WorldWideScience

Sample records for learning domain number

  1. Learning processes across knowledge domains

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg; Broberg, Ole

    2014-01-01

    Purpose - The purpose of this paper is to shed light on the problematics of learning across knowledge boundaries in organizational settings. The paper specifically explores learning processes that emerge, when a new knowledge domain is introduced into an existing organizational practice with the ...

  2. International comparisons of Foundation Phase number domain ...

    African Journals Online (AJOL)

    Hennie

    wide variety of factors interact to impact on the quality of the ... people/learners in a social setting, where culture and context are .... The research design adopted for this study can be described ..... involve learners in active learning and to plan.

  3. Learning Potentials in Number Blocks

    DEFF Research Database (Denmark)

    Majgaard, Gunver; Misfeldt, Morten; Nielsen, Jacob

    2012-01-01

    This paper describes an initial exploration of how an interactive cubic user-configurable modular robotic system can be used to support learning about numbers and how they are pronounced. The development is done in collaboration with a class of 7-8 year old children and their mathematics teacher....

  4. Domain general constraints on statistical learning.

    Science.gov (United States)

    Thiessen, Erik D

    2011-01-01

    All theories of language development suggest that learning is constrained. However, theories differ on whether these constraints arise from language-specific processes or have domain-general origins such as the characteristics of human perception and information processing. The current experiments explored constraints on statistical learning of patterns, such as the phonotactic patterns of an infants' native language. Infants in these experiments were presented with a visual analog of a phonotactic learning task used by J. R. Saffran and E. D. Thiessen (2003). Saffran and Thiessen found that infants' phonotactic learning was constrained such that some patterns were learned more easily than other patterns. The current results indicate that infants' learning of visual patterns shows the same constraints as infants' learning of phonotactic patterns. This is consistent with theories suggesting that constraints arise from domain-general sources and, as such, should operate over many kinds of stimuli in addition to linguistic stimuli. © 2011 The Author. Child Development © 2011 Society for Research in Child Development, Inc.

  5. Cross-Domain Semi-Supervised Learning Using Feature Formulation.

    Science.gov (United States)

    Xingquan Zhu

    2011-12-01

    Semi-Supervised Learning (SSL) traditionally makes use of unlabeled samples by including them into the training set through an automated labeling process. Such a primitive Semi-Supervised Learning (pSSL) approach suffers from a number of disadvantages including false labeling and incapable of utilizing out-of-domain samples. In this paper, we propose a formative Semi-Supervised Learning (fSSL) framework which explores hidden features between labeled and unlabeled samples to achieve semi-supervised learning. fSSL regards that both labeled and unlabeled samples are generated from some hidden concepts with labeling information partially observable for some samples. The key of the fSSL is to recover the hidden concepts, and take them as new features to link labeled and unlabeled samples for semi-supervised learning. Because unlabeled samples are only used to generate new features, but not to be explicitly included in the training set like pSSL does, fSSL overcomes the inherent disadvantages of the traditional pSSL methods, especially for samples not within the same domain as the labeled instances. Experimental results and comparisons demonstrate that fSSL significantly outperforms pSSL-based methods for both within-domain and cross-domain semi-supervised learning.

  6. Beyond cross-domain learning: Multiple-domain nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan; Gao, Xin

    2014-01-01

    Traditional cross-domain learning methods transfer learning from a source domain to a target domain. In this paper, we propose the multiple-domain learning problem for several equally treated domains. The multiple-domain learning problem assumes that samples from different domains have different distributions, but share the same feature and class label spaces. Each domain could be a target domain, while also be a source domain for other domains. A novel multiple-domain representation method is proposed for the multiple-domain learning problem. This method is based on nonnegative matrix factorization (NMF), and tries to learn a basis matrix and coding vectors for samples, so that the domain distribution mismatch among different domains will be reduced under an extended variation of the maximum mean discrepancy (MMD) criterion. The novel algorithm - multiple-domain NMF (MDNMF) - was evaluated on two challenging multiple-domain learning problems - multiple user spam email detection and multiple-domain glioma diagnosis. The effectiveness of the proposed algorithm is experimentally verified. © 2013 Elsevier Ltd. All rights reserved.

  7. Beyond cross-domain learning: Multiple-domain nonnegative matrix factorization

    KAUST Repository

    Wang, Jim Jing-Yan

    2014-02-01

    Traditional cross-domain learning methods transfer learning from a source domain to a target domain. In this paper, we propose the multiple-domain learning problem for several equally treated domains. The multiple-domain learning problem assumes that samples from different domains have different distributions, but share the same feature and class label spaces. Each domain could be a target domain, while also be a source domain for other domains. A novel multiple-domain representation method is proposed for the multiple-domain learning problem. This method is based on nonnegative matrix factorization (NMF), and tries to learn a basis matrix and coding vectors for samples, so that the domain distribution mismatch among different domains will be reduced under an extended variation of the maximum mean discrepancy (MMD) criterion. The novel algorithm - multiple-domain NMF (MDNMF) - was evaluated on two challenging multiple-domain learning problems - multiple user spam email detection and multiple-domain glioma diagnosis. The effectiveness of the proposed algorithm is experimentally verified. © 2013 Elsevier Ltd. All rights reserved.

  8. Middle Level Learning Number 47

    Science.gov (United States)

    Lapham, Steven S.; Hanes, Peter; Turner, Thomas N.; Clabough, Jeremiah C.; Cole, William

    2013-01-01

    This issue's "Middle Level Learning" section presents two articles. The first is "Harriet Tubman: Emancipate Yourself!" (by Steven S. Lapham and Peter Hanes). "Argo," which won the 2012 Oscar for best picture, was about a daring escape of six U.S. diplomats from Iran during the 1979 hostage crisis. Now imagine the…

  9. Domain learning naming game for color categorization.

    Science.gov (United States)

    Li, Doujie; Fan, Zhongyan; Tang, Wallace K S

    2017-01-01

    Naming game simulates the evolution of vocabulary in a population of agents. Through pairwise interactions in the games, agents acquire a set of vocabulary in their memory for object naming. The existing model confines to a one-to-one mapping between a name and an object. Focus is usually put onto name consensus in the population rather than knowledge learning in agents, and hence simple learning model is usually adopted. However, the cognition system of human being is much more complex and knowledge is usually presented in a complicated form. Therefore, in this work, we extend the agent learning model and design a new game to incorporate domain learning, which is essential for more complicated form of knowledge. In particular, we demonstrate the evolution of color categorization and naming in a population of agents. We incorporate the human perceptive model into the agents and introduce two new concepts, namely subjective perception and subliminal stimulation, in domain learning. Simulation results show that, even without any supervision or pre-requisition, a consensus of a color naming system can be reached in a population solely via the interactions. Our work confirms the importance of society interactions in color categorization, which is a long debate topic in human cognition. Moreover, our work also demonstrates the possibility of cognitive system development in autonomous intelligent agents.

  10. Conception of Learning Outcomes in the Bloom's Taxonomy Affective Domain

    Science.gov (United States)

    Savickiene, Izabela

    2010-01-01

    The article raises a problematic issue regarding an insufficient base of the conception of learning outcomes in the Bloom's taxonomy affective domain. The search for solutions introduces the conception of teaching and learning in the affective domain as well as presents validity criteria of learning outcomes in the affective domain. The…

  11. The Learning Potentials of Number Blocks

    DEFF Research Database (Denmark)

    Majgaard, Gunver; Nielsen, Jacob; Misfeldt, Morten

    2012-01-01

    This paper describes an initial exploration of how an interactive cubic user-configurable modular robotic system can be used to support learning about numbers and how they are pronounced. The development is done in collaboration with a class of 7-8 year old children and their mathematics teacher...

  12. Learning Random Numbers: A Matlab Anomaly

    Czech Academy of Sciences Publication Activity Database

    Savický, Petr; Robnik-Šikonja, M.

    2008-01-01

    Roč. 22, č. 3 (2008), s. 254-265 ISSN 0883-9514 R&D Projects: GA AV ČR 1ET100300517 Institutional research plan: CEZ:AV0Z10300504 Keywords : random number s * machine learning * classification * attribute evaluation * regression Subject RIV: BA - General Mathematics Impact factor: 0.795, year: 2008

  13. Learning from Number Board Games: You Learn What You Encode

    Science.gov (United States)

    Laski, Elida V.; Siegler, Robert S.

    2014-01-01

    We tested the hypothesis that encoding the numerical-spatial relations in a number board game is a key process in promoting learning from playing such games. Experiment 1 used a microgenetic design to examine the effects on learning of the type of counting procedure that children use. As predicted, having kindergartners count-on from their current…

  14. Robust Visual Knowledge Transfer via Extreme Learning Machine Based Domain Adaptation.

    Science.gov (United States)

    Zhang, Lei; Zhang, David

    2016-08-10

    We address the problem of visual knowledge adaptation by leveraging labeled patterns from source domain and a very limited number of labeled instances in target domain to learn a robust classifier for visual categorization. This paper proposes a new extreme learning machine based cross-domain network learning framework, that is called Extreme Learning Machine (ELM) based Domain Adaptation (EDA). It allows us to learn a category transformation and an ELM classifier with random projection by minimizing the -norm of the network output weights and the learning error simultaneously. The unlabeled target data, as useful knowledge, is also integrated as a fidelity term to guarantee the stability during cross domain learning. It minimizes the matching error between the learned classifier and a base classifier, such that many existing classifiers can be readily incorporated as base classifiers. The network output weights cannot only be analytically determined, but also transferrable. Additionally, a manifold regularization with Laplacian graph is incorporated, such that it is beneficial to semi-supervised learning. Extensively, we also propose a model of multiple views, referred as MvEDA. Experiments on benchmark visual datasets for video event recognition and object recognition, demonstrate that our EDA methods outperform existing cross-domain learning methods.

  15. Feature selection for domain knowledge representation through multitask learning

    CSIR Research Space (South Africa)

    Rosman, Benjamin S

    2014-10-01

    Full Text Available represent stimuli of interest, and rich feature sets which increase the dimensionality of the space and thus the difficulty of the learning problem. We focus on a multitask reinforcement learning setting, where the agent is learning domain knowledge...

  16. M-Learning: Implications in Learning Domain Specificities, Adaptive Learning, Feedback, Augmented Reality, and the Future of Online Learning

    Science.gov (United States)

    Squires, David R.

    2014-01-01

    The aim of this paper is to examine the potential and effectiveness of m-learning in the field of Education and Learning domains. The purpose of this research is to illustrate how mobile technology can and is affecting novel change in instruction, from m-learning and the link to adaptive learning, to the uninitiated learner and capacities of…

  17. Learning domain abstractions for long lived robots

    CSIR Research Space (South Africa)

    Rosman, Benjamin S

    2014-06-01

    Full Text Available the ability to continually learn from a lifetime of experience. Key to this is the ability to generalise from experiences and form representations which facilitate faster learning of new tasks, as well as the transfer of knowledge between different situations...

  18. Learn every day about numbers 100 best ideas from teachers

    CERN Document Server

    Charner, Kathy

    2009-01-01

    Classroom-tested and teacher approved, these activities help children ages three to six learn all about numbers. With one hundred engaging and fun activities, Learn Every Day About Numbers offers everything a teacher needs to build a foundation for future math learning. Children will love becoming a Number Detective, a Flashlight Writer, or a Number Hero as they investigate the wonderful world of numbers. Each activity offers learning objectives to meet standards, a materials list, related children's books, and an assessment component to measure children's learning. Learning about numbers has never been so much fun!.

  19. Action priors for learning domain invariances

    CSIR Research Space (South Africa)

    Rosman, Benjamin S

    2015-04-01

    Full Text Available behavioural invariances in the domain, by identifying actions to be prioritised in local contexts, invariant to task details. This information has the effect of greatly increasing the speed of solving new problems. We formalise this notion as action priors...

  20. Domain-specific and domain-general constraints on word and sequence learning.

    Science.gov (United States)

    Archibald, Lisa M D; Joanisse, Marc F

    2013-02-01

    The relative influences of language-related and memory-related constraints on the learning of novel words and sequences were examined by comparing individual differences in performance of children with and without specific deficits in either language or working memory. Children recalled lists of words in a Hebbian learning protocol in which occasional lists repeated, yielding improved recall over the course of the task on the repeated lists. The task involved presentation of pictures of common nouns followed immediately by equivalent presentations of the spoken names. The same participants also completed a paired-associate learning task involving word-picture and nonword-picture pairs. Hebbian learning was observed for all groups. Domain-general working memory constrained immediate recall, whereas language abilities impacted recall in the auditory modality only. In addition, working memory constrained paired-associate learning generally, whereas language abilities disproportionately impacted novel word learning. Overall, all of the learning tasks were highly correlated with domain-general working memory. The learning of nonwords was additionally related to general intelligence, phonological short-term memory, language abilities, and implicit learning. The results suggest that distinct associations between language- and memory-related mechanisms support learning of familiar and unfamiliar phonological forms and sequences.

  1. Learning Skills; Review and Domain Chart.

    Science.gov (United States)

    Clark, N. Cecil; Thompson, Faith E.

    A major goal of the elementary and secondary schools is to help each person become an efficient and autonomous learner. Outlined in this report are skills abstracted from the literature on such topics as verbal learning, problem solving, study habits, and behavior modification. The learner-oriented skills are presented so that they may be…

  2. Learning Physical Domains: Toward a Theoretical Framework.

    Science.gov (United States)

    1986-12-01

    advanced ids o the iaime doinain in containing more information, especially perceptual " ’It. iho lI b1 rwt... tI hat. psychboigists by no means...Acquisitions Dr Kenneth D Forbus 4833 Rugby Avenue University of Illinois Dr Robert Glaser Bethesda, MD 20014 Department of Computer Science Learning

  3. Exploring Children's Passion for Learning in Six Domains

    Science.gov (United States)

    Coleman, Laurence J.; Guo, Aige

    2013-01-01

    Passion for learning (PFL) in children is a phenomenon that is little understood. The experience of PFL was studied with phenomenological and qualitative modes of inquiry. Case studies of six domains (acting, reading, filmmaking, spelling, math, and preaching) describe how the passion developed using the voices of children and parents. Their…

  4. Warfighter information services: lessons learned in the intelligence domain

    Science.gov (United States)

    Bray, S. E.

    2014-05-01

    A vision was presented in a previous paper of how a common set of services within a framework could be used to provide all the information processing needs of Warfighters. Central to that vision was the concept of a "Virtual Knowledge Base". The paper presents an implementation of these ideas in the intelligence domain. Several innovative technologies were employed in the solution, which are presented and their benefits explained. The project was successful, validating many of the design principles for such a system which had been proposed in earlier work. Many of these principles are discussed in detail, explaining lessons learned. The results showed that it is possible to make vast improvements in the ability to exploit available data, making it discoverable and queryable wherever it is from anywhere within a participating network; and to exploit machine reasoning to make faster and better inferences from available data, enabling human analysts to spend more of their time doing more difficult analytical tasks rather than searching for relevant data. It was also demonstrated that a small number of generic Information Processing services can be combined and configured in a variety of ways (without changing any software code) to create "fact-processing" workflows, in this case to create different intelligence analysis capabilities. It is yet to be demonstrated that the same generic services can be reused to create analytical/situational awareness capabilities for logistics, operations, planning or other military functions but this is considered likely.

  5. Chinese Number Words, Culture, and Mathematics Learning

    Science.gov (United States)

    Ng, Sharon Sui Ngan; Rao, Nirmala

    2010-01-01

    This review evaluates the role of language--specifically, the Chinese-based system of number words and the simplicity of Chinese mathematical terms--in explaining the relatively superior performance of Chinese and other East Asian students in cross-national studies of mathematics achievement. Relevant research is critically reviewed focusing on…

  6. Translating Learning into Numbers: A Generic Framework for Learning Analytics

    Science.gov (United States)

    Greller, Wolfgang; Drachsler, Hendrik

    2012-01-01

    With the increase in available educational data, it is expected that Learning Analytics will become a powerful means to inform and support learners, teachers and their institutions in better understanding and predicting personal learning needs and performance. However, the processes and requirements behind the beneficial application of Learning…

  7. Image reconstruction by domain-transform manifold learning

    Science.gov (United States)

    Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.

    2018-03-01

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development

  8. Numbered head together with scientific approach in geometry learning

    Science.gov (United States)

    Indarti, Dwi; Mardiyana; Pramudya, Ikrar

    2017-12-01

    The aim of this research was to find out the influence of learning model implementation toward student’s achievement in mathematics. This research was using quasi-experimental research. The population of the research was all of 7th grade students in Karanganyar. Sample was taken using stratified cluster random sampling technique. The data collection has been conducted based on students’ mathematics achievement test. The results from the data analysis showed that the learning mathematics by using Numbered Head Together (NHT) learning model with scientific approach improved student’s achievement in mathematics rather than direct learning model particularly in learning object of quadrilateral. Implementation of NHT learning model with scientific approach could be used by the teachers in teaching and learning, particularly in learning object of quadrilateral.

  9. A Comparative Analysis of Numbers and Biology Content Domains between Turkey and the USA

    Science.gov (United States)

    Incikabi, Lutfi; Ozgelen, Sinan; Tjoe, Hartono

    2012-01-01

    This study aimed to compare Mathematics and Science programs focusing on TIMSS content domains of Numbers and Biology that produced the largest achievement gap among students from Turkey and the USA. Specifically, it utilized the content analysis method within Turkish and New York State (NYS) frameworks. The procedures of study included matching…

  10. Evaluation of bispectrum in the wave number domain based on multi-point measurements

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2008-10-01

    Full Text Available We present an estimator of the bispectrum, a measure of three-wave couplings. It is evaluated directly in the wave number domain using a limited number of detectors. The ability of the bispectrum estimator is examined numerically and then it is applied to fluctuations of magnetic field and electron density in the terrestrial foreshock region observed by the four Cluster spacecraft, which indicates the presence of a three-wave coupling in space plasma.

  11. Generative Learning Objects Instantiated with Random Numbers Based Expressions

    Directory of Open Access Journals (Sweden)

    Ciprian Bogdan Chirila

    2015-12-01

    Full Text Available The development of interactive e-learning content requires special skills like programming techniques, web integration, graphic design etc. Generally, online educators do not possess such skills and their e-learning products tend to be static like presentation slides and textbooks. In this paper we propose a new interactive model of generative learning objects as a compromise betweenstatic, dull materials and dynamic, complex software e-learning materials developed by specialized teams. We find that random numbers based automatic initialization learning objects increases content diversity, interactivity thus enabling learners’ engagement. The resulted learning object model is at a limited level of complexity related to special e-learning software, intuitive and capable of increasing learners’ interactivity, engagement and motivation through dynamic content. The approach was applied successfully on several computer programing disciplines.

  12. Reinforcement Learning in Distributed Domains: Beyond Team Games

    Science.gov (United States)

    Wolpert, David H.; Sill, Joseph; Turner, Kagan

    2000-01-01

    Distributed search algorithms are crucial in dealing with large optimization problems, particularly when a centralized approach is not only impractical but infeasible. Many machine learning concepts have been applied to search algorithms in order to improve their effectiveness. In this article we present an algorithm that blends Reinforcement Learning (RL) and hill climbing directly, by using the RL signal to guide the exploration step of a hill climbing algorithm. We apply this algorithm to the domain of a constellations of communication satellites where the goal is to minimize the loss of importance weighted data. We introduce the concept of 'ghost' traffic, where correctly setting this traffic induces the satellites to act to optimize the world utility. Our results indicated that the bi-utility search introduced in this paper outperforms both traditional hill climbing algorithms and distributed RL approaches such as team games.

  13. Knowing, Applying, and Reasoning about Arithmetic: Roles of Domain-General and Numerical Skills in Multiple Domains of Arithmetic Learning

    Science.gov (United States)

    Zhang, Xiao; Räsänen, Pekka; Koponen, Tuire; Aunola, Kaisa; Lerkkanen, Marja-Kristiina; Nurmi, Jari-Erik

    2017-01-01

    The longitudinal relations of domain-general and numerical skills at ages 6-7 years to 3 cognitive domains of arithmetic learning, namely knowing (written computation), applying (arithmetic word problems), and reasoning (arithmetic reasoning) at age 11, were examined for a representative sample of 378 Finnish children. The results showed that…

  14. A Novel Transfer Learning Method Based on Common Space Mapping and Weighted Domain Matching

    KAUST Repository

    Liang, Ru-Ze; Xie, Wei; Li, Weizhi; Wang, Hongqi; Wang, Jim Jing-Yan; Taylor, Lisa

    2017-01-01

    In this paper, we propose a novel learning framework for the problem of domain transfer learning. We map the data of two domains to one single common space, and learn a classifier in this common space. Then we adapt the common classifier to the two domains by adding two adaptive functions to it respectively. In the common space, the target domain data points are weighted and matched to the target domain in term of distributions. The weighting terms of source domain data points and the target domain classification responses are also regularized by the local reconstruction coefficients. The novel transfer learning framework is evaluated over some benchmark cross-domain data sets, and it outperforms the existing state-of-the-art transfer learning methods.

  15. A Novel Transfer Learning Method Based on Common Space Mapping and Weighted Domain Matching

    KAUST Repository

    Liang, Ru-Ze

    2017-01-17

    In this paper, we propose a novel learning framework for the problem of domain transfer learning. We map the data of two domains to one single common space, and learn a classifier in this common space. Then we adapt the common classifier to the two domains by adding two adaptive functions to it respectively. In the common space, the target domain data points are weighted and matched to the target domain in term of distributions. The weighting terms of source domain data points and the target domain classification responses are also regularized by the local reconstruction coefficients. The novel transfer learning framework is evaluated over some benchmark cross-domain data sets, and it outperforms the existing state-of-the-art transfer learning methods.

  16. Which Type of Rational Numbers Should Students Learn First?

    Science.gov (United States)

    Tian, Jing; Siegler, Robert S.

    2017-01-01

    Many children and adults have difficulty gaining a comprehensive understanding of rational numbers. Although fractions are taught before decimals and percentages in many countries, including the USA, a number of researchers have argued that decimals are easier to learn than fractions and therefore teaching them first might mitigate children's…

  17. Developing a Domain Theory Defining and Exemplifying a Learning Theory of Progressive Attainments

    Science.gov (United States)

    Bunderson, C. Victor

    2011-01-01

    This article defines the concept of Domain Theory, or, when educational measurement is the goal, one might call it a "Learning Theory of Progressive Attainments in X Domain". The concept of Domain Theory is first shown to be rooted in validity theory, then the concept of domain theory is expanded to amplify its necessary but long neglected…

  18. Domain General Mediators of the Relation between Kindergarten Number Sense and First-Grade Mathematics Achievement

    Science.gov (United States)

    Hassinger-Das, Brenna; Jordan, Nancy C.; Glutting, Joseph; Irwin, Casey; Dyson, Nancy

    2013-01-01

    Domain general skills that mediate the relation between kindergarten number sense and first-grade mathematics skills were investigated. Participants were 107 children who displayed low number sense in the fall of kindergarten. Controlling for background variables, multiple regression analyses showed that attention problems and executive functioning both were unique predictors of mathematics outcomes. Attention problems were more important for predicting first-grade calculation performance while executive functioning was more important for predicting first-grade performance on applied problems. Moreover, both executive functioning and attention problems were unique partial mediators of the relationship between kindergarten and first-grade mathematics skills. The results provide empirical support for developing interventions that target executive functioning and attention problems in addition to instruction in number skills for kindergartners with initial low number sense. PMID:24237789

  19. Monte Carlo learning/biasing experiment with intelligent random numbers

    International Nuclear Information System (INIS)

    Booth, T.E.

    1985-01-01

    A Monte Carlo learning and biasing technique is described that does its learning and biasing in the random number space rather than the physical phase-space. The technique is probably applicable to all linear Monte Carlo problems, but no proof is provided here. Instead, the technique is illustrated with a simple Monte Carlo transport problem. Problems encountered, problems solved, and speculations about future progress are discussed. 12 refs

  20. Shifting of wrapped phase maps in the frequency domain using a rational number

    International Nuclear Information System (INIS)

    Gdeisat, Munther A; Abushakra, Ahmad; Qaddoura, Maen; Burton, David R; Lilley, Francis; Arevalillo-Herráez, Miguel

    2016-01-01

    The number of phase wraps in an image can be either reduced, or completely eliminated, by transforming the image into the frequency domain using a Fourier transform, and then shifting the spectrum towards the origin. After this, the spectrum is transformed back to the spatial domain using the inverse Fourier transform and finally the phase is extracted using the arctangent function. However, it is a common concern that the spectrum can be shifted only by an integer number, meaning that the phase wrap reduction is often not optimal. In this paper we propose an algorithm than enables the spectrum to be frequency shifted by a rational number. The principle of the proposed method is confirmed both by using an initial computer simulation and is subsequently validated experimentally on real fringe patterns. The technique may offer in some cases the prospects of removing the necessity for a phase unwrapping process altogether and/or speeding up the phase unwrapping process. This may be beneficial in terms of potential increases in signal recovery robustness and also for use in time-critical applications. (paper)

  1. Use of Heuristics to Facilitate Scientific Discovery Learning in a Simulation Learning Environment in a Physics Domain

    Science.gov (United States)

    Veermans, Koen; van Joolingen, Wouter; de Jong, Ton

    2006-01-01

    This article describes a study into the role of heuristic support in facilitating discovery learning through simulation-based learning. The study compares the use of two such learning environments in the physics domain of collisions. In one learning environment (implicit heuristics) heuristics are only used to provide the learner with guidance…

  2. The Analysis of High School Students' Conceptions of Learning in Different Domains

    Science.gov (United States)

    Sadi, Özlem

    2015-01-01

    The purpose of this study is to investigate whether or not conceptions of learning diverge in different science domains by identifying high school students' conceptions of learning in physics, chemistry and biology. The Conceptions of Learning Science (COLS) questionnaire was adapted for physics (Conceptions of Learning Physics, COLP), chemistry…

  3. Interaction and Technological Resources to Support Learning of Complex Numbers

    Directory of Open Access Journals (Sweden)

    Cassiano Scott Puhl

    2016-02-01

    Full Text Available This article presents a didactic proposal, a workshop for the introduction of the study of complex numbers. Unlike recurrent practices, the workshop began developing the geometric shape of the complex number, implicitly, through vectors. Eliminating student formal vision and algebraic, enriching the teaching practice. The main objective of the strategy was to build the concept of imaginary unit without causing a feeling of strangeness or insignificance of number. The theory of David Ausubel, meaningful learning, the workshop was based on a strategy developed to analyze the subsumers of students and develop a learning by subject. Combined with dynamic and interactive activities in the workshop, there is the use of a learning object (http://matematicacomplexa.meximas.com/. An environment created and basing on the theory of meaningful learning, making students reflect and interact in developed applications sometimes being challenged and other testing hypotheses and, above all, building knowledge. This proposal provided a rich environment for exchange of information between participants and deepening of ideas and concepts that served as subsumers. The result of the experience was very positive, as evidenced by the comments and data submitted by the participants, thus demonstrating that the objectives of this didactic proposal have been achieved.

  4. Predicting first-grade mathematics achievement: The contributions of domain-general cognitive abilities, nonverbal number sense, and early number competence.

    Directory of Open Access Journals (Sweden)

    Caroline eHornung

    2014-04-01

    Full Text Available Early number competence, grounded in number-specific and domain-general cognitive abilities, is theorized to lay the foundation for later math achievement. Few longitudinal studies have tested a comprehensive model for early math development. Using structural equation modeling and mediation analyses, the present work examined the influence of kindergarteners’ nonverbal number sense and domain-general abilities i.e., working memory, fluid intelligence, and receptive vocabulary and their early number competence (i.e., symbolic number skills on first grade math achievement (arithmetic, shape and space skills, and number line estimation assessed one year later. Latent regression models revealed that nonverbal number sense and working memory are central building blocks for developing early number competence in kindergarten and that early number competence is key for first grade math achievement. After controlling for early number competence, fluid intelligence significantly predicted arithmetic and number line estimation while receptive vocabulary significantly predicted shape and space skills. In sum we suggest that early math achievement draws on different constellations of number-specific and domain-general mechanisms.

  5. Formative assessment in an online learning environment to support flexible on-the-job learning in complex professional domains

    NARCIS (Netherlands)

    Tamara van Gog; Desirée Joosten-ten Brinke; F. J. Prins; Dominique Sluijsmans

    2010-01-01

    This article describes a blueprint for an online learning environment that is based on prominent instructional design and assessment theories for supporting learning in complex domains. The core of this environment consists of formative assessment tasks (i.e., assessment for learning) that center on

  6. The Effect of Observational Learning on Students' Performance, Processes, and Motivation in Two Creative Domains

    Science.gov (United States)

    Groenendijk, Talita; Janssen, Tanja; Rijlaarsdam, Gert; van den Bergh, Huub

    2013-01-01

    Background. Previous research has shown that observation can be effective for learning in various domains, for example, argumentative writing and mathematics. The question in this paper is whether observational learning can also be beneficial when learning to perform creative tasks in visual and verbal arts. Aims. We hypothesized that observation…

  7. Quality of the Home Learning Environment during Preschool Age--Domains and Contextual Conditions

    Science.gov (United States)

    Kluczniok, Katharina; Lehrl, Simone; Kuger, Susanne; Rossbach, Hans-Guenther

    2013-01-01

    The quality of the home learning environment has been proven to be of major importance for child development, but little is known about the role of domain specificity in promoting early childhood learning at home and its dependence on family background. This article presents a framework of the home learning environment in early childhood that…

  8. Efficient learning mechanisms hold in the social domain and are implemented in the medial prefrontal cortex.

    Science.gov (United States)

    Seid-Fatemi, Azade; Tobler, Philippe N

    2015-05-01

    When we are learning to associate novel cues with outcomes, learning is more efficient if we take advantage of previously learned associations and thereby avoid redundant learning. The blocking effect represents this sort of efficiency mechanism and refers to the phenomenon in which a novel stimulus is blocked from learning when it is associated with a fully predicted outcome. Although there is sufficient evidence that this effect manifests itself when individuals learn about their own rewards, it remains unclear whether it also does when they learn about others' rewards. We employed behavioral and neuroimaging methods to address this question. We demonstrate that blocking does indeed occur in the social domain and it does so to a similar degree as observed in the individual domain. On the neural level, activations in the medial prefrontal cortex (mPFC) show a specific contribution to blocking and learning-related prediction errors in the social domain. These findings suggest that the efficiency principle that applies to reward learning in the individual domain also applies to that in the social domain, with the mPFC playing a central role in implementing it. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  9. Comparison of learning models based on mathematics logical intelligence in affective domain

    Science.gov (United States)

    Widayanto, Arif; Pratiwi, Hasih; Mardiyana

    2018-04-01

    The purpose of this study was to examine the presence or absence of different effects of multiple treatments (used learning models and logical-mathematical intelligence) on the dependent variable (affective domain of mathematics). This research was quasi experimental using 3x3 of factorial design. The population of this research was VIII grade students of junior high school in Karanganyar under the academic year 2017/2018. Data collected in this research was analyzed by two ways analysis of variance with unequal cells using 5% of significance level. The result of the research were as follows: (1) Teaching and learning with model TS lead to better achievement in affective domain than QSH, teaching and learning with model QSH lead to better achievement in affective domain than using DI; (2) Students with high mathematics logical intelligence have better achievement in affective domain than students with low mathematics logical intelligence have; (3) In teaching and learning mathematics using learning model TS, students with moderate mathematics logical intelligence have better achievement in affective domain than using DI; and (4) In teaching and learning mathematics using learning model TS, students with low mathematics logical intelligence have better achievement in affective domain than using QSH and DI.

  10. Mindfulness, Adult Learning and Therapeutic Education: Integrating the Cognitive and Affective Domains of Learning

    Science.gov (United States)

    Hyland, Terry

    2010-01-01

    Although it has been given qualified approval by a number of philosophers of education, the so-called "therapeutic turn" in education has been the subject of criticism by several commentators on post-compulsory and adult learning over the last few years. A key feature of this alleged development in recent educational policy is said to be the…

  11. Weighted Domain Transfer Extreme Learning Machine and Its Online Version for Gas Sensor Drift Compensation in E-Nose Systems

    Directory of Open Access Journals (Sweden)

    Zhiyuan Ma

    2018-01-01

    Full Text Available Machine learning approaches have been widely used to tackle the problem of sensor array drift in E-Nose systems. However, labeled data are rare in practice, which makes supervised learning methods hard to be applied. Meanwhile, current solutions require updating the analytical model in an offline manner, which hampers their uses for online scenarios. In this paper, we extended Target Domain Adaptation Extreme Learning Machine (DAELM_T to achieve high accuracy with less labeled samples by proposing a Weighted Domain Transfer Extreme Learning Machine, which uses clustering information as prior knowledge to help select proper labeled samples and calculate sensitive matrix for weighted learning. Furthermore, we converted DAELM_T and the proposed method into their online learning versions under which scenario the labeled data are selected beforehand. Experimental results show that, for batch learning version, the proposed method uses around 20% less labeled samples while achieving approximately equivalent or better accuracy. As for the online versions, the methods maintain almost the same accuracies as their offline counterparts do, but the time cost remains around a constant value while that of offline versions grows with the number of samples.

  12. Example-Based Learning in Heuristic Domains: A Cognitive Load Theory Account

    Science.gov (United States)

    Renkl, Alexander; Hilbert, Tatjana; Schworm, Silke

    2009-01-01

    One classical instructional effect of cognitive load theory (CLT) is the worked-example effect. Although the vast majority of studies have focused on well-structured and algorithmic sub-domains of mathematics or physics, more recent studies have also analyzed learning with examples from complex domains in which only heuristic solution strategies…

  13. Children with Learning Disabilities. Facts for Families. Number 16

    Science.gov (United States)

    American Academy of Child & Adolescent Psychiatry (NJ1), 2011

    2011-01-01

    Parents are often worried when their child has learning problems in school. There are many reasons for school failure, but a common one is a specific learning disability. Children with learning disabilities can have intelligence in the normal range but the specific learning disability may make teachers and parents concerned about their general…

  14. Leveraging Random Number Generation for Mastery of Learning in Teaching Quantitative Research Courses via an E-Learning Method

    Science.gov (United States)

    Boonsathorn, Wasita; Charoen, Danuvasin; Dryver, Arthur L.

    2014-01-01

    E-Learning brings access to a powerful but often overlooked teaching tool: random number generation. Using random number generation, a practically infinite number of quantitative problem-solution sets can be created. In addition, within the e-learning context, in the spirit of the mastery of learning, it is possible to assign online quantitative…

  15. Machine learning \\& artificial intelligence in the quantum domain

    OpenAIRE

    Dunjko, Vedran; Briegel, Hans J.

    2017-01-01

    Quantum information technologies, and intelligent learning systems, are both emergent technologies that will likely have a transforming impact on our society. The respective underlying fields of research -- quantum information (QI) versus machine learning (ML) and artificial intelligence (AI) -- have their own specific challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been probing the question to what extent th...

  16. Practical iterative learning control with frequency domain design and sampled data implementation

    CERN Document Server

    Wang, Danwei; Zhang, Bin

    2014-01-01

    This book is on the iterative learning control (ILC) with focus on the design and implementation. We approach the ILC design based on the frequency domain analysis and address the ILC implementation based on the sampled data methods. This is the first book of ILC from frequency domain and sampled data methodologies. The frequency domain design methods offer ILC users insights to the convergence performance which is of practical benefits. This book presents a comprehensive framework with various methodologies to ensure the learnable bandwidth in the ILC system to be set with a balance between learning performance and learning stability. The sampled data implementation ensures effective execution of ILC in practical dynamic systems. The presented sampled data ILC methods also ensure the balance of performance and stability of learning process. Furthermore, the presented theories and methodologies are tested with an ILC controlled robotic system. The experimental results show that the machines can work in much h...

  17. The effect of observational learning on students' performance, processes, and motivation in two creative domains.

    Science.gov (United States)

    Groenendijk, Talita; Janssen, Tanja; Rijlaarsdam, Gert; van den Bergh, Huub

    2013-03-01

    Previous research has shown that observation can be effective for learning in various domains, for example, argumentative writing and mathematics. The question in this paper is whether observational learning can also be beneficial when learning to perform creative tasks in visual and verbal arts. We hypothesized that observation has a positive effect on performance, process, and motivation. We expected similarity in competence between the model and the observer to influence the effectiveness of observation. Sample.  A total of 131 Dutch students (10(th) grade, 15 years old) participated. Two experiments were carried out (one for visual and one for verbal arts). Participants were randomly assigned to one of three conditions; two observational learning conditions and a control condition (learning by practising). The observational learning conditions differed in instructional focus (on the weaker or the more competent model of a pair to be observed). We found positive effects of observation on creative products, creative processes, and motivation in the visual domain. In the verbal domain, observation seemed to affect the creative process, but not the other variables. The model similarity hypothesis was not confirmed. Results suggest that observation may foster learning in creative domains, especially in the visual arts. © 2011 The British Psychological Society.

  18. Data Mining in the E-Learning Domain

    Science.gov (United States)

    Hanna, Margo

    2004-01-01

    Higher education (HE) is becoming a big business, with huge investments in IT technology supporting online learning. With the awareness of the knowledge economy has come a growing consciousness that HE constitutes a large industry or economic sector in its own right. In a marketing fashion, we understand that some customers present much greater…

  19. Science Achievement in TIMSS Cognitive Domains Based on Learning Styles

    Science.gov (United States)

    Kablan, Zeynel; Kaya, Sibel

    2013-01-01

    Problem Statement: The interest in raising levels of achievement in math and science has led to a focus on investigating the factors that shape achievement in these subjects. Understanding how different learning styles might influence science achievement may guide educators in their efforts to raise achievement. This study is an attempt to examine…

  20. Kernel-Based Learning for Domain-Specific Relation Extraction

    Science.gov (United States)

    Basili, Roberto; Giannone, Cristina; Del Vescovo, Chiara; Moschitti, Alessandro; Naggar, Paolo

    In a specific process of business intelligence, i.e. investigation on organized crime, empirical language processing technologies can play a crucial role. The analysis of transcriptions on investigative activities, such as police interrogatories, for the recognition and storage of complex relations among people and locations is a very difficult and time consuming task, ultimately based on pools of experts. We discuss here an inductive relation extraction platform that opens the way to much cheaper and consistent workflows. The presented empirical investigation shows that accurate results, comparable to the expert teams, can be achieved, and parametrization allows to fine tune the system behavior for fitting domain-specific requirements.

  1. Autonomous Inter-Task Transfer in Reinforcement Learning Domains

    Science.gov (United States)

    2008-08-01

    Mountain Car. However, because the source task uses a car with a motor more than twice as powerful as in the 3D task, the tran- sition function learned in...powerful car motor or changing the surface friction of the hill • s: changing the range of the state variables • si: changing where the car starts...Aamodt and Enric Plaza. Case-based reasoning: Foundational issues, methodological variations, and system approaches, 1994. Mazda Ahmadi, Matthew E

  2. Supporting students' learning in the domain of computer science

    Science.gov (United States)

    Gasparinatou, Alexandra; Grigoriadou, Maria

    2011-03-01

    Previous studies have shown that students with low knowledge understand and learn better from more cohesive texts, whereas high-knowledge students have been shown to learn better from texts of lower cohesion. This study examines whether high-knowledge readers in computer science benefit from a text of low cohesion. Undergraduate students (n = 65) read one of four versions of a text concerning Local Network Topologies, orthogonally varying local and global cohesion. Participants' comprehension was examined through free-recall measure, text-based, bridging-inference, elaborative-inference, problem-solving questions and a sorting task. The results indicated that high-knowledge readers benefited from the low-cohesion text. The interaction of text cohesion and knowledge was reliable for the sorting activity, for elaborative-inference and for problem-solving questions. Although high-knowledge readers performed better in text-based and in bridging-inference questions with the low-cohesion text, the interaction of text cohesion and knowledge was not reliable. The results suggest a more complex view of when and for whom textual cohesion affects comprehension and consequently learning in computer science.

  3. Prediction of Cancer Proteins by Integrating Protein Interaction, Domain Frequency, and Domain Interaction Data Using Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Chien-Hung Huang

    2015-01-01

    Full Text Available Many proteins are known to be associated with cancer diseases. It is quite often that their precise functional role in disease pathogenesis remains unclear. A strategy to gain a better understanding of the function of these proteins is to make use of a combination of different aspects of proteomics data types. In this study, we extended Aragues’s method by employing the protein-protein interaction (PPI data, domain-domain interaction (DDI data, weighted domain frequency score (DFS, and cancer linker degree (CLD data to predict cancer proteins. Performances were benchmarked based on three kinds of experiments as follows: (I using individual algorithm, (II combining algorithms, and (III combining the same classification types of algorithms. When compared with Aragues’s method, our proposed methods, that is, machine learning algorithm and voting with the majority, are significantly superior in all seven performance measures. We demonstrated the accuracy of the proposed method on two independent datasets. The best algorithm can achieve a hit ratio of 89.4% and 72.8% for lung cancer dataset and lung cancer microarray study, respectively. It is anticipated that the current research could help understand disease mechanisms and diagnosis.

  4. Stability with respect to domain of the low Mach number limit of compressible viscous fluids

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Karper, T.; Kreml, Ondřej; Stebel, Jan

    2013-01-01

    Roč. 23, č. 13 (2013), s. 2465-2493 ISSN 0218-2025 R&D Projects: GA ČR GA201/09/0917 Institutional research plan: CEZ:AV0Z10190503 Keywords : incompressible limit * domain dependence * Navier-Stokes system Subject RIV: BA - General Mathematics Impact factor: 2.351, year: 2013 http://www.worldscientific.com/doi/abs/10.1142/S0218202513500371

  5. On the low Mach number limit of compressible flows in exterior moving domains

    Czech Academy of Sciences Publication Activity Database

    Feireisl, Eduard; Kreml, Ondřej; Mácha, Václav; Nečasová, Šárka

    2016-01-01

    Roč. 16, č. 3 (2016), s. 705-722 ISSN 1424-3199 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes system * incompressible limit * moving domain Subject RIV: BA - General Mathematics Impact factor: 1.038, year: 2016 http://link.springer.com/article/10.1007%2Fs00028-016-0338-2

  6. Number comparison and number ordering as predictors of arithmetic performance in adults: Exploring the link between the two skills, and investigating the question of domain-specificity.

    Science.gov (United States)

    Morsanyi, Kinga; O'Mahony, Eileen; McCormack, Teresa

    2017-12-01

    Recent evidence has highlighted the important role that number-ordering skills play in arithmetic abilities, both in children and adults. In the current study, we demonstrated that number comparison and ordering skills were both significantly related to arithmetic performance in adults, and the effect size was greater in the case of ordering skills. Additionally, we found that the effect of number comparison skills on arithmetic performance was mediated by number-ordering skills. Moreover, performance on comparison and ordering tasks involving the months of the year was also strongly correlated with arithmetic skills, and participants displayed similar (canonical or reverse) distance effects on the comparison and ordering tasks involving months as when the tasks included numbers. This suggests that the processes responsible for the link between comparison and ordering skills and arithmetic performance are not specific to the domain of numbers. Finally, a factor analysis indicated that performance on comparison and ordering tasks loaded on a factor that included performance on a number line task and self-reported spatial thinking styles. These results substantially extend previous research on the role of order processing abilities in mental arithmetic.

  7. THE DOMAINS FOR THE MULTI-CRITERIA DECISIONS ABOUT E-LEARNING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Murat Pasa UYSAL

    2012-04-01

    Full Text Available Developments in computer and information technologies continue to give opportunities for designing advanced E-learning systems while entailing objective and technical evaluation methodologies. Design and development of E-learning systems require time-consuming and labor-intensive processes; therefore any decision about these systems and their analysis needs systematic and structured guidance to lead to better decisions. Multi-Criteria Decision Analysis (MCDA techniques are applicable in instructional technology-related research areas as well as in other academic disciplines. In this study, a conceptual domain model and a decision activity framework is proposed for E-learning systems. Instructional, technological, and administrative decision domains are included in this model. Finally, an illustrative example is given to show that AHP is an effective MCDA method for E-learning-related decisions.

  8. Cross-Domain Statistical-Sequential Dependencies Are Difficult To Learn

    Directory of Open Access Journals (Sweden)

    Anne McClure Walk

    2016-02-01

    Full Text Available Recent studies have demonstrated participants’ ability to learn cross-modal associations during statistical learning tasks. However, these studies are all similar in that the cross-modal associations to be learned occur simultaneously, rather than sequentially. In addition, the majority of these studies focused on learning across sensory modalities but not across perceptual categories. To test both cross-modal and cross-categorical learning of sequential dependencies, we used an artificial grammar learning task consisting of a serial stream of auditory and/or visual stimuli containing both within- and cross-domain dependencies. Experiment 1 examined within-modal and cross-modal learning across two sensory modalities (audition and vision. Experiment 2 investigated within-categorical and cross-categorical learning across two perceptual categories within the same sensory modality (e.g. shape and color; tones and non-words. Our results indicated that individuals demonstrated learning of the within-modal and within-categorical but not the cross-modal or cross-categorical dependencies. These results stand in contrast to the previous demonstrations of cross-modal statistical learning, and highlight the presence of modality constraints that limit the effectiveness of learning in a multimodal environment.

  9. Information Pre-Processing using Domain Meta-Ontology and Rule Learning System

    Science.gov (United States)

    Ranganathan, Girish R.; Biletskiy, Yevgen

    Around the globe, extraordinary amounts of documents are being created by Enterprises and by users outside these Enterprises. The documents created in the Enterprises constitute the main focus of the present chapter. These documents are used to perform numerous amounts of machine processing. While using thesedocuments for machine processing, lack of semantics of the information in these documents may cause misinterpretation of the information, thereby inhibiting the productiveness of computer assisted analytical work. Hence, it would be profitable to the Enterprises if they use well defined domain ontologies which will serve as rich source(s) of semantics for the information in the documents. These domain ontologies can be created manually, semi-automatically or fully automatically. The focus of this chapter is to propose an intermediate solution which will enable relatively easy creation of these domain ontologies. The process of extracting and capturing domain ontologies from these voluminous documents requires extensive involvement of domain experts and application of methods of ontology learning that are substantially labor intensive; therefore, some intermediate solutions which would assist in capturing domain ontologies must be developed. This chapter proposes a solution in this direction which involves building a meta-ontology that will serve as an intermediate information source for the main domain ontology. This chapter proposes a solution in this direction which involves building a meta-ontology as a rapid approach in conceptualizing a domain of interest from huge amount of source documents. This meta-ontology can be populated by ontological concepts, attributes and relations from documents, and then refined in order to form better domain ontology either through automatic ontology learning methods or some other relevant ontology building approach.

  10. Engaging Students to Learn through the Affective Domain: A New Framework for Teaching in the Geosciences

    Science.gov (United States)

    van der Hoeven Kraft, Katrien J.; Srogi, LeeAnn; Husman, Jenefer; Semken, Steven; Fuhrman, Miriam

    2011-01-01

    To motivate student learning, the affective domain--emotion, attitude, and motivation--must be engaged. We propose a model that is specific to the geosciences with theoretical components of motivation and emotion from the field of educational psychology, and a term we are proposing, "connections with Earth" based on research in the…

  11. Problems of Implementing SCORM in an Enterprise Distance Learning Architecture: SCORM Incompatibility across Multiple Web Domains.

    Science.gov (United States)

    Engelbrecht, Jeffrey C.

    2003-01-01

    Delivering content to distant users located in dispersed networks, separated by firewalls and different web domains requires extensive customization and integration. This article outlines some of the problems of implementing the Sharable Content Object Reference Model (SCORM) in the Marine Corps' Distance Learning System (MarineNet) and extends…

  12. Pedagogically-Driven Ontology Network for Conceptualizing the e-Learning Assessment Domain

    Science.gov (United States)

    Romero, Lucila; North, Matthew; Gutiérrez, Milagros; Caliusco, Laura

    2015-01-01

    The use of ontologies as tools to guide the generation, organization and personalization of e-learning content, including e-assessment, has drawn attention of the researchers because ontologies can represent the knowledge of a given domain and researchers use the ontology to reason about it. Although the use of these semantic technologies tends to…

  13. Impact of corpus domain for sentiment classification: An evaluation study using supervised machine learning techniques

    Science.gov (United States)

    Karsi, Redouane; Zaim, Mounia; El Alami, Jamila

    2017-07-01

    Thanks to the development of the internet, a large community now has the possibility to communicate and express its opinions and preferences through multiple media such as blogs, forums, social networks and e-commerce sites. Today, it becomes clearer that opinions published on the web are a very valuable source for decision-making, so a rapidly growing field of research called “sentiment analysis” is born to address the problem of automatically determining the polarity (Positive, negative, neutral,…) of textual opinions. People expressing themselves in a particular domain often use specific domain language expressions, thus, building a classifier, which performs well in different domains is a challenging problem. The purpose of this paper is to evaluate the impact of domain for sentiment classification when using machine learning techniques. In our study three popular machine learning techniques: Support Vector Machines (SVM), Naive Bayes and K nearest neighbors(KNN) were applied on datasets collected from different domains. Experimental results show that Support Vector Machines outperforms other classifiers in all domains, since it achieved at least 74.75% accuracy with a standard deviation of 4,08.

  14. An Efficient Semi-supervised Learning Approach to Predict SH2 Domain Mediated Interactions.

    Science.gov (United States)

    Kundu, Kousik; Backofen, Rolf

    2017-01-01

    Src homology 2 (SH2) domain is an important subclass of modular protein domains that plays an indispensable role in several biological processes in eukaryotes. SH2 domains specifically bind to the phosphotyrosine residue of their binding peptides to facilitate various molecular functions. For determining the subtle binding specificities of SH2 domains, it is very important to understand the intriguing mechanisms by which these domains recognize their target peptides in a complex cellular environment. There are several attempts have been made to predict SH2-peptide interactions using high-throughput data. However, these high-throughput data are often affected by a low signal to noise ratio. Furthermore, the prediction methods have several additional shortcomings, such as linearity problem, high computational complexity, etc. Thus, computational identification of SH2-peptide interactions using high-throughput data remains challenging. Here, we propose a machine learning approach based on an efficient semi-supervised learning technique for the prediction of 51 SH2 domain mediated interactions in the human proteome. In our study, we have successfully employed several strategies to tackle the major problems in computational identification of SH2-peptide interactions.

