WorldWideScience

Sample records for learning disjunctive concepts

  1. New verifiable stationarity concepts for a class of mathematical programs with disjunctive constraints.

    Science.gov (United States)

    Benko, Matúš; Gfrerer, Helmut

    2018-01-01

    In this paper, we consider a sufficiently broad class of non-linear mathematical programs with disjunctive constraints, which, e.g. include mathematical programs with complemetarity/vanishing constraints. We present an extension of the concept of [Formula: see text]-stationarity which can be easily combined with the well-known notion of M-stationarity to obtain the stronger property of so-called [Formula: see text]-stationarity. We show how the property of [Formula: see text]-stationarity (and thus also of M-stationarity) can be efficiently verified for the considered problem class by computing [Formula: see text]-stationary solutions of a certain quadratic program. We consider further the situation that the point which is to be tested for [Formula: see text]-stationarity, is not known exactly, but is approximated by some convergent sequence, as it is usually the case when applying some numerical method.

  2. CONCEPT OF MOBILE LEARNING

    Directory of Open Access Journals (Sweden)

    Г О Дуйсеева

    2016-12-01

    Full Text Available This article deals with the definition and the description of mobile learning. Ten years’ experience of the latest mobile technologies use and devices in educational process abroad is analyzed. Prospects and the possibilities of application of these technologies are considered. The basic concepts and development of mobile learning which proposed by scientists for the last years have been given.

  3. Phonological Concept Learning.

    Science.gov (United States)

    Moreton, Elliott; Pater, Joe; Pertsova, Katya

    2017-01-01

    Linguistic and non-linguistic pattern learning have been studied separately, but we argue for a comparative approach. Analogous inductive problems arise in phonological and visual pattern learning. Evidence from three experiments shows that human learners can solve them in analogous ways, and that human performance in both cases can be captured by the same models. We test GMECCS (Gradual Maximum Entropy with a Conjunctive Constraint Schema), an implementation of the Configural Cue Model (Gluck & Bower, ) in a Maximum Entropy phonotactic-learning framework (Goldwater & Johnson, ; Hayes & Wilson, ) with a single free parameter, against the alternative hypothesis that learners seek featurally simple algebraic rules ("rule-seeking"). We study the full typology of patterns introduced by Shepard, Hovland, and Jenkins () ("SHJ"), instantiated as both phonotactic patterns and visual analogs, using unsupervised training. Unlike SHJ, Experiments 1 and 2 found that both phonotactic and visual patterns that depended on fewer features could be more difficult than those that depended on more features, as predicted by GMECCS but not by rule-seeking. GMECCS also correctly predicted performance differences between stimulus subclasses within each pattern. A third experiment tried supervised training (which can facilitate rule-seeking in visual learning) to elicit simple rule-seeking phonotactic learning, but cue-based behavior persisted. We conclude that similar cue-based cognitive processes are available for phonological and visual concept learning, and hence that studying either kind of learning can lead to significant insights about the other. Copyright © 2015 Cognitive Science Society, Inc.

  4. Conjunctive interpretations of disjunctions

    Directory of Open Access Journals (Sweden)

    Robert van Rooij

    2010-09-01

    Full Text Available In this extended commentary I discuss the problem of how to account for "conjunctive" readings of some sentences with embedded disjunctions for globalist analyses of conversational implicatures. Following Franke (2010, 2009, I suggest that earlier proposals failed, because they did not take into account the interactive reasoning of what else the speaker could have said, and how else the hearer could have interpreted the (alternative sentence(s. I show how Franke's idea relates to more traditional pragmatic interpretation strategies. doi:10.3765/sp.3.11 BibTeX info

  5. Intentional learning: A concept analysis.

    Science.gov (United States)

    Mollman, Sarah; Candela, Lori

    2018-01-01

    To use a concept analysis to determine a clear definition of the term "intentional learning" for use in nursing. The term intentional learning has been used for years in educational, business, and even nursing literature. It has been used to denote processes leading to higher order thinking and the ability to use knowledge in new situations; both of which are important skills to develop in nursing students. But the lack of a common, accepted definition of the term makes it difficult for nurse educators to base instruction and learning experiences on or to evaluate its overall effectiveness in educating students for diverse, fast-paced clinical practices. A concept analysis following the eight-step method developed by Walker and Avant (2011). Empirical and descriptive literature.  Five defining attributes were identified: (1) self-efficacy for learning, (2) active, effortful, and engaged learning, (3) mastery of goals where learning is the goal, (4) self-directed learning, and (5) self-regulation of learning. Through this concept analysis, nursing will have a clear definition of intentional learning. This will enable nurse educators to generate, evaluate, and test learning experiences that promote further development of intentional learning in nursing students. Nurses in practice will also be able to evaluate if the stated benefits are demonstrated and how this impacts patient care and outcomes. © 2017 Wiley Periodicals, Inc.

  6. THE EFFECT OF CONCEPT MAPPING ON CONCEPT LEARNING IN SCIENCE

    OpenAIRE

    岡, 直樹; 今永, 久美子

    2012-01-01

    An experiment was conducted to investigate the effects of concept map completion tasks on concept learning in the primary schoolchildren. The participants were to insert some of the suitable concepts (concept group) or link labeles (link label group) or both of them (concept/link label group) into the blanks to make up the map wholly. It was revealed that the results of the concept group and the concept/link label group were better than the link label group. These results were discussed in te...

  7. Object recognition and concept learning with Confucius

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, B; Sammut, C

    1982-01-01

    A learning program produces, as its output, a Boolean function which describes a concept. The function returns true if and only if the argument is an object which satisfies the logical expression in the body of the function. The learning program's input is a set of objects which are instances of the concept to be learnt. The paper describes an algorithm devised to learn concept descriptions in this form. 15 references.

  8. Group Concept Mapping on Learning Analytics

    NARCIS (Netherlands)

    Stoyanov, Slavi; Drachsler, Hendrik

    2013-01-01

    Stoyanov, S., & Drachsler, H. (2013, 5 July). Group Concept Mapping on Learning Analytics. Presentation given at Learning Analytics Summer School Institute (LASI) to kickoff the national GCM study on LA, Amsterdam, The Netherlands.

  9. Using the Typewriter for Learning: Concepts

    Science.gov (United States)

    Clayton, Dean

    1977-01-01

    Research studies conducted with typewriting students have consistently shown that concepts can be learned in typewriting classes with no appreciable loss of typewriting skill by students. This article discusses three stages of typewriting instruction and how concept learning can be incorporated into each stage. (HD)

  10. A Bayesian concept learning approach to crowdsourcing

    DEFF Research Database (Denmark)

    Viappiani, P.; Zilles, S.; Hamilton, H.J.

    2011-01-01

    techniques, inference methods, and query selection strategies to assist a user charged with choosing a configuration that satisfies some (partially known) concept. Our model is able to simultaneously learn the concept definition and the types of the experts. We evaluate our model with simulations, showing......We develop a Bayesian approach to concept learning for crowdsourcing applications. A probabilistic belief over possible concept definitions is maintained and updated according to (noisy) observations from experts, whose behaviors are modeled using discrete types. We propose recommendation...

  11. Disjunction and conjunction fallacies in episodic memory.

    Science.gov (United States)

    Nakamura, K; Brainerd, C J

    2017-09-01

    It has recently been found that episodic memory displays analogues of the well-known disjunction and conjunction fallacies of probability judgement. The aim of the present research was, for the first time, to study these memory fallacies together under the same conditions, and test theoretical predictions about the reasons for each. The focus was on predictions about the influence of semantic gist, target versus context recollection, and proactive versus retroactive interference. Disjunction and conjunction fallacies increased in conditions in which subjects were able to form semantic connections among list words. In addition, disjunction fallacies were increased by manipulations that minimised proactive interference, whereas conjunction fallacies were increased by manipulations that minimised retroactive interference. That pattern suggests that disjunction fallacies are more dependent on target recollection, whereas conjunction fallacies are more dependent on context recollection.

  12. Teaching’s concept of learning

    DEFF Research Database (Denmark)

    Qvortrup, Ane; Keiding, Tina Bering

    This paper discusses and exemplifies how teaching’s concept of learning can be understood. The theoretical framework for the construction and discussion of teaching’s concept of learning is found insecond-order systems theory as described by the German sociologist Niklas Luhmann (Luhmann, 1995...... both produce and are products of the curricula, and for describing the taught curriculum as an emerging and contingent form in its own right (Keiding & Qvortrup, 2014)....

  13. How Do Korsakoff Patients Learn New Concepts?

    Science.gov (United States)

    Pitel, Anne Lise; Beaunieux, Helene; Guillery-Girard, Berengere; Witkowski, Thomas; de la Sayette, Vincent; Viader, Fausto; Desgranges, Beatrice; Eustache, Francis

    2009-01-01

    The goal of the present investigation was to assess semantic learning in Korsakoff patients (KS), compared with uncomplicated alcoholics (AL) and control subjects (CS), taking the nature of the information to-be-learned and the episodic memory profiles of the three groups into account. Ten new complex concepts, each illustrated by a photo and…

  14. A Machine Learning Concept for DTN Routing

    Science.gov (United States)

    Dudukovich, Rachel; Hylton, Alan; Papachristou, Christos

    2017-01-01

    This paper discusses the concept and architecture of a machine learning based router for delay tolerant space networks. The techniques of reinforcement learning and Bayesian learning are used to supplement the routing decisions of the popular Contact Graph Routing algorithm. An introduction to the concepts of Contact Graph Routing, Q-routing and Naive Bayes classification are given. The development of an architecture for a cross-layer feedback framework for DTN (Delay-Tolerant Networking) protocols is discussed. Finally, initial simulation setup and results are given.

  15. Students’ Conceptions of Constructivist Learning

    NARCIS (Netherlands)

    S.M.M. Loyens (Sofie)

    2007-01-01

    textabstractConstructivism is currently an influential view on learning. It advocates a student-centred perspective: Students are active learners who construct their own understanding (e.g., Slavin, 2006). Different types of constructivism can be distinguished (e.g., Phillips, 1995) that all

  16. Towards an agential realist concept of learning

    DEFF Research Database (Denmark)

    Plauborg, Helle

    2018-01-01

    Drawing on agential realism, this article explores how learning can be understood. An agential realist way of thinking about learning is sensitive to the complexity that characterises learning as a phenomenon. Thus, learning is seen as a dynamic and emergent phenomenon, constantly undergoing...... processes of becoming and expanding the range of components involved in such constitutive processes. With inspiration from Barad’s theorisation of spatiality, temporality and the interdependence of discourse and materiality, this article focuses on timespacemattering and material-discursivity. Concepts...

  17. Investigating alternative conceptions in learning disabled students

    Science.gov (United States)

    Cole, Terry Stokes

    Science teachers have long noticed the fact that their students come to school with their own concepts, produced from daily experiences and interactions with the world around them. Sometimes these ideas are in agreement with accepted scientific theories, but often they are not. These "incorrect" ideas, or "misconceptions" have been the focus of many studies, which can be helpful to teachers when planning their lessons. However, there is a dearth of information that is geared specifically to students with learning disabilities. These students generally have deficits in areas of perception and learning that could conceivably influence the way they formulate concepts. The purpose of this study was to examine the concepts held by students with learning disabilities on the causes of the day/night cycle, the phases of the moon, and the seasons. An interview format was judged to be the best method of ensuring that the students' ideas were clearly documented. The subjects were five, sixth-grade students in a city school, who had been determined to have a learning disability. In examining the results, there did not seem to be any direct link between the type of misconception formed and the learning deficit of the child. It seemed more likely that students formed their concepts the way students usually do, but the various disabilities they exhibited interfered with their learning of more appropriate conceptions. The results of this study will be helpful to science teachers, curriculum planners, or anyone who works with students who have learning disabilities. It is hoped that this will begin to fill a void in the area of learning disabilities research.

  18. Concept mapping as learning tool in problem-oriented learning

    NARCIS (Netherlands)

    Fürstenau, B.; Kneppers, L.; Sánchez, J.; Cañas, A.J.; Novak, J.D.

    2010-01-01

    In two studies we investigated whether concept mapping or summary writing is more effective in supporting students’ learning from authentic problems in the field of business. We interpret concept mapping and summary writing as elaboration tools aiming at helping students to understand new

  19. A Concept Transformation Learning Model for Architectural Design Learning Process

    Science.gov (United States)

    Wu, Yun-Wu; Weng, Kuo-Hua; Young, Li-Ming

    2016-01-01

    Generally, in the foundation course of architectural design, much emphasis is placed on teaching of the basic design skills without focusing on teaching students to apply the basic design concepts in their architectural designs or promoting students' own creativity. Therefore, this study aims to propose a concept transformation learning model to…

  20. Non-disjunction of chromosome 18

    DEFF Research Database (Denmark)

    Bugge, M; Collins, A; Petersen, M B

    1998-01-01

    A sample of 100 trisomy 18 conceptuses analysed separately and together with a published sample of 61 conceptuses confirms that an error in maternal meiosis II (MII) is the most frequent cause of non-disjunction for chromosome 18. This is unlike all other human trisomies that have been studied......, which show a higher frequency in maternal meiosis I (MI). Maternal MI trisomy 18 shows a low frequency of recombination in proximal p and medial q, but not the reduction in proximal q observed in chromosome 21 MI non-disjunction. Maternal MII non-disjunction does not fit the entanglement model...... that predicts increased recombination, especially near the centromere. Whereas recent data on MII trisomy 21 show the predicted increase in recombination proximally, maternal MII trisomy 18 has non-significantly reduced recombination. Therefore, chromosome-specific factors must complicate the simple model...

  1. Gestalt Reasoning with Conjunctions and Disjunctions.

    Science.gov (United States)

    Dumitru, Magda L; Joergensen, Gitte H

    2016-01-01

    Reasoning, solving mathematical equations, or planning written and spoken sentences all must factor in stimuli perceptual properties. Indeed, thinking processes are inspired by and subsequently fitted to concrete objects and situations. It is therefore reasonable to expect that the mental representations evoked when people solve these seemingly abstract tasks should interact with the properties of the manipulated stimuli. Here, we investigated the mental representations evoked by conjunction and disjunction expressions in language-picture matching tasks. We hypothesised that, if these representations have been derived using key Gestalt principles, reasoners should use perceptual compatibility to gauge the goodness of fit between conjunction/disjunction descriptions (e.g., the purple and/ or the green) and corresponding binary visual displays. Indeed, the results of three experimental studies demonstrate that reasoners associate conjunction descriptions with perceptually-dependent stimuli and disjunction descriptions with perceptually-independent stimuli, where visual dependency status follows the key Gestalt principles of common fate, proximity, and similarity.

  2. E-Learning Concepts in Higher Education

    DEFF Research Database (Denmark)

    Sorensen, Elsebeth Korsgaard; Mathiasen, Helle; Dalsgaard, Christian

    The main aim of the symposium is to investigate, at both a theoretical and practical level, the quality and sustainability of a variety of models and key concepts of how communication and collaborative e-learning communities may be successfully developed, implemented and supported in higher educa...... education contexts....

  3. Learning drifting concepts with neural networks

    NARCIS (Netherlands)

    Biehl, Michael; Schwarze, Holm

    1993-01-01

    The learning of time-dependent concepts with a neural network is studied analytically and numerically. The linearly separable target rule is represented by an N-vector, whose time dependence is modelled by a random or deterministic drift process. A single-layer network is trained online using

  4. Lifelong learning: Established concepts and evolving values.

    Science.gov (United States)

    Talati, Jamsheer Jehangir

    2014-03-01

    To summarise the concepts critical for understanding the content and value of lifelong learning (LL). Ideas generated by personal experience were combined with those of philosophers, social scientists, educational institutions, governments and UNESCO, to facilitate an understanding of the importance of the basic concepts of LL. Autopoietic, continuous, self-determined, informal, vicarious, biographical, lifelong reflexive learning, from and for society, when supported by self-chosen formal courses, can build capacities and portable skills that allow useful responses to challenges and society's new structures of governance. The need for LL is driven by challenges. LL flows continuously in pursuit of one agenda, which could either be citizenship, as is conventional, or as this article proposes, health. LL cannot be wholly centred on vocation. Continuous medical education and continuous professional development, important in their own right, cannot supply all that is needed. LL aids society with its learning, and it requires an awareness of the environment and structures of society. It is heavily vicarious, draws on formal learning and relies for effectiveness on reflection, self-assessment and personal shaping of views of the world from different perspectives. Health is critical to rational thought and peace, and determines society's capacity to govern itself, and improve its health. LL should be reshaped to focus on health not citizenship. Therefore, embedding learning in society and environment is critical. Each urologist must develop an understanding of the numerous concepts in LL, of which 'biographicisation' is the seed that will promote innovative strategies.

  5. Learning concepts of cinenurducation: an integrative review.

    Science.gov (United States)

    Oh, Jina; Kang, Jeongae; De Gagne, Jennie C

    2012-11-01

    Cinenurducation is the use of films in both didactic and clinical nursing education. Although films are already used as instructional aids in nursing education, few studies have been made that demonstrate the learning concepts that can be attributed to this particular teaching strategy. The purpose of this paper is to describe the learning concepts of cinenurducation and its conceptual metaphor based on a review of literature. The databases CINAHL, MEDLINE, PsychINFO, ERIC, EBSCO, ProQuest Library Journal, and Scopus databases were searched for articles. Fifteen peer-reviewed articles were selected through title and abstract screening from "films in nursing" related articles found in internationally published articles in English from the past 20 years. Four common concepts emerged that relate to cinenurducation: (a) student-centered, (b) experiential, (c) reflective, and (d) problem-solving learning. Current literature corroborates cinenurducation as an effective teaching strategy with its learning activities in nursing education. Future studies may include instructional guides of sample films that could be practically used in various domains to teach nursing competencies, as well as in the development of evaluation criteria and standards to assess students' learning outcomes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Domination versus disjunctive domination in graphs | Henning ...

    African Journals Online (AJOL)

    Domination versus disjunctive domination in graphs. Michael A Henning, Sinclair A Marcon. Abstract. A dominating set in a graph G is a set S of vertices of G such that every vertex not in S is adjacent to a vertex of S. The domination number of G is the minimum cardinality of a dominating set of G. For a positive integer b, ...

  7. The negations of conjunctions, conditionals, and disjunctions.

    Science.gov (United States)

    Khemlani, Sangeet; Orenes, Isabel; Johnson-Laird, P N

    2014-09-01

    How do reasoners understand and formulate denials of compound assertions, such as conjunctions and disjunctions? A theory based on mental models postulates that individuals enumerate models of the various possibilities consistent with the assertions. It therefore predicts a novel interaction: in affirmations, conjunctions, A and B, which refer to one possibility, should be easier to understand than disjunctions, A or B, which refer to more than one possibility; in denials, conjunctions, not(A and B), which refer to more than one possibility, should be harder to understand than disjunctions, not(A or B), which do not. Conditionals are ambiguous and they should be of intermediate difficulty. Experiment 1 corroborated this trend with a task in which the participants selected which possibilities were consistent with assertions, such as: Bob denied that he wore a yellow shirt and he wore blue pants on Tuesday. Experiment 2 likewise showed that participants' own formulations of verbal denials yielded the same trend in which denials of conjunctions were harder than denials of conditionals, which in turn were harder than denials of disjunctions. Published by Elsevier B.V.

  8. Learning of Alignment Rules between Concept Hierarchies

    Science.gov (United States)

    Ichise, Ryutaro; Takeda, Hideaki; Honiden, Shinichi

    With the rapid advances of information technology, we are acquiring much information than ever before. As a result, we need tools for organizing this data. Concept hierarchies such as ontologies and information categorizations are powerful and convenient methods for accomplishing this goal, which have gained wide spread acceptance. Although each concept hierarchy is useful, it is difficult to employ multiple concept hierarchies at the same time because it is hard to align their conceptual structures. This paper proposes a rule learning method that inputs information from a source concept hierarchy and finds suitable location for them in a target hierarchy. The key idea is to find the most similar categories in each hierarchy, where similarity is measured by the κ(kappa) statistic that counts instances belonging to both categories. In order to evaluate our method, we conducted experiments using two internet directories: Yahoo! and LYCOS. We map information instances from the source directory into the target directory, and show that our learned rules agree with a human-generated assignment 76% of the time.

  9. Concept formation knowledge and experience in unsupervised learning

    CERN Document Server

    Fisher, Douglas H; Langley, Pat

    1991-01-01

    Concept Formation: Knowledge and Experience in Unsupervised Learning presents the interdisciplinary interaction between machine learning and cognitive psychology on unsupervised incremental methods. This book focuses on measures of similarity, strategies for robust incremental learning, and the psychological consistency of various approaches.Organized into three parts encompassing 15 chapters, this book begins with an overview of inductive concept learning in machine learning and psychology, with emphasis on issues that distinguish concept formation from more prevalent supervised methods and f

  10. Concept Maps for Evaluating Learning of Sustainable Development

    Science.gov (United States)

    Shallcross, David C.

    2016-01-01

    Concept maps are used to assess student and cohort learning of sustainable development. The concept maps of 732 first-year engineering students were individually analyzed to detect patterns of learning and areas that were not well understood. Students were given 20 minutes each to prepare a concept map of at least 20 concepts using paper and pen.…

  11. Generalized Disjunctions in (Infinitary) Structural Consequence Relations

    Czech Academy of Sciences Publication Activity Database

    Cintula, Petr; Noguera, C.

    2012-01-01

    Roč. 18, č. 3 (2012), s. 442-443 ISSN 1079-8986. [Logic Colloquium 2011. 11.07.2011-16.07.2011, Barcelona] R&D Projects: GA MŠk(CZ) 1M0545 Institutional research plan: CEZ:AV0Z10300504 Keywords : Abstract Algebraic Logic * Generalized disjunction * Proof by cases properties * Consequence relations Subject RIV: BA - General Mathematics http://www.math.ucla.edu/~asl/bsl/1803- toc .htm

  12. Concept mapping enhances learning of biochemistry.

    Science.gov (United States)

    Surapaneni, Krishna M; Tekian, Ara

    2013-03-05

    Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, pbiochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.

  13. Concept mapping enhances learning of biochemistry.

    Science.gov (United States)

    Surapaneni, KrishnaM; Tekian, Ara

    2013-01-01

    Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, pbiochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.

  14. How Effective Is Example Generation for Learning Declarative Concepts?

    Science.gov (United States)

    Rawson, Katherine A.; Dunlosky, John

    2016-01-01

    Declarative concepts (i.e., key terms and corresponding definitions for abstract concepts) represent foundational knowledge that students learn in many content domains. Thus, investigating techniques to enhance concept learning is of critical importance. Various theoretical accounts support the expectation that example generation will serve this…

  15. Conception of Learning Outcomes in the Bloom's Taxonomy Affective Domain

    Science.gov (United States)

    Savickiene, Izabela

    2010-01-01

    The article raises a problematic issue regarding an insufficient base of the conception of learning outcomes in the Bloom's taxonomy affective domain. The search for solutions introduces the conception of teaching and learning in the affective domain as well as presents validity criteria of learning outcomes in the affective domain. The…

  16. Width, Length, and Height Conceptions of Students with Learning Disabilities

    Science.gov (United States)

    Güven, N. Dilsad; Argün, Ziya

    2018-01-01

    Teaching responsive to the needs of students with learning disabilities (LD) can be provided through understanding students' conceptions and their ways of learning. The current research, as a case study based on qualitative design, aimed to investigate the conceptions of students with learning disabilities with regard to the different…

  17. Hoare Logic for Disjunctive Information Flow

    DEFF Research Database (Denmark)

    Nielson, Hanne Riis; Nielson, Flemming; Li, Ximeng

    2015-01-01

    Information flow control extends access control by not only regulating who is allowed to access what data but also the subsequent use of the data accessed. Applications within communication networks require such information flow control to depend on the actual data. For a concurrent language...... with synchronous communication and separate data domains we develop a Hoare logic for enforcing disjunctive information flow policies. We establish the soundness of the Hoare logic with respect to an operational semantics and illustrate the development on a running example....

  18. Design of Learning Objects for Concept Learning: Effects of Multimedia Learning Principles and an Instructional Approach

    Science.gov (United States)

    Chiu, Thomas K. F.; Churchill, Daniel

    2016-01-01

    Literature suggests using multimedia learning principles in the design of instructional material. However, these principles may not be sufficient for the design of learning objects for concept learning in mathematics. This paper reports on an experimental study that investigated the effects of an instructional approach, which includes two teaching…

  19. Concept Mapping Using Cmap Tools to Enhance Meaningful Learning

    Science.gov (United States)

    Cañas, Alberto J.; Novak, Joseph D.

    Concept maps are graphical tools that have been used in all facets of education and training for organizing and representing knowledge. When learners build concept maps, meaningful learning is facilitated. Computer-based concept mapping software such as CmapTools have further extended the use of concept mapping and greatly enhanced the potential of the tool, facilitating the implementation of a concept map-centered learning environment. In this chapter, we briefly present concept mapping and its theoretical foundation, and illustrate how it can lead to an improved learning environment when it is combined with CmapTools and the Internet. We present the nationwide “Proyecto Conéctate al Conocimiento” in Panama as an example of how concept mapping, together with technology, can be adopted by hundreds of schools as a means to enhance meaningful learning.

  20. Learning Situations in Nursing Education: A Concept Analysis.

    Science.gov (United States)

    Shahsavari, Hooman; Zare, Zahra; Parsa-Yekta, Zohreh; Griffiths, Pauline; Vaismoradi, Mojtaba

    2018-02-01

    The nursing student requires opportunities to learn within authentic contexts so as to enable safe and competent practice. One strategy to facilitate such learning is the creation of learning situations. A lack of studies on the learning situation in nursing and other health care fields has resulted in insufficient knowledge of the characteristics of the learning situation, its antecedents, and consequences. Nurse educators need to have comprehensive and practical knowledge of the definition and characteristics of the learning situation so as to enable their students to achieve enhanced learning outcomes. The aim of this study was to clarify the concept of the learning situation as it relates to the education of nurses and improve understanding of its characteristics, antecedents, and consequences. The Bonis method of concept analysis, as derived from the Rodgers' evolutionary method, provided the framework for analysis. Data collection and analysis were undertaken in two phases: "interdisciplinary" and "intra-disciplinary." The data source was a search of the literature, encompassing nursing and allied health care professions, published from 1975 to 2016. No agreement on the conceptual phenomenon was discovered in the international literature. The concept of a learning situation was used generally in two ways and thus classified into the themes of: "formal/informal learning situation" and "biologic/nonbiologic learning situation." Antecedents to the creation of a learning situation included personal and environmental factors. The characteristics of a learning situation were described in terms of being complex, dynamic, and offering potential and effective learning opportunities. Consequences of the learning situation included enhancement of the students' learning, professionalization, and socialization into the professional role. The nurse educator, when considering the application of the concept of a learning situation in their educational planning, must

  1. Non-disjunction of chromosome 13

    DEFF Research Database (Denmark)

    Bugge, Merete; Collins, Andrew; Hertz, Jens Michael

    2007-01-01

    We performed a molecular study with 21 microsatellites on a sample of 82 trisomy 13 conceptuses, the largest number of cases studied to date. The parental origin was determined in every case and in 89% the extra chromosome 13 was of maternal origin with an almost equal number of maternal MI and MII...... recombination in both maternal MI and MII errors and the former is associated with a significant number of tetrads (33%) that are nullichiasmate, which do not appear to be a feature of normal chromosome 13 meiosis. This study supports the evidence for subtle chromosome-specific influences on the mechanisms...... that determine non-disjunction of human chromosomes, consistent with the diversity of findings for other trisomies. Udgivelsesdato: 2007-Aug-15...

  2. Teaching and Learning the Concept of Chemical Bonding

    Science.gov (United States)

    Levy Nahum, Tami; Mamlok-Naaman, Rachel; Hofstein, Avi; Taber, Keith S.

    2010-01-01

    Chemical bonding is one of the key and basic concepts in chemistry. The learning of many of the concepts taught in chemistry, in both secondary schools as well as in the colleges, is dependent upon understanding fundamental ideas related to chemical bonding. Nevertheless, the concept is perceived by teachers, as well as by learners, as difficult,…

  3. Analysis of Learning Conceptions Based on Three Modules.

    Science.gov (United States)

    Haygood, E. Langston; Iran-Nejad, Asghar

    Three learning modules are described and investigated as they reflect different students' conceptions of and approaches to learning. The Schoolwork Module (SWM) focuses on task performance and involves a passive, incremental, piecemeal, and rote memory method of learning, parallel to what might be implied by the Information Processing model of…

  4. Concept mapping learning strategy to enhance students' mathematical connection ability

    Science.gov (United States)

    Hafiz, M.; Kadir, Fatra, Maifalinda

    2017-05-01

    The concept mapping learning strategy in teaching and learning mathematics has been investigated by numerous researchers. However, there are still less researchers who have scrutinized about the roles of map concept which is connected to the mathematical connection ability. Being well understood on map concept, it may help students to have ability to correlate one concept to other concept in order that the student can solve mathematical problems faced. The objective of this research was to describe the student's mathematical connection ability and to analyze the effect of using concept mapping learning strategy to the students' mathematical connection ability. This research was conducted at senior high school in Jakarta. The method used a quasi-experimental with randomized control group design with the total number was 72 students as the sample. Data obtained through using test in the post-test after giving the treatment. The results of the research are: 1) Students' mathematical connection ability has reached the good enough level category; 2) Students' mathematical connection ability who had taught with concept mapping learning strategy is higher than who had taught with conventional learning strategy. Based on the results above, it can be concluded that concept mapping learning strategycould enhance the students' mathematical connection ability, especially in trigonometry.

  5. Statistical Learning Theory: Models, Concepts, and Results

    OpenAIRE

    von Luxburg, Ulrike; Schoelkopf, Bernhard

    2008-01-01

    Statistical learning theory provides the theoretical basis for many of today's machine learning algorithms. In this article we attempt to give a gentle, non-technical overview over the key ideas and insights of statistical learning theory. We target at a broad audience, not necessarily machine learning researchers. This paper can serve as a starting point for people who want to get an overview on the field before diving into technical details.

  6. Deep Learning through Concept-Based Inquiry

    Science.gov (United States)

    Donham, Jean

    2010-01-01

    Learning in the library should present opportunities to enrich student learning activities to address concerns of interest and cognitive complexity, but these must be tasks that call for in-depth analysis--not merely gathering facts. Library learning experiences need to demand enough of students to keep them interested and also need to be…

  7. The clinical learning environment in nursing education: a concept analysis.

    Science.gov (United States)

    Flott, Elizabeth A; Linden, Lois

    2016-03-01

    The aim of this study was to report an analysis of the clinical learning environment concept. Nursing students are evaluated in clinical learning environments where skills and knowledge are applied to patient care. These environments affect achievement of learning outcomes, and have an impact on preparation for practice and student satisfaction with the nursing profession. Providing clarity of this concept for nursing education will assist in identifying antecedents, attributes and consequences affecting student transition to practice. The clinical learning environment was investigated using Walker and Avant's concept analysis method. A literature search was conducted using WorldCat, MEDLINE and CINAHL databases using the keywords clinical learning environment, clinical environment and clinical education. Articles reviewed were written in English and published in peer-reviewed journals between 1995-2014. All data were analysed for recurring themes and terms to determine possible antecedents, attributes and consequences of this concept. The clinical learning environment contains four attribute characteristics affecting student learning experiences. These include: (1) the physical space; (2) psychosocial and interaction factors; (3) the organizational culture and (4) teaching and learning components. These attributes often determine achievement of learning outcomes and student self-confidence. With better understanding of attributes comprising the clinical learning environment, nursing education programmes and healthcare agencies can collaborate to create meaningful clinical experiences and enhance student preparation for the professional nurse role. © 2015 John Wiley & Sons Ltd.

  8. ANALYSIS LEARNING MODEL OF DISCOVERY AND UNDERSTANDING THE CONCEPT PRELIMINARY TO PHYSICS LEARNING OUTCOMES SMA

    Directory of Open Access Journals (Sweden)

    Sri Rosepda Sebayang

    2015-12-01

    Full Text Available This study aims: 1 to determine whether the student learning outcomes using discovery learning is better than conventional learning 2 To determine whether the learning outcomes of students who have a high initial concept understanding better then of low initial concept understanding, and 3 to determine the effect of interaction discovery learning and understanding of the initial concept of the learning outcomes of students. The samples in this study was taken by cluster random sampling two classes where class X PIA 3 as a class experiment with applying discovery learning and class X PIA 2 as a control class by applying conventional learning. The instrument used in this study is a test of learning outcomes in the form of multiple-choice comprehension test initial concept description form. The results of research are: 1 learning outcomes of students who were taught with discovery learning is better than the learning outcomes of students who are taught by conventional learning, 2 student learning outcomes with high initial conceptual understanding better than the learning outcomes of students with low initial conceptual understanding, and 3 there was no interaction between discovery learning and understanding of initial concepts for the student learning outcomes.

  9. Difficulties of learning probability concepts, the reasons why these concepts cannot be learned and suggestions for solution

    Directory of Open Access Journals (Sweden)

    Dilek Sezgin MEMNUN

    2008-06-01

    Full Text Available Probability holds the first place among the subjects that both teachers and students have difficulty in handling. Although probability has an important role in many professions and a great many decisions we make for our daily lives, the understanding of the probability concepts is not an easy ability to gain for many students. Most of the students develop perception about lots of probability concepts and they have difficulty finding a reason for probability events. Thus, in the present study, the difficulties faced while learning probability concepts and the reasons why these concepts cannot be learned well are investigated, these reasons are tried to be put forward, and some suggestions for solutions regarding these concepts are presented. In this study, cross-hatching model was used. National and international studies on the subject of probability are investigated, the reasons why these concepts cannot be learned were categorized in the light of findings obtained, and the reasons why these concepts cannot be learned and taught are tried to be discovered. The categorization was displayed with Ishikawa diagram. In the diagram, the reasons why these concepts cannot be learned were noted as six categories. These categories were age, the insufficiency of advanced information, the deficiency of argumentation ability, teacher, error in concept, and students’ negative attitudes.

  10. Introducing Machine Learning Concepts with WEKA.

    Science.gov (United States)

    Smith, Tony C; Frank, Eibe

    2016-01-01

    This chapter presents an introduction to data mining with machine learning. It gives an overview of various types of machine learning, along with some examples. It explains how to download, install, and run the WEKA data mining toolkit on a simple data set, then proceeds to explain how one might approach a bioinformatics problem. Finally, it includes a brief summary of machine learning algorithms for other types of data mining problems, and provides suggestions about where to find additional information.

  11. Developing user-centered concepts for language learning video games

    OpenAIRE

    Poels, Yorick; Annema, Jan Henk; Zaman, Bieke; Cornillie, Frederik

    2012-01-01

    This paper will report on an ongoing project which aims to develop video games for language learning through a user-centered and evidence-based approach. Therefore, codesign sessions were held with adolescents between 14 and 16 years old, in order to gain insight into their preferences for educational games for language learning. During these sessions, 11 concepts for video games were developed. We noticed a divide between the concepts for games that were oriented towa...

  12. Lifelong Learning: Concept, Policy, Instruments and Implementation

    Directory of Open Access Journals (Sweden)

    Metin TOPRAK

    2012-01-01

    Full Text Available European Union has started an education & training initiative under the umbrella of lifelong learning to achieve the 2020 Agenda targets. Th is initiative has nearly half of a century time horizon, and all designed policies and measures have been consolidated under this initiative. Turkish Education authorities have been monitoring this European eff ort closely and made important legal and institutional regulations in recent couple of years. Th is study examines the primary aspects of lifelong learning in detail: conceptual and philosophical background; recognition strategies; the place of formal, non-formal and informal learning in the lifelong learning approach; financing and measurement ways of lifelong learning; and variety of perspectives of international institutions. In addition, education and training strategy of the Europe’s 2020 vision of lifelong learning is also evaluated in detail. Th e human resources vision of the Europe considers education, occupation and economic activities together to allow authorities to plan the future of the European societies. Th e updating mechanisms of this approach are designed both domestically at national and internationally at European levels. It is concluded, in this study, that the lifelong learning policy and implementation of the Europe should be taken as benchmark.

  13. Factors Related to Students' Learning of Biomechanics Concepts

    Science.gov (United States)

    Hsieh, ChengTu; Smith, Jeremy D.; Bohne, Michael; Knudson, Duane

    2012-01-01

    The purpose of this study was to replicate and expand a previous study to identify the factors that affect students' learning of biomechanical concepts. Students were recruited from three universities (N = 149) located in the central and western regions of the United States. Data from 142 students completing the Biomechanics Concept Inventory…

  14. Using enriched skeleton concept mapping to support meaningful learning

    NARCIS (Netherlands)

    Maree, A.J.; Bruggen, van J.M.; Jochems, W.M.G.; Cañas, A.J.; Novak, J.D.; Vanhear, J.

    2012-01-01

    Abstract. There has been significant interest among researchers in the instructional use of concept maps and collaboration scripts. Some studies focus on students' collaboration on concept mapping tasks; others focus on scripts to structure learning tasks and guide interactions. Little is known

  15. Students' conceptions of learning: using the ASSIST instrument ...

    African Journals Online (AJOL)

    The focus of the study has been on students' conceptions of learning in three South African Technikons amidst the changing circumstances of teaching and learning from subject-based to outcomes-based education. First-year students face a particular measure of unpreparedness as they graduate from a conventional high ...

  16. Learning of science concepts within a traditional socio-cultural ...

    African Journals Online (AJOL)

    The learning of science concepts within a traditional socio-cultural environment were investigated by looking at: 1) the nature of \\"cognitive border crossing\\" exhibited by the students from the traditional to the scientific worldview, and 2) whether or not three learning theories / hypotheses: border crossing, collaterality, and ...

  17. Learning Essential Terms and Concepts in Statistics and Accounting

    Science.gov (United States)

    Peters, Pam; Smith, Adam; Middledorp, Jenny; Karpin, Anne; Sin, Samantha; Kilgore, Alan

    2014-01-01

    This paper describes a terminological approach to the teaching and learning of fundamental concepts in foundation tertiary units in Statistics and Accounting, using an online dictionary-style resource (TermFinder) with customised "termbanks" for each discipline. Designed for independent learning, the termbanks support inquiring students…

  18. Competencies in Organizational E-Learning: Concepts and Tools

    Science.gov (United States)

    Sicilia, Miguel-Angel, Ed.

    2007-01-01

    "Competencies in Organizational E-Learning: Concepts and Tools" provides a comprehensive view of the way competencies can be used to drive organizational e-learning, including the main conceptual elements, competency gap analysis, advanced related computing topics, the application of semantic Web technologies, and the integration of competencies…

  19. Applying Andragogical Concepts in Creating a Sustainable Lifelong Learning Society

    Science.gov (United States)

    Charungkaittikul, Suwithida; Henschke, John A.

    2017-01-01

    Today, the world is changing, re-establishing the role of education to have a developed society. This article aims to explore the practical application of Andragogy as a key element for creating a sustainable lifelong learning society, to propose strategies for developing a lifelong learning society using andragogical concepts, to enhance…

  20. Testing a Conception of How School Leadership Influences Student Learning

    Science.gov (United States)

    Leithwood, Kenneth; Patten, Sarah; Jantzi, Doris

    2010-01-01

    Purpose: This article describes and reports the results of testing a new conception of how leadership influences student learning ("The Four Paths"). Framework: Leadership influence is conceptualized as flowing along four paths (Rational, Emotions, Organizational, and Family) toward student learning. Each path is populated by multiple…

  1. Grounded understanding of abstract concepts: The case of STEM learning.

    Science.gov (United States)

    Hayes, Justin C; Kraemer, David J M

    2017-01-01

    Characterizing the neural implementation of abstract conceptual representations has long been a contentious topic in cognitive science. At the heart of the debate is whether the "sensorimotor" machinery of the brain plays a central role in representing concepts, or whether the involvement of these perceptual and motor regions is merely peripheral or epiphenomenal. The domain of science, technology, engineering, and mathematics (STEM) learning provides an important proving ground for sensorimotor (or grounded) theories of cognition, as concepts in science and engineering courses are often taught through laboratory-based and other hands-on methodologies. In this review of the literature, we examine evidence suggesting that sensorimotor processes strengthen learning associated with the abstract concepts central to STEM pedagogy. After considering how contemporary theories have defined abstraction in the context of semantic knowledge, we propose our own explanation for how body-centered information, as computed in sensorimotor brain regions and visuomotor association cortex, can form a useful foundation upon which to build an understanding of abstract scientific concepts, such as mechanical force. Drawing from theories in cognitive neuroscience, we then explore models elucidating the neural mechanisms involved in grounding intangible concepts, including Hebbian learning, predictive coding, and neuronal recycling. Empirical data on STEM learning through hands-on instruction are considered in light of these neural models. We conclude the review by proposing three distinct ways in which the field of cognitive neuroscience can contribute to STEM learning by bolstering our understanding of how the brain instantiates abstract concepts in an embodied fashion.

  2. Learning concept mappings from instance similarity

    NARCIS (Netherlands)

    Wang, S.; Englebienne, G.; Schlobach, S.

    2008-01-01

    Finding mappings between compatible ontologies is an important but difficult open problem. Instance-based methods for solving this problem have the advantage of focusing on the most active parts of the ontologies and reflect concept semantics as they are actually being used. However such methods

  3. Integrating collaborative concept mapping in case based learning

    Directory of Open Access Journals (Sweden)

    Alfredo Tifi

    2013-03-01

    Full Text Available Different significance of collaborative concept mapping and collaborative argumentation in Case Based Learning are discussed and compared in the different perspectives of answering focus questions, of fostering reflective thinking skills and in managing uncertainty in problem solving in a scaffolded environment. Marked differences are pointed out between the way concepts are used in constructing concept maps and the way meanings are adopted in case based learning through guided argumentation activities. Shared concept maps should be given different scopes, as for example a as an advance organizer in preparing a background system of concepts that will undergo transformation while accompanying the inquiry activities on case studies or problems; b together with narratives, to enhance awareness of the situated epistemologies that are being entailed in choosing certain concepts during more complex case studies, and c after-learning construction of a holistic vision of the whole domain by means of the most inclusive concepts, while scaffoldedcollaborative writing of narratives and arguments in describing-treating cases could better serve as a source of situated-inspired tools to create-refine meanings for particular concepts.

  4. Joint Concept Correlation and Feature-Concept Relevance Learning for Multilabel Classification.

    Science.gov (United States)

    Zhao, Xiaowei; Ma, Zhigang; Li, Zhi; Li, Zhihui

    2018-02-01

    In recent years, multilabel classification has attracted significant attention in multimedia annotation. However, most of the multilabel classification methods focus only on the inherent correlations existing among multiple labels and concepts and ignore the relevance between features and the target concepts. To obtain more robust multilabel classification results, we propose a new multilabel classification method aiming to capture the correlations among multiple concepts by leveraging hypergraph that is proved to be beneficial for relational learning. Moreover, we consider mining feature-concept relevance, which is often overlooked by many multilabel learning algorithms. To better show the feature-concept relevance, we impose a sparsity constraint on the proposed method. We compare the proposed method with several other multilabel classification methods and evaluate the classification performance by mean average precision on several data sets. The experimental results show that the proposed method outperforms the state-of-the-art methods.

  5. Incremental learning of concept drift in nonstationary environments.

    Science.gov (United States)

    Elwell, Ryan; Polikar, Robi

    2011-10-01

    We introduce an ensemble of classifiers-based approach for incremental learning of concept drift, characterized by nonstationary environments (NSEs), where the underlying data distributions change over time. The proposed algorithm, named Learn(++). NSE, learns from consecutive batches of data without making any assumptions on the nature or rate of drift; it can learn from such environments that experience constant or variable rate of drift, addition or deletion of concept classes, as well as cyclical drift. The algorithm learns incrementally, as other members of the Learn(++) family of algorithms, that is, without requiring access to previously seen data. Learn(++). NSE trains one new classifier for each batch of data it receives, and combines these classifiers using a dynamically weighted majority voting. The novelty of the approach is in determining the voting weights, based on each classifier's time-adjusted accuracy on current and past environments. This approach allows the algorithm to recognize, and act accordingly, to the changes in underlying data distributions, as well as to a possible reoccurrence of an earlier distribution. We evaluate the algorithm on several synthetic datasets designed to simulate a variety of nonstationary environments, as well as a real-world weather prediction dataset. Comparisons with several other approaches are also included. Results indicate that Learn(++). NSE can track the changing environments very closely, regardless of the type of concept drift. To allow future use, comparison and benchmarking by interested researchers, we also release our data used in this paper. © 2011 IEEE

  6. Active learning: a step towards automating medical concept extraction.

    Science.gov (United States)

    Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony

    2016-03-01

    This paper presents an automatic, active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort and (2) the robustness of incremental active learning framework across different selection criteria and data sets are determined. The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional random fields as the supervised method, and least confidence and information density as 2 selection criteria for active learning framework were used. The effect of incremental learning vs standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. The following 2 clinical data sets were used for evaluation: the Informatics for Integrating Biology and the Bedside/Veteran Affairs (i2b2/VA) 2010 natural language processing challenge and the Shared Annotated Resources/Conference and Labs of the Evaluation Forum (ShARe/CLEF) 2013 eHealth Evaluation Lab. The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared with the random sampling baseline, the saving is at least doubled. Incremental active learning is a promising approach for building effective and robust medical concept extraction models while significantly reducing the burden of manual annotation. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. THE CONCEPT OF LANGUAGE LEARNING IN BEHAVIORISM PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Khoiru Rakhman Abidin

    2016-07-01

    Full Text Available The aims of the study are (1 the concepts of language learning in behaviorism perspective, (2 the relation between language and learning in behaviorism perspective, (3 the influence of behaviorism in language learning. This is a descriptive qualitative study. The results showed that (1 behaviorism theories of languages also give good contribution in language learning process that describes a child can learn language from their environments, (2 behaviorism perspective defines as change of behavior through experience, it means human learn something from their environments, (3 human uses language for communication in the world and he also spreads his culture with his language so  human gets  knowledge of language through learning.

  8. Active learning reduces annotation time for clinical concept extraction.

    Science.gov (United States)

    Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony

    2017-10-01

    To investigate: (1) the annotation time savings by various active learning query strategies compared to supervised learning and a random sampling baseline, and (2) the benefits of active learning-assisted pre-annotations in accelerating the manual annotation process compared to de novo annotation. There are 73 and 120 discharge summary reports provided by Beth Israel institute in the train and test sets of the concept extraction task in the i2b2/VA 2010 challenge, respectively. The 73 reports were used in user study experiments for manual annotation. First, all sequences within the 73 reports were manually annotated from scratch. Next, active learning models were built to generate pre-annotations for the sequences selected by a query strategy. The annotation/reviewing time per sequence was recorded. The 120 test reports were used to measure the effectiveness of the active learning models. When annotating from scratch, active learning reduced the annotation time up to 35% and 28% compared to a fully supervised approach and a random sampling baseline, respectively. Reviewing active learning-assisted pre-annotations resulted in 20% further reduction of the annotation time when compared to de novo annotation. The number of concepts that require manual annotation is a good indicator of the annotation time for various active learning approaches as demonstrated by high correlation between time rate and concept annotation rate. Active learning has a key role in reducing the time required to manually annotate domain concepts from clinical free text, either when annotating from scratch or reviewing active learning-assisted pre-annotations. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A dynamic learning concept in early years’ education

    DEFF Research Database (Denmark)

    Broström, Stig

    2017-01-01

    -historical activity (play) theory, the author deduces four generally accepted play criteria that form the basis for the construction of a dynamic and play-based learning concept that has the three following cornerstones as focal points: (1) learning happens in activities where the child is an active participant...... and interacts and communicates with other people; (2) meaningful activities pave the way for children’s learning; these are activities where the child’s motive aligns with the goal of the activity; and (3) learning is seen as a productive and creative activity characterised by imagination....

  10. The Analysis of High School Students' Conceptions of Learning in Different Domains

    Science.gov (United States)

    Sadi, Özlem

    2015-01-01

    The purpose of this study is to investigate whether or not conceptions of learning diverge in different science domains by identifying high school students' conceptions of learning in physics, chemistry and biology. The Conceptions of Learning Science (COLS) questionnaire was adapted for physics (Conceptions of Learning Physics, COLP), chemistry…

  11. Concept-Based Learning in Clinical Experiences: Bringing Theory to Clinical Education for Deep Learning.

    Science.gov (United States)

    Nielsen, Ann

    2016-07-01

    Concept-based learning is used increasingly in nursing education to support the organization, transfer, and retention of knowledge. Concept-based learning activities (CBLAs) have been used in clinical education to explore key aspects of the patient situation and principles of nursing care, without responsibility for total patient care. The nature of best practices in teaching and the resultant learning are not well understood. The purpose of this multiple-case study research was to explore and describe concept-based learning in the context of clinical education in inpatient settings. Four clinical groups (each a case) were observed while they used CBLAs in the clinical setting. Major findings include that concept-based learning fosters deep learning, connection of theory with practice, and clinical judgment. Strategies used to support learning, major teaching-learning foci, and preconditions for concept-based teaching and learning will be described. Concept-based learning is promising to support integration of theory with practice and clinical judgment through application experiences with patients. [J Nurs Educ. 2016;55(7):365-371.]. Copyright 2016, SLACK Incorporated.

  12. Uncertainty and the difficulty of thinking through disjunctions.

    Science.gov (United States)

    Shafir, E

    1994-01-01

    This paper considers the relationship between decision under uncertainty and thinking through disjunctions. Decision situations that lead to violations of Savage's sure-thing principle are examined, and a variety of simple reasoning problems that often generate confusion and error are reviewed. The common difficulty is attributed to people's reluctance to think through disjunctions. Instead of hypothetically traveling through the branches of a decision tree, it is suggested, people suspend judgement and remain at the node. This interpretation is applied to instances of decision making, information search, deductive and inductive reasoning, probabilistic judgement, games, puzzles and paradoxes. Some implications of the reluctance to think through disjunctions, as well as potential corrective procedures, are discussed.

  13. Freed to Learn: Five Fundamental Concepts of Democratic Education

    Directory of Open Access Journals (Sweden)

    Leo J. FAHEY

    2008-07-01

    Full Text Available Children are natural learners each with distinct interests, abilities and rates of cognitive, emotional and social growth. Democratic Education institutionalizes five key concepts to free these natural instincts and individual differences to drive community self-governance and individual self-directed learning within a formal schooling environment. This paper summarizes the five concepts fundamental to Democratic Education and suggests how they can be applied within a school setting.

  14. Investigating Students’ Development of Learning Integer Concept and Integer Addition

    Directory of Open Access Journals (Sweden)

    Nenden Octavarulia Shanty

    2016-09-01

    Full Text Available This research aimed at investigating students’ development of learning integer concept and integer addition. The investigation was based on analyzing students’ works in solving the given mathematical problems in each instructional activity designed based on Realistic Mathematics Education (RME levels. Design research was chosen to achieve and to contribute in developing a local instruction theory for teaching and learning of integer concept and integer addition. In design research, the Hypothetical Learning Trajectory (HLT plays important role as a design and research instrument. It was designed in the phase of preliminary design and tested to three students of grade six OASIS International School, Ankara – Turkey. The result of the experiments showed that temperature in the thermometer context could stimulate students’ informal knowledge of integer concept. Furthermore, strategies and tools used by the students in comparing and relating two temperatures were gradually be developed into a more formal mathematics. The representation of line inside thermometer which then called the number line could bring the students to the last activity levels, namely rules for adding integer, and became the model for more formal reasoning. Based on these findings, it can be concluded that students’ learning integer concept and integer addition developed through RME levels.Keywords: integer concept, integer addition, Realistic Mathematics Education DOI: http://dx.doi.org/10.22342/jme.7.2.3538.57-72

  15. Towards Concept Understanding relying on Conceptualisation in Constructivist Learning

    DEFF Research Database (Denmark)

    Badie, Farshad

    2017-01-01

    and understandings over their mental structures in the framework of constructivism, and I will clarify my logical [and semantic] conceptions of humans’ concept understandings. This research focuses on philosophy of education and on logics of human learning. It connects with the topics ‘Cognition in Education......, through this constructivism to a pedagogical theory of learning. I will mainly focus on conceptual and epistemological analysis of humans’ conceptualisations based on their own mental objects (schemata). Subsequently, I will propose an analytical specification of humans’ conceptualisations...

  16. Undergraduate Students' Earth Science Learning: Relationships among Conceptions, Approaches, and Learning Self-Efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-01-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…

  17. Non-Formal Learning: Clarification of the Concept and Its Application in Music Learning

    Science.gov (United States)

    Mok, On Nei Annie

    2011-01-01

    The concept of non-formal learning, which falls outside the categories of informal and formal learning, has not been as widely discussed, especially in the music education literature. In order to bridge this gap and to provide supplementary framework to the discussion of informal and formal learning, therefore, this paper will first summarize…

  18. On the Concepts of Usability and Reusability of Learning Objects

    Directory of Open Access Journals (Sweden)

    Miguel-Angel Sicilia

    2003-10-01

    Full Text Available “Reusable learning objects” oriented towards increasing their potential reusability are required to satisfy concerns about their granularity and their independence of concrete contexts of use. Such requirements also entail that the definition of learning object “usability,” and the techniques required to carry out their “usability evaluation” must be substantially different from those commonly used to characterize and evaluate the usability of conventional educational applications. In this article, a specific characterization of the concept of learning object usability is discussed, which places emphasis on “reusability,” the key property of learning objects residing in repositories. The concept of learning object reusability is described as the possibility and adequacy for the object to be usable in prospective educational settings, so that usability and reusability are considered two interrelated – and in many cases conflicting – properties of learning objects. Following the proposed characterization of two characteristics or properties of learning objects, a method to evaluate usability of specific learning objects will be presented.

  19. Per-Sample Multiple Kernel Approach for Visual Concept Learning

    Directory of Open Access Journals (Sweden)

    Ling-Yu Duan

    2010-01-01

    Full Text Available Learning visual concepts from images is an important yet challenging problem in computer vision and multimedia research areas. Multiple kernel learning (MKL methods have shown great advantages in visual concept learning. As a visual concept often exhibits great appearance variance, a canonical MKL approach may not generate satisfactory results when a uniform kernel combination is applied over the input space. In this paper, we propose a per-sample multiple kernel learning (PS-MKL approach to take into account intraclass diversity for improving discrimination. PS-MKL determines sample-wise kernel weights according to kernel functions and training samples. Kernel weights as well as kernel-based classifiers are jointly learned. For efficient learning, PS-MKL employs a sample selection strategy. Extensive experiments are carried out over three benchmarking datasets of different characteristics including Caltech101, WikipediaMM, and Pascal VOC'07. PS-MKL has achieved encouraging performance, comparable to the state of the art, which has outperformed a canonical MKL.

  20. Per-Sample Multiple Kernel Approach for Visual Concept Learning

    Directory of Open Access Journals (Sweden)

    Tian Yonghong

    2010-01-01

    Full Text Available Abstract Learning visual concepts from images is an important yet challenging problem in computer vision and multimedia research areas. Multiple kernel learning (MKL methods have shown great advantages in visual concept learning. As a visual concept often exhibits great appearance variance, a canonical MKL approach may not generate satisfactory results when a uniform kernel combination is applied over the input space. In this paper, we propose a per-sample multiple kernel learning (PS-MKL approach to take into account intraclass diversity for improving discrimination. PS-MKL determines sample-wise kernel weights according to kernel functions and training samples. Kernel weights as well as kernel-based classifiers are jointly learned. For efficient learning, PS-MKL employs a sample selection strategy. Extensive experiments are carried out over three benchmarking datasets of different characteristics including Caltech101, WikipediaMM, and Pascal VOC'07. PS-MKL has achieved encouraging performance, comparable to the state of the art, which has outperformed a canonical MKL.

  1. Conception of comics dedicated to optics learning

    Science.gov (United States)

    Machemy, Jacques; Bousquet, Bruno

    2015-10-01

    Optics' teaching is commonly based on the use of lessons including several mathematical tools. For example, ray tracing can be described through matrix algebra, and interference and polarization can be supported by the use of complex numbers. Thus, the numerous mathematical descriptions included in the optics' lessons represent a real difficulty for students having insufficient skills in mathematics. Moreover, despite of very impressive optical effects one can observe in real life, e.g. rainbows, their description in optics' courses is often considered as too academic and boring, and finally not really exciting. In this context, we have invented a new type of comics dedicated to optics' learning. Based on a dialogue between two imaginary characters, one considered as the young student and the other one as the old teacher, we have chosen to reduce the role of mathematics and to mix realistic and unrealistic elements in the drawing to complete the explanations faster. Starting from reflection and refraction, the Snell's laws then allow for describing natural phenomena such as mirage and rainbow as well as technical points such as light propagation into an optical fiber and the measurement of the refraction index. The first volume presented here will be evaluated during the fall semester 2015 in different high schools and at university through a linked survey and the students will also get access to an online version while the following parts are in preparation.

  2. The induction of non-disjunction by irradiation in mammalian oogenesis and spermatogenesis

    International Nuclear Information System (INIS)

    Hansmann, I.; Probeck, H.D.

    1979-01-01

    Test systems to detect non-disjunction in oogenesis and spermatogenesis are described and the results obtained from a study of radiation effects on non-disjunction presented. It is shown that X-rays may induce non-disjunction in mouse oogenesis and spermatogenesis, thereby increasing the potential risk of aneuploidies among the F1 generation. (C.F.)

  3. Family Concepts in Early Learning and Development Standards

    Science.gov (United States)

    Walsh, Bridget A.; Sanchez, Claudia; Lee, Angela M.; Casillas, Nicole; Hansen, Caitlynn

    2016-01-01

    This exploratory study investigated the use of concepts related to families, parents, and the home in 51 state-level early learning and development standards documents. Guidelines from six national family involvement, engagement, and school-partnership models were used to create the Family Involvement Models Analysis Chart (FIMAC), which served as…

  4. Using Cognitive Tutor Software in Learning Linear Algebra Word Concept

    Science.gov (United States)

    Yang, Kai-Ju

    2015-01-01

    This paper reports on a study of twelve 10th grade students using Cognitive Tutor, a math software program, to learn linear algebra word concept. The study's purpose was to examine whether students' mathematics performance as it is related to using Cognitive Tutor provided evidence to support Koedlinger's (2002) four instructional principles used…

  5. Postgraduate Conception of Research Methodology: Implications for Learning and Teaching

    Science.gov (United States)

    Daniel, Ben; Kumar, Vijay; Omar, Noritah

    2018-01-01

    This qualitative inquiry investigates postgraduate students' conceptions of research methodology and how it contributes to their learning. It explores factors likely to motivate student choice of research methodology and challenges in understanding research methods. The research was carried out at research-intensive universities in New Zealand and…

  6. Anxiety and Self-Concept of Learning Disabled Children.

    Science.gov (United States)

    Margalit, Malka; Zak, Itai

    1984-01-01

    One hundred learning disabled (LD) and 118 nondisabled children (six-13 years old) participated in the study which demonstrated significantly higher anxiety and lower self-concept in the first group. The differences emphasized the self-dissatisfaction of the LD group and their pawning related anxiety. (Author/CL)

  7. Cueing and Anxiety in a Visual Concept Learning Task.

    Science.gov (United States)

    Turner, Philip M.

    This study investigated the relationship of two anxiety measures (the State-Trait Anxiety Inventory-Trait Form and the S-R Inventory of Anxiousness-Exam Form) to performance on a visual concept-learning task with embedded criterial information. The effect on anxiety reduction of cueing criterial information was also examined, and two levels of…

  8. Remembering in Contradictory Minds: Disjunction Fallacies in Episodic Memory

    Science.gov (United States)

    Brainerd, C. J.; Reyna, V. F.; Aydin, C.

    2010-01-01

    Disjunction fallacies have been extensively studied in probability judgment. They should also occur in episodic memory, if remembering a cue's episodic state depends on how its state is described on a memory test (e.g., being described as a target vs. as a distractor). If memory is description-dependent, cues will be remembered as occupying…

  9. Searching for Complex Patterns Using Disjunctive Anomaly Detection

    OpenAIRE

    Sabhnani, Maheshkumar; Dubrawski, Artur; Schneider, Jeff

    2013-01-01

    Objective Disjunctive anomaly detection (DAD) algorithm [1] can efficiently search across multidimensional biosurveillance data to find multiple simultaneously occurring (in time) and overlapping (across different data dimensions) anomalous clusters. We introduce extensions of DAD to handle rich cluster interactions and diverse data distributions. Introduction Modern biosurveillance data contains thousands of unique time series defined across various categorical dimensions (zipcode, age group...

  10. Distribution of conjunctive and disjunctive forms in Xitsonga*

    African Journals Online (AJOL)

    Kate H

    approach, and the information packaging approach. ... information structure. = morphology. Examples of conjunctive and disjunctive forms in Xitsonga, isiZulu, Siswati, and Setswana are shown in (2). Descriptively speaking, the ... Updating the focus-based approach, Creissels (2014) argues for an information packaging.

  11. Relational Analysis of High School Students' Cognitive Self-Regulated Learning Strategies and Conceptions of Learning Biology

    Science.gov (United States)

    Sadi, Özlem

    2017-01-01

    The purpose of this study was to analyze the relation between students' cognitive learning strategies and conceptions of learning biology. The two scales, "Cognitive Learning Strategies" and "Conceptions of Learning Biology", were revised and adapted to biology in order to measure the students' learning strategies and…

  12. Evaluating learning and teaching using the Force Concept Inventory

    Science.gov (United States)

    Zitzewitz, Paul

    1997-04-01

    Teaching methods used in the calculus-based mechanics course for engineers and scientists (P150) at the University of Michigan-Dearborn were markedly changed in September, 1996. Lectures emphasize active learning with Mazur's ConcepTests, Sokoloff's Interactive Demonstrations, and Van Heuvelen's ALPS Kit worksheets. Students solve context-rich problems using Van Heuvelen's multiple representation format in cooperative groups in discussion sections. Labs were changed to use MBL emphasizing concepts and Experiment Problems to learn lab-based problem solving. Pre- and post-testing of 400 students with the Force Concept Inventory has demonstrated considerable success. The average increase in score has been 35-45methods as defined by Hake. The methods and results will be discussed. Detailed analyses of the FCI results will look at success in teaching specific concepts and the effect of student preparation in mathematics and high school physics.

  13. CONCEPTS AND CHARACTERISTICS OF CLOUD ORIENTED LEARNING ENVIRONMENT OF SCHOOL

    Directory of Open Access Journals (Sweden)

    Svitlana G. Lytvynova

    2014-04-01

    Full Text Available The article deals with the basic concepts and characteristics of cloud oriented learning environment (COLE of secondary school. It is examined the concept of "cloud oriented learning environment", "mobility training", the requirements for COLE, the goal of creating, the structural components, model deployment, maintenance. Four cloud storages are compared; the subjects and objects of COLE are described; the meaning of spatial and semantic, content and methodical, communication and organizational components are clarified; the benefits and features of cloud computing are defined. It is found that COLE creates conditions for active cooperation, provides mobility of learning process participants, and objects’ virtualization. It is available anywhere and at any time, ensures the development of creativity and innovation, critical thinking, ability to solve problems, to develop communicative, cooperative, life and career skills, to work with data, media, to develop ICT competence either of students and teachers.

  14. Virtual learning object and environment: a concept analysis.

    Science.gov (United States)

    Salvador, Pétala Tuani Candido de Oliveira; Bezerril, Manacés Dos Santos; Mariz, Camila Maria Santos; Fernandes, Maria Isabel Domingues; Martins, José Carlos Amado; Santos, Viviane Euzébia Pereira

    2017-01-01

    To analyze the concept of virtual learning object and environment according to Rodgers' evolutionary perspective. Descriptive study with a mixed approach, based on the stages proposed by Rodgers in his concept analysis method. Data collection occurred in August 2015 with the search of dissertations and theses in the Bank of Theses of the Coordination for the Improvement of Higher Education Personnel. Quantitative data were analyzed based on simple descriptive statistics and the concepts through lexicographic analysis with support of the IRAMUTEQ software. The sample was made up of 161 studies. The concept of "virtual learning environment" was presented in 99 (61.5%) studies, whereas the concept of "virtual learning object" was presented in only 15 (9.3%) studies. A virtual learning environment includes several and different types of virtual learning objects in a common pedagogical context. Analisar o conceito de objeto e de ambiente virtual de aprendizagem na perspectiva evolucionária de Rodgers. Estudo descritivo, de abordagem mista, realizado a partir das etapas propostas por Rodgers em seu modelo de análise conceitual. A coleta de dados ocorreu em agosto de 2015 com a busca de dissertações e teses no Banco de Teses e Dissertações da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior. Os dados quantitativos foram analisados a partir de estatística descritiva simples e os conceitos pela análise lexicográfica com suporte do IRAMUTEQ. A amostra é constituída de 161 estudos. O conceito de "ambiente virtual de aprendizagem" foi apresentado em 99 (61,5%) estudos, enquanto o de "objeto virtual de aprendizagem" em apenas 15 (9,3%). Concluiu-se que um ambiente virtual de aprendizagem reúne vários e diferentes tipos de objetos virtuais de aprendizagem em um contexto pedagógico comum.

  15. Historical survey of new concepts of lifelong learning during aging

    Directory of Open Access Journals (Sweden)

    Parlić-Božović Jasna Lj.

    2016-01-01

    Full Text Available Learning and education gradually occupy an important place in human life. Therefore, continuing socio-political and economic changes, rapid scientific and technological development, the expansion of knowledge, formed the phenomenon of the learning society. Its theoretical basis can be found in the concept of learning in the course of a lifetime, example: permanent learning and education in the aging process. On the other hand, the rapid changes taking place in the world, seeking to know the day is increasing. In the center of a thriving economy and a developed society are knowledge and ability, and education and learning become the instrument that. key socio-economic progress. Nevertheless, shorter working hours and longer life expectancy retirement also increases the amount of time available for other activities. In all areas, there are more opportunities for learning outside the school, and qualifications, in the traditional sense of getting out in front of new trends competence and adaptability. Adults who are constantly in the process of aging, the process of continuing education and learning are significantly different quality in relation to children, therefore it is necessary and a different approach to the children, and a different approach to teaching adults in the era of change, due to life and work experience, educational level, psychological and physical characteristics but also because of their social status. This paper will be an attempt, which will show the theoretical analysis of many aspects of learning, types, shapes, possibilities and limits of learning, the basic needs of adults in the aging process, as well as provide answers to the question why a grown man in the aging process learns who the person in the learning process and learning how to function in a process of aging.

  16. Concept maps and the meaningful learning of science

    Directory of Open Access Journals (Sweden)

    José Antonio C. S. Valadares

    2013-03-01

    Full Text Available The foundations of the Meaningful Learning Theory (MLT were laid by David Ausubel. The MLT was highly valued by the contributions of Joseph Novak and D. B. Gowin. Unlike other learning theories, the MLT has an operational component, since there are some instruments based on it and with the meaningful learning facilitation as aim. These tools were designated graphic organizers by John Trowbridge and James Wandersee (2000, pp. 100-129. One of them is the concept map created by Novak to extract meanings from an amalgam of information, having currently many applications. The other one is the Vee diagram or knowledge Vee, also called epistemological Vee or heuristic Vee. It was created by Gowin, and is an excellent organizer, for example to unpack and make transparent the unclear information from an information source. Both instruments help us in processing and becoming conceptually transparent the information, to facilitate the cognitive process of new meanings construction. In this work, after a brief introduction, it will be developed the epistemological and psychological grounds of MLT, followed by a reference to constructivist learning environments facilitators of the meaningful learning, the characterization of concept maps and exemplification of its use in various applications that have proved to be very effective from the standpoint of meaningful learning.

  17. The MTO concept and organisational learning at Forsmark NPP, Sweden

    International Nuclear Information System (INIS)

    Andersson, Olle; Rollenhagen, Carl

    2002-01-01

    The term 'MTO' (Man-Technology-Organisation) has been widely used by Swedish utilities and regulators to describe knowledge and analytical techniques that focus on human and organisational factors and their relationship with nuclear safety. MTO was introduced in Sweden after the TMI accident as a concept similar to the 'Human Factors' (HF) concept developed in the USA. It was the intent that the explicit mention of the three interrelated elements in the concept - Man, Technology and Organisation - would stimulate a comprehensive 'system view' on nuclear safety. This view should go beyond a strict technological perspective to recognise and highlight human and organisational factors as important moderators of risk. In retrospect, the MTO concept has been successful in stimulating a socio-technological view of nuclear safety in Sweden - a general trend supported by international developments. A further step along this path has been taken with the LearnSafe project. (author)

  18. Construction of concept maps as tool for Biochemistry learning

    Directory of Open Access Journals (Sweden)

    Silvia Lopes de Menezes

    2006-07-01

    Full Text Available The use of concept maps on the teaching of sciences has been object of worldwide research with different purposes: to detect the previous knowledge of the students on certain topics or to evaluate learning, among others. Based on Ausubel´s cognitive psychology, concept maps assume that the learning is accomplished by assimilation of new concepts and propositions to the students´ cognitive structure, contributing to establish links between the previous and new knowledge. It is especially interesting on the approach of interdisciplinary issues, as many studied in Biochemistry.The relevance of the use of concept maps on biochemistry learning was evaluated on a thirty-hour undergraduation optional course, with interdisciplinary topics, which are not usually included on introductory Biochemistry courses. The course Biochemistry of Animal Venoms was structured in seven module where the biochemical action mechanisms of the venoms of Crotalus sp (south american rattlesnake, Bothrops sp (jararaca, Loxosceles sp (brown spider, Tityus sp (yellow scorpion, Phoneutria sp (armed spider, Apis mellifera (honey bee and Latrodectus sp (black widowwere discussed. The students worked in small groups and, at each module, there were (1 an oriented study, guided by questions, texts and schemes, supervised by the teachers, (2 the construction of individual concept maps, where the local and systemic effects of the venoms should be predicted by their biochemical composition and (3 the construction of a new map by the group, incorporating the information of the individual maps. The difficulty level of these tasks was gradually increased throughout the course, with lesser time to carry out the tasks, lesser assistance during the oriented study and even lesser information on the venom effects.The course assessment was given by the number, quality and correction of the concepts relationship present in the concept maps, through a questionnaire and by the

  19. Enhancing Collaborative and Meaningful Language Learning Through Concept Mapping

    Science.gov (United States)

    Marriott, Rita De Cássia Veiga; Torres, Patrícia Lupion

    This chapter aims to investigate new ways of foreign-language teaching/learning via a study of how concept mapping can help develop a student's reading, writing and oral skills as part of a blended methodology for language teaching known as LAPLI (Laboratorio de Aprendizagem de LInguas: The Language Learning Lab). LAPLI is a student-centred and collaborative methodology which encourages students to challenge their limitations and expand their current knowledge whilst developing their linguistic and interpersonal skills. We explore the theories that underpin LAPLI and detail the 12 activities comprising its programme with specify reference to the use of "concept mapping". An innovative table enabling a formative and summative assessment of the concept maps is formulated. Also presented are some of the qualitative and quantitative results achieved when this methodology was first implemented with a group of pre-service students studying for a degree in English and Portuguese languages at the Catholic University of Parana (PUCPR) in Brazil. The contribution of concept mapping and LAPLI to an under standing of language learning along with a consideration of the difficulties encountered in its implementation with student groups is discussed and suggestions made for future research.

  20. Concept mapping and text writing as learning tools in problem-oriented learning

    NARCIS (Netherlands)

    Fürstenau, B.; Kneppers, L.; Dekker, R.; Cañas, A.J.; Novak, J.D.; Vanhaer, J.

    2012-01-01

    In two studies we investigated whether concept mapping or summary writing better support students while learning from authentic problems in the field of business. We interpret concept mapping and summary writing as elaboration tools aiming at helping students to understand new information, and to

  1. Millennial Students' Preferred Methods for Learning Concepts in Psychiatric Nursing.

    Science.gov (United States)

    Garwood, Janet K

    2015-09-01

    The current longitudinal, descriptive, and correlational study explored which traditional teaching strategies can engage Millennial students and adequately prepare them for the ultimate test of nursing competence: the National Council Licensure Examination. The study comprised a convenience sample of 40 baccalaureate nursing students enrolled in a psychiatric nursing course. The students were exposed to a variety of traditional (e.g., PowerPoint(®)-guided lectures) and nontraditional (e.g., concept maps, group activities) teaching and learning strategies, and rated their effectiveness. The students' scores on the final examination demonstrated that student learning outcomes met or exceeded national benchmarks. Copyright 2015, SLACK Incorporated.

  2. Learning Illustrated: An Exploratory Cross-Sectional Drawing Analysis of Students' Conceptions of Learning

    Science.gov (United States)

    Hsieh, Wen-Min; Tsai, Chin-Chung

    2018-01-01

    Using the draw-a-picture technique, the authors explored the learning conceptions held by students across grade levels. A total of 1,067 Taiwanese students in Grades 2, 4, 6, 8, 10, and 12 participated in this study. Participants were asked to use drawing to illustrate how they conceptualize learning. A coding checklist was developed to analyze…

  3. Finding faults: analogical comparison supports spatial concept learning in geoscience.

    Science.gov (United States)

    Jee, Benjamin D; Uttal, David H; Gentner, Dedre; Manduca, Cathy; Shipley, Thomas F; Sageman, Bradley

    2013-05-01

    A central issue in education is how to support the spatial thinking involved in learning science, technology, engineering, and mathematics (STEM). We investigated whether and how the cognitive process of analogical comparison supports learning of a basic spatial concept in geoscience, fault. Because of the high variability in the appearance of faults, it may be difficult for students to learn the category-relevant spatial structure. There is abundant evidence that comparing analogous examples can help students gain insight into important category-defining features (Gentner in Cogn Sci 34(5):752-775, 2010). Further, comparing high-similarity pairs can be especially effective at revealing key differences (Sagi et al. 2012). Across three experiments, we tested whether comparison of visually similar contrasting examples would help students learn the fault concept. Our main findings were that participants performed better at identifying faults when they (1) compared contrasting (fault/no fault) cases versus viewing each case separately (Experiment 1), (2) compared similar as opposed to dissimilar contrasting cases early in learning (Experiment 2), and (3) viewed a contrasting pair of schematic block diagrams as opposed to a single block diagram of a fault as part of an instructional text (Experiment 3). These results suggest that comparison of visually similar contrasting cases helped distinguish category-relevant from category-irrelevant features for participants. When such comparisons occurred early in learning, participants were more likely to form an accurate conceptual representation. Thus, analogical comparison of images may provide one powerful way to enhance spatial learning in geoscience and other STEM disciplines.

  4. Changing University Students’ Alternative Conceptions of Optics by Active Learning

    Directory of Open Access Journals (Sweden)

    Zalkida Hadžibegović

    2013-01-01

    Full Text Available Active learning is individual and group participation in effective activities such as in-class observing, writing, experimenting, discussion, solving problems, and talking about to-be-learned topics. Some instructors believe that active learning is impossible, or at least extremely difficult to achieve in large lecture sessions. Nevertheless, the truly impressive implementation results of theSCALE-UP learning environment suggest that such beliefs are false (Beichner et al., 2000. In this study, we present a design of an active learning environment with positive effect on students. The design is based on the following elements: (1 helping students to learn from interactive lecture experiment; (2 guiding students to use justified explanation and prediction after observing and exploring a phenomenon; (3 developing a conceptual question sequencedesigned for use in an interactive lecture with students answering questions in worksheets by writing and drawing; (4 evaluating students’ conceptual change and gains by questions related to light reflection, refraction, and image formation in an exam held a week after the active learning session. Data were collected from 95 science freshmen with different secondary school backgrounds. They participated in geometrical optics classes organized for collecting research results during and after only one active learning session.The results have showed that around 60% of the students changed their initial alternative conceptions of vision and of image formation. It was also found that a large group of university students is likely to be engaged in active learning, shifting from a passive role they usually play during teacher’s lectures.

  5. Learning circumference concepts from the didactical situations theory perspective

    Directory of Open Access Journals (Sweden)

    Valdir de Sousa Cavalcanti

    2013-08-01

    Full Text Available The circumference study, as its importance, it is one of the most relevant contents in the Analytical Geometry curriculum. However, the complexity of related concepts to this theme linked to the content fragmentation, it difficulties the students thinking of transforming geometrical problems into equations solution, systems or inequations. Within, in this article we present a partial report of a master research work, of qualitative mode, which aimed to develop and to evaluate an alternative methodology by using musical parody composition to the teaching of Mathematics in trying to contribute to the circumference concepts learning process. For that, we carried out a case study with 36 third year high school students of a public school from the city of Campina Grande, Paraíba. The research work was based and discussed on Brousseau Didactical Situation Theory. It was chosen triangulation technique for the data analyses, collected from interviews, questionnaires and a list of mathematical exercises. We concluded that the parody composition resource allowed the students better understand the concepts of center, ratio, cord and the definition of the general circumference equation, as they were capable to identify the relative positions which a circumference assumes in relation to an equation of a straight line and between two circumferences in the various concepts that differentiated them. Thus, we can state that the musical parody composition as a didactical resource can contribute to the learning of mathematical contents.

  6. Understanding students' concepts through guided inquiry learning and free modified inquiry on static fluid material

    OpenAIRE

    Sularso Sularso; Widha Sunarno; Sarwanto Sarwanto

    2017-01-01

    This study provides information on understanding students' concepts in guided inquiry learning groups and in free modified inquiry learning groups. Understanding of student concept is reviewed on the concept of static fluid case. The number of samples tested were 67 students. The sample is divided into 2 groups of students: the group is given guided inquiry learning and the group given the modified free inquiry learning. Understanding the concept of students is measured through 23 tests of it...

  7. A Theoretical Model for Meaning Construction through Constructivist Concept Learning

    DEFF Research Database (Denmark)

    Badie, Farshad

    The central focus of this Ph.D. research is on ‘Logic and Cognition’ and, more specifically, this research covers the quintuple (Logic and Logical Philosophy, Philosophy of Education, Educational Psychology, Cognitive Science, Computer Science). The most significant contributions of this Ph.D. di...... of ‘learning’, ‘mentoring’, and ‘knowledge’ within learning and knowledge acquisition systems. Constructivism as an epistemology and as a model of knowing and, respectively as a theoretical model of learning builds up the central framework of this research........D. dissertation are conceptual, logical, terminological, and semantic analysis of Constructivist Concept Learning (specifically, in the context of humans’ interactions with their environment and with other agents). This dissertation is concerned with the specification of the conceptualisation of the phenomena...

  8. The Effects of a Concept Map-Based Support Tool on Simulation-Based Inquiry Learning

    Science.gov (United States)

    Hagemans, Mieke G.; van der Meij, Hans; de Jong, Ton

    2013-01-01

    Students often need support to optimize their learning in inquiry learning environments. In 2 studies, we investigated the effects of adding concept-map-based support to a simulation-based inquiry environment on kinematics. The concept map displayed the main domain concepts and their relations, while dynamic color coding of the concepts displayed…

  9. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    Science.gov (United States)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However

  10. Self-regulated learning and conceptions of students in Cooperative Learning

    Directory of Open Access Journals (Sweden)

    Calixto Gutiérrez Braojos

    2009-05-01

    Full Text Available The aim of this exploratory study was to analyze the relationship between conceptions and self-regulation learning in the cooperative learning. The participants were 71 students enrolled in higher education. We used a survey method and transversal design to analyze the relationship between the study variables. We use two questionnaires: a questionnaire about self-regulation learning in group cooperative learning; b questionnaire about interdependence social conceptions. Thus, we have followed classic validation procedures accepted by the scientific community (expert point of view and stadistical tests. The results showed on one hand a relationship between conceptions, self-regulation learning, and other hand, two type of student´s profiles respect to conceptions: a cooperative learners and individualist learners. Solely, cooperative learners obtained benefits of the didactic strategy to facilitate cooperative learning. Thus, results were significantly higher in the cooperative students than individualist students respect to use of selfregulation strategies and communicative skills to generate shared knowledge.

  11. Integrating Concept Mapping into Information Systems Education for Meaningful Learning and Assessment

    Science.gov (United States)

    Wei, Wei; Yue, Kwok-Bun

    2017-01-01

    Concept map (CM) is a theoretically sound yet easy to learn tool and can be effectively used to represent knowledge. Even though many disciplines have adopted CM as a teaching and learning tool to improve learning effectiveness, its application in IS curriculum is sparse. Meaningful learning happens when one iteratively integrates new concepts and…

  12. Conceptions, Self-Regulation, and Strategies of Learning Science among Chinese High School Students

    Science.gov (United States)

    Li, Mang; Zheng, Chunping; Liang, Jyh-Chong; Zhang, Yun; Tsai, Chin-Chung

    2018-01-01

    This study explored the structural relationships among secondary school students' conceptions, self-regulation, and strategies of learning science in mainland China. Three questionnaires, namely conceptions of learning science (COLS), self-regulation of learning science (SROLS), and strategies of learning science (SLS) were developed for…

  13. Why First Language Learning Is Not Second Language Learning--Wittgenstein's Rejection of St. Augustine's Conception of Learning.

    Science.gov (United States)

    Erneling, Christina

    1993-01-01

    Paper shows that Wittgenstein, in discussing ostensive definition, understanding, and the private language argument, attacks Saint Augustine's notion of learning. Recently, the Augustinian conception has been resurrected in cognitive theories postulating an innate language of thought, making Wittgenstein's claims that this conception of learning…

  14. THE MEANING IN THE CULTURE: BASIC CONCEPT TO ORGANIZATIONAL LEARNING

    Directory of Open Access Journals (Sweden)

    ÁLVARO ENRÍQUEZ MARTÍNEZ

    2007-01-01

    Full Text Available Based on three key psychological concepts: learning, culture and meaning, the present essay proposes a conceptualbase frame, oriented toward the understanding of development in organizations into current milieu ofcompetitiveness and temporality, of the relationships among people working into them. The organizations whichare typically embedded in a context of values, needs and symbols that made up their cultures, must evolve in orderto face the demands for new developments and change, to which they are forced to. The concept of “meaning of theculture”, is presented as the base over which is build and rooted the organizational learning - in a technical and socialsense. The different types of learning are the ways in which the organizations satisfy the requirements coming fromtheir environments, in front of which must generate knowledge and consequently, new products and services,based on the people that form such organizations. The people that belong and constitutes the organization, incircumstances of temporal cohesion and within temporary working networks, must achieve results and to beadjusted to these new working and organizational facts, developing self-management and autonomy, in order tosignify and get adapted into the cultural tissue.

  15. Astrobiology Learning Progressions: Linking Astrobiology Concepts with the 3D Learning Paradigm of NGSS

    Science.gov (United States)

    Scalice, D.; Davis, H. B.; Leach, D.; Chambers, N.

    2016-12-01

    The Next Generation Science Standards (NGSS) introduce a Framework for teaching and learning with three interconnected "dimensions:" Disciplinary Core Ideas (DCI's), Cross-cutting Concepts (CCC's), and Science and Engineering Practices (SEP's). This "3D" Framework outlines progressions of learning from K-12 based on the DCI's, detailing which parts of a concept should be taught at each grade band. We used these discipline-based progressions to synthesize interdisciplinary progressions for core concepts in astrobiology, such as the origins of life, what makes a world habitable, biosignatures, and searching for life on other worlds. The final product is an organizing tool for lesson plans, learning media, and other educational materials in astrobiology, as well as a fundamental resource in astrobiology education that serves both educators and scientists as they plan and carry out their programs for learners.

  16. Mikhail Geraskov (1874-1957 Methodological Concepts of Learning Physics.

    Directory of Open Access Journals (Sweden)

    Mariyana Ilieva

    2014-02-01

    Full Text Available Mikhail Geraskov is a distinguished Bulgarian educator from the first half of the twentieth century, who developed the scientific foundations of didactics and methodology of training. His work contributed a lot to the development of the Bulgarian pedagogy. The subject of scientific research is didactical conceptions and methodological conceptions of learning. The aim of the research paper is to presents his ideas about particular methods of teaching Physics for high school. Geraskov assumes direct correlation between didactics and methodology. This paper focuses on his ideas about design, technology and methodological requirements for lessons of Physics. He believes that the appropriate methods are determined by the curriculum, set of educational goals and age characteristics, and capabilities of adolescents. In his methodical recommendations he focuses on teaching methods and forms that provoke students’ activity. Comparative analysis with publications on the issues set for development of the Bulgarian pedagogic science and the actuality in the modern education system.

  17. Learning Achievement and the Efficiency of Learning the Concept of Vector Addition at Three Different Grade Levels

    Science.gov (United States)

    Gubrud, Allan R.; Novak, Joseph D.

    1973-01-01

    Empirical data relate to Bruner's and Ausubel's theories of learning concepts at different age levels. The concept of vector addition was taught to eighth, ninth, and tenth grade students. The concept was learned and retained by high ability ninth and all tenth grade students. (PS)

  18. Explorers of the Universe: Metacognitive Tools for Learning Science Concepts

    Science.gov (United States)

    Alvarez, Marino C.

    1998-01-01

    Much of school learning consists of rote memorization of facts with little emphasis on meaningful interpretations. Knowledge construction is reduced to factual knowledge production with little regard for critical thinking, problem solving, or clarifying misconceptions. An important role of a middle and secondary teacher when teaching science is to aid students' ability to reflect upon what they know about a given topic and make available strategies that will enhance their understanding of text and science experiments. Developing metacognition, the ability to monitor one's own knowledge about a topic of study and to activate appropriate strategies, enhances students' learning when faced with reading, writing and problem solving situations. Two instructional strategies that can involve students in developing metacognitive awareness are hierarchical concept mapping, and Vee diagrams. Concept maps enable students to organize their ideas and reveal visually these ideas to others. A Vee diagram is a structured visual means of relating the methodological aspects of an activity to its underlying conceptual aspect in ways that aid learners in meaningful understanding of scientific investigations.

  19. Correlation of Students' Brain Types to Their Conceptions of Learning Science and Approaches to Learning Science

    Science.gov (United States)

    Park, Jiyeon; Jeon, Dongryul

    2015-01-01

    The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…

  20. Transformative Learning and Concepts of the Self: Insights from Immigrant and Intercultural Journeys

    Science.gov (United States)

    Lange, Elizabeth

    2015-01-01

    This article examines Canadian immigrant and intercultural learning as an insightful context for examining transformative learning. Theories of intercultural communication are explored, particularly the concept of transculturality and Bhabha's concept of "Third Space". Various concepts of the self are also compared, particularly two…

  1. The effects of a concept map-based support tool on simulation-based inquiry learning

    NARCIS (Netherlands)

    Hagemans, M.G.; van der Meij, Hans; de Jong, Anthonius J.M.

    2013-01-01

    Students often need support to optimize their learning in inquiry learning environments. In 2 studies, we investigated the effects of adding concept-map-based support to a simulation-based inquiry environment on kinematics. The concept map displayed the main domain concepts and their relations,

  2. Learning Outcomes as a Key Concept in Policy Documents throughout Policy Changes

    Science.gov (United States)

    Prøitz, Tine Sophie

    2015-01-01

    Learning outcomes can be considered to be a key concept in a changing education policy landscape, enhancing aspects such as benchmarking and competition. Issues relating to concepts of performance have a long history of debate within the field of education. Today, the concept of learning outcomes has become central in education policy development,…

  3. Learning the Attachment Theory with the CM-ED Concept Map Editor

    Science.gov (United States)

    Rueda, U.; Arruarte, A.; Elorriaga, J. A.; Herran, E.

    2009-01-01

    This paper presents a study carried out at the University of the Basque Country UPV/EHU with the aim of evaluating the CM-ED (concept map editor) with social education students. Concept mapping is a widely accepted technique that promotes meaningful learning. Graphically representing concepts of the learning domain and relationships between them…

  4. Wind Turbine Wake Characterization from Temporally Disjunct 3-D Measurements

    Directory of Open Access Journals (Sweden)

    Paula Doubrawa

    2016-11-01

    Full Text Available Scanning LiDARs can be used to obtain three-dimensional wind measurements in and beyond the atmospheric surface layer. In this work, metrics characterizing wind turbine wakes are derived from LiDAR observations and from large-eddy simulation (LES data, which are used to recreate the LiDAR scanning geometry. The metrics are calculated for two-dimensional planes in the vertical and cross-stream directions at discrete distances downstream of a turbine under single-wake conditions. The simulation data are used to estimate the uncertainty when mean wake characteristics are quantified from scanning LiDAR measurements, which are temporally disjunct due to the time that the instrument takes to probe a large volume of air. Based on LES output, we determine that wind speeds sampled with the synthetic LiDAR are within 10% of the actual mean values and that the disjunct nature of the scan does not compromise the spatial variation of wind speeds within the planes. We propose scanning geometry density and coverage indices, which quantify the spatial distribution of the sampled points in the area of interest and are valuable to design LiDAR measurement campaigns for wake characterization. We find that scanning geometry coverage is important for estimates of the wake center, orientation and length scales, while density is more important when seeking to characterize the velocity deficit distribution.

  5. Broad-scale recombination patterns underlying proper disjunction in humans.

    Directory of Open Access Journals (Sweden)

    Adi Fledel-Alon

    2009-09-01

    Full Text Available Although recombination is essential to the successful completion of human meiosis, it remains unclear how tightly the process is regulated and over what scale. To assess the nature and stringency of constraints on human recombination, we examined crossover patterns in transmissions to viable, non-trisomic offspring, using dense genotyping data collected in a large set of pedigrees. Our analysis supports a requirement for one chiasma per chromosome rather than per arm to ensure proper disjunction, with additional chiasmata occurring in proportion to physical length. The requirement is not absolute, however, as chromosome 21 seems to be frequently transmitted properly in the absence of a chiasma in females, a finding that raises the possibility of a back-up mechanism aiding in its correct segregation. We also found a set of double crossovers in surprisingly close proximity, as expected from a second pathway that is not subject to crossover interference. These findings point to multiple mechanisms that shape the distribution of crossovers, influencing proper disjunction in humans.

  6. Children's Interpretation of Disjunction in the Scope of "before": A Comparison of English and Mandarin

    Science.gov (United States)

    Notley, Anna; Zhou, Peng; Jensen, Britta; Crain, Stephen

    2012-01-01

    This study investigates three- to five-year-old children's interpretation of disjunction in sentences like "The dog reached the finish line before the turtle or the bunny". English disjunction has a conjunctive interpretation in such sentences ("The dog reached the finish line before the turtle and before the bunny"). This interpretation conforms…

  7. Unsupervised/supervised learning concept for 24-hour load forecasting

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, M [Electrical Engineering Inst. ' Nikola Tesla' , Belgrade (Yugoslavia); Babic, B [Electrical Power Industry of Serbia, Belgrade (Yugoslavia); Sobajic, D J; Pao, Y -H [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Electrical Engineering and Computer Science

    1993-07-01

    An application of artificial neural networks in short-term load forecasting is described. An algorithm using an unsupervised/supervised learning concept and historical relationship between the load and temperature for a given season, day type and hour of the day to forecast hourly electric load with a lead time of 24 hours is proposed. An additional approach using functional link net, temperature variables, average load and last one-hour load of previous day is introduced and compared with the ANN model with one hidden layer load forecast. In spite of limited available weather variables (maximum, minimum and average temperature for the day) quite acceptable results have been achieved. The 24-hour-ahead forecast errors (absolute average) ranged from 2.78% for Saturdays and 3.12% for working days to 3.54% for Sundays. (Author)

  8. Concept Mapping as a Learning Tool for the Employment Relations Degree

    Science.gov (United States)

    Martinez-Canas, Ricardo; Ruiz-Palomino, Pablo

    2011-01-01

    Concept mapping is a technique to represent relationships between concepts that can help students to improve their meaningful learning. Using the cognitive theories proposed by Ausubel (1968), concept maps can help instructors and students to enhance their logical thinking and study skills by revealing connections among concepts that can simplify…

  9. Insights from Classifying Visual Concepts with Multiple Kernel Learning

    Science.gov (United States)

    Binder, Alexander; Nakajima, Shinichi; Kloft, Marius; Müller, Christina; Samek, Wojciech; Brefeld, Ulf; Müller, Klaus-Robert; Kawanabe, Motoaki

    2012-01-01

    Combining information from various image features has become a standard technique in concept recognition tasks. However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tu-berlin.de/image_mkl/(Accessed 2012 Jun 25). PMID:22936970

  10. On Logical Characterisation of Human Concept Learning based on Terminological Systems

    DEFF Research Database (Denmark)

    Badie, Farshad

    2018-01-01

    The central focus of this article is the epistemological assumption that knowledge could be generated based on human beings' experiences and over their conceptions of the world. Logical characterisation of human inductive learning over their produced conceptions within terminological systems and ...... and analysis of actual human inductive reasoning (and learning). This research connects with the topics 'logic & learning', 'cognitive modelling' and 'terminological knowledge representation'.......The central focus of this article is the epistemological assumption that knowledge could be generated based on human beings' experiences and over their conceptions of the world. Logical characterisation of human inductive learning over their produced conceptions within terminological systems...

  11. Text conception(s in context of semi-present Distance Learning (DL

    Directory of Open Access Journals (Sweden)

    Fabiana Komesu

    2013-02-01

    Full Text Available By following the example proposed by Corrêa (2011 in the investigation of texts produced by undergraduate and pre-undergraduate students in two different assessment, this work aims to approach “hidden” aspects in the teaching of writing at the university (Street, 2009, to reflections produced in the language field, in particular the ones referred as “socially assumed”, proposed by Voloshinov/Bakhtin (s/d: 1926. It is particularly important to investigate the conception of text in digital context, by means of the study of updated semiotic resources in the production of undergraduate students using a computer with internet access in the process of semi-present Distance Learning (DL. The collected material comprises 29 (twenty nine texts which were produced by students of the semi-present Pedagogy Course from Univesp (Universidade Virtual do Estado de São Paulo – Virtual University from the state of São Paulo, who were studying “Education and Language”, in 2010. This qualitative analysis aims to show that regarding the institution there is a prevalence of structural and procedural aspects for the accomplishment of the proposed activity and, regarding the undergraduate student it is noticed that the production is characterized by a traditional conception of text, mainly recognized by written verbal text, although the proposal prioritized the relation between verbal and non verbal language. Regarding discursive-linguistic studies, it is important to reflect about a text conception that privileges the integration of multiple semiosis by taking into account the socio-historical interlocution character established within utterances of others.

  12. Recommender System for E-Learning Based on Semantic Relatedness of Concepts

    Directory of Open Access Journals (Sweden)

    Mao Ye

    2015-08-01

    Full Text Available Digital publishing resources contain a lot of useful and authoritative knowledge. It may be necessary to reorganize the resources by concepts and recommend the related concepts for e-learning. A recommender system is presented in this paper based on the semantic relatedness of concepts computed by texts from digital publishing resources. Firstly, concepts are extracted from encyclopedias. Information in digital publishing resources is then reorganized by concepts. Secondly, concept vectors are generated by skip-gram model and semantic relatedness between concepts is measured according to the concept vectors. As a result, the related concepts and associated information can be recommended to users by the semantic relatedness for learning or reading. History data or users’ preferences data are not needed for recommendation in a specific domain. The technique may not be language-specific. The method shows potential usability for e-learning in a specific domain.

  13. Improving Student Understanding of Lipids Concepts in a Biochemistry Course Using Test-Enhanced Learning

    Science.gov (United States)

    Horn, Savannah; Hernick, Marcy

    2015-01-01

    Test-enhanced learning has successfully been used as a means to enhance learning and promote knowledge retention in students. We have examined whether this approach could be used in a biochemistry course to enhance student learning about lipids-related concepts. Students were provided access to two optional learning modules with questions related…

  14. The Impact of the Flipped Classroom on Mathematics Concept Learning in High School

    Science.gov (United States)

    Bhagat, Kaushal Kumar; Chang, Cheng-Nan; Chang, Chun-Yen

    2016-01-01

    The present study aimed to examine the effectiveness of the flipped classroom learning environment on learner's learning achievement and motivation, as well as to investigate the effects of flipped classrooms on learners with different achievement levels in learning mathematics concepts. The learning achievement and motivation were measured by the…

  15. Mining Concept Maps to Understand University Students' Learning

    Science.gov (United States)

    Yoo, Jin Soung; Cho, Moon-Heum

    2012-01-01

    Concept maps, visual representations of knowledge, are used in an educational context as a way to represent students' knowledge, and identify mental models of students; however there is a limitation of using concept mapping due to its difficulty to evaluate the concept maps. A concept map has a complex structure which is composed of concepts and…

  16. Learning Quantum Chemical Model with Learning Media Concept Map and Power Point Viewed from Memory and Creativity Skills Students

    Directory of Open Access Journals (Sweden)

    Agus Wahidi

    2017-03-01

    Full Text Available This research is experimental, using first class learning a quantum model of learning with concept maps media and the second media using real environments by power point presentation. The population is all class XI Science, number 2 grade. The sampling technique is done by purposive random sampling. Data collection techniques to test for cognitive performance and memory capabilities, with a questionnaire for creativity. Hypothesis testing using three-way ANOVA different cells with the help of software Minitab 15.Based on the results of data processing, concluded: (1 there is no influence of the quantum model of learning with media learning concept maps and real environments for learning achievement chemistry, (2 there is a high impact memory ability and low on student achievement, (3 there is no the effect of high and low creativity in student performance, (4 there is no interaction learning model quantum media learning concept maps and real environments with memory ability on student achievement, (5 there is no interaction learning model quantum media learning concept maps and real environments with creativity of student achievement, (6 there is no interaction memory skills and creativity of student achievement, (7 there is no interaction learning model quantum media learning concept maps and real environments, memory skills, and creativity on student achievement.

  17. High School Students' Approaches to Learning Physics with Relationship to Epistemic Views on Physics and Conceptions of Learning Physics

    Science.gov (United States)

    Chiou, Guo-Li; Lee, Min-Hsien; Tsai, Chin-Chung

    2013-01-01

    Background and purpose: Knowing how students learn physics is a central goal of physics education. The major purpose of this study is to examine the strength of the predictive power of students' epistemic views and conceptions of learning in terms of their approaches to learning in physics. Sample, design and method: A total of 279 Taiwanese high…

  18. Teaching strategies to promote concept learning by design challenges

    Science.gov (United States)

    Van Breukelen, Dave; Van Meel, Adrianus; De Vries, Marc

    2017-07-01

    Background: This study is the second study of a design-based research, organised around four studies, that aims to improve student learning, teaching skills and teacher training concerning the design-based learning approach called Learning by Design (LBD).

  19. Concept mapping as an empowering method to promote learning, thinking, teaching and research

    Directory of Open Access Journals (Sweden)

    Mauri Kalervo Åhlberg

    2013-01-01

    Full Text Available Results and underpinning of over twenty years of research and development program of concept mapping is presented. Different graphical knowledge presentation tools, especially concept mapping and mind mapping, are compared. There are two main dimensions that differentiate graphical knowledge presentation methods: The first dimension is conceptual explicitness: from mere concepts to flexibly named links and clear propositions in concept maps. The second dimension in the classification system I am suggesting is whether there are pictures or not. Åhlbergʼs and his research groupʼs applications and developments of Novakian concept maps are compared to traditional Novakian concept maps. The main innovations include always using arrowheads to show direction of reading the concept map. Centrality of each concept is estimated from number of links to other concepts. In our empirical research over two decades, number of relevant concepts, and number of relevant propositions in studentsʼ concept maps, have been found to be the best indicators and predictors of meaningful learning. This is used in assessment of learning. Improved concept mapping is presented as a tool to analyze texts. The main innovation is numbering the links to show order of reading the concept map and to make it possible to transform concept map back to the original prose text as closely as possible. In Åhlberg and his research groupʼs research, concept mapping has been tested in all main phases of research, teaching and learning.

  20. Relational Analysis of College Chemistry-Major Students' Conceptions of and Approaches to Learning Chemistry

    Science.gov (United States)

    Li, Wei-Ting; Liang, Jyh-Chong; Tsai, Chin-Chung

    2013-01-01

    The purpose of this research was to examine the relationships between conceptions of learning and approaches to learning in chemistry. Two questionnaires, conceptions of learning chemistry (COLC) and approaches to learning chemistry (ALC), were developed to identify 369 college chemistry-major students' (220 males and 149 females) conceptions of…

  1. Conceptions and Practices in teaching and learning: implications for the evaluation of teaching quality.

    NARCIS (Netherlands)

    Zerihun, Z.; Beishuizen, J.J.; van Os, W

    2011-01-01

    This study was conducted in two public universities in Ethiopia to assess the impact of conceptions of teaching and learning on the evaluation of teaching quality. Students' and teachers' approaches to teaching and learning and their conceptions of the meaning of teaching have been examined. Results

  2. Joining the Pieces: Using Concept Maps for Integrated Learning and Assessment in an Introductory Management Course

    Science.gov (United States)

    Connolly, Heather; Spiller, Dorothy

    2016-01-01

    This paper reports on and evaluates the use of concept mapping as a learning tool in a large first year Management course. The goal was to help students make personal sense of course learning and to build their understanding of links and relationships between key course ideas. Concept mapping was used for three summative assessment pieces,…

  3. Improving Self-Concept and Learning Skills of Marginal Black Students: A Seminar Approach.

    Science.gov (United States)

    Parker, Woodroe M.; And Others

    1979-01-01

    Presents an eight-session seminar designed to increase participants' study skills and to redefine participants' self-concepts from those characterized by feelings of inadequacy and frustration to concepts of selves as competent and capable. Learning strategies, two-way communication, learning styles, note making, test taking, vocational planning,…

  4. Five teacher profiles in student-centred curricula based on their conceptions of learning and teaching

    NARCIS (Netherlands)

    Jacobs, J.C.; Luijk, S.J. van; Galindo-Garre, F.; Muijtjens, A.M.; Vleuten, C.P.M. van der; Croiset, G.; Scheele, F.

    2014-01-01

    BACKGROUND: Teachers' conceptions of learning and teaching are partly unconscious. However, they are critical for the delivery of education and affect students' learning outcomes. Lasting changes in teaching behaviour can only be realized if conceptions of teachers have been changed accordingly.

  5. Five teacher profiles in student-centred curricula based on their conceptions of learning and teaching

    NARCIS (Netherlands)

    Jacobs, J.C.G.; van Luijk, S.J.; Galindo Garre, F.; Muijtjens, A.M.M.; van der Vleuten, C.P.M.; Croiset, G.; Scheele, F.

    2014-01-01

    Background: Teachers' conceptions of learning and teaching are partly unconscious. However, they are critical for the delivery of education and affect students' learning outcomes. Lasting changes in teaching behaviour can only be realized if conceptions of teachers have been changed accordingly.

  6. Investigating the Interrelationships among Conceptions of, Approaches to, and Self-Efficacy in Learning Science

    Science.gov (United States)

    Zheng, Lanqin; Dong, Yan; Huang, Ronghuai; Chang, Chun-Yen; Bhagat, Kaushal Kumar

    2018-01-01

    The purpose of this study was to examine the relations between primary school students' conceptions of, approaches to, and self-efficacy in learning science in Mainland China. A total of 1049 primary school students from Mainland China participated in this study. Three instruments were adapted to measure students' conceptions of learning science,…

  7. Concept Development in Learning Physics: The Case of Electric Current and Voltage Revisited

    Science.gov (United States)

    Koponen, Ismo T.; Huttunen, Laura

    2013-01-01

    In learning conceptual knowledge in physics, a common problem is the development and differentiation of concepts in the learning process. An important part of this development process is the re-organisation or re-structuring process in which students' conceptual knowledge and concepts change. This study proposes a new view of concept…

  8. Developing iPad-Based Physics Simulations That Can Help People Learn Newtonian Physics Concepts

    Science.gov (United States)

    Lee, Young-Jin

    2015-01-01

    The aims of this study are: (1) to develop iPad-based computer simulations called iSimPhysics that can help people learn Newtonian physics concepts; and (2) to assess its educational benefits and pedagogical usefulness. To facilitate learning, iSimPhysics visualizes abstract physics concepts, and allows for conducting a series of computer…

  9. A Study on Contingency Learning in Introductory Physics Concepts

    Science.gov (United States)

    Scaife, Thomas M.

    Instructors of physics often use examples to illustrate new or complex physical concepts to students. For any particular concept, there are an infinite number of examples, thus presenting instructors with a difficult question whenever they wish to use one in their teaching: which example will most effectively illustrate the concept so that student learning is maximized? The choice is typically made by an intuitive assumption about which exact example will result in the most lucid illustration and the greatest student improvement. By questioning 583 students in four experiments, I examined a more principled approach to example selection. By controlling the manner in which physical dimensions vary, the parameter space of each concept can be divided into a discrete number of example categories. The effects of training with members of each of category was explored in two different physical contexts: projectile motion and torque. In the first context, students were shown two trajectories and asked to determine which represented the longer time of flight. Height, range, and time of flight were the physical dimensions that were used to categorize the examples. In the second context, students were shown a balance-scale with loads of differing masses placed at differing positions along either side of the balance-arm. Mass, lever-arm length, and torque were the physical dimensions used to categorize these examples. For both contexts, examples were chosen so that one or two independent dimensions were varied. After receiving training with examples from specific categories, students were tested with questions from all question categories. Successful training or instruction can be measured either as producing correct, expert-like behavior (as observed through answers to the questions) or as explicitly instilling an understanding of the underlying rule that governs a physical phenomenon. A student's behavior might not be consistent with their explicit rule, so following the

  10. AN ANALYSIS OF THE CONCEPT OF LEARNING FROM THE INTERNATIONALIZATION PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Cyntia Vilasboas Calixto

    2012-01-01

    Full Text Available The present study aims to analyze the concept of learning in the internationalization studies. Considering the relationship between learning and internationalization had its groundwork at the Uppsala University, we believe its relevant outlining the path from the main publications regarding the Uppsala School as well as the internationalization process model developed by them in order to comprehend the evolution of the concept of learning from this perspective. In addition, owing to the extension of the relationship between learning and internationalization, this paper analyzes some relevant organizational learning studies and their contributions in order to construe the internationalization process development. Therefore, the contribution of this study is the critical review on the concept of learning from the Uppsala School and also indicating contributions of this concept from the latest developments of this idea.

  11. Teaching Strategies to Promote Concept Learning by Design Challenges

    Science.gov (United States)

    Van Breukelen, Dave; Van Meel, Adrianus; De Vries, Marc

    2017-01-01

    Background: This study is the second study of a design-based research, organised around four studies, that aims to improve student learning, teaching skills and teacher training concerning the design-based learning approach called Learning by Design (LBD). Purpose: LBD uses the context of design challenges to learn, among other things, science.…

  12. Which Technique Is Most Effective for Learning Declarative Concepts--Provided Examples, Generated Examples, or Both?

    Science.gov (United States)

    Zamary, Amanda; Rawson, Katherine A.

    2018-01-01

    Students in many courses are commonly expected to learn declarative concepts, which are abstract concepts denoted by key terms with short definitions that can be applied to a variety of scenarios as reported by Rawson et al. ("Educational Psychology Review" 27:483-504, 2015). Given that declarative concepts are common and foundational in…

  13. Effects of Concept Mapping Strategy on Learning Performance in Business and Economics Statistics

    Science.gov (United States)

    Chiou, Chei-Chang

    2009-01-01

    A concept map (CM) is a hierarchically arranged, graphic representation of the relationships among concepts. Concept mapping (CMING) is the process of constructing a CM. This paper examines whether a CMING strategy can be useful in helping students to improve their learning performance in a business and economics statistics course. A single…

  14. Non-Technical Skills Bingo-a game to facilitate the learning of complex concepts

    DEFF Research Database (Denmark)

    Dieckmann, Gerhard Peter; Glavin, Ronnie; Jepsen, Rikke Malene Hartvigsen Grønholm

    2016-01-01

    Acquiring the concepts of non-technical skills (NTS) beyond a superficial level is a challenge for healthcare professionals and simulation faculty. Current simulation-based approaches to teach NTS are challenged when learners have to master NTS concepts, clinically challenging situations, and sim....... NTS Bingo is based on theoretical considerations on concept learning, which we describe to support the rationale for its conduct....

  15. Acquiring concepts and features of novel words by two types of learning: direct mapping and inference.

    Science.gov (United States)

    Chen, Shuang; Wang, Lin; Yang, Yufang

    2014-04-01

    This study examined the semantic representation of novel words learnt in two conditions: directly mapping a novel word to a concept (Direct mapping: DM) and inferring the concept from provided features (Inferred learning: IF). A condition where no definite concept could be inferred (No basic-level meaning: NM) served as a baseline. The semantic representation of the novel word was assessed via a semantic-relatedness judgment task. In this task, the learned novel word served as a prime, while the corresponding concept, an unlearned feature of the concept, and an unrelated word served as targets. ERP responses to the targets, primed by the novel words in the three learning conditions, were compared. For the corresponding concept, smaller N400s were elicited in the DM and IF conditions than in the NM condition, indicating that the concept could be obtained in both learning conditions. However, for the unlearned feature, the targets in the IF condition produced an N400 effect while in the DM condition elicited an LPC effect relative to the NM learning condition. No ERP difference was observed among the three learning conditions for the unrelated words. The results indicate that conditions of learning affect the semantic representation of novel word, and that the unlearned feature was only activated by the novel word in the IF learning condition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Why Do Athletes Drink Sports Drinks? A Learning Cycle to Explore the Concept of Osmosis

    Science.gov (United States)

    Carlsen, Brook; Marek, Edmund A.

    2010-01-01

    Why does an athlete reach for a sports drink after a tough game or practice? The learning cycle presented in this article helps students answer this question. Learning cycles (Marek 2009) are designed to guide students through direct experiences with a particular concept. In this article, students learn about "osmosis," or the moving of water into…

  17. The Use of Engineering Design Concept for Computer Programming Course: A Model of Blended Learning Environment

    Science.gov (United States)

    Tritrakan, Kasame; Kidrakarn, Pachoen; Asanok, Manit

    2016-01-01

    The aim of this research is to develop a learning model which blends factors from learning environment and engineering design concept for learning in computer programming course. The usage of the model was also analyzed. This study presents the design, implementation, and evaluation of the model. The research methodology is divided into three…

  18. A Case Study in Master Planning the Learning Landscape Hub Concepts for the University at Buffalo

    Science.gov (United States)

    Dugdale, Shirley; Torino, Roger; Felix, Elliot

    2009-01-01

    This case study describes concepts for three types of learning spaces that grew out of a Learning Landscape planning process. The process was part of a master plan study for the three campuses of the University at Buffalo. It involved research into user needs and aspirations about future pedagogy, development of learning space strategy,…

  19. Students' Understanding of Genetics Concepts: The Effect of Reasoning Ability and Learning Approaches

    Science.gov (United States)

    Kiliç, Didem; Saglam, Necdet

    2014-01-01

    Students tend to learn genetics by rote and may not realise the interrelationships in daily life. Because reasoning abilities are necessary to construct relationships between concepts and rote learning impedes the students' sound understanding, it was predicted that having high level of formal reasoning and adopting meaningful learning orientation…

  20. The Effectiveness of Concept Maps in Teaching Physics Concepts Applied to Engineering Education: Experimental Comparison of the Amount of Learning Achieved With and Without Concept Maps

    Science.gov (United States)

    Martínez, Guadalupe; Pérez, Ángel Luis; Suero, María Isabel; Pardo, Pedro J.

    2013-04-01

    A study was conducted to quantify the effectiveness of concept maps in learning physics in engineering degrees. The following research question was posed: What was the difference in learning results from the use of concept maps to study a particular topic in an engineering course? The study design was quasi-experimental and used a post-test as a measuring instrument. The sample included 114 university students from the School of Industrial Engineering who were divided into two equivalent homogeneous groups of 57 students each. The amount of learning attained by the students in each group was compared, with the independent variable being the teaching method; the experimental group (E.G.) used concept maps, while the control group (C.G.) did not. We performed a crossover study with the two groups of students, with one group acting as the E.G. for the topic of optical fibers and as the C.G. for the topic of the fundamental particles of matter and vice versa for the other group. For each of the two topics studied, the evaluation instrument was a test of 100 dichotomous items. The resulting data were subjected to a comparative statistical analysis, which revealed a significant difference in the amount of learning attained by the E.G. students as compared with the C.G. students. The results allow us to state that for the use of concept maps, the average increment in the E.G. students' learning was greater than 19 percentage points.

  1. Learning energy literacy concepts from energy-efficient homes

    Science.gov (United States)

    Paige, Frederick Eugene

    The purpose of this study is to understand ways that occupants' and visitors' interaction with energy efficient home design affects Energy Literacy. Using a case study approach including interviews, surveys, and observations, I examined the potential for affordable energy efficient homes in the Greenville South Carolina area to "teach" concepts from an Energy Literacy framework developed by dozens of educational partners and federal agencies that comprise the U.S. Global Change Research Program Partners. I paid particular attention to concepts from the framework that are transferable to energy decisions beyond a home's walls. My research reveals ways that interaction with high efficiency homes can effect understanding of the following Energy Literacy concepts: human use of energy is subject to limits and constraints, conservation is one way to manage energy resources, electricity is generated in multiple ways, social and technological innovations effect the amount of energy used by society, and energy use can be calculated and monitored. Examples from my case studies show how the at-home examples can make lessons on energy more personally relevant, easy to understand, and applicable. Specifically, I found that: • Home occupants learn the limits of energy in relation to the concrete and constricting costs associated with their consumption. • Heating and cooling techniques showcase the limits and constraints on different sources of energy. • Relatable systems make it easier to understand energy's limits and constraints. • Indistinct and distant power utilities allow consumers to overlook the root of electricity sources. • Visible examples of electricity generation systems make it clear that electricity is generated in multiple ways. • Small and interactive may mean inefficient electricity generation, but efficient energy education. • Perceptions of expense and complexity create a disconnect between residential energy consumers and renewable electricity

  2. Disjunctive cuts in a branch-and-price algorithm for the capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Røpke, Stefan

    This talk presents computational results that show the usefulness of the general-purpose valid inequalities disjunctive cuts when applied to the CVRP. Results indicate that the disjunctive cuts are able to reduce the gap between lower bound and upper bound more than state-of-the-art problem...... specific inequalities. Results also indicate that introducing the cuts leads to a smaller branch and bound tree and faster solution times overall....

  3. Changing University Students' Alternative Conceptions of Optics by Active Learning

    Science.gov (United States)

    Hadžibegovic, Zalkida; Sliško, Josip

    2013-01-01

    Active learning is individual and group participation in effective activities such as in-class observing, writing, experimenting, discussion, solving problems, and talking about to-be-learned topics. Some instructors believe that active learning is impossible, or at least extremely difficult to achieve in large lecture sessions. Nevertheless, the…

  4. A Systemic View of the Learning and Differentiation of Scientific Concepts: The Case of Electric Current and Voltage Revisited

    Science.gov (United States)

    Koponen, Ismo T.; Kokkonen, Tommi

    2014-01-01

    In learning conceptual knowledge in physics, a common problem is the incompleteness of a learning process, where students' personal, often undifferentiated concepts take on more scientific and differentiated form. With regard to such concept learning and differentiation, this study proposes a systemic view in which concepts are considered as…

  5. Ontology-based concept map learning path reasoning system using SWRL rules

    Energy Technology Data Exchange (ETDEWEB)

    Chu, K.-K.; Lee, C.-I. [National Univ. of Tainan, Taiwan (China). Dept. of Computer Science and Information Learning Technology

    2010-08-13

    Concept maps are graphical representations of knowledge. Concept mapping may reduce students' cognitive load and extend simple memory function. The purpose of this study was on the diagnosis of students' concept map learning abilities and the provision of personally constructive advice dependant on their learning path and progress. Ontology is a useful method with which to represent and store concept map information. Semantic web rule language (SWRL) rules are easy to understand and to use as specific reasoning services. This paper discussed the selection of grade 7 lakes and rivers curriculum for which to devise a concept map learning path reasoning service. The paper defined a concept map e-learning ontology and two SWRL semantic rules, and collected users' concept map learning path data to infer implicit knowledge and to recommend the next learning path for users. It was concluded that the designs devised in this study were feasible and advanced and the ontology kept the domain knowledge preserved. SWRL rules identified an abstraction model for inferred properties. Since they were separate systems, they did not interfere with each other, while ontology or SWRL rules were maintained, ensuring persistent system extensibility and robustness. 15 refs., 1 tab., 8 figs.

  6. Naïve Conceptions About Multimedia Learning:A Study on Primary School Textbooks

    Directory of Open Access Journals (Sweden)

    Barbara eColombo

    2013-07-01

    Full Text Available An interview study, based on specific pictures taken from textbooks used in primary schools, was carried out to investigate illustrators’, teachers’, students’, and common people’s beliefs about the role that illustrations play in facilitating learning. Participants’ responses were internally coherent, indicating a systematic nature of the underlying naïve conceptions. Findings disprove Mayer’s pessimistic claim that laypersons’ conceptions of multimedia learning fail to match experimentally supported principles and theories. On the contrary, interviewees spontaneously came very close to the multimedia learning theory, which states that students learn better from pictures, which fit specific cognitive principles. Implications for school instruction are highlighted.

  7. Predicting Turkish Preservice Elementary Teachers' Orientations to Teaching Science with Epistemological Beliefs, Learning Conceptions, and Learning Approaches in Science

    Science.gov (United States)

    Sahin, Elif Adibelli; Deniz, Hasan; Topçu, Mustafa Sami

    2016-01-01

    The present study investigated to what extent Turkish preservice elementary teachers' orientations to teaching science could be explained by their epistemological beliefs, conceptions of learning, and approaches to learning science. The sample included 157 Turkish preservice elementary teachers. The four instruments used in the study were School…

  8. Blended Learning in Vocational Education: Teachers' Conceptions of Blended Learning and Their Approaches to Teaching and Design

    Science.gov (United States)

    Bliuc, Ana-Maria; Casey, Grant; Bachfischer, Agnieszka; Goodyear, Peter; Ellis, Robert A.

    2012-01-01

    This paper presents research exploring teachers' experiences of using blended learning in vocational education. Teachers involved in designing and teaching using blended learning from a major Australian vocational education provider participated in the study. They received open-ended questionnaires asking to describe their conceptions of blended…

  9. The effect of multiple intelligence-based learning towards students’ concept mastery and interest in learning matter

    Science.gov (United States)

    Pratiwi, W. N.; Rochintaniawati, D.; Agustin, R. R.

    2018-05-01

    This research was focused on investigating the effect of multiple intelligence -based learning as a learning approach towards students’ concept mastery and interest in learning matter. The one-group pre-test - post-test design was used in this research towards a sample which was according to the suitable situation of the research sample, n = 13 students of the 7th grade in a private school in Bandar Seri Begawan. The students’ concept mastery was measured using achievement test and given at the pre-test and post-test, meanwhile the students’ interest level was measured using a Likert Scale for interest. Based on the analysis of the data, the result shows that the normalized gain was .61, which was considered as a medium improvement. in other words, students’ concept mastery in matter increased after being taught using multiple intelligence-based learning. The Likert scale of interest shows that most students have a high interest in learning matter after being taught by multiple intelligence-based learning. Therefore, it is concluded that multiple intelligence – based learning helped in improving students’ concept mastery and gain students’ interest in learning matter.

  10. Self-Regulated Learning Strategies of Engineering College Students While Learning Electric Circuit Concepts with Enhanced Guided Notes

    Science.gov (United States)

    Lawanto, Oenardi; Santoso, Harry

    2013-01-01

    The current study evaluated engineering college students' self-regulated learning (SRL) strategies while learning electric circuit concepts using enhanced guided notes (EGN). Our goal was to describe how students exercise SRL strategies and how their grade performance changes after using EGN. Two research questions guided the study: (1) To what…

  11. The concept of learning in cultural-historical perspective

    DEFF Research Database (Denmark)

    Chaiklin, Seth

    2015-01-01

    their implications for understanding learning. Brief comments are made about the notions of internalization and zone of proximal development. Subsequent theoretical developments are mentioned, with a special focus on the idea of learning activity and developmental teaching. The chapter concludes with three issues......A cultural-historical perspective on learning is presented. The key idea is to conceptualise learning as self-mastery of action, using existing psychological functions. The main part of the chapter provides an overview of Vygotsky’s theory of higher psychological functions, and discusses...

  12. Weight, Mass, and Gravity: Threshold Concepts in Learning Science

    Science.gov (United States)

    Bar, Varda; Brosh, Yaffa; Sneider, Cary

    2016-01-01

    Threshold concepts are essential ideas about the natural world that present either a barrier or a gateway to a deep understanding of science. Weight, mass, and gravity are threshold concepts that underpin students' abilities to understand important ideas in all fields of science, embodied in the performance expectations in the Next Generation…

  13. Learning mathematics concepts in a traditional socio-culture ...

    African Journals Online (AJOL)

    Abstract. This paper argues that each culture has its unique applications of mathematical concepts. It presents this argument by showing how the Great Zimbabwe Monument that was built between the 12th and 14th century applied some geometrical concepts that some secondary school students in Zimbabwe find difficult ...

  14. MATERIALS AND (LANGUAGE LEARNING ENVIRONMENT BASED ON MONTESSORI CONCEPTS

    Directory of Open Access Journals (Sweden)

    Christina Kristiyani

    2018-04-01

    Full Text Available Montessori Education is widely spread in almost all countries in the world. Even though this school is meant for all kinds of learners including “normal” learners, the Montessori education concepts used in Montessori schools will be very supportive education for children with special needs. Therefore, the schools which adopt Montessori education concepts can facilitate inclusion, especially with the concepts of ‘I can do it myself.’ Inclusive education needs to be carefully prepared and implemented by schools. The movement brings about some challenges for teachers. This paper explores the environment and materials based on Montessori education concepts. The environment and materials are suitable for all types of learners and thus can be an option to be implemented in the inclusive education setting. Teaching materials rooted in Montessori education concepts indeed cater all ages and embrace the needs of all students.

  15. “Pick-up Lines”: A Fun Way to Facilitate Learning Microbiological Concepts

    Directory of Open Access Journals (Sweden)

    Thomas Edison E. dela Cruz

    2014-05-01

    Full Text Available Learning microbiology can be made fun by writing funny lines related to microbiology. Students were tasked to create their own pick-up lines and explain these based on their understanding of the basic concepts in microbiology.

  16. Comparability of Self-Concept among Learning Disabled, Normal, and Gifted Students.

    Science.gov (United States)

    Winne, Phillip H.; And Others

    1982-01-01

    Using 60 fourth- to seventh-grade learning disabled (LD), normal, and gifted students, the comparability of representations of self-concept across groups was analyzed for the Sears and Coopersmith inventories. (Author/SW)

  17. Experimentation of cooperative learning model Numbered Heads Together (NHT) type by concept maps and Teams Games Tournament (TGT) by concept maps in terms of students logical mathematics intellegences

    Science.gov (United States)

    Irawan, Adi; Mardiyana; Retno Sari Saputro, Dewi

    2017-06-01

    This research is aimed to find out the effect of learning model towards learning achievement in terms of students’ logical mathematics intelligences. The learning models that were compared were NHT by Concept Maps, TGT by Concept Maps, and Direct Learning model. This research was pseudo experimental by factorial design 3×3. The population of this research was all of the students of class XI Natural Sciences of Senior High School in all regency of Karanganyar in academic year 2016/2017. The conclusions of this research were: 1) the students’ achievements with NHT learning model by Concept Maps were better than students’ achievements with TGT model by Concept Maps and Direct Learning model. The students’ achievements with TGT model by Concept Maps were better than the students’ achievements with Direct Learning model. 2) The students’ achievements that exposed high logical mathematics intelligences were better than students’ medium and low logical mathematics intelligences. The students’ achievements that exposed medium logical mathematics intelligences were better than the students’ low logical mathematics intelligences. 3) Each of student logical mathematics intelligences with NHT learning model by Concept Maps has better achievement than students with TGT learning model by Concept Maps, students with NHT learning model by Concept Maps have better achievement than students with the direct learning model, and the students with TGT by Concept Maps learning model have better achievement than students with Direct Learning model. 4) Each of learning model, students who have logical mathematics intelligences have better achievement then students who have medium logical mathematics intelligences, and students who have medium logical mathematics intelligences have better achievement than students who have low logical mathematics intelligences.

  18. An Educational Data Mining Approach to Concept Map Construction for Web based Learning

    Directory of Open Access Journals (Sweden)

    Anal ACHARYA

    2017-01-01

    Full Text Available This aim of this article is to study the use of Educational Data Mining (EDM techniques in constructing concept maps for organizing knowledge in web based learning systems whereby studying their synergistic effects in enhancing learning. This article first provides a tutorial based introduction to EDM. The applicability of web based learning systems in enhancing the efficiency of EDM techniques in real time environment is investigated. Web based learning systems often use a tool for organizing knowledge. This article explores the use of one such tool called concept map for this purpose. The pioneering works by various researchers who proposed web based learning systems in personalized and collaborative environment in this arena are next presented. A set of parameters are proposed based on which personalized and collaborative learning applications may be generalized and their performances compared. It is found that personalized learning environment uses EDM techniques more exhaustively compared to collaborative learning for concept map construction in web based environment. This article can be used as a starting point for freshers who would like to use EDM techniques for concept map construction for web based learning purposes.

  19. Designing learning apparatus to promote twelfth grade students’ understanding of digital technology concept: A preliminary studies

    Science.gov (United States)

    Marlius; Kaniawati, I.; Feranie, S.

    2018-05-01

    A preliminary learning design using relay to promote twelfth grade student’s understanding of logic gates concept is implemented to see how well it’s to adopted by six high school students, three male students and three female students of twelfth grade. This learning design is considered for next learning of digital technology concept i.e. data digital transmition and analog. This work is a preliminary study to design the learning for large class. So far just a few researches designing learning design related to digital technology with relay. It may due to this concept inserted in Indonesian twelfth grade curriculum recently. This analysis is focus on student difficulties trough video analysis to learn the concept. Based on our analysis, the recommended thing for redesigning learning is: students understand first about symbols and electrical circuits; the Student Worksheet is made in more detail on the assembly steps to the project board; mark with symbols at points in certain places in the circuit for easy assembly; assembly using relays by students is enough until is the NOT’s logic gates and the others that have been assembled so that effective time. The design of learning using relays can make the relay a liaison between the abstract on the digital with the real thing of it, especially in the circuit of symbols and real circuits. Besides it is expected to also enrich the ability of teachers in classroom learning about digital technology.

  20. The Learning Journal Bridge: From Classroom Concepts to Leadership Practices

    Science.gov (United States)

    Maellaro, Rosemary

    2013-01-01

    The value of reflective writing assignments as learning tools for business students has been well-established. While the management education literature includes numerous examples of such assignments that are based on Kolb's (1984) experiential learning model, many of them engage only the first two phases of the model. When students do not move…

  1. Concept learning by direct current design challenges in secondary education

    NARCIS (Netherlands)

    Van Breukelen, D.H.J.; De Vries, M.J.; Schure, F.A.

    2016-01-01

    This paper presents a mixed methods study in which 77 students and 3 teachers took part, that investigated the practice of Learning by Design (LBD). The study is part of a series of studies, funded by the Netherlands Organisation for Scientific Research, that aims to improve student learning,

  2. Concept learning by direct current design challenges in secondary education

    NARCIS (Netherlands)

    MEd Dave van Breukelen; Prof. Dr. Marc de Vries; MEd Frank Schure

    2016-01-01

    This paper presents a mixed methods study in which 77 students and 3 teachers took part, that investigated the practice of Learning by Design (LBD). The study is part of a series of studies, funded by the Netherlands Organisation for Scientific Research (NWO), that aims to improve student learning,

  3. Concept learning by direct current design challenges in secondary education

    NARCIS (Netherlands)

    van Breukelen, D.H.J.; de Vries, M.J.; Schure, Frank A.

    2016-01-01

    This paper presents a mixed methods study in which 77 students and 3 teachers took part, that investigated the practice of Learning by Design (LBD). The study is part of a series of studies, funded by the Netherlands Organisation for Scientific Research, that aims to improve student learning,

  4. Mobile English Vocabulary Learning Based on Concept-Mapping Strategy

    Science.gov (United States)

    Liu, Pei-Lin

    2016-01-01

    Numerous researchers in education recognize that vocabulary is essential in foreign language learning. However, students often encounter vocabulary that is difficult to remember. Providing effective vocabulary learning strategies is therefore more valuable than teaching students a large amount of vocabulary. The purpose of this study was to…

  5. Naïve Conceptions About Multimedia Learning:A Study on Primary School Textbooks

    OpenAIRE

    Barbara eColombo; Alessandro eAntonietti

    2013-01-01

    An interview study, based on specific pictures taken from textbooks used in primary schools, was carried out to investigate illustrators’, teachers’, students’, and common people’s beliefs about the role that illustrations play in facilitating learning. Participants’ responses were internally coherent, indicating a systematic nature of the underlying naïve conceptions. Findings disprove Mayer’s pessimistic claim that laypersons’ conceptions of multimedia learning fail to match experiment...

  6. EFFECTIVENESS OF COOPERATIVE LEARNING IN IMPROVING MATHEMATICAL CONCEPTS AMONG STUDENTS WITH MILD INTELLECTUAL DISABILITY

    OpenAIRE

    Ibrahim Rajab Abbas Ibrahim

    2017-01-01

    The purpose of this study was to identify the effectiveness of cooperative learning in improving mathematical concepts among students with mild intellectual disability (SMID). The sample of the study consisted of 8 SMID at Najran in the Kingdom of Saudi Arabia. The sample of the study was divided randomly into two equal groups control and experimental. The students in the experimental group have studied the mathematical concepts by using cooperative learning; however the students in the contr...

  7. Self-Concept in Student Learning and Motivation Truant : Descriptive-Correlational Studies

    Directory of Open Access Journals (Sweden)

    Erlina Harahap

    2017-08-01

    Full Text Available This research is aimed describ the learning motivation and self-concept of students who truant. This study used a descriptive quantitative method. The research conducted by the students of SMAN 5 Padangsidimpuan in the period of 2015/2016 with the total of the population was 420 students. Amount of research sample was 36 students and had been chosen by using purposive sampling technique. An instrument employed in this study was a Likert-scaled questionnaire. Data were analyzed by using percentage technique and the relationship between the two variables was analyzed by using nonparametric statistic, that is Spearman’s Coefficient of Rank Correlation. Results of this research are just like the following: 1 participants’ level of achievement on self-concept of students who truant is about 69,8%, 2 participants’ level of achievement on learning motivation of students who truant is about 69,2%, and 3 correlation coefficient of self-concept and learning motivation of students who truant is about 0,581. Therefore, it can be concluded that students who truancy have very low self-concept and learning motivation, and there is a significant relationship between self-concept and learning motivation. The implication in guidance counseling services is to create a service program which can increase self-concept and be learning motivation of students who truant

  8. Building the Concept of Acceleration - A Proposal for Promoting the Meaningful Learning

    Directory of Open Access Journals (Sweden)

    José Ricardo Ledur

    2014-12-01

    Full Text Available This work aims to present a sequence of activities to help the students concept of acceleration. It was developed with a group of eighth grade elementary school sutdents in a state school of Bom Princípio, RS. The physical quantities of kinematics are presents on the day-a-day but in classroom is perceived that students, in general, have difficulties in developing and understanding of concepts related to that topic. Previous experiences that the student experiences in their daily lives led him to build their own conceptions to explain the phenomena observed, and in school, are faced with the scientifically accepted concepts. These preconceptions are strongly rooted in the cognitive structure of the learner, are not easily replaced and added to the lack of contextualization of content taught, unattractive learning resources and teaching that emphasizes rote learning are factors that contribute to failure of learning. The activities are based on the principles of meaningful learning and focused on active student participation. A pre test for identifying knowledge and preconceptions was applied as well as the post-test assessment of knowledge building. Figures with strobe photographs and video were used as prerequisites for the development of the new concept organizers. Later, the students elaborated and executed projects using resources of shooting and sequential shots to apply the concepts involved in this study. The results observed during the didatical sequence indicate that the occurrence of learning of the concepts of kinematics.

  9. Students' Conceptions on White Light and Implications for Teaching and Learning about Colour

    Science.gov (United States)

    Haagen-Schützenhöfer, Claudia

    2017-01-01

    The quality of learning processes is mainly determined by the extent to which students' conceptions are addressed and thus conceptual change is triggered. Colour phenomena are a topic within initial instruction of optics which is challenging. A physically adequate concept of white light is crucial for being able to grasp the processes underlying…

  10. The Motivational Effects of Types of Computer Feedback on Children's Learning and Retention of Relational Concepts.

    Science.gov (United States)

    Armour-Thomas, Eleanor; And Others

    The effects of different types of feedback in computer assisted instruction (CAI) on relational concept learning by young children were compared in this study. Subjects were 89 kindergarten students whose primary language was English, and whose performance on the Boehm Test of Basic Concepts was within the average range chosen from classes in a…

  11. A Teaching Sequence for Learning the Concept of Chemical Equilibrium in Secondary School Education

    Science.gov (United States)

    Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio

    2014-01-01

    A novel didactic sequence is proposed for the teaching of chemical equilibrium. This teaching sequence takes into account the historical and epistemological evolution of the concept, the alternative conceptions and learning difficulties highlighted by teaching science and research in education, and the need to focus on both the students'…

  12. Conceptions of Memorizing and Understanding in Learning, and Self-Efficacy Held by University Biology Majors

    Science.gov (United States)

    Lin, Tzu-Chiang; Liang, Jyh-Chong; Tsai, Chin-Chung

    2015-01-01

    This study aims to explore Taiwanese university students' conceptions of learning biology as memorizing or as understanding, and their self-efficacy. To this end, two questionnaires were utilized to survey 293 Taiwanese university students with biology-related majors. A questionnaire for measuring students' conceptions of memorizing and…

  13. Best Practices for Learning Video Concept Detectors from Social Media Examples

    NARCIS (Netherlands)

    Kordumova, S.; Li, X.; Snoek, C.G.M.

    2015-01-01

    Learning video concept detectors from social media sources, such as Flickr images and YouTube videos, has the potential to address a wide variety of concept queries for video search. While the potential has been recognized by many, and progress on the topic has been impressive, we argue that key

  14. Incorporating Learning Motivation and Self-Concept in Mathematical Communicative Ability

    Science.gov (United States)

    Rajagukguk, Waminton

    2016-01-01

    This research is trying to determine of the mathematical concepts, instead by integrating the learning motivation (X[subscript 1]) and self-concept (X[subscript 2]) can contribute to the mathematical communicative ability (Y). The test instruments showed the following results: (1) simple regressive equation Y on X[subscript 1] was Y = 32.891 +…

  15. Concept Mapping in the Humanities to Facilitate Reflection: Externalizing the Relationship between Public and Personal Learning

    Science.gov (United States)

    Kandiko, Camille; Hay, David; Weller, Saranne

    2013-01-01

    This article discusses how mapping techniques were used in university teaching in a humanities subject. The use of concept mapping was expanded as a pedagogical tool, with a focus on reflective learning processes. Data were collected through a longitudinal study of concept mapping in a university-level Classics course. This was used to explore how…

  16. Teachers' Self-Concept and Valuing of Learning: Relations with Teaching Approaches and Beliefs about Students

    Science.gov (United States)

    Yeung, Alexander S.; Craven, Rhonda G.; Kaur, Gurvinder

    2014-01-01

    One's self-concept and value perceptions can significantly influence one's behaviours and beliefs. Australian teachers from urban and rural areas of the state of New South Wales were asked to respond to survey items on two predictors (teacher self-concept, valuing of learning) and three outcomes. Confirmatory factor analysis established the five…

  17. Fostering Self-Concept and Interest for Statistics through Specific Learning Environments

    Science.gov (United States)

    Sproesser, Ute; Engel, Joachim; Kuntze, Sebastian

    2016-01-01

    Supporting motivational variables such as self-concept or interest is an important goal of schooling as they relate to learning and achievement. In this study, we investigated whether specific interest and self-concept related to the domains of statistics and mathematics can be fostered through a four-lesson intervention focusing on statistics.…

  18. Study on Correlation of English Pronunciation Self-Concept to English Learning

    Science.gov (United States)

    Tang, Xin; Zhang, Shengqi; Li, Yucong; Zhao, Miqiang

    2013-01-01

    English pronunciation self-concept is formed in the process of pronunciation learning, which refers to the learners' self-conception and assessment of one's English pronunciation proficiency and pronunciation (Gimson, A. C. 1980). This paper reports an investigation on 237 non-English major college students into the relationship between English…

  19. Joined up Thinking? Evaluating the Use of Concept-Mapping to Develop Complex System Learning

    Science.gov (United States)

    Stewart, Martyn

    2012-01-01

    In the physical and natural sciences, the complexity of natural systems and their interactions is becoming better understood. With increased emphasis on learning about complex systems, students will be encountering concepts that are dynamic, ill-structured and interconnected. Concept-mapping is a method considered particularly valuable for…

  20. Conceptions of learning and approaches to studying among White and ethnic minority students in distance education.

    Science.gov (United States)

    Richardson, John T E

    2010-12-01

    The attainment of White students at UK institutions of higher education tends to be higher than that of students from other ethnic groups, but the causes of this are unclear. This study compared White students and students from other ethnic groups in their conceptions of learning, their approaches to studying, and their academic attainment. A stratified sample of 1,146 White students and 1,146 students from other ethnic groups taking courses by distance learning with the UK Open University. The Mental Models section of the Inventory of Learning Styles and the Revised Approaches to Studying Inventory were administered in a postal survey. The students' questionnaire scores were contaminated by response bias, which varied across different ethnic groups. When adjusted to control for response bias, the scores on the two questionnaires shared 37.2% of their variance and made a significant contribution to predicting the students' attainment. White students were more likely to exhibit a meaning-directed learning pattern, whereas Asian and Black students were more likely to exhibit a reproduction-directed learning pattern. However, the variation in attainment across different ethnic groups remained significant when their questionnaire scores and prior qualifications were taken into account. There is a strong relationship between students' conceptions of learning and their approaches to studying, and variations in conceptions of learning in different ethnic groups give rise to variations in approaches to studying. However, factors other than prior qualifications and conceptions of learning are responsible for variation in attainment across different ethnic groups.

  1. The effect of a pretest in an interactive, multimodal pretraining system for learning science concepts

    NARCIS (Netherlands)

    Bos, Floor/Floris; Terlouw, C.; Pilot, Albert

    2009-01-01

    In line with the cognitive theory of multimedia learning by Moreno and Mayer (2007), an interactive, multimodal learning environment was designed for the pretraining of science concepts in the joint area of physics, chemistry, biology, applied mathematics, and computer sciences. In the experimental

  2. An Innovative Improvement of Engineering Learning System Using Computational Fluid Dynamics Concept

    Science.gov (United States)

    Hung, T. C.; Wang, S. K.; Tai, S. W.; Hung, C. T.

    2007-01-01

    An innovative concept of an electronic learning system has been established in an attempt to achieve a technology that provides engineering students with an instructive and affordable framework for learning engineering-related courses. This system utilizes an existing Computational Fluid Dynamics (CFD) package, Active Server Pages programming,…

  3. Learning sequential control in a Neural Blackboard Architecture for in situ concept reasoning

    NARCIS (Netherlands)

    van der Velde, Frank; van der Velde, Frank; Besold, Tarek R.; Lamb, Luis; Serafini, Luciano; Tabor, Whitney

    2016-01-01

    Simulations are presented and discussed of learning sequential control in a Neural Blackboard Architecture (NBA) for in situ concept-based reasoning. Sequential control is learned in a reservoir network, consisting of columns with neural circuits. This allows the reservoir to control the dynamics of

  4. Exploring the Self-concept of Adults with Mild Learning Disabilities

    Science.gov (United States)

    Pestana, Claudio

    2015-01-01

    This qualitative study aimed to add to the research on the self-concept of adults with mild learning disabilities and to generate a deeper understanding of their self-perceptions rather than draw generalised quantitative conclusions. Eight adults diagnosed with mild learning disabilities receiving support from a supported living project were…

  5. Structuring Cooperative Learning for Motivation and Conceptual Change in the Concepts of Mixtures

    Science.gov (United States)

    Belge Can, Hatice; Boz, Yezdan

    2016-01-01

    This study investigates the effect of structuring cooperative learning based on conceptual change approach on grade 9 students' understanding the concepts of mixtures and their motivation, compared with traditional instruction. Among six classes of a high school, two of them were randomly assigned to cooperative learning group where students were…

  6. Lifelong Learning as a Chameleonic Concept and Versatile Practice: Y2K Perspectives and Trends

    Science.gov (United States)

    Grace, Andre P.

    2004-01-01

    This essay focuses on contemporary lifelong-learning discourse as it was reflected in deliberations during three events held in Australia, Canada and the UK during 2000-01. Through the dialogical lenses of these Y2K events that brought together an array of international participants, it examines lifelong learning as a chameleonic concept and…

  7. Test-Enhanced Learning of Natural Concepts: Effects on Recognition Memory, Classification, and Metacognition

    Science.gov (United States)

    Jacoby, Larry L.; Wahlheim, Christopher N.; Coane, Jennifer H.

    2010-01-01

    Three experiments examined testing effects on learning of natural concepts and metacognitive assessments of such learning. Results revealed that testing enhanced recognition memory and classification accuracy for studied and novel exemplars of bird families on immediate and delayed tests. These effects depended on the balance of study and test…

  8. The Role of Flipped Learning in Managing the Cognitive Load of a Threshold Concept in Physiology

    Science.gov (United States)

    Akkaraju, Shylaja

    2016-01-01

    To help students master challenging, threshold concepts in physiology, I used the flipped learning model in a human anatomy and physiology course with very encouraging results in terms of student motivation, preparedness, engagement, and performance. The flipped learning model was enhanced by pre-training and formative assessments that provided…

  9. Exploring Students' Conceptions of Science Learning via Drawing: A Cross-Sectional Analysis

    Science.gov (United States)

    Hsieh, Wen-Min; Tsai, Chin-Chung

    2017-01-01

    This cross-sectional study explored students' conceptions of science learning via drawing analysis. A total of 906 Taiwanese students in 4th, 6th, 8th, 10th, and 12th grade were asked to use drawing to illustrate how they conceptualise science learning. Students' drawings were analysed using a coding checklist to determine the presence or absence…

  10. The Learning Disabled Adolescent: Eriksonian Psychosocial Development, Self-Concept, and Delinquent Behavior.

    Science.gov (United States)

    Pickar, Daniel B.; Tori, Christopher D.

    1986-01-01

    Using a developmental perspective, this study contrasted learning and nonlearning disabled adolescents on three variables: Erikson's stages of psychosocial development; self-concept; and delinquent behavior. The results indicated that the learning disabled subjects, due to years of failing, were unable to develop a sense of industry and…

  11. A CONCEPT OF SOFTWARE SUPPORT OF LEARNING PROGRAMMING LANGUAGE AND TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    V. Kruglyk

    2013-03-01

    Full Text Available A concept of software support of learning programming language and technologies is regarded in the article. Present systems of independent study of subjects, related to programming, are examined. Necessary components of a system of support learning programming languages and technologies, which is oriented on independent study, are considered.

  12. Conceptual Understanding of Acids and Bases Concepts and Motivation to Learn Chemistry

    Science.gov (United States)

    Cetin-Dindar, Ayla; Geban, Omer

    2017-01-01

    The purpose of this study was to investigate the effect of 5E learning cycle model oriented instruction (LCMI) on 11th-grade students' conceptual understanding of acids and bases concepts and student motivation to learn chemistry. The study, which lasted for 7 weeks, involved two groups: An experimental group (LCMI) and a control group (the…

  13. A Phenomenographic Study of Students' Conceptions of Quality in Learning in Higher Education in Rwanda

    Science.gov (United States)

    Mbabazi Bamwesiga, Penelope; Fejes, Andreas; Dahlgren, Lars-Owe

    2013-01-01

    The aim of this study is to understand the different ways that university students conceptualise quality in learning by drawing on a phenomenographic approach. A total of 20 students in higher education in Rwanda were interviewed and analysis of the interviews generated an outcome space of conceptions of quality in learning as transformation,…

  14. Naïve conceptions about multimedia learning: a study on primary school textbooks.

    Science.gov (United States)

    Colombo, Barbara; Antonietti, Alessandro

    2013-01-01

    HIGHLIGHTSThis interview study explores beliefs about the instructional role of illustrationsWe compared illustrators', teachers', students' and common people's ideasParticipants' responses were internally coherent and close to multimedia learning theoryWe propose and discuss an integrated multimedia learning model An interview study, based on specific pictures taken from textbooks used in primary schools, was carried out to investigate illustrators', teachers', students', and common people's beliefs about the role that illustrations play in facilitating learning. Participants' responses were internally coherent, indicating a systematic nature of the underlying naïve conceptions. Findings disprove Mayer's pessimistic claim that laypersons' conceptions of multimedia learning fail to match experimentally supported principles and theories. On the contrary, interviewees spontaneously came very close to the multimedia learning theory, which states that students learn better from pictures, which fit specific cognitive principles. Implications for school instruction are highlighted.

  15. Machine learning concepts in coherent optical communication systems

    DEFF Research Database (Denmark)

    Zibar, Darko; Schäffer, Christian G.

    2014-01-01

    Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA.......Powerful statistical signal processing methods, used by the machine learning community, are addressed and linked to current problems in coherent optical communication. Bayesian filtering methods are presented and applied for nonlinear dynamic state tracking. © 2014 OSA....

  16. Comparison between project-based learning and discovery learning toward students' metacognitive strategies on global warming concept

    Science.gov (United States)

    Tumewu, Widya Anjelia; Wulan, Ana Ratna; Sanjaya, Yayan

    2017-05-01

    The purpose of this study was to know comparing the effectiveness of learning using Project-based learning (PjBL) and Discovery Learning (DL) toward students metacognitive strategies on global warming concept. A quasi-experimental research design with a The Matching-Only Pretest-Posttest Control Group Design was used in this study. The subjects were students of two classes 7th grade of one of junior high school in Bandung City, West Java of 2015/2016 academic year. The study was conducted on two experimental class, that were project-based learning treatment on the experimental class I and discovery learning treatment was done on the experimental class II. The data was collected through questionnaire to know students metacognitive strategies. The statistical analysis showed that there were statistically significant differences in students metacognitive strategies between project-based learning and discovery learning.

  17. The Effect of Using Concept Maps in Elementary Linear Algebra Course on Students’ Learning

    Science.gov (United States)

    Syarifuddin, H.

    2018-04-01

    This paper presents the results of a classroom action research that was done in Elementary Linear Algebra course at Universitas Negeri Padang. The focus of the research want to see the effect of using concept maps in the course on students’ learning. Data in this study were collected through classroom observation, students’ reflective journal and concept maps that were created by students. The result of the study was the using of concept maps in Elementary Linera Algebra course gave positive effect on students’ learning.

  18. Motivating Students' Learning Using Word Association Test and Concept Maps

    Directory of Open Access Journals (Sweden)

    Z. Kostova

    2010-06-01

    Full Text Available The paper presents the effect of a free word association test, content analysis and concept mapping on students’ achievements in human biology. The free word association test was used for revealing the scientific conceptual structures of 8th grade and 12th grade students, around a stimulus word – human being – and for motivating them to study human biology. The stimulus word retrieved a cluster of associations most of which were based on science education and experience. Associations with the stimulus word were analyzed and classified according to predetermined criteria and structured by means of a concept map. The stimulus word ‘human being’ was quantitatively assessed in order to find out the balance between the associations with its different aspects. On the basis of the results some connections between biology and other sciences studying the human being, were worked out. Each new topic in human biology was studied by using content analysis of the textbook and concept mapping as study tools and thus maintaining students’ motivation. Achievements of students were assessed by means of tests, observation and concept maps evaluation. The obtained data was also valuable in clarifying the complex nature of the human being, and confirming the statement that biology cannot answer all questions, concerning human nature. Inferences were made about the word association test combined with content analysis and concept map construction as an educational strategy.

  19. Grade Level Differences in High School Students' Conceptions of and Motives for Learning Science

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung

    2017-08-01

    Students' conceptions of learning science and their relations with motive for learning may vary as the education level increases. This study aimed to compare the quantitative patterns in students' conceptions of learning science (COLS) and motives for learning science (MLS) across grade levels by adopting two survey instruments. A total of 768 high school students were surveyed in Taiwan, including 204 eighth graders, 262 tenth graders, and 302 12th graders. In the current research, memorizing, testing, and calculating and practicing were categorized as reproductive conceptions of learning science, while increase of knowledge, applying, understanding and seeing-in-a-new-way were regarded as constructivist conceptions. The results of multivariate analyses of variance (MANOVA) revealed that conceptions of learning science are more constructivist as education level increases. Both tenth graders and 12th graders endorsed understanding, seeing-in-a-new-way, and the constructivist COLS composite more strongly than the eighth graders did. In addition, the results of multigroup structural equation modeling (SEM) analysis indicated that the positive relations between testing and reproductive COLS were stronger as the grade level increased, while the negative relations between reproductive COLS and deep motive were tighter with the increase in grade level.

  20. Collaborative and Multilingual Approach to Learn Database Topics Using Concept Maps

    Science.gov (United States)

    Calvo, Iñaki

    2014-01-01

    Authors report on a study using the concept mapping technique in computer engineering education for learning theoretical introductory database topics. In addition, the learning of multilingual technical terminology by means of the collaborative drawing of a concept map is also pursued in this experiment. The main characteristics of a study carried out in the database subject at the University of the Basque Country during the 2011/2012 course are described. This study contributes to the field of concept mapping as these kinds of cognitive tools have proved to be valid to support learning in computer engineering education. It contributes to the field of computer engineering education, providing a technique that can be incorporated with several educational purposes within the discipline. Results reveal the potential that a collaborative concept map editor offers to fulfil the above mentioned objectives. PMID:25538957

  1. A Semantic Representation Of Adult Learners' Developing Conceptions Of Self Realisation Through Learning Process

    DEFF Research Database (Denmark)

    Badie, Farshad

    2016-01-01

    based on educational informatics. I shall draw your attention to the fact that in information sciences an ontology is described as an explicit (and formal) specification of a shared conceptualisation on the domain of interest. Ontologies of a thing/phenomenon support different researchers in providing......Learning is the reflective activity that enables the learner to draw upon her/his previous experiences and background knowledge to conceptualise, realise, understand and evaluate the present, so as to shape her/his future actions and to construct and develop new knowledge for her(him)self. Learning....... This research will conceptually focus on multiple categories through the adult learners’ developing conceptions of learning. The focus will be on different categories from the basic conceptions to excellent ones. I will take an appropriate model of students’ developing conceptions of learning into my...

  2. Learning and retention of quantum concepts with different teaching methods

    Science.gov (United States)

    Deslauriers, Louis; Wieman, Carl

    2011-06-01

    We measured mastery and retention of conceptual understanding of quantum mechanics in a modern physics course. This was studied for two equivalent cohorts of students taught with different pedagogical approaches using the Quantum Mechanics Conceptual Survey. We measured the impact of pedagogical approach both on the original conceptual learning and on long-term retention. The cohort of students who had a very highly rated traditional lecturer scored 19% lower than the equivalent cohort that was taught using interactive engagement methods. However, the amount of retention was very high for both cohorts, showing only a few percent decrease in scores when retested 6 and 18 months after completion of the course and with no exposure to the material in the interim period. This high level of retention is in striking contrast to the retention measured for more factual learning from university courses and argues for the value of emphasizing conceptual learning.

  3. The Cognitive Science of Learning: Concepts and Strategies for the Educator and Learner.

    Science.gov (United States)

    Weidman, Joseph; Baker, Keith

    2015-12-01

    Education is the fundamental process used to develop and maintain the professional skills of physicians. Medical students, residents, and fellows are expected to learn considerable amounts of information as they progress toward board certification. Established practitioners must continue to learn in an effort to remain up-to-date in their clinical realm. Those responsible for educating these populations endeavor to teach in a manner that is effective, efficient, and durable. The study of learning and performance is a subdivision of the field of cognitive science that focuses on how people interpret and process information and how they eventually develop mastery. A deeper understanding of how individuals learn can empower both educators and learners to be more effective in their endeavors. In this article, we review a number of concepts found in the literature on learning and performance. We address both the theoretical principles and the practical applications of each concept. Cognitive load theory, constructivism, and analogical transfer are concepts particularly beneficial to educators. An understanding of goal orientation, metacognition, retrieval, spaced learning, and deliberate practice will primarily benefit the learner. When these concepts are understood and incorporated into education and study, the effectiveness of learning is significantly improved.

  4. Future Time Orientation and Learning Conceptions: Effects on Metacognitive Strategies, Self-Efficacy Beliefs, Study Effort and Academic Achievement

    Science.gov (United States)

    Gutiérrez-Braojos, Calixto

    2015-01-01

    During the past decade, research on the constructive learning process has been conducted mainly from two perspectives: student approaches to learning (SAL) and self-regulated learning (SRL). The SAL perspective has highlighted the role of learning conceptions with respect to other topics involved in constructive learning processes, whereas…

  5. Learning to Play: A "Hedgehog Concept" for Physical Education

    Science.gov (United States)

    Johnson, Tyler

    2014-01-01

    What is physical education and why does it exist? Despite its relatively long and storied history, consensus about the main purpose of physical education remains minimal. This article explores three questions, developed by Jim Collins in his best-selling book Good to Great, to help organizations identify a hedgehog concept, or primary reason for…

  6. Concept Learning versus Problem Solving: Is There a Difference?

    Science.gov (United States)

    Nurrenbern, Susan C.; Pickering, Miles

    1987-01-01

    Reports on a study into the relationship between a student's ability to solve problems in chemistry and his/her understanding of molecular concepts. Argues that teaching students to solve problems about chemistry is not equivalent to teaching about the nature of matter. (TW)

  7. Mikhail Geraskov (1874-1957): Methodological Concepts of Learning Physics

    Science.gov (United States)

    Ilieva, Mariyana

    2014-01-01

    Mikhail Geraskov is a distinguished Bulgarian educator from the first half of the twentieth century, who developed the scientific foundations of didactics and methodology of training. His work contributed a lot to the development of the Bulgarian pedagogy. The subject of scientific research is didactical conceptions and methodological conceptions…

  8. Incremental concept learning with few training examples and hierarchical classification

    NARCIS (Netherlands)

    Bouma, H.; Eendebak, P.T.; Schutte, K.; Azzopardi, G.; Burghouts, G.J.

    2015-01-01

    Object recognition and localization are important to automatically interpret video and allow better querying on its content. We propose a method for object localization that learns incrementally and addresses four key aspects. Firstly, we show that for certain applications, recognition is feasible

  9. Stories, Proverbs, and Anecdotes as Scaffolds for Learning Science Concepts

    Science.gov (United States)

    Mutonyi, Harriet

    2016-01-01

    Few research studies in science education have looked at how stories, proverbs, and anecdotes can be used as scaffolds for learning. Stories, proverbs, and anecdotes are cultural tools used in indigenous communities to teach children about their environment. The study draws on Bruner's work and the theory of border crossing to argue that stories,…

  10. Engineering students' conceptions of entrepreneurial learning as part of their education

    Science.gov (United States)

    Täks, Marge; Tynjälä, Päivi; Kukemelk, Hasso

    2016-01-01

    The purpose of this study was to examine what kinds of conceptions of entrepreneurial learning engineering students expressed in an entrepreneurship course integrated in their study programme. The data were collected during an entrepreneurship course in Estonia that was organised for fourth-year engineering students, using video-recorded group interviews (N = 48) and individual in-depth interviews (N = 16). As a result of the phenomenographic analysis, four qualitatively distinctive conceptions of entrepreneurial learning were discerned. Entrepreneurial learning was seen to involve (1) applying entrepreneurial ideas to engineering, (2) understanding entrepreneurial issues in a new way, (3) action-oriented personal development, and (4) self-realising through collective effort. These qualitatively distinct categories differed from each other in four dimensions of variation: nature of learning, response to pedagogy, relation to teamwork, and learning outcomes.

  11. Distributing learning over time: the spacing effect in children's acquisition and generalization of science concepts.

    Science.gov (United States)

    Vlach, Haley A; Sandhofer, Catherine M

    2012-01-01

    The spacing effect describes the robust finding that long-term learning is promoted when learning events are spaced out in time rather than presented in immediate succession. Studies of the spacing effect have focused on memory processes rather than for other types of learning, such as the acquisition and generalization of new concepts. In this study, early elementary school children (5- to 7-year-olds; N = 36) were presented with science lessons on 1 of 3 schedules: massed, clumped, and spaced. The results revealed that spacing lessons out in time resulted in higher generalization performance for both simple and complex concepts. Spaced learning schedules promote several types of learning, strengthening the implications of the spacing effect for educational practices and curriculum. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  12. Development of Problem-Based Learning Oriented Teaching Learning Materials to Facilitate Students’ Mastery of Concept and Critical Thinking Skill

    Science.gov (United States)

    Reza, M.; Ibrahim, M.; Rahayu, Y. S.

    2018-01-01

    This research aims to develop problem-based learning oriented teaching materials to improve students’ mastery of concept and critical thinking skill. Its procedure was divided into two phases; developmental phase and experimental phase. This developmental research used Four-D Model. However, within this research, the process of development would not involve the last stages, which is disseminate. The teaching learning materials which were developed consist of lesson plan, student handbook, student worksheet, achievement test and critical thinking skill test. The experimental phase employs a research design called one group pretest-posttest design. Results show that the validity of the teaching materials which were developed was good and revealed the enhancement of students’ activities with positive response to the teaching learning process. Furthermore, the learning materials improve the students’ mastery of concept and critical thinking skill.

  13. [Learning from errors: applying aviation safety concepts to medicine].

    Science.gov (United States)

    Sommer, K-J

    2012-11-01

    Health care safety levels range below other complex industries. Civil aviation has throughout its history developed methods and concepts that have made the airplane into one of the safest means of mass transport. Key elements are accident investigations that focus on cause instead of blame, human-centered design of machinery and processes, continuous training of all personnel and a shared safety culture. These methods and concepts can basically be applied to medicine which has successfully been achieved in certain areas, however, a comprehensive implementation remains to be completed. This applies particularly to including the topic of safety into relevant curricula. Physicians are obliged by the oath"primum nil nocere" to act, but economic as well as political pressure will eventually confine professional freedom if initiative is not taken soon.

  14. The Context-Specific Conceptions of Learning in Case-Based Accounting Assignments, Students' Characteristics and Performance

    Science.gov (United States)

    Moilanen, Sinikka

    2017-01-01

    The present study contributes to accounting education literature by describing context-specific conceptions of learning related to case assignments, and by exploring the associations between the conceptions of learning, students' characteristics and performance. The data analysed consist of 1320 learning diaries of 336 students, connected with…

  15. The Conceptions of Learning Science by Laboratory among University Science-Major Students: Qualitative and Quantitative Analyses

    Science.gov (United States)

    Chiu, Yu-Li; Lin, Tzung-Jin; Tsai, Chin-Chung

    2016-01-01

    Background: The sophistication of students' conceptions of science learning has been found to be positively related to their approaches to and outcomes for science learning. Little research has been conducted to particularly investigate students' conceptions of science learning by laboratory. Purpose: The purpose of this research, consisting of…

  16. The use of concept maps as an indicator of significant learning in Calculus

    Directory of Open Access Journals (Sweden)

    Naíma Soltau Ferrão

    2014-03-01

    Full Text Available This paper contains reflections and results of a research that aimed to apply and analyze the use of concept maps in Higher Education as an indicator of significant learning concerning derivative as mathematical object with students that finished Differential and Integral Calculus. This is a qualitative approach, situated in the area of mathematics education, based on Ausubel's Theory of Meaningful Learning and on technique of Novak's Concept Mapping. As data acquisition instruments, use of classroom observations, questionnaire, brainstorming and digital conceptual mapping, made by an undergraduate physics course. To analyze we defined four aspects to be observed in the maps constructed by students: (i validity of propositions formed with concepts, (ii hierarchization, (iii cross-links between the propositions, and (vi the presence of applications. The identification of these elements, taken as reference to analyze the maps, allowed the collection of information about how each student has structured and correlated the set of concepts learned on the derivative of a function along their course. Based on the results, we have identified in the digital conceptual maps effective tools to evaluate the students in terms of meaningful learning about specific contents of Differential and Integral Calculus by the hierarchy of concepts, progressive differentiation and integrative reconciliation as defined in the Theory of Meaningful Learning.

  17. High School Students' Epistemological Beliefs, Conceptions of Learning, and Self-Efficacy for Learning Biology: A Study of Their Structural Models

    Science.gov (United States)

    Sadi, Özlem; Dagyar, Miray

    2015-01-01

    The current work reveals the data of the study which examines the relationships among epistemological beliefs, conceptions of learning, and self-efficacy for biology learning with the help of the Structural Equation Modeling. Three questionnaires, the Epistemological Beliefs, the Conceptions of Learning Biology and the Self-efficacy for Learning…

  18. Conceptions of How a Learning or Teaching Curriculum, Workplace Culture and Agency of Individuals Shape Medical Student Learning and Supervisory Practices in the Clinical Workplace

    Science.gov (United States)

    Strand, Pia; Edgren, Gudrun; Borna, Petter; Lindgren, Stefan; Wichmann-Hansen, Gitte; Stalmeijer, Renée E.

    2015-01-01

    The role of workplace supervisors in the clinical education of medical students is currently under debate. However, few studies have addressed how supervisors conceptualize workplace learning and how conceptions relate to current sociocultural workplace learning theory. We explored physician conceptions of: (a) medical student learning in the…

  19. A New Concept Map Model for E-Learning Environments

    Science.gov (United States)

    Dattolo, Antonina; Luccio, Flaminia L.

    Web-based education enables learners and teachers to access a wide quantity of continuously updated educational sources. In order to support the learning process, a system has to provide some fundamental features, such as simple mechanisms for the identification of the collection of “interesting” documents, adequate structures for storing, organizing and visualizing these documents, and appropriate mechanisms for creating personalized adaptive paths and views for learners.

  20. Illusory inferences from a disjunction of conditionals: a new mental models account.

    Science.gov (United States)

    Barrouillet, P; Lecas, J F

    2000-08-14

    (Johnson-Laird, P.N., & Savary, F. (1999, Illusory inferences: a novel class of erroneous deductions. Cognition, 71, 191-229.) have recently presented a mental models account, based on the so-called principle of truth, for the occurrence of inferences that are compelling but invalid. This article presents an alternative account of the illusory inferences resulting from a disjunction of conditionals. In accordance with our modified theory of mental models of the conditional, we show that the way individuals represent conditionals leads them to misinterpret the locus of the disjunction and prevents them from drawing conclusions from a false conditional, thus accounting for the compelling character of the illusory inference.

  1. Molecular biogeography of tribe Thermopsideae (Leguminosae): A Madrean-Tethyan disjunction pattern with an African origin of core genistoides

    Science.gov (United States)

    Ming-Li Zhang; Jian-Feng Huang; Stewart C. Sanderson; Ping Yan; Yu-H Wu; Bo-Rong Pan

    2015-01-01

    Thermopsideae has 45 species and exhibits a series of interesting biogeographical distribution patterns, such as Madrean-Tethyan disjunction and EastAsia-North America disjunction,with a center of endemism in the Qinghai-Xizang Plateau (QTP) and Central Asia. Phylogenetic analysis in this paper employed maximum likelihood using ITS, rps16, psbA-trnH, and trnL-F...

  2. Learning style and concept acquisition of community college students in introductory biology

    Science.gov (United States)

    Bobick, Sandra Burin

    This study investigated the influence of learning style on concept acquisition within a sample of community college students in a general biology course. There are two subproblems within the larger problem: (1) the influence of demographic variables (age, gender, number of college credits, prior exposure to scientific information) on learning style, and (2) the correlations between prior scientific knowledge, learning style and student understanding of the concept of the gene. The sample included all students enrolled in an introductory general biology course during two consecutive semesters at an urban community college. Initial data was gathered during the first week of the semester, at which time students filled in a short questionnaire (age, gender, number of college credits, prior exposure to science information either through reading/visual sources or a prior biology course). Subjects were then given the Inventory of Learning Processes-Revised (ILP-R) which measures general preferences in five learning styles; Deep Learning; Elaborative Learning, Agentic Learning, Methodical Learning and Literal Memorization. Subjects were then given the Gene Conceptual Knowledge pretest: a 15 question objective section and an essay section. Subjects were exposed to specific concepts during lecture and laboratory exercises. At the last lab, students were given the Genetics Conceptual Knowledge Posttest. Pretest/posttest gains were correlated with demographic variables and learning styles were analyzed for significant correlations. Learning styles, as the independent variable in a simultaneous multiple regression, were significant predictors of results on the gene assessment tests, including pretest, posttest and gain. Of the learning styles, Deep Learning accounted for the greatest positive predictive value of pretest essay and pretest objective results. Literal Memorization was a significant negative predictor for posttest essay, essay gain and objective gain. Simultaneous

  3. Students' Conception of Learning Environment and Their Approach to Learning and Its Implication on Quality Education

    Science.gov (United States)

    Belaineh, Matheas Shemelis

    2017-01-01

    Quality of education in higher institutions can be affected by different factors. It partly rests on the learning environment created by teachers and the learning approach students are employing during their learning. The main purpose of this study is to examine the learning environment at Mizan Tepi University from students' perspective and their…

  4. The impact of project-based learning on improving student learning outcomes of sustainability concepts in transportation engineering courses

    Science.gov (United States)

    Fini, Elham H.; Awadallah, Faisal; Parast, Mahour M.; Abu-Lebdeh, Taher

    2018-05-01

    This paper describes an intervention to enhance students' learning by involving students in brainstorming activities about sustainability concepts and their implications in transportation engineering. The paper discusses the process of incorporating the intervention into a transportation course, as well as the impact of this intervention on students' learning outcomes. To evaluate and compare students' learning as a result of the intervention, the Laboratory for Innovative Technology and Engineering Education survey instrument was used. The survey instrument includes five constructs: higher-order cognitive skills, self-efficacy, ease of learning subject matter, teamwork, and communication skills. Pre- and post-intervention surveys of student learning outcomes were conducted to determine the effectiveness of the intervention on enhancing students' learning outcomes. The results show that the implementation of the intervention significantly improved higher-order cognitive skills, self-efficacy, teamwork, and communication skills. Involving students in brainstorming activities related to sustainability concepts and their implications in transportation proved to be an effective teaching and learning strategy.

  5. Design e-learning with flipped learning model to improve layout understanding the concepts basic of the loop control structure

    Science.gov (United States)

    Handayani, D. P.; Sutarno, H.; Wihardi, Y.

    2018-05-01

    This study aimed in design and build e-learning with classroom flipped model to improve the concept of understanding of SMK students on the basic programming subject. Research and development obtained research data from survey questionnaire given to students of SMK class X RPL in SMK Negeri 2 Bandung and interviews to RPL productive teacher. Data also obtained from questionnaire of expert validation and students' assessment from e-learning with flipped classroom models. Data also obtained from multiple-choice test to measure improvements in conceptual understanding. The results of this research are: 1) Developed e- learning with flipped classroom model considered good and worthy of use by the average value of the percentage of 86,3% by media experts, and 85,5% by subjects matter experts, then students gave judgment is very good on e-learning either flipped classroom model with a percentage of 79,15% votes. 2) e-learning with classroom flipped models show an increase in the average value of pre-test before using e-learning 26.67 compared to the average value post-test after using e- learning at 63.37 and strengthened by the calculation of the index gains seen Increased understanding of students 'concepts by 50% with moderate criteria indicating that students' understanding is improving.

  6. Communities of Practice and Social Learning Systems: the Career of a Concept

    Science.gov (United States)

    Wenger, Etienne

    The concept of community of practice was not born in the systems theory tradition. It has its roots in attempts to develop accounts of the social nature of human learning inspired by anthropology and social theory (Lave, 1988; Bourdieu, 1977; Giddens, 1984; Foucault, 1980; Vygotsky, 1978). But the concept of community of practice is well aligned with the perspective of systems traditions. A community of practice itself can be viewed as a simple social system. And a complex social system can be viewed as constituted by interrelated communities of practice. In this essay I first explore the systemic nature of the concept at these two levels. Then I use this foundation to look at the applications of the concept, some of its main critiques, and its potential for developing a social discipline of learning.

  7. The Impact of Project-Based Learning on Improving Student Learning Outcomes of Sustainability Concepts in Transportation Engineering Courses

    Science.gov (United States)

    Fini, Elham H.; Awadallah, Faisal; Parast, Mahour M.; Abu-Lebdeh, Taher

    2018-01-01

    This paper describes an intervention to enhance students' learning by involving students in brainstorming activities about sustainability concepts and their implications in transportation engineering. The paper discusses the process of incorporating the intervention into a transportation course, as well as the impact of this intervention on…

  8. Learning, Action and Solutions in Action Learning: Investigation of Facilitation Practice Using the Concept of Living Theories

    Science.gov (United States)

    Sanyal, Chandana

    2018-01-01

    This paper explores the practice of action learning (AL) facilitation in supporting AL set members to address their 'messy' problems through a self-reflexive approach using the concept of 'living theory' [Whitehead, J., and J. McNiff. 2006. "Action Research Living Theory." London: Sage]. The facilitation practice is investigated through…

  9. Conceptions of E-Learning and Professional Development for E-Learning Held by Tertiary Educators in New Zealand

    Science.gov (United States)

    Stein, Sarah J.; Shephard, Kerry; Harris, Irene

    2011-01-01

    The conceptions an individual holds about a phenomenon can influence and determine associated behaviours and perspectives. Consequently, they have a bearing upon how learning about a phenomenon is undertaken and how that phenomenon is experienced and applied in context. A phenomenographic research approach was used to gather the expressed…

  10. Use of concept maps to promote electrocardiogram diagnosis learning in undergraduate medical students

    Science.gov (United States)

    Dong, Ruimin; Yang, Xiaoyan; Xing, Bangrong; Zou, Zihao; Zheng, Zhenda; Xie, Xujing; Zhu, Jieming; Chen, Lin; Zhou, Hanjian

    2015-01-01

    Concept mapping is an effective method in teaching and learning, however this strategy has not been evaluated among electrocardiogram (ECG) diagnosis learning. This study explored the use of concept maps to assist ECG study, and sought to analyze whether this method could improve undergraduate students’ ECG interpretation skills. There were 126 undergraduate medical students who were randomly selected and assigned to two groups, group A (n = 63) and group B (n = 63). Group A was taught to use concept maps to learn ECG diagnosis, while group B was taught by traditional methods. After the course, all of the students were assessed by having an ECG diagnostic test. Quantitative data which comprised test score and ECG features completion index was compared by using the unpaired Student’s t-test between the two groups. Further, a feedback questionnaire on concept maps used was also completed by group A, comments were evaluated by a five-point Likert scale. The test scores of ECGs interpretation was 7.36 ± 1.23 in Group A and 6.12 ± 1.39 in Group B. A significant advantage (P = 0.018) of concept maps was observed in ECG interpretation accuracy. No difference in the average ECG features completion index was observed between Group A (66.75 ± 15.35%) and Group B (62.93 ± 13.17%). According qualitative analysis, majority of students accepted concept maps as a helpful tool. Difficult to learn at the beginning and time consuming are the two problems in using this method, nevertheless most of the students indicated to continue using it. Concept maps could be a useful pedagogical tool in enhancing undergraduate medical students’ ECG interpretation skills. Furthermore, students indicated a positive attitude to it, and perceived it as a resource for learning. PMID:26221331

  11. Open Integrated Personal Learning Environment: Towards a New Conception of the ICT-Based Learning Processes

    Science.gov (United States)

    Conde, Miguel Ángel; García-Peñalvo, Francisco José; Casany, Marià José; Alier Forment, Marc

    Learning processes are changing related to technological and sociological evolution, taking this in to account, a new learning strategy must be considered. Specifically what is needed is to give an effective step towards the eLearning 2.0 environments consolidation. This must imply the fusion of the advantages of the traditional LMS (Learning Management System) - more formative program control and planning oriented - with the social learning and the flexibility of the web 2.0 educative applications.

  12. Disability, technology and e-learning: challenging conceptions

    Directory of Open Access Journals (Sweden)

    Jane Seale

    2006-12-01

    Full Text Available In considering the role that technology and e-learning can play in helping students access higher education and an effective learning experience, a large amount of the current research and practice literature focuses almost exclusively on accessibility legislation, guidelines and standards, and the rules contained within them (Abascal et al., 2004; Chisholm & Brewer, 2005; Gunderson & May, 2005; Paolucci, 2004; Reed et al., 2004; Slatin, 2005. One of the major problems of such an approach is that it has drawn higher education practitioners into thinking that their objective is to comply with rules. I argue that it is not (Seale, 2006. The objective should be to address the needs of students. The danger of only focusing on rules is that it can constrain thinking and therefore practice. We need to expand our thinking beyond that of how to comply with rules, towards how to meet the needs of students with disabilities, within the local contexts that students and practitioners are working. In thinking about how to meet the needs of students with disabilities, practitioners will need to develop their own tools. These tools might be user case studies, evaluation methodologies or conceptualizations:

  13. Possible Major Influences of Children Learning Social Studies on Academic Self Concept and Achievement

    Directory of Open Access Journals (Sweden)

    Laurens Kaluge

    2016-02-01

    Full Text Available This study was aimed at finding the best model to explain pupil academic attainment in learning social studies. The data came from pupils learning Social Studies at grade 3 and 4 of primary schools. The structural equation model contained 2 exogenous constructs–attitudes toward school and locus of control–and 2 endogenous constructs–self-concept and academic achievement. It was confirmed that the academic self-concept and achievement related to each other and both were influenced by attitudes toward school and internal locus of control. The model was fitting differently for different grade.

  14. A Conceptual Framework over Contextual Analysis of Concept Learning within Human-Machine Interplays

    DEFF Research Database (Denmark)

    Badie, Farshad

    2016-01-01

    This research provides a contextual description concerning existential and structural analysis of ‘Relations’ between human beings and machines. Subsequently, it will focus on conceptual and epistemological analysis of (i) my own semantics-based framework [for human meaning construction] and of (ii......) a well-structured machine concept learning framework. Accordingly, I will, semantically and epistemologically, focus on linking those two frameworks for logical analysis of concept learning in the context of human-machine interrelationships. It will be demonstrated that the proposed framework provides...

  15. Mapping of Students’ Learning Progression Based on Mental Model in Magnetic Induction Concepts

    Science.gov (United States)

    Hamid, R.; Pabunga, D. B.

    2017-09-01

    The progress of student learning in a learning process has not been fully optimally observed by the teacher. The concept being taught is judged only at the end of learning as a product of thinking, and does not assess the mental processes that occur in students’ thinking. Facilitating students’ thinking through new phenomena can reveal students’ variation in thinking as a mental model of a concept, so that students who are assimilative and or accommodative can be identified in achieving their equilibrium of thought as well as an indicator of progressiveness in the students’ thinking stages. This research data is obtained from the written documents and interviews of students who were learned about the concept of magnetic induction through Constructivist Teaching Sequences (CTS) models. The results of this study indicate that facilitating the students’ thinking processes on the concept of magnetic induction contributes to increasing the number of students thinking within the "progressive change" category, and it can be said that the progress of student learning is more progressive after their mental models were facilitated through a new phenomena by teacher.

  16. Army Learning Concept 2015: These Are Not the Droids You Are Looking For

    Science.gov (United States)

    2011-06-07

    Chicago: University of Chicago Press, 1974. 4 smallwarsjournal.com programs, which value andragogy , rather than pedagogy and technology, must...accommodate several fundamental aspects in order to be effective. According to Malcolm Knowles, andragogy identifies adult learning principles as: (1...the topic and this is done by showing Soldiers how they can apply learning. ALC 2015 provides a reference to Malcolm Knowles concept of andragogy

  17. Training in robotics: The learning curve and contemporary concepts in training.

    Science.gov (United States)

    Bach, Christian; Miernik, Arkadiusz; Schönthaler, Martin

    2014-03-01

    To define the learning curve of robot-assisted laparoscopic surgery for prostatectomy (RALP) and upper tract procedures, and show the differences between the classical approach to training and the new concept of parallel learning. This mini-review is based on the results of a Medline search using the keywords 'da Vinci', 'robot-assisted laparoscopic surgery', 'training', 'teaching' and 'learning curve'. For RALP and robot-assisted upper tract surgery, a learning curve of 8-150 procedures is quoted, with most articles proposing that 30-40 cases are needed to carry out the procedure safely. There is no consensus about which endpoints should be measured. In the traditional proctored training model, the surgeon learns the procedure linearly, following the sequential order of the surgical steps. A more recent approach is to specify the relative difficulty of each step and to train the surgeon simultaneously in several steps of equal difficulty. The entire procedure is only performed after all the steps are mastered in a timely manner. Recently, a 'warm-up' before robotic surgery has been shown to be beneficial for successful surgery in the operating room. There is no clear definition of the duration of the effective learning curve for RALP and robotic upper tract surgery. The concept of stepwise, parallel learning has the potential to accelerate the learning process and to make sure that initial cases are not too long. It can also be assumed that a preoperative 'warm up' could help significantly to improve the progress of the trainee.

  18. Empirical evidence of the effectiveness of concept mapping as a learning intervention for nuclear medicine technology students in a distance learning radiation protection and biology course.

    Science.gov (United States)

    Passmore, Gregory G; Owen, Mary Anne; Prabakaran, Krishnan

    2011-12-01

    Metacognitive learning strategies are based on instructional learning theory, which promotes deep, meaningful learning. Educators in a baccalaureate-level nuclear medicine technology program demonstrated that students enrolled in an online, distance learning section of an introductory radiation protection and radiobiology course performed better when traditional instruction was supplemented with nontraditional metacognitive learning strategies. The metacognitive learning strategy that was used is best known as concept mapping. The concept map, in addition to the standard homework problem assignment and opportunity for question-answer sessions, became the template for misconception identification and remediation interactions between the instructor and the student. The control group relied on traditional homework problems and question-answer sessions alone. Because students in both the "treatment" groups (i.e., students who used concept mapping) and the control group were distance learning students, all personal communications were conducted via e-mail or telephone. The final examination of the course was used to facilitate a quantitative comparison of the performance of students who used concept mapping and the performance of students who did not use concept mapping. The results demonstrated a significantly higher median final examination score for the concept mapping group than for the non-concept mapping group (z = -2.0381, P = 0.0415), with an appropriately large effect size (2.65). Concept mapping is a cognitive learning intervention that effectively enables meaningful learning and is suitable for use in the independent learner-oriented distance learning environments used by some nuclear medicine technology programs.

  19. Students’ conceptions on white light and implications for teaching and learning about colour

    Science.gov (United States)

    Haagen-Schützenhöfer, Claudia

    2017-07-01

    The quality of learning processes is mainly determined by the extent to which students’ conceptions are addressed and thus conceptual change is triggered. Colour phenomena are a topic within initial instruction of optics which is challenging. A physically adequate concept of white light is crucial for being able to grasp the processes underlying colour formation. Our previous research suggests that misconceptions on white light may influence the conceptual understanding of colour phenomena. For the design of a learning environment on light and colours, the literature was reviewed. Then an explorative interview study with participants (N  =  32), with and without instruction in introductory optics, was carried out. In addition, the representations used for white light in Austrian physics schoolbooks were analysed. Based on the results of the literature review, the interview study and the schoolbook analysis, a learning environment was designed and tested in teaching experiments. The results indicate that learners often lack an adequate concept of white light even after instruction in introductory optics. This seems to cause learning difficulties concerning colour phenomena. On the other hand, the evaluation of our learning environment showed that students are able to gain a good conceptual understanding of colour phenomena if instruction takes these content specific learning difficulties into account.

  20. Implementation of Simulation Based-Concept Attainment Method to Increase Interest Learning of Engineering Mechanics Topic

    Science.gov (United States)

    Sultan, A. Z.; Hamzah, N.; Rusdi, M.

    2018-01-01

    The implementation of concept attainment method based on simulation was used to increase student’s interest in the subjects Engineering of Mechanics in second semester of academic year 2016/2017 in Manufacturing Engineering Program, Department of Mechanical PNUP. The result of the implementation of this learning method shows that there is an increase in the students’ learning interest towards the lecture material which is summarized in the form of interactive simulation CDs and teaching materials in the form of printed books and electronic books. From the implementation of achievement method of this simulation based concept, it is noted that the increase of student participation in the presentation and discussion as well as the deposit of individual assignment of significant student. With the implementation of this method of learning the average student participation reached 89%, which before the application of this learning method only reaches an average of 76%. And also with previous learning method, for exam achievement of A-grade under 5% and D-grade above 8%. After the implementation of the new learning method (simulation based-concept attainment method) the achievement of Agrade has reached more than 30% and D-grade below 1%.

  1. GAS2L1 Is a Centriole-Associated Protein Required for Centrosome Dynamics and Disjunction.

    NARCIS (Netherlands)

    Au, F.K.; Jia, Y.; Jiang, K.; Grigoriev, I.S.; Hau, B.K.; Shen, Y.; Du, S.; Akhmanova, A.S.; Qi, R.Z.

    2017-01-01

    Mitotic spindle formation and chromosome segregation require timely separation of the two duplicated centrosomes, and this process is initiated in late G2 by centrosome disjunction. Here we report that GAS2L1, a microtubule- and actin-binding protein, associates with the proximal end of mature

  2. The compatibility heuristic in non-categorical hypothetical reasoning: inferences between conditionals and disjunctions.

    Science.gov (United States)

    Espino, Orlando; Byrne, Ruth M J

    2013-11-01

    A new theory explains how people make hypothetical inferences from a premise consistent with several alternatives to a conclusion consistent with several alternatives. The key proposal is that people rely on a heuristic that identifies compatible possibilities. It is tested in 7 experiments that examine inferences between conditionals and disjunctions. Participants accepted inferences between conditionals and inclusive disjunctions when a compatible possibility was immediately available, in their binary judgments that a conclusion followed or not (Experiment 1a) and ternary judgments that included it was not possible to know (Experiment 1b). The compatibility effect was amplified when compatible possibilities were more readily available, e.g., for 'A only if B' conditionals (Experiment 2). It was eliminated when compatible possibilities were not available, e.g., for 'if and only if A B' bi-conditionals and exclusive disjunctions (Experiment 3). The compatibility heuristic occurs even for inferences based on implicit negation e.g., 'A or B, therefore if C D' (Experiment 4), and between universals 'All A's are B's' and disjunctions (Experiment 5a) and universals and conditionals (Experiment 5b). The implications of the results for alternative theories of the cognitive processes underlying hypothetical deductions are discussed. Copyright © 2013. Published by Elsevier Inc.

  3. Optimizing reserve expansion for disjunct populations of San Joaquin kit fox

    Science.gov (United States)

    Robert G. Haight; Brian Cypher; Patrick A. Kelly; Scott Phillips; Katherine Ralls; Hugh P. Possingham

    2004-01-01

    Expanding habitat protection is a common strategy for species conservation. We present a model to optimize the expansion of reserves for disjunct populations of an endangered species. The objective is to maximize the expected number of surviving populations subject to budget and habitat constraints. The model accounts for benefits of reserve expansion in terms of...

  4. The effects of disjunct sampling and averaging time on maximum mean wind speeds

    DEFF Research Database (Denmark)

    Larsén, Xiaoli Guo; Mann, J.

    2006-01-01

    Conventionally, the 50-year wind is calculated on basis of the annual maxima of consecutive 10-min averages. Very often, however, the averages are saved with a temporal spacing of several hours. We call it disjunct sampling. It may also happen that the wind speeds are averaged over a longer time...

  5. Phenology of Avicennia marina (Forsk.) Vierh. in a Disjunctly-zoned ...

    African Journals Online (AJOL)

    Avicennia marina in Gazi Bay, Kenya, displays a disjunct zonation pattern across the intertidal zone with a seaward and a landward A. marina fringe. Earlier studies revealed significant differences in its vegetation structure, physiognomy, root system and leaf morphology, which can be attributed to salinity and tidal ...

  6. Fire chronology and windstorm effects on persistence of a disjunct oak-shortleaf pine community

    Science.gov (United States)

    Michael D. Jones; Marlin L. Bowles

    2012-01-01

    We investigated effects of a human-altered fire regime and wind storms on persistence of disjunct oak-shortleaf pine vegetation occurring along 5.5 km of xeric habitat on the east bluffs of the Mississippi River in Union County, IL. In 2009, we resampled vegetation transects established in seven stands in 1954 and obtained 26 cross sections containing fire scars from...

  7. Pre-Service Physics Teachers’ Concept Mastery and the Challenges of Game Development on Physics Learning

    Science.gov (United States)

    Saprudin, S.; Liliasari, L.; Prihatmanto, A. S.

    2017-09-01

    This study is a survey that aims to describe pre-service physics teachers’ concept mastery at a university in Ternate. Data were collected through test standard instrument for physics which used in the teacher certification program. Data were analyzed by using quantitative descriptive technique. Based on the results of data analysis, it was concluded that generally pre-service physics teachers’ concept mastery can be categorized on low category (25.4%). The map of concept mastery will be used as a reference to developing game design in the physics learning context for pre-service physics teachers.

  8. Conceptions of how a learning or teaching curriculum, workplace culture and agency of individuals shape medical student learning and supervisory practices in the clinical workplace.

    Science.gov (United States)

    Strand, Pia; Edgren, Gudrun; Borna, Petter; Lindgren, Stefan; Wichmann-Hansen, Gitte; Stalmeijer, Renée E

    2015-05-01

    The role of workplace supervisors in the clinical education of medical students is currently under debate. However, few studies have addressed how supervisors conceptualize workplace learning and how conceptions relate to current sociocultural workplace learning theory. We explored physician conceptions of: (a) medical student learning in the clinical workplace and (b) how they contribute to student learning. The methodology included a combination of a qualitative, inductive (conventional) and deductive (directed) content analysis approach. The study triangulated two types of interview data from 4 focus group interviews and 34 individual interviews. A total of 55 physicians participated. Three overarching themes emerged from the data: learning as membership, learning as partnership and learning as ownership. The themes described how physician conceptions of learning and supervision were guided by the notions of learning-as-participation and learning-as-acquisition. The clinical workplace was either conceptualized as a context in which student learning is based on a learning curriculum, continuity of participation and partnerships with supervisors, or as a temporary source of knowledge within a teaching curriculum. The process of learning was shaped through the reciprocity between different factors in the workplace context and the agency of students and supervising physicians. A systems-thinking approach merged with the "co-participation" conceptual framework advocated by Billet proved to be useful for analyzing variations in conceptions. The findings suggest that mapping workplace supervisor conceptions of learning can be a valuable starting point for medical schools and educational developers working with changes in clinical educational and faculty development practices.

  9. Autoconceito e dificuldades de aprendizagem na escrita Self-concept and learning disabilities of writing

    Directory of Open Access Journals (Sweden)

    Fermino Fernandes Sisto

    2003-01-01

    Full Text Available O autoconceito vem sendo considerado na literatura como um constructo multidimensional e um dos aspectos afetivo-emocionais relacionados às dificuldades de aprendizagem. Considerando a importância desse constructo, o objetivo deste estudo foi verificar se haveria diferenças significativas entre níveis de dificuldade de aprendizagem na escrita e o autoconceito geral, escolar, social, familiar e pessoal de crianças do ensino fundamental. Utilizou-se uma escala para avaliar a dificuldade de aprendizagem na escrita e outra para avaliação do autoconceito. A amostra foi composta por 277 estudantes, de ambos os sexos, com idade entre 9 e 10 anos, da 3ª série do ensino fundamental. Os resultados evidenciaram que a dificuldade de aprendizagem na escrita está significativamente relacionada com o autoconceito geral e com o escolar, verificando-se que conforme aumenta o nível de dificuldade de aprendizagem na escrita diminui o autoconceito.The self-concept as the individual's perception of himself has been considered in the literature as a multidimensional construct and as one of the most influential emotional aspect in learning disabilities. So, the aim of this study was to verify if there were significant differences between the levels of learning disabilities related to writing and general, school, social, family and personal self-concepts. Two scales were used, the first assessing the level of learning disabilities of writing and the other assessing self-concept. The sample was composed by 277 9-10 years old students, of both genders, from the third grade of elementary school. The results showed that the learning disabilities of writing are significantly related with general self-concept and with school self-concept, suggesting that the increase of learning disabilities levels means decrease of general and school self-concepts.

  10. USING RASCH ANALYSIS TO EXPLORE WHAT STUDENTS LEARN ABOUT PROBABILITY CONCEPTS

    Directory of Open Access Journals (Sweden)

    Zamalia Mahmud

    2015-01-01

    Full Text Available Students’ understanding of probability concepts have been investigated from various different perspectives. This study was set out to investigate perceived understanding of probability concepts of forty-four students from the STAT131 Understanding Uncertainty and Variation course at the University of Wollongong, NSW. Rasch measurement which is based on a probabilistic model was used to identify concepts that students find easy, moderate and difficult to understand.  Data were captured from the e-learning Moodle platform where students provided their responses through an on-line quiz. As illustrated in the Rasch map, 96% of the students could understand about sample space, simple events, mutually exclusive events and tree diagram while 67% of the students found concepts of conditional and independent events rather easy to understand.Keywords: Perceived Understanding, Probability Concepts, Rasch Measurement Model DOI: dx.doi.org/10.22342/jme.61.1

  11. An updated review of the concept of eLearning. Tenth anniversary

    Directory of Open Access Journals (Sweden)

    Francisco José GARCÍA-PEÑALVO

    2015-04-01

    Full Text Available The continuous advances in technology cause innovation-acceptation-consolidationobsolescence flows regarding the knowledge and technology management strategies, both ad hoc and planned, of the corporations and also, in a different scale, of the individuals. Teaching and learning processes are not obviously unaware of this situation. The irruption of Information and Communication Technologies as educational tools mean both a conceptual and a methodological turning point in the way that institutions, educational or not, face training processes and learning management, especially with regard to the concept of distance education, which evolves, in a more or less significant way, when it adopts Internet as media; that is how the eLearning concept rises. However, from the first eLearning experiences, too much settled on the concept of platform or Learning Management System, up to the present times, there have been significant changes, again in both technological and methodological levels. It is important to underline, among others, the influence of social media in the daily habits of users. This way, an increased demand of learning personalization it is shown, as so as a complete connectivity with other peers, an unlimited access to resources and information sources, a complete flexibility in the way, place and time they access, and a natural and necessary coexistence of both formal and informal learning flows. Thus, the “traditional” eLearning platforms, despite their large penetration and consolidation, need to evolve and open themselves to support this rich fan of possibilities demanded by the users, ceasing to be the centre technological attention to become another component into a complex digital ecosystem oriented to the learning and knowledge management, both at institutional and personal levels. It is therefore necessary to make an updated review of the eLearning concept and its definitions that have been provided from the experience and

  12. Phylogeography and disjunct distribution in Lychnophora ericoides (Asteraceae), an endangered cerrado shrub species.

    Science.gov (United States)

    Collevatti, Rosane Garcia; Rabelo, Suelen Gonçalves; Vieira, Roberto F

    2009-09-01

    Lychnophora ericoides (Asteraceae) presents disjunct geographical distribution in cerrado rupestre in the south-east and central Brazil. The phylogeography of the species was investigated to understand the origin of the disjunct geographical distribution. Populations in the south and centre of Serra do Espinhaço, south-east Brazil and on ten other localities in Federal District and Goiás in central Brazil were sampled. Analyses were based on the polymorphisms at chloroplast (trnL intron and psbA-trnH intergenic spacer) and nuclear (ITS nrDNA) genomes. From 12 populations, 192 individuals were sequenced. Network analysis, AMOVA and the Mantel test were performed to understand the relationships among haplotypes and population genetic structure. To understand better the origin of disjunct distribution, demographic parameters and time to most recent common ancestor (T(MRCA)) were estimated using coalescent analyses. A remarkable differentiation between populations from the south-east and central Brazil was found and no haplotype was shared between these two regions. No significant effect of isolation by distance was detected. Coalescent analyses showed that some populations are shrinking and others are expanding and that gene flow between populations from the south-east and central Brazil was probably negligible. The results strongly support that the disjunct distribution of L. ericoides may represent a climatic relict and that long-distance gene flow is unlikely. With an estimated time to most recent common ancestor (T(MRCA)) dated from approx. 790,655 +/- 36,551 years bp (chloroplast) and approx. 623,555 +/- 55,769 years bp (ITS), it was hypothesized that the disjunct distribution may be a consequence of an expansion of the geographical distribution favoured by the drier and colder conditions that prevailed in much of Brazil during the Kansan glaciation, followed by the retraction of the distribution due to the extinction of populations in some areas as climate

  13. Living on the edge: timing of Rand Flora disjunctions congruent with ongoing aridification in Africa.

    Science.gov (United States)

    Pokorny, Lisa; Riina, Ricarda; Mairal, Mario; Meseguer, Andrea S; Culshaw, Victoria; Cendoya, Jon; Serrano, Miguel; Carbajal, Rodrigo; Ortiz, Santiago; Heuertz, Myriam; Sanmartín, Isabel

    2015-01-01

    The Rand Flora is a well-known floristic pattern in which unrelated plant lineages show similar disjunct distributions in the continental margins of Africa and adjacent islands-Macaronesia-northwest Africa, Horn of Africa-Southern Arabia, Eastern Africa, and Southern Africa. These lineages are now separated by environmental barriers such as the arid regions of the Sahara and Kalahari Deserts or the tropical lowlands of Central Africa. Alternative explanations for the Rand Flora pattern range from vicariance and climate-driven extinction of a widespread pan-African flora to independent dispersal events and speciation in situ. To provide a temporal framework for this pattern, we used published data from nuclear and chloroplast DNA to estimate the age of disjunction of 17 lineages that span 12 families and nine orders of angiosperms. We further used these estimates to infer diversification rates for Rand Flora disjunct clades in relation to their higher-level encompassing lineages. Our results indicate that most disjunctions fall within the Miocene and Pliocene periods, coinciding with the onset of a major aridification trend, still ongoing, in Africa. Age of disjunctions seemed to be related to the climatic affinities of each Rand Flora lineage, with sub-humid taxa dated earlier (e.g., Sideroxylon) and those with more xeric affinities (e.g., Campylanthus) diverging later. We did not find support for significant decreases in diversification rates in most groups, with the exception of older subtropical lineages (e.g., Sideroxylon, Hypericum, or Canarina), but some lineages (e.g., Cicer, Campylanthus) showed a long temporal gap between stem and crown ages, suggestive of extinction. In all, the Rand Flora pattern seems to fit the definition of biogeographic pseudocongruence, with the pattern arising at different times in response to the increasing aridity of the African continent, with interspersed periods of humidity allowing range expansions.

  14. Learning physics concepts as a function of colloquial language usage

    Science.gov (United States)

    Maier, Steven J.

    Data from two sections of college introductory, algebra-based physics courses (n1 = 139, n2 = 91) were collected using three separate instruments to investigate the relationships between reasoning ability, conceptual gain and colloquial language usage. To obtain a measure of reasoning ability, Lawson's Classroom Test of Scientific Reasoning Ability (TSR) was administered once near mid-term for each sample. The Force Concept Inventory (FCI) was administered at the beginning and at the end of the term for pre- and post-test measures. Pre- and post-test data from the Mechanics Language Usage instrument were also collected in conjunction with FCI data collection at the beginning and end of the term. The MLU was developed specifically for this study prior to data collection, and results of a pilot test to establish validity and reliability are reported. T-tests were performed on the data collected to compare the means from each sample. In addition, correlations among the measures were investigated between the samples separately and combined. Results from these investigations served as justification for combining the samples into a single sample of 230 for performing further statistical analyses. The primary objective of this study was to determine if scientific reasoning ability (a function of developmental stage) and conceptual gains in Newtonian mechanics predict students' usages of "force" as measured by the MLU. Regression analyses were performed to evaluate these mediated relationships among TSR and FCI performance as a predictor of MLU performance. Statistically significant correlations and relationships existed among several of the measures, which are discussed at length in the body of the narrative. The findings of this research are that although there exists a discernable relationship between reasoning ability and conceptual change, more work needs to be done to establish improved quantitative measures of the role language usage has in developing understandings

  15. Engineering Students' Conceptions of Entrepreneurial Learning as Part of Their Education

    Science.gov (United States)

    Täks, Marge; Tynjälä, Päivi; Kukemelk, Hasso

    2016-01-01

    The purpose of this study was to examine what kinds of conceptions of entrepreneurial learning engineering students expressed in an entrepreneurship course integrated in their study programme. The data were collected during an entrepreneurship course in Estonia that was organised for fourth-year engineering students, using video-recorded group…

  16. Teachers' Conceptions and Their Approaches to Teaching in Virtual Reality and Simulation-Based Learning Environments

    Science.gov (United States)

    Keskitalo, Tuulikki

    2011-01-01

    This research article focuses on virtual reality (VR) and simulation-based training, with a special focus on the pedagogical use of the Virtual Centre of Wellness Campus known as ENVI (Rovaniemi, Finland). In order to clearly understand how teachers perceive teaching and learning in such environments, this research examines the concepts of…

  17. Between Product Development and Mass Production: Tensions as Triggers for Concept-Level Learning

    Science.gov (United States)

    Jalonen, Meri; Ristimäki, Päivi; Toiviainen, Hanna; Pulkkis, Anneli; Lohtander, Mika

    2016-01-01

    Purpose: This paper aims to analyze learning in organizational transformations by focusing on concept-level tensions faced in two young companies, which were searching for a reorientation of activity with a production network between innovative product development and efficient mass production. Design/methodology/approach: An intervention-based…

  18. Psychological Correlates of School Bullying Victimization: Academic Self-Concept, Learning Motivation and Test Anxiety

    Science.gov (United States)

    Caputo, Andrea

    2014-01-01

    The paper aims at detecting the association between students' bullying victimization at school and some psychological dimensions, referred to academic self-concept (for both Mathematics and Reading), learning motivation (intrinsic motivation, extrinsic motivation, commitment to study) and test anxiety. A questionnaire including these measures was…

  19. The Concept of Magnitude and What It Tells Us about How Struggling Students Learn Fractions

    Science.gov (United States)

    Woodward, John

    2017-01-01

    This commentary summarizes emerging research into fractions instruction for students who are at risk for failure. Each of the three articles emphasizes a measure conception of fractions. Teaching fractions as measurement helps students learn the magnitude of rational numbers. However, measurement is only part of the way that students should…

  20. The Effectiveness of Process-Oriented Guided Inquiry Learning to Reduce Alternative Conceptions in Secondary Chemistry

    Science.gov (United States)

    Barthlow, Michelle J.; Watson, Scott B.

    2014-01-01

    A nonequivalent, control group design was used to investigate student achievement in secondary chemistry. This study investigated the effect of process-oriented guided inquiry learning (POGIL) in high school chemistry to reduce alternate conceptions related to the particulate nature of matter versus traditional lecture pedagogy. Data were…

  1. Effects of Advance Organizer Instruction on Preschool Children's Learning of Musical Concepts.

    Science.gov (United States)

    Lawton, Joseph T.; Johnson, Ann

    1992-01-01

    Presents results of a study of the effects of advance organizer instruction on preschool children's learning of the musical concepts of dynamics, pitch, tempo, and rhythm. Reports that three modes and three methods of presentation were evaluated. Concludes that, although results did vary with mode, the method of presentation had no significant…

  2. Online testable concept maps: benefits for learning about the pathogenesis of disease.

    Science.gov (United States)

    Ho, Veronica; Kumar, Rakesh K; Velan, Gary

    2014-07-01

    Concept maps have been used to promote meaningful learning and critical thinking. Although these are crucially important in all disciplines, evidence for the benefits of concept mapping for learning in medicine is limited. We performed a randomised crossover study to assess the benefits of online testable concept maps for learning in pathology by volunteer junior medical students. Participants (n = 65) were randomly allocated to either of two groups with equivalent mean prior academic performance, in which they were given access to either online maps or existing online resources for a 2-week block on renal disease. Groups then crossed over for a 2-week block on hepatic disease. Outcomes were assessed using timed online quizzes, which included questions unrelated to topics in the pathogenesis maps as an internal control. Questionnaires were administered to evaluate students' acceptance of the maps. In both blocks, the group with access to pathogenesis maps achieved significantly higher average scores than the control group on quiz questions related to topics covered by the maps (Block 1: p online testable pathogenesis maps are well accepted and can improve learning of concepts in pathology by medical students. © 2014 John Wiley & Sons Ltd.

  3. The Collaboration of Cooperative Learning and Conceptual Change: Enhancing the Students' Understanding of Chemical Bonding Concepts

    Science.gov (United States)

    Eymur, Gülüzar; Geban, Ömer

    2017-01-01

    The main purpose of this study was to investigate the effects of cooperative learning based on conceptual change approach instruction on ninth-grade students' understanding in chemical bonding concepts compared to traditional instruction. Seventy-two ninth-grade students from two intact chemistry classes taught by the same teacher in a public high…

  4. Improving Operations Management Concept Recollection via the Zarco Experiential Learning Activity

    Science.gov (United States)

    Polito, Tony; Kros, John; Watson, Kevin

    2004-01-01

    In this study, the authors investigated the effect of Zarco, an operations management "mock factory" experiential learning activity, on student recollection of operations management concepts. Using a number of single-factor and multiple-factor analyses of variance, the authors compared the recollection of students treated with the Zarco activity…

  5. Teachers' Conceptions of Student Engagement in Learning: The Case of Three Urban Schools

    Science.gov (United States)

    Barkaoui, Khaled; Barrett, Sarah Elizabeth; Samaroo, Julia; Dahya, Negin; Alidina, Shahnaaz; James, Carl

    2015-01-01

    Although student engagement plays a central role in the education process, defining it is challenging. This study examines teachers' conceptions of the social and cultural dimensions of student engagement in learning at three low-achieving schools located in a low socioeconomic status (SES) urban area. Sixteen teachers and administrators from the…

  6. Online Video Tutorials Increase Learning of Difficult Concepts in an Undergraduate Analytical Chemistry Course

    Science.gov (United States)

    He, Yi; Swenson, Sandra; Lents, Nathan

    2012-01-01

    Educational technology has enhanced, even revolutionized, pedagogy in many areas of higher education. This study examines the incorporation of video tutorials as a supplement to learning in an undergraduate analytical chemistry course. The concepts and problems in which students faced difficulty were first identified by assessing students'…

  7. Teaching-Learning Conceptions and Academic Achievement: The Mediating Role of Test Anxiety

    Science.gov (United States)

    Bas, Gökhan

    2016-01-01

    The current research aimed at examining the mediating role of test anxiety in the relationship between teaching-learning conceptions and academic achievement. The correlation investigation model was adopted in this research. The participants of the research were volunteering teachers (n = 108) and students (n = 526) from five different high…

  8. Connecting Knowledge Domains : An Approach to Concept Learning in Primary Science and Technology Education

    NARCIS (Netherlands)

    Koski, M.

    2014-01-01

    In order to understand our dependency on technology and the possible loss of control that comes with it, it is necessary for people to understand the nature of technology as well as its roots in science. Learning basic science and technology concepts should be a part of primary education since it

  9. Semantic Features, Perceptual Expectations, and Frequency as Factors in the Learning of Polar Spatial Adjective Concepts.

    Science.gov (United States)

    Dunckley, Candida J. Lutes; Radtke, Robert C.

    Two semantic theories of word learning, a perceptual complexity hypothesis (H. Clark, 1970) and a quantitative complexity hypothesis (E. Clark, 1972) were tested by teaching 24 preschoolers and 16 college students CVC labels for five polar spatial adjective concepts having single word representations in English, and for three having no direct…

  10. A Phenomenographic Study of Lecturers' Conceptions of Using Learning Technology in a Pakistani Context

    Science.gov (United States)

    Hodgson, Vivien; Shah, Uzair

    2017-01-01

    While there are many studies exploring the phenomenon of lecturers' use of learning technology within teaching practices in western higher education contexts, currently we know little about this phenomenon within less developed countries. In the paper, we discuss the findings from a phenomenographic study of lecturers' conceptions of using…

  11. Inculcating Positive Thinking in the Self-Concept of Children with Learning Difficulties

    Science.gov (United States)

    Abed, Mohaned Ghazi

    2017-01-01

    Inculcating positive thinking can act as a valuable tool in enhancing the overall self-concept of children with learning disabilities. The value of positive psychology is recognized as the basis for recent research conducted in the field of strength development. Positive psychology is centered on the view that individual lives can be improved by…

  12. A Video Lecture and Lab-Based Approach for Learning of Image Processing Concepts

    Science.gov (United States)

    Chiu, Chiung-Fang; Lee, Greg C.

    2009-01-01

    The current practice of traditional in-class lecture for learning computer science (CS) in the high schools of Taiwan is in need of revamping. Teachers instruct on the use of commercial software instead of teaching CS concepts to students. The lack of more suitable teaching materials and limited classroom time are the main reasons for the…

  13. Student Perceptions of and Confidence in Self-Care Course Concepts Using Team-based Learning.

    Science.gov (United States)

    Frame, Tracy R; Gryka, Rebecca; Kiersma, Mary E; Todt, Abby L; Cailor, Stephanie M; Chen, Aleda M H

    2016-04-25

    Objective. To evaluate changes in student perceptions of and confidence in self-care concepts after completing a team-based learning (TBL) self-care course. Methods. Team-based learning was used at two universities in first professional year, semester-long self-care courses. Two instruments were created and administered before and after the semester. The instruments were designed to assess changes in student perceptions of self-care using the theory of planned behavior (TPB) domains and confidence in learning self-care concepts using Bandura's Social Cognitive Theory. Wilcoxon signed rank tests were used to evaluate pre/post changes, and Mann Whitney U tests were used to evaluate university differences. Results. Fifty-three Cedarville University and 58 Manchester University students completed both instruments (100% and 92% response rates, respectively). Student self-care perceptions with TPB decreased significantly on nine of 13 items for Cedarville and decreased for one of 13 items for Manchester. Student confidence in self-care concepts improved significantly on all questions for both universities. Conclusion. Data indicate TBL self-care courses were effective in improving student confidence about self-care concepts. Establishing students' skill sets prior to entering the profession is beneficial because pharmacists will use self-directed learning to expand their knowledge and adapt to problem-solving situations.

  14. Academic Self-Concept and Learning Strategies: Direction of Effect on Student Academic Achievement

    Science.gov (United States)

    McInerney, Dennis M.; Cheng, Rebecca Wing-yi; Mok, Magdalena Mo Ching; Lam, Amy Kwok Hap

    2012-01-01

    This study examined the prediction of academic self-concept (English and Mathematics) and learning strategies (deep and surface), and their direction of effect, on academic achievement (English and Mathematics) of 8,354 students from 16 secondary schools in Hong Kong. Two competing models were tested to ascertain the direction of effect: Model A…

  15. Effects of Computer Graphics Types and Epistemological Beliefs on Students' Learning of Mathematical Concepts.

    Science.gov (United States)

    Lin, Chi-Hui

    2002-01-01

    Describes a study that determined the implications of computer graphics types and epistemological beliefs with regard to the design of computer-based mathematical concept learning with elementary school students in Taiwan. Discusses the factor structure of the epistemological belief questionnaire, student performance, and students' attitudes…

  16. The Nemesis E-Learning 4-Sectors-Model - A Concept to Enhance the Reusability of E-Learning Products

    Directory of Open Access Journals (Sweden)

    Wilfried Hendricks

    2007-06-01

    Full Text Available The 4-Sectors-Model has been developed by the TU Berlin and is intended to facilitate providing customized e-learning products to different target learner groups, while keeping the same basic content. This is made possible by the independent development of user interface and content. The different components are assembled at the end to produce the final e-learning product. Software development is based on the Generative Learning Objects concept (UCeL. Further improvements based on results of the ongoing test phase will make the 4-Sectors-Model better adapted to fit user needs. Finally, this project is dedicated to establishing a high standard of didactic quality for the future development of e-learning software at the TU Berlin.

  17. Learning Abstract Physical Concepts from Experience: Design and Use of an RC Circuit

    Science.gov (United States)

    Parra, Alfredo; Ordenes, Jorge; de la Fuente, Milton

    2018-05-01

    Science learning for undergraduate students requires grasping a great number of theoretical concepts in a rather short time. In our experience, this is especially difficult when students are required to simultaneously use abstract concepts, mathematical reasoning, and graphical analysis, such as occurs when learning about RC circuits. We present a simple experimental model in this work that allows students to easily design, build, and analyze RC circuits, thus providing an opportunity to test personal ideas, build graphical descriptions, and explore the meaning of the respective mathematical models, ultimately gaining a better grasp of the concepts involved. The result suggests that the simple setup indeed helps untrained students to visualize the essential points of this kind of circuit.

  18. Applying Active Learning to Assertion Classification of Concepts in Clinical Text

    Science.gov (United States)

    Chen, Yukun; Mani, Subramani; Xu, Hua

    2012-01-01

    Supervised machine learning methods for clinical natural language processing (NLP) research require a large number of annotated samples, which are very expensive to build because of the involvement of physicians. Active learning, an approach that actively samples from a large pool, provides an alternative solution. Its major goal in classification is to reduce the annotation effort while maintaining the quality of the predictive model. However, few studies have investigated its uses in clinical NLP. This paper reports an application of active learning to a clinical text classification task: to determine the assertion status of clinical concepts. The annotated corpus for the assertion classification task in the 2010 i2b2/VA Clinical NLP Challenge was used in this study. We implemented several existing and newly developed active learning algorithms and assessed their uses. The outcome is reported in the global ALC score, based on the Area under the average Learning Curve of the AUC (Area Under the Curve) score. Results showed that when the same number of annotated samples was used, active learning strategies could generate better classification models (best ALC – 0.7715) than the passive learning method (random sampling) (ALC – 0.7411). Moreover, to achieve the same classification performance, active learning strategies required fewer samples than the random sampling method. For example, to achieve an AUC of 0.79, the random sampling method used 32 samples, while our best active learning algorithm required only 12 samples, a reduction of 62.5% in manual annotation effort. PMID:22127105

  19. The influence of teachers' conceptions on their students' learning: children's understanding of sheet music.

    Science.gov (United States)

    López-Íñiguez, Guadalupe; Pozo, Juan Ignacio

    2014-06-01

    Despite increasing interest in teachers' and students' conceptions of learning and teaching, and how they influence their practice, there are few studies testing the influence of teachers' conceptions on their students' learning. This study tests how teaching conception (TC; with a distinction between direct and constructive) influences students' representations regarding sheet music. Sixty students (8-12 years old) from music conservatories: 30 of them took lessons with teachers with a constructive TC and another 30 with teachers shown to have a direct TC. Children were given a musical comprehension task in which they were asked to select and rank the contents they needed to learn. These contents had different levels of processing and complexity: symbolic, analytical, and referential. Three factorial ANOVAs, two-one-way ANOVAs, and four 2 × 3 repeated-measures ANOVAs were used to analyse the effects of and the interaction between the independent variables TC and class, both for/on total cards selected, their ranking, and each sub-category (the three processing levels). ANOVAs on the selection and ranking of these contents showed that teachers' conceptions seem to mediate significantly in the way the students understand the music. Students from constructive teachers have more complex and deep understanding of music. They select more elements for learning scores than those from traditional teachers. Teaching conception also influences the way in which children rank those elements. No difference exists between the way 8- and 12-year-olds learn scores. Children's understanding of the scores is more complex than assumed in other studies. © 2013 The British Psychological Society.

  20. [Case-based interactive PACS learning: introduction of a new concept for radiological education of students].

    Science.gov (United States)

    Scherer, A; Kröpil, P; Heusch, P; Buchbender, C; Sewerin, P; Blondin, D; Lanzman, R S; Miese, F; Ostendorf, B; Bölke, E; Mödder, U; Antoch, G

    2011-11-01

    Medical curricula are currently being reformed in order to establish superordinated learning objectives, including, e.g., diagnostic, therapeutic and preventive competences. This requires a shifting from traditional teaching methods towards interactive and case-based teaching concepts. Conceptions, initial experiences and student evaluations of a novel radiological course Co-operative Learning In Clinical Radiology (CLICR) are presented in this article. A novel radiological teaching course (CLICR course), which combines different innovative teaching elements, was established and integrated into the medical curriculum. Radiological case vignettes were created for three clinical teaching modules. By using a PC with PACS (Picture Archiving and Communication System) access, web-based databases and the CASUS platform, a problem-oriented, case-based and independent way of learning was supported as an adjunct to the well established radiological courses and lectures. Student evaluations of the novel CLICR course and the radiological block course were compared. Student evaluations of the novel CLICR course were significantly better compared to the conventional radiological block course. Of the participating students 52% gave the highest rating for the novel CLICR course concerning the endpoint overall satisfaction as compared to 3% of students for the conventional block course. The innovative interactive concept of the course and the opportunity to use a web-based database were favorably accepted by the students. Of the students 95% rated the novel course concept as a substantial gain for the medical curriculum and 95% also commented that interactive working with the PACS and a web-based database (82%) promoted learning and understanding. Interactive, case-based teaching concepts such as the presented CLICR course are considered by both students and teachers as useful extensions to the radiological course program. These concepts fit well into competence-oriented curricula.

  1. Using whiteboards to support college students' learning of complex physiological concepts.

    Science.gov (United States)

    Inouye, Caron Y; Bae, Christine L; Hayes, Kathryn N

    2017-09-01

    Research underscores the importance of retrieval-based practice and application of knowledge for meaningful learning. However, the didactic lecture format continues to persist in traditional university physiology courses. A strategy called whiteboarding, where students use handheld dry erase boards and work in small groups to actively retrieve, discuss, and apply concepts presented in the lecture, has the potential to address challenges associated with actively engaging students in science courses for greater learning. The purpose of this study was to empirically examine the potential benefits of whiteboarding for increasing students' understanding of animal physiology concepts. Student performance on physiology questions assessing concepts taught using lecture only vs. concepts taught using lecture and whiteboarding were compared within the term that whiteboarding was used, as well as across whiteboard and lecture-only terms taught by the same instructor. Results showed that when whiteboarding was incorporated in the course, student performance on items that assessed concepts corresponding to the whiteboarding activities were significantly higher compared with performance on items that assessed concepts taught through lecture only. These patterns in student performance were found within and across terms. Taken together, findings point to whiteboarding as an effective tool that can be integrated in traditional lecture courses to promote students' understanding of physiology. Copyright © 2017 the American Physiological Society.

  2. The Effect of Visual Variability on the Learning of Academic Concepts.

    Science.gov (United States)

    Bourgoyne, Ashley; Alt, Mary

    2017-06-10

    The purpose of this study was to identify effects of variability of visual input on development of conceptual representations of academic concepts for college-age students with normal language (NL) and those with language-learning disabilities (LLD). Students with NL (n = 11) and LLD (n = 11) participated in a computer-based training for introductory biology course concepts. Participants were trained on half the concepts under a low-variability condition and half under a high-variability condition. Participants completed a posttest in which they were asked to identify and rate the accuracy of novel and trained visual representations of the concepts. We performed separate repeated measures analyses of variance to examine the accuracy of identification and ratings. Participants were equally accurate on trained and novel items in the high-variability condition, but were less accurate on novel items only in the low-variability condition. The LLD group showed the same pattern as the NL group; they were just less accurate. Results indicated that high-variability visual input may facilitate the acquisition of academic concepts in college students with NL and LLD. High-variability visual input may be especially beneficial for generalization to novel representations of concepts. Implicit learning methods may be harnessed by college courses to provide students with basic conceptual knowledge when they are entering courses or beginning new units.

  3. Validating Proposed Learning Progressions on Force and Motion Using the Force Concept Inventory: Findings from Singapore Secondary Schools

    Science.gov (United States)

    Fulmer, Gavin W.

    2015-01-01

    This study examines the validity of 2 proposed learning progressions on the force concept when tested using items from the Force Concept Inventory (FCI). This is the first study to compare students' performance with respect to learning progressions both for force and motion and for Newton's third law in parallel. It is also among the first studies…

  4. Effectiveness of Demonstration and Lecture Methods in Learning Concept in Economics among Secondary School Students in Borno State, Nigeria

    Science.gov (United States)

    Muhammad, Amin Umar; Bala, Dauda; Ladu, Kolomi Mutah

    2016-01-01

    This study investigated the Effectiveness of Demonstration and Lecture Methods in Learning concepts in Economics among Secondary School Students in Borno state, Nigeria. Five objectives: to determine the effectiveness of demonstration method in learning economics concepts among secondary school students in Borno state, determine the effectiveness…

  5. Effects of a Computer-Assisted Concept Mapping Learning Strategy on EFL College Students' English Reading Comprehension

    Science.gov (United States)

    Liu, Pei-Lin; Chen, Chiu-Jung; Chang, Yu-Ju

    2010-01-01

    The purpose of this research was to investigate the effects of a computer-assisted concept mapping learning strategy on EFL college learners' English reading comprehension. The research questions were: (1) what was the influence of the computer-assisted concept mapping learning strategy on different learners' English reading comprehension? (2) did…

  6. Concept Maps for Assessing Change in Learning: A Study of Undergraduate Business Students in First-Year Marketing in China

    Science.gov (United States)

    von der Heidt, Tania

    2015-01-01

    This paper explains the application of concept mapping to help foster a learning-centred approach. It investigates how concept maps are used to measure the change in learning following a two-week intensive undergraduate Marketing Principles course delivered to 162 Chinese students undertaking a Bachelor of Business Administration programme in…

  7. Concept Maps as Instructional Tools for Improving Learning of Phase Transitions in Object-Oriented Analysis and Design

    Science.gov (United States)

    Shin, Shin-Shing

    2016-01-01

    Students attending object-oriented analysis and design (OOAD) courses typically encounter difficulties transitioning from requirements analysis to logical design and then to physical design. Concept maps have been widely used in studies of user learning. The study reported here, based on the relationship of concept maps to learning theory and…

  8. USING RASCH ANALYSIS TO EXPLORE WHAT STUDENTS LEARN ABOUT PROBABILITY CONCEPTS

    Directory of Open Access Journals (Sweden)

    Zamalia Mahmud

    2015-01-01

    Full Text Available Students’ understanding of probability concepts have been investigated from various different perspectives. This study was set out to investigate perceived understanding of probability concepts of forty-four students from the STAT131 Understanding Uncertainty and Variation course at the University of Wollongong, NSW. Rasch measurement which is based on a probabilistic model was used to identify concepts that students find easy, moderate and difficult to understand. Data were captured from the e-learning Moodle platform where students provided their responses through an on-line quiz. As illustrated in the Rasch map, 96% of the students could understand about sample space, simple events, mutually exclusive events and tree diagram while 67% of the students found concepts of conditional and independent events rather easy to understand

  9. Using Rasch Analysis To Explore What Students Learn About Probability Concepts

    Directory of Open Access Journals (Sweden)

    Zamalia Mahmud

    2015-01-01

    Full Text Available Students’ understanding of probability concepts have been investigated from various different perspectives. This study was set out to investigate perceived understanding of probability concepts of forty-four students from the STAT131 Understanding Uncertainty and Variation course at the University of Wollongong, NSW. Rasch measurement which is based on a probabilistic model was used to identify concepts that students find easy, moderate and difficult to understand. Data were captured from the e-learning Moodle platform where students provided their responses through an on-line quiz. As illustrated in the Rasch map, 96% of the students could understand about sample space, simple events, mutually exclusive events and tree diagram while 67% of the students found concepts of conditional and independent events rather easy to understand.

  10. · Concept Learning in the Undergraduate Classroom: A Case Study in Religious Studies

    Directory of Open Access Journals (Sweden)

    Jennifer L. Jones

    2014-07-01

    Full Text Available Popularized by the work of Jerome Bruner in the mid-1990’s, the “Concept Attainment Model” is a process of structured inquiry that requires students to make generalizations and draw conclusions from examples (and non-examples of a particular concept toward developing new insights, hypotheses, and associations regarding what they have previously learned (Bruner, 1977. In order to broaden some of the typical assumptions about the manners and conditions in which it can be effectively employed in the undergraduate classroom, this qualitative research study offers an example of the Concept Attainment Model in action in the teaching of traditional just war theory in an undergraduate religion class. Data was collected and analysed according to Spradley’s qualitative research methodologies (Spradley, 1980. Among the most important findings of this study is that in a religion or similar humanities course, the Concept Attainment Model is most likely to find success when highly scaffolded by the instructor.

  11. Collaborative Game-based Learning - Automatized Adaptation Mechanics for Game-based Collaborative Learning using Game Mastering Concepts

    OpenAIRE

    Wendel, Viktor Matthias

    2015-01-01

    Learning and playing represent two core aspects of the information and communication society nowadays. Both issues are subsumed in Digital Education Games, one major field of Serious Games. Serious Games combine concepts of gaming with a broad range of application fields: among others, educational sectors and training or health and sports, but also marketing, advertisement, political education, and other societally relevant areas such as climate, energy, and safety. This work focuses on colla...

  12. Reasoning about complex probabilistic concepts in childhood.

    Science.gov (United States)

    Fisk, John E; Bury, Angela S; Holden, Rachel

    2006-12-01

    The competencies of children, particularly their understanding of the more complex probabilistic concepts, have not been thoroughly investigated. In the present study participants were required to choose the more likely of two events, a single event, and a joint event (conjunctive or disjunctive). It was predicted that the operation of the representativeness heuristic would result in erroneous judgements when children compared an unlikely component event with a likely-unlikely conjunction (the conjunction fallacy) and when a likely component event was compared to a likely-unlikely disjunction. The results supported the first prediction with both older children aged between 9 and 10 years and younger children aged between 4 and 5 committing the conjunction fallacy. However, the second prediction was not confirmed. It is proposed that the basis of representativeness judgements may differ between the conjunctive and disjunctive cases with absolute frequency information possibly playing a differential role.

  13. Learning against the Clock: Examining Learning and Development Concepts in "The Curious Case of Benjamin Button"

    Science.gov (United States)

    Koenig, Allison L.; Smith, Amber R.

    2013-01-01

    Media and popular culture reach broad audiences and have the potential to be an invaluable teaching resource in terms of promoting adult education and learning. Human resource development instructors can use media artifacts (e.g., films, television, novels, and cartoons) as useful methods to demonstrate learning theory and adult development…

  14. The Influence of Music Learning Cultures on the Construction of Teaching-Learning Conceptions

    Science.gov (United States)

    Casas-Mas, Amalia; Pozo, Juan Ignacio; Montero, Ignacio

    2014-01-01

    Current research in music education tends to put the emphasis on learning processes outside formal academic contexts, both to rethink and to renew academic educational formats. Our aim is to observe and describe three music learning cultures simultaneously, including formal, non-formal and informal settings: Classical, Jazz and Flamenco,…

  15. Professional Learning in Initial Teacher Education: Vision in the Constructivist Conception of Teaching and Learning

    Science.gov (United States)

    Tang, Sylvia Y. F.; Wong, Angel K. Y.; Cheng, May M. H.

    2012-01-01

    With the constructivist view of learning as a conceptual lens, this paper examines student teachers' professional learning in initial teacher education (ITE). A mixed-method study was conducted with student teachers of a Bachelor of Education Programme in Hong Kong. The quantitative element of the study reveals that student teachers held a…

  16. On the learning difficulty of visual and auditory modal concepts: Evidence for a single processing system.

    Science.gov (United States)

    Vigo, Ronaldo; Doan, Karina-Mikayla C; Doan, Charles A; Pinegar, Shannon

    2018-02-01

    The logic operators (e.g., "and," "or," "if, then") play a fundamental role in concept formation, syntactic construction, semantic expression, and deductive reasoning. In spite of this very general and basic role, there are relatively few studies in the literature that focus on their conceptual nature. In the current investigation, we examine, for the first time, the learning difficulty experienced by observers in classifying members belonging to these primitive "modal concepts" instantiated with sets of acoustic and visual stimuli. We report results from two categorization experiments that suggest the