazlina; Yusof, Nurul Aiman Mohd; Manan Sulong, Husnaida Abdul; Tg Muda, Tg Fatimah Murniwati; Arifin, Wan Nor; Yusoff, Muhamad Saiful Bahri

    2017-09-01

    Students' perceptions of the education environment influence their learning. Ever since the major medical curriculum reform, anatomy education has undergone several changes in terms of its curriculum, teaching modalities, learning resources, and assessment methods. By measuring students' perceptions concerning anatomy education environment, valuable information can be obtained to facilitate improvements in teaching and learning. Hence, it is important to use a valid inventory that specifically measures attributes of the anatomy education environment. In this study, a new 11-factor, 132-items Anatomy Education Environment Measurement Inventory (AEEMI) was developed using Delphi technique and was validated in a Malaysian public medical school. The inventory was found to have satisfactory content evidence (scale-level content validity index [total] = 0.646); good response process evidence (scale-level face validity index [total] = 0.867); and acceptable to high internal consistency, with the Raykov composite reliability estimates of the six factors are in the range of 0.604-0.876. The best fit model of the AEEMI is achieved with six domains and 25 items (X 2  = 415.67, P education environment in Malaysia. A concerted collaboration should be initiated toward developing a valid universal tool that, using the methods outlined in this study, measures the anatomy education environment across different institutions and countries. Anat Sci Educ 10: 423-432. © 2017 American Association of Anatomists. © 2017 American Association of Anatomists.

  14. Educational Game Design. Bridging the gab between computer based learning and experimental learning environments

    DEFF Research Database (Denmark)

    Andersen, Kristine

    2007-01-01

    Considering the rapidly growing amount of digital educational materials only few of them bridge the gab between experimental learning environments and computer based learning environments (Gardner, 1991). Observations from two cases in primary school and lower secondary school in the subject...... with a prototype of a MOO storyline. The aim of the MOO storyline is to challenge the potential of dialogue, user involvement, and learning responsibility and to use the children?s natural curiosity and motivation for game playing, especially when digital games involves other children. The paper proposes a model......, based on the narrative approach for experimental learning subjects, relying on ideas from Csikszentmihalyis notion of flow (Csikszentmihalyi, 1991), storyline-pedagogy (Meldgaard, 1994) and ideas from Howard Gardner (Gardner, 1991). The model forms the basis for educational games to be used in home...

  15. Gender and Diversity in a Problem and Project Based Learning Environment

    DEFF Research Database (Denmark)

    Du, Xiangyun

    Problem and Project Based Learning (PBL) has been well used as an educational philosophy and methodology in the construction of student centered and contextualized learning environment. PBL is also regarded as an effective method in producing engineering graduates who can not only meet the needs...... on the learning experiences of engineering students in the PBL environment in Denmark. This book also attempts to question the issue of diversity in engineering education via the exploration of whether or in which ways the PBL environment is friendly to diverse groups of learners such as women....

  16. The Components of Non-Punitive Environment in Nursing

    Directory of Open Access Journals (Sweden)

    Sepp Jaana

    2017-11-01

    Full Text Available In nursing homes, managers need to create work environment which considers patient’s and worker’s needs and helps the organization to respond to a complicated and changing environment. The aim of the study is to investigate the influence of working environment on care workers’ safe behavior. We used KIVA questionnaire (characterizes the wellbeing workers. Our study reveals that in order to create the blame-free culture and non-punitive environment, the managers should pay attention to several factors: commitment, communication, leadership, collaboration, teamwork and learning.

  17. Game Based Learning as a Means to Teach Climate Literacy in a High School Environment

    Science.gov (United States)

    Fung, M. K.; Tedesco, L.; Katz, M. E.

    2013-12-01

    As part of RPI's GK-12 graduate fellowship program (which involves graduate STEM fellows in K-12 education) a climate change board game activity was developed and implemented at inner city Troy High School in Troy, New York. The goal was to engage and teach two classes of the Earth Science General Repeat (GR) tenth grade students about climate change through a game-based leaning module. Students placed in the GR course had previously failed Earth Science, and had never passed a general science class in high school. In the past, these students have responded positively to hands-on activities. Therefore, an interactive board game activity was created to teach students about climate, explore how humans impact our environment, and address the future of climate change. The students are presented with a draft version of the game, created by the graduate fellow, and are asked to redesign the game for their peers in the other GR class. The students' version of the game is required to include certain aspects of the original game, for example, the climate change Trivia and Roadblock cards, but the design, addition of rules and overall layout are left to the students. The game-based learning technique allows the students to learn through a storyline, compete against each other, and challenge themselves to perfect their learning and understanding of climate change. The climate change board game activity also incorporates our cascade learning model, in which the graduate fellow designs the activity, works with a high school teacher, and implements the game with high school students. In addition, the activity emphasizes peer-to-peer learning, allowing each classroom to design the game for a different group of students. This allows the students to take leadership and gives them a sense of accomplishment with the completed board game. The nature of a board game also creates a dynamic competitive atmosphere, in which the students want to learn and understand the material to succeed

  18. Creating a learning organisation through content based document management

    International Nuclear Information System (INIS)

    Bremdal, B.; Johansen, F.; Spaggiari, C.; Engels, R.; Jones, R.

    1999-01-01

    The discussion on the concept of the Learning Organisation dates back approximately 20 years in the management literature. People that pioneered this concept include Chris Argyris (Argyris 77), Peter Senge (Senge 90), Fiol and Lyles (Fiol 85), Levitt and March (Levitt 89), Ray Stata (Stata 89). All of them introduced various definitions of the concept. These definitions circumscribe issues like the following: 'Better knowledge and understanding', 'process of improving actions', 'processing of information', 'change of behaviour', 'encoding inferences from history into routines that guide behaviour', 'process of detecting and correcting error', 'the need for shared insights, knowledge and mental models', 'building on past knowledge and experience'. Peter Senge's work (Senge 90) is often used as reference for the concept. His ideas put forward in the book The fifth Discipline have had a profound effect on modern organisational thinking far beyond the management community itself. According to Senge a Learning Organisation can be described as follows: 'A Learning Organisation is a place where people continually expand their capacity to create the results they truly desire, where new and expansive patterns of thinking are nurtured, where collective aspiration is set free, and where people are continually learning how to learn together'. Organisational learning must be seen as part of an overall process of continuous improvement. But practical and systematic measures must accompany a vision if a real change is desired. Garvin (Garvin 93) is concerned about the lack of an operational basis or framework that can systematically instantiate the concept into a viable strategy and a set of systematic actions. He identifies five properties that learning organisations master well: Systematic problem solving, experimentation with new approaches, learning from their own experience and past history, learning from the experiences and best practices of others, and transferring

  19. Personal Learning Environments, Social Media, and Self-Regulated Learning: A Natural Formula for Connecting Formal and Informal Learning

    Science.gov (United States)

    Dabbagh, Nada; Kitsantas, Anastasia

    2012-01-01

    A Personal Learning Environment or PLE is a potentially promising pedagogical approach for both integrating formal and informal learning using social media and supporting student self-regulated learning in higher education contexts. The purpose of this paper is to (a) review research that support this claim, (b) conceptualize the connection…

  20. Exploring Children's Requirements for Game-Based Learning Environments

    Directory of Open Access Journals (Sweden)

    Marja Kankaanranta

    2008-08-01

    Full Text Available End users' expertise in the development of new applications is acknowledged in user-centered and participatory design. Similarly, children's experience of what they find enjoyable and how they learn is a valuable source of inspiration for the design of products intended for them. In this paper, we explore experiences obtained from collaboration with elementary school children in the design of learning environments, based on three projects and three requirements gathering techniques. We also discuss how the children experienced the participation. The children's contribution yielded useful, both expected and unanticipated, outcomes in regard to the user interface and contents of the learning environments under development. Moreover, we present issues related to design collaboration with children, especially in terms of the children's feeling of ownership over the final outcome.