  15. Domain-general mediators of the relation between kindergarten number sense and first-grade mathematics achievement.

    Science.gov (United States)

    Hassinger-Das, Brenna; Jordan, Nancy C; Glutting, Joseph; Irwin, Casey; Dyson, Nancy

    2014-02-01

    Domain-general skills that mediate the relation between kindergarten number sense and first-grade mathematics skills were investigated. Participants were 107 children who displayed low number sense in the fall of kindergarten. Controlling for background variables, multiple regression analyses showed that both attention problems and executive functioning were unique predictors of mathematics outcomes. Attention problems were more important for predicting first-grade calculation performance, whereas executive functioning was more important for predicting first-grade performance on applied problems. Moreover, both executive functioning and attention problems were unique partial mediators of the relationship between kindergarten and first-grade mathematics skills. The results provide empirical support for developing interventions that target executive functioning and attention problems in addition to instruction in number skills for kindergartners with initial low number sense. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Optimizing the number of steps in learning tasks for complex skills.

    Science.gov (United States)

    Nadolski, Rob J; Kirschner, Paul A; van Merriënboer, Jeroen J G

    2005-06-01

    Carrying out whole tasks is often too difficult for novice learners attempting to acquire complex skills. The common solution is to split up the tasks into a number of smaller steps. The number of steps must be optimized for efficient and effective learning. The aim of the study is to investigate the relation between the number of steps provided to learners and the quality of their learning of complex skills. It is hypothesized that students receiving an optimized number of steps will learn better than those receiving either the whole task in only one step or those receiving a large number of steps. Participants were 35 sophomore law students studying at Dutch universities, mean age=22.8 years (SD=3.5), 63% were female. Participants were randomly assigned to 1 of 3 computer-delivered versions of a multimedia programme on how to prepare and carry out a law plea. The versions differed only in the number of learning steps provided. Videotaped plea-performance results were determined, various related learning measures were acquired and all computer actions were logged and analyzed. Participants exposed to an intermediate (i.e. optimized) number of steps outperformed all others on the compulsory learning task. No differences in performance on a transfer task were found. A high number of steps proved to be less efficient for carrying out the learning task. An intermediate number of steps is the most effective, proving that the number of steps can be optimized for improving learning.

  17. The BAR Domain Protein PICK1 Controls Vesicle Number and Size in Adrenal Chromaffin Cells

    DEFF Research Database (Denmark)

    da Silva Pinheiro, Paulo César; Jansen, Anna M; de Wit, Heidi

    2014-01-01

    , a marker for immature granules. In chromaffin cells isolated from a PICK1 knockout (KO) mouse the amount of exocytosis was reduced, while release kinetics and Ca(2+) sensitivity were unaffected. Vesicle-fusion events had a reduced frequency and released lower amounts of transmitter per vesicle (i...... in vesicle number and size, whereas the fusion competence of generated vesicles was unaffected by the absence of PICK1. Viral rescue experiments demonstrated that long-term re-expression of PICK1 is necessary to restore normal vesicular content and secretion, while short-term overexpression is ineffective...

  18. Research Into the Role of Students’ Affective Domain While Learning Geology in Field Environments

    Science.gov (United States)

    Elkins, J.

    2009-12-01

    Existing research programs in field-based geocognition include assessment of cognitive, psychomotor, and affective domains. Assessment of the affective domain often involves the use of instruments and techniques uncommon to the geosciences. Research regarding the affective domain also commonly results in the collection and production of qualitative data that is difficult for geoscientists to analyze due to their lack of familiarity with these data sets. However, important information about students’ affective responses to learning in field environments can be obtained by using these methods. My research program focuses on data produced by students’ affective responses to field-based learning environments, primarily among students at the introductory level. For this research I developed a Likert-scale Novelty Space Survey, which presents student ‘novelty space’ (Orion and Hofstien, 1993) as a polygon; the larger the polygons, the more novelty students are experiencing. The axises for these polygons correspond to novelty domains involving geographic, social, cognitive, and psychological factors. In addition to the Novelty Space Survey, data which I have collected/generated includes focus group interviews on the role of recreational experiences in geology field programs. I have also collected data concerning the motivating factors that cause students to take photographs on field trips. The results of these studies give insight to the emotional responses students have to learning in the field and are important considerations for practitioners of teaching in these environments. Collaborative investigations among research programs that cross university departments and include multiple institutions is critical at this point in development of geocognition as a field due to unfamiliarity with cognitive science methodology by practitioners teaching geosciences and the dynamic nature of field work by cognitive scientists. However, combining the efforts of cognitive

  19. Birth of scale-free molecular networks and the number of distinct DNA and protein domains per genome.

    Science.gov (United States)

    Rzhetsky, A; Gomez, S M

    2001-10-01

    Current growth in the field of genomics has provided a number of exciting approaches to the modeling of evolutionary mechanisms within the genome. Separately, dynamical and statistical analyses of networks such as the World Wide Web and the social interactions existing between humans have shown that these networks can exhibit common fractal properties-including the property of being scale-free. This work attempts to bridge these two fields and demonstrate that the fractal properties of molecular networks are linked to the fractal properties of their underlying genomes. We suggest a stochastic model capable of describing the evolutionary growth of metabolic or signal-transduction networks. This model generates networks that share important statistical properties (so-called scale-free behavior) with real molecular networks. In particular, the frequency of vertices connected to exactly k other vertices follows a power-law distribution. The shape of this distribution remains invariant to changes in network scale: a small subgraph has the same distribution as the complete graph from which it is derived. Furthermore, the model correctly predicts that the frequencies of distinct DNA and protein domains also follow a power-law distribution. Finally, the model leads to a simple equation linking the total number of different DNA and protein domains in a genome with both the total number of genes and the overall network topology. MatLab (MathWorks, Inc.) programs described in this manuscript are available on request from the authors. ar345@columbia.edu.

  20. TEXPLORE temporal difference reinforcement learning for robots and time-constrained domains

    CERN Document Server

    Hester, Todd

    2013-01-01

    This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. Robots have the potential to solve many problems in society, because of their ability to work in dangerous places doing necessary jobs that no one wants or is able to do. One barrier to their widespread deployment is that they are mainly limited to tasks where it is possible to hand-program behaviors for every situation that may be encountered. For robots to meet their potential, they need methods that enable them to learn and adapt to novel situations that they were not programmed for. Reinforcement learning (RL) is a paradigm for learning sequential decision making processes and could solve the problems of learning and adaptation on robots. This book identifies four key challenges that must be addressed for an RL algorithm to be practical for robotic control tasks. These RL for Robotics Challenges are: 1) it must learn in very few samples; 2) it must learn in domains with continuou...

  1. SOCAP: Lessons learned in applying SIPE-2 to the military operations crisis action planning domain

    Science.gov (United States)

    Desimone, Roberto

    1992-01-01

    This report describes work funded under the DARPA Planning and Scheduling Initiative that led to the development of SOCAP (System for Operations Crisis Action Planning). In particular, it describes lessons learned in applying SIPE-2, the underlying AI planning technology within SOCAP, to the domain of military operations deliberate and crisis action planning. SOCAP was demonstrated at the U.S. Central Command and at the Pentagon in early 1992. A more detailed report about the lessons learned is currently being prepared. This report was presented during one of the panel discussions on 'The Relevance of Scheduling to AI Planning Systems.'

  2. Conceptualizing the e-Learning Assessment Domain using an Ontology Network

    Directory of Open Access Journals (Sweden)

    Lucía Romero

    2012-09-01

    Full Text Available During the last year, approaches that use ontologies, the backbone of the Semantic Web technologies, for different purposes in the assessment domain of e-Learning have emerged. One of these purposes is the use of ontologies as a mean of providing a structure to guide the automated design of assessments. The most of the approaches that deal with this problem have proposed individual ontologies that model only a part of the assessment domain. The main contribution of this paper is an ontology network, called AONet, that conceptualizes the e-assessment domain with the aim of supporting the semi-automatic generation of it. The main advantage of this network is that it is enriched with rules for considering not only technical aspects of an assessment but also pedagogic

  3. Evaluation of magnetic helicity density in the wave number domain using multi-point measurements in space

    Directory of Open Access Journals (Sweden)

    Y. Narita

    2009-10-01

    Full Text Available We develop an estimator for the magnetic helicity density, a measure of the spiral geometry of magnetic field lines, in the wave number domain as a wave diagnostic tool based on multi-point measurements in space. The estimator is numerically tested with a synthetic data set and then applied to an observation of magnetic field fluctuations in the Earth foreshock region provided by the four-point measurements of the Cluster spacecraft. The energy and the magnetic helicity density are determined in the frequency and the wave number domain, which allows us to identify the wave properties in the plasma rest frame correcting for the Doppler shift. In the analyzed time interval, dominant wave components have parallel propagation to the mean magnetic field, away from the shock at about Alfvén speed and a left-hand spatial rotation sense of helicity with respect to the propagation direction, which means a right-hand temporal rotation sense of polarization. These wave properties are well explained by the right-hand resonant beam instability as the driving mechanism in the foreshock. Cluster observations allow therefore detailed comparisons with various theories of waves and instabilities.

  4. GeoSegmenter: A statistically learned Chinese word segmenter for the geoscience domain

    Science.gov (United States)

    Huang, Lan; Du, Youfu; Chen, Gongyang

    2015-03-01

    Unlike English, the Chinese language has no space between words. Segmenting texts into words, known as the Chinese word segmentation (CWS) problem, thus becomes a fundamental issue for processing Chinese documents and the first step in many text mining applications, including information retrieval, machine translation and knowledge acquisition. However, for the geoscience subject domain, the CWS problem remains unsolved. Although a generic segmenter can be applied to process geoscience documents, they lack the domain specific knowledge and consequently their segmentation accuracy drops dramatically. This motivated us to develop a segmenter specifically for the geoscience subject domain: the GeoSegmenter. We first proposed a generic two-step framework for domain specific CWS. Following this framework, we built GeoSegmenter using conditional random fields, a principled statistical framework for sequence learning. Specifically, GeoSegmenter first identifies general terms by using a generic baseline segmenter. Then it recognises geoscience terms by learning and applying a model that can transform the initial segmentation into the goal segmentation. Empirical experimental results on geoscience documents and benchmark datasets showed that GeoSegmenter could effectively recognise both geoscience terms and general terms.

  5. Online Feature Transformation Learning for Cross-Domain Object Category Recognition.

    Science.gov (United States)

    Zhang, Xuesong; Zhuang, Yan; Wang, Wei; Pedrycz, Witold

    2017-06-09

    In this paper, we introduce a new research problem termed online feature transformation learning in the context of multiclass object category recognition. The learning of a feature transformation is viewed as learning a global similarity metric function in an online manner. We first consider the problem of online learning a feature transformation matrix expressed in the original feature space and propose an online passive aggressive feature transformation algorithm. Then these original features are mapped to kernel space and an online single kernel feature transformation (OSKFT) algorithm is developed to learn a nonlinear feature transformation. Based on the OSKFT and the existing Hedge algorithm, a novel online multiple kernel feature transformation algorithm is also proposed, which can further improve the performance of online feature transformation learning in large-scale application. The classifier is trained with k nearest neighbor algorithm together with the learned similarity metric function. Finally, we experimentally examined the effect of setting different parameter values in the proposed algorithms and evaluate the model performance on several multiclass object recognition data sets. The experimental results demonstrate the validity and good performance of our methods on cross-domain and multiclass object recognition application.

  6. Turbulent flows at very large Reynolds numbers: new lessons learned

    International Nuclear Information System (INIS)

    Barenblatt, G I; Prostokishin, V M; Chorin, A J

    2014-01-01

    The universal (Reynolds-number-independent) von Kármán–Prandtl logarithmic law for the velocity distribution in the basic intermediate region of a turbulent shear flow is generally considered to be one of the fundamental laws of engineering science and is taught universally in fluid mechanics and hydraulics courses. We show here that this law is based on an assumption that cannot be considered to be correct and which does not correspond to experiment. Nor is Landau's derivation of this law quite correct. In this paper, an alternative scaling law explicitly incorporating the influence of the Reynolds number is discussed, as is the corresponding drag law. The study uses the concept of intermediate asymptotics and that of incomplete similarity in the similarity parameter. Yakov Borisovich Zeldovich played an outstanding role in the development of these ideas. This work is a tribute to his glowing memory. (100th anniversary of the birth of ya b zeldovich)

  7. Computational domain length and Reynolds number effects on large-scale coherent motions in turbulent pipe flow

    Science.gov (United States)

    Feldmann, Daniel; Bauer, Christian; Wagner, Claus

    2018-03-01

    We present results from direct numerical simulations (DNS) of turbulent pipe flow at shear Reynolds numbers up to Reτ = 1500 using different computational domains with lengths up to ?. The objectives are to analyse the effect of the finite size of the periodic pipe domain on large flow structures in dependency of Reτ and to assess a minimum ? required for relevant turbulent scales to be captured and a minimum Reτ for very large-scale motions (VLSM) to be analysed. Analysing one-point statistics revealed that the mean velocity profile is invariant for ?. The wall-normal location at which deviations occur in shorter domains changes strongly with increasing Reτ from the near-wall region to the outer layer, where VLSM are believed to live. The root mean square velocity profiles exhibit domain length dependencies for pipes shorter than 14R and 7R depending on Reτ. For all Reτ, the higher-order statistical moments show only weak dependencies and only for the shortest domain considered here. However, the analysis of one- and two-dimensional pre-multiplied energy spectra revealed that even for larger ?, not all physically relevant scales are fully captured, even though the aforementioned statistics are in good agreement with the literature. We found ? to be sufficiently large to capture VLSM-relevant turbulent scales in the considered range of Reτ based on our definition of an integral energy threshold of 10%. The requirement to capture at least 1/10 of the global maximum energy level is justified by a 14% increase of the streamwise turbulence intensity in the outer region between Reτ = 720 and 1500, which can be related to VLSM-relevant length scales. Based on this scaling anomaly, we found Reτ⪆1500 to be a necessary minimum requirement to investigate VLSM-related effects in pipe flow, even though the streamwise energy spectra does not yet indicate sufficient scale separation between the most energetic and the very long motions.

  8. Enhancing visuospatial performance through video game training to increase learning in visuospatial science domains.

    Science.gov (United States)

    Sanchez, Christopher A

    2012-02-01

    Although previous research has demonstrated that performance on visuospatial assessments can be enhanced through relevant experience, an unaddressed question is whether such experience also produces a similar increase in target domains (such as science learning) where visuospatial abilities are directly relevant for performance. In the present study, participants completed either spatial or nonspatial training via interaction with video games and were then asked to read and learn about the geologic topic of plate tectonics. Results replicate the benefit of playing appropriate video games in enhancing visuospatial performance and demonstrate that this facilitation also manifests itself in learning science topics that are visuospatial in nature. This novel result suggests that visuospatial training not only can impact performance on measures of spatial functioning, but also can affect performance in content areas in which these abilities are utilized.

  9. When increasing distraction helps learning: Distractor number and content interact in their effects on memory.

    Science.gov (United States)

    Nussenbaum, Kate; Amso, Dima; Markant, Julie

    2017-11-01

    Previous work has demonstrated that increasing the number of distractors in a search array can reduce interference from distractor content during target processing. However, it is unclear how this reduced interference influences learning of target information. Here, we investigated how varying the amount and content of distraction present in a learning environment affects visual search and subsequent memory for target items. In two experiments, we demonstrate that the number and content of competing distractors interact in their influence on target selection and memory. Specifically, while increasing the number of distractors present in a search array made target detection more effortful, it did not impair learning and memory for target content. Instead, when the distractors contained category information that conflicted with the target, increasing the number of distractors from one to three actually benefitted learning and memory. These data suggest that increasing numbers of distractors may reduce interference from conflicting conceptual information during encoding.

  10. Investigating the Variability in Cumulus Cloud Number as a Function of Subdomain Size and Organization using large-domain LES

    Science.gov (United States)

    Neggers, R.

    2017-12-01

    Recent advances in supercomputing have introduced a "grey zone" in the representation of cumulus convection in general circulation models, in which this process is partially resolved. Cumulus parameterizations need to be made scale-aware and scale-adaptive to be able to conceptually and practically deal with this situation. A potential way forward are schemes formulated in terms of discretized Cloud Size Densities, or CSDs. Advantages include i) the introduction of scale-awareness at the foundation of the scheme, and ii) the possibility to apply size-filtering of parameterized convective transport and clouds. The CSD is a new variable that requires closure; this concerns its shape, its range, but also variability in cloud number that can appear due to i) subsampling effects and ii) organization in a cloud field. The goal of this study is to gain insight by means of sub-domain analyses of various large-domain LES realizations of cumulus cloud populations. For a series of three-dimensional snapshots, each with a different degree of organization, the cloud size distribution is calculated in all subdomains, for a range of subdomain sizes. The standard deviation of the number of clouds of a certain size is found to decrease with the subdomain size, following a powerlaw scaling corresponding to an inverse-linear dependence. Cloud number variability also increases with cloud size; this reflects that subsampling affects the largest clouds first, due to their typically larger neighbor spacing. Rewriting this dependence in terms of two dimensionless groups, by dividing by cloud number and cloud size respectively, yields a data collapse. Organization in the cloud field is found to act on top of this primary dependence, by enhancing the cloud number variability at the smaller sizes. This behavior reflects that small clouds start to "live" on top of larger structures such as cold pools, favoring or inhibiting their formation (as illustrated by the attached figure of cloud mask

  11. Children's learning of number words in an indigenous farming-foraging group.

    Science.gov (United States)

    Piantadosi, Steven T; Jara-Ettinger, Julian; Gibson, Edward

    2014-07-01

    We show that children in the Tsimane', a farming-foraging group in the Bolivian rain-forest, learn number words along a similar developmental trajectory to children from industrialized countries. Tsimane' children successively acquire the first three or four number words before fully learning how counting works. However, their learning is substantially delayed relative to children from the United States, Russia, and Japan. The presence of a similar developmental trajectory likely indicates that the incremental stages of numerical knowledge - but not their timing - reflect a fundamental property of number concept acquisition which is relatively independent of language, culture, age, and early education. © 2014 John Wiley & Sons Ltd.

  12. Taking It to the Classroom: Number Board Games as a Small Group Learning Activity

    Science.gov (United States)

    Ramani, Geetha B.; Siegler, Robert S.; Hitti, Aline

    2012-01-01

    We examined whether a theoretically based number board game could be translated into a practical classroom activity that improves Head Start children's numerical knowledge. Playing the number board game as a small group learning activity promoted low-income children's number line estimation, magnitude comparison, numeral identification, and…

  13. Socioeconomic variation, number competence, and mathematics learning difficulties in young children.

    Science.gov (United States)

    Jordan, Nancy C; Levine, Susan C

    2009-01-01

    As a group, children from disadvantaged, low-income families perform substantially worse in mathematics than their counterparts from higher-income families. Minority children are disproportionately represented in low-income populations, resulting in significant racial and social-class disparities in mathematics learning linked to diminished learning opportunities. The consequences of poor mathematics achievement are serious for daily functioning and for career advancement. This article provides an overview of children's mathematics difficulties in relation to socioeconomic status (SES). We review foundations for early mathematics learning and key characteristics of mathematics learning difficulties. A particular focus is the delays or deficiencies in number competencies exhibited by low-income children entering school. Weaknesses in number competence can be reliably identified in early childhood, and there is good evidence that most children have the capacity to develop number competence that lays the foundation for later learning.

  14. Cross-domain and multi-task transfer learning of deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis

    Science.gov (United States)

    Samala, Ravi K.; Chan, Heang-Ping; Hadjiiski, Lubomir; Helvie, Mark A.; Richter, Caleb; Cha, Kenny

    2018-02-01

    We propose a cross-domain, multi-task transfer learning framework to transfer knowledge learned from non-medical images by a deep convolutional neural network (DCNN) to medical image recognition task while improving the generalization by multi-task learning of auxiliary tasks. A first stage cross-domain transfer learning was initiated from ImageNet trained DCNN to mammography trained DCNN. 19,632 regions-of-interest (ROI) from 2,454 mass lesions were collected from two imaging modalities: digitized-screen film mammography (SFM) and full-field digital mammography (DM), and split into training and test sets. In the multi-task transfer learning, the DCNN learned the mass classification task simultaneously from the training set of SFM and DM. The best transfer network for mammography was selected from three transfer networks with different number of convolutional layers frozen. The performance of single-task and multitask transfer learning on an independent SFM test set in terms of the area under the receiver operating characteristic curve (AUC) was 0.78+/-0.02 and 0.82+/-0.02, respectively. In the second stage cross-domain transfer learning, a set of 12,680 ROIs from 317 mass lesions on DBT were split into validation and independent test sets. We first studied the data requirements for the first stage mammography trained DCNN by varying the mammography training data from 1% to 100% and evaluated its learning on the DBT validation set in inference mode. We found that the entire available mammography set provided the best generalization. The DBT validation set was then used to train only the last four fully connected layers, resulting in an AUC of 0.90+/-0.04 on the independent DBT test set.

  15. Thinking Beyond Numbers: Learning Numeracy for the Future Workplace. Support Document

    Science.gov (United States)

    Marr, Beth; Hagston, Jan

    2007-01-01

    The use, learning and transfer of workplace numeracy skills, as well as current understandings of the term numeracy, are examined in this study. It also highlights the importance of numeracy as an essential workplace skill. "Thinking Beyond Numbers: Learning Numeracy for the Future Workplace" challenges the training system and training…

  16. Teachers' Obstacles in Implementing Numbered Head Together in Social Science Learning

    Science.gov (United States)

    Widyaningtyas, Harini; Winarni, Retno; Murwaningsih, Tri

    2018-01-01

    This study is aimed at describing teachers' obstacles in applying Numbered Head Together learning model in social science learning. The type of research is qualitative descriptive. The subject of the research is the third-grade teacher of elementary school in Sukoharjo Sub-district. The findings of the research were analyzed using interactive…

  17. The effectivenes of science domain-based science learning integrated with local potency

    Science.gov (United States)

    Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu

    2017-08-01

    This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.

  18. Pornographic image recognition and filtering using incremental learning in compressed domain

    Science.gov (United States)

    Zhang, Jing; Wang, Chao; Zhuo, Li; Geng, Wenhao

    2015-11-01

    With the rapid development and popularity of the network, the openness, anonymity, and interactivity of networks have led to the spread and proliferation of pornographic images on the Internet, which have done great harm to adolescents' physical and mental health. With the establishment of image compression standards, pornographic images are mainly stored with compressed formats. Therefore, how to efficiently filter pornographic images is one of the challenging issues for information security. A pornographic image recognition and filtering method in the compressed domain is proposed by using incremental learning, which includes the following steps: (1) low-resolution (LR) images are first reconstructed from the compressed stream of pornographic images, (2) visual words are created from the LR image to represent the pornographic image, and (3) incremental learning is adopted to continuously adjust the classification rules to recognize the new pornographic image samples after the covering algorithm is utilized to train and recognize the visual words in order to build the initial classification model of pornographic images. The experimental results show that the proposed pornographic image recognition method using incremental learning has a higher recognition rate as well as costing less recognition time in the compressed domain.

  19. The number of genes encoding repeat domain-containing proteins positively correlates with genome size in amoebal giant viruses

    Science.gov (United States)

    Shukla, Avi; Chatterjee, Anirvan

    2018-01-01

    Abstract Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different genomic regions of AVs exhibit distinct genealogies. Although the vertically transferred core genes and their functions are universally conserved across the nucleocytoplasmic large DNA virus (NCLDV) families and are essential for their replication, the horizontally acquired genes are variable across families and are lineage-specific. When compared with other giant virus families, we observed a near–linear increase in the number of genes encoding repeat domain-containing proteins (RDCPs) with the increase in the genome size of AVs. From what is known about the functions of RDCPs in bacteria and eukaryotes and their prevalence in the AV genomes, we envisage important roles for RDCPs in the life cycle of AVs, their genome expansion, and plasticity. This observation also supports the evolution of AVs from a smaller viral ancestor by the acquisition of diverse gene families from the environment including RDCPs that might have helped in host adaption. PMID:29308275

  20. Machine learning & artificial intelligence in the quantum domain: a review of recent progress.

    Science.gov (United States)

    Dunjko, Vedran; Briegel, Hans J

    2018-03-05

    Quantum information technologies, on the one hand, and intelligent learning systems, on the other, are both emergent technologies that are likely to have a transformative impact on our society in the future. The respective underlying fields of basic research-quantum information versus machine learning (ML) and artificial intelligence (AI)-have their own specific questions and challenges, which have hitherto been investigated largely independently. However, in a growing body of recent work, researchers have been probing the question of the extent to which these fields can indeed learn and benefit from each other. Quantum ML explores the interaction between quantum computing and ML, investigating how results and techniques from one field can be used to solve the problems of the other. Recently we have witnessed significant breakthroughs in both directions of influence. For instance, quantum computing is finding a vital application in providing speed-ups for ML problems, critical in our 'big data' world. Conversely, ML already permeates many cutting-edge technologies and may become instrumental in advanced quantum technologies. Aside from quantum speed-up in data analysis, or classical ML optimization used in quantum experiments, quantum enhancements have also been (theoretically) demonstrated for interactive learning tasks, highlighting the potential of quantum-enhanced learning agents. Finally, works exploring the use of AI for the very design of quantum experiments and for performing parts of genuine research autonomously, have reported their first successes. Beyond the topics of mutual enhancement-exploring what ML/AI can do for quantum physics and vice versa-researchers have also broached the fundamental issue of quantum generalizations of learning and AI concepts. This deals with questions of the very meaning of learning and intelligence in a world that is fully described by quantum mechanics. In this review, we describe the main ideas, recent developments and

  1. Ecological information systems and support of learning: Coupling work domain information to user characteristics

    DEFF Research Database (Denmark)

    Pejtersen, Annelise Mark; Rasmussen, Jens

    1997-01-01

    This chapter presents a framework for design of work support systems for a modern, dynamic work environment in which stable work procedures are replaced with discretionary tasks and the request of continuous learning and adaptation to change. In this situation, classic task analysis is less effec...... in a dynamic environment is therefore a human-work interface directed towards a transparent presentation of the action possibilities and functional/intentional boundaries and constraints of the work domain relevant for typical task situations and user categories....

  2. Estimation of the applicability domain of kernel-based machine learning models for virtual screening

    Directory of Open Access Journals (Sweden)

    Fechner Nikolas

    2010-03-01

    Full Text Available Abstract Background The virtual screening of large compound databases is an important application of structural-activity relationship models. Due to the high structural diversity of these data sets, it is impossible for machine learning based QSAR models, which rely on a specific training set, to give reliable results for all compounds. Thus, it is important to consider the subset of the chemical space in which the model is applicable. The approaches to this problem that have been published so far mostly use vectorial descriptor representations to define this domain of applicability of the model. Unfortunately, these cannot be extended easily to structured kernel-based machine learning models. For this reason, we propose three approaches to estimate the domain of applicability of a kernel-based QSAR model. Results We evaluated three kernel-based applicability domain estimations using three different structured kernels on three virtual screening tasks. Each experiment consisted of the training of a kernel-based QSAR model using support vector regression and the ranking of a disjoint screening data set according to the predicted activity. For each prediction, the applicability of the model for the respective compound is quantitatively described using a score obtained by an applicability domain formulation. The suitability of the applicability domain estimation is evaluated by comparing the model performance on the subsets of the screening data sets obtained by different thresholds for the applicability scores. This comparison indicates that it is possible to separate the part of the chemspace, in which the model gives reliable predictions, from the part consisting of structures too dissimilar to the training set to apply the model successfully. A closer inspection reveals that the virtual screening performance of the model is considerably improved if half of the molecules, those with the lowest applicability scores, are omitted from the screening

  3. Estimation of the applicability domain of kernel-based machine learning models for virtual screening.

    Science.gov (United States)

    Fechner, Nikolas; Jahn, Andreas; Hinselmann, Georg; Zell, Andreas

    2010-03-11

    The virtual screening of large compound databases is an important application of structural-activity relationship models. Due to the high structural diversity of these data sets, it is impossible for machine learning based QSAR models, which rely on a specific training set, to give reliable results for all compounds. Thus, it is important to consider the subset of the chemical space in which the model is applicable. The approaches to this problem that have been published so far mostly use vectorial descriptor representations to define this domain of applicability of the model. Unfortunately, these cannot be extended easily to structured kernel-based machine learning models. For this reason, we propose three approaches to estimate the domain of applicability of a kernel-based QSAR model. We evaluated three kernel-based applicability domain estimations using three different structured kernels on three virtual screening tasks. Each experiment consisted of the training of a kernel-based QSAR model using support vector regression and the ranking of a disjoint screening data set according to the predicted activity. For each prediction, the applicability of the model for the respective compound is quantitatively described using a score obtained by an applicability domain formulation. The suitability of the applicability domain estimation is evaluated by comparing the model performance on the subsets of the screening data sets obtained by different thresholds for the applicability scores. This comparison indicates that it is possible to separate the part of the chemspace, in which the model gives reliable predictions, from the part consisting of structures too dissimilar to the training set to apply the model successfully. A closer inspection reveals that the virtual screening performance of the model is considerably improved if half of the molecules, those with the lowest applicability scores, are omitted from the screening. The proposed applicability domain formulations

  4. Discussion on Regression Methods Based on Ensemble Learning and Applicability Domains of Linear Submodels.

    Science.gov (United States)

    Kaneko, Hiromasa

    2018-02-26

    To develop a new ensemble learning method and construct highly predictive regression models in chemoinformatics and chemometrics, applicability domains (ADs) are introduced into the ensemble learning process of prediction. When estimating values of an objective variable using subregression models, only the submodels with ADs that cover a query sample, i.e., the sample is inside the model's AD, are used. By constructing submodels and changing a list of selected explanatory variables, the union of the submodels' ADs, which defines the overall AD, becomes large, and the prediction performance is enhanced for diverse compounds. By analyzing a quantitative structure-activity relationship data set and a quantitative structure-property relationship data set, it is confirmed that the ADs can be enlarged and the estimation performance of regression models is improved compared with traditional methods.

  5. LEARNING ONE-DIGIT DECIMAL NUMBERS BY MEASUREMENT AND GAME PREDICTING LENGTH

    Directory of Open Access Journals (Sweden)

    Puji Astuti

    2014-01-01

    Full Text Available This paper aims to describe how students develop understanding of one-digit decimals. To achieve the aim, Local Instruction Theory (LIT about the process of learning decimals and the means designed to support that learning are developed. Along with this idea, the framework of Realistic Mathematics Education (RME is proposed. Based on the aim, design research methodology is used. This paper discusses learning activities of three meetings from teaching experiment of the focus group students of the fourth grade elementary school in Surabaya: SDIT Al Ghilmani. The data indicated that the learning activities promoted the students’ understanding of one-digit decimal numbers.Keyword: measurement, decimal numbers, number line DOI: http://dx.doi.org/10.22342/jme.5.1.1447.35-46

  6. Optimizing the number of steps in learning tasks for complex skills.

    NARCIS (Netherlands)

    Nadolski, Rob; Kirschner, Paul A.; Van Merriënboer, Jeroen

    2007-01-01

    Background. Carrying out whole tasks is often too difficult for novice learners attempting to acquire complex skills. The common solution is to split up the tasks into a number of smaller steps. The number of steps must be optimised for efficient and effective learning. Aim. The aim of the study is

  7. Low Working Memory Capacity Impedes both Efficiency and Learning of Number Transcoding in Children

    Science.gov (United States)

    Camos, Valerie

    2008-01-01

    This study aimed to evaluate the impact of individual differences in working memory capacity on number transcoding. A recently proposed model, ADAPT (a developmental asemantic procedural transcoding model), accounts for the development of number transcoding from verbal form to Arabic form by two mechanisms: the learning of new production rules…

  8. Numerical Capacities as Domain-Specific Predictors beyond Early Mathematics Learning: A Longitudinal Study

    Science.gov (United States)

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3rd and 4th grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively “start-up” tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school. PMID:24255710

  9. Numerical capacities as domain-specific predictors beyond early mathematics learning: a longitudinal study.

    Science.gov (United States)

    Reigosa-Crespo, Vivian; González-Alemañy, Eduardo; León, Teresa; Torres, Rosario; Mosquera, Raysil; Valdés-Sosa, Mitchell

    2013-01-01

    The first aim of the present study was to investigate whether numerical effects (Numerical Distance Effect, Counting Effect and Subitizing Effect) are domain-specific predictors of mathematics development at the end of elementary school by exploring whether they explain additional variance of later mathematics fluency after controlling for the effects of general cognitive skills, focused on nonnumerical aspects. The second aim was to address the same issues but applied to achievement in mathematics curriculum that requires solutions to fluency in calculation. These analyses assess whether the relationship found for fluency are generalized to mathematics content beyond fluency in calculation. As a third aim, the domain specificity of the numerical effects was examined by analyzing whether they contribute to the development of reading skills, such as decoding fluency and reading comprehension, after controlling for general cognitive skills and phonological processing. Basic numerical capacities were evaluated in children of 3(rd) and 4(th) grades (n=49). Mathematics and reading achievements were assessed in these children one year later. Results showed that the size of the Subitizing Effect was a significant domain-specific predictor of fluency in calculation and also in curricular mathematics achievement, but not in reading skills, assessed at the end of elementary school. Furthermore, the size of the Counting Effect also predicted fluency in calculation, although this association only approached significance. These findings contrast with proposals that the core numerical competencies measured by enumeration will bear little relationship to mathematics achievement. We conclude that basic numerical capacities constitute domain-specific predictors and that they are not exclusively "start-up" tools for the acquisition of Mathematics; but they continue modulating this learning at the end of elementary school.

  10. Towards a Standard-based Domain-specific Platform to Solve Machine Learning-based Problems

    Directory of Open Access Journals (Sweden)

    Vicente García-Díaz

    2015-12-01

    Full Text Available Machine learning is one of the most important subfields of computer science and can be used to solve a variety of interesting artificial intelligence problems. There are different languages, framework and tools to define the data needed to solve machine learning-based problems. However, there is a great number of very diverse alternatives which makes it difficult the intercommunication, portability and re-usability of the definitions, designs or algorithms that any developer may create. In this paper, we take the first step towards a language and a development environment independent of the underlying technologies, allowing developers to design solutions to solve machine learning-based problems in a simple and fast way, automatically generating code for other technologies. That can be considered a transparent bridge among current technologies. We rely on Model-Driven Engineering approach, focusing on the creation of models to abstract the definition of artifacts from the underlying technologies.

  11. Influence of Discussion Rating in Cooperative Learning Type Numbered Head Together on Learning Results Students VII MTSN Model Padang

    Science.gov (United States)

    Sasmita, E.; Edriati, S.; Yunita, A.

    2018-04-01

    Related to the math score of the first semester in class at seventh grade of MTSN Model Padang which much the score that low (less than KKM). It because of the students who feel less involved in learning process because the teacher don't do assessment the discussions. The solution of the problem is discussion assessment in Cooperative Learning Model type Numbered Head Together. This study aims to determine whether the discussion assessment in NHT effect on student learning outcomes of class VII MTsN Model Padang. The instrument used in this study is discussion assessment and final tests. The data analysis technique used is the simple linear regression analysis. Hypothesis test results Fcount greater than the value of Ftable then the hypothesis in this study received. So it concluded that the assessment of the discussion in NHT effect on student learning outcomes of class VII MTsN Model Padang.

  12. Learning Materials for Open Learning in Further Education. Coombe Lodge Working Paper. Information Bank Number 1606.

    Science.gov (United States)

    Latcham, J.

    Arguing that extensive efforts to produce open learning materials should not be undertaken until the possibility of using or adapting existing materials is considered, this paper identifies current sources of materials available in Great Britain for non-advanced further education. The first sections of the paper review common types of open…

  13. Learning Potential Among the Moderately and Severely Retarded. Studies in Learning Potential, Volume 3, Number 52.

    Science.gov (United States)

    Hamilton, James L.; Budoff, Milton

    The study investigated the feasibility of M. Budoff and M. Friedman's (1964) learning potential paradigm as an assessment approach with 40 moderately and severely mentally retarded persons (aged 12 to 22 years). Ss were tested three times: initially, after one week, and after one month with a match-to-sample block design test. Twenty of the Ss…

  14. Online Sensor Drift Compensation for E-Nose Systems Using Domain Adaptation and Extreme Learning Machine

    Science.gov (United States)

    Luo, Guangchun; Qin, Ke; Wang, Nan; Niu, Weina

    2018-01-01

    Sensor drift is a common issue in E-Nose systems and various drift compensation methods have received fruitful results in recent years. Although the accuracy for recognizing diverse gases under drift conditions has been largely enhanced, few of these methods considered online processing scenarios. In this paper, we focus on building online drift compensation model by transforming two domain adaptation based methods into their online learning versions, which allow the recognition models to adapt to the changes of sensor responses in a time-efficient manner without losing the high accuracy. Experimental results using three different settings confirm that the proposed methods save large processing time when compared with their offline versions, and outperform other drift compensation methods in recognition accuracy. PMID:29494543

  15. Roles and Domains to Teach in Online Learning Environments: Educational ICT Competency Framework for University Teachers

    Science.gov (United States)

    Guasch, Teresa; Alvarez, Ibis; Espasa, Anna

    This chapter is aimed at presenting an integrated framework of the educational information and communications technology (ICT) competencies that university teachers should have to teach in an online learning environment. Teaching through ICT in higher education involves performing three main roles - pedagogical, socialist, and design/planning - and also two cross-cutting domains that arise from the online environment: technological and managerial. This framework as well as the competencies for university teachers associated with it were validated at a European level by a dual process of net-based focus groups of teachers and teacher trainers in each of the participating countries in a European Project (Elene-TLC) and an online Delphi method involving 78 experts from 14 universities of ten European countries. The competency framework and the examples provided in the chapter are the basis for designing innovative professional development activities in online university environments.

  16. Human mate-choice copying is domain-general social learning.

    Science.gov (United States)

    Street, Sally E; Morgan, Thomas J H; Thornton, Alex; Brown, Gillian R; Laland, Kevin N; Cross, Catharine P

    2018-01-29

    Women appear to copy other women's preferences for men's faces. This 'mate-choice copying' is often taken as evidence of psychological adaptations for processing social information related to mate choice, for which facial information is assumed to be particularly salient. No experiment, however, has directly investigated whether women preferentially copy each other's face preferences more than other preferences. Further, because prior experimental studies used artificial social information, the effect of real social information on attractiveness preferences is unknown. We collected attractiveness ratings of pictures of men's faces, men's hands, and abstract art given by heterosexual women, before and after they saw genuine social information gathered in real time from their peers. Ratings of faces were influenced by social information, but no more or less than were images of hands and abstract art. Our results suggest that evidence for domain-specific social learning mechanisms in humans is weaker than previously suggested.

  17. Online Sensor Drift Compensation for E-Nose Systems Using Domain Adaptation and Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Zhiyuan Ma

    2018-03-01

    Full Text Available Sensor drift is a common issue in E-Nose systems and various drift compensation methods have received fruitful results in recent years. Although the accuracy for recognizing diverse gases under drift conditions has been largely enhanced, few of these methods considered online processing scenarios. In this paper, we focus on building online drift compensation model by transforming two domain adaptation based methods into their online learning versions, which allow the recognition models to adapt to the changes of sensor responses in a time-efficient manner without losing the high accuracy. Experimental results using three different settings confirm that the proposed methods save large processing time when compared with their offline versions, and outperform other drift compensation methods in recognition accuracy.

  18. A self-organizing learning account of number-form synaesthesia.

    Science.gov (United States)

    Makioka, Shogo

    2009-09-01

    Some people automatically and involuntarily "see" mental images of numbers in spatial arrays when they think of numbers. This phenomenon, called number forms, shares three key characteristics with the other types of synaesthesia, within-individual consistency, between-individual variety, and mixture of regularity and randomness. A theoretical framework called SOLA (self-organizing learning account of number forms) is proposed, which explains the generation process of number forms and the origin of those three characteristics. The simulations replicated the qualitative properties of the shapes of number forms, the property that numbers are aligned in order of size, that discontinuity usually occurs at the point of carry, and that continuous lines tend to have many bends.

  19. General Information about Learning Disabilities (Fact Sheet Number 7) = Informacion General sobre Impedimentos en el Aprendizaje (Fact Sheet Number 19).

    Science.gov (United States)

    Interstate Research Associates, Inc., Washington, DC.

    This fact sheet providing general information about learning disabilities is presented in both English and Spanish versions. It begins with the federal definition of learning disabilities and a discussion of its implications followed by estimates of incidence. Typical characteristics of students with learning disabilities are then summarized as…

  20. Computer Mathematics Games and Conditions for Enhancing Young Children's Learning of Number Sense

    Science.gov (United States)

    Kermani, Hengameh

    2017-01-01

    Purpose: The present study was designed to examine whether mathematics computer games improved young children's learning of number sense under three different conditions: when used individually, with a peer, and with teacher facilitation. Methodology: This study utilized a mixed methodology, collecting both quantitative and qualitative data. A…

  1. Cheminoes: A Didactic Game to Learn Chemical Relationships between Valence, Atomic Number, and Symbol

    Science.gov (United States)

    Moreno, Luis F.; Hincapié, Gina; Alzate, María Victoria

    2014-01-01

    Cheminoes is a didactic game that enables the meaningful learning of some relations between concepts such as chemical element, valence, atomic number, and chemical symbol for the first 36 chemical elements of the periodic system. Among the students who have played the game, their opinions of the activity were positive, considering the game to be a…

  2. Learning Activity Package, Physical Science. LAP Numbers 1, 2, 3, and 4.

    Science.gov (United States)

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover measuring techniques, operations of instruments, metric system heat, matter, energy, elements, atomic numbers, isotopes, molecules, mixtures, compounds, physical and chemical properties, liquids, solids, and gases. Each unit contains…

  3. Impaired Acuity of the Approximate Number System Underlies Mathematical Learning Disability (Dyscalculia)

    Science.gov (United States)

    Mazzocco, Michele M. M.; Feigenson, Lisa; Halberda, Justin

    2011-01-01

    Many children have significant mathematical learning disabilities (MLD, or dyscalculia) despite adequate schooling. The current study hypothesizes that MLD partly results from a deficiency in the Approximate Number System (ANS) that supports nonverbal numerical representations across species and throughout development. In this study of 71 ninth…

  4. Learning linear spatial-numeric associations improves accuracy of memory for numbers

    Directory of Open Access Journals (Sweden)

    Clarissa Ann Thompson

    2016-01-01

    Full Text Available Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children’s representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1. Accuracy at number-line estimation predicted memory accuracy on a numerical recall task after controlling for the effect of age and ability to approximately order magnitudes (mapper status. To test more directly whether linear numeric magnitude representations caused improvements in memory, half of children were given feedback on their number-line estimates (Study 2. As expected, learning linear representations was again linked to memory for numerical information even after controlling for age and mapper status. These results suggest that linear representations of numerical magnitude may be a causal factor in development of numeric recall accuracy.

  5. PRGPred: A platform for prediction of domains of resistance gene analogue (RGA in Arecaceae developed using machine learning algorithms

    Directory of Open Access Journals (Sweden)

    MATHODIYIL S. MANJULA

    2015-12-01

    Full Text Available Plant disease resistance genes (R-genes are responsible for initiation of defense mechanism against various phytopathogens. The majority of plant R-genes are members of very large multi-gene families, which encode structurally related proteins containing nucleotide binding site domains (NBS and C-terminal leucine rich repeats (LRR. Other classes possess' an extracellular LRR domain, a transmembrane domain and sometimes, an intracellular serine/threonine kinase domain. R-proteins work in pathogen perception and/or the activation of conserved defense signaling networks. In the present study, sequences representing resistance gene analogues (RGAs of coconut, arecanut, oil palm and date palm were collected from NCBI, sorted based on domains and assembled into a database. The sequences were analyzed in PRINTS database to find out the conserved domains and their motifs present in the RGAs. Based on these domains, we have also developed a tool to predict the domains of palm R-genes using various machine learning algorithms. The model files were selected based on the performance of the best classifier in training and testing. All these information is stored and made available in the online ‘PRGpred' database and prediction tool.

  6. An Examination of Multiple Intelligence Domains and Learning Styles of Pre-Service Mathematics Teachers: Their Reflections on Mathematics Education

    Science.gov (United States)

    Ozgen, Kemal; Tataroglu, Berna; Alkan, Huseyin

    2011-01-01

    The present study aims to identify pre-service mathematics teachers' multiple intelligence domains and learning style profiles, and to establish relationships between them. Employing the survey model, the study was conducted with the participation of 243 pre-service mathematics teachers. The study used the "multiple intelligence domains…

  7. Relations between the development of future time perspective in three life domains, investment in learning, and academic achievement

    NARCIS (Netherlands)

    Peetsma, T.; van der Veen, I.

    2011-01-01

    Relations between the development of future time perspectives in three life domains (i.e., school and professional career, social relations, and leisure time) and changes in students’ investment in learning and academic achievement were examined in this study. Participants were 584 students in the

  8. Relations between the Development of Future Time Perspective in Three Life Domains, Investment in Learning, and Academic Achievement

    Science.gov (United States)

    Peetsma, Thea; van der Veen, Ineke

    2011-01-01

    Relations between the development of future time perspectives in three life domains (i.e., school and professional career, social relations, and leisure time) and changes in students' investment in learning and academic achievement were examined in this study. Participants were 584 students in the first and 584 in the second year of the lower…

  9. The Contributions of Domain-General and Numerical Factors to Third-Grade Arithmetic Skills and Mathematical Learning Disability

    Science.gov (United States)

    Cowan, Richard; Powell, Daisy

    2014-01-01

    Explanations of the marked individual differences in elementary school mathematical achievement and mathematical learning disability (MLD or dyscalculia) have involved domain-general factors (working memory, reasoning, processing speed, and oral language) and numerical factors that include single-digit processing efficiency and multidigit skills…

  10. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach

    DEFF Research Database (Denmark)

    Pan, Xiaoyong; Shen, Hong Bin

    2017-01-01

    , their domain specific features and formats have posed significant computational challenges. One of current difficulties is that the cross-source shared common knowledge is at a higher abstraction level beyond the observed data, resulting in a low efficiency of direct integration of observed data across domains...... space using multiple layers of learning blocks, where the shared representations across different domains are integrated. To validate our iDeep method, we performed experiments on 31 large-scale CLIP-seq datasets, and our results show that by integrating multiple sources of data, the average AUC can...... be improved by 8% compared to the best single-source-based predictor; and through cross-domain knowledge integration at an abstraction level, it outperforms the state-of-the-art predictors by 6%. Besides the overall enhanced prediction performance, the convolutional neural network module embedded in i...

  11. Basic number processing in children with specific learning disorders: Comorbidity of reading and mathematics disorders.

    Science.gov (United States)

    Moll, Kristina; Göbel, Silke M; Snowling, Margaret J

    2015-01-01

    As well as being the hallmark of mathematics disorders, deficits in number processing have also been reported for individuals with reading disorders. The aim of the present study was to investigate separately the components of numerical processing affected in reading and mathematical disorders within the framework of the Triple Code Model. Children with reading disorders (RD), mathematics disorders (MD), comorbid deficits (RD + MD), and typically developing children (TD) were tested on verbal, visual-verbal, and nonverbal number tasks. As expected, children with MD were impaired across a broad range of numerical tasks. In contrast, children with RD were impaired in (visual-)verbal number tasks but showed age-appropriate performance in nonverbal number skills, suggesting their impairments were domain specific and related to their reading difficulties. The comorbid group showed an additive profile of the impairments of the two single-deficit groups. Performance in speeded verbal number tasks was related to rapid automatized naming, a measure of visual-verbal access in the RD but not in the MD group. The results indicate that deficits in number skills are due to different underlying cognitive deficits in children with RD compared to children with MD: a phonological deficit in RD and a deficit in processing numerosities in MD.

  12. Improvement of learning domains of nursing students with the use of authentic assessment pedagogy in clinical practice.

    Science.gov (United States)

    Chong, Edmund Jun Meng; Lim, Jessica Shih Wei; Liu, Yuchan; Lau, Yvonne Yen Lin; Wu, Vivien Xi

    2016-09-01

    With evolving healthcare demands, nursing educators need to constantly review their teaching methodologies in order to enhance learners' knowledge and competency of skills in the clinical settings. Learning is an active process in which meaning is accomplished on the basis of experience and that authentic assessment pedagogy will enable nursing students to play an active part in their learning. The study was conducted with an aim to examine nursing students' learning domains through the introduction of the authentic assessment pedagogy during their clinical practice. A quasi-experimental study (n = 54) was conducted over a period of 10 weeks at a local tertiary hospital. The experimental group was exposed to the authentic assessment pedagogy and were taught to use the assessment rubrics as an instrument to help enhance their learning. Students were assessed and scored according to the assessment rubrics, which were categorized into four domains; cognitive, psychomotor, affective and critical thinking abilities. The findings indicated that an overall score for the four domains between the experimental and control groups were significant, with p value of pedagogy in the clinical setting. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. CREATING CRITICAL THINKING FROM AFFECTIVE DOMAIN IN SUCCESSFUL LEARNING OF MATHEMATICS.

    OpenAIRE

    Kholidah Sitanggang; Herman Mawengkang; Tulus.

    2018-01-01

    The success of the learning process can be seen from the results of learning that is visible from the change in behavior on students, both the attitude and skills which are better than before. Mathematics learning success is not only determined by cognitive abilities but also affective abilities. Successful learning in terms of cognitive and psychomotor is affected by the affective condition of the students. Students who have interest in learning and a positive attitude toward learning will b...

  14. Does Grammatical Structure Accelerate Number Word Learning? Evidence from Learners of Dual and Non-Dual Dialects of Slovenian.

    Directory of Open Access Journals (Sweden)

    Franc Marušič

    Full Text Available How does linguistic structure affect children's acquisition of early number word meanings? Previous studies have tested this question by comparing how children learning languages with different grammatical representations of number learn the meanings of labels for small numbers, like 1, 2, and 3. For example, children who acquire a language with singular-plural marking, like English, are faster to learn the word for 1 than children learning a language that lacks the singular-plural distinction, perhaps because the word for 1 is always used in singular contexts, highlighting its meaning. These studies are problematic, however, because reported differences in number word learning may be due to unmeasured cross-cultural differences rather than specific linguistic differences. To address this problem, we investigated number word learning in four groups of children from a single culture who spoke different dialects of the same language that differed chiefly with respect to how they grammatically mark number. We found that learning a dialect which features "dual" morphology (marking of pairs accelerated children's acquisition of the number word two relative to learning a "non-dual" dialect of the same language.

  15. Does Grammatical Structure Accelerate Number Word Learning? Evidence from Learners of Dual and Non-Dual Dialects of Slovenian

    Science.gov (United States)

    Plesničar, Vesna; Razboršek, Tina; Sullivan, Jessica; Barner, David

    2016-01-01

    How does linguistic structure affect children’s acquisition of early number word meanings? Previous studies have tested this question by comparing how children learning languages with different grammatical representations of number learn the meanings of labels for small numbers, like 1, 2, and 3. For example, children who acquire a language with singular-plural marking, like English, are faster to learn the word for 1 than children learning a language that lacks the singular-plural distinction, perhaps because the word for 1 is always used in singular contexts, highlighting its meaning. These studies are problematic, however, because reported differences in number word learning may be due to unmeasured cross-cultural differences rather than specific linguistic differences. To address this problem, we investigated number word learning in four groups of children from a single culture who spoke different dialects of the same language that differed chiefly with respect to how they grammatically mark number. We found that learning a dialect which features “dual” morphology (marking of pairs) accelerated children’s acquisition of the number word two relative to learning a “non-dual” dialect of the same language. PMID:27486802

  16. The enigma of number: why children find the meanings of even small number words hard to learn and how we can help them do better.

    Directory of Open Access Journals (Sweden)

    Michael Ramscar

    Full Text Available Although number words are common in everyday speech, learning their meanings is an arduous, drawn-out process for most children, and the source of this delay has long been the subject of inquiry. Children begin by identifying the few small numerosities that can be named without counting, and this has prompted further debate over whether there is a specific, capacity-limited system for representing these small sets, or whether smaller and larger sets are both represented by the same system. Here we present a formal, computational analysis of number learning that offers a possible solution to both puzzles. This analysis indicates that once the environment and the representational demands of the task of learning to identify sets are taken into consideration, a continuous system for learning, representing and discriminating set-sizes can give rise to effective discontinuities in processing. At the same time, our simulations illustrate how typical prenominal linguistic constructions ("there are three balls" structure information in a way that is largely unhelpful for discrimination learning, while suggesting that postnominal constructions ("balls, there are three" will facilitate such learning. A training-experiment with three-year olds confirms these predictions, demonstrating that rapid, significant gains in numerical understanding and competence are possible given appropriately structured postnominal input. Our simulations and results reveal how discrimination learning tunes children's systems for representing small sets, and how its capacity-limits result naturally out of a mixture of the learning environment and the increasingly complex task of discriminating and representing ever-larger number sets. They also explain why children benefit so little from the training that parents and educators usually provide. Given the efficacy of our intervention, the ease with which it can be implemented, and the large body of research showing how early

  17. Towards Self-Learning Based Hypotheses Generation in Biomedical Text Domain.

    Science.gov (United States)

    Gopalakrishnan, Vishrawas; Jha, Kishlay; Xun, Guangxu; Ngo, Hung Q; Zhang, Aidong

    2017-12-26

    The overwhelming amount of research articles in the domain of bio-medicine might cause important connections to remain unnoticed. Literature Based Discovery is a sub-field within biomedical text mining that peruses these articles to formulate high confident hypotheses on possible connections between medical concepts. Although many alternate methodologies have been proposed over the last decade, they still suffer from scalability issues. The primary reason, apart from the dense inter-connections between biological concepts, is the absence of information on the factors that lead to the edge-formation. In this work, we formulate this problem as a collaborative filtering task and leverage a relatively new concept of word-vectors to learn and mimic the implicit edge-formation process. Along with single-class classifier, we prune the search-space of redundant and irrelevant hypotheses to increase the efficiency of the system and at the same time maintaining and in some cases even boosting the overall accuracy. We show that our proposed framework is able to prune up to 90% of the hypotheses while still retaining high recall in top-K results. This level of efficiency enables the discovery algorithm to look for higher-order hypotheses, something that was infeasible until now. Furthermore, the generic formulation allows our approach to be agile to performboth open and closed discovery.We also experimentally validate that the core data-structures upon which the system bases its decision has a high concordance with the opinion of the experts.This coupled with the ability to understand the edge formation process provides us with interpretable results without any manual intervention. The relevant JAVA codes are available at: https://github.com/vishrawas/Medline-Code_v2. vishrawa@buffalo.edukishlayj@buffalo.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email

  18. Sensitivity and specificity of machine learning classifiers and spectral domain OCT for the diagnosis of glaucoma.

    Science.gov (United States)

    Vidotti, Vanessa G; Costa, Vital P; Silva, Fabrício R; Resende, Graziela M; Cremasco, Fernanda; Dias, Marcelo; Gomi, Edson S

    2012-06-15

    Purpose. To investigate the sensitivity and specificity of machine learning classifiers (MLC) and spectral domain optical coherence tomography (SD-OCT) for the diagnosis of glaucoma. Methods. Sixty-two patients with early to moderate glaucomatous visual field damage and 48 healthy individuals were included. All subjects underwent a complete ophthalmologic examination, achromatic standard automated perimetry, and RNFL imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec, Inc., Dublin, California, USA). Receiver operating characteristic (ROC) curves were obtained for all SD-OCT parameters. Subsequently, the following MLCs were tested: Classification Tree (CTREE), Random Forest (RAN), Bagging (BAG), AdaBoost M1 (ADA), Ensemble Selection (ENS), Multilayer Perceptron (MLP), Radial Basis Function (RBF), Naive-Bayes (NB), and Support Vector Machine (SVM). Areas under the ROC curves (aROCs) obtained for each parameter and each MLC were compared. Results. The mean age was 57.0±9.2 years for healthy individuals and 59.9±9.0 years for glaucoma patients (p=0.103). Mean deviation values were -4.1±2.4 dB for glaucoma patients and -1.5±1.6 dB for healthy individuals (pposition (0.765), and 6 o'clock position (0.754). The aROCs from classifiers varied from 0.785 (ADA) to 0.818 (BAG). The aROC obtained with BAG was not significantly different from the aROC obtained with the best single SD-OCT parameter (p=0.93). Conclusions. The SD-OCT showed good diagnostic accuracy in a group of patients with early glaucoma. In this series, MLCs did not improve the sensitivity and specificity of SD-OCT for the diagnosis of glaucoma.

  19. Re-Thinking ‘Normal’ Development in the Early Learning of Number

    Directory of Open Access Journals (Sweden)

    Alf Coles

    2018-06-01

    Full Text Available In this article we suggest that, notwithstanding noted differences, one unmarked similarity across psychology and mathematics education is the continued dominance of the view that there is a ‘normal’ path of development. We focus particularly on the case of the early learning of number and point to evidence that puts into question the dominant narrative of how number sense develops through the concrete and the cardinal. Recent neuroscience findings have raised the potential significance of ordinal approaches to learning number, which in privileging the symbolic—and hence the abstract—reverse one aspect of the ‘normal’ development order. We draw on empirical evidence to suggest that what children can do, and in what order, is sensitive to, among other things, the curriculum approach—and also the tools they have at their disposition. We draw out implications from our work for curriculum organisation in the early years of schooling, to disrupt taken-for-granted paths.

  20. Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains.

    Science.gov (United States)

    Nash, Rupert W; Carver, Hywel B; Bernabeu, Miguel O; Hetherington, James; Groen, Derek; Krüger, Timm; Coveney, Peter V

    2014-02-01

    Modeling blood flow in larger vessels using lattice-Boltzmann methods comes with a challenging set of constraints: a complex geometry with walls and inlets and outlets at arbitrary orientations with respect to the lattice, intermediate Reynolds (Re) number, and unsteady flow. Simple bounce-back is one of the most commonly used, simplest, and most computationally efficient boundary conditions, but many others have been proposed. We implement three other methods applicable to complex geometries [Guo, Zheng, and Shi, Phys. Fluids 14, 2007 (2002); Bouzidi, Firdaouss, and Lallemand, Phys. Fluids 13, 3452 (2001); Junk and Yang, Phys. Rev. E 72, 066701 (2005)] in our open-source application hemelb. We use these to simulate Poiseuille and Womersley flows in a cylindrical pipe with an arbitrary orientation at physiologically relevant Re number (1-300) and Womersley (4-12) numbers and steady flow in a curved pipe at relevant Dean number (100-200) and compare the accuracy to analytical solutions. We find that both the Bouzidi-Firdaouss-Lallemand (BFL) and Guo-Zheng-Shi (GZS) methods give second-order convergence in space while simple bounce-back degrades to first order. The BFL method appears to perform better than GZS in unsteady flows and is significantly less computationally expensive. The Junk-Yang method shows poor stability at larger Re number and so cannot be recommended here. The choice of collision operator (lattice Bhatnagar-Gross-Krook vs multiple relaxation time) and velocity set (D3Q15 vs D3Q19 vs D3Q27) does not significantly affect the accuracy in the problems studied.

  1. De novo identification of replication-timing domains in the human genome by deep learning.

    Science.gov (United States)

    Liu, Feng; Ren, Chao; Li, Hao; Zhou, Pingkun; Bo, Xiaochen; Shu, Wenjie

    2016-03-01

    The de novo identification of the initiation and termination zones-regions that replicate earlier or later than their upstream and downstream neighbours, respectively-remains a key challenge in DNA replication. Building on advances in deep learning, we developed a novel hybrid architecture combining a pre-trained, deep neural network and a hidden Markov model (DNN-HMM) for the de novo identification of replication domains using replication timing profiles. Our results demonstrate that DNN-HMM can significantly outperform strong, discriminatively trained Gaussian mixture model-HMM (GMM-HMM) systems and other six reported methods that can be applied to this challenge. We applied our trained DNN-HMM to identify distinct replication domain types, namely the early replication domain (ERD), the down transition zone (DTZ), the late replication domain (LRD) and the up transition zone (UTZ), using newly replicated DNA sequencing (Repli-Seq) data across 15 human cells. A subsequent integrative analysis revealed that these replication domains harbour unique genomic and epigenetic patterns, transcriptional activity and higher-order chromosomal structure. Our findings support the 'replication-domain' model, which states (1) that ERDs and LRDs, connected by UTZs and DTZs, are spatially compartmentalized structural and functional units of higher-order chromosomal structure, (2) that the adjacent DTZ-UTZ pairs form chromatin loops and (3) that intra-interactions within ERDs and LRDs tend to be short-range and long-range, respectively. Our model reveals an important chromatin organizational principle of the human genome and represents a critical step towards understanding the mechanisms regulating replication timing. Our DNN-HMM method and three additional algorithms can be freely accessed at https://github.com/wenjiegroup/DNN-HMM The replication domain regions identified in this study are available in GEO under the accession ID GSE53984. shuwj@bmi.ac.cn or boxc

  2. Data Mining and Machine Learning in Time-Domain Discovery and Classification

    Science.gov (United States)

    Bloom, Joshua S.; Richards, Joseph W.

    2012-03-01

    The changing heavens have played a central role in the scientific effort of astronomers for centuries. Galileo's synoptic observations of the moons of Jupiter and the phases of Venus starting in 1610, provided strong refutation of Ptolemaic cosmology. These observations came soon after the discovery of Kepler's supernova had challenged the notion of an unchanging firmament. In more modern times, the discovery of a relationship between period and luminosity in some pulsational variable stars [41] led to the inference of the size of the Milky way, the distance scale to the nearest galaxies, and the expansion of the Universe (see Ref. [30] for review). Distant explosions of supernovae were used to uncover the existence of dark energy and provide a precise numerical account of dark matter (e.g., [3]). Repeat observations of pulsars [71] and nearby main-sequence stars revealed the presence of the first extrasolar planets [17,35,44,45]. Indeed, time-domain observations of transient events and variable stars, as a technique, influences a broad diversity of pursuits in the entire astronomy endeavor [68]. While, at a fundamental level, the nature of the scientific pursuit remains unchanged, the advent of astronomy as a data-driven discipline presents fundamental challenges to the way in which the scientific process must now be conducted. Digital images (and data cubes) are not only getting larger, there are more of them. On logistical grounds, this taxes storage and transport systems. But it also implies that the intimate connection that astronomers have always enjoyed with their data - from collection to processing to analysis to inference - necessarily must evolve. Figure 6.1 highlights some of the ways that the pathway to scientific inference is now influenced (if not driven by) modern automation processes, computing, data-mining, and machine-learning (ML). The emerging reliance on computation and ML is a general one - a central theme of this book - but the time-domain

  3. Powerful Feelings: Exploring the Affective Domain of Informal and Arts-Based Learning

    Science.gov (United States)

    Lawrence, Randee Lipson

    2008-01-01

    This article looks at the ways in which people learn informally through artistic expression such as dance, drama, poetry, music, literature, film, and all of the visual arts and how people access this learning through their emotions. The author begins with a look at the limitations of relying primarily on technical-rational learning processes.…

  4. Parallel Fokker–Planck-DSMC algorithm for rarefied gas flow simulation in complex domains at all Knudsen numbers

    Energy Technology Data Exchange (ETDEWEB)

    Küchlin, Stephan, E-mail: kuechlin@ifd.mavt.ethz.ch; Jenny, Patrick

    2017-01-01

    A major challenge for the conventional Direct Simulation Monte Carlo (DSMC) technique lies in the fact that its computational cost becomes prohibitive in the near continuum regime, where the Knudsen number (Kn)—characterizing the degree of rarefaction—becomes small. In contrast, the Fokker–Planck (FP) based particle Monte Carlo scheme allows for computationally efficient simulations of rarefied gas flows in the low and intermediate Kn regime. The Fokker–Planck collision operator—instead of performing binary collisions employed by the DSMC method—integrates continuous stochastic processes for the phase space evolution in time. This allows for time step and grid cell sizes larger than the respective collisional scales required by DSMC. Dynamically switching between the FP and the DSMC collision operators in each computational cell is the basis of the combined FP-DSMC method, which has been proven successful in simulating flows covering the whole Kn range. Until recently, this algorithm had only been applied to two-dimensional test cases. In this contribution, we present the first general purpose implementation of the combined FP-DSMC method. Utilizing both shared- and distributed-memory parallelization, this implementation provides the capability for simulations involving many particles and complex geometries by exploiting state of the art computer cluster technologies.

  5. The Meaningful Learning of Intellectual Skills: An Application of Ausubel's Subsumption Theory to the Domain of Intellectual Skills Learning.

    Science.gov (United States)

    West, Leo H. T.; Kellett, Natalie C.

    1981-01-01

    Tests the applicability of Ausubel's theory to the meaningful learning of intellectual skills. Results of three studies of high school students indicate that advance organizers enhance learning of skills related to solubility product problems. This effect was removed if prior teaching in relevant background knowledge was included. (Author/WB)

  6. [Problem based learning: achievement of educational goals in the information and comprehension sub-categories of Bloom cognitive domain].

    Science.gov (United States)

    Montecinos, P; Rodewald, A M

    1994-06-01

    The aim this work was to assess and compare the achievements of medical students, subjected to problem based learning methodology. The information and comprehension categories of Bloom were tested in 17 medical students in four different occasions during the physiopathology course, using a multiple choice knowledge test. There was a significant improvement in the number of correct answers towards the end of the course. It is concluded that these medical students obtained adequate learning achievements in the information subcategory of Bloom using problem based learning methodology, during the physiopathology course.

  7. Numerical morphology supports early number word learning: Evidence from a comparison of young Mandarin and English learners

    Science.gov (United States)

    Corre, Mathieu Le; Li, Peggy; Huang, Becky H.; Jia, Gisela; Carey, Susan

    2016-01-01

    Previous studies showed that children learning a language with an obligatory singular/plural distinction (Russian and English) learn the meaning of the number word for one earlier than children learning Japanese, a language without obligatory number morphology (Barner, Libenson, Cheung, & Takasaki, 2009; Sarnecka, Kamenskaya, Yamana, Ogura, & Yudovina, 2007). This can be explained by differences in number morphology, but it can also be explained by many other differences between the languages and the environments of the children who were compared. The present study tests the hypothesis that the morphological singular/plural distinction supports the early acquisition of the meaning of the number word for one by comparing young English learners to age and SES matched young Mandarin Chinese learners. Mandarin does not have obligatory number morphology but is more similar to English than Japanese in many crucial respects. Corpus analyses show that, compared to English learners, Mandarin learners hear number words more frequently, are more likely to hear number words followed by a noun, and are more likely to hear number words in contexts where they denote a cardinal value. Two tasks show that, despite these advantages, Mandarin learners learn the meaning of the number word for one three to six months later than do English learners. These results provide the strongest evidence to date that prior knowledge of the numerical meaning of the distinction between singular and plural supports the acquisition of the meaning of the number word for one. PMID:27423486

  8. Numerical morphology supports early number word learning: Evidence from a comparison of young Mandarin and English learners.

    Science.gov (United States)

    Le Corre, Mathieu; Li, Peggy; Huang, Becky H; Jia, Gisela; Carey, Susan

    2016-08-01

    Previous studies showed that children learning a language with an obligatory singular/plural distinction (Russian and English) learn the meaning of the number word for one earlier than children learning Japanese, a language without obligatory number morphology (Barner, Libenson, Cheung, & Takasaki, 2009; Sarnecka, Kamenskaya, Yamana, Ogura, & Yudovina, 2007). This can be explained by differences in number morphology, but it can also be explained by many other differences between the languages and the environments of the children who were compared. The present study tests the hypothesis that the morphological singular/plural distinction supports the early acquisition of the meaning of the number word for one by comparing young English learners to age and SES matched young Mandarin Chinese learners. Mandarin does not have obligatory number morphology but is more similar to English than Japanese in many crucial respects. Corpus analyses show that, compared to English learners, Mandarin learners hear number words more frequently, are more likely to hear number words followed by a noun, and are more likely to hear number words in contexts where they denote a cardinal value. Two tasks show that, despite these advantages, Mandarin learners learn the meaning of the number word for one three to six months later than do English learners. These results provide the strongest evidence to date that prior knowledge of the numerical meaning of the distinction between singular and plural supports the acquisition of the meaning of the number word for one. Copyright © 2016. Published by Elsevier Inc.

  9. An N-terminal nuclear localization sequence but not the calmodulin-binding domain mediates nuclear localization of nucleomorphin, a protein that regulates nuclear number in Dictyostelium

    International Nuclear Information System (INIS)

    Myre, Michael A.; O'Day, Danton H.

    2005-01-01

    Nucleomorphin is a novel nuclear calmodulin (CaM)-binding protein (CaMBP) containing an extensive DEED (glu/asp repeat) domain that regulates nuclear number. GFP-constructs of the 38 kDa NumA1 isoform localize as intranuclear patches adjacent to the inner nuclear membrane. The translocation of CaMBPs into nuclei has previously been shown by others to be mediated by both classic nuclear localization sequences (NLSs) and CaM-binding domains (CaMBDs). Here we show that NumA1 possesses a CaMBD ( 171 EDVSRFIKGKLLQKQQKIYKDLERF 195 ) containing both calcium-dependent-binding motifs and an IQ-like motif for calcium-independent binding. GFP-constructs containing only NumA1 residues 1-129, lacking the DEED and CaMBDs, still localized as patches at the internal periphery of nuclei thus ruling out a direct role for the CaMBD in nuclear import. These constructs contained the amino acid residues 48 KKSYQDPEIIAHSRPRK 64 that include both a putative bipartite and classical NLS. GFP-bipartite NLS constructs localized uniformly within nuclei but not as patches. As with previous work, removal of the DEED domain resulted in highly multinucleate cells. However as shown here, multinuclearity only occurred when the NLS was present allowing the protein to enter nuclei. Site-directed mutation analysis in which the NLS was changed to 48 EF 49 abolished the stability of the GFP fusion at the protein but not RNA level preventing subcellular analyses. Cells transfected with the 48 EF 49 construct exhibited slowed growth when compared to parental AX3 cells and other GFP-NumA1 deletion mutants. In addition to identifying an NLS that is sufficient for nuclear translocation of nucleomorphin and ruling out CaM-binding in this event, this work shows that the nuclear localization of NumA1 is crucial to its ability to regulate nuclear number in Dictyostelium

  10. THE USE OF NUMBERED HEADS TOGETHER (NHT LEARNING MODEL WITH SCIENCE, ENVIRONMENT, TECHNOLOGY, SOCIETY (SETS APPROACH TO IMPROVE STUDENT LEARNING MOTIVATION OF SENIOR HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    B. Sutipnyo

    2018-01-01

    Full Text Available This research was aimed to determine the increasing of students' motivation that has been applied by Numbered Heads Together (NHT learning model with Science, Environment, Technology, Society (SETS approach. The design of this study was quasi experiment with One Group Pretest-Posttest Design. The data of students’ learning motivation obtained through questionnaire administered before and after NHT learning model with SETS approach. In this research, the indicators of learning-motivation were facing tasks diligently, showing interest in variety of problems, prefering to work independently, keeping students’ opinions, and feeling happy to find and solve problems. Increasing of the students’ learning motivation was analyzed by using a gain test. The results showed that applying NHT learning model with SETS approach could increase the students’ learning motivation in medium categories.

  11. Characteristics and Consequences of Adult Learning Methods and Strategies. Practical Evaluation Reports, Volume 2, Number 1

    Science.gov (United States)

    Trivette, Carol M.; Dunst, Carl J.; Hamby, Deborah W.; O'Herin, Chainey E.

    2009-01-01

    The effectiveness of four adult learning methods (accelerated learning, coaching, guided design, and just-in-time training) constituted the focus of this research synthesis. Findings reported in "How People Learn" (Bransford et al., 2000) were used to operationally define six adult learning method characteristics, and to code and analyze…

  12. Second Language Learning: Investigating Domain-Specific Adaptation in Advanced L2 Production

    NARCIS (Netherlands)

    Kerz, E.; Wiechmann, D.

    2016-01-01

    Usage-based (UB) accounts conceive of language learning as continuous, locally contingent construction learning, i.e., a lifelong process of developing and honing the repertoire of constructional patterns geared to the optimization of a language user’s communicative ability across a wide range of

  13. The Effect of Number and Presentation Order of High-Constraint Sentences on Second Language Word Learning.

    Science.gov (United States)

    Ma, Tengfei; Chen, Ran; Dunlap, Susan; Chen, Baoguo

    2016-01-01

    This paper presents the results of an experiment that investigated the effects of number and presentation order of high-constraint sentences on semantic processing of unknown second language (L2) words (pseudowords) through reading. All participants were Chinese native speakers who learned English as a foreign language. In the experiment, sentence constraint and order of different constraint sentences were manipulated in English sentences, as well as L2 proficiency level of participants. We found that the number of high-constraint sentences was supportive for L2 word learning except in the condition in which high-constraint exposure was presented first. Moreover, when the number of high-constraint sentences was the same, learning was significantly better when the first exposure was a high-constraint exposure. And no proficiency level effects were found. Our results provided direct evidence that L2 word learning benefited from high quality language input and first presentations of high quality language input.

  14. Multi-level learning: improving the prediction of protein, domain and residue interactions by allowing information flow between levels

    Directory of Open Access Journals (Sweden)

    McDermott Drew

    2009-08-01

    Full Text Available Abstract Background Proteins interact through specific binding interfaces that contain many residues in domains. Protein interactions thus occur on three different levels of a concept hierarchy: whole-proteins, domains, and residues. Each level offers a distinct and complementary set of features for computationally predicting interactions, including functional genomic features of whole proteins, evolutionary features of domain families and physical-chemical features of individual residues. The predictions at each level could benefit from using the features at all three levels. However, it is not trivial as the features are provided at different granularity. Results To link up the predictions at the three levels, we propose a multi-level machine-learning framework that allows for explicit information flow between the levels. We demonstrate, using representative yeast interaction networks, that our algorithm is able to utilize complementary feature sets to make more accurate predictions at the three levels than when the three problems are approached independently. To facilitate application of our multi-level learning framework, we discuss three key aspects of multi-level learning and the corresponding design choices that we have made in the implementation of a concrete learning algorithm. 1 Architecture of information flow: we show the greater flexibility of bidirectional flow over independent levels and unidirectional flow; 2 Coupling mechanism of the different levels: We show how this can be accomplished via augmenting the training sets at each level, and discuss the prevention of error propagation between different levels by means of soft coupling; 3 Sparseness of data: We show that the multi-level framework compounds data sparsity issues, and discuss how this can be dealt with by building local models in information-rich parts of the data. Our proof-of-concept learning algorithm demonstrates the advantage of combining levels, and opens up

  15. The approximate number system and domain-general abilities as predictors of math ability in children with normal hearing and hearing loss.

    Science.gov (United States)

    Bull, Rebecca; Marschark, Marc; Nordmann, Emily; Sapere, Patricia; Skene, Wendy A

    2018-06-01

    Many children with hearing loss (CHL) show a delay in mathematical achievement compared to children with normal hearing (CNH). This study examined whether there are differences in acuity of the approximate number system (ANS) between CHL and CNH, and whether ANS acuity is related to math achievement. Working memory (WM), short-term memory (STM), and inhibition were considered as mediators of any relationship between ANS acuity and math achievement. Seventy-five CHL were compared with 75 age- and gender-matched CNH. ANS acuity, mathematical reasoning, WM, and STM of CHL were significantly poorer compared to CNH. Group differences in math ability were no longer significant when ANS acuity, WM, or STM was controlled. For CNH, WM and STM fully mediated the relationship of ANS acuity to math ability; for CHL, WM and STM only partially mediated this relationship. ANS acuity, WM, and STM are significant contributors to hearing status differences in math achievement, and to individual differences within the group of CHL. Statement of contribution What is already known on this subject? Children with hearing loss often perform poorly on measures of math achievement, although there have been few studies focusing on basic numerical cognition in these children. In typically developing children, the approximate number system predicts math skills concurrently and longitudinally, although there have been some contradictory findings. Recent studies suggest that domain-general skills, such as inhibition, may account for the relationship found between the approximate number system and math achievement. What does this study adds? This is the first robust examination of the approximate number system in children with hearing loss, and the findings suggest poorer acuity of the approximate number system in these children compared to hearing children. The study addresses recent issues regarding the contradictory findings of the relationship of the approximate number system to math ability

  16. Dangerous Learning in Edgy Contexts: Creativity and Innovation in the South African Arts Domain

    Science.gov (United States)

    Dovey, Ken; Muller, Lizzie

    2011-01-01

    In this paper, we outline a pilot project aimed at exploring the role of contextual factors in the facilitation of creativity and innovation within a range of South African art forms. Interviews with 11 people who have rich experience of the South African art domain delivered an insightful perspective on the contextual factors driving lifelong…

  17. Incremental Learning of Perceptual Categories for Open-Domain Sketch Recognition

    National Research Council Canada - National Science Library

    Lovett, Andrew; Dehghani, Morteza; Forbus, Kenneth

    2007-01-01

    .... This paper describes an incremental learning technique for opendomain recognition. Our system builds generalizations for categories of objects based upon previous sketches of those objects and uses those generalizations to classify new sketches...

  18. AcconPred: Predicting Solvent Accessibility and Contact Number Simultaneously by a Multitask Learning Framework under the Conditional Neural Fields Model

    Directory of Open Access Journals (Sweden)

    Jianzhu Ma

    2015-01-01

    Full Text Available Motivation. The solvent accessibility of protein residues is one of the driving forces of protein folding, while the contact number of protein residues limits the possibilities of protein conformations. The de novo prediction of these properties from protein sequence is important for the study of protein structure and function. Although these two properties are certainly related with each other, it is challenging to exploit this dependency for the prediction. Method. We present a method AcconPred for predicting solvent accessibility and contact number simultaneously, which is based on a shared weight multitask learning framework under the CNF (conditional neural fields model. The multitask learning framework on a collection of related tasks provides more accurate prediction than the framework trained only on a single task. The CNF method not only models the complex relationship between the input features and the predicted labels, but also exploits the interdependency among adjacent labels. Results. Trained on 5729 monomeric soluble globular protein datasets, AcconPred could reach 0.68 three-state accuracy for solvent accessibility and 0.75 correlation for contact number. Tested on the 105 CASP11 domain datasets for solvent accessibility, AcconPred could reach 0.64 accuracy, which outperforms existing methods.

  19. AcconPred: Predicting Solvent Accessibility and Contact Number Simultaneously by a Multitask Learning Framework under the Conditional Neural Fields Model.

    Science.gov (United States)

    Ma, Jianzhu; Wang, Sheng

    2015-01-01

    The solvent accessibility of protein residues is one of the driving forces of protein folding, while the contact number of protein residues limits the possibilities of protein conformations. The de novo prediction of these properties from protein sequence is important for the study of protein structure and function. Although these two properties are certainly related with each other, it is challenging to exploit this dependency for the prediction. We present a method AcconPred for predicting solvent accessibility and contact number simultaneously, which is based on a shared weight multitask learning framework under the CNF (conditional neural fields) model. The multitask learning framework on a collection of related tasks provides more accurate prediction than the framework trained only on a single task. The CNF method not only models the complex relationship between the input features and the predicted labels, but also exploits the interdependency among adjacent labels. Trained on 5729 monomeric soluble globular protein datasets, AcconPred could reach 0.68 three-state accuracy for solvent accessibility and 0.75 correlation for contact number. Tested on the 105 CASP11 domain datasets for solvent accessibility, AcconPred could reach 0.64 accuracy, which outperforms existing methods.

  20. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.

    Science.gov (United States)

    Pan, Xiaoyong; Shen, Hong-Bin

    2017-02-28

    RNAs play key roles in cells through the interactions with proteins known as the RNA-binding proteins (RBP) and their binding motifs enable crucial understanding of the post-transcriptional regulation of RNAs. How the RBPs correctly recognize the target RNAs and why they bind specific positions is still far from clear. Machine learning-based algorithms are widely acknowledged to be capable of speeding up this process. Although many automatic tools have been developed to predict the RNA-protein binding sites from the rapidly growing multi-resource data, e.g. sequence, structure, their domain specific features and formats have posed significant computational challenges. One of current difficulties is that the cross-source shared common knowledge is at a higher abstraction level beyond the observed data, resulting in a low efficiency of direct integration of observed data across domains. The other difficulty is how to interpret the prediction results. Existing approaches tend to terminate after outputting the potential discrete binding sites on the sequences, but how to assemble them into the meaningful binding motifs is a topic worth of further investigation. In viewing of these challenges, we propose a deep learning-based framework (iDeep) by using a novel hybrid convolutional neural network and deep belief network to predict the RBP interaction sites and motifs on RNAs. This new protocol is featured by transforming the original observed data into a high-level abstraction feature space using multiple layers of learning blocks, where the shared representations across different domains are integrated. To validate our iDeep method, we performed experiments on 31 large-scale CLIP-seq datasets, and our results show that by integrating multiple sources of data, the average AUC can be improved by 8% compared to the best single-source-based predictor; and through cross-domain knowledge integration at an abstraction level, it outperforms the state-of-the-art predictors by 6

  1. Michigan Journal of Community Service Learning. Volume 13, Number 1, Fall 2006

    Science.gov (United States)

    Howard, Jeffrey, Ed.

    2006-01-01

    The "Michigan Journal of Community Service Learning" ("MJCSL") is a national, peer-reviewed journal consisting of articles written by faculty and service-learning educators on research, theory, pedagogy, and issues pertinent to the service-learning community. The "MJCSL" aims to: (1) widen the community of…

  2. The Domains of Organizational Learning Practices: An Agency-Structure Perspective

    Directory of Open Access Journals (Sweden)

    Nancy Beauregard

    2015-10-01

    Full Text Available Background: Organizational learning theory has retained considerable attention in the past decades from a wide array of academic disciplines in social sciences. Yet few integrative efforts have satisfactorily offered a comprehensive and systematic articulation of the concept of organizational learning with regards to: (a its core constitutive dimensions and associated mechanisms; (b the analytical levels from such mechanisms operate (e.g., workers, teams, organizations; as well as (c their interplay. Methods: This article builds on a critical synthesis of predominant approaches in organizational learning theory (i.e., structural functionalist, social constructivist and middle range approaches, highlighting the contributions of each approach on the key analytical elements guiding our inquiry (i.e., core dimensions and associated mechanisms, analytical levels, interplay. Drawing from the work of sociologists Anthony Giddens and Margaret Archer on agency-structure theory, we develop a series of theoretical propositions supporting the Organizational Learning Practices (OLP concept as a unifying heuristic tool. Results: OLP are defined as a set of collectively shared practices held by members of a given organization embedded in normative, political, and semantic dynamics. At the heart of such dynamics lies organizational knowledge as a power resource pivotal to the sustainable development of organizations, as well as that of their members. Conclusion: OLP offer promising answers to on-going debates in organizational learning theory, and we conclude by discussing concrete guidelines to advance research and practice on OLP.

  3. Machine Learning Technologies and Their Applications for Science and Engineering Domains Workshop -- Summary Report

    Science.gov (United States)

    Ambur, Manjula; Schwartz, Katherine G.; Mavris, Dimitri N.

    2016-01-01

    The fields of machine learning and big data analytics have made significant advances in recent years, which has created an environment where cross-fertilization of methods and collaborations can achieve previously unattainable outcomes. The Comprehensive Digital Transformation (CDT) Machine Learning and Big Data Analytics team planned a workshop at NASA Langley in August 2016 to unite leading experts the field of machine learning and NASA scientists and engineers. The primary goal for this workshop was to assess the state-of-the-art in this field, introduce these leading experts to the aerospace and science subject matter experts, and develop opportunities for collaboration. The workshop was held over a three day-period with lectures from 15 leading experts followed by significant interactive discussions. This report provides an overview of the 15 invited lectures and a summary of the key discussion topics that arose during both formal and informal discussion sections. Four key workshop themes were identified after the closure of the workshop and are also highlighted in the report. Furthermore, several workshop attendees provided their feedback on how they are already utilizing machine learning algorithms to advance their research, new methods they learned about during the workshop, and collaboration opportunities they identified during the workshop.

  4. The effect of numbered heads together (NHT) cooperative learning model on the cognitive achievement of students with different academic ability

    Science.gov (United States)

    Leasa, Marleny; Duran Corebima, Aloysius

    2017-01-01

    Learning models and academic ability may affect students’ achievement in science. This study, thus aimed to investigate the effect of numbered heads together (NHT) cooperative learning model on elementary students’ cognitive achievement in natural science. This study employed a quasi-experimental design with pretest-posttest non-equivalent control group with 2 x 2 factorial. There were two learning models compared NHT and the conventional, and two academic ability high and low. The results of ana Cova test confirmed the difference in the students’ cognitive achievement based on learning models and general academic ability. However, the interaction between learning models and academic ability did not affect the students’ cognitive achievement. In conclusion, teachers are strongly recommended to be more creative in designing learning using other types of cooperative learning models. Also, schools are required to create a better learning environment which is more cooperative to avoid unfair competition among students in the classroom and as a result improve the students’ academic ability. Further research needs to be conducted to explore the contribution of other aspects in cooperative learning toward cognitive achievement of students with different academic ability.

  5. Semi-supervised learning and domain adaptation in natural language processing

    CERN Document Server

    Søgaard, Anders

    2013-01-01

    This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias.This book is intended to be both

  6. A Good Foundation for Number Learning for Five-Year-Olds? An Evaluation of the English Early Learning "Numbers" Goal in the Light of Research

    Science.gov (United States)

    Gifford, Sue

    2014-01-01

    This article sets out to evaluate the English Early Years Foundation Stage Goal for Numbers, in relation to research evidence. The Goal, which sets out to provide "a good foundation in mathematics", has greater breadth of content and higher levels of difficulty than previous versions. Research suggests that the additional expectations…

  7. Understanding the Learning of Values Using a Domains-of-Socialization Framework

    Science.gov (United States)

    Vinik, Julia; Johnston, Megan; Grusec, Joan E.; Farrell, Renee

    2013-01-01

    The narratives that emerging adults wrote about a time when they learned an important moral, value or lesson were explored in order to determine the characteristics of events that lead to internalized values as well as to compare the way different kinds of moral values are socialized. Lessons resulting from misbehavior were reported most…

  8. Rock Art and Radiance: Archaeology in the Public Domain as Life-Long Learning.

    Science.gov (United States)

    Ouzman, Sven

    The re-invigoration of storytelling in academic and public spheres allows rock art to offer opportunities to various publics, of which archaeologists are part. But how exactly this process of archaeology as lifelong learning is to proceed is not always clear, particularly in the United States. Until the last half decade of the twentieth century,…

  9. Digital Dome versus Desktop Display: Learning Outcome Assessments by Domain Experts

    Science.gov (United States)

    Jacobson, Jeffery

    2013-01-01

    In previous publications, the author reported that students learned about Egyptian architecture and society by playing an educational game based on a virtual representation of a temple. Students played the game in a digital dome or on a standard desktop computer, and (each) then recorded a video tour of the temple. Those who had used the dome…

  10. Connecting Knowledge Domains : An Approach to Concept Learning in Primary Science and Technology Education

    NARCIS (Netherlands)

    Koski, M.

    2014-01-01

    In order to understand our dependency on technology and the possible loss of control that comes with it, it is necessary for people to understand the nature of technology as well as its roots in science. Learning basic science and technology concepts should be a part of primary education since it

  11. Fostering High-School Students' Self-Regulated Learning Online and across Academic Domains

    Science.gov (United States)

    Greene, Jeffrey Alan; Bolick, Cheryl Mason; Caprino, A. Michael; Deekens, Victor M.; McVea, Megan; Yu, Seung; Jackson, William P.

    2015-01-01

    The proliferation of online information has not come with a commensurate growth in students' ability to learn from that information. Today's students may be digitally native online communicators, but many lack the knowledge and skills necessary to navigate, find, and integrate online information into coherent understanding. Students who are able…

  12. Training self-assessment and task-selection skills to foster self-regulated learning: Do trained skills transfer across domains?

    Science.gov (United States)

    Raaijmakers, Steven F; Baars, Martine; Paas, Fred; van Merriënboer, Jeroen J G; van Gog, Tamara

    2018-01-01

    Students' ability to accurately self-assess their performance and select a suitable subsequent learning task in response is imperative for effective self-regulated learning. Video modeling examples have proven effective for training self-assessment and task-selection skills, and-importantly-such training fostered self-regulated learning outcomes. It is unclear, however, whether trained skills would transfer across domains. We investigated whether skills acquired from training with either a specific, algorithmic task-selection rule or a more general heuristic task-selection rule in biology would transfer to self-regulated learning in math. A manipulation check performed after the training confirmed that both algorithmic and heuristic training improved task-selection skills on the biology problems compared with the control condition. However, we found no evidence that students subsequently applied the acquired skills during self-regulated learning in math. Future research should investigate how to support transfer of task-selection skills across domains.

  13. On Earth, there would be a number of fundamental kinds of primary cells - cellular domains - greater than or equal to four.

    Science.gov (United States)

    Di Giulio, Massimo

    2018-04-14

    In the studies regarding the deep nodes of the tree of life, there is an assumption that might be false. Usually, it is assumed that these nodes - that is to say, those for example regarding the ancestors of bacteria and archaea - are believed to be completely evolved cells and not protocells. In other words, in these studies, it is rarely stressed that, on the contrary, these nodes might correspond to evolutionary stages of premature cells, namely, progenotes. This observation has extremely relevant consequences. Indeed, if the nodes, for example, of the ancestors of bacteria and archaea would correspond to progenotic evolutionary stages, then this should imply that the number of fundamental kinds of primary cells (cellular domains), present on Earth, would be at least four and not two or three as it is currently believed. As a matter of fact, if these two nodes would correspond to two progenotes then, evidently, the fully evolved cells (genotes) - to which we should refer to be able to establish how many fundamental kinds of primary cells are present on Earth - would characterize less deep nodes of these two. Thus, since there is a strong evidence that the ancestors of archaea and bacteria have been of progenotes, these reasonings would assume a particular importance. For instance, it is maintained that one of these fundamental primary cells might be represented by the typical cell of superphylum of the DPANN. In other words, the DPANN superphylum might be a so far non-recognized cellular domain of life. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. A Meta-Analysis of Working Memory Deficits in Children with Learning Difficulties: Is There a Difference between Verbal Domain and Numerical Domain?

    Science.gov (United States)

    Peng, Peng; Fuchs, Douglas

    2016-01-01

    Children with learning difficulties suffer from working memory (WM) deficits. Yet the specificity of deficits associated with different types of learning difficulties remains unclear. Further research can contribute to our understanding of the nature of WM and the relationship between it and learning difficulties. The current meta-analysis…

  15. A Survey on Domain-Specific Languages for Machine Learning in Big Data

    OpenAIRE

    Portugal, Ivens; Alencar, Paulo; Cowan, Donald

    2016-01-01

    The amount of data generated in the modern society is increasing rapidly. New problems and novel approaches of data capture, storage, analysis and visualization are responsible for the emergence of the Big Data research field. Machine Learning algorithms can be used in Big Data to make better and more accurate inferences. However, because of the challenges Big Data imposes, these algorithms need to be adapted and optimized to specific applications. One important decision made by software engi...

  16. Student Agency: an Analysis of Students' Networked Relations Across the Informal and Formal Learning Domains

    Science.gov (United States)

    Rappa, Natasha Anne; Tang, Kok-Sing

    2017-06-01

    Agency is a construct facilitating our examination of when and how young people extend their own learning across contexts. However, little is known about the role played by adolescent learners' sense of agency. This paper reports two cases of students' agentively employing and developing science literacy practices—one in Singapore and the other in the USA. The paper illustrates how these two adolescent learners in different ways creatively accessed, navigated and integrated in-school and out-of-school discourses to support and nurture their learning of physics. Data were gleaned from students' work and interviews with students participating in a physics curricular programme in which they made linkages between their chosen out-of-school texts and several physics concepts learnt in school. The students' agentive moves were identified by means of situational mapping, which involved a relational analysis of the students' chosen artefacts and discourses across time and space. This relational analysis enabled us to address questions of student agency—how it can be effected, realised, construed and examined. It highlights possible ways to intervene in these networked relations to facilitate adolescents' agentive moves in their learning endeavours.

  17. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.

    Science.gov (United States)

    Oluwadare, Oluwatosin; Cheng, Jianlin

    2017-11-14

    With the development of chromosomal conformation capturing techniques, particularly, the Hi-C technique, the study of the spatial conformation of a genome is becoming an important topic in bioinformatics and computational biology. The Hi-C technique can generate genome-wide chromosomal interaction (contact) data, which can be used to investigate the higher-level organization of chromosomes, such as Topologically Associated Domains (TAD), i.e., locally packed chromosome regions bounded together by intra chromosomal contacts. The identification of the TADs for a genome is useful for studying gene regulation, genomic interaction, and genome function. Here, we formulate the TAD identification problem as an unsupervised machine learning (clustering) problem, and develop a new TAD identification method called ClusterTAD. We introduce a novel method to represent chromosomal contacts as features to be used by the clustering algorithm. Our results show that ClusterTAD can accurately predict the TADs on a simulated Hi-C data. Our method is also largely complementary and consistent with existing methods on the real Hi-C datasets of two mouse cells. The validation with the chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq) data shows that the domain boundaries identified by ClusterTAD have a high enrichment of CTCF binding sites, promoter-related marks, and enhancer-related histone modifications. As ClusterTAD is based on a proven clustering approach, it opens a new avenue to apply a large array of clustering methods developed in the machine learning field to the TAD identification problem. The source code, the results, and the TADs generated for the simulated and real Hi-C datasets are available here: https://github.com/BDM-Lab/ClusterTAD .

  18. Machine learning approaches to evaluate correlation patterns in allosteric signaling: A case study of the PDZ2 domain

    Science.gov (United States)

    Botlani, Mohsen; Siddiqui, Ahnaf; Varma, Sameer

    2018-06-01

    Many proteins are regulated by dynamic allostery wherein regulator-induced changes in structure are comparable with thermal fluctuations. Consequently, understanding their mechanisms requires assessment of relationships between and within conformational ensembles of different states. Here we show how machine learning based approaches can be used to simplify this high-dimensional data mining task and also obtain mechanistic insight. In particular, we use these approaches to investigate two fundamental questions in dynamic allostery. First, how do regulators modify inter-site correlations in conformational fluctuations (Cij)? Second, how are regulator-induced shifts in conformational ensembles at two different sites in a protein related to each other? We address these questions in the context of the human protein tyrosine phosphatase 1E's PDZ2 domain, which is a model protein for studying dynamic allostery. We use molecular dynamics to generate conformational ensembles of the PDZ2 domain in both the regulator-bound and regulator-free states. The employed protocol reproduces methyl deuterium order parameters from NMR. Results from unsupervised clustering of Cij combined with flow analyses of weighted graphs of Cij show that regulator binding significantly alters the global signaling network in the protein; however, not by altering the spatial arrangement of strongly interacting amino acid clusters but by modifying the connectivity between clusters. Additionally, we find that regulator-induced shifts in conformational ensembles, which we evaluate by repartitioning ensembles using supervised learning, are, in fact, correlated. This correlation Δij is less extensive compared to Cij, but in contrast to Cij, Δij depends inversely on the distance from the regulator binding site. Assuming that Δij is an indicator of the transduction of the regulatory signal leads to the conclusion that the regulatory signal weakens with distance from the regulatory site. Overall, this

  19. Creating a Context for Learning: Activating Children’s Whole Number Knowledge Prepares Them to Understand Fraction Division

    Directory of Open Access Journals (Sweden)

    Pooja Gupta Sidney

    2017-07-01

    Full Text Available When children learn about fractions, their prior knowledge of whole numbers often interferes, resulting in a whole number bias. However, many fraction concepts are generalizations of analogous whole number concepts; for example, fraction division and whole number division share a similar conceptual structure. Drawing on past studies of analogical transfer, we hypothesize that children’s whole number division knowledge will support their understanding of fraction division when their relevant prior knowledge is activated immediately before engaging with fraction division. Children in 5th and 6th grade modeled fraction division with physical objects after modeling a series of addition, subtraction, multiplication, and division problems with whole number operands and fraction operands. In one condition, problems were blocked by operation, such that children modeled fraction problems immediately after analogous whole number problems (e.g., fraction division problems followed whole number division problems. In another condition, problems were blocked by number type, such that children modeled all four arithmetic operations with whole numbers in the first block, and then operations with fractions in the second block. Children who solved whole number division problems immediately before fraction division problems were significantly better at modeling the conceptual structure of fraction division than those who solved all of the fraction problems together. Thus, implicit analogies across shared concepts can affect children’s mathematical thinking. Moreover, specific analogies between whole number and fraction concepts can yield a positive, rather than a negative, whole number bias.

  20. Transform- and multi-domain deep learning for single-frame rapid autofocusing in whole slide imaging.

    Science.gov (United States)

    Jiang, Shaowei; Liao, Jun; Bian, Zichao; Guo, Kaikai; Zhang, Yongbing; Zheng, Guoan

    2018-04-01

    A whole slide imaging (WSI) system has recently been approved for primary diagnostic use in the US. The image quality and system throughput of WSI is largely determined by the autofocusing process. Traditional approaches acquire multiple images along the optical axis and maximize a figure of merit for autofocusing. Here we explore the use of deep convolution neural networks (CNNs) to predict the focal position of the acquired image without axial scanning. We investigate the autofocusing performance with three illumination settings: incoherent Kohler illumination, partially coherent illumination with two plane waves, and one-plane-wave illumination. We acquire ~130,000 images with different defocus distances as the training data set. Different defocus distances lead to different spatial features of the captured images. However, solely relying on the spatial information leads to a relatively bad performance of the autofocusing process. It is better to extract defocus features from transform domains of the acquired image. For incoherent illumination, the Fourier cutoff frequency is directly related to the defocus distance. Similarly, autocorrelation peaks are directly related to the defocus distance for two-plane-wave illumination. In our implementation, we use the spatial image, the Fourier spectrum, the autocorrelation of the spatial image, and combinations thereof as the inputs for the CNNs. We show that the information from the transform domains can improve the performance and robustness of the autofocusing process. The resulting focusing error is ~0.5 µm, which is within the 0.8-µm depth-of-field range. The reported approach requires little hardware modification for conventional WSI systems and the images can be captured on the fly without focus map surveying. It may find applications in WSI and time-lapse microscopy. The transform- and multi-domain approaches may also provide new insights for developing microscopy-related deep-learning networks. We have made

  1. Evaluation of different time domain peak models using extreme learning machine-based peak detection for EEG signal.

    Science.gov (United States)

    Adam, Asrul; Ibrahim, Zuwairie; Mokhtar, Norrima; Shapiai, Mohd Ibrahim; Cumming, Paul; Mubin, Marizan

    2016-01-01

    Various peak models have been introduced to detect and analyze peaks in the time domain analysis of electroencephalogram (EEG) signals. In general, peak model in the time domain analysis consists of a set of signal parameters, such as amplitude, width, and slope. Models including those proposed by Dumpala, Acir, Liu, and Dingle are routinely used to detect peaks in EEG signals acquired in clinical studies of epilepsy or eye blink. The optimal peak model is the most reliable peak detection performance in a particular application. A fair measure of performance of different models requires a common and unbiased platform. In this study, we evaluate the performance of the four different peak models using the extreme learning machine (ELM)-based peak detection algorithm. We found that the Dingle model gave the best performance, with 72 % accuracy in the analysis of real EEG data. Statistical analysis conferred that the Dingle model afforded significantly better mean testing accuracy than did the Acir and Liu models, which were in the range 37-52 %. Meanwhile, the Dingle model has no significant difference compared to Dumpala model.

  2. Deep learning methods for CT image-domain metal artifact reduction

    Science.gov (United States)

    Gjesteby, Lars; Yang, Qingsong; Xi, Yan; Shan, Hongming; Claus, Bernhard; Jin, Yannan; De Man, Bruno; Wang, Ge

    2017-09-01

    Artifacts resulting from metal objects have been a persistent problem in CT images over the last four decades. A common approach to overcome their effects is to replace corrupt projection data with values synthesized from an interpolation scheme or by reprojection of a prior image. State-of-the-art correction methods, such as the interpolation- and normalization-based algorithm NMAR, often do not produce clinically satisfactory results. Residual image artifacts remain in challenging cases and even new artifacts can be introduced by the interpolation scheme. Metal artifacts continue to be a major impediment, particularly in radiation and proton therapy planning as well as orthopedic imaging. A new solution to the long-standing metal artifact reduction (MAR) problem is deep learning, which has been successfully applied to medical image processing and analysis tasks. In this study, we combine a convolutional neural network (CNN) with the state-of-the-art NMAR algorithm to reduce metal streaks in critical image regions. Training data was synthesized from CT simulation scans of a phantom derived from real patient images. The CNN is able to map metal-corrupted images to artifact-free monoenergetic images to achieve additional correction on top of NMAR for improved image quality. Our results indicate that deep learning is a novel tool to address CT reconstruction challenges, and may enable more accurate tumor volume estimation for radiation therapy planning.

  3. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning.

    Science.gov (United States)

    Treder, Maximilian; Lauermann, Jost Lennart; Eter, Nicole

    2018-02-01

    Our purpose was to use deep learning for the automated detection of age-related macular degeneration (AMD) in spectral domain optical coherence tomography (SD-OCT). A total of 1112 cross-section SD-OCT images of patients with exudative AMD and a healthy control group were used for this study. In the first step, an open-source multi-layer deep convolutional neural network (DCNN), which was pretrained with 1.2 million images from ImageNet, was trained and validated with 1012 cross-section SD-OCT scans (AMD: 701; healthy: 311). During this procedure training accuracy, validation accuracy and cross-entropy were computed. The open-source deep learning framework TensorFlow™ (Google Inc., Mountain View, CA, USA) was used to accelerate the deep learning process. In the last step, a created DCNN classifier, using the information of the above mentioned deep learning process, was tested in detecting 100 untrained cross-section SD-OCT images (AMD: 50; healthy: 50). Therefore, an AMD testing score was computed: 0.98 or higher was presumed for AMD. After an iteration of 500 training steps, the training accuracy and validation accuracies were 100%, and the cross-entropy was 0.005. The average AMD scores were 0.997 ± 0.003 in the AMD testing group and 0.9203 ± 0.085 in the healthy comparison group. The difference between the two groups was highly significant (p deep learning-based approach using TensorFlow™, it is possible to detect AMD in SD-OCT with high sensitivity and specificity. With more image data, an expansion of this classifier for other macular diseases or further details in AMD is possible, suggesting an application for this model as a support in clinical decisions. Another possible future application would involve the individual prediction of the progress and success of therapy for different diseases by automatically detecting hidden image information.

  4. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism.

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-11-24

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behaviour and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behaviour deficits. We find that in patDp/+ mice delay eyeblink conditioning--a form of cerebellum-dependent motor learning--is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fibre-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibres--a model for activity-dependent synaptic pruning--is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism.

  5. A hand full of numbers: a role for offloading in arithmetics learning?

    Directory of Open Access Journals (Sweden)

    Annelise Júlio Costa

    2011-12-01

    Full Text Available Finger counting has been associated to arithmetic learning in children. We examined children with (n = 14 and without (n = 84 mathematics learning difficulties with ages between 8 to 11 years. Deficits in finger gnosia were found in association to mathematical difficulties. Finger gnosia is particularly relevant for the performance in word problems requiring active manipulation of small magnitudes in the range between 1 and 10. Moreover, the deficits in finger gnosia cannot be attributed to a shortage in working memory capacity but rather to a specific inability to use fingers to transiently represent magnitudes, tagging to be counted objects and reducing the cognitive load necessary to solve arithmetic problems. Since finger gnosia is more related to symbolic than to nonsymbolic magnitude processing, finger-related representation of magnitude seems to be an important link for learning the mapping of analog onto discrete symbolic magnitudes.

  6. Postnatal Loss of Mef2c Results in Dissociation of Effects on Synapse Number and Learning and Memory.

    Science.gov (United States)

    Adachi, Megumi; Lin, Pei-Yi; Pranav, Heena; Monteggia, Lisa M

    2016-07-15

    Myocyte enhancer factor 2 (MEF2) transcription factors play critical roles in diverse cellular processes during central nervous system development. Studies attempting to address the role of MEF2 in brain have largely relied on overexpression of a constitutive MEF2 construct that impairs memory formation or knockdown of MEF2 function that increases spine numbers and enhances memory formation. Genetic deletion of individual MEF2 isoforms in brain during embryogenesis demonstrated that Mef2c loss negatively regulates spine numbers resulting in learning and memory deficits, possibly as a result of its essential role in development. To investigate MEF2C function in brain further, we genetically deleted Mef2c during postnatal development in mice. We characterized these conditional Mef2c knockout mice in an array of behavioral paradigms and examined the impact of postnatal loss of Mef2c on long-term potentiation. We observed increased spine numbers in hippocampus of the conditional Mef2c knockout mice. However, the postnatal loss of Mef2c did not impact learning and memory, long-term potentiation, or social and repetitive behaviors. Our findings demonstrate a critical role for MEF2C in the regulation of spine numbers with a dissociation of learning and memory, synaptic plasticity, and measures of autism-related behaviors in postnatal brain. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. The Moderating Role of Non-Controlling Supervision and Organizational Learning Culture on Employee Creativity: The Influences of Domain Expertise and Creative Personality

    Science.gov (United States)

    Jeong, Shinhee; McLean, Gary N.; McLean, Laird D.; Yoo, Sangok; Bartlett, Kenneth

    2017-01-01

    Purpose: By adopting a multilevel approach, this paper aims to examine the relationships among employee creativity and creative personality, domain expertise (i.e. individual-level factors), non-controlling supervision style and organizational learning culture (i.e. team-level factors). It also investigates the cross-level interactions between…

  8. Exploring the Deep-Level Reasoning Questions Effect during Vicarious Learning among Eighth to Eleventh Graders in the Domains of Computer Literacy and Newtonian Physics

    Science.gov (United States)

    Gholson, Barry; Witherspoon, Amy; Morgan, Brent; Brittingham, Joshua K.; Coles, Robert; Graesser, Arthur C.; Sullins, Jeremiah; Craig, Scotty D.

    2009-01-01

    This paper tested the deep-level reasoning questions effect in the domains of computer literacy between eighth and tenth graders and Newtonian physics for ninth and eleventh graders. This effect claims that learning is facilitated when the materials are organized around questions that invite deep-reasoning. The literature indicates that vicarious…

  9. Friendship Predictors of Global Self-Worth and Domain-Specific Self-Concepts in University Students with and without Learning Disability

    Science.gov (United States)

    Shany, Michal; Wiener, Judith; Assido, Michal

    2013-01-01

    This study investigated the association among friendship, global self-worth, and domain-specific self-concepts in 102 university students with and without learning disabilities (LD). Students with LD reported lower global self-worth and academic self-concept than students without LD, and this difference was greater for women. Students with LD also…

  10. Thinking Beyond Numbers: Learning Numeracy for the Future Workplace. An Adult Literacy National Project Report

    Science.gov (United States)

    Marr, Beth; Hagston, Jan

    2007-01-01

    The use, learning and transfer of workplace numeracy skills, as well as current understandings of the term numeracy, are examined in this study. It also highlights the importance of numeracy as an essential workplace skill. The report challenges the training system and training organisations to provide numeracy training which makes links directly…

  11. The Indonesian's Road Transportations as the Contexts to Support Primary School Students Learning Number Operation

    Science.gov (United States)

    Kairuddin; Darmawijoyo

    2011-01-01

    This paper highlights the Indonesian's road transportation contexts, namely, angkot, that used in learning and teaching of addition and subtraction in first grade and second grade MIN-2 Palembang. PMRI approach that adopt from RME [Realistic Mathematics Education] was used in this design research. From teaching experiment was founded that the…

  12. Learning Activity Package, Physical Science. LAP Numbers 8, 9, 10, and 11.

    Science.gov (United States)

    Williams, G. J.

    These four units of the Learning Activity Packages (LAPs) for individualized instruction in physical science cover nuclear reactions, alpha and beta particles, atomic radiation, medical use of nuclear energy, fission, fusion, simple machines, Newton's laws of motion, electricity, currents, electromagnetism, Oersted's experiment, sound, light,…

  13. Service-Learning. National Dropout Prevention Center/Network Newsletter. Volume 22, Number 4

    Science.gov (United States)

    Duckenfield, Marty, Ed.

    2011-01-01

    The "National Dropout Prevention Newsletter" is published quarterly by the National Dropout Prevention Center/Network. This issue contains the following articles: (1) Dropouts and Democracy (Robert Shumer); (2) 2011 NDPN Crystal Star Winners; (3) Service-Learning as Dropout Intervention and More (Michael VanKeulen); and (4) Teacher…

  14. Educational Objectives and the Learning Domains: A New Formulation [And] Summary: Pierce-Gray Classification Model for the Cognitive, Affective and Psychomotor Domains.

    Science.gov (United States)

    Gray, Charles E.; Pierce, Walter D.

    This paper examines and summarizes the "Pierce-Gray Classification Model for the Cognitive, Affective, and Psychomotor Domains," a model developed for the classification of educational objectives. The classification system was developed to provide a framework that teachers could use as a guide when developing specific instructional objectives for…

  15. Active learning in engineering design education by linking the digital and physical domain

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Schreiber, Mads Peter; Jensen, Marc Podzimski

    2012-01-01

    of the object geometry in 3D computer programs and finally print out in a 3D printer or manufacture on a CNC machining center. A number of real world design cases will be demonstrated e.g. design configured to man-equipment interface, spectacular combinations of different products to a new product and also...... simple redesign of existing products. The participants will have the opportunity to get a hands-on experience with the involved equipment and also talk to students working in the Design Studio.......This hands-on session in the Design Studio of Copenhagen University College of Engineering (IHK) demonstrates how state-of -the-art hard- and soft-ware equipment for 3D laser scanning and rapid prototyping is used to enhance the motivation and engagement of students of the engineering design...

  16. PACE: Probabilistic Assessment for Contributor Estimation- A machine learning-based assessment of the number of contributors in DNA mixtures.

    Science.gov (United States)

    Marciano, Michael A; Adelman, Jonathan D

    2017-03-01

    The deconvolution of DNA mixtures remains one of the most critical challenges in the field of forensic DNA analysis. In addition, of all the data features required to perform such deconvolution, the number of contributors in the sample is widely considered the most important, and, if incorrectly chosen, the most likely to negatively influence the mixture interpretation of a DNA profile. Unfortunately, most current approaches to mixture deconvolution require the assumption that the number of contributors is known by the analyst, an assumption that can prove to be especially faulty when faced with increasingly complex mixtures of 3 or more contributors. In this study, we propose a probabilistic approach for estimating the number of contributors in a DNA mixture that leverages the strengths of machine learning. To assess this approach, we compare classification performances of six machine learning algorithms and evaluate the model from the top-performing algorithm against the current state of the art in the field of contributor number classification. Overall results show over 98% accuracy in identifying the number of contributors in a DNA mixture of up to 4 contributors. Comparative results showed 3-person mixtures had a classification accuracy improvement of over 6% compared to the current best-in-field methodology, and that 4-person mixtures had a classification accuracy improvement of over 20%. The Probabilistic Assessment for Contributor Estimation (PACE) also accomplishes classification of mixtures of up to 4 contributors in less than 1s using a standard laptop or desktop computer. Considering the high classification accuracy rates, as well as the significant time commitment required by the current state of the art model versus seconds required by a machine learning-derived model, the approach described herein provides a promising means of estimating the number of contributors and, subsequently, will lead to improved DNA mixture interpretation. Copyright © 2016

  17. COMPARISON THE NUMBER OF BACTERIA BETWEEN WASHING HANDS USING SOAP AND HAND SANITIZER AS A BACTERIOLOGY LEARNING RESOURCE FOR STUDENTS

    OpenAIRE

    Satya Darmayani; Askrening Askrening; Apita Ariyani

    2017-01-01

    Hands are the principal carriers of bacterial diseases, therefore very important to know that washing hands with soap or hand sanitizer is highly effective healthy behaviors to reduce bacteria in the palm. This study aimed to determine the total number of bacteria between washing hands with soap and hand sanitizer, also applying the results of these studies as a learning resource in bacteriology. The research design was the true experiment with pretest-posttest control group research design a...

  18. Number line estimation strategies in children with mathematical learning difficulties measured by eye tracking

    NARCIS (Netherlands)

    van 't Noordende, Jaccoline E|info:eu-repo/dai/nl/369862422; van Hoogmoed, Anne H|info:eu-repo/dai/nl/314839496; Schot, Willemijn D; Kroesbergen, Evelyn H|info:eu-repo/dai/nl/241607949

    INTRODUCTION: Number line estimation is one of the skills related to mathematical performance. Previous research has shown that eye tracking can be used to identify differences in the estimation strategies children with dyscalculia and children with typical mathematical development use on number

  19. Number line estimation strategies in children with mathematical learning difficulties measured by eye tracking

    NARCIS (Netherlands)

    van’t Noordende, Jaccoline E.; van Hoogmoed, Anne H.; Schot, Willemijn D.; Kroesbergen, Evelyn H.

    2016-01-01

    Introduction: Number line estimation is one of the skills related to mathematical performance. Previous research has shown that eye tracking can be used to identify differences in the estimation strategies children with dyscalculia and children with typical mathematical development use on number

  20. Sensitivity and specificity of machine learning classifiers for glaucoma diagnosis using Spectral Domain OCT and standard automated perimetry

    Directory of Open Access Journals (Sweden)

    Fabrício R. Silva

    2013-06-01

    Full Text Available PURPOSE: To evaluate the sensitivity and specificity of machine learning classifiers (MLCs for glaucoma diagnosis using Spectral Domain OCT (SD-OCT and standard automated perimetry (SAP. METHODS: Observational cross-sectional study. Sixty two glaucoma patients and 48 healthy individuals were included. All patients underwent a complete ophthalmologic examination, achromatic standard automated perimetry (SAP and retinal nerve fiber layer (RNFL imaging with SD-OCT (Cirrus HD-OCT; Carl Zeiss Meditec Inc., Dublin, California. Receiver operating characteristic (ROC curves were obtained for all SD-OCT parameters and global indices of SAP. Subsequently, the following MLCs were tested using parameters from the SD-OCT and SAP: Bagging (BAG, Naive-Bayes (NB, Multilayer Perceptron (MLP, Radial Basis Function (RBF, Random Forest (RAN, Ensemble Selection (ENS, Classification Tree (CTREE, Ada Boost M1(ADA,Support Vector Machine Linear (SVML and Support Vector Machine Gaussian (SVMG. Areas under the receiver operating characteristic curves (aROC obtained for isolated SAP and OCT parameters were compared with MLCs using OCT+SAP data. RESULTS: Combining OCT and SAP data, MLCs' aROCs varied from 0.777(CTREE to 0.946 (RAN.The best OCT+SAP aROC obtained with RAN (0.946 was significantly larger the best single OCT parameter (p<0.05, but was not significantly different from the aROC obtained with the best single SAP parameter (p=0.19. CONCLUSION: Machine learning classifiers trained on OCT and SAP data can successfully discriminate between healthy and glaucomatous eyes. The combination of OCT and SAP measurements improved the diagnostic accuracy compared with OCT data alone.

  1. THE CONSTRUCT, INTRODUCTION AND SITUATE OF RUDIMENTARY NUMBER SKILLS FOR CHILDREN IN NUMERACY LEARNING OUTCOMES

    OpenAIRE

    Adeleke, A. G.; Jegede, P. O.; Ajayi, H. O.

    2017-01-01

    The competence and positive disposition development toward mathematic subject has been observed an uphill task to learners across educational endeavors despite its need in life at home, paid work, participation in community and civic life. The Nigerian Education Policy (2013) made numeracy an important aspect of the specific objectives of primary education in Nigeria. However, the teaching-learning processes lithely attend to specification(s) of utilities. In Nigeria, most schools lack instru...

  2. Life on the Number Line: Routes to Understanding Fraction Magnitude for Students With Difficulties Learning Mathematics.

    Science.gov (United States)

    Gersten, Russell; Schumacher, Robin F; Jordan, Nancy C

    Magnitude understanding is critical for students to develop a deep understanding of fractions and more advanced mathematics curriculum. The research reports in this special issue underscore magnitude understanding for fractions and emphasize number lines as both an assessment and an instructional tool. In this commentary, we discuss how number lines broaden the concept of fractions for students who are tied to the more general part-whole representations of area models. We also discuss how number lines, compared to other representations, are a superior and more mathematically correct way to explain fraction concepts.

  3. Eksperimentasi Model Pembelajaran Kooperatif Tipe Numbered Head Together (Nht) Dengan Assessment for Learning (Afl) Melalui Penilaian Teman Sejawat Pada Materi Persamaan Garis Ditinjau Dari Kreativitas Belajar Matematika Siswa Mtsn Di Kabupaten Sragen

    OpenAIRE

    Muntasyir, Sholeh; Budiyono, Budiyono; Usodo, Budi

    2014-01-01

    This research is aimed to view: (1) which gives a better learning achievement, learning Numbered Head Together (NHT) with the AfL through peer assessment, NHT or direct learning, (2) which gives better achievement, low, medium or high level creativity in mathematics learning, (3) which has better mathematics learning achievement, student having low, medium or high learning creativity on each learning model, (4) which learning model gives better achievement in learning mathematics, learning m...

  4. Two memory associated genes regulated by amyloid precursor protein intracellular domain ovel insights into the pathogenesis of learning and memory impairment in Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    Chuandong Zheng; Xi Gu; Zhimei Zhong; Rui Zhu; Tianming Gao; Fang Wang

    2012-01-01

    In this study, we employed chromatin immunoprecipitation, a useful method for studying the locations of transcription factors bound to specific DNA regions in specific cells, to investigate amyloid precursor protein intracellular domain binding sites in chromatin DNA from hippocampal neurons of rats, and to screen out five putative genes associated with the learning and memory functions. The promoter regions of the calcium/calmodulin-dependent protein kinase II alpha and glutamate receptor-2 genes were amplified by PCR from DNA products immunoprecipitated by amyloid precursor protein intracellular domain. An electrophoretic mobility shift assay and western blot analysis suggested that the promoter regions of these two genes associated with learning and memory were bound by amyloid precursor protein intracellular domain (in complex form). Our experimental findings indicate that the amyloid precursor protein intracellular domain is involved in the transcriptional regulation of learning- and memory-associated genes in hippocampal neurons. These data may provide new insights into the molecular mechanism underlying the symptoms of progressive memory loss in Alzheimer's disease.

  5. AN ANALYSIS OF NUMBER SENSE AND MENTAL COMPUTATION IN THE LEARNING OF MATHEMATICS

    Directory of Open Access Journals (Sweden)

    Parmit Singh Aperapar

    2011-04-01

    Full Text Available The purpose of this research was to assess students’ understanding of number sense and mental computation among Form One, Form Two, Form Three and Form Four students. A total of 1756 students, ages ranging from 12 to 17 years, from thirteen schools in Selangor participated in this study. A majority (74.9% of these students obtained an A grade for their respective year-end school examinations. The design for this study was quantitative in nature where the data on student’s sense of numbers was collected using two instruments, namely, Number Sense Test and Mental Computation Test. Each of these instruments consisted of 50 and 45 items respectively. The results from this study indicate that students were not able to cope to the Number Sense Test as compared to the Mental Computation Test. The former unveils a low percentage of 37.3% to 47.7% as compared to the latter of 79% to 88.6% across the levels. In the number Sense Test, surprisingly, there was no significant difference in the results between Form 1 students and Form 2 students and also between Form 3 students and Form 4 students. This seems to indicate that as the number of years in schools increase, there is an increasing reliance on algorithm and procedures. Although in the literature it has been argued that including mental computation in a mathematics curriculum promotes number sense (McIntosh et. al., 1997; Reys, Reys, Nohda, & Emori, 2005, this was not the case in this study. It seems that an over reliance on paper and pencil computation at the expense of intuitive understanding of numbers is taking place among these students.

  6. "I know your name, but not your number"--Patients with verbal short-term memory deficits are impaired in learning sequences of digits.

    Science.gov (United States)

    Bormann, Tobias; Seyboth, Margret; Umarova, Roza; Weiller, Cornelius

    2015-06-01

    Studies on verbal learning in patients with impaired verbal short-term memory (vSTM) have revealed dissociations among types of verbal information. Patients with impaired vSTM are able to learn lists of known words but fail to acquire new word forms. This suggests that vSTM is involved in new word learning. The present study assessed both new word learning and the learning of digit sequences in two patients with impaired vSTM. In two experiments, participants were required to learn people's names, ages and professions, or their four digit 'phone numbers'. The STM patients were impaired on learning unknown family names and phone numbers, but managed to acquire other verbal information. In contrast, a patient with a severe verbal episodic memory impairment was impaired across information types. These results indicate verbal STM involvement in the learning of digit sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism

    Science.gov (United States)

    Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian

    2014-01-01

    A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414

  8. Domains and domain loss

    DEFF Research Database (Denmark)

    Haberland, Hartmut

    2005-01-01

    politicians and in the media, especially in the discussion whether some languages undergo ‘domain loss’ vis-à-vis powerful international languages like English. An objection that has been raised here is that domains, as originally conceived, are parameters of language choice and not properties of languages...

  9. Procedural-Based Category Learning in Patients with Parkinson's Disease: Impact of Category Number and Category Continuity

    Directory of Open Access Journals (Sweden)

    J. Vincent eFiloteo

    2014-02-01

    Full Text Available Previously we found that Parkinson's disease (PD patients are impaired in procedural-based category learning when category membership is defined by a nonlinear relationship between stimulus dimensions, but these same patients are normal when the rule is defined by a linear relationship (Filoteo et al., 2005; Maddox & Filoteo, 2001. We suggested that PD patients' impairment was due to a deficit in recruiting ‘striatal units' to represent complex nonlinear rules. In the present study, we further examined the nature of PD patients' procedural-based deficit in two experiments designed to examine the impact of (1 the number of categories, and (2 category discontinuity on learning. Results indicated that PD patients were impaired only under discontinuous category conditions but were normal when the number of categories was increased from two to four. The lack of impairment in the four-category condition suggests normal integrity of striatal medium spiny cells involved in procedural-based category learning. In contrast, and consistent with our previous observation of a nonlinear deficit, the finding that PD patients were impaired in the discontinuous condition suggests that these patients are impaired when they have to associate perceptually distinct exemplars with the same category. Theoretically, this deficit might be related to dysfunctional communication among medium spiny neurons within the striatum, particularly given that these are cholinergic neurons and a cholinergic deficiency could underlie some of PD patients’ cognitive impairment.

  10. Learning Binomial Probability Concepts with Simulation, Random Numbers and a Spreadsheet

    Science.gov (United States)

    Rochowicz, John A., Jr.

    2005-01-01

    This paper introduces the reader to the concepts of binomial probability and simulation. A spreadsheet is used to illustrate these concepts. Random number generators are great technological tools for demonstrating the concepts of probability. Ideas of approximation, estimation, and mathematical usefulness provide numerous ways of learning…

  11. Adaptive social learning strategies in temporally and spatially varying environments : how temporal vs. spatial variation, number of cultural traits, and costs of learning influence the evolution of conformist-biased transmission, payoff-biased transmission, and individual learning.

    Science.gov (United States)

    Nakahashi, Wataru; Wakano, Joe Yuichiro; Henrich, Joseph

    2012-12-01

    Long before the origins of agriculture human ancestors had expanded across the globe into an immense variety of environments, from Australian deserts to Siberian tundra. Survival in these environments did not principally depend on genetic adaptations, but instead on evolved learning strategies that permitted the assembly of locally adaptive behavioral repertoires. To develop hypotheses about these learning strategies, we have modeled the evolution of learning strategies to assess what conditions and constraints favor which kinds of strategies. To build on prior work, we focus on clarifying how spatial variability, temporal variability, and the number of cultural traits influence the evolution of four types of strategies: (1) individual learning, (2) unbiased social learning, (3) payoff-biased social learning, and (4) conformist transmission. Using a combination of analytic and simulation methods, we show that spatial-but not temporal-variation strongly favors the emergence of conformist transmission. This effect intensifies when migration rates are relatively high and individual learning is costly. We also show that increasing the number of cultural traits above two favors the evolution of conformist transmission, which suggests that the assumption of only two traits in many models has been conservative. We close by discussing how (1) spatial variability represents only one way of introducing the low-level, nonadaptive phenotypic trait variation that so favors conformist transmission, the other obvious way being learning errors, and (2) our findings apply to the evolution of conformist transmission in social interactions. Throughout we emphasize how our models generate empirical predictions suitable for laboratory testing.

  12. Designing on-demand education for simultaneous development of domain-specific and self-directed learning skills

    NARCIS (Netherlands)

    Taminiau, E.M.C.; Kester, L.; Corbalan Perez, G.; Spector, J.M.; Kirschner, P.A.; Merriënboer, J.J.G. van

    2015-01-01

    On-demand education enables individual learners to choose their learning pathways according to their own learning needs. They must use self-directed learning (SDL) skills involving self-assessment and task selection to determine appropriate pathways for learning. Learners who lack these skills must

  13. Designing on-demand education for simultaneous development of domain-specific and self-directed learning skills

    NARCIS (Netherlands)

    Taminiau, Bettine; Kester, Liesbeth; Corbalan, Gemma; Spector, J. Michael; Kirschner, Paul A.; Van Merriënboer, Jeroen

    2016-01-01

    On-demand education enables individual learners to choose their learning pathways according to their own learning needs. They must use self-directed learning (SDL) skills involving self-assessment and task selection to determine appropriate pathways for learning. Learners who lack these skills must

  14. COMPARISON THE NUMBER OF BACTERIA BETWEEN WASHING HANDS USING SOAP AND HAND SANITIZER AS A BACTERIOLOGY LEARNING RESOURCE FOR STUDENTS

    Directory of Open Access Journals (Sweden)

    Satya Darmayani

    2017-11-01

    Full Text Available Hands are the principal carriers of bacterial diseases, therefore very important to know that washing hands with soap or hand sanitizer is highly effective healthy behaviors to reduce bacteria in the palm. This study aimed to determine the total number of bacteria between washing hands with soap and hand sanitizer, also applying the results of these studies as a learning resource in bacteriology. The research design was the true experiment with pretest-posttest control group research design and laboratory examination. Analysis of data using paired t-test and independent sample t-test with α = 0.05. The result using paired t-test obtained t count= 2.48921> t 0.05 (14 = 2.14479 (with liquid soap, obtained t count= 2.32937> t 0.05 (14 = 2.14479 (with hand sanitizer. As for the comparison of the total number of bacteria include washing hands with soap and hand sanitizer using independent samples t-test obtained results there were differences in the total number of bacteria include washing hands with liquid soap and hand sanitizer with t count= 2.23755> t 0.05 ( 13 = 2.16037. That results showed hand sanitizer more effective to reduce the number of bacteria than the liquid soap, that was hand sanitizer 96% and liquid soap by 95%.

  15. DEEPre: sequence-based enzyme EC number prediction by deep learning

    KAUST Repository

    Li, Yu

    2017-10-20

    Annotation of enzyme function has a broad range of applications, such as metagenomics, industrial biotechnology, and diagnosis of enzyme deficiency-caused diseases. However, the time and resource required make it prohibitively expensive to experimentally determine the function of every enzyme. Therefore, computational enzyme function prediction has become increasingly important. In this paper, we develop such an approach, determining the enzyme function by predicting the Enzyme Commission number.We propose an end-to-end feature selection and classification model training approach, as well as an automatic and robust feature dimensionality uniformization method, DEEPre, in the field of enzyme function prediction. Instead of extracting manuallycrafted features from enzyme sequences, our model takes the raw sequence encoding as inputs, extracting convolutional and sequential features from the raw encoding based on the classification result to directly improve the prediction performance. The thorough cross-fold validation experiments conducted on two large-scale datasets show that DEEPre improves the prediction performance over the previous state-of-the-art methods. In addition, our server outperforms five other servers in determining the main class of enzymes on a separate low-homology dataset. Two case studies demonstrate DEEPre\\'s ability to capture the functional difference of enzyme isoforms.The server could be accessed freely at http://www.cbrc.kaust.edu.sa/DEEPre.

  16. DEEPre: sequence-based enzyme EC number prediction by deep learning

    KAUST Repository

    Li, Yu; Wang, Sheng; Umarov, Ramzan; Xie, Bingqing; Fan, Ming; Li, Lihua; Gao, Xin

    2017-01-01

    Annotation of enzyme function has a broad range of applications, such as metagenomics, industrial biotechnology, and diagnosis of enzyme deficiency-caused diseases. However, the time and resource required make it prohibitively expensive to experimentally determine the function of every enzyme. Therefore, computational enzyme function prediction has become increasingly important. In this paper, we develop such an approach, determining the enzyme function by predicting the Enzyme Commission number.We propose an end-to-end feature selection and classification model training approach, as well as an automatic and robust feature dimensionality uniformization method, DEEPre, in the field of enzyme function prediction. Instead of extracting manuallycrafted features from enzyme sequences, our model takes the raw sequence encoding as inputs, extracting convolutional and sequential features from the raw encoding based on the classification result to directly improve the prediction performance. The thorough cross-fold validation experiments conducted on two large-scale datasets show that DEEPre improves the prediction performance over the previous state-of-the-art methods. In addition, our server outperforms five other servers in determining the main class of enzymes on a separate low-homology dataset. Two case studies demonstrate DEEPre's ability to capture the functional difference of enzyme isoforms.The server could be accessed freely at http://www.cbrc.kaust.edu.sa/DEEPre.

  17. Learning from jellyfish: Fluid transport in muscular pumps at intermediate Reynolds numbers

    Science.gov (United States)

    Nawroth, Janna; Dabiri, John

    2010-11-01

    Biologically inspired hydrodynamic propulsion and maneuvering strategies promise the advancement of medical implants and minimally invasive clinical tools. We have chosen juvenile jellyfish as a model system for investigating fluid dynamics and morphological properties underlying fluid transport by a muscular pump at intermediate Reynolds numbers. Recently we have described how natural variations in viscous forces are balanced by changes in jellyfish body shape (phenotypic plasticity), to the effect of facilitating efficient body-fluid interaction. Complementing these studies in our live model organisms, we are also engaged in engineering an artificial jellyfish, that is, a jellyfish-inspired construct of a flexible plastic sheet actuated by a monolayer of rat cardiomyocytes. The main challenges here are (1) to derive a body shape and deformation suitable for effective fluid transport under physiological conditions, (2) to understand the mechanical properties of the muscular film and derive a design capable of the desired deformation, (3) to master the proper alignment and timely contraction of the muscle component needed to achieve the desired deformation, and (4) to evaluate the performance of the design.

  18. Double-stranded RNA-activated protein kinase PKR of fishes and amphibians: Varying the number of double-stranded RNA binding domains and lineage-specific duplications

    Directory of Open Access Journals (Sweden)

    Dever Thomas E

    2008-03-01

    Full Text Available Abstract Background Double-stranded (ds RNA, generated during viral infection, binds and activates the mammalian anti-viral protein kinase PKR, which phosphorylates the translation initiation factor eIF2α leading to the general inhibition of protein synthesis. Although PKR-like activity has been described in fish cells, the responsible enzymes eluded molecular characterization until the recent discovery of goldfish and zebrafish PKZ, which contain Z-DNA-binding domains instead of dsRNA-binding domains (dsRBDs. Fish and amphibian PKR genes have not been described so far. Results Here we report the cloning and identification of 13 PKR genes from 8 teleost fish and amphibian species, including zebrafish, demonstrating the coexistence of PKR and PKZ in this latter species. Analyses of their genomic organization revealed up to three tandemly arrayed PKR genes, which are arranged in head-to-tail orientation. At least five duplications occurred independently in fish and amphibian lineages. Phylogenetic analyses reveal that the kinase domains of fish PKR genes are more closely related to those of fish PKZ than to the PKR kinase domains of other vertebrate species. The duplication leading to fish PKR and PKZ genes occurred early during teleost fish evolution after the divergence of the tetrapod lineage. While two dsRBDs are found in mammalian and amphibian PKR, one, two or three dsRBDs are present in fish PKR. In zebrafish, both PKR and PKZ were strongly upregulated after immunostimulation with some tissue-specific expression differences. Using genetic and biochemical assays we demonstrate that both zebrafish PKR and PKZ can phosphorylate eIF2α in yeast. Conclusion Considering the important role for PKR in host defense against viruses, the independent duplication and fixation of PKR genes in different lineages probably provided selective advantages by leading to the recognition of an extended spectrum of viral nucleic acid structures, including both ds

  19. Impact evaluation of domains of learning on Universal Work Precautions (UWP amongst nursing staff in a Tertiary Care Hospital, Western India

    Directory of Open Access Journals (Sweden)

    Rashmi Sharma

    2016-01-01

    Full Text Available Introduction: Second key strategy of National AIDS Control Program (NACP IV is comprehensive care and support by providing quality services through zero stigma and discrimination. Quality of services can be improved by eliminating stigma and discrimination and making health care provider aware of associated occupational hazards. Nursing staff play crucial role and are more at risk therefore their understanding, perception and skill must be assessed in different domains of learning to improve the contents and methodology of trainings. Material and Methods: Total 85 nursing staff underwent 1 day training in 3 batches focusing on Universal Work Precautions (UWP, Post Exposure Prophylaxis (PEP and sensitization of the participants towards PLHA (People living with HIV/AIDS. Their learning was evaluated under different domains (cognitive, psychomotor and affective using structured questionnaire. Results: In pretest evaluation scores showed minor and statistically not significant variations in terms of participant′s gender, age, designation work experience and status of having received any similar training in the past. Impact of the training was visible as overall mean scores increased from 10.6 ± 2.7 to 13.8 ± 5.8; gain being statistically highly significant (P value < 0.001. Gain was highest in cognitive (from 58% to 77% followed by psychomotor (from 48% to 62% and minimal in affective domain (from 75% to 76%. Conclusions: After undergoing the training, participants were benefitted more in cognitive domain than psychomotor and affective domain. Acquired knowledge, skill and communication skill if evaluated as done in this study will improve the methodology of such trainings making them more effective.

  20. Domain-General Factors Influencing Numerical and Arithmetic Processing

    Directory of Open Access Journals (Sweden)

    André Knops

    2017-12-01

    Full Text Available This special issue contains 18 articles that address the question how numerical processes interact with domain-general factors. We start the editorial with a discussion of how to define domain-general versus domain-specific factors and then discuss the contributions to this special issue grouped into two core numerical domains that are subject to domain-general influences (see Figure 1. The first group of contributions addresses the question how numbers interact with spatial factors. The second group of contributions is concerned with factors that determine and predict arithmetic understanding, performance and development. This special issue shows that domain-general (Table 1a as well as domain-specific (Table 1b abilities influence numerical and arithmetic performance virtually at all levels and make it clear that for the field of numerical cognition a sole focus on one or several domain-specific factors like the approximate number system or spatial-numerical associations is not sufficient. Vice versa, in most studies that included domain-general and domain-specific variables, domain-specific numerical variables predicted arithmetic performance above and beyond domain-general variables. Therefore, a sole focus on domain-general aspects such as, for example, working memory, to explain, predict and foster arithmetic learning is also not sufficient. Based on the articles in this special issue we conclude that both domain-general and domain-specific factors contribute to numerical cognition. But the how, why and when of their contribution still needs to be better understood. We hope that this special issue may be helpful to readers in constraining future theory and model building about the interplay of domain-specific and domain-general factors.

  1. Estimating the number of female sex workers in Côte d'Ivoire: results and lessons learned.

    Science.gov (United States)

    Vuylsteke, Bea; Sika, Lazare; Semdé, Gisèle; Anoma, Camille; Kacou, Elise; Laga, Marie

    2017-09-01

    To report on the results of three size estimations of the populations of female sex workers (FSW) in five cities in Côte d'Ivoire and on operational lessons learned, which may be relevant for key population programmes in other parts of the world. We applied three methods: mapping and census, capture-recapture and service multiplier. All were applied between 2008 and 2009 in Abidjan, San Pedro, Bouaké, Yamoussoukro and Abengourou. Abidjan was the city with the highest number of FSW by far, with estimations between 7880 (census) and 13 714 (service multiplier). The estimations in San Pedro, Bouaké and Yamoussoukro were very similar, with figures ranging from 1160 (Yamoussoukro, census) to 1916 (San Pedro, capture-recapture). Important operational lessons were learned, including strategies for mapping, the importance of involving peer sex workers for implementing the capture-recapture and the identification of the right question for the multiplier method. Successful application of three methods to estimate the population size of FSW in five cities in Côte d'Ivoire enabled us to make recommendations for size estimations of key population in low-income countries. © 2017 John Wiley & Sons Ltd.

  2. The Indonesian’s Road Transportations as The Contexts to Support Primary School Students Learning Number Operation

    Directory of Open Access Journals (Sweden)

    Kairuddin Kairuddin

    2011-01-01

    Full Text Available This paper highlights the Indonesian’s road transportation contexts, namely, angkot, that used in learning  and teaching of addition and subtraction in first grade and second grade MIN-2 Palembang. PMRI approach that adopt from RME was used in this design research. From teaching experiment was founded that the student used many strategies when teaching and learning process conducted. In situational level they used their knowledge of experience-base activity, in referential level they use manik-manik (string of beads, and in general level they used number line to solve the problem. From the research was known that the Indonesian’s road transportation context helps student to understand basic concept of addition and subtraction. The suggestion to further research this context can be used in design research of multiplication.Key word: Indonesian’s road transportation, angkot, context, addition, subtraction DOI: http://dx.doi.org/10.22342/jme.2.1.779.67-78

  3. EFFECTS OF COOPERATIVE LEARNING MODEL TYPE NUMBERED HEADS TOGETHER USING SIMULATION MEDIA PHET AND ACTIVITIES TOWARD STUDENT RESULTS

    Directory of Open Access Journals (Sweden)

    Fitri Mawaddah Lubis

    2015-12-01

    Full Text Available This study aimed to analyze the differences in learning outcomes of students taught by cooperative learning model NHT using simulation PhET and conventional learning, analyzing the differences in learning outcomes of students who have high activity and low activity, as well as the  interaction between learning model with the level of student activity in  influencing the outcome students learn physics. This research is a quasi experimental. The population in this study were students of class X SMK Tritech Informatika Medan. The tests were used to obtain the data is in the form of multiple choice. Test requirements have been carried out in the form of normality and homogeneity, which showed that the normal data and homogeneous. The data were analyzed using Anova analysis of two paths. The results showed that: The physics learning outcomes of students who use cooperative learning model NHT using PhET simulations media is better than students who use conventional learning models. The physics learning outcomes of students who have high learning activities is better than students who have Low learning activities. There is an interaction between cooperative learning model NHT PhET simulations using the media and the level of learning activity in influencing student learning outcomes. Average increase learning outcomes in the control class is greater than the experimental class.

  4. Neuroimaging studies of practice-related change: fMRI and meta-analytic evidence of a domain-general control network for learning.

    Science.gov (United States)

    Chein, Jason M; Schneider, Walter

    2005-12-01

    Functional magnetic resonance imaging and a meta-analysis of prior neuroimaging studies were used to characterize cortical changes resulting from extensive practice and to evaluate a dual-processing account of the neural mechanisms underlying human learning. Three core predictions of the dual processing theory are evaluated: 1) that practice elicits generalized reductions in regional activity by reducing the load on the cognitive control mechanisms that scaffold early learning; 2) that these control mechanisms are domain-general; and 3) that no separate processing pathway emerges as skill develops. To evaluate these predictions, a meta-analysis of prior neuroimaging studies and a within-subjects fMRI experiment contrasting unpracticed to practiced performance in a paired-associate task were conducted. The principal effect of practice was found to be a reduction in the extent and magnitude of activity in a cortical network spanning bilateral dorsal prefrontal, left ventral prefrontal, medial frontal (anterior cingulate), left insular, bilateral parietal, and occipito-temporal (fusiform) areas. These activity reductions are shown to occur in common regions across prior neuroimaging studies and for both verbal and nonverbal paired-associate learning in the present fMRI experiment. The implicated network of brain regions is interpreted as a domain-general system engaged specifically to support novice, but not practiced, performance.

  5. Design Research on Mathematics Education: Investigating The Progress of Indonesian Fifth Grade Students’ Learning on Multiplication of Fractions With Natural Numbers

    Directory of Open Access Journals (Sweden)

    Nenden Octavarulia Shanty

    2011-07-01

    Full Text Available This study aimed at investigating the progress of students’ learning onmultiplication fractions with natural numbers through the five activitylevels based on Realistic Mathematics Education (RME approachproposed by Streefland. Design research was chosen to achieve thisresearch goal. In design research, the Hypothetical Learning Trajectory(HLT plays important role as a design and research instrument. ThisHLT tested to thirty-seven students of grade five primary school (i.e.SDN 179 Palembang.The result of the classroom practices showed that measurement (lengthactivity could stimulate students’ to produce fractions as the first levelin learning multiplication of fractions with natural numbers.Furthermore, strategies and tools used by the students in partitioninggradually be developed into a more formal mathematics in whichnumber line be used as the model of measuring situation and the modelfor more formal reasoning. The number line then could bring thestudents to the last activity level, namely on the way to rules formultiplying fractions with natural numbers. Based on this findings, it is suggested that Streefland’s five activity levels can be used as aguideline in learning multiplication of fractions with natural numbers in which the learning process become a more progressive learning.

  6. The Impact of Married Individuals Learning HIV Status in Malawi: Divorce, Number of Sexual Partners, and Condom Use With Spouses.

    Science.gov (United States)

    Fedor, Theresa M; Kohler, Hans-Peter; Behrman, Jere R

    2015-02-01

    This article assesses how married individuals' knowledge of HIV status gained through HIV testing and counseling (HTC) affects divorce, the number of sexual partners, and the use of condoms within marriage. This study improves upon previous studies on this topic because the randomized incentives affecting the propensity to be tested for HIV permit control for selective testing. Instrumental variable probit and linear models are estimated, using a randomized experiment administered as part of the Malawi Longitudinal Study of Families and Health (MLSFH). The results indicate that knowledge of HIV status (1) does not affect chances of divorce for either HIV-negative or HIV-positive respondents; (2) reduces the number of reported sexual partners among HIV-positive respondents; and (3) increases reported condom use with spouses for both HIV-negative and HIV-positive respondents. These results imply that individuals actively respond to information about their HIV status that they learn during HTC, invoking protective behavior against future risk of HIV/AIDS for themselves and their actual and potential sexual partners. Some limitations of this study are a small sample size for those who are HIV-positive and dependence on self-reported sexual behaviors.

  7. Searching for the Hebb effect in Down syndrome: evidence for a dissociation between verbal short-term memory and domain-general learning of serial order.

    Science.gov (United States)

    Mosse, E K; Jarrold, C

    2010-04-01

    The Hebb effect is a form of repetition-driven long-term learning that is thought to provide an analogue for the processes involved in new word learning. Other evidence suggests that verbal short-term memory also constrains now vocabulary acquisition, but if the Hebb effect is independent of short-term memory, then it may be possible to demonstrate its preservation in a sample of individuals with Down syndrome, who typically show a verbal short-term memory deficit alongside surprising relative strengths in vocabulary. In two experiments, individuals both with and without Down syndrome (matched for receptive vocabulary) completed immediate serial recall tasks incorporating a Hebb repetition paradigm in either verbal or visuospatial conditions. Both groups demonstrated equivalent benefit from Hebb repetition, despite individuals with Down syndrome showing significantly lower verbal short-term memory spans. The resultant Hebb effect was equivalent across verbal and visuospatial domains. These studies suggest that the Hebb effect is essentially preserved within Down syndrome, implying that explicit verbal short-term memory is dissociable from potentially more implicit Hebb learning. The relative strength in receptive vocabulary observed in Down syndrome may therefore be supported by largely intact long-term as opposed to short-term serial order learning. This in turn may have implications for teaching methods and interventions that present new phonological material to individuals with Down syndrome.

  8. Local dimensionality reduction and supervised learning within natural clusters for biomedical data analysis

    NARCIS (Netherlands)

    Pechenizkiy, M.; Tsymbal, A.; Puuronen, S.

    2006-01-01

    Inductive learning systems were successfully applied in a number of medical domains. Nevertheless, the effective use of these systems often requires data preprocessing before applying a learning algorithm. This is especially important for multidimensional heterogeneous data presented by a large

  9. Domain analysis

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2017-01-01

    The domain-analytic approach to knowledge organization (KO) (and to the broader field of library and information science, LIS) is outlined. The article reviews the discussions and proposals on the definition of domains, and provides an example of a domain-analytic study in the field of art studies....... Varieties of domain analysis as well as criticism and controversies are presented and discussed....

  10. The Story Behind the Numbers: Lessons Learned from the Integration of Monitoring Resources in Addressing an ISS Water Quality Anomaly

    Science.gov (United States)

    McCoy, Torin; Flint, Stephanie; Straub, John, II; Gazda, Dan; Schultz, John

    2011-01-01

    Beginning in June of 2010 an environmental mystery was unfolding on the International Space Station (ISS). The U.S. Water Processor Assembly (WPA) began to produce water with increasing levels of total organic carbon (TOC). A surprisingly consistent upward TOC trend was observed through weekly in-flight total organic carbon analyzer (TOCA) monitoring. As TOC is a general organics indicator, return of water archive samples was needed to make better-informed crew health decisions and to aid in WPA troubleshooting. TOCA-measured TOC was more than halfway to its health-based screening limit before archive samples could be returned on Soyuz 22 and analyzed. Although TOC was confirmed to be elevated, somewhat surprisingly, none of the typical target compounds were the source. After some solid detective work, it was confirmed that the TOC was associated with a compound known as dimethylsilanediol (DMSD). DMSD is believed to be a breakdown product of silicon-containing compounds present on ISS. A toxicological limit was set for DMSD and a forward plan developed for operations given this new understanding of the source of the TOC. This required extensive coordination with ISS stakeholders and innovative use of available in-flight and archive monitoring resources. Behind the numbers and scientific detail surrounding this anomaly, there exists a compelling story of multi-disciplinary awareness, teamwork, and important environmental lessons learned.

  11. Domain Modeling for Adaptive Training and Education in Support of the US Army Learning Model-Research Outline

    Science.gov (United States)

    2015-06-01

    Definitions are provided for this section to distinguish between adaptive training and education elements and also to highlight their relationships ...illustrate this point Franke (2011) asserts that through the use of case study examples, instruction can provide the pedagogical foundation for decision...a prime example of an adaptive training and education system: a learner or trainee model, an instructional or pedagogical model, a domain model

  12. Teacher, I Had a Dream: A Glimpse of the Spiritual Domain of Children Using Project-Based Learning

    Science.gov (United States)

    Harris, Kathleen

    2013-01-01

    Children's dreams have the potential to awaken feelings, question attitudes and inspire new learning experiences to deepen awareness of spiritual development. Both guidance and spiritual environments created by nurturing educators and parents foster dreams that captivate and motivate children to increase their spiritual self-awareness, leading…

  13. Stoking the Dialogue on the Domains of Transformative Learning Theory: Insights From Research With Faith-Based Organizations in Kenya

    Science.gov (United States)

    Moyer, Joanne M.; Sinclair, A. John

    2016-01-01

    Transformative learning theory is applied in a variety of fields, including archaeology, religious studies, health care, the physical sciences, environmental studies, and natural resource management. Given the breadth of the theory's application, it needs to be adaptable to broad contexts. This article shares insights gained from applying the…

  14. An Operational Definition of Learning Disabilities (Cognitive Domain) Using WISC Full Scale IQ and Peabody Individual Achievement Test Scores.

    Science.gov (United States)

    Brenton, Beatrice White; Gilmore, Doug

    An operational index of discrepancy between ability and achievement using the Wechsler Intelligence Scale for Children and the Peabody Individual Achievement Test (PIAT) was tested with 50 male and 10 female legally identified learning disabled (LD) children (mean age 9 years 2 months). Use of the index identified 74% of the males and 30% of the…

  15. Determining the Number of Participants Needed for the Usability Evaluation of E-Learning Resources: A Monte Carlo Simulation

    Science.gov (United States)

    Davids, Mogamat Razeen; Harvey, Justin; Halperin, Mitchell L.; Chikte, Usuf M. E.

    2015-01-01

    The usability of computer interfaces has a major influence on learning. Optimising the usability of e-learning resources is therefore essential. However, this may be neglected because of time and monetary constraints. User testing is a common approach to usability evaluation and involves studying typical end-users interacting with the application…

  16. Concrete domains

    OpenAIRE

    Kahn, G.; Plotkin, G.D.

    1993-01-01

    This paper introduces the theory of a particular kind of computation domains called concrete domains. The purpose of this theory is to find a satisfactory framework for the notions of coroutine computation and sequentiality of evaluation.

  17. Domain Engineering

    Science.gov (United States)

    Bjørner, Dines

    Before software can be designed we must know its requirements. Before requirements can be expressed we must understand the domain. So it follows, from our dogma, that we must first establish precise descriptions of domains; then, from such descriptions, “derive” at least domain and interface requirements; and from those and machine requirements design the software, or, more generally, the computing systems.

  18. Experience during early adulthood shapes the learning capacities and the number of synaptic boutons in the mushroom bodies of honey bees (Apis mellifera).

    Science.gov (United States)

    Cabirol, Amélie; Brooks, Rufus; Groh, Claudia; Barron, Andrew B; Devaud, Jean-Marc

    2017-10-01

    The honey bee mushroom bodies (MBs) are brain centers required for specific learning tasks. Here, we show that environmental conditions experienced as young adults affect the maturation of MB neuropil and performance in a MB-dependent learning task. Specifically, olfactory reversal learning was selectively impaired following early exposure to an impoverished environment lacking some of the sensory and social interactions present in the hive. In parallel, the overall number of synaptic boutons increased within the MB olfactory neuropil, whose volume remained unaffected. This suggests that experience of the rich in-hive environment promotes MB maturation and the development of MB-dependent learning capacities. © 2017 Cabirol et al.; Published by Cold Spring Harbor Laboratory Press.

  19. International comparisons of Foundation Phase number domain ...

    African Journals Online (AJOL)

    South African Journal of Education ... from South Africa, The Netherlands, Australia and North Carolina (United States of America), ... content knowledge, noting that neither of these are fulfilled in the education system in South Africa at present.

  20. Data Science in the Research Domain Criteria Era: Relevance of Machine Learning to the Study of Stress Pathology, Recovery, and Resilience.

    Science.gov (United States)

    Galatzer-Levy, Isaac R; Ruggles, Kelly; Chen, Zhe

    2018-01-01

    Diverse environmental and biological systems interact to influence individual differences in response to environmental stress. Understanding the nature of these complex relationships can enhance the development of methods to: (1) identify risk, (2) classify individuals as healthy or ill, (3) understand mechanisms of change, and (4) develop effective treatments. The Research Domain Criteria (RDoC) initiative provides a theoretical framework to understand health and illness as the product of multiple inter-related systems but does not provide a framework to characterize or statistically evaluate such complex relationships. Characterizing and statistically evaluating models that integrate multiple levels (e.g. synapses, genes, environmental factors) as they relate to outcomes that a free from prior diagnostic benchmarks represents a challenge requiring new computational tools that are capable to capture complex relationships and identify clinically relevant populations. In the current review, we will summarize machine learning methods that can achieve these goals.

  1. Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm

    DEFF Research Database (Denmark)

    Felbo, Bjarke; Mislove, Alan; Søgaard, Anders

    2017-01-01

    NLP tasks are often limited by scarcity of manually annotated data. In social media sentiment analysis and related tasks, researchers have therefore used binarized emoticons and specific hashtags as forms of distant supervision. Our paper shows that by extending the distant supervision to a more...... diverse set of noisy labels, the models can learn richer representations. Through emoji prediction on a dataset of 1246 million tweets containing one of 64 common emojis we obtain state-of-theart performance on 8 benchmark datasets within emotion, sentiment and sarcasm detection using a single pretrained...... model. Our analyses confirm that the diversity of our emotional labels yield a performance improvement over previous distant supervision approaches....

  2. L'apprentissage des langues médiatisé par les technologies (ALMT – Étude d'un domaine de recherche émergent à travers les publications de la revue Alsic Technology-mediated language learning: an emergent research domain under study through the review of a French scientific journal's publications

    Directory of Open Access Journals (Sweden)

    Nicolas Guichon

    2012-11-01

    Full Text Available Dans cette étude, il est postulé que l'apprentissage des langues médiatisé par les technologies (ALMT est un domaine de recherche qui s'intéresse au développement et à l'intégration des technologies dans l'enseignement-apprentissage d'une langue. Ce domaine étant émergent, la présente recherche vise tout d'abord à comprendre comment s'est formée la communauté de chercheurs autour de cet objet. Puis, à travers l'analyse critique de 79 articles publiés dans la revue en ligne francophone Alsic entre 1998 et 2010, la présente contribution s'emploie à définir les contours épistémologiques de ce domaine en étudiant les moyens de production de connaissance.In this study, it is postulated that technology mediated language learning is a research domain that focuses on the design and integration of technologies for language learning and teaching. Because this domain is emergent, the present study first aims at understanding how a community of researchers has developed around this object. Then, thanks to the critical analysis of 79 articles published in Alsic, a French-speaking online journal, the present article endeavours to define the epistemological contours of this research domain by studying the means employed to produce knowledge.

  3. Feature-level domain adaptation

    DEFF Research Database (Denmark)

    Kouw, Wouter M.; Van Der Maaten, Laurens J P; Krijthe, Jesse H.

    2016-01-01

    -level domain adaptation (flda), that models the dependence between the two domains by means of a feature-level transfer model that is trained to describe the transfer from source to target domain. Subsequently, we train a domain-adapted classifier by minimizing the expected loss under the resulting transfer...... modeled via a dropout distribution, which allows the classiffier to adapt to differences in the marginal probability of features in the source and the target domain. Our experiments on several real-world problems show that flda performs on par with state-of-the-art domainadaptation techniques.......Domain adaptation is the supervised learning setting in which the training and test data are sampled from different distributions: training data is sampled from a source domain, whilst test data is sampled from a target domain. This paper proposes and studies an approach, called feature...

  4. Math Is More than Numbers: Beginning Bilingual Teachers' Mathematics Teaching Practices and Their Opportunities to Learn

    Science.gov (United States)

    Yeh, Cathery

    2017-01-01

    In this article, the author provides results from a 3-year, longitudinal study that examined two novice bilingual teachers' mathematics teaching practices and their professional opportunities to learn to teach. Primary data sources included videotaped mathematics lessons, teacher interviews, and field notes of their teacher preparation methods…

  5. Mathematical Critical Thinking and Curiosity Attitude in Problem Based Learning and Cognitive Conflict Strategy: A Study in Number Theory Course

    Science.gov (United States)

    Zetriuslita; Wahyudin; Jarnawi

    2017-01-01

    This research aims to describe and analyze result of applying Problem-Based Learning and Cognitive Conflict Strategy (PBLCCS) in increasing students' Mathematical Critical Thinking (MCT) ability and Mathematical Curiosity Attitude (MCA). Adopting a quasi-experimental method with pretest-posttest control group design and using mixed method with…

  6. "Bigger Number Means You Plus!"--Teachers Learning to Use Clinical Interviews to Understand Students' Mathematical Thinking

    Science.gov (United States)

    Heng, Mary Anne; Sudarshan, Akhila

    2013-01-01

    This paper examines the perceptions and understandings of ten grades 1 and 2 Singapore mathematics teachers as they learned to use clinical interviews (Ginsburg, "Human Development" 52:109-128, 2009) to understand students' mathematical thinking. This study challenged teachers' pedagogical assumptions about what it means to teach for…

  7. Stable measures of number sense accuracy in math learning disability: Is it time to proceed from basic science to clinical application?

    Science.gov (United States)

    Júlio-Costa, Annelise; Starling-Alves, Isabella; Lopes-Silva, Júlia Beatriz; Wood, Guilherme; Haase, Vitor Geraldi

    2015-12-01

    Math learning disability (MLD) or developmental dyscalculia is a highly prevalent and persistent difficulty in learning arithmetic that may be explained by different cognitive mechanisms. The accuracy of the number sense has been implicated by some evidence as a core deficit in MLD. However, research on this topic has been mainly conducted in demographically selected samples, using arbitrary cut-off scores to characterize MLD. The clinical relevance of the association between number sense and MLD remains to be investigated. In this study, we aimed at assessing the stability of a number sense accuracy measure (w) across five experimental sessions, in two clinically defined cases of MLD. Stable measures of number sense accuracy estimate are required to clinically characterize subtypes of MLD and to make theoretical inferences regarding the underlying cognitive mechanisms. G. A. was a 10-year-old boy with MLD in the context of dyslexia and phonological processing impairment and his performance remained steadily in the typical scores range. The performance of H. V., a 9-year-old girl with MLD associated with number sense inaccuracy, remained consistently impaired across measurements, with a nonsignificant tendency to worsen. Qualitatively, H. V.'s performance was also characterized by greater variability across sessions. Concomitant clinical observations suggested that H. V.'s difficulties could be aggravated by developing symptoms of mathematics anxiety. Results in these two cases are in line with the hypotheses that at least two reliable patterns of cognitive impairment may underlie math learning difficulties in MLD, one related to number sense inaccuracy and the other to phonological processing impairment. Additionally, it indicates the need for more translational research in order to examine the usefulness and validity of theoretical advances in numerical cognition to the clinical neuropsychological practice with MLD. © 2015 The Institute of Psychology, Chinese

  8. Scheduling with Learning Effects and/or Time-Dependent Processing Times to Minimize the Weighted Number of Tardy Jobs on a Single Machine

    Directory of Open Access Journals (Sweden)

    Jianbo Qian

    2013-01-01

    Full Text Available We consider single machine scheduling problems with learning/deterioration effects and time-dependent processing times, with due date assignment consideration, and our objective is to minimize the weighted number of tardy jobs. By reducing all versions of the problem to an assignment problem, we solve them in O(n4 time. For some important special cases, the time complexity can be improved to be O(n2 using dynamic programming techniques.

  9. ASSOCIATION AMONG MATHEMATICAL CRITICAL THINKING SKILL, COMMUNICATION, AND CURIOSITY ATTITUDE AS THE IMPACT OF PROBLEM-BASED LEARNING AND COGNITIVE CONFLICT STRATEGY (PBLCCS) IN NUMBER THEORY COURSE

    OpenAIRE

    Zetriuslita Zetriuslita; Wahyudin Wahyudin; Jarnawi Afgani Dahlan

    2018-01-01

    This research aims to find out the association amongMathematical Critical Thinking (MCT) ability, Mathematical Communication, and Mathematical Curiosity Attitude (MCA) as the impact of applying Problem-Based Learning Cognitive Conflict Strategy(PBLCCS) in Number Theory course. The research method is correlative study. The instruments include a test for mathematical critical thinking skill and communication, and questionnaire to obtain the scores of mathematical curiosity attitude. The finding...

  10. Demographic and Psychometric Factors Related to Improved Performance on the Kohs Learning Potential Procedure. Studies in Learning Potential, Volume 3, Number 40.

    Science.gov (United States)

    Budoff, Milton; Corman, Louise

    Evaluated were variables effecting the differential performance of 627 educable mentally retarded Ss (mean age 14.5 years) on a test-train-retest task designed to measure learning potential. Family, social, health, schooling, and testing data were collected for the Ss of which 75% were students in public school special classes and 25% were…

  11. F42. CHONDROTIN-6 SULFATE CLUSTERS: ASSOCIATION OF SYNAPTIC DOMAINS AND REGULATION OF SYNAPTIC PLASTICITY DURING FEAR LEARNING

    Science.gov (United States)

    Chelini, Gabriele; Berciu, Cristina; Pilobello, Kanoelani; Peter, Durning; Rachel, Jenkins; Kahn, Moazzzam; Ramikie, Teniel; Subramanian, Siva; Ressler, Kerry; Pantazopoulos, Charalampos; Berretta, Sabina

    2018-01-01

    surrounding several dendrites. CS-6 expression was dected in astrocytes surrounding the dendrites, particularly in astrocytic endfeet enveloping dendritic spines, and within spines postsynaptic densities. Following auditory fear conditioning, marked changes of CS-6 glia clusters were observed in hippocampus regions dentate gyrus (g>1.5) and CA2 (g>1.5) and basolateral amygdala (g>1). Discussion These findings suggest that CS-6 glia clusters may represent segregated microdomains, dynamically regulated during learning and contributing to the modulation of synaptic regulation machinery. Specifically, we postulate that astrocytes synthesize CS-6 CSPG and secrete it through their endfeet around dendrites, modulating structural plasticity of dendritic spines. These results suggest a relationship between the abnormalities in CSPGs expression and alteration in dendritic spines, two pathological landmarks observed in postmortem brains of people with SZ and BD.

  12. Extracting meronomy relations from domain-specific, textual corporate databases

    NARCIS (Netherlands)

    Ittoo, R.A.; Bouma, G.; Maruster, L.; Wortmann, J.C.; Hopfe, C.J.; Rezgui, Y.; Métais, E.; Preece, A.; Li, H.

    2010-01-01

    Various techniques for learning meronymy relationships from open-domain corpora exist. However, extracting meronymy relationships from domain-specific, textual corporate databases has been overlooked, despite numerous application opportunities particularly in domains like product development and/or

  13. The adventure of numbers

    CERN Document Server

    Godefroy, Gilles

    2004-01-01

    Numbers are fascinating. The fascination begins in childhood, when we first learn to count. It continues as we learn arithmetic, algebra, geometry, and so on. Eventually, we learn that numbers not only help us to measure the world, but also to understand it and, to some extent, to control it. In The Adventure of Numbers, Gilles Godefroy follows the thread of our expanding understanding of numbers to lead us through the history of mathematics. His goal is to share the joy of discovering and understanding this great adventure of the mind. The development of mathematics has been punctuated by a n

  14. Expanding the landscape of chromatin modification (CM-related functional domains and genes in human.

    Directory of Open Access Journals (Sweden)

    Shuye Pu

    2010-11-01

    Full Text Available Chromatin modification (CM plays a key role in regulating transcription, DNA replication, repair and recombination. However, our knowledge of these processes in humans remains very limited. Here we use computational approaches to study proteins and functional domains involved in CM in humans. We analyze the abundance and the pair-wise domain-domain co-occurrences of 25 well-documented CM domains in 5 model organisms: yeast, worm, fly, mouse and human. Results show that domains involved in histone methylation, DNA methylation, and histone variants are remarkably expanded in metazoan, reflecting the increased demand for cell type-specific gene regulation. We find that CM domains tend to co-occur with a limited number of partner domains and are hence not promiscuous. This property is exploited to identify 47 potentially novel CM domains, including 24 DNA-binding domains, whose role in CM has received little attention so far. Lastly, we use a consensus Machine Learning approach to predict 379 novel CM genes (coding for 329 proteins in humans based on domain compositions. Several of these predictions are supported by very recent experimental studies and others are slated for experimental verification. Identification of novel CM genes and domains in humans will aid our understanding of fundamental epigenetic processes that are important for stem cell differentiation and cancer biology. Information on all the candidate CM domains and genes reported here is publicly available.

  15. Domain crossing

    DEFF Research Database (Denmark)

    Schraefel, M. C.; Rouncefield, Mark; Kellogg, Wendy

    2012-01-01

    In CSCW, how much do we need to know about another domain/culture before we observe, intersect and intervene with designs. What optimally would that other culture need to know about us? Is this a “how long is a piece of string” question, or an inquiry where we can consider a variety of contexts a...

  16. Establishing the minimal number of virtual reality simulator training sessions necessary to develop basic laparoscopic skills competence: evaluation of the learning curve

    Directory of Open Access Journals (Sweden)

    Ricardo Jordao Duarte

    2013-09-01

    Full Text Available Introduction Medical literature is scarce on information to define a basic skills training program for laparoscopic surgery (peg and transferring, cutting, clipping. The aim of this study was to determine the minimal number of simulator sessions of basic laparoscopic tasks necessary to elaborate an optimal virtual reality training curriculum. Materials and Methods Eleven medical students with no previous laparoscopic experience were spontaneously enrolled. They were submitted to simulator training sessions starting at level 1 (Immersion Lap VR, San Jose, CA, including sequentially camera handling, peg and transfer, clipping and cutting. Each student trained twice a week until 10 sessions were completed. The score indexes were registered and analyzed. The total of errors of the evaluation sequences (camera, peg and transfer, clipping and cutting were computed and thereafter, they were correlated to the total of items evaluated in each step, resulting in a success percent ratio for each student for each set of each completed session. Thereafter, we computed the cumulative success rate in 10 sessions, obtaining an analysis of the learning process. By non-linear regression the learning curve was analyzed. Results By the non-linear regression method the learning curve was analyzed and a r2 = 0.73 (p < 0.001 was obtained, being necessary 4.26 (∼five sessions to reach the plateau of 80% of the estimated acquired knowledge, being that 100% of the students have reached this level of skills. From the fifth session till the 10th, the gain of knowledge was not significant, although some students reached 96% of the expected improvement. Conclusions This study revealed that after five simulator training sequential sessions the students' learning curve reaches a plateau. The forward sessions in the same difficult level do not promote any improvement in laparoscopic basic surgical skills, and the students should be introduced to a more difficult training

  17. Establishing the minimal number of virtual reality simulator training sessions necessary to develop basic laparoscopic skills competence: evaluation of the learning curve.

    Science.gov (United States)

    Duarte, Ricardo Jordão; Cury, José; Oliveira, Luis Carlos Neves; Srougi, Miguel

    2013-01-01

    Medical literature is scarce on information to define a basic skills training program for laparoscopic surgery (peg and transferring, cutting, clipping). The aim of this study was to determine the minimal number of simulator sessions of basic laparoscopic tasks necessary to elaborate an optimal virtual reality training curriculum. Eleven medical students with no previous laparoscopic experience were spontaneously enrolled. They were submitted to simulator training sessions starting at level 1 (Immersion Lap VR, San Jose, CA), including sequentially camera handling, peg and transfer, clipping and cutting. Each student trained twice a week until 10 sessions were completed. The score indexes were registered and analyzed. The total of errors of the evaluation sequences (camera, peg and transfer, clipping and cutting) were computed and thereafter, they were correlated to the total of items evaluated in each step, resulting in a success percent ratio for each student for each set of each completed session. Thereafter, we computed the cumulative success rate in 10 sessions, obtaining an analysis of the learning process. By non-linear regression the learning curve was analyzed. By the non-linear regression method the learning curve was analyzed and a r2 = 0.73 (p sessions) to reach the plateau of 80% of the estimated acquired knowledge, being that 100% of the students have reached this level of skills. From the fifth session till the 10th, the gain of knowledge was not significant, although some students reached 96% of the expected improvement. This study revealed that after five simulator training sequential sessions the students' learning curve reaches a plateau. The forward sessions in the same difficult level do not promote any improvement in laparoscopic basic surgical skills, and the students should be introduced to a more difficult training tasks level.

  18. Trusted Domain

    DEFF Research Database (Denmark)

    Hjorth, Theis Solberg; Torbensen, Rune

    2012-01-01

    remote access via IP-based devices such as smartphones. The Trusted Domain platform fits existing legacy technologies by managing their interoperability and access controls, and it seeks to avoid the security issues of relying on third-party servers outside the home. It is a distributed system...... of wireless standards, limited resources of embedded systems, etc. Taking these challenges into account, we present a Trusted Domain home automation platform, which dynamically and securely connects heterogeneous networks of Short-Range Wireless devices via simple non-expert user. interactions, and allows......In the digital age of home automation and with the proliferation of mobile Internet access, the intelligent home and its devices should be accessible at any time from anywhere. There are many challenges such as security, privacy, ease of configuration, incompatible legacy devices, a wealth...

  19. Technology interactions among low-carbon energy technologies: What can we learn from a large number of scenarios?

    International Nuclear Information System (INIS)

    McJeon, Haewon C.; Clarke, Leon; Kyle, Page; Wise, Marshall; Hackbarth, Andrew; Bryant, Benjamin P.; Lempert, Robert J.

    2011-01-01

    Advanced low-carbon energy technologies can substantially reduce the cost of stabilizing atmospheric carbon dioxide concentrations. Understanding the interactions between these technologies and their impact on the costs of stabilization can help inform energy policy decisions. Many previous studies have addressed this challenge by exploring a small number of representative scenarios that represent particular combinations of future technology developments. This paper uses a combinatorial approach in which scenarios are created for all combinations of the technology development assumptions that underlie a smaller, representative set of scenarios. We estimate stabilization costs for 768 runs of the Global Change Assessment Model (GCAM), based on 384 different combinations of assumptions about the future performance of technologies and two stabilization goals. Graphical depiction of the distribution of stabilization costs provides first-order insights about the full data set and individual technologies. We apply a formal scenario discovery method to obtain more nuanced insights about the combinations of technology assumptions most strongly associated with high-cost outcomes. Many of the fundamental insights from traditional representative scenario analysis still hold under this comprehensive combinatorial analysis. For example, the importance of carbon capture and storage (CCS) and the substitution effect among supply technologies are consistently demonstrated. The results also provide more clarity regarding insights not easily demonstrated through representative scenario analysis. For example, they show more clearly how certain supply technologies can provide a hedge against high stabilization costs, and that aggregate end-use efficiency improvements deliver relatively consistent stabilization cost reductions. Furthermore, the results indicate that a lack of CCS options combined with lower technological advances in the buildings sector or the transportation sector is

  20. Imbalanced Class Learning in Epigenetics

    OpenAIRE

    Haque, M. Muksitul; Skinner, Michael K.; Holder, Lawrence B.

    2014-01-01

    In machine learning, one of the important criteria for higher classification accuracy is a balanced dataset. Datasets with a large ratio between minority and majority classes face hindrance in learning using any classifier. Datasets having a magnitude difference in number of instances between the target concept result in an imbalanced class distribution. Such datasets can range from biological data, sensor data, medical diagnostics, or any other domain where labeling any instances of the mino...

  1. An emergentist perspective on the origin of number sense.

    Science.gov (United States)

    Zorzi, Marco; Testolin, Alberto

    2017-02-19

    The finding that human infants and many other animal species are sensitive to numerical quantity has been widely interpreted as evidence for evolved, biologically determined numerical capacities across unrelated species, thereby supporting a 'nativist' stance on the origin of number sense. Here, we tackle this issue within the 'emergentist' perspective provided by artificial neural network models, and we build on computer simulations to discuss two different approaches to think about the innateness of number sense. The first, illustrated by artificial life simulations, shows that numerical abilities can be supported by domain-specific representations emerging from evolutionary pressure. The second assumes that numerical representations need not be genetically pre-determined but can emerge from the interplay between innate architectural constraints and domain-general learning mechanisms, instantiated in deep learning simulations. We show that deep neural networks endowed with basic visuospatial processing exhibit a remarkable performance in numerosity discrimination before any experience-dependent learning, whereas unsupervised sensory experience with visual sets leads to subsequent improvement of number acuity and reduces the influence of continuous visual cues. The emergent neuronal code for numbers in the model includes both numerosity-sensitive (summation coding) and numerosity-selective response profiles, closely mirroring those found in monkey intraparietal neurons. We conclude that a form of innatism based on architectural and learning biases is a fruitful approach to understanding the origin and development of number sense.This article is part of a discussion meeting issue 'The origins of numerical abilities'. © 2017 The Authors.

  2. Expansion of protein domain repeats.

    Directory of Open Access Journals (Sweden)

    Asa K Björklund

    2006-08-01

    Full Text Available Many proteins, especially in eukaryotes, contain tandem repeats of several domains from the same family. These repeats have a variety of binding properties and are involved in protein-protein interactions as well as binding to other ligands such as DNA and RNA. The rapid expansion of protein domain repeats is assumed to have evolved through internal tandem duplications. However, the exact mechanisms behind these tandem duplications are not well-understood. Here, we have studied the evolution, function, protein structure, gene structure, and phylogenetic distribution of domain repeats. For this purpose we have assigned Pfam-A domain families to 24 proteomes with more sensitive domain assignments in the repeat regions. These assignments confirmed previous findings that eukaryotes, and in particular vertebrates, contain a much higher fraction of proteins with repeats compared with prokaryotes. The internal sequence similarity in each protein revealed that the domain repeats are often expanded through duplications of several domains at a time, while the duplication of one domain is less common. Many of the repeats appear to have been duplicated in the middle of the repeat region. This is in strong contrast to the evolution of other proteins that mainly works through additions of single domains at either terminus. Further, we found that some domain families show distinct duplication patterns, e.g., nebulin domains have mainly been expanded with a unit of seven domains at a time, while duplications of other domain families involve varying numbers of domains. Finally, no common mechanism for the expansion of all repeats could be detected. We found that the duplication patterns show no dependence on the size of the domains. Further, repeat expansion in some families can possibly be explained by shuffling of exons. However, exon shuffling could not have created all repeats.

  3. ALARA notes, Number 8

    International Nuclear Information System (INIS)

    Khan, T.A.; Baum, J.W.; Beckman, M.C.

    1993-10-01

    This document contains information dealing with the lessons learned from the experience of nuclear plants. In this issue the authors tried to avoid the 'tyranny' of numbers and concentrated on the main lessons learned. Topics include: filtration devices for air pollution abatement, crack repair and inspection, and remote handling equipment

  4. Inferring domain-domain interactions from protein-protein interactions with formal concept analysis.

    Directory of Open Access Journals (Sweden)

    Susan Khor

    Full Text Available Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains.

  5. Inferring Domain-Domain Interactions from Protein-Protein Interactions with Formal Concept Analysis

    Science.gov (United States)

    Khor, Susan

    2014-01-01

    Identifying reliable domain-domain interactions will increase our ability to predict novel protein-protein interactions, to unravel interactions in protein complexes, and thus gain more information about the function and behavior of genes. One of the challenges of identifying reliable domain-domain interactions is domain promiscuity. Promiscuous domains are domains that can occur in many domain architectures and are therefore found in many proteins. This becomes a problem for a method where the score of a domain-pair is the ratio between observed and expected frequencies because the protein-protein interaction network is sparse. As such, many protein-pairs will be non-interacting and domain-pairs with promiscuous domains will be penalized. This domain promiscuity challenge to the problem of inferring reliable domain-domain interactions from protein-protein interactions has been recognized, and a number of work-arounds have been proposed. This paper reports on an application of Formal Concept Analysis to this problem. It is found that the relationship between formal concepts provides a natural way for rare domains to elevate the rank of promiscuous domain-pairs and enrich highly ranked domain-pairs with reliable domain-domain interactions. This piggybacking of promiscuous domain-pairs onto less promiscuous domain-pairs is possible only with concept lattices whose attribute-labels are not reduced and is enhanced by the presence of proteins that comprise both promiscuous and rare domains. PMID:24586450

  6. Construction of a system using a deep learning algorithm to count cell numbers in nanoliter wells for viable single-cell experiments.

    Science.gov (United States)

    Kamatani, Takashi; Fukunaga, Koichi; Miyata, Kaede; Shirasaki, Yoshitaka; Tanaka, Junji; Baba, Rie; Matsusaka, Masako; Kamatani, Naoyuki; Moro, Kazuyo; Betsuyaku, Tomoko; Uemura, Sotaro

    2017-12-04

    For single-cell experiments, it is important to accurately count the number of viable cells in a nanoliter well. We used a deep learning-based convolutional neural network (CNN) on a large amount of digital data obtained as microscopic images. The training set consisted of 103 019 samples, each representing a microscopic grayscale image. After extensive training, the CNN was able to classify the samples into four categories, i.e., 0, 1, 2, and more than 2 cells per well, with an accuracy of 98.3% when compared to determination by two trained technicians. By analyzing the samples for which judgments were discordant, we found that the judgment by technicians was relatively correct although cell counting was often difficult by the images of discordant samples. Based on the results, the system was further enhanced by introducing a new algorithm in which the highest outputs from CNN were used, increasing the accuracy to higher than 99%. Our system was able to classify the data even from wells with a different shape. No other tested machine learning algorithm showed a performance higher than that of our system. The presented CNN system is expected to be useful for various single-cell experiments, and for high-throughput and high-content screening.

  7. Learning curves, taking instructions, and patient safety: using a theoretical domains framework in an interview study to investigate prescribing errors among trainee doctors

    Directory of Open Access Journals (Sweden)

    Duncan Eilidh M

    2012-09-01

    Full Text Available Abstract Background Prescribing errors are a major source of morbidity and mortality and represent a significant patient safety concern. Evidence suggests that trainee doctors are responsible for most prescribing errors. Understanding the factors that influence prescribing behavior may lead to effective interventions to reduce errors. Existing investigations of prescribing errors have been based on Human Error Theory but not on other relevant behavioral theories. The aim of this study was to apply a broad theory-based approach using the Theoretical Domains Framework (TDF to investigate prescribing in the hospital context among a sample of trainee doctors. Method Semistructured interviews, based on 12 theoretical domains, were conducted with 22 trainee doctors to explore views, opinions, and experiences of prescribing and prescribing errors. Content analysis was conducted, followed by applying relevance criteria and a novel stage of critical appraisal, to identify which theoretical domains could be targeted in interventions to improve prescribing. Results Seven theoretical domains met the criteria of relevance: “social professional role and identity,” “environmental context and resources,” “social influences,” “knowledge,” “skills,” “memory, attention, and decision making,” and “behavioral regulation.” From critical appraisal of the interview data, “beliefs about consequences” and “beliefs about capabilities” were also identified as potentially important domains. Interrelationships between domains were evident. Additionally, the data supported theoretical elaboration of the domain behavioral regulation. Conclusions In this investigation of hospital-based prescribing, participants’ attributions about causes of errors were used to identify domains that could be targeted in interventions to improve prescribing. In a departure from previous TDF practice, critical appraisal was used to identify additional domains

  8. Learning curves, taking instructions, and patient safety: using a theoretical domains framework in an interview study to investigate prescribing errors among trainee doctors.

    Science.gov (United States)

    Duncan, Eilidh M; Francis, Jill J; Johnston, Marie; Davey, Peter; Maxwell, Simon; McKay, Gerard A; McLay, James; Ross, Sarah; Ryan, Cristín; Webb, David J; Bond, Christine

    2012-09-11

    Prescribing errors are a major source of morbidity and mortality and represent a significant patient safety concern. Evidence suggests that trainee doctors are responsible for most prescribing errors. Understanding the factors that influence prescribing behavior may lead to effective interventions to reduce errors. Existing investigations of prescribing errors have been based on Human Error Theory but not on other relevant behavioral theories. The aim of this study was to apply a broad theory-based approach using the Theoretical Domains Framework (TDF) to investigate prescribing in the hospital context among a sample of trainee doctors. Semistructured interviews, based on 12 theoretical domains, were conducted with 22 trainee doctors to explore views, opinions, and experiences of prescribing and prescribing errors. Content analysis was conducted, followed by applying relevance criteria and a novel stage of critical appraisal, to identify which theoretical domains could be targeted in interventions to improve prescribing. Seven theoretical domains met the criteria of relevance: "social professional role and identity," "environmental context and resources," "social influences," "knowledge," "skills," "memory, attention, and decision making," and "behavioral regulation." From critical appraisal of the interview data, "beliefs about consequences" and "beliefs about capabilities" were also identified as potentially important domains. Interrelationships between domains were evident. Additionally, the data supported theoretical elaboration of the domain behavioral regulation. In this investigation of hospital-based prescribing, participants' attributions about causes of errors were used to identify domains that could be targeted in interventions to improve prescribing. In a departure from previous TDF practice, critical appraisal was used to identify additional domains that should also be targeted, despite participants' perceptions that they were not relevant to

  9. Evaluating Recommender Systems for Technology Enhanced Learning: A Quantitative Survey

    Science.gov (United States)

    Erdt, Mojisola; Fernandez, Alejandro; Rensing, Christoph

    2015-01-01

    The increasing number of publications on recommender systems for Technology Enhanced Learning (TEL) evidence a growing interest in their development and deployment. In order to support learning, recommender systems for TEL need to consider specific requirements, which differ from the requirements for recommender systems in other domains like…

  10. News Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

    Science.gov (United States)

    2010-05-01

    Teaching: The epiSTEMe project: KS3 maths and science improvement Field trip: Pupils learn physics in a stately home Conference: ShowPhysics welcomes fun in Europe Student numbers: Physics numbers increase in UK Tournament: Physics tournament travels to Singapore Particle physics: Hadron Collider sets new record Astronomy: Take your classroom into space Forthcoming Events

  11. Method Extreme Learning Machine for Forecasting Number of Patients’ Visits in Dental Poli (A Case Study: Community Health Centers Kamal Madura Indonesia)

    Science.gov (United States)

    Sari Rochman, E. M.; Rachmad, A.; Syakur, M. A.; Suzanti, I. O.

    2018-01-01

    Community Health Centers (Puskesmas) are health service institutions that provide individual health services for outpatient, inpatient and emergency care services. In the outpatient service, there are several polyclinics, including the polyclinic of Ear, Nose, and Throat (ENT), Eyes, Dentistry, Children, and internal disease. Dental Poli is a form of dental and oral health services which is directed to the community. At this moment, the management team in dental poli often has difficulties when they do the preparation and planning to serve a number of patients. It is because the dental poli does not have the appropriate workers with the right qualification. The purpose of this study is to make the system of forecasting the patient’s visit to predict how many patients will come; so that the resources that have been provided will be in accordance with the needs of the Puskesmas. In the ELM method, input and bias weights are initially determined randomly to obtain final weights using Generalized Invers. The matrix used in the final weights is a matrix whose outputs are from each input to a hidden layer. So ELM has a fast learning speed. The result of the experiment of ELM method in this research is able to generate a prediction of a number of patient visit with the RMSE value which is equal to 0.0426.

  12. Effects of the Badge Mechanism on Self-Efficacy and Learning Performance in a Game-Based English Learning Environment

    Science.gov (United States)

    Yang, Jie Chi; Quadir, Benazir; Chen, Nian-Shing

    2016-01-01

    A growing number of studies have been conducted on digital game-based learning (DGBL). However, there has been a lack of attention paid to individuals' self-efficacy and learning performance in the implementation of DGBL. This study therefore investigated how the badge mechanism in DGBL enhanced users' self-efficacy in the subject domain of…

  13. The YARHG domain: an extracellular domain in search of a function.

    Directory of Open Access Journals (Sweden)

    Penny Coggill

    Full Text Available We have identified a new bacterial protein domain that we hypothesise binds to peptidoglycan. This domain is called the YARHG domain after the most highly conserved sequence-segment. The domain is found in the extracellular space and is likely to be composed of four alpha-helices. The domain is found associated with protein kinase domains, suggesting it is associated with signalling in some bacteria. The domain is also found associated with three different families of peptidases. The large number of different domains that are found associated with YARHG suggests that it is a useful functional module that nature has recombined multiple times.

  14. Searching for the Hebb Effect in down Syndrome: Evidence for a Dissociation between Verbal Short-Term Memory and Domain-General Learning of Serial Order

    Science.gov (United States)

    Mosse, E. K.; Jarrold, C.

    2010-01-01

    Background: The Hebb effect is a form of repetition-driven long-term learning that is thought to provide an analogue for the processes involved in new word learning. Other evidence suggests that verbal short-term memory also constrains now vocabulary acquisition, but if the Hebb effect is independent of short-term memory, then it may be possible…

  15. Templates, Numbers & Watercolors.

    Science.gov (United States)

    Clemesha, David J.

    1990-01-01

    Describes how a second-grade class used large templates to draw and paint five-digit numbers. The lesson integrated artistic knowledge and vocabulary with their mathematics lesson in place value. Students learned how draftspeople use templates, and they studied number paintings by Charles Demuth and Jasper Johns. (KM)

  16. Experience during Early Adulthood Shapes the Learning Capacities and the Number of Synaptic Boutons in the Mushroom Bodies of Honey Bees ("Apis mellifera")

    Science.gov (United States)

    Cabirol, Amélie; Brooks, Rufus; Groh, Claudia; Barron, Andrew B.; Devaud, Jean-Marc

    2017-01-01

    The honey bee mushroom bodies (MBs) are brain centers required for specific learning tasks. Here, we show that environmental conditions experienced as young adults affect the maturation of MB neuropil and performance in a MB-dependent learning task. Specifically, olfactory reversal learning was selectively impaired following early exposure to an…

  17. .Gov Domains API

    Data.gov (United States)

    General Services Administration — This dataset offers the list of all .gov domains, including state, local, and tribal .gov domains. It does not include .mil domains, or other federal domains outside...

  18. Online transfer learning with extreme learning machine

    Science.gov (United States)

    Yin, Haibo; Yang, Yun-an

    2017-05-01

    In this paper, we propose a new transfer learning algorithm for online training. The proposed algorithm, which is called Online Transfer Extreme Learning Machine (OTELM), is based on Online Sequential Extreme Learning Machine (OSELM) while it introduces Semi-Supervised Extreme Learning Machine (SSELM) to transfer knowledge from the source to the target domain. With the manifold regularization, SSELM picks out instances from the source domain that are less relevant to those in the target domain to initialize the online training, so as to improve the classification performance. Experimental results demonstrate that the proposed OTELM can effectively use instances in the source domain to enhance the learning performance.

  19. Number Meaning and Number Grammar in English and Spanish

    Science.gov (United States)

    Bock, Kathryn; Carreiras, Manuel; Meseguer, Enrique

    2012-01-01

    Grammatical agreement makes different demands on speakers of different languages. Being widespread in the languages of the world, the features of agreement systems offer valuable tests of how language affects deep-seated domains of human cognition and categorization. Number agreement is one such domain, with intriguing evidence that typological…

  20. Common Core State Standards in the Middle Grades: What's New in the Geometry Domain and How Can Teachers Support Student Learning?

    Science.gov (United States)

    Teuscher, Dawn; Tran, Dung; Reys, Barbara J.

    2015-01-01

    The Common Core State Standards for Mathematics (CCSSM) is a primary focus of attention for many stakeholders' (e.g., teachers, district mathematics leaders, and curriculum developers) intent on improving mathematics education. This article reports on specific content shifts related to the geometry domain in the middle grades (6-8)…

  1. Polar Domain Discovery with Sparkler

    Science.gov (United States)

    Duerr, R.; Khalsa, S. J. S.; Mattmann, C. A.; Ottilingam, N. K.; Singh, K.; Lopez, L. A.

    2017-12-01

    The scientific web is vast and ever growing. It encompasses millions of textual, scientific and multimedia documents describing research in a multitude of scientific streams. Most of these documents are hidden behind forms which require user action to retrieve and thus can't be directly accessed by content crawlers. These documents are hosted on web servers across the world, most often on outdated hardware and network infrastructure. Hence it is difficult and time-consuming to aggregate documents from the scientific web, especially those relevant to a specific domain. Thus generating meaningful domain-specific insights is currently difficult. We present an automated discovery system (Figure 1) using Sparkler, an open-source, extensible, horizontally scalable crawler which facilitates high throughput and focused crawling of documents pertinent to a particular domain such as information about polar regions. With this set of highly domain relevant documents, we show that it is possible to answer analytical questions about that domain. Our domain discovery algorithm leverages prior domain knowledge to reach out to commercial/scientific search engines to generate seed URLs. Subject matter experts then annotate these seed URLs manually on a scale from highly relevant to irrelevant. We leverage this annotated dataset to train a machine learning model which predicts the `domain relevance' of a given document. We extend Sparkler with this model to focus crawling on documents relevant to that domain. Sparkler avoids disruption of service by 1) partitioning URLs by hostname such that every node gets a different host to crawl and by 2) inserting delays between subsequent requests. With an NSF-funded supercomputer Wrangler, we scaled our domain discovery pipeline to crawl about 200k polar specific documents from the scientific web, within a day.

  2. Experimentation of cooperative learning model Numbered Heads Together (NHT) type by concept maps and Teams Games Tournament (TGT) by concept maps in terms of students logical mathematics intellegences

    Science.gov (United States)

    Irawan, Adi; Mardiyana; Retno Sari Saputro, Dewi

    2017-06-01

    This research is aimed to find out the effect of learning model towards learning achievement in terms of students’ logical mathematics intelligences. The learning models that were compared were NHT by Concept Maps, TGT by Concept Maps, and Direct Learning model. This research was pseudo experimental by factorial design 3×3. The population of this research was all of the students of class XI Natural Sciences of Senior High School in all regency of Karanganyar in academic year 2016/2017. The conclusions of this research were: 1) the students’ achievements with NHT learning model by Concept Maps were better than students’ achievements with TGT model by Concept Maps and Direct Learning model. The students’ achievements with TGT model by Concept Maps were better than the students’ achievements with Direct Learning model. 2) The students’ achievements that exposed high logical mathematics intelligences were better than students’ medium and low logical mathematics intelligences. The students’ achievements that exposed medium logical mathematics intelligences were better than the students’ low logical mathematics intelligences. 3) Each of student logical mathematics intelligences with NHT learning model by Concept Maps has better achievement than students with TGT learning model by Concept Maps, students with NHT learning model by Concept Maps have better achievement than students with the direct learning model, and the students with TGT by Concept Maps learning model have better achievement than students with Direct Learning model. 4) Each of learning model, students who have logical mathematics intelligences have better achievement then students who have medium logical mathematics intelligences, and students who have medium logical mathematics intelligences have better achievement than students who have low logical mathematics intelligences.

  3. Learning from real and tissue-engineered jellyfish: How to design and build a muscle-powered pump at intermediate Reynolds numbers

    Science.gov (United States)

    Nawroth, Janna; Lee, Hyungsuk; Feinberg, Adam; Ripplinger, Crystal; McCain, Megan; Grosberg, Anna; Dabiri, John; Parker, Kit

    2012-11-01

    Tissue-engineered devices promise to advance medical implants, aquatic robots and experimental platforms for tissue-fluid interactions. The design, fabrication and systematic improvement of tissue constructs, however, is challenging because of the complex interactions of living cell, synthetic materials and their fluid environments. In a proof of concept study we have tissue-engineered a construct that mimics the swimming of a juvenile jellyfish, a simple model system for muscle-powered pumps at intermediate Reynolds numbers with quantifiable fluid dynamics and morphological properties. Optimally designed constructs achieved jellyfish-like swimming and generated biomimetic propulsion and feeding currents. Focusing on the fluid interactions, we discuss failed and successful designs and the lessons learned in the process. The main challenges were (1) to derive a body shape and deformation suitable for effective fluid transport under physiological fluid conditions, (2) to understand the mechanical properties of muscle and bell matrix and device a design capable of the desired deformation, (3) to establish adequate 3D kinematics of power and recovery stroke, and (4) to evaluate the performance of the design.

  4. Classification of domains of closed operators

    International Nuclear Information System (INIS)

    Lassner, G.; Timmermann, W.

    1975-01-01

    The structure of domains of determining closed operators in the Hilbert space by means of sequence spaces is investigated. The final classification provides three classes of these domains. Necessary and sufficient conditions of equivalence of these domains are obtained in the form of equivalency of corresponding sequences of natural numbers. Connection with the perturbation theory is mentioned [ru

  5. The BRCT domain is a phospho-protein binding domain.

    Science.gov (United States)

    Yu, Xiaochun; Chini, Claudia Christiano Silva; He, Miao; Mer, Georges; Chen, Junjie

    2003-10-24

    The carboxyl-terminal domain (BRCT) of the Breast Cancer Gene 1 (BRCA1) protein is an evolutionarily conserved module that exists in a large number of proteins from prokaryotes to eukaryotes. Although most BRCT domain-containing proteins participate in DNA-damage checkpoint or DNA-repair pathways, or both, the function of the BRCT domain is not fully understood. We show that the BRCA1 BRCT domain directly interacts with phosphorylated BRCA1-Associated Carboxyl-terminal Helicase (BACH1). This specific interaction between BRCA1 and phosphorylated BACH1 is cell cycle regulated and is required for DNA damage-induced checkpoint control during the transition from G2 to M phase of the cell cycle. Further, we show that two other BRCT domains interact with their respective physiological partners in a phosphorylation-dependent manner. Thirteen additional BRCT domains also preferentially bind phospho-peptides rather than nonphosphorylated control peptides. These data imply that the BRCT domain is a phospho-protein binding domain involved in cell cycle control.

  6. Fundamentals of number theory

    CERN Document Server

    LeVeque, William J

    1996-01-01

    This excellent textbook introduces the basics of number theory, incorporating the language of abstract algebra. A knowledge of such algebraic concepts as group, ring, field, and domain is not assumed, however; all terms are defined and examples are given - making the book self-contained in this respect.The author begins with an introductory chapter on number theory and its early history. Subsequent chapters deal with unique factorization and the GCD, quadratic residues, number-theoretic functions and the distribution of primes, sums of squares, quadratic equations and quadratic fields, diopha

  7. Emotional textile image classification based on cross-domain convolutional sparse autoencoders with feature selection

    Science.gov (United States)

    Li, Zuhe; Fan, Yangyu; Liu, Weihua; Yu, Zeqi; Wang, Fengqin

    2017-01-01

    We aim to apply sparse autoencoder-based unsupervised feature learning to emotional semantic analysis for textile images. To tackle the problem of limited training data, we present a cross-domain feature learning scheme for emotional textile image classification using convolutional autoencoders. We further propose a correlation-analysis-based feature selection method for the weights learned by sparse autoencoders to reduce the number of features extracted from large size images. First, we randomly collect image patches on an unlabeled image dataset in the source domain and learn local features with a sparse autoencoder. We then conduct feature selection according to the correlation between different weight vectors corresponding to the autoencoder's hidden units. We finally adopt a convolutional neural network including a pooling layer to obtain global feature activations of textile images in the target domain and send these global feature vectors into logistic regression models for emotional image classification. The cross-domain unsupervised feature learning method achieves 65% to 78% average accuracy in the cross-validation experiments corresponding to eight emotional categories and performs better than conventional methods. Feature selection can reduce the computational cost of global feature extraction by about 50% while improving classification performance.

  8. Hupa Numbers.

    Science.gov (United States)

    Bennett, Ruth, Ed.; And Others

    An introduction to the Hupa number system is provided in this workbook, one in a series of numerous materials developed to promote the use of the Hupa language. The book is written in English with Hupa terms used only for the names of numbers. The opening pages present the numbers from 1-10, giving the numeral, the Hupa word, the English word, and…

  9. Triangular Numbers

    Indian Academy of Sciences (India)

    Admin

    Triangular number, figurate num- ber, rangoli, Brahmagupta–Pell equation, Jacobi triple product identity. Figure 1. The first four triangular numbers. Left: Anuradha S Garge completed her PhD from. Pune University in 2008 under the supervision of Prof. S A Katre. Her research interests include K-theory and number theory.

  10. Proth Numbers

    Directory of Open Access Journals (Sweden)

    Schwarzweller Christoph

    2015-02-01

    Full Text Available In this article we introduce Proth numbers and prove two theorems on such numbers being prime [3]. We also give revised versions of Pocklington’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and that the fifth Fermat number is not prime.

  11. Sagan numbers

    OpenAIRE

    Mendonça, J. Ricardo G.

    2012-01-01

    We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.

  12. Multimedia Design Principles in the Psychomotor Domain: The Effect of Multimedia and Spatial Contiguity on Students' Learning of Basic Life Support with Task Cards

    Science.gov (United States)

    Iserbyt, Peter; Mols, Liesbet; Elen, Jan; Behets, Daniel

    2012-01-01

    This study adds to the literature by introducing multimedia research in the psychomotor area. In this study, 87 freshman students in pedagogy used task cards to learn Basic Life Support (BLS), a psychomotor skill consisting of nine lifesaving actions to be performed in a specific order. Task cards are printed materials and are often implemented…

  13. Upscaling the Number of Learners, Fragmenting the Role of Teachers: How Do Massive Open Online Courses (MOOCs) Form New Conditions for Learning Design?

    Science.gov (United States)

    Buhl, Mie; Andreasen, Lars Birch; Pushpanadham, Karanam

    2018-01-01

    The proliferation and expansion of massive open online courses (MOOCs) prompts a need to revisit classical pedagogical questions. In what ways will MOOCs facilitate and promote new e-learning pedagogies? Is current learning design adequate for the "massiveness" and "openness" of MOOCs? This article discusses the ways in which…

  14. Domain Adaptation of Translation Models for Multilingual Applications

    Science.gov (United States)

    2009-04-01

    employed. In the past two years, domain adaptation for NLP tasks has become an active research area [3, 38, 25, 23]. New domain adaptation tasks have...and unlabeled data in the target domain and learn a mixture model to adapt from the source domain. Other NLP tasks where domain adaptation has been...evaluation forum, http://www.clef-campaign.org. [13] K. Darwish and D. Oard, CLIR experiments at maryland for TREC-2002: Evidence combination for arabic

  15. Eulerian numbers

    CERN Document Server

    Petersen, T Kyle

    2015-01-01

    This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...

  16. Contribution of Content Knowledge and Learning Ability to the Learning of Facts.

    Science.gov (United States)

    Kuhara-Kojima, Keiko; Hatano, Giyoo

    1991-01-01

    In 3 experiments, 1,598 Japanese college students were examined concerning the learning of facts in 2 content domains, baseball and music. Content knowledge facilitated fact learning only in the relevant domain; learning ability facilitated fact learning in both domains. Effects of content knowledge and learning ability were additive. (SLD)

  17. Expression of c-Fos in the rat retrosplenial cortex during instrumental re-learning of appetitive bar-pressing depends on the number of stages of previous training

    Science.gov (United States)

    Svarnik, Olga E.; Bulava, Alexandra I.; Alexandrov, Yuri I.

    2013-01-01

    Learning is known to be accompanied by induction of c-Fos expression in cortical neurons. However, not all neurons are involved in this process. What the c-Fos expression pattern depends on is still unknown. In the present work we studied whether and to what degree previous animal experience about Task 1 (the first phase of an instrumental learning) influenced neuronal c-Fos expression in the retrosplenial cortex during acquisition of Task 2 (the second phase of an instrumental learning). Animals were progressively shaped across days to bar-press for food at the left side of the experimental chamber (Task 1). This appetitive bar-pressing behavior was shaped by nine stages (“9 stages” group), five stages (“5 stages” group) or one intermediate stage (“1 stage” group). After all animals acquired the first skill and practiced it for five days, the bar and feeder on the left, familiar side of the chamber were inactivated, and the animals were allowed to learn a similar instrumental task at the opposite side of the chamber using another pair of a bar and a feeder (Task 2). The highest number of c-Fos positive neurons was found in the retrosplenial cortex of “1 stage” animals as compared to the other groups. The number of c-Fos positive neurons in “5 stages” group animals was significantly lower than in “1 stage” animals and significantly higher than in “9 stages” animals. The number of c-Fos positive neurons in the cortex of “9 stages” animals was significantly higher than in home caged control animals. At the same time, there were no significant differences between groups in such behavioral variables as the number of entrees into the feeder or bar zones during Task 2 learning. Our results suggest that c-Fos expression in the retrosplenial cortex during Task 2 acquisition was influenced by the previous learning history. PMID:23847484

  18. Transfinite Numbers

    Indian Academy of Sciences (India)

    Transfinite Numbers. What is Infinity? S M Srivastava. In a series of revolutionary articles written during the last quarter of the nineteenth century, the great Ger- man mathematician Georg Cantor removed the age-old mistrust of infinity and created an exceptionally beau- tiful and useful theory of transfinite numbers. This is.

  19. Pragmatic Numbers

    DEFF Research Database (Denmark)

    Seabrooke, Leonard

    2012-01-01

    Sector Assessment Programme (FSAP). While the IMF is typically viewed as an institution that enforces global standards for economic governance through the imposition of quantitative targets (‘numbers’ for this special issue), I suggest that its use of benchmarking in the generation of financial data can...... market actors. This article suggests that we cannot simply view the IMF staff as hostage to their commanders. Rather, the IMF's use of ‘pragmatic numbers’ within FSAPs demonstrates one method by which an institution seeks to foster learning under constraint.......Do international organisations generate benchmarks as tools for policy enforcement or policy learning? This article suggests that the latter is possible even in unlikely scenarios. It does this through a case study on the ‘power of numbers’ in the International Monetary Fund's (IMF) Financial...

  20. Chocolate Numbers

    OpenAIRE

    Ji, Caleb; Khovanova, Tanya; Park, Robin; Song, Angela

    2015-01-01

    In this paper, we consider a game played on a rectangular $m \\times n$ gridded chocolate bar. Each move, a player breaks the bar along a grid line. Each move after that consists of taking any piece of chocolate and breaking it again along existing grid lines, until just $mn$ individual squares remain. This paper enumerates the number of ways to break an $m \\times n$ bar, which we call chocolate numbers, and introduces four new sequences related to these numbers. Using various techniques, we p...

  1. Number theory

    CERN Document Server

    Andrews, George E

    1994-01-01

    Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl

  2. Turkish secondary education students' perceptions of their classroom learning environment and their attitude towards Biology

    NARCIS (Netherlands)

    Telli, S.; Cakiroglu, J.; den Brok, P.

    2006-01-01

    The domain of learning environments research has produced many promising findings, leading to an enhancement of the teaching and learning process in many countries. However, there have been a limited number of studies in this field in Turkey. For that reason, the purpose of the present study was to

  3. Turkish secondary education students' perceptions of their classroom learning environment and their attitude towards biology

    NARCIS (Netherlands)

    Telli, S.; Cakiroglu, J.; Brok, den P.J.; Fisher, D. L.; Khine, M. S.

    2006-01-01

    The domain of learning environments research has produced many promising findings, leading to an enhancement of the teaching and learning process in many countries. However, there have been a limited number of studies in this field in Turkey. For that reason, the purpose of the present study was to

  4. Contested Domains of Science and Science Learning in Contemporary Native American Communities: Three Case Studies from a National Science Foundation grant titled, "Archaeology Pathways for Native Learners"

    Science.gov (United States)

    Parent, Nancy Brossard

    This dissertation provides a critical analysis of three informal science education partnerships that resulted from a 2003-2006 National Science Foundation grant titled, "Archaeology Pathways for Native Learners" (ESI-0307858), hosted by the Mashantucket Pequot Museum and Research Center. This dissertation is designed to contribute to understandings of learning processes that occur within and at the intersection of diverse worldviews and knowledge systems, by drawing upon experiences derived from three disparate contexts: 1) The Navajo Nation Museum in Window Rock, Arizona; 2) The A:shiwi A:wan Museum and Heritage Center on the Zuni Reservation in Zuni, New Mexico; and 3) Science learning camps at the Mashantucket Pequot Museum and Research Center for Native youth of southern New England. While informal science education is increasingly moving toward decolonizing and cross-cutting institutional boundaries of learning through critical thinking and real-world applications, the construction of "science" (even within diverse contexts) continues to be framed within a homogenous, predominantly Euro-American perspective. This study analyzes the language of Western science employed in these partnerships, with particular attention to the use of Western/Native binaries that shape perceptions of Native peoples and communities, real or imagined. Connections are drawn to broader nation-state interests in education, science, and the global economy. The role of educational evaluation in these case studies is also critically analyzed, by questioning the ways in which it is constructed, conducted, and evaluated for the purposes of informing future projects and subsequent funding. This study unpacks problems of the dominant language of "expert" knowledge embedded in Western science discourse, and highlights the possibilities of indigenous knowledge systems that can inform Western science frameworks of education and evaluation. Ultimately, this study suggests that research

  5. Are Distal and Proximal Visual Cues Equally Important during Spatial Learning in Mice? A Pilot Study of Overshadowing in the Spatial Domain

    Directory of Open Access Journals (Sweden)

    Marie Hébert

    2017-06-01

    Full Text Available Animals use distal and proximal visual cues to accurately navigate in their environment, with the possibility of the occurrence of associative mechanisms such as cue competition as previously reported in honey-bees, rats, birds and humans. In this pilot study, we investigated one of the most common forms of cue competition, namely the overshadowing effect, between visual landmarks during spatial learning in mice. To this end, C57BL/6J × Sv129 mice were given a two-trial place recognition task in a T-maze, based on a novelty free-choice exploration paradigm previously developed to study spatial memory in rodents. As this procedure implies the use of different aspects of the environment to navigate (i.e., mice can perceive from each arm of the maze, we manipulated the distal and proximal visual landmarks during both the acquisition and retrieval phases. Our prospective findings provide a first set of clues in favor of the occurrence of an overshadowing between visual cues during a spatial learning task in mice when both types of cues are of the same modality but at varying distances from the goal. In addition, the observed overshadowing seems to be non-reciprocal, as distal visual cues tend to overshadow the proximal ones when competition occurs, but not vice versa. The results of the present study offer a first insight about the occurrence of associative mechanisms during spatial learning in mice, and may open the way to promising new investigations in this area of research. Furthermore, the methodology used in this study brings a new, useful and easy-to-use tool for the investigation of perceptive, cognitive and/or attentional deficits in rodents.

  6. Time-domain modeling of electromagnetic diffusion with a frequency-domain code

    NARCIS (Netherlands)

    Mulder, W.A.; Wirianto, M.; Slob, E.C.

    2007-01-01

    We modeled time-domain EM measurements of induction currents for marine and land applications with a frequency-domain code. An analysis of the computational complexity of a number of numerical methods shows that frequency-domain modeling followed by a Fourier transform is an attractive choice if a

  7. Nice numbers

    CERN Document Server

    Barnes, John

    2016-01-01

    In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author intrigues and challenges his audience with both fundamental number topics such as prime numbers and cryptography, and themes of daily needs and pleasures such as counting one's assets, keeping track of time, and enjoying music. Puzzles and exercises at the end of each lecture offer additional inspiration, and numerous illustrations accompany the reader. Furthermore, a number of appendices provides in-depth insights into diverse topics such as Pascal’s triangle, the Rubik cube, Mersenne’s curious keyboards, and many others. A theme running through is the thought of what is our favourite number. Written in an engaging and witty sty...

  8. Elementary number theory

    CERN Document Server

    Dudley, Underwood

    2008-01-01

    Ideal for a first course in number theory, this lively, engaging text requires only a familiarity with elementary algebra and the properties of real numbers. Author Underwood Dudley, who has written a series of popular mathematics books, maintains that the best way to learn mathematics is by solving problems. In keeping with this philosophy, the text includes nearly 1,000 exercises and problems-some computational and some classical, many original, and some with complete solutions. The opening chapters offer sound explanations of the basics of elementary number theory and develop the fundamenta

  9. Hydrology Domain Cyberinfrastructures: Successes, Challenges, and Opportunities

    Science.gov (United States)

    Horsburgh, J. S.

    2015-12-01

    Anticipated changes to climate, human population, land use, and urban form will alter the hydrology and availability of water within the water systems on which the world's population relies. Understanding the effects of these changes will be paramount in sustainably managing water resources, as well as maintaining associated capacity to provide ecosystem services (e.g., regulating flooding, maintaining instream flow during dry periods, cycling nutrients, and maintaining water quality). It will require better information characterizing both natural and human mediated hydrologic systems and enhanced ability to generate, manage, store, analyze, and share growing volumes of observational data. Over the past several years, a number of hydrology domain cyberinfrastructures have emerged or are currently under development that are focused on providing integrated access to and analysis of data for cross-domain synthesis studies. These include the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) Hydrologic Information System (HIS), the Critical Zone Observatory Information System (CZOData), HyroShare, the BiG CZ software system, and others. These systems have focused on sharing, integrating, and analyzing hydrologic observations data. This presentation will describe commonalities and differences in the cyberinfrastructure approaches used by these projects and will highlight successes and lessons learned in addressing the challenges of big and complex data. It will also identify new challenges and opportunities for next generation cyberinfrastructure and a next generation of cyber-savvy scientists and engineers as developers and users.

  10. Learning

    Directory of Open Access Journals (Sweden)

    Mohsen Laabidi

    2014-01-01

    Full Text Available Nowadays learning technologies transformed educational systems with impressive progress of Information and Communication Technologies (ICT. Furthermore, when these technologies are available, affordable and accessible, they represent more than a transformation for people with disabilities. They represent real opportunities with access to an inclusive education and help to overcome the obstacles they met in classical educational systems. In this paper, we will cover basic concepts of e-accessibility, universal design and assistive technologies, with a special focus on accessible e-learning systems. Then, we will present recent research works conducted in our research Laboratory LaTICE toward the development of an accessible online learning environment for persons with disabilities from the design and specification step to the implementation. We will present, in particular, the accessible version “MoodleAcc+” of the well known e-learning platform Moodle as well as new elaborated generic models and a range of tools for authoring and evaluating accessible educational content.

  11. Number names and number understanding

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    2014-01-01

    This paper concerns the results from the first year of a three-year research project involving the relationship between Danish number names and their corresponding digits in the canonical base 10 system. The project aims to develop a system to help the students’ understanding of the base 10 syste...... the Danish number names are more complicated than in other languages. Keywords: A research project in grade 0 and 1th in a Danish school, Base-10 system, two-digit number names, semiotic, cognitive perspectives....

  12. Domain similarity based orthology detection.

    Science.gov (United States)

    Bitard-Feildel, Tristan; Kemena, Carsten; Greenwood, Jenny M; Bornberg-Bauer, Erich

    2015-05-13

    Orthologous protein detection software mostly uses pairwise comparisons of amino-acid sequences to assert whether two proteins are orthologous or not. Accordingly, when the number of sequences for comparison increases, the number of comparisons to compute grows in a quadratic order. A current challenge of bioinformatic research, especially when taking into account the increasing number of sequenced organisms available, is to make this ever-growing number of comparisons computationally feasible in a reasonable amount of time. We propose to speed up the detection of orthologous proteins by using strings of domains to characterize the proteins. We present two new protein similarity measures, a cosine and a maximal weight matching score based on domain content similarity, and new software, named porthoDom. The qualities of the cosine and the maximal weight matching similarity measures are compared against curated datasets. The measures show that domain content similarities are able to correctly group proteins into their families. Accordingly, the cosine similarity measure is used inside porthoDom, the wrapper developed for proteinortho. porthoDom makes use of domain content similarity measures to group proteins together before searching for orthologs. By using domains instead of amino acid sequences, the reduction of the search space decreases the computational complexity of an all-against-all sequence comparison. We demonstrate that representing and comparing proteins as strings of discrete domains, i.e. as a concatenation of their unique identifiers, allows a drastic simplification of search space. porthoDom has the advantage of speeding up orthology detection while maintaining a degree of accuracy similar to proteinortho. The implementation of porthoDom is released using python and C++ languages and is available under the GNU GPL licence 3 at http://www.bornberglab.org/pages/porthoda .

  13. Funny Numbers

    Directory of Open Access Journals (Sweden)

    Theodore M. Porter

    2012-12-01

    Full Text Available The struggle over cure rate measures in nineteenth-century asylums provides an exemplary instance of how, when used for official assessments of institutions, these numbers become sites of contestation. The evasion of goals and corruption of measures tends to make these numbers “funny” in the sense of becoming dis-honest, while the mismatch between boring, technical appearances and cunning backstage manipulations supplies dark humor. The dangers are evident in recent efforts to decentralize the functions of governments and corporations using incen-tives based on quantified targets.

  14. Transcendental numbers

    CERN Document Server

    Murty, M Ram

    2014-01-01

    This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.

  15. Domain-Specific and Domain-General Training to Improve Kindergarten Children’s Mathematics

    Directory of Open Access Journals (Sweden)

    Geetha B. Ramani

    2017-12-01

    Full Text Available Ensuring that kindergarten children have a solid foundation in early numerical knowledge is of critical importance for later mathematical achievement. In this study, we targeted improving the numerical knowledge of kindergarteners (n = 81 from primarily low-income backgrounds using two approaches: one targeting their conceptual knowledge, specifically, their understanding of numerical magnitudes; and the other targeting their underlying cognitive system, specifically, their working memory. Both interventions involved playing game-like activities on tablet computers over the course of several sessions. As predicted, both interventions improved children’s numerical magnitude knowledge as compared to a no-contact control group, suggesting that both domain-specific and domain-general interventions facilitate mathematical learning. Individual differences in effort during the working memory game, but not the number knowledge training game predicted children’s improvements in number line estimation. The results demonstrate the potential of using a rapidly growing technology in early childhood classrooms to promote young children’s numerical knowledge.

  16. Learning to remember: Cognitive training-induced attenuation of age-related memory decline depends on sex and cognitive demand, and can transfer to untrained cognitive domains

    Science.gov (United States)

    Talboom, Joshua S.; West, Stephen G.; Engler-Chiurazzi, Elizabeth B.; Enders, Craig K.; Crain, Ian; Bimonte-Nelson, Heather A.

    2014-01-01

    Aging is associated with progressive changes in learning and memory. A potential approach to attenuate age-related cognitive decline is cognitive training. In this study, adult male and female rats were given either repeated exposure to a T-maze, or no exposure to any maze, and then tested on a final battery of cognitive tasks. Two groups of each sex were tested from 6-18 months old on the same T-maze; one group received a version testing spatial reference memory, and the other group received only the procedural testing components with minimal cognitive demand. Groups three and four of each sex had no maze exposure until the final battery, and were comprised of aged or young rats. The final maze battery included the practiced T-maze plus two novel tasks, one with a similar, and one with a different, memory type to the practice task. The fifth group of each sex was not maze tested, serving as an aged control for the effects of maze testing on neurotrophin protein levels in cognitive brain regions. Results showed that adult intermittent cognitive training enhanced performance on the practice task when aged in both sexes, that cognitive training benefits transferred to novel tasks only in females, and that cognitive demand was necessary for these effects since rats receiving only the procedural testing components showed no improvement on the final maze battery. Further, for both sexes, rats that showed faster learning when young demonstrated better memory when aged. Age-related increases in neurotrophin concentrations in several brain regions were revealed, which was related to performance on the training task only in females. This longitudinal study supports the tenet that cognitive training can help one remember later in life, with broader enhancements and associations with neurotrophins in females. PMID:25104561

  17. Transfinite Numbers

    Indian Academy of Sciences (India)

    this is a characteristic difference between finite and infinite sets and created an immensely useful branch of mathematics based on this idea which had a great impact on the whole of mathe- matics. For example, the question of what is a number (finite or infinite) is almost a philosophical one. However Cantor's work turned it ...

  18. Targeting Discoidin Domain Receptors in Prostate Cancer

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0226 TITLE: Targeting Discoidin Domain Receptors in Prostate Cancer PRINCIPAL INVESTIGATOR: Dr. Rafael Fridman...AND SUBTITLE 5a. CONTRACT NUMBER Targeting Discoidin Domain Receptors in Prostate Cancer 5b. GRANT NUMBER W81XWH-15-1-0226 5c. PROGRAM ELEMENT...response to collagen in prostate cancer. The project’s goal is to define the expression and therapeutic potential of DDRs in prostate cancer. During

  19. Does Initial Learning about the Meaning of Fractions Present Similar Challenges for Students with and without Adequate Whole-Number Skill?

    Science.gov (United States)

    Namkung, Jessica M; Fuchs, Lynn S; Koziol, Natalie

    2018-01-01

    The purposes of this study were to (a) explore whether early fractions understanding at 4 th grade is differentially challenging for students with versus without adequate whole-number competence and (b) identify specific whole-number skill associated with difficulty in fractions understanding. Based on initial whole-number competence, 1,108 4 th graders were classified as having (a) adequate whole-number competence ( n = 775), (b) less severe whole-number difficulty ( n = 201), and (c) severe whole-number difficulty ( n = 132). At the end of 4 th grade, they were assessed on fractions understanding and further classified as with versus without difficulty in fractions understanding. Multi-level logistic regression indicated that compared to students with adequate whole-number competence, those with less severe whole-number difficulty were almost 5 times as likely to experience difficulty with fractions understanding whereas those with severe whole-number difficulty were about 32 times as likely to experience difficulty with fractions understanding. Students with severe whole-number difficulty were about 7 times as likely to experience difficulty with fractions understanding compared to those with less severe whole-number difficulty. Among students with adequate whole-number competence, the pretest whole-number skill distinguishing those with versus without difficulty in fractions understanding was basic division facts (i.e., 2-digit dividend ÷ 1-digit divisor) and simple multiplication (i.e., 3-digit × 1-digit without regrouping). The role of whole-number competence in developing initial fractions understanding and implications for instruction are discussed.

  20. Posthuman learning

    DEFF Research Database (Denmark)

    Hasse, Cathrine

    This book shall explore the concept of learning from the new perspective of the posthuman. The vast majority of cognitive, behavioral and part of the constructionist learning theories operate with an autonomous individual who learn in a world of separate objects. Technology is (if mentioned at all......) understood as separate from the individual learner and perceived as tools. Learning theory has in general not been acknowledging materiality in their theorizing about what learning is. A new posthuman learning theory is needed to keep up with the transformations of human learning resulting from new...... technological experiences. One definition of learning is that it is a relatively permanent change in behavior as the result of experience. During the first half of the twentieth century, two theoretical approaches dominated the domain of learning theory: the schools of thought commonly known as behaviorism...

  1. 21st Century Community Learning Centers: Stable Funding for Innovation and Continuous Improvement. Research Update: Highlights from the Out-of-School Time Database. Number 8

    Science.gov (United States)

    Wimer, Christopher; Harris, Erin

    2012-01-01

    As the only federal funding stream that provides dedicated funds for afterschool programs across the country, the 21st Century Community Learning Centers (21st CCLC) initiative plays an important role in supporting the innovation that takes place in afterschool programs. Social innovation has been defined as "a novel solution to a social…

  2. Detecting atypical examples of known domain types by sequence similarity searching: the SBASE domain library approach.

    Science.gov (United States)

    Dhir, Somdutta; Pacurar, Mircea; Franklin, Dino; Gáspári, Zoltán; Kertész-Farkas, Attila; Kocsor, András; Eisenhaber, Frank; Pongor, Sándor

    2010-11-01

    SBASE is a project initiated to detect known domain types and predicting domain architectures using sequence similarity searching (Simon et al., Protein Seq Data Anal, 5: 39-42, 1992, Pongor et al, Nucl. Acids. Res. 21:3111-3115, 1992). The current approach uses a curated collection of domain sequences - the SBASE domain library - and standard similarity search algorithms, followed by postprocessing which is based on a simple statistics of the domain similarity network (http://hydra.icgeb.trieste.it/sbase/). It is especially useful in detecting rare, atypical examples of known domain types which are sometimes missed even by more sophisticated methodologies. This approach does not require multiple alignment or machine learning techniques, and can be a useful complement to other domain detection methodologies. This article gives an overview of the project history as well as of the concepts and principles developed within this the project.

  3. Phylogeny of the TRAF/MATH domain.

    Science.gov (United States)

    Zapata, Juan M; Martínez-García, Vanesa; Lefebvre, Sophie

    2007-01-01

    The TNF-receptor associated factor (TRAF) domain (TD), also known as the meprin and TRAF-C homology (MATH) domain is a fold of seven anti-parallel p-helices that participates in protein-protein interactions. This fold is broadly represented among eukaryotes, where it is found associated with a discrete set of protein-domains. Virtually all protein families encompassing a TRAF/MATH domain seem to be involved in the regulation of protein processing and ubiquitination, strongly suggesting a parallel evolution of the TRAF/MATH domain and certain proteolysis pathways in eukaryotes. The restricted number of living organisms for which we have information of their genetic and protein make-up limits the scope and analysis of the MATH domain in evolution. However, the available information allows us to get a glimpse on the origins, distribution and evolution of the TRAF/MATH domain, which will be overviewed in this chapter.

  4. Upscaling the number of learners, fragmenting the role of teachers: How do massive open online courses (MOOCs) form new conditions for learning design?

    Science.gov (United States)

    Buhl, Mie; Andreasen, Lars Birch; Pushpanadham, Karanam

    2018-03-01

    The proliferation and expansion of massive open online courses (MOOCs) prompts a need to revisit classical pedagogical questions. In what ways will MOOCs facilitate and promote new e-learning pedagogies? Is current learning design adequate for the "massiveness" and "openness" of MOOCs? This article discusses the ways in which MOOCs create new conditions for designing learning processes. The authors present various theoretical approaches to learning design and discuss a combination of theoretical perspectives. They discern a fragmentation of the teacher role; where the teacher was once the main person responsible for planning, practice and reflection, those activities may now be performed by different actors with different areas of responsibility. The theoretical discussion is complemented by a review of recent studies of new practices and design formats aiming to overcome the upscaling issues of MOOCs. The authors present a multifaceted picture of MOOC methodologies, including a typology of hybrid approaches to MOOC design. Through the example of MOOC implementation in India, they address the integration of MOOCs into formal higher education systems. They conclude their article with the contention that, through upscaling, important facets of students' intellectual development and critical thinking might be left to the students themselves. This may cause problems. Adequate scaffolding from a teacher, such as adapting activities to the specific situation, might be needed to develop the skills required to be a self-directed learner. Furthermore, upscaling seems to promote a separation of the formerly unified teacher functions of planning, teaching and assessing, which necessitates increased collaboration among the many new actors in the field of pedagogy.

  5. Safety in numbers 4: The relationship between exposure to authentic and didactic environments and nursing students' learning of medication dosage calculation problem solving knowledge and skills.

    Science.gov (United States)

    Weeks, Keith W; Clochesy, John M; Hutton, B Meriel; Moseley, Laurie

    2013-03-01

    Advancing the art and science of education practice requires a robust evaluation of the relationship between students' exposure to learning and assessment environments and the development of their cognitive competence (knowing that and why) and functional competence (know-how and skills). Healthcare education translation research requires specific education technology assessments and evaluations that consist of quantitative analyses of empirical data and qualitative evaluations of the lived student experience of the education journey and schemata construction (Weeks et al., 2013a). This paper focuses on the outcomes of UK PhD and USA post-doctorate experimental research. We evaluated the relationship between exposure to traditional didactic methods of education, prototypes of an authentic medication dosage calculation problem-solving (MDC-PS) environment and nursing students' construction of conceptual and calculation competence in medication dosage calculation problem-solving skills. Empirical outcomes from both UK and USA programmes of research identified highly significant differences in the construction of conceptual and calculation competence in MDC-PS following exposure to the authentic learning environment to that following exposure to traditional didactic transmission methods of education (p students exposure to authentic learning environments is an essential first step in the development of conceptual and calculation competence and relevant schemata construction (internal representations of the relationship between the features of authentic dosage problems and calculation functions); and how authentic environments more ably support all cognitive (learning) styles in mathematics than traditional didactic methods of education. Functional competence evaluations are addressed in Macdonald et al. (2013) and Weeks et al. (2013e). Copyright © 2012. Published by Elsevier Ltd.

  6. System Quality Characteristics for Selecting Mobile Learning Applications

    Directory of Open Access Journals (Sweden)

    Mohamed SARRAB

    2015-10-01

    Full Text Available The majority of M-learning (Mobile learning applications available today are developed for the formal learning and education environment. These applications are characterized by the improvement in the interaction between learners and instructors to provide high interaction and flexibility to the learning process. M-learning is gaining increased recognition and adoption by different organizations. With the high number of M-learning applications available today, making the right decision about which, application to choose can be quite challenging. To date there is no complete and well defined set of system characteristics for such M-learning applications. This paper presents system quality characteristics for selecting M-learning applications based on the result of a systematic review conducted in this domain.

  7. Really big numbers

    CERN Document Server

    Schwartz, Richard Evan

    2014-01-01

    In the American Mathematical Society's first-ever book for kids (and kids at heart), mathematician and author Richard Evan Schwartz leads math lovers of all ages on an innovative and strikingly illustrated journey through the infinite number system. By means of engaging, imaginative visuals and endearing narration, Schwartz manages the monumental task of presenting the complex concept of Big Numbers in fresh and relatable ways. The book begins with small, easily observable numbers before building up to truly gigantic ones, like a nonillion, a tredecillion, a googol, and even ones too huge for names! Any person, regardless of age, can benefit from reading this book. Readers will find themselves returning to its pages for a very long time, perpetually learning from and growing with the narrative as their knowledge deepens. Really Big Numbers is a wonderful enrichment for any math education program and is enthusiastically recommended to every teacher, parent and grandparent, student, child, or other individual i...

  8. [Family of ribosomal proteins S1 contains unique conservative domain].

    Science.gov (United States)

    Deriusheva, E I; Machulin, A V; Selivanova, O M; Serdiuk, I N

    2010-01-01

    Different representatives of bacteria have different number of amino acid residues in the ribosomal proteins S1. This number varies from 111 (Spiroplasma kunkelii) to 863 a.a. (Treponema pallidum). Traditionally and for lack of this protein three-dimensional structure, its architecture is represented as repeating S1 domains. Number of these domains depends on the protein's length. Domain's quantity and its boundaries data are contained in the specialized databases, such as SMART, Pfam and PROSITE. However, for the same object these data may be very different. For search of domain's quantity and its boundaries, new approach, based on the analysis of dicted secondary structure (PsiPred), was used. This approach allowed us to reveal structural domains in amino acid sequences of S1 proteins and at that number varied from one to six. Alignment of S1 proteins, containing different domain's number, with the S1 RNAbinding domain of Escherichia coli PNPase elicited a fact that in family of ribosomal proteins SI one domain has maximal homology with S1 domain from PNPase. This conservative domain migrates along polypeptide chain and locates in proteins, containing different domain's number, according to specified pattern. In this domain as well in the S1 domain from PNPase, residues Phe-19, Phe-22, His-34, Asp-64 and Arg-68 are clustered on the surface and formed RNA binding site.

  9. Blocking-resistant communication through domain fronting

    Directory of Open Access Journals (Sweden)

    Fifield David

    2015-06-01

    Full Text Available We describe “domain fronting,” a versatile censorship circumvention technique that hides the remote endpoint of a communication. Domain fronting works at the application layer, using HTTPS, to communicate with a forbidden host while appearing to communicate with some other host, permitted by the censor. The key idea is the use of different domain names at different layers of communication. One domain appears on the “outside” of an HTTPS request—in the DNS request and TLS Server Name Indication—while another domain appears on the “inside”—in the HTTP Host header, invisible to the censor under HTTPS encryption. A censor, unable to distinguish fronted and nonfronted traffic to a domain, must choose between allowing circumvention traffic and blocking the domain entirely, which results in expensive collateral damage. Domain fronting is easy to deploy and use and does not require special cooperation by network intermediaries. We identify a number of hard-to-block web services, such as content delivery networks, that support domain-fronted connections and are useful for censorship circumvention. Domain fronting, in various forms, is now a circumvention workhorse. We describe several months of deployment experience in the Tor, Lantern, and Psiphon circumvention systems, whose domain-fronting transports now connect thousands of users daily and transfer many terabytes per month.

  10. Ketidakseimbangan Instrumen Penilaian Pada Domain Pembelajaran

    Directory of Open Access Journals (Sweden)

    Yuberti Yuberti

    2015-04-01

    Full Text Available Generally, the result of teaching and learning process pointed to three basic aspects, they are; cognitive, affective, and psycomotoric that must be achieved by the students. These three aspects can not be divided because they are a unity. Teaching and learning hold one important aspect in education, that is to develop and empower cognitive, affective, and psycomotoric to create students effectively. The three domains should be underwritten in teaching learning process they cover lesson planning, lesson implementation, the result of evaluation and supervision of teaching and learning process. Based on the concept result teaching and learning throughly, the teacher are obligated to make instruments for three domains in teaching and learning process and it’s application. Various kind of evaluation are made to get the responsibly result of students’ teaching and learning can describe students ability comprehensively. Secara umum, hasil pembelajaran mengarah pada tiga hal pokok yang harus mampu dicapai peserta didik, yaitu Afektif, Kognitif dan Psikomotorik. Ketiga hal ini tidak boleh dipisahkan karena merupakan satu kesatuan. Pembelajaran sebagai salah satu aspek penting dalam pendidikan memegang peranan mengembangkan dan memberdayakan domain kognitif, afektif, dan psikomotor bagi peserta didik secara seimbang. Keseimbangan pengembangan dan pemberdayaan ketiga domain tersebut harus tertuang dengan jelas dalam proses pembelajaran, meliputi perencanaan pembelajaran, pelaksanaan pembelajaran, penilaian hasil pembelajaran, dan pengawasan proses pembelajaran. Berdasarkan konsep hasil belajar yang bersifat menyeluruh, sudah menjadi keharusan bahwa guru harus membuat instrumen pada ketiga ranah dalam pembelajaran tersebut dan melakukan penerapan penilaiannya. Berbagai bentuk penilaian dibuat untuk memperoleh hasil belajar peserta didik yang dapat dipertanggungjawabkan serta benar-benar dapat menggambarkan kemampuan peserta didik secara komprehensif

  11. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan

    2012-11-19

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  12. Multiple graph regularized protein domain ranking

    KAUST Repository

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-01-01

    Background: Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods.Results: To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods.Conclusion: The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications. 2012 Wang et al; licensee BioMed Central Ltd.

  13. Multiple graph regularized protein domain ranking.

    Science.gov (United States)

    Wang, Jim Jing-Yan; Bensmail, Halima; Gao, Xin

    2012-11-19

    Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  14. Multiple graph regularized protein domain ranking

    Directory of Open Access Journals (Sweden)

    Wang Jim

    2012-11-01

    Full Text Available Abstract Background Protein domain ranking is a fundamental task in structural biology. Most protein domain ranking methods rely on the pairwise comparison of protein domains while neglecting the global manifold structure of the protein domain database. Recently, graph regularized ranking that exploits the global structure of the graph defined by the pairwise similarities has been proposed. However, the existing graph regularized ranking methods are very sensitive to the choice of the graph model and parameters, and this remains a difficult problem for most of the protein domain ranking methods. Results To tackle this problem, we have developed the Multiple Graph regularized Ranking algorithm, MultiG-Rank. Instead of using a single graph to regularize the ranking scores, MultiG-Rank approximates the intrinsic manifold of protein domain distribution by combining multiple initial graphs for the regularization. Graph weights are learned with ranking scores jointly and automatically, by alternately minimizing an objective function in an iterative algorithm. Experimental results on a subset of the ASTRAL SCOP protein domain database demonstrate that MultiG-Rank achieves a better ranking performance than single graph regularized ranking methods and pairwise similarity based ranking methods. Conclusion The problem of graph model and parameter selection in graph regularized protein domain ranking can be solved effectively by combining multiple graphs. This aspect of generalization introduces a new frontier in applying multiple graphs to solving protein domain ranking applications.

  15. Students Engaged in Learning

    Science.gov (United States)

    Ismail, Emad A.; Groccia, James E.

    2018-01-01

    Engaging students in learning is a basic principle of effective undergraduate education. Outcomes of engaging students include meaningful learning experiences and enhanced skills in all learning domains. This chapter reviews the influence of engaging students in different forms of active learning on cognitive, psychomotor, and affective skill…

  16. Principles underlying the design of "The Number Race", an adaptive computer game for remediation of dyscalculia

    Directory of Open Access Journals (Sweden)

    Cohen Laurent

    2006-05-01

    Full Text Available Abstract Background Adaptive game software has been successful in remediation of dyslexia. Here we describe the cognitive and algorithmic principles underlying the development of similar software for dyscalculia. Our software is based on current understanding of the cerebral representation of number and the hypotheses that dyscalculia is due to a "core deficit" in number sense or in the link between number sense and symbolic number representations. Methods "The Number Race" software trains children on an entertaining numerical comparison task, by presenting problems adapted to the performance level of the individual child. We report full mathematical specifications of the algorithm used, which relies on an internal model of the child's knowledge in a multidimensional "learning space" consisting of three difficulty dimensions: numerical distance, response deadline, and conceptual complexity (from non-symbolic numerosity processing to increasingly complex symbolic operations. Results The performance of the software was evaluated both by mathematical simulations and by five weeks of use by nine children with mathematical learning difficulties. The results indicate that the software adapts well to varying levels of initial knowledge and learning speeds. Feedback from children, parents and teachers was positive. A companion article 1 describes the evolution of number sense and arithmetic scores before and after training. Conclusion The software, open-source and freely available online, is designed for learning disabled children aged 5–8, and may also be useful for general instruction of normal preschool children. The learning algorithm reported is highly general, and may be applied in other domains.

  17. Classical theory of algebraic numbers

    CERN Document Server

    Ribenboim, Paulo

    2001-01-01

    Gauss created the theory of binary quadratic forms in "Disquisitiones Arithmeticae" and Kummer invented ideals and the theory of cyclotomic fields in his attempt to prove Fermat's Last Theorem These were the starting points for the theory of algebraic numbers, developed in the classical papers of Dedekind, Dirichlet, Eisenstein, Hermite and many others This theory, enriched with more recent contributions, is of basic importance in the study of diophantine equations and arithmetic algebraic geometry, including methods in cryptography This book has a clear and thorough exposition of the classical theory of algebraic numbers, and contains a large number of exercises as well as worked out numerical examples The Introduction is a recapitulation of results about principal ideal domains, unique factorization domains and commutative fields Part One is devoted to residue classes and quadratic residues In Part Two one finds the study of algebraic integers, ideals, units, class numbers, the theory of decomposition, iner...

  18. [Intel random number generator-based true random number generator].

    Science.gov (United States)

    Huang, Feng; Shen, Hong

    2004-09-01

    To establish a true random number generator on the basis of certain Intel chips. The random numbers were acquired by programming using Microsoft Visual C++ 6.0 via register reading from the random number generator (RNG) unit of an Intel 815 chipset-based computer with Intel Security Driver (ISD). We tested the generator with 500 random numbers in NIST FIPS 140-1 and X(2) R-Squared test, and the result showed that the random number it generated satisfied the demand of independence and uniform distribution. We also compared the random numbers generated by Intel RNG-based true random number generator and those from the random number table statistically, by using the same amount of 7500 random numbers in the same value domain, which showed that the SD, SE and CV of Intel RNG-based random number generator were less than those of the random number table. The result of u test of two CVs revealed no significant difference between the two methods. Intel RNG-based random number generator can produce high-quality random numbers with good independence and uniform distribution, and solves some problems with random number table in acquisition of the random numbers.

  19. Fractions, Number Lines, Third Graders

    Science.gov (United States)

    Cramer, Kathleen; Ahrendt, Sue; Monson, Debra; Wyberg, Terry; Colum, Karen

    2017-01-01

    The Common Core State Standards for Mathematics (CCSSM) (CCSSI 2010) outlines ambitious goals for fraction learning, starting in third grade, that include the use of the number line model. Understanding and constructing fractions on a number line are particularly complex tasks. The current work of the authors centers on ways to successfully…

  20. Alternative to domain wall fermions

    International Nuclear Information System (INIS)

    Neuberger, H.

    2002-01-01

    An alternative to commonly used domain wall fermions is presented. Some rigorous bounds on the condition number of the associated linear problem are derived. On the basis of these bounds and some experimentation it is argued that domain wall fermions will in general be associated with a condition number that is of the same order of magnitude as the product of the condition number of the linear problem in the physical dimensions by the inverse bare quark mass. Thus, the computational cost of implementing true domain wall fermions using a single conjugate gradient algorithm is of the same order of magnitude as that of implementing the overlap Dirac operator directly using two nested conjugate gradient algorithms. At a cost of about a factor of two in operation count it is possible to make the memory usage of direct implementations of the overlap Dirac operator independent of the accuracy of the approximation to the sign function and of the same order as that of standard Wilson fermions

  1. From "five" to 5 for 5 minutes: Arabic number transcoding as a short, specific, and sensitive screening tool for mathematics learning difficulties.

    Science.gov (United States)

    Moura, Ricardo; Lopes-Silva, Júlia Beatriz; Vieira, Laura Rodrigues; Paiva, Giulia Moreira; Prado, Ana Carolina de Almeida; Wood, Guilherme; Haase, Vitor Geraldi

    2015-02-01

    Number transcoding (e.g., writing 29 when hearing "twenty-nine") is one of the most basic numerical abilities required in daily life and is paramount for mathematics achievement. The aim of this study is to investigate psychometric properties of an Arabic number-writing task and its capacity to identify children with mathematics difficulties. We assessed 786 children (55% girls) from first to fourth grades, who were classified as children with mathematics difficulties (n = 103) or controls (n = 683). Although error rates were low, the task presented adequate internal consistency (0.91). Analyses revealed effective diagnostic accuracy in first and second school grades (specificity equals to 0.67 and 0.76 respectively, and sensitivity equals to 0.70 and 0.88 respectively). Moreover, items tapping the understanding of place-value syntax were the most sensitive to mathematics achievement. Overall, we propose that number transcoding is a useful tool for the assessment of mathematics abilities in early elementary school. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. La Enseñanza y el Aprendizaje de los Números Complejos: un Estudio en el Nivel Universitario (Teaching and Learning of Complex Numbers: A Study at University Level

    Directory of Open Access Journals (Sweden)

    Tomás Pardo

    2007-09-01

    Full Text Available Presentamos algunos de los resultados más relevantes de un estudio sobre la problemática de la enseñanza y el aprendizaje de los números complejos. El estudio se ha dirigido a recabar información para sustentar sugerencias de intervención en las pautas educativas en relación con esta temática. We present some of the most relevant results of a study concerning the teaching and learning of complex numbers. The study is focused on collecting data to support suggestions for teaching interventions related to this content.

  3. Natural Alternatives to Natural Number: The Case of Ratio

    Directory of Open Access Journals (Sweden)

    Percival G. Matthews

    2018-06-01

    Full Text Available The overwhelming majority of efforts to cultivate early mathematical thinking rely primarily on counting and associated natural number concepts. Unfortunately, natural numbers and discretized thinking do not align well with a large swath of the mathematical concepts we wish for children to learn. This misalignment presents an important impediment to teaching and learning. We suggest that one way to circumvent these pitfalls is to leverage students’ non-numerical experiences that can provide intuitive access to foundational mathematical concepts. Specifically, we advocate for explicitly leveraging a students’ perceptually based intuitions about quantity and b students’ reasoning about change and variation, and we address the affordances offered by this approach. We argue that it can support ways of thinking that may at times align better with to-be-learned mathematical ideas, and thus may serve as a productive alternative for particular mathematical concepts when compared to number. We illustrate this argument using the domain of ratio, and we do so from the distinct disciplinary lenses we employ respectively as a cognitive psychologist and as a mathematics education researcher. Finally, we discuss the potential for productive synthesis given the substantial differences in our preferred methods and general epistemologies.

  4. Performance comparison of machine learning algorithms and number of independent components used in fMRI decoding of belief vs. disbelief.

    Science.gov (United States)

    Douglas, P K; Harris, Sam; Yuille, Alan; Cohen, Mark S

    2011-05-15

    Machine learning (ML) has become a popular tool for mining functional neuroimaging data, and there are now hopes of performing such analyses efficiently in real-time. Towards this goal, we compared accuracy of six different ML algorithms applied to neuroimaging data of persons engaged in a bivariate task, asserting their belief or disbelief of a variety of propositional statements. We performed unsupervised dimension reduction and automated feature extraction using independent component (IC) analysis and extracted IC time courses. Optimization of classification hyperparameters across each classifier occurred prior to assessment. Maximum accuracy was achieved at 92% for Random Forest, followed by 91% for AdaBoost, 89% for Naïve Bayes, 87% for a J48 decision tree, 86% for K*, and 84% for support vector machine. For real-time decoding applications, finding a parsimonious subset of diagnostic ICs might be useful. We used a forward search technique to sequentially add ranked ICs to the feature subspace. For the current data set, we determined that approximately six ICs represented a meaningful basis set for classification. We then projected these six IC spatial maps forward onto a later scanning session within subject. We then applied the optimized ML algorithms to these new data instances, and found that classification accuracy results were reproducible. Additionally, we compared our classification method to our previously published general linear model results on this same data set. The highest ranked IC spatial maps show similarity to brain regions associated with contrasts for belief > disbelief, and disbelief < belief. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. On the Relation Between Grammatical Number and Cardinal Numbers in Development

    Directory of Open Access Journals (Sweden)

    Barbara W Sarnecka

    2014-10-01

    Full Text Available This mini-review focuses on the question of how the grammatical number system of a child’s language may help the child learn the meanings of cardinal number words (e.g., ‘one’ and ‘two’. Evidence from young children learning English, Russian, Japanese, Mandarin, Slovenian or Saudi Arabic suggests that trajectories of number-word learning differ for children learning different languages. Children learning English, which distinguishes between singular and plural, seem to learn the meaning of the cardinal number ‘one’ earlier than children learning Japanese or Mandarin, which have very little singular/plural marking. Similarly, children whose languages have a singular/dual/plural system (Slovenian and Saudi Arabic learn the meaning of ‘two’ earlier than English-speaking children. This relation between grammatical and cardinal number may shed light on how humans acquire cardinal-number concepts. There is an ongoing debate about whether mental symbols for small cardinalities (concepts for ‘oneness,’ ‘twoness,’ etc. are innate or learned. Although an effect of grammatical number on number-word learning does not rule out nativist accounts, it seems more consistent with constructivist accounts, which portray the number-learning process as one that requires significant conceptual change.

  6. On the relation between grammatical number and cardinal numbers in development.

    Science.gov (United States)

    Sarnecka, Barbara W

    2014-01-01

    This mini-review focuses on the question of how the grammatical number system of a child's language may help the child learn the meanings of cardinal number words (e.g., "one" and "two"). Evidence from young children learning English, Russian, Japanese, Mandarin, Slovenian, or Saudi Arabic suggests that trajectories of number-word learning differ for children learning different languages. Children learning English, which distinguishes between singular and plural, seem to learn the meaning of the cardinal number "one" earlier than children learning Japanese or Mandarin, which have very little singular/plural marking. Similarly, children whose languages have a singular/dual/plural system (Slovenian and Saudi Arabic) learn the meaning of "two" earlier than English-speaking children. This relation between grammatical and cardinal number may shed light on how humans acquire cardinal-number concepts. There is an ongoing debate about whether mental symbols for small cardinalities (concepts for "oneness," "twoness," etc.) are innate or learned. Although an effect of grammatical number on number-word learning does not rule out nativist accounts, it seems more consistent with constructivist accounts, which portray the number-learning process as one that requires significant conceptual change.

  7. Identification of structural domains in proteins by a graph heuristic

    NARCIS (Netherlands)

    Wernisch, Lorenz; Hunting, M.M.G.; Wodak, Shoshana J.

    1999-01-01

    A novel automatic procedure for identifying domains from protein atomic coordinates is presented. The procedure, termed STRUDL (STRUctural Domain Limits), does not take into account information on secondary structures and handles any number of domains made up of contiguous or non-contiguous chain

  8. The Dynamic Interdependence of Developmental Domains across Emerging Adulthood

    Science.gov (United States)

    Sneed, Joel R.; Hamagami, Fumiaki; McArdle, John J.; Cohen, Patricia; Chen, Henian

    2007-01-01

    Emerging adulthood is a period in which profound role changes take place across a number of life domains including finance, romance, and residence. On the basis of dynamic systems theory, change in one domain should be related to change in another domain, because the concept of development according to this approach is a relational one. To…

  9. Deposition and growth of domains in one dimension

    Science.gov (United States)

    Rodgers, G. J.; Tavassoli, Z.

    1998-09-01

    A model of deposition and growth in one dimension is studied in which finite sized domains are deposited by the random sequential adsorption process. The domains then grow with a time dependent growth rate. When the initial deposited domains are monomers and dimers the coverage is found exactly for a number of different growth rates. A continuum version of this model is also considered.

  10. Supersymmetric domain walls

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio

    2012-01-01

    We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of

  11. Learning Faster by Discovering and Exploiting Object Similarities

    Directory of Open Access Journals (Sweden)

    Tadej Janež

    2013-03-01

    Full Text Available In this paper we explore the question: “Is it possible to speed up the learning process of an autonomous agent by performing experiments in a more complex environment (i.e., an environment with a greater number of different objects?” To this end, we use a simple robotic domain, where the robot has to learn a qualitative model predicting the change in the robot's distance to an object. To quantify the environment's complexity, we defined cardinal complexity as the number of objects in the robot's world, and behavioural complexity as the number of objects' distinct behaviours. We propose Error reduction merging (ERM, a new learning method that automatically discovers similarities in the structure of the agent's environment. ERM identifies different types of objects solely from the data measured and merges the observations of objects that behave in the same or similar way in order to speed up the agent's learning. We performed a series of experiments in worlds of increasing complexity. The results in our simple domain indicate that ERM was capable of discovering structural similarities in the data which indeed made the learning faster, clearly superior to conventional learning. This observed trend occurred with various machine learning algorithms used inside the ERM method.

  12. Pharmacological Interventions for the MATRICS Cognitive Domains in Schizophrenia: What’s the Evidence?

    Science.gov (United States)

    Vingerhoets, Wilhelmina A. M.; Bloemen, Oswald J. N.; Bakker, Geor; van Amelsvoort, Therese A. M. J.

    2013-01-01

    Schizophrenia is a disabling, chronic psychiatric disorder with a prevalence rate of 0.5–1% in the general population. Symptoms include positive (e.g., delusions, hallucinations), negative (e.g., blunted affect, social withdrawal), as well as cognitive symptoms (e.g., memory and attention problems). Although 75–85% of patients with schizophrenia report cognitive impairments, the underlying neuropharmacological mechanisms are not well understood and currently no effective treatment is available for these impairments. This has led to the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) initiative, which established seven cognitive domains that are fundamentally impaired in schizophrenia. These domains include verbal learning and memory, visual learning and memory, working memory, attention and vigilance, processing speed, reasoning and problem solving, and social cognition. Recently, a growing number of studies have been conducted trying to identify the underlying neuropharmacological mechanisms of cognitive impairments in schizophrenia patients. Specific cognitive impairments seem to arise from different underlying neuropharmacological mechanisms. However, most review articles describe cognition in general and an overview of the mechanisms involved in these seven separate cognitive domains is currently lacking. Therefore, we reviewed the underlying neuropharmacological mechanisms focusing on the domains as established by the MATRICS initiative which are considered most crucial in schizophrenia. PMID:24363646

  13. Pharmacological interventions for the MATRICS cognitive domains in schizophrenia: what's the evidence?

    Directory of Open Access Journals (Sweden)

    Wilhelmina A.M. Vingerhoets

    2013-12-01

    Full Text Available Schizophrenia is a disabling, chronic psychiatric disorder with a prevalence rate of 0.5-1% in the general population. Symptoms include positive (e.g. delusions, hallucinations, negative (e.g. blunted affect, social withdrawal, as well as cognitive symptoms (e.g. memory and attention problems. Although 75-85% of patients with schizophrenia report cognitive impairments, the underlying neuropharmacological mechanisms are not well understood and currently no effective treatment is available for these impairments. This has led to the MATRICS initiative (Measurement and Treatment Research to Improve Cognition in Schizophrenia, which established seven cognitive domains that are fundamentally impaired in schizophrenia. These domains include verbal learning and memory, visual learning and memory, working memory, attention and vigilance, processing speed, reasoning and problem solving, and social cognition. Recently, a growing number of studies have been conducted trying to identify the underlying neuropharmacological mechanisms of cognitive impairments in schizophrenia patients. Specific cognitive impairments seem to arise from different underlying neuropharmacological mechanisms. However, most review articles describe cognition in general and an overview of the mechanisms involved in these seven separate cognitive domains is currently lacking. Therefore, we reviewed the underlying neuropharmacological mechanisms focussing on the domains as established by the MATRICS initiative which are considered most crucial in schizophrenia.

  14. Domain Approach: An Alternative Approach in Moral Education

    Science.gov (United States)

    Vengadasalam, Chander; Mamat, Wan Hasmah Wan; Mail, Fauziah; Sudramanian, Munimah

    2014-01-01

    This paper discusses the use of the domain approach in moral education in an upper secondary school in Malaysia. Moral Education needs a creative and an innovative approach. Therefore, a few forms of approaches are used in the teaching-learning of Moral Education. This research describes the use of domain approach which comprises the moral domain…

  15. Multi-domain comparison of safety standards

    International Nuclear Information System (INIS)

    Baufreton, Ph.; Derrien, J.C.; Ricque, B.; Blanquart, J.P.; Boulanger, J.L.; Delseny, H.; Gassino, J.; Ladier, G.; Ledinot, E.; Leeman, M.; Quere, Ph.

    2011-01-01

    This paper presents an analysis of safety standards and their implementation in certification strategies from different domains such as aeronautics, automation, automotive, nuclear, railway and space. This work, performed in the context of the CG2E ('Club des Grandes Entreprises de l'Embarque'), aims at identifying the main similarities and dissimilarities, for potential cross-domain harmonization. We strive to find the most comprehensive 'trans-sectorial' approach, within a large number of industrial domains. Exhibiting the 'true goals' of their numerous applicable standards, related to the safety of system and software, is a first important step towards harmonization, sharing common approaches, methods and tools whenever possible. (authors)

  16. Learning Analytics

    Directory of Open Access Journals (Sweden)

    Erik Duval

    2012-06-01

    Full Text Available This paper provides a brief introduction to the domain of ‘learning analytics’. We first explain the background and idea behind the concept. Then we give a brief overview of current research issues. We briefly list some more controversial issues before concluding.

  17. Cultural Heritage and the Public Domain

    Directory of Open Access Journals (Sweden)

    Bas Savenije

    2012-09-01

    Full Text Available For centuries, libraries, archives and museums from across Europe have been the custodians of our rich and diverse cultural heritage. They have preserved and provided access to the testimonies of knowledge, beauty and imagination, such as sculptures, paintings, music and literature. The new information technologies have created unbelievable opportunities to make this common heritage more accessible for all. Recently, the European Commission commissioned a ‘Comité des Sages’ to make recommendations on ways and means to make Europe's cultural heritage and creativity available on the Internet and to preserve it for future generations. In the United States the Association of Research Libraries (ARL endorsed a number of principle recommendations to its members regarding the digitisation of cultural heritage. Both the Comité des Sages and the ARL emphasize the added value of digitisation. The Comité underlines that the digitised material can in itself be a driver of innovation and can be at the basis of new services in sectors such as tourism and learning (Comité des Sages 2011 and the ARL stresses the added value for researchers (ARL Principles July 2010. For over a century, libraries have participated in successful resource sharing cooperatives that have made content widely accessible. According to both the ARL and the Comité, the same spirit should govern commercial digitisation activities. In the best of all possible worlds, there would in our view be some level of free access to all content, with only special value-added services restricted to a subscription model. A landmark in the discussion about Open Access to information is the Berlin Declaration on Open Access to Knowledge in the Sciences and Humanities. Referring to this Declaration, people often put emphasis on recent research publications. But the following is also one of the objectives of the Declaration: “encouraging the holders of cultural heritage to support open access

  18. Conserved Domain Database (CDD)

    Data.gov (United States)

    U.S. Department of Health & Human Services — CDD is a protein annotation resource that consists of a collection of well-annotated multiple sequence alignment models for ancient domains and full-length proteins.

  19. Eliciting explanations: Constraints on when self-explanation aids learning.

    Science.gov (United States)

    Rittle-Johnson, Bethany; Loehr, Abbey M

    2017-10-01

    Generating explanations for oneself in an attempt to make sense of new information (i.e., self-explanation) is often a powerful learning technique. Despite its general effectiveness, in a growing number of studies, prompting for self-explanation improved some aspects of learning, but reduced learning of other aspects. Drawing on this recent research, as well as on research comparing self-explanation under different conditions, we propose four constraints on the effectiveness of self-explanation. First, self-explanation promotes attention to particular types of information, so it is better suited to promote particular learning outcomes in particular types of domains, such as transfer in domains guided by general principles or heuristics. Second, self-explaining a variety of types of information can improve learning, but explaining one's own solution methods or choices may reduce learning under certain conditions. Third, explanation prompts focus effort on particular aspects of the to-be-learned material, potentially drawing effort away from other important information. Explanation prompts must be carefully designed to align with target learning outcomes. Fourth, prompted self-explanation often promotes learning better than unguided studying, but alternative instructional techniques may be more effective under some conditions. Attention to these constraints should optimize the effectiveness of self-explanation as an instructional technique in future research and practice.

  20. National Guard Forces in the Cyber Domain

    Science.gov (United States)

    2015-05-22

    TITLE AND SUBTITLE National Guard Forces in the Cyber Domain 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Soldiers. Army Cyber Command (ARCYBER) commander, Lieutenant General Edward Cardon stated that Guard will begin to build combat power with...90 2014 Quadrennial Defense Review, 15. 91 Ibid. 92 Edward C. Cardon , "ARMY.MIL, The Official Homepage of the United

  1. Informal learning.

    Science.gov (United States)

    Callanan, Maureen; Cervantes, Christi; Loomis, Molly

    2011-11-01

    We consider research and theory relevant to the notion of informal learning. Beginning with historical and definitional issues, we argue that learning happens not just in schools or in school-aged children. Many theorists have contrasted informal learning with formal learning. Moving beyond this dichotomy, and away from a focus on where learning occurs, we discuss five dimensions of informal learning that are drawn from the literature: (1) non-didactive, (2) highly socially collaborative, (3) embedded in meaningful activity, (4) initiated by learner's interest or choice, and (5) removed from external assessment. We consider these dimensions in the context of four sample domains: learning a first language, learning about the mind and emotions within families and communities, learning about science in family conversations and museum settings, and workplace learning. Finally, we conclude by considering convergences and divergences across the different literatures and suggesting areas for future research. WIREs Cogni Sci 2011 2 646-655 DOI: 10.1002/wcs.143 For further resources related to this article, please visit the WIREs website. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Validating Domain Ontologies: A Methodology Exemplified for Concept Maps

    Science.gov (United States)

    Steiner, Christina M.; Albert, Dietrich

    2017-01-01

    Ontologies play an important role as knowledge domain representations in technology-enhanced learning and instruction. Represented in form of concept maps they are commonly used as teaching and learning material and have the potential to enhance positive educational outcomes. To ensure the effective use of an ontology representing a knowledge…

  3. Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes.

    Science.gov (United States)

    Liu, Bernard A

    2017-01-01

    Today there exists a rapidly expanding number of sequenced genomes. Cataloging protein interaction domains such as the Src Homology 2 (SH2) domain across these various genomes can be accomplished with ease due to existing algorithms and predictions models. An evolutionary analysis of SH2 domains provides a step towards understanding how SH2 proteins integrated with existing signaling networks to position phosphotyrosine signaling as a crucial driver of robust cellular communication networks in metazoans. However organizing and tracing SH2 domain across organisms and understanding their evolutionary trajectory remains a challenge. This chapter describes several methodologies towards analyzing the evolutionary trajectory of SH2 domains including a global SH2 domain classification system, which facilitates annotation of new SH2 sequences essential for tracing the lineage of SH2 domains throughout eukaryote evolution. This classification utilizes a combination of sequence homology, protein domain architecture and the boundary positions between introns and exons within the SH2 domain or genes encoding these domains. Discrete SH2 families can then be traced across various genomes to provide insight into its origins. Furthermore, additional methods for examining potential mechanisms for divergence of SH2 domains from structural changes to alterations in the protein domain content and genome duplication will be discussed. Therefore a better understanding of SH2 domain evolution may enhance our insight into the emergence of phosphotyrosine signaling and the expansion of protein interaction domains.

  4. How to be Brilliant at Numbers

    CERN Document Server

    Webber, Beryl

    2010-01-01

    How to be Brilliant at Numbers will help students to develop an understanding of numbers, place value, fractions and decimals. They will develop the language of number, and of the relationships between numbers. They will also use mathematics to solve problems and will develop mathematical reasoning. Using the worksheets in this book, pupils will learn about: ancient Greek numbers; coins; digits; consecutive numbers; magic ladders; fractions; matching pairs; multiples of 10; rounding; decimal un

  5. Blended Learning: The Student Viewpoint.

    Science.gov (United States)

    Shantakumari, N; Sajith, P

    2015-01-01

    Blended learning (BL) is defined as "a way of meeting the challenges of tailoring learning and development to the needs of individuals by integrating the innovative and technological advances offered by online learning with the interaction and participation offered in the best of traditional learning." The Gulf Medical University (GMU), Ajman, UAE, offers a number of courses which incorporate BL with contact classes and online component on an E-learning platform. Insufficient learning satisfaction has been stated as an obstacle to its implementation and efficacy. To determine the students' perceptions toward BL which in turn will determine their satisfaction and the efficacy of the courses offered. This was a cross-sectional study conducted at the GMU, Ajman between January and December 2013. Perceptions of BL process, content, and ease of use were collected from 75 students enrolled in the certificate courses offered by the university using a questionnaire. Student perceptions were assessed using Mann-Whitney U-test and Kruskal-Wallis test on the basis of gender, age, and course enrollment. The median scores of all the questions in the three domains were above three suggesting positive perceptions on BL. The distribution of perceptions was similar between gender and age. However, significant differences were observed in the course enrollment (P = 0.02). Students hold a positive perception of the BL courses being offered in this university. The difference in perceptions among students of different courses suggest that the BL format offered needs modification according to course content to improve its perception.

  6. Patterns, principles, and practices of domain-driven design

    CERN Document Server

    Millett, Scott

    2015-01-01

    Methods for managing complex software construction following the practices, principles and patterns of Domain-Driven Design with code examples in C# This book presents the philosophy of Domain-Driven Design (DDD) in a down-to-earth and practical manner for experienced developers building applications for complex domains. A focus is placed on the principles and practices of decomposing a complex problem space as well as the implementation patterns and best practices for shaping a maintainable solution space. You will learn how to build effective domain models through the use of tactical pat

  7. Applying Technology to Inquiry-Based Learning in Early Childhood Education

    Science.gov (United States)

    Wang, Feng; Kinzie, Mable B.; McGuire, Patrick; Pan, Edward

    2010-01-01

    Children naturally explore and learn about their environments through inquiry, and computer technologies offer an accessible vehicle for extending the domain and range of this inquiry. Over the past decade, a growing number of interactive games and educational software packages have been implemented in early childhood education and addressed a…

  8. Visual Input Enhancement and Grammar Learning: A Meta-Analytic Review

    Science.gov (United States)

    Lee, Sang-Ki; Huang, Hung-Tzu

    2008-01-01

    Effects of pedagogical interventions with visual input enhancement on grammar learning have been investigated by a number of researchers during the past decade and a half. The present review delineates this research domain via a systematic synthesis of 16 primary studies (comprising 20 unique study samples) retrieved through an exhaustive…

  9. Advanced number theory with applications

    CERN Document Server

    Mollin, Richard A

    2009-01-01

    Algebraic Number Theory and Quadratic Fields Algebraic Number Fields The Gaussian Field Euclidean Quadratic Fields Applications of Unique Factorization Ideals The Arithmetic of Ideals in Quadratic Fields Dedekind Domains Application to Factoring Binary Quadratic Forms Basics Composition and the Form Class Group Applications via Ambiguity Genus Representation Equivalence Modulo p Diophantine Approximation Algebraic and Transcendental Numbers Transcendence Minkowski's Convex Body Theorem Arithmetic Functions The Euler-Maclaurin Summation Formula Average Orders The Riemann zeta-functionIntroduction to p-Adic AnalysisSolving Modulo pn Introduction to Valuations Non-Archimedean vs. Archimedean Valuations Representation of p-Adic NumbersDirichlet: Characters, Density, and Primes in Progression Dirichlet Characters Dirichlet's L-Function and Theorem Dirichlet DensityApplications to Diophantine Equations Lucas-Lehmer Theory Generalized Ramanujan-Nagell Equations Bachet's Equation The Fermat Equation Catalan and the A...

  10. Domain-specific knowledge as playful interaction

    DEFF Research Database (Denmark)

    Valente, Andrea; Marchetti, Emanuela

    2015-01-01

    Starting from reflections on designing games for learning, aimed at providing a tangible grounding to abstract knowledge, we designed Prime Slaughter, a game to support learning of factorisation and prime numbers, targeted to primary and early secondary school children. This new study draws upon ...... on activity theory, aimed at facilitating the transposition of abstract knowledge into playful interactions, so to develop new learning games of this kind, also keeping into account children’s individual needs regarding play.......Starting from reflections on designing games for learning, aimed at providing a tangible grounding to abstract knowledge, we designed Prime Slaughter, a game to support learning of factorisation and prime numbers, targeted to primary and early secondary school children. This new study draws upon...

  11. Domain Adaptation for Opinion Classification: A Self-Training Approach

    Directory of Open Access Journals (Sweden)

    Yu, Ning

    2013-03-01

    Full Text Available Domain transfer is a widely recognized problem for machine learning algorithms because models built upon one data domain generally do not perform well in another data domain. This is especially a challenge for tasks such as opinion classification, which often has to deal with insufficient quantities of labeled data. This study investigates the feasibility of self-training in dealing with the domain transfer problem in opinion classification via leveraging labeled data in non-target data domain(s and unlabeled data in the target-domain. Specifically, self-training is evaluated for effectiveness in sparse data situations and feasibility for domain adaptation in opinion classification. Three types of Web content are tested: edited news articles, semi-structured movie reviews, and the informal and unstructured content of the blogosphere. Findings of this study suggest that, when there are limited labeled data, self-training is a promising approach for opinion classification, although the contributions vary across data domains. Significant improvement was demonstrated for the most challenging data domain-the blogosphere-when a domain transfer-based self-training strategy was implemented.

  12. Simplicity and Specificity in Language: Domain-General Biases Have Domain-Specific Effects

    Science.gov (United States)

    Culbertson, Jennifer; Kirby, Simon

    2016-01-01

    The extent to which the linguistic system—its architecture, the representations it operates on, the constraints it is subject to—is specific to language has broad implications for cognitive science and its relation to evolutionary biology. Importantly, a given property of the linguistic system can be “specific” to the domain of language in several ways. For example, if the property evolved by natural selection under the pressure of the linguistic function it serves then the property is domain-specific in the sense that its design is tailored for language. Equally though, if that property evolved to serve a different function or if that property is domain-general, it may nevertheless interact with the linguistic system in a way that is unique. This gives a second sense in which a property can be thought of as specific to language. An evolutionary approach to the language faculty might at first blush appear to favor domain-specificity in the first sense, with individual properties of the language faculty being specifically linguistic adaptations. However, we argue that interactions between learning, culture, and biological evolution mean any domain-specific adaptations that evolve will take the form of weak biases rather than hard constraints. Turning to the latter sense of domain-specificity, we highlight a very general bias, simplicity, which operates widely in cognition and yet interacts with linguistic representations in domain-specific ways. PMID:26793132

  13. Recommender Systems for Learning

    CERN Document Server

    Manouselis, Nikos; Verbert, Katrien; Duval, Erik

    2013-01-01

    Technology enhanced learning (TEL) aims to design, develop and test sociotechnical innovations that will support and enhance learning practices of both individuals and organisations. It is therefore an application domain that generally covers technologies that support all forms of teaching and learning activities. Since information retrieval (in terms of searching for relevant learning resources to support teachers or learners) is a pivotal activity in TEL, the deployment of recommender systems has attracted increased interest. This brief attempts to provide an introduction to recommender systems for TEL settings, as well as to highlight their particularities compared to recommender systems for other application domains.

  14. Nonverbal learning disabilities and developmental dyscalculia: Differential diagnosis of two Brazilian children

    Directory of Open Access Journals (Sweden)

    Magda Solange Vanzo Pestun

    Full Text Available Nonverbal learning disabilities (NVLD, a clinical condition still little reported in Brazil, are characterized by damages in the visual spatial domains, visual motor integration, fine motor skills, math skills and social and emotional difficulties. Developmental Dyscalculia (DD is a neurodevelopmental disorder that affects basic arithmetic skills acquisition, including storage and recovery of arithmetic facts, calculation fluency and precision and number sense domain. Although both are persistent Math learning disorder/disability, they cause different damages. The objective of this case report is to describe, compare and analyze the neuropsychological profile of two Brazilian children with similar complaints but distinct diagnosis.

  15. Structural domain walls in polar hexagonal manganites

    Science.gov (United States)

    Kumagai, Yu

    2014-03-01

    The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.

  16. Number Sense on the Number Line

    Science.gov (United States)

    Woods, Dawn Marie; Ketterlin Geller, Leanne; Basaraba, Deni

    2018-01-01

    A strong foundation in early number concepts is critical for students' future success in mathematics. Research suggests that visual representations, like a number line, support students' development of number sense by helping them create a mental representation of the order and magnitude of numbers. In addition, explicitly sequencing instruction…

  17. Effects of sub-domain structure on initial magnetization curve and domain size distribution of stacked media

    International Nuclear Information System (INIS)

    Sato, S.; Kumagai, S.; Sugita, R.

    2015-01-01

    In this paper, in order to confirm the sub-domain structure in stacked media demagnetized with in-plane field, initial magnetization curves and magnetic domain size distribution were investigated. Both experimental and simulation results showed that an initial magnetization curve for the medium demagnetized with in-plane field (MDI) initially rose faster than that for the medium demagnetized with perpendicular field (MDP). It is inferred that this is because the MDI has a larger number of domain walls than the MDP due to the existence of the sub-domains, resulting in an increase in the probability of domain wall motion. Dispersion of domain size for the MDI was larger than that for the MDP. This is because sub-domains are formed not only inside the domain but also at the domain boundary region, and they change the position of the domain boundary to affect the domain size. - Highlights: • An initial magnetization curve for MDI initially rose faster than that for MDP. • Dispersion of domain size for the MDI was larger than that for the MDP. • Experimental and simulation results can be explained by existence of sub-domains

  18. Domain Adaptation for Pedestrian Detection Based on Prediction Consistency

    Directory of Open Access Journals (Sweden)

    Yu Li-ping

    2014-01-01

    Full Text Available Pedestrian detection is an active area of research in computer vision. It remains a quite challenging problem in many applications where many factors cause a mismatch between source dataset used to train the pedestrian detector and samples in the target scene. In this paper, we propose a novel domain adaptation model for merging plentiful source domain samples with scared target domain samples to create a scene-specific pedestrian detector that performs as well as rich target domain simples are present. Our approach combines the boosting-based learning algorithm with an entropy-based transferability, which is derived from the prediction consistency with the source classifications, to selectively choose the samples showing positive transferability in source domains to the target domain. Experimental results show that our approach can improve the detection rate, especially with the insufficient labeled data in target scene.

  19. Domain: Labour market

    NARCIS (Netherlands)

    Oude Mulders, J.; Wadensjö, E.; Hasselhorn, H.M.; Apt, W.

    This domain chapter is dedicated to summarize research on the effects of labour market contextual factors on labour market participation of older workers (aged 50+) and identify research gaps. While employment participation and the timing of (early) retirement is often modelled as an individual

  20. Cellulose binding domain proteins

    Science.gov (United States)

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  1. Domain-Specific Multimodeling

    DEFF Research Database (Denmark)

    Hessellund, Anders

    the overall level of abstraction. It does, however, also introduce a new problem of coordinating multiple different languages in a single system. We call this problem the coordination problem. In this thesis, we present the coordination method for domain-specific multimodeling that explicitly targets...

  2. GlycoDomainViewer

    DEFF Research Database (Denmark)

    Joshi, Hiren J; Jørgensen, Anja; Schjoldager, Katrine T

    2018-01-01

    features, which enhances visibility and accessibility of the wealth of glycoproteomic data being generated. The GlycoDomainViewer enables visual exploration of glycoproteomic data, incorporating information from recent N- and O-glycoproteome studies on human and animal cell lines and some organs and body...

  3. Evolutionary dynamics of protein domain architecture in plants

    Directory of Open Access Journals (Sweden)

    Zhang Xue-Cheng

    2012-01-01

    Full Text Available Abstract Background Protein domains are the structural, functional and evolutionary units of the protein. Protein domain architectures are the linear arrangements of domain(s in individual proteins. Although the evolutionary history of protein domain architecture has been extensively studied in microorganisms, the evolutionary dynamics of domain architecture in the plant kingdom remains largely undefined. To address this question, we analyzed the lineage-based protein domain architecture content in 14 completed green plant genomes. Results Our analyses show that all 14 plant genomes maintain similar distributions of species-specific, single-domain, and multi-domain architectures. Approximately 65% of plant domain architectures are universally present in all plant lineages, while the remaining architectures are lineage-specific. Clear examples are seen of both the loss and gain of specific protein architectures in higher plants. There has been a dynamic, lineage-wise expansion of domain architectures during plant evolution. The data suggest that this expansion can be largely explained by changes in nuclear ploidy resulting from rounds of whole genome duplications. Indeed, there has been a decrease in the number of unique domain architectures when the genomes were normalized into a presumed ancestral genome that has not undergone whole genome duplications. Conclusions Our data show the conservation of universal domain architectures in all available plant genomes, indicating the presence of an evolutionarily conserved, core set of protein components. However, the occurrence of lineage-specific domain architectures indicates that domain architecture diversity has been maintained beyond these core components in plant genomes. Although several features of genome-wide domain architecture content are conserved in plants, the data clearly demonstrate lineage-wise, progressive changes and expansions of individual protein domain architectures, reinforcing

  4. The framing of scientific domains

    DEFF Research Database (Denmark)

    Dam Christensen, Hans

    2014-01-01

    domains, and UNISIST helps understanding this navigation. Design/methodology/approach The UNISIST models are tentatively applied to the domain of art history at three stages, respectively two modern, partially overlapping domains, as well as an outline of an art historical domain anno c1820...

  5. Scalable Domain Decomposed Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  6. Ecological Automation Design, Extending Work Domain Analysis

    NARCIS (Netherlands)

    Amelink, M.H.J.

    2010-01-01

    In high–risk domains like aviation, medicine and nuclear power plant control, automation has enabled new capabilities, increased the economy of operation and has greatly contributed to safety. However, automation increases the number of couplings in a system, which can inadvertently lead to more

  7. Is It Kingdom or Domains? Confusion & Solutions

    Science.gov (United States)

    Blackwell, Will H.

    2004-01-01

    A confusion regarding the number of kingdoms that should be recognized and the inclusion of domains in the traditional kingdom-based classification found in the higher levels of classification of organisms is presented. Hence, it is important to keep in mind future modifications that may occur in the classification systems and to recognize…

  8. The Super Patalan Numbers

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analagous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.

  9. Attention deficits predict phenotypic outcomes in syndrome-specific and domain-specific ways

    Directory of Open Access Journals (Sweden)

    Kim eCornish

    2012-07-01

    Full Text Available Attentional difficulties, both at home and in the classroom, are reported across a number of neurodevelopmental disorders. However, exactly how attention influences early socio-cognitive learning remains unclear. We addressed this question both concurrently and longitudinally in a cross-syndrome design, with respect to the communicative domain of vocabulary and to the cognitive domain of early literacy, and then extended the analysis to social behavior. Participants were young children (aged 4 to 9 years at Time 1 with either Williams syndrome (WS, N=26 or Down syndrome (DS, N=26 and typically developing controls (N=103. Children with WS displayed significantly greater attentional deficits (as indexed by teacher report of behavior typical of attention deficit hyperactivity disorder, ADHD than children with DS, but both groups had greater attentional problems than the controls. Despite their attention differences, children with DS and those with WS were equivalent in their cognitive abilities of reading single words, both at Time 1 and 12 months later, at Time 2, although they differed in their early communicative abilities in terms of vocabulary. Greater ADHD-like behaviors predicted poorer subsequent literacy for children with DS, but not for children with WS, pointing to syndrome-specific attentional constraints on specific aspects of early development. Overall, our findings highlight the need to investigate more precisely whether and, if so, how, syndrome-specific profiles of behavioral difficulties constrain learning and socio-cognitive outcomes across different domains.

  10. Developmental Changes in the Whole Number Bias

    Science.gov (United States)

    Braithwaite, David W.; Siegler, Robert S.

    2018-01-01

    Many students' knowledge of fractions is adversely affected by whole number bias, the tendency to focus on the separate whole number components (numerator and denominator) of a fraction rather than on the fraction's magnitude (ratio of numerator to denominator). Although whole number bias appears early in the fraction learning process and under…

  11. A Multicriteria Decision Making Approach for Estimating the Number of Clusters in a Data Set

    Science.gov (United States)

    Peng, Yi; Zhang, Yong; Kou, Gang; Shi, Yong

    2012-01-01

    Determining the number of clusters in a data set is an essential yet difficult step in cluster analysis. Since this task involves more than one criterion, it can be modeled as a multiple criteria decision making (MCDM) problem. This paper proposes a multiple criteria decision making (MCDM)-based approach to estimate the number of clusters for a given data set. In this approach, MCDM methods consider different numbers of clusters as alternatives and the outputs of any clustering algorithm on validity measures as criteria. The proposed method is examined by an experimental study using three MCDM methods, the well-known clustering algorithm–k-means, ten relative measures, and fifteen public-domain UCI machine learning data sets. The results show that MCDM methods work fairly well in estimating the number of clusters in the data and outperform the ten relative measures considered in the study. PMID:22870181

  12. Microresonator-Based Optical Frequency Combs: A Time Domain Perspective

    Science.gov (United States)

    2016-04-19

    AFRL-AFOSR-VA-TR-2016-0165 (BRI) Microresonator-Based Optical Frequency Combs: A Time Domain Perspective Andrew Weiner PURDUE UNIVERSITY 401 SOUTH...Optical Frequency Combs: A Time Domain Perspective 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0236 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data

  13. Number Worlds: Visual and Experimental Access to Elementary Number Theory Concepts

    Science.gov (United States)

    Sinclair, Nathalie; Zazkis, Rina; Liljedahl, Peter

    2004-01-01

    Recent research demonstrates that many issues related to the structure of natural numbers and the relationship among numbers are not well grasped by students. In this article, we describe a computer-based learning environment called "Number Worlds" that was designed to support the exploration of elementary number theory concepts by…

  14. Why Johnny Struggles When Familiar Concepts Are Taken to a New Mathematical Domain: Towards a Polysemous Approach

    Science.gov (United States)

    Kontorovich, Igor'

    2018-01-01

    This article is concerned with cognitive aspects of students' struggles in situations in which familiar concepts are reconsidered in a new mathematical domain. Examples of such cross-curricular concepts are divisibility in the domain of integers and in the domain of polynomials, multiplication in the domain of numbers and in the domain of vectors,…

  15. An improved multi-domain convolution tracking algorithm

    Science.gov (United States)

    Sun, Xin; Wang, Haiying; Zeng, Yingsen

    2018-04-01

    Along with the wide application of the Deep Learning in the field of Computer vision, Deep learning has become a mainstream direction in the field of object tracking. The tracking algorithm in this paper is based on the improved multidomain convolution neural network, and the VOT video set is pre-trained on the network by multi-domain training strategy. In the process of online tracking, the network evaluates candidate targets sampled from vicinity of the prediction target in the previous with Gaussian distribution, and the candidate target with the highest score is recognized as the prediction target of this frame. The Bounding Box Regression model is introduced to make the prediction target closer to the ground-truths target box of the test set. Grouping-update strategy is involved to extract and select useful update samples in each frame, which can effectively prevent over fitting. And adapt to changes in both target and environment. To improve the speed of the algorithm while maintaining the performance, the number of candidate target succeed in adjusting dynamically with the help of Self-adaption parameter Strategy. Finally, the algorithm is tested by OTB set, compared with other high-performance tracking algorithms, and the plot of success rate and the accuracy are drawn. which illustrates outstanding performance of the tracking algorithm in this paper.

  16. Java problem-based learning

    Directory of Open Access Journals (Sweden)

    Goran P, Šimić

    2012-01-01

    Full Text Available The paper describes the self-directed problem-based learning system (PBL named Java PBL. The expert module is the kernel of Java PBL. It involves a specific domain model, a problem generator and a solution generator. The overall system architecture is represented in the paper. Java PBL can act as the stand-alone system, but it is also designed to provide support to learning management systems (LMSs. This is provided by a modular design of the system. An LMS can offer the declarative knowledge only. Java PBL offers the procedural knowledge and the progress of the learner programming skills. The free navigation, unlimited numbers of problems and recommendations represent the main pedagogical strategies and tactics implemented into the system.

  17. TENCompetence Domain Model

    NARCIS (Netherlands)

    2006-01-01

    This is the version 1.1 of the TENCompetence Domain Model (version 1.0 released at 19-6-2006; version 1.1 at 9-11-2008). It contains several files: a) a pdf with the model description, b) three jpg files with class models (also in the pdf), c) a MagicDraw zip file with the model itself, d) a release

  18. Opening the Door on Triangular Numbers

    Science.gov (United States)

    McMartin, Kimberley; McMaster, Heather

    2016-01-01

    As an alternative to looking solely at linear functions, a three-lesson learning progression developed for Year 6 students that incorporates triangular numbers to develop children's algebraic thinking is described and evaluated.

  19. Learning e-Learning

    Directory of Open Access Journals (Sweden)

    Gabriel ZAMFIR

    2009-01-01

    Full Text Available What You Understand Is What Your Cognitive Integrates. Scientific research develops, as a native environment, knowledge. This environment consists of two interdependent divisions: theory and technology. First division occurs as a recursive research, while the second one becomes an application of the research activity. Over time, theories integrate methodologies and technology extends as infrastructure. The engine of this environment is learning, as the human activity of knowledge work. The threshold term of this model is the concepts map; it is based on Bloom’ taxonomy for the cognitive domain and highlights the notion of software scaffolding which is grounded in Vygotsky’s Social Development Theory with its major theme, Zone of Proximal Development. This article is designed as a conceptual paper, which analyzes specific structures of this type of educational research: the model reflects a foundation for a theory and finally, the theory evolves as groundwork for a system. The outcomes of this kind of approach are the examples, which are, theoretically, learning outcomes, and practically exist as educational objects, so-called e-learning.

  20. SH2 Domain Histochemistry.

    Science.gov (United States)

    Buhs, Sophia; Nollau, Peter

    2017-01-01

    Among posttranslational modifications, the phosphorylation of tyrosine residues is a key modification in cell signaling. Because of its biological importance, characterization of the cellular state of tyrosine phosphorylation is of great interest. Based on the unique properties of endogenously expressed SH2 domains recognizing tyrosine phosphorylated signaling proteins with high specificity we have developed an alternative approach, coined SH2 profiling, enabling us to decipher complex patterns of tyrosine phosphorylation in various normal and cancerous tissues. So far, SH2 profiling has largely been applied for the analysis of protein extracts with the limitation that information on spatial distribution and intensity of tyrosine phosphorylation within a tissue is lost. Here, we describe a novel SH2 domain based strategy for differential characterization of the state of tyrosine phosphorylation in formaldehyde-fixed and paraffin-embedded tissues. This approach demonstrates that SH2 domains may serve as very valuable tools for the analysis of the differential state of tyrosine phosphorylation in primary tissues fixed and processed under conditions frequently applied by routine pathology laboratories.

  1. Immersive Learning Technologies

    Science.gov (United States)

    2009-08-20

    Immersive Learning Technologies Mr. Peter Smith Lead, ADL Immersive Learning Team 08/20/2009 Report Documentation Page Form ApprovedOMB No. 0704...to 00-00-2009 4. TITLE AND SUBTITLE Immersive Learning Technologies 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Why Immersive Learning Technologies

  2. Residual number processing in dyscalculia ?

    OpenAIRE

    Cappelletti, Marinella; Price, Cathy J.

    2013-01-01

    Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and ca...

  3. Distributional Language Learning: Mechanisms and Models of ategory Formation.

    Science.gov (United States)

    Aslin, Richard N; Newport, Elissa L

    2014-09-01

    In the past 15 years, a substantial body of evidence has confirmed that a powerful distributional learning mechanism is present in infants, children, adults and (at least to some degree) in nonhuman animals as well. The present article briefly reviews this literature and then examines some of the fundamental questions that must be addressed for any distributional learning mechanism to operate effectively within the linguistic domain. In particular, how does a naive learner determine the number of categories that are present in a corpus of linguistic input and what distributional cues enable the learner to assign individual lexical items to those categories? Contrary to the hypothesis that distributional learning and category (or rule) learning are separate mechanisms, the present article argues that these two seemingly different processes---acquiring specific structure from linguistic input and generalizing beyond that input to novel exemplars---actually represent a single mechanism. Evidence in support of this single-mechanism hypothesis comes from a series of artificial grammar-learning studies that not only demonstrate that adults can learn grammatical categories from distributional information alone, but that the specific patterning of distributional information among attested utterances in the learning corpus enables adults to generalize to novel utterances or to restrict generalization when unattested utterances are consistently absent from the learning corpus. Finally, a computational model of distributional learning that accounts for the presence or absence of generalization is reviewed and the implications of this model for linguistic-category learning are summarized.

  4. Multi-domain training in healthy old age: Hotel Plastisse as an iPad-based serious game to systematically compare multi-domain and single-domain training

    Science.gov (United States)

    Binder, Julia C.; Zöllig, Jacqueline; Eschen, Anne; Mérillat, Susan; Röcke, Christina; Schoch, Sarah F.; Jäncke, Lutz; Martin, Mike

    2015-01-01

    Finding effective training interventions for declining cognitive abilities in healthy aging is of great relevance, especially in view of the demographic development. Since it is assumed that transfer from the trained to untrained domains is more likely to occur when training conditions and transfer measures share a common underlying process, multi-domain training of several cognitive functions should increase the likelihood of such an overlap. In the first part, we give an overview of the literature showing that cognitive training using complex tasks, such as video games, leisure activities, or practicing a series of cognitive tasks, has shown promising results regarding transfer to a number of cognitive functions. These studies, however, do not allow direct inference about the underlying functions targeted by these training regimes. Custom-designed serious games allow to design training regimes according to specific cognitive functions and a target population's need. In the second part, we introduce the serious game Hotel Plastisse as an iPad-based training tool for older adults that allows the comparison of the simultaneous training of spatial navigation, visuomotor function, and inhibition to the training of each of these functions separately. Hotel Plastisse not only defines the cognitive functions of the multi-domain training clearly, but also implements training in an interesting learning environment including adaptive difficulty and feedback. We propose this novel training tool with the goal of furthering our understanding of how training regimes should be designed in order to affect cognitive functioning of older adults most broadly. PMID:26257643

  5. Multi-domain training in healthy old age: Hotel Plastisse as an iPad-based serious game to systematically compare multi-domain and single-domain training.

    Science.gov (United States)

    Binder, Julia C; Zöllig, Jacqueline; Eschen, Anne; Mérillat, Susan; Röcke, Christina; Schoch, Sarah F; Jäncke, Lutz; Martin, Mike

    2015-01-01

    Finding effective training interventions for declining cognitive abilities in healthy aging is of great relevance, especially in view of the demographic development. Since it is assumed that transfer from the trained to untrained domains is more likely to occur when training conditions and transfer measures share a common underlying process, multi-domain training of several cognitive functions should increase the likelihood of such an overlap. In the first part, we give an overview of the literature showing that cognitive training using complex tasks, such as video games, leisure activities, or practicing a series of cognitive tasks, has shown promising results regarding transfer to a number of cognitive functions. These studies, however, do not allow direct inference about the underlying functions targeted by these training regimes. Custom-designed serious games allow to design training regimes according to specific cognitive functions and a target population's need. In the second part, we introduce the serious game Hotel Plastisse as an iPad-based training tool for older adults that allows the comparison of the simultaneous training of spatial navigation, visuomotor function, and inhibition to the training of each of these functions separately. Hotel Plastisse not only defines the cognitive functions of the multi-domain training clearly, but also implements training in an interesting learning environment including adaptive difficulty and feedback. We propose this novel training tool with the goal of furthering our understanding of how training regimes should be designed in order to affect cognitive functioning of older adults most broadly.

  6. Domain decomposition method for solving elliptic problems in unbounded domains

    International Nuclear Information System (INIS)

    Khoromskij, B.N.; Mazurkevich, G.E.; Zhidkov, E.P.

    1991-01-01

    Computational aspects of the box domain decomposition (DD) method for solving boundary value problems in an unbounded domain are discussed. A new variant of the DD-method for elliptic problems in unbounded domains is suggested. It is based on the partitioning of an unbounded domain adapted to the given asymptotic decay of an unknown function at infinity. The comparison of computational expenditures is given for boundary integral method and the suggested DD-algorithm. 29 refs.; 2 figs.; 2 tabs

  7. Lifelong learning in an age of measurement

    DEFF Research Database (Denmark)

    Kauffmann, Oliver

    2013-01-01

    There has been a shift in interest from ‘lifelong education’ to ‘lifelong learning’ in the Western world since the 1990s. This shift is closely related to strategies for securing the competitiveness of national economies. For this purpose one of the tools applied by educational policy makers has...... been to invoke ‘the golden standard(s)’ of evidence based research into the domain of learning. A number of problems with this approach are that the very conception of learning is broad, vague, ambiguous and does not in itself give us a normative handle which can help us with education. There might...... be one particular area, however, where evidence based learning research might be thought to have a strong foothold: in the brain sciences. And certainly a rapidly growing interest in ‘educational neuroscience’ has emerged within the last 10 years. But is it possible to bridge the gap between ‘studying...

  8. Deep Transfer Metric Learning.

    Science.gov (United States)

    Junlin Hu; Jiwen Lu; Yap-Peng Tan; Jie Zhou

    2016-12-01

    Conventional metric learning methods usually assume that the training and test samples are captured in similar scenarios so that their distributions are assumed to be the same. This assumption does not hold in many real visual recognition applications, especially when samples are captured across different data sets. In this paper, we propose a new deep transfer metric learning (DTML) method to learn a set of hierarchical nonlinear transformations for cross-domain visual recognition by transferring discriminative knowledge from the labeled source domain to the unlabeled target domain. Specifically, our DTML learns a deep metric network by maximizing the inter-class variations and minimizing the intra-class variations, and minimizing the distribution divergence between the source domain and the target domain at the top layer of the network. To better exploit the discriminative information from the source domain, we further develop a deeply supervised transfer metric learning (DSTML) method by including an additional objective on DTML, where the output of both the hidden layers and the top layer are optimized jointly. To preserve the local manifold of input data points in the metric space, we present two new methods, DTML with autoencoder regularization and DSTML with autoencoder regularization. Experimental results on face verification, person re-identification, and handwritten digit recognition validate the effectiveness of the proposed methods.

  9. Structural and functional analysis of multi-interface domains.

    Directory of Open Access Journals (Sweden)

    Liang Zhao

    Full Text Available A multi-interface domain is a domain that can shape multiple and distinctive binding sites to contact with many other domains, forming a hub in domain-domain interaction networks. The functions played by the multiple interfaces are usually different, but there is no strict bijection between the functions and interfaces as some subsets of the interfaces play the same function. This work applies graph theory and algorithms to discover fingerprints for the multiple interfaces of a domain and to establish associations between the interfaces and functions, based on a huge set of multi-interface proteins from PDB. We found that about 40% of proteins have the multi-interface property, however the involved multi-interface domains account for only a tiny fraction (1.8% of the total number of domains. The interfaces of these domains are distinguishable in terms of their fingerprints, indicating the functional specificity of the multiple interfaces in a domain. Furthermore, we observed that both cooperative and distinctive structural patterns, which will be useful for protein engineering, exist in the multiple interfaces of a domain.

  10. Multilevel domain decomposition for electronic structure calculations

    International Nuclear Information System (INIS)

    Barrault, M.; Cances, E.; Hager, W.W.; Le Bris, C.

    2007-01-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure

  11. Transactions in domain-specific information systems

    Science.gov (United States)

    Zacek, Jaroslav

    2017-07-01

    Substantial number of the current information system (IS) implementations is based on transaction approach. In addition, most of the implementations are domain-specific (e.g. accounting IS, resource planning IS). Therefore, we have to have a generic transaction model to build and verify domain-specific IS. The paper proposes a new transaction model for domain-specific ontologies. This model is based on value oriented business process modelling technique. The transaction model is formalized by the Petri Net theory. First part of the paper presents common business processes and analyses related to business process modeling. Second part defines the transactional model delimited by REA enterprise ontology paradigm and introduces states of the generic transaction model. The generic model proposal is defined and visualized by the Petri Net modelling tool. Third part shows application of the generic transaction model. Last part of the paper concludes results and discusses a practical usability of the generic transaction model.

  12. Technically Speaking: Transforming Language Learning through Virtual Learning Environments (MOOs).

    Science.gov (United States)

    von der Emde, Silke; Schneider, Jeffrey; Kotter, Markus

    2001-01-01

    Draws on experiences from a 7-week exchange between students learning German at an American college and advanced students of English at a German university. Maps out the benefits to using a MOO (multiple user domains object-oriented) for language learning: a student-centered learning environment structured by such objectives as peer teaching,…

  13. Functional Domain Driven Design

    OpenAIRE

    Herrera Guzmán, Sergio

    2016-01-01

    Las tecnologías están en constante expansión y evolución, diseñando nuevas técnicas para cumplir con su fin. En el desarrollo de software, las herramientas y pautas para la elaboración de productos software constituyen una pieza en constante evolución, necesarias para la toma de decisiones sobre los proyectos a realizar. Uno de los arquetipos para el desarrollo de software es el denominado Domain Driven Design, donde es importante conocer ampliamente el negocio que se desea modelar en form...

  14. Compensating for Incomplete Domain Knowledge

    National Research Council Canada - National Science Library

    Scott, Lynn M; Drezner, Steve; Rue, Rachel; Reyes, Jesse

    2007-01-01

    .... First, many senior leader positions require experience in more than one functional or operational domain, but it is difficult to develop a corps of senior leaders with all the required combinations of domain knowledge...

  15. Ligand binding by PDZ domains

    DEFF Research Database (Denmark)

    Chi, Celestine N.; Bach, Anders; Strømgaard, Kristian

    2012-01-01

    , for example, are particularly rich in these domains. The general function of PDZ domains is to bring proteins together within the appropriate cellular compartment, thereby facilitating scaffolding, signaling, and trafficking events. The many functions of PDZ domains under normal physiological as well...... as pathological conditions have been reviewed recently. In this review, we focus on the molecular details of how PDZ domains bind their protein ligands and their potential as drug targets in this context....

  16. Summarization by domain ontology navigation

    DEFF Research Database (Denmark)

    Andreasen, Troels; Bulskov, Henrik

    2013-01-01

    of the subject. In between these two extremes, conceptual summaries encompass selected concepts derived using background knowledge. We address in this paper an approach where conceptual summaries are provided through a conceptualization as given by an ontology. The ontology guiding the summarization can...... be a simple taxonomy or a generative domain ontology. A domain ontology can be provided by a preanalysis of a domain corpus and can be used to condense improved summaries that better reflects the conceptualization of a given domain....

  17. Learning Potential and Cognitive Modifiability

    Science.gov (United States)

    Kozulin, Alex

    2011-01-01

    The relationship between thinking and learning constitutes one of the fundamental problems of cognitive psychology. Though there is an obvious overlap between the domains of thinking and learning, it seems more productive to consider learning as being predominantly acquisition while considering thinking as the application of the existent concepts…

  18. Generalized Sudan's List Decoding for Order Domain Codes

    DEFF Research Database (Denmark)

    Geil, Hans Olav; Matsumoto, Ryutaroh

    2007-01-01

    We generalize Sudan's list decoding algorithm without multiplicity to evaluation codes coming from arbitrary order domains. The number of correctable errors by the proposed method is larger than the original list decoding without multiplicity....

  19. Domain decomposition methods and deflated Krylov subspace iterations

    NARCIS (Netherlands)

    Nabben, R.; Vuik, C.

    2006-01-01

    The balancing Neumann-Neumann (BNN) and the additive coarse grid correction (BPS) preconditioner are fast and successful preconditioners within domain decomposition methods for solving partial differential equations. For certain elliptic problems these preconditioners lead to condition numbers which

  20. Number words and number symbols a cultural history of numbers

    CERN Document Server

    Menninger, Karl

    1992-01-01

    Classic study discusses number sequence and language and explores written numerals and computations in many cultures. "The historian of mathematics will find much to interest him here both in the contents and viewpoint, while the casual reader is likely to be intrigued by the author's superior narrative ability.

  1. Imbalanced class learning in epigenetics.

    Science.gov (United States)

    Haque, M Muksitul; Skinner, Michael K; Holder, Lawrence B

    2014-07-01

    In machine learning, one of the important criteria for higher classification accuracy is a balanced dataset. Datasets with a large ratio between minority and majority classes face hindrance in learning using any classifier. Datasets having a magnitude difference in number of instances between the target concept result in an imbalanced class distribution. Such datasets can range from biological data, sensor data, medical diagnostics, or any other domain where labeling any instances of the minority class can be time-consuming or costly or the data may not be easily available. The current study investigates a number of imbalanced class algorithms for solving the imbalanced class distribution present in epigenetic datasets. Epigenetic (DNA methylation) datasets inherently come with few differentially DNA methylated regions (DMR) and with a higher number of non-DMR sites. For this class imbalance problem, a number of algorithms are compared, including the TAN+AdaBoost algorithm. Experiments performed on four epigenetic datasets and several known datasets show that an imbalanced dataset can have similar accuracy as a regular learner on a balanced dataset.

  2. Designing Assistive Technologies for the ADHD Domain

    DEFF Research Database (Denmark)

    Sonne, Tobias; Grønbæk, Kaj

    (ADHD). In this paper, we identify a set of challenges that children with ADHD typically experience, which provides an empirical foundation for pervasive health researchers to address the ADHD domain. The work is grounded in extensive empirical studies and it is contextualized using literature on ADHD....... Based on these studies, we also present lessons learned that are relevant to consider when designing assistive technology to support children with ADHD. Finally, we provide an example (CASTT) of our own work to illustrate how the presented findings can frame research activities and be used to develop...... novel assistive technology to empower children with ADHD and improve their wellbeing....

  3. Automatic Earthquake Detection by Active Learning

    Science.gov (United States)

    Bergen, K.; Beroza, G. C.

    2017-12-01

    In recent years, advances in machine learning have transformed fields such as image recognition, natural language processing and recommender systems. Many of these performance gains have relied on the availability of large, labeled data sets to train high-accuracy models; labeled data sets are those for which each sample includes a target class label, such as waveforms tagged as either earthquakes or noise. Earthquake seismologists are increasingly leveraging machine learning and data mining techniques to detect and analyze weak earthquake signals in large seismic data sets. One of the challenges in applying machine learning to seismic data sets is the limited labeled data problem; learning algorithms need to be given examples of earthquake waveforms, but the number of known events, taken from earthquake catalogs, may be insufficient to build an accurate detector. Furthermore, earthquake catalogs are known to be incomplete, resulting in training data that may be biased towards larger events and contain inaccurate labels. This challenge is compounded by the class imbalance problem; the events of interest, earthquakes, are infrequent relative to noise in continuous data sets, and many learning algorithms perform poorly on rare classes. In this work, we investigate the use of active learning for automatic earthquake detection. Active learning is a type of semi-supervised machine learning that uses a human-in-the-loop approach to strategically supplement a small initial training set. The learning algorithm incorporates domain expertise through interaction between a human expert and the algorithm, with the algorithm actively posing queries to the user to improve detection performance. We demonstrate the potential of active machine learning to improve earthquake detection performance with limited available training data.

  4. A new pseudorandom number generator based on a complex number chaotic equation

    International Nuclear Information System (INIS)

    Liu Yang; Tong Xiao-Jun

    2012-01-01

    In recent years, various chaotic equation based pseudorandom number generators have been proposed. However, the chaotic equations are all defined in the real number field. In this paper, an equation is proposed and proved to be chaotic in the imaginary axis. And a pseudorandom number generator is constructed based on the chaotic equation. The alteration of the definitional domain of the chaotic equation from the real number field to the complex one provides a new approach to the construction of chaotic equations, and a new method to generate pseudorandom number sequences accordingly. Both theoretical analysis and experimental results show that the sequences generated by the proposed pseudorandom number generator possess many good properties

  5. Time Domain Induced Polarization

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca; Auken, Esben; Christiansen, Anders Vest

    2012-01-01

    Time-domain-induced polarization has significantly broadened its field of reference during the last decade, from mineral exploration to environmental geophysics, e.g., for clay and peat identification and landfill characterization. Though, insufficient modeling tools have hitherto limited the use...... of time-domaininduced polarization for wider purposes. For these reasons, a new forward code and inversion algorithm have been developed using the full-time decay of the induced polarization response, together with an accurate description of the transmitter waveform and of the receiver transfer function......, to reconstruct the distribution of the Cole-Cole parameters of the earth. The accurate modeling of the transmitter waveform had a strong influence on the forward response, and we showed that the difference between a solution using a step response and a solution using the accurate modeling often is above 100...

  6. Learning Networks Distributed Environment

    NARCIS (Netherlands)

    Martens, Harrie; Vogten, Hubert; Koper, Rob; Tattersall, Colin; Van Rosmalen, Peter; Sloep, Peter; Van Bruggen, Jan; Spoelstra, Howard

    2005-01-01

    Learning Networks Distributed Environment is a prototype of an architecture that allows the sharing and modification of learning materials through a number of transport protocols. The prototype implements a p2p protcol using JXTA.

  7. Domain architecture conservation in orthologs

    Science.gov (United States)

    2011-01-01

    Background As orthologous proteins are expected to retain function more often than other homologs, they are often used for functional annotation transfer between species. However, ortholog identification methods do not take into account changes in domain architecture, which are likely to modify a protein's function. By domain architecture we refer to the sequential arrangement of domains along a protein sequence. To assess the level of domain architecture conservation among orthologs, we carried out a large-scale study of such events between human and 40 other species spanning the entire evolutionary range. We designed a score to measure domain architecture similarity and used it to analyze differences in domain architecture conservation between orthologs and paralogs relative to the conservation of primary sequence. We also statistically characterized the extents of different types of domain swapping events across pairs of orthologs and paralogs. Results The analysis shows that orthologs exhibit greater domain architecture conservation than paralogous homologs, even when differences in average sequence divergence are compensated for, for homologs that have diverged beyond a certain threshold. We interpret this as an indication of a stronger selective pressure on orthologs than paralogs to retain the domain architecture required for the proteins to perform a specific function. In general, orthologs as well as the closest paralogous homologs have very similar domain architectures, even at large evolutionary separation. The most common domain architecture changes observed in both ortholog and paralog pairs involved insertion/deletion of new domains, while domain shuffling and segment duplication/deletion were very infrequent. Conclusions On the whole, our results support the hypothesis that function conservation between orthologs demands higher domain architecture conservation than other types of homologs, relative to primary sequence conservation. This supports the

  8. Diamond Fuzzy Number

    Directory of Open Access Journals (Sweden)

    T. Pathinathan

    2015-01-01

    Full Text Available In this paper we define diamond fuzzy number with the help of triangular fuzzy number. We include basic arithmetic operations like addition, subtraction of diamond fuzzy numbers with examples. We define diamond fuzzy matrix with some matrix properties. We have defined Nested diamond fuzzy number and Linked diamond fuzzy number. We have further classified Right Linked Diamond Fuzzy number and Left Linked Diamond Fuzzy number. Finally we have verified the arithmetic operations for the above mentioned types of Diamond Fuzzy Numbers.

  9. Those fascinating numbers

    CERN Document Server

    Koninck, Jean-Marie De

    2009-01-01

    Who would have thought that listing the positive integers along with their most remarkable properties could end up being such an engaging and stimulating adventure? The author uses this approach to explore elementary and advanced topics in classical number theory. A large variety of numbers are contemplated: Fermat numbers, Mersenne primes, powerful numbers, sublime numbers, Wieferich primes, insolite numbers, Sastry numbers, voracious numbers, to name only a few. The author also presents short proofs of miscellaneous results and constantly challenges the reader with a variety of old and new n

  10. Natural-Annotation-based Unsupervised Construction of Korean-Chinese Domain Dictionary

    Science.gov (United States)

    Liu, Wuying; Wang, Lin

    2018-03-01

    The large-scale bilingual parallel resource is significant to statistical learning and deep learning in natural language processing. This paper addresses the automatic construction issue of the Korean-Chinese domain dictionary, and presents a novel unsupervised construction method based on the natural annotation in the raw corpus. We firstly extract all Korean-Chinese word pairs from Korean texts according to natural annotations, secondly transform the traditional Chinese characters into the simplified ones, and finally distill out a bilingual domain dictionary after retrieving the simplified Chinese words in an extra Chinese domain dictionary. The experimental results show that our method can automatically build multiple Korean-Chinese domain dictionaries efficiently.

  11. Dynamic Domains in Data Production Planning

    Science.gov (United States)

    Golden, Keith; Pang, Wanlin

    2005-01-01

    This paper discusses a planner-based approach to automating data production tasks, such as producing fire forecasts from satellite imagery and weather station data. Since the set of available data products is large, dynamic and mostly unknown, planning techniques developed for closed worlds are unsuitable. We discuss a number of techniques we have developed to cope with data production domains, including a novel constraint propagation algorithm based on planning graphs and a constraint-based approach to interleaved planning, sensing and execution.

  12. Protein domain organisation: adding order

    Directory of Open Access Journals (Sweden)

    Kummerfeld Sarah K

    2009-01-01

    Full Text Available Abstract Background Domains are the building blocks of proteins. During evolution, they have been duplicated, fused and recombined, to produce proteins with novel structures and functions. Structural and genome-scale studies have shown that pairs or groups of domains observed together in a protein are almost always found in only one N to C terminal order and are the result of a single recombination event that has been propagated by duplication of the multi-domain unit. Previous studies of domain organisation have used graph theory to represent the co-occurrence of domains within proteins. We build on this approach by adding directionality to the graphs and connecting nodes based on their relative order in the protein. Most of the time, the linear order of domains is conserved. However, using the directed graph representation we have identified non-linear features of domain organization that are over-represented in genomes. Recognising these patterns and unravelling how they have arisen may allow us to understand the functional relationships between domains and understand how the protein repertoire has evolved. Results We identify groups of domains that are not linearly conserved, but instead have been shuffled during evolution so that they occur in multiple different orders. We consider 192 genomes across all three kingdoms of life and use domain and protein annotation to understand their functional significance. To identify these features and assess their statistical significance, we represent the linear order of domains in proteins as a directed graph and apply graph theoretical methods. We describe two higher-order patterns of domain organisation: clusters and bi-directionally associated domain pairs and explore their functional importance and phylogenetic conservation. Conclusion Taking into account the order of domains, we have derived a novel picture of global protein organization. We found that all genomes have a higher than expected

  13. Protein domain organisation: adding order.

    Science.gov (United States)

    Kummerfeld, Sarah K; Teichmann, Sarah A

    2009-01-29

    Domains are the building blocks of proteins. During evolution, they have been duplicated, fused and recombined, to produce proteins with novel structures and functions. Structural and genome-scale studies have shown that pairs or groups of domains observed together in a protein are almost always found in only one N to C terminal order and are the result of a single recombination event that has been propagated by duplication of the multi-domain unit. Previous studies of domain organisation have used graph theory to represent the co-occurrence of domains within proteins. We build on this approach by adding directionality to the graphs and connecting nodes based on their relative order in the protein. Most of the time, the linear order of domains is conserved. However, using the directed graph representation we have identified non-linear features of domain organization that are over-represented in genomes. Recognising these patterns and unravelling how they have arisen may allow us to understand the functional relationships between domains and understand how the protein repertoire has evolved. We identify groups of domains that are not linearly conserved, but instead have been shuffled during evolution so that they occur in multiple different orders. We consider 192 genomes across all three kingdoms of life and use domain and protein annotation to understand their functional significance. To identify these features and assess their statistical significance, we represent the linear order of domains in proteins as a directed graph and apply graph theoretical methods. We describe two higher-order patterns of domain organisation: clusters and bi-directionally associated domain pairs and explore their functional importance and phylogenetic conservation. Taking into account the order of domains, we have derived a novel picture of global protein organization. We found that all genomes have a higher than expected degree of clustering and more domain pairs in forward and

  14. Prediction Reweighting for Domain Adaptation.

    Science.gov (United States)

    Shuang Li; Shiji Song; Gao Huang

    2017-07-01

    There are plenty of classification methods that perform well when training and testing data are drawn from the same distribution. However, in real applications, this condition may be violated, which causes degradation of classification accuracy. Domain adaptation is an effective approach to address this problem. In this paper, we propose a general domain adaptation framework from the perspective of prediction reweighting, from which a novel approach is derived. Different from the major domain adaptation methods, our idea is to reweight predictions of the training classifier on testing data according to their signed distance to the domain separator, which is a classifier that distinguishes training data (from source domain) and testing data (from target domain). We then propagate the labels of target instances with larger weights to ones with smaller weights by introducing a manifold regularization method. It can be proved that our reweighting scheme effectively brings the source and target domains closer to each other in an appropriate sense, such that classification in target domain becomes easier. The proposed method can be implemented efficiently by a simple two-stage algorithm, and the target classifier has a closed-form solution. The effectiveness of our approach is verified by the experiments on artificial datasets and two standard benchmarks, a visual object recognition task and a cross-domain sentiment analysis of text. Experimental results demonstrate that our method is competitive with the state-of-the-art domain adaptation algorithms.

  15. Building Numbers from Primes

    Science.gov (United States)

    Burkhart, Jerry

    2009-01-01

    Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…

  16. Introduction to number theory

    CERN Document Server

    Vazzana, Anthony; Garth, David

    2007-01-01

    One of the oldest branches of mathematics, number theory is a vast field devoted to studying the properties of whole numbers. Offering a flexible format for a one- or two-semester course, Introduction to Number Theory uses worked examples, numerous exercises, and two popular software packages to describe a diverse array of number theory topics.

  17. Transnational Learning Processes

    DEFF Research Database (Denmark)

    Nedergaard, Peter

    This paper analyses and compares the transnational learning processes in the employment field in the European Union and among the Nordic countries. Based theoretically on a social constructivist model of learning and methodologically on a questionnaire distributed to the relevant participants......, a number of hypotheses concerning transnational learning processes are tested. The paper closes with a number of suggestions regarding an optimal institutional setting for facilitating transnational learning processes.Key words: Transnational learning, Open Method of Coordination, Learning, Employment......, European Employment Strategy, European Union, Nordic countries....

  18. Certain number-theoretic episodes in algebra

    CERN Document Server

    Sivaramakrishnan, R

    2006-01-01

    Many basic ideas of algebra and number theory intertwine, making it ideal to explore both at the same time. Certain Number-Theoretic Episodes in Algebra focuses on some important aspects of interconnections between number theory and commutative algebra. Using a pedagogical approach, the author presents the conceptual foundations of commutative algebra arising from number theory. Self-contained, the book examines situations where explicit algebraic analogues of theorems of number theory are available. Coverage is divided into four parts, beginning with elements of number theory and algebra such as theorems of Euler, Fermat, and Lagrange, Euclidean domains, and finite groups. In the second part, the book details ordered fields, fields with valuation, and other algebraic structures. This is followed by a review of fundamentals of algebraic number theory in the third part. The final part explores links with ring theory, finite dimensional algebras, and the Goldbach problem.

  19. Quantifying information transfer by protein domains: Analysis of the Fyn SH2 domain structure

    Directory of Open Access Journals (Sweden)

    Serrano Luis

    2008-10-01

    Full Text Available Abstract Background Efficient communication between distant sites within a protein is essential for cooperative biological response. Although often associated with large allosteric movements, more subtle changes in protein dynamics can also induce long-range correlations. However, an appropriate formalism that directly relates protein structural dynamics to information exchange between functional sites is still lacking. Results Here we introduce a method to analyze protein dynamics within the framework of information theory and show that signal transduction within proteins can be considered as a particular instance of communication over a noisy channel. In particular, we analyze the conformational correlations between protein residues and apply the concept of mutual information to quantify information exchange. Mapping out changes of mutual information on the protein structure then allows visualizing how distal communication is achieved. We illustrate the approach by analyzing information transfer by the SH2 domain of Fyn tyrosine kinase, obtained from Monte Carlo dynamics simulations. Our analysis reveals that the Fyn SH2 domain forms a noisy communication channel that couples residues located in the phosphopeptide and specificity binding sites and a number of residues at the other side of the domain near the linkers that connect the SH2 domain to the SH3 and kinase domains. We find that for this particular domain, communication is affected by a series of contiguous residues that connect distal sites by crossing the core of the SH2 domain. Conclusion As a result, our method provides a means to directly map the exchange of biological information on the structure of protein domains, making it clear how binding triggers conformational changes in the protein structure. As such it provides a structural road, next to the existing attempts at sequence level, to predict long-range interactions within protein structures.

  20. On the number of special numbers

    Indian Academy of Sciences (India)

    without loss of any generality to be the first k primes), then the equation a + b = c has .... This is an elementary exercise in partial summation (see [12]). Thus ... This is easily done by inserting a stronger form of the prime number theorem into the.

  1. Multifunctionalities driven by ferroic domains

    Science.gov (United States)

    Yang, J. C.; Huang, Y. L.; He, Q.; Chu, Y. H.

    2014-08-01

    Considerable attention has been paid to ferroic systems in pursuit of advanced applications in past decades. Most recently, the emergence and development of multiferroics, which exhibit the coexistence of different ferroic natures, has offered a new route to create functionalities in the system. In this manuscript, we step from domain engineering to explore a roadmap for discovering intriguing phenomena and multifunctionalities driven by periodic domain patters. As-grown periodic domains, offering exotic order parameters, periodic local perturbations and the capability of tailoring local spin, charge, orbital and lattice degrees of freedom, are introduced as modeling templates for fundamental studies and novel applications. We discuss related significant findings on ferroic domain, nanoscopic domain walls, and conjunct heterostructures based on the well-organized domain patterns, and end with future prospects and challenges in the field.

  2. Slang: A Male Domain?

    Science.gov (United States)

    de Klerk, Vivian

    1990-01-01

    A Grahamstown (South Africa) survey determining the number of slang words known by 12- to 17-year-old public and private school students demonstrates that age, not sex, is the more significant variable, although school type is also important. Predicts that slang usage by girls may soon equal that of boys. (DM)

  3. Mapping the Moral Domain

    Science.gov (United States)

    Graham, Jesse; Nosek, Brian A.; Haidt, Jonathan; Iyer, Ravi; Koleva, Spassena; Ditto, Peter H.

    2010-01-01

    The moral domain is broader than the empathy and justice concerns assessed by existing measures of moral competence, and it is not just a subset of the values assessed by value inventories. To fill the need for reliable and theoretically-grounded measurement of the full range of moral concerns, we developed the Moral Foundations Questionnaire (MFQ) based on a theoretical model of five universally available (but variably developed) sets of moral intuitions: Harm/care, Fairness/reciprocity, Ingroup/loyalty, Authority/respect, and Purity/sanctity. We present evidence for the internal and external validity of the scale and the model, and in doing so present new findings about morality: 1. Comparative model fitting of confirmatory factor analyses provides empirical justification for a five-factor structure of moral concerns. 2. Convergent/discriminant validity evidence suggests that moral concerns predict personality features and social group attitudes not previously considered morally relevant. 3. We establish pragmatic validity of the measure in providing new knowledge and research opportunities concerning demographic and cultural differences in moral intuitions. These analyses provide evidence for the usefulness of Moral Foundations Theory in simultaneously increasing the scope and sharpening the resolution of psychological views of morality. PMID:21244182

  4. Training Peer-Feedback Skills on Geometric Construction Tasks: Role of Domain Knowledge and Peer-Feedback Levels

    Science.gov (United States)

    Alqassab, Maryam; Strijbos, Jan-Willem; Ufer, Stefan

    2018-01-01

    Peer feedback is widely used to train assessment skills and to support collaborative learning of various learning tasks, but research on peer feedback in the domain of mathematics is limited. Although domain knowledge seems to be a prerequisite for peer-feedback provision, it only recently received attention in the peer-feedback literature. In…

  5. Domain wall networks on solitons

    International Nuclear Information System (INIS)

    Sutcliffe, Paul

    2003-01-01

    Domain wall networks on the surface of a soliton are studied in a simple theory. It consists of two complex scalar fields, in 3+1 dimensions, with a global U(1)xZ n symmetry, where n>2. Solutions are computed numerically in which one of the fields forms a Q ball and the other field forms a network of domain walls localized on the surface of the Q ball. Examples are presented in which the domain walls lie along the edges of a spherical polyhedron, forming junctions at its vertices. It is explained why only a small restricted class of polyhedra can arise as domain wall networks

  6. Topological domain walls in helimagnets

    Science.gov (United States)

    Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D.

    2018-05-01

    Domain walls naturally arise whenever a symmetry is spontaneously broken. They interconnect regions with different realizations of the broken symmetry, promoting structure formation from cosmological length scales to the atomic level1,2. In ferroelectric and ferromagnetic materials, domain walls with unique functionalities emerge, holding great promise for nanoelectronics and spintronics applications3-5. These walls are usually of Ising, Bloch or Néel type and separate homogeneously ordered domains. Here we demonstrate that a wide variety of new domain walls occurs in the presence of spatially modulated domain states. Using magnetic force microscopy and micromagnetic simulations, we show three fundamental classes of domain walls to arise in the near-room-temperature helimagnet iron germanium. In contrast to conventional ferroics, the domain walls exhibit a well-defined inner structure, which—analogous to cholesteric liquid crystals—consists of topological disclination and dislocation defects. Similar to the magnetic skyrmions that form in the same material6,7, the domain walls can carry a finite topological charge, permitting an efficient coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new family of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.

  7. p-adic numbers

    OpenAIRE

    Grešak, Rozalija

    2015-01-01

    The field of real numbers is usually constructed using Dedekind cuts. In these thesis we focus on the construction of the field of real numbers using metric completion of rational numbers using Cauchy sequences. In a similar manner we construct the field of p-adic numbers, describe some of their basic and topological properties. We follow by a construction of complex p-adic numbers and we compare them with the ordinary complex numbers. We conclude the thesis by giving a motivation for the int...

  8. On the number of special numbers

    Indian Academy of Sciences (India)

    We now apply the theory of the Thue equation to obtain an effective bound on m. Indeed, by Lemma 3.2, we can write m2 = ba3 and m2 − 4 = cd3 with b, c cubefree. By the above, both b, c are bounded since they are cubefree and all their prime factors are less than e63727. Now we have a finite number of. Thue equations:.

  9. Number projection method

    International Nuclear Information System (INIS)

    Kaneko, K.

    1987-01-01

    A relationship between the number projection and the shell model methods is investigated in the case of a single-j shell. We can find a one-to-one correspondence between the number projected and the shell model states

  10. Numbers and brains.

    Science.gov (United States)

    Gallistel, C R

    2017-12-01

    The representation of discrete and continuous quantities appears to be ancient and pervasive in animal brains. Because numbers are the natural carriers of these representations, we may discover that in brains, it's numbers all the way down.

  11. Use of number by fish.

    Directory of Open Access Journals (Sweden)

    Christian Agrillo

    Full Text Available BACKGROUND: Research on human infants, mammals, birds and fish has demonstrated that rudimentary numerical abilities pre-date the evolution of human language. Yet there is controversy as to whether animals represent numbers mentally or rather base their judgments on non-numerical perceptual variables that co-vary with numerosity. To date, mental representation of number has been convincingly documented only for a few mammals. METHODOLOGY/PRINCIPAL FINDINGS: Here we used a training procedure to investigate whether mosquitofish could learn to discriminate between two and three objects even when denied access to non-numerical information. In the first experiment, fish were trained to discriminate between two sets of geometric figures. These varied in shape, size, brightness and distance, but no control for non-numerical variables was made. Subjects were then re-tested while controlling for one non-numerical variable at a time. Total luminance of the stimuli and the sum of perimeter of figures appeared irrelevant, but performance dropped to chance level when stimuli were matched for the cumulative surface area or for the overall space occupied by the arrays, indicating that these latter cues had been spontaneously used by the fish during the learning process. In a second experiment, where the task consisted of discriminating 2 vs 3 elements with all non-numerical variables simultaneously controlled for, all subjects proved able to learn the discrimination, and interestingly they did not make more errors than the fish in Experiment 1 that could access non-numerical information in order to accomplish the task. CONCLUSIONS/SIGNIFICANCE: Mosquitofish can learn to discriminate small quantities, even when non-numerical indicators of quantity are unavailable, hence providing the first evidence that fish, like primates, can use numbers. As in humans and non-human primates, genuine counting appears to be a 'last resort' strategy in fish, when no other

  12. Learning and the transformative potential of citizen science.

    Science.gov (United States)

    Bela, Györgyi; Peltola, Taru; Young, Juliette C; Balázs, Bálint; Arpin, Isabelle; Pataki, György; Hauck, Jennifer; Kelemen, Eszter; Kopperoinen, Leena; Van Herzele, Ann; Keune, Hans; Hecker, Susanne; Suškevičs, Monika; Roy, Helen E; Itkonen, Pekka; Külvik, Mart; László, Miklós; Basnou, Corina; Pino, Joan; Bonn, Aletta

    2016-10-01

    The number of collaborative initiatives between scientists and volunteers (i.e., citizen science) is increasing across many research fields. The promise of societal transformation together with scientific breakthroughs contributes to the current popularity of citizen science (CS) in the policy domain. We examined the transformative capacity of citizen science in particular learning through environmental CS as conservation tool. We reviewed the CS and social-learning literature and examined 14 conservation projects across Europe that involved collaborative CS. We also developed a template that can be used to explore learning arrangements (i.e., learning events and materials) in CS projects and to explain how the desired outcomes can be achieved through CS learning. We found that recent studies aiming to define CS for analytical purposes often fail to improve the conceptual clarity of CS; CS programs may have transformative potential, especially for the development of individual skills, but such transformation is not necessarily occurring at the organizational and institutional levels; empirical evidence on simple learning outcomes, but the assertion of transformative effects of CS learning is often based on assumptions rather than empirical observation; and it is unanimous that learning in CS is considered important, but in practice it often goes unreported or unevaluated. In conclusion, we point to the need for reliable and transparent measurement of transformative effects for democratization of knowledge production. © 2016 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  13. Computational Investigations of Multiword Chunks in Language Learning.

    Science.gov (United States)

    McCauley, Stewart M; Christiansen, Morten H

    2017-07-01

    Second-language learners rarely arrive at native proficiency in a number of linguistic domains, including morphological and syntactic processing. Previous approaches to understanding the different outcomes of first- versus second-language learning have focused on cognitive and neural factors. In contrast, we explore the possibility that children and adults may rely on different linguistic units throughout the course of language learning, with specific focus on the granularity of those units. Following recent psycholinguistic evidence for the role of multiword chunks in online language processing, we explore the hypothesis that children rely more heavily on multiword units in language learning than do adults learning a second language. To this end, we take an initial step toward using large-scale, corpus-based computational modeling as a tool for exploring the granularity of speakers' linguistic units. Employing a computational model of language learning, the Chunk-Based Learner, we compare the usefulness of chunk-based knowledge in accounting for the speech of second-language learners versus children and adults speaking their first language. Our findings suggest that while multiword units are likely to play a role in second-language learning, adults may learn less useful chunks, rely on them to a lesser extent, and arrive at them through different means than children learning a first language. Copyright © 2017 Cognitive Science Society, Inc.

  14. Number in Dinka

    DEFF Research Database (Denmark)

    Andersen, Torben

    2014-01-01

    had a marked singular and an unmarked plural. Synchronically, however, the singular is arguably the basic member of the number category as revealed by the use of the two numbers. In addition, some nouns have a collective form, which is grammatically singular. Number also plays a role...

  15. Safety-in-numbers

    DEFF Research Database (Denmark)

    Elvik, Rune; Bjørnskau, Torkel

    2017-01-01

    Highlights •26 studies of the safety-in-numbers effect are reviewed. •The existence of a safety-in-numbers effect is confirmed. •Results are consistent. •Causes of the safety-in-numbers effect are incompletely known....

  16. Discovery: Prime Numbers

    Science.gov (United States)

    de Mestre, Neville

    2008-01-01

    Prime numbers are important as the building blocks for the set of all natural numbers, because prime factorisation is an important and useful property of all natural numbers. Students can discover them by using the method known as the Sieve of Eratosthenes, named after the Greek geographer and astronomer who lived from c. 276-194 BC. Eratosthenes…

  17. Resource Unavailability (RU) Per Domain Behavior

    NARCIS (Netherlands)

    Karagiannis, Georgios; Westberg, L.; Bader, A.; Tschofenig, Hannes; Tschofenig, H.

    2006-01-01

    This draft specifies a Per Domain Behavior that provides the ability to Diffserv nodes located outside Diffserv domain(s), e.g., receiver or other Diffserv enabled router to detect when the resources provided by the Diffserv domain(s) are not available. The unavailability of resources in the domain

  18. Taxonomies of Educational Objective Domain

    OpenAIRE

    Eman Ghanem Nayef; Nik Rosila Nik Yaacob; Hairul Nizam Ismail

    2013-01-01

    This paper highlights an effort to study the educational objective domain taxonomies including Bloom’s taxonomy, Lorin Anderson’s taxonomy, and Wilson’s taxonomy. In this study a comparison among these three taxonomies have been done. Results show that Bloom’s taxonomy is more suitable as an analysis tool to Educational Objective domain.

  19. Development of magnitude processing in children with developmental dyscalculia: Space, time and number

    Directory of Open Access Journals (Sweden)

    Kenny eSkagerlund

    2014-06-01

    Full Text Available Developmental dyscalculia (DD is a learning disorder associated with impairments in a preverbal non-symbolic approximate number system (ANS pertaining to areas in and around the intraparietal sulcus (IPS. The current study sought to enhance our understanding of the developmental trajectory of the ANS and symbolic number processing skills, thereby getting insight into whether a deficit in the ANS precedes or is preceded by impaired symbolic and exact number processing. Recent work has also suggested that humans are endowed with a shared magnitude system (beyond the number domain in the brain. We therefore investigated whether children with DD demonstrated a general magnitude deficit, stemming from the proposed magnitude system, rather than a specific one limited to numerical quantity. Fourth graders with DD were compared to age-matched controls and a group of ability-matched second graders, on a range of magnitude processing tasks pertaining to space, time, and number. Children with DD displayed difficulties across all magnitude dimensions compared to age-matched peers and showed impaired ANS acuity compared to the younger, ability-matched control group, while exhibiting intact symbolic number processing. We conclude that (1 children with DD suffer from a general magnitude-processing deficit, (2 a shared magnitude system likely exists, and (3 a symbolic number-processing deficit in DD tends to be preceded by an ANS deficit.

  20. Development of magnitude processing in children with developmental dyscalculia: space, time, and number.

    Science.gov (United States)

    Skagerlund, Kenny; Träff, Ulf

    2014-01-01

    Developmental dyscalculia (DD) is a learning disorder associated with impairments in a preverbal non-symbolic approximate number system (ANS) pertaining to areas in and around the intraparietal sulcus (IPS). The current study sought to enhance our understanding of the developmental trajectory of the ANS and symbolic number processing skills, thereby getting insight into whether a deficit in the ANS precedes or is preceded by impaired symbolic and exact number processing. Recent work has also suggested that humans are endowed with a shared magnitude system (beyond the number domain) in the brain. We therefore investigated whether children with DD demonstrated a general magnitude deficit, stemming from the proposed magnitude system, rather than a specific one limited to numerical quantity. Fourth graders with DD were compared to age-matched controls and a group of ability-matched second graders, on a range of magnitude processing tasks pertaining to space, time, and number. Children with DD displayed difficulties across all magnitude dimensions compared to age-matched peers and showed impaired ANS acuity compared to the younger, ability-matched control group, while exhibiting intact symbolic number processing. We conclude that (1) children with DD suffer from a general magnitude-processing deficit, (2) a shared magnitude system likely exists, and (3) a symbolic number-processing deficit in DD tends to be preceded by an ANS deficit.

  1. Residual number processing in dyscalculia.

    Science.gov (United States)

    Cappelletti, Marinella; Price, Cathy J

    2014-01-01

    Developmental dyscalculia - a congenital learning disability in understanding numerical concepts - is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia.

  2. Residual number processing in dyscalculia

    Directory of Open Access Journals (Sweden)

    Marinella Cappelletti

    2014-01-01

    Full Text Available Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia.

  3. Residual number processing in dyscalculia☆

    Science.gov (United States)

    Cappelletti, Marinella; Price, Cathy J.

    2013-01-01

    Developmental dyscalculia – a congenital learning disability in understanding numerical concepts – is typically associated with parietal lobe abnormality. However, people with dyscalculia often retain some residual numerical abilities, reported in studies that otherwise focused on abnormalities in the dyscalculic brain. Here we took a different perspective by focusing on brain regions that support residual number processing in dyscalculia. All participants accurately performed semantic and categorical colour-decision tasks with numerical and non-numerical stimuli, with adults with dyscalculia performing slower than controls in the number semantic tasks only. Structural imaging showed less grey-matter volume in the right parietal cortex in people with dyscalculia relative to controls. Functional MRI showed that accurate number semantic judgements were maintained by parietal and inferior frontal activations that were common to adults with dyscalculia and controls, with higher activation for participants with dyscalculia than controls in the right superior frontal cortex and the left inferior frontal sulcus. Enhanced activation in these frontal areas was driven by people with dyscalculia who made faster rather than slower numerical decisions; however, activation could not be accounted for by response times per se, because it was greater for fast relative to slow dyscalculics but not greater for fast controls relative to slow dyscalculics. In conclusion, our results reveal two frontal brain regions that support efficient number processing in dyscalculia. PMID:24266008

  4. An introduction to Catalan numbers

    CERN Document Server

    Roman, Steven

    2015-01-01

    This textbook provides an introduction to the Catalan numbers and their remarkable properties, along with their various applications in combinatorics.  Intended to be accessible to students new to the subject, the book begins with more elementary topics before progressing to more mathematically sophisticated topics.  Each chapter focuses on a specific combinatorial object counted by these numbers, including paths, trees, tilings of a staircase, null sums in Zn+1, interval structures, partitions, permutations, semiorders, and more.  Exercises are included at the end of book, along with hints and solutions, to help students obtain a better grasp of the material.  The text is ideal for undergraduate students studying combinatorics, but will also appeal to anyone with a mathematical background who has an interest in learning about the Catalan numbers. “Roman does an admirable job of providing an introduction to Catalan numbers of a different nature from the previous ones.  He has made an excellent choice o...

  5. Physics education students’ cognitive and affective domains toward ecological phenomena

    Science.gov (United States)

    Napitupulu, N. D.; Munandar, A.; Redjeki, S.; Tjasyono, B.

    2018-05-01

    Environmental education is become prominent in dealing with natural phenomena that occur nowadays. Studying environmental physics will lead students to have conceptual understanding which are importent in enhancing attitudes toward ecological phenomena that link directry to cognitive and affective domains. This research focused on the the relationship of cognitive and affective domains toward ecological phenomena. Thirty-seven Physics Education students participated in this study and validated sources of data were collected to eksplore students’ conceptual understanding as cognitive domain and to investigate students’ attitudes as affective domain. The percentage of cognitive outcome and affective outcome are explore. The features of such approaches to environmental learning are discussion through analysis of contribution of cognitive to develop the attitude ecological as affective outcome. The result shows that cognitive domains do not contribute significantly to affective domain toward ecological henomena as an issue trend in Central Sulawesi although students had passed Environmental Physics instruction for two semester. In fact, inferior knowledge in a way actually contributes to the attitude domain caused by the prior knowledge that students have as ombo as a Kaili local wisdom.

  6. Texture of lipid bilayer domains

    DEFF Research Database (Denmark)

    Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov

    2009-01-01

    We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...... are well studied, the possibility of texture in gel domains has so far not been examined. When using polarized light for two-photon excitation of the fluorescent lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl...... chains. By imaging the intensity variations as a function of the polarization angle, we map the lateral variations of the lipid tilt within domains. Results reveal that gel domains are composed of subdomains with different lipid tilt directions. We have applied a Fourier decomposition method...

  7. Asymptotic numbers: Pt.1

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1980-01-01

    The set of asymptotic numbers A as a system of generalized numbers including the system of real numbers R, as well as infinitely small (infinitesimals) and infinitely large numbers, is introduced. The detailed algebraic properties of A, which are unusual as compared with the known algebraic structures, are studied. It is proved that the set of asymptotic numbers A cannot be isomorphically embedded as a subspace in any group, ring or field, but some particular subsets of asymptotic numbers are shown to be groups, rings, and fields. The algebraic operation, additive and multiplicative forms, and the algebraic properties are constructed in an appropriate way. It is shown that the asymptotic numbers give rise to a new type of generalized functions quite analogous to the distributions of Schwartz allowing, however, the operation multiplication. A possible application of these functions to quantum theory is discussed

  8. Applied number theory

    CERN Document Server

    Niederreiter, Harald

    2015-01-01

    This textbook effectively builds a bridge from basic number theory to recent advances in applied number theory. It presents the first unified account of the four major areas of application where number theory plays a fundamental role, namely cryptography, coding theory, quasi-Monte Carlo methods, and pseudorandom number generation, allowing the authors to delineate the manifold links and interrelations between these areas.  Number theory, which Carl-Friedrich Gauss famously dubbed the queen of mathematics, has always been considered a very beautiful field of mathematics, producing lovely results and elegant proofs. While only very few real-life applications were known in the past, today number theory can be found in everyday life: in supermarket bar code scanners, in our cars’ GPS systems, in online banking, etc.  Starting with a brief introductory course on number theory in Chapter 1, which makes the book more accessible for undergraduates, the authors describe the four main application areas in Chapters...

  9. Direct formulation of the supersonic acoustic intensity in space domain

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclre, Quentin

    2012-01-01

    into the far field. To date, its calculation has been formulated in the wave number domain, filtering out the evanescent waves outside the radiation circle and reconstructing the acoustic field with only the propagating waves. In this study, the supersonic intensity is calculated directly in space domain......This paper proposes and examines a direct formulation in space domain of the so-called supersonic acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulating energy in the near-field of the source, providing a map of the acoustic energy that is radiated...... by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field that propagates effectively to the far field is calculated via direct filtering in space domain...

  10. Enhancing a Multi-body Mechanism with Learning-Aided Cues in an Augmented Reality Environment

    International Nuclear Information System (INIS)

    Sidhu, Manjit Singh

    2013-01-01

    Augmented Reality (AR) is a potential area of research for education, covering issues such as tracking and calibration, and realistic rendering of virtual objects. The ability to augment real world with virtual information has opened the possibility of using AR technology in areas such as education and training as well. In the domain of Computer Aided Learning (CAL), researchers have long been looking into enhancing the effectiveness of the teaching and learning process by providing cues that could assist learners to better comprehend the materials presented. Although a number of works were done looking into the effectiveness of learning-aided cues, but none has really addressed this issue for AR-based learning solutions. This paper discusses the design and model of an AR based software that uses visual cues to enhance the learning process and the outcome perception results of the cues.

  11. Enhancing a Multi-body Mechanism with Learning-Aided Cues in an Augmented Reality Environment

    Science.gov (United States)

    Singh Sidhu, Manjit

    2013-06-01

    Augmented Reality (AR) is a potential area of research for education, covering issues such as tracking and calibration, and realistic rendering of virtual objects. The ability to augment real world with virtual information has opened the possibility of using AR technology in areas such as education and training as well. In the domain of Computer Aided Learning (CAL), researchers have long been looking into enhancing the effectiveness of the teaching and learning process by providing cues that could assist learners to better comprehend the materials presented. Although a number of works were done looking into the effectiveness of learning-aided cues, but none has really addressed this issue for AR-based learning solutions. This paper discusses the design and model of an AR based software that uses visual cues to enhance the learning process and the outcome perception results of the cues.

  12. Learning about the past with new technologies : Fostering historical reasoning in computer-supported collaborative learning

    NARCIS (Netherlands)

    Drie, J.P. van

    2005-01-01

    Recent technological developments have provided new environments for learning, giving rise to the question of how characteristics of such new learning environments can facilitate the process of learning in specific domains. The focus of this thesis is on computer-supported collaborative learning

  13. Domain shape instabilities and dendrite domain growth in uniaxial ferroelectrics

    Science.gov (United States)

    Shur, Vladimir Ya.; Akhmatkhanov, Andrey R.

    2018-01-01

    The effects of domain wall shape instabilities and the formation of nanodomains in front of moving walls obtained in various uniaxial ferroelectrics are discussed. Special attention is paid to the formation of self-assembled nanoscale and dendrite domain structures under highly non-equilibrium switching conditions. All obtained results are considered in the framework of the unified kinetic approach to domain structure evolution based on the analogy with first-order phase transformation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  14. Separated matter and antimatter domains with vanishing domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Dolgov, A.D.; Godunov, S.I.; Rudenko, A.S.; Tkachev, I.I., E-mail: dolgov@fe.infn.it, E-mail: sgodunov@itep.ru, E-mail: a.s.rudenko@inp.nsk.su, E-mail: tkachev@ms2.inr.ac.ru [Physics Department and Laboratory of Cosmology and Elementary Particle Physics, Novosibirsk State University, Pirogova st. 2, Novosibirsk, 630090 (Russian Federation)

    2015-10-01

    We present a model of spontaneous (or dynamical) C and CP violation where it is possible to generate domains of matter and antimatter separated by cosmologically large distances. Such C(CP) violation existed only in the early universe and later it disappeared with the only trace of generated baryonic and/or antibaryonic domains. So the problem of domain walls in this model does not exist. These features are achieved through a postulated form of interaction between inflaton and a new scalar field, realizing short time C(CP) violation.

  15. PENGATURAN PASSING OFF DALAM PENGGUNAAN DOMAIN NAME TERKAIT DENGAN MEREK

    Directory of Open Access Journals (Sweden)

    Herti Yunita Putri

    2016-09-01

    Full Text Available In cyber world we often hear about domain name’s term. Domain name is a unique name to identify the server computer’s name like a web server or email server on a computer network or Internet. Passing off also make causes confusion in using merk from a famous brand or merk on the goods and services. Selected domain name in the internet media often creates the similar domain name with the other parties. This similar domain name are often used by people who are not responsible to take advantages of the domain name for themself. This can be caused by the presence of competition from Internet media business. This things called passing off. This research is a normative juridical research with a qualitative analysis. The legal materials include primary legal, secondary law and tertiary legal materials. Collection technique applied is literary study. Legal materials were analyzed to see the argument implementation of the definition of merk, the definition of domain name, definition of passing off, passing off in use related by merk and domain name and the rules of law in Indonesia related by merk, domain name and passing off. Big wishes in the future it can assist as a basic reference and legal considerations which are useful in Indonesian law practice. There are two passing off related to the merk and domain name, called Crybersquatting and Tiposquatting. Domain name rules are not regulated clearly in merk regulation named Act No. 15 of 2001. It regulated in PP 24 Year 1993 about The Class List of Goods or Services In Merk, Telecommunications are included in the goods or services in merk. Domain name are regulated in UDRP (Uniform Dispute Resolution Policy with competent institutions called ICANN (Internet Corporation for Assigned Names and Numbers. Dalam dunia maya (cyber world, kita sering mendengar istilah domain name. Domain name adalah nama unik yang diberikan untuk mengidentifikasi nama server komputer seperti web server atau email server di

  16. Predicting Lotto Numbers

    DEFF Research Database (Denmark)

    Jørgensen, Claus Bjørn; Suetens, Sigrid; Tyran, Jean-Robert

    numbers based on recent drawings. While most players pick the same set of numbers week after week without regards of numbers drawn or anything else, we find that those who do change, act on average in the way predicted by the law of small numbers as formalized in recent behavioral theory. In particular......We investigate the “law of small numbers” using a unique panel data set on lotto gambling. Because we can track individual players over time, we can measure how they react to outcomes of recent lotto drawings. We can therefore test whether they behave as if they believe they can predict lotto......, on average they move away from numbers that have recently been drawn, as suggested by the “gambler’s fallacy”, and move toward numbers that are on streak, i.e. have been drawn several weeks in a row, consistent with the “hot hand fallacy”....

  17. Invitation to number theory

    CERN Document Server

    Ore, Oystein

    2017-01-01

    Number theory is the branch of mathematics concerned with the counting numbers, 1, 2, 3, … and their multiples and factors. Of particular importance are odd and even numbers, squares and cubes, and prime numbers. But in spite of their simplicity, you will meet a multitude of topics in this book: magic squares, cryptarithms, finding the day of the week for a given date, constructing regular polygons, pythagorean triples, and many more. In this revised edition, John Watkins and Robin Wilson have updated the text to bring it in line with contemporary developments. They have added new material on Fermat's Last Theorem, the role of computers in number theory, and the use of number theory in cryptography, and have made numerous minor changes in the presentation and layout of the text and the exercises.

  18. Domain Adaptation for Machine Translation with Instance Selection

    Directory of Open Access Journals (Sweden)

    Biçici Ergun

    2015-04-01

    Full Text Available Domain adaptation for machine translation (MT can be achieved by selecting training instances close to the test set from a larger set of instances. We consider 7 different domain adaptation strategies and answer 7 research questions, which give us a recipe for domain adaptation in MT. We perform English to German statistical MT (SMT experiments in a setting where test and training sentences can come from different corpora and one of our goals is to learn the parameters of the sampling process. Domain adaptation with training instance selection can obtain 22% increase in target 2-gram recall and can gain up to 3:55 BLEU points compared with random selection. Domain adaptation with feature decay algorithm (FDA not only achieves the highest target 2-gram recall and BLEU performance but also perfectly learns the test sample distribution parameter with correlation 0:99. Moses SMT systems built with FDA selected 10K training sentences is able to obtain F1 results as good as the baselines that use up to 2M sentences. Moses SMT systems built with FDA selected 50K training sentences is able to obtain F1 point better results than the baselines.

  19. Ferroelectric negative capacitance domain dynamics

    Science.gov (United States)

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2018-05-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr0.2Ti0.8)O3 capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transient negative capacitance is shown to originate from reverse domain nucleation and unrestricted domain growth. However, with the onset of domain coalescence, the capacitance becomes positive again. The persistence of the negative capacitance state is therefore limited by the speed of domain wall motion. By changing the applied electric field, capacitor area or external resistance, this domain wall velocity can be varied predictably over several orders of magnitude. Additionally, detailed insights into the intrinsic material properties of the ferroelectric are obtainable through these measurements. A new method for reliable extraction of the average negative capacitance of the ferroelectric is presented. Furthermore, a simple analytical model is developed, which accurately describes the negative capacitance transient time as a function of the material properties and the experimental boundary conditions.

  20. Context and Domain Knowledge Enhanced Entity Spotting in Informal Text

    Science.gov (United States)

    Gruhl, Daniel; Nagarajan, Meena; Pieper, Jan; Robson, Christine; Sheth, Amit

    This paper explores the application of restricted relationship graphs (RDF) and statistical NLP techniques to improve named entity annotation in challenging Informal English domains. We validate our approach using on-line forums discussing popular music. Named entity annotation is particularly difficult in this domain because it is characterized by a large number of ambiguous entities, such as the Madonna album "Music" or Lilly Allen's pop hit "Smile".

  1. Predicting Lotto Numbers

    DEFF Research Database (Denmark)

    Suetens, Sigrid; Galbo-Jørgensen, Claus B.; Tyran, Jean-Robert Karl

    2016-01-01

    We investigate the ‘law of small numbers’ using a data set on lotto gambling that allows us to measure players’ reactions to draws. While most players pick the same set of numbers week after week, we find that those who do change react on average as predicted by the law of small numbers...... as formalized in recent behavioral theory. In particular, players tend to bet less on numbers that have been drawn in the preceding week, as suggested by the ‘gambler’s fallacy’, and bet more on a number if it was frequently drawn in the recent past, consistent with the ‘hot-hand fallacy’....

  2. Beurling generalized numbers

    CERN Document Server

    Diamond, Harold G; Cheung, Man Ping

    2016-01-01

    "Generalized numbers" is a multiplicative structure introduced by A. Beurling to study how independent prime number theory is from the additivity of the natural numbers. The results and techniques of this theory apply to other systems having the character of prime numbers and integers; for example, it is used in the study of the prime number theorem (PNT) for ideals of algebraic number fields. Using both analytic and elementary methods, this book presents many old and new theorems, including several of the authors' results, and many examples of extremal behavior of g-number systems. Also, the authors give detailed accounts of the L^2 PNT theorem of J. P. Kahane and of the example created with H. L. Montgomery, showing that additive structure is needed for proving the Riemann hypothesis. Other interesting topics discussed are propositions "equivalent" to the PNT, the role of multiplicative convolution and Chebyshev's prime number formula for g-numbers, and how Beurling theory provides an interpretation of the ...

  3. Intuitive numbers guide decisions

    Directory of Open Access Journals (Sweden)

    Ellen Peters

    2008-12-01

    Full Text Available Measuring reaction times to number comparisons is thought to reveal a processing stage in elementary numerical cognition linked to internal, imprecise representations of number magnitudes. These intuitive representations of the mental number line have been demonstrated across species and human development but have been little explored in decision making. This paper develops and tests hypotheses about the influence of such evolutionarily ancient, intuitive numbers on human decisions. We demonstrate that individuals with more precise mental-number-line representations are higher in numeracy (number skills consistent with previous research with children. Individuals with more precise representations (compared to those with less precise representations also were more likely to choose larger, later amounts over smaller, immediate amounts, particularly with a larger proportional difference between the two monetary outcomes. In addition, they were more likely to choose an option with a larger proportional but smaller absolute difference compared to those with less precise representations. These results are consistent with intuitive number representations underlying: a perceived differences between numbers, b the extent to which proportional differences are weighed in decisions, and, ultimately, c the valuation of decision options. Human decision processes involving numbers important to health and financial matters may be rooted in elementary, biological processes shared with other species.

  4. Numbers, sequences and series

    CERN Document Server

    Hirst, Keith

    1994-01-01

    Number and geometry are the foundations upon which mathematics has been built over some 3000 years. This book is concerned with the logical foundations of number systems from integers to complex numbers. The author has chosen to develop the ideas by illustrating the techniques used throughout mathematics rather than using a self-contained logical treatise. The idea of proof has been emphasised, as has the illustration of concepts from a graphical, numerical and algebraic point of view. Having laid the foundations of the number system, the author has then turned to the analysis of infinite proc

  5. Meanings for Fraction as Number-Measure by Exploring the Number Line

    Science.gov (United States)

    Psycharis, Giorgos; Latsi, Maria; Kynigos, Chronis

    2009-01-01

    This paper reports on a case-study design experiment in the domain of fraction as number-measure. We designed and implemented a set of exploratory tasks concerning comparison and ordering of fractions as well as operations with fractions. Two groups of 12-year-old students worked collaboratively using paper and pencil as well as a specially…

  6. Evaluation of Damping Using Time Domain OMA Techniques

    DEFF Research Database (Denmark)

    Bajric, Anela; Brincker, Rune; Georgakis, Christos T.

    2014-01-01

    . In this paper a comparison is made of the effectiveness of three existing OMA techniques in providing accurate damping estimates for varying loadings, levels of noise, number of added measurement channels and structural damping. The evaluated techniques are derived in the time domain and are namely the Ibrahim...... Time Domain (ITD), Eigenvalue Realization Algorithm (ERA) and the Polyreference Time Domain (PTD). The response of a two degree-of-freedom (2DOF) system is numerically established from specified modal parameters with well separated and closely spaced modes. Two types of response are considered, free...

  7. Wavefield extrapolation in pseudodepth domain

    KAUST Repository

    Ma, Xuxin

    2013-02-01

    Wavefields are commonly computed in the Cartesian coordinate frame. Its efficiency is inherently limited due to spatial oversampling in deep layers, where the velocity is high and wavelengths are long. To alleviate this computational waste due to uneven wavelength sampling, we convert the vertical axis of the conventional domain from depth to vertical time or pseudodepth. This creates a nonorthognal Riemannian coordinate system. Isotropic and anisotropic wavefields can be extrapolated in the new coordinate frame with improved efficiency and good consistency with Cartesian domain extrapolation results. Prestack depth migrations are also evaluated based on the wavefield extrapolation in the pseudodepth domain.© 2013 Society of Exploration Geophysicists. All rights reserved.

  8. IMGT unique numbering for MHC groove G-DOMAIN and MHC superfamily (MhcSF) G-LIKE-DOMAIN

    DEFF Research Database (Denmark)

    Lefranc, Marie-Paule; Duprat, E.; Kaas, Quentin

    2005-01-01

    IMGT, the international ImMunoGeneTics information system® (http://imgt.cines.fr) provides a common access to expertly annotated data on the genome, proteome, genetics and structure of immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC), and related proteins...

  9. IMGT unique numbering for immunoglobulin and T cell receptor constant domains and Ig superfamily C-like domains

    DEFF Research Database (Denmark)

    Lefranc, Marie-Paule; Pommié, Christelle; Kaas, Quentin

    2005-01-01

    IMGT, the international ImMunoGeneTics information system (http://imgt.cines.fr) provides a common access to expertly annotated data on the genome, proteome, genetics and structure of immunoglobulins (IG), T cell receptors (TR), major histocompatibility complex (MHC), and related proteins...

  10. Multi-domain training in healthy old age – Hotel Plastisse as an iPad-based serious game to systematically compare multi-domain and single-domain training

    Directory of Open Access Journals (Sweden)

    Julia Claudia Binder

    2015-07-01

    Full Text Available Finding effective training interventions for declining cognitive abilities in healthy aging is of great relevance, especially in view of the demographic development. Since it is assumed that transfer from the trained to untrained domains is more likely to occur when training conditions and transfer measures share a common underlying process, multi-domain training of several cognitive functions should increase the likelihood of such an overlap. In the first part, we give an overview of the literature showing that cognitive training using complex tasks such as video games, leisure activities, or practicing a series of cognitive tasks has shown promising results regarding transfer to a number of cognitive functions. These studies, however, do not allow direct inference about the underlying functions targeted by these training regimes. Custom-designed serious games allow to design training regimes according to specific cognitive functions and a target population’s need. In the second part, we introduce the serious game Hotel Plastisse as an iPad-based training tool for older adults that allows the comparison of the simultaneous training of spatial navigation, visuomotor function and inhibition to the training of each of these functions separately. Hotel Plastisse not only defines the cognitive functions of the multi-domain training clearly, but also implements training in an interesting learning environment including adaptive difficulty and feedback. We propose this novel training tool with the goal of furthering our understanding of how training regimes should be designed in order to affect cognitive functioning of older adults most broadly.

  11. Topology Based Domain Search (TBDS)

    National Research Council Canada - National Science Library

    Manning, William

    2002-01-01

    This effort will explore radical changes in the way Domain Name System (DNS) is used by endpoints in a network to improve the resilience of the endpoint and its applications in the face of dynamically changing infrastructure topology...

  12. Domain Discretization and Circle Packings

    DEFF Research Database (Denmark)

    Dias, Kealey

    A circle packing is a configuration of circles which are tangent with one another in a prescribed pattern determined by a combinatorial triangulation, where the configuration fills a planar domain or a two-dimensional surface. The vertices in the triangulation correspond to centers of circles...... to domain discretization problems such as triangulation and unstructured mesh generation techniques. We wish to ask ourselves the question: given a cloud of points in the plane (we restrict ourselves to planar domains), is it possible to construct a circle packing preserving the positions of the vertices...... and constrained meshes having predefined vertices as constraints. A standard method of two-dimensional mesh generation involves conformal mapping of the surface or domain to standardized shapes, such as a disk. Since circle packing is a new technique for constructing discrete conformal mappings, it is possible...

  13. Heliborne time domain electromagnetic system

    International Nuclear Information System (INIS)

    Bhattacharya, S.

    2009-01-01

    Atomic Minerals Directorate (AMD), are using heliborne and ground time domain electromagnetic (TDEM) system for the exploration of deep seated unconformity type uranium deposits. Uranium has been explored in various parts of the world like Athabasca basin using time domain electromagnetic system. AMD has identified some areas in India where such deposits are available. Apart from uranium exploration, the TDEM systems are used for the exploration of deep seated minerals like diamonds. Bhabha Atomic Research Centre (BARC) is involved in the indigenous design of the heliborne time domain system since this system is useful for DAE and also it has a scope of wide application. In this paper we discuss about the principle of time domain electromagnetic systems, their capabilities and the development and problems of such system for various other mineral exploration. (author)

  14. Anisotropy of domain wall resistance

    Science.gov (United States)

    Viret; Samson; Warin; Marty; Ott; Sondergard; Klein; Fermon

    2000-10-30

    The resistive effect of domain walls in FePd films with perpendicular anisotropy was studied experimentally as a function of field and temperature. The films were grown directly on MgO substrates, which induces an unusual virgin magnetic configuration composed of 60 nm wide parallel stripe domains. This allowed us to carry out the first measurements of the anisotropy of domain wall resistivity in the two configurations of current perpendicular and parallel to the walls. At 18 K, we find 8.2% and 1.3% for the domain wall magnetoresistance normalized to the wall width (8 nm) in these two respective configurations. These values are consistent with the predictions of Levy and Zhang.

  15. Creativity as Predictor of Mathematical Abilities in Fourth Graders in Addition to Number Sense and Working Memory

    Directory of Open Access Journals (Sweden)

    Evelyn H. Kroesbergen

    2017-12-01

    Full Text Available In this study, it was investigated how domain-specific (number sense and domain-general (working memory, creativity factors explain the variance in mathematical abilities in primary school children. A total of 166 children aged 8 to 10 years old participated. Several tests to measure math ability, mathematical creativity, number sense, verbal and visual spatial working memory and creativity were administered. Data were analyzed with a series of correlation and regression analyses. Number sense, working memory and creativity were all found to be important predictors of academic and creative mathematical ability. Furthermore, groups with math learning disabilities (MLD and mathematical giftedness (MG were compared to a typically developing (TD group. The results show that the MLD group scored lower on number line estimation and visual spatial working memory than the TD group, while the MG group differed from the TD group on visual spatial working memory and creativity. It is concluded that creativity plays a significant role in mathematics, above working memory and number sense.

  16. Irrational Numbers Can "In-Spiral" You

    Science.gov (United States)

    Lewis, Leslie D.

    2007-01-01

    This article describes the instructional process of helping students visualize irrational numbers. Students learn to create a spiral, called "the wheel of Theodorus," which demonstrates irrational and rational lengths. Examples of student work help the reader appreciate the delightful possibilities of this project. (Contains 4 figures.)

  17. Cyberspace at the Operational Level: Warfighting in All Five Domains

    Science.gov (United States)

    2016-05-13

    Sean Hall 5e. TASK NUMBER Paper Advisor: Prof John Sappenfield 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...decisive, operational objective, center of gravity , planner, commander. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF...requires much more than doctrinal definitions. History shows how well or poorly nations integrated the sea, air, and space domains in their infancy

  18. Time-domain multiple-quantum NMR

    International Nuclear Information System (INIS)

    Weitekamp, D.P.

    1982-11-01

    The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species

  19. Maneuver from the Air Domain

    Science.gov (United States)

    2016-05-26

    Overload From the previous discussion, cognitive maneuver seeks to degrade the enemy’s capacity for...in all domains, the ability to maneuver from the air domain in the cognitive sense, comes primarily from air power’s unique ability to overload the... cognitive maneuver mechanisms developed in the 1980s as part of broader maneuver warfare theory. The result is a proposed definition of maneuver from

  20. Ferroelectric Negative Capacitance Domain Dynamics

    OpenAIRE

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2017-01-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr$_{0.2}$Ti$_{0.8}$)O$_3$ capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transien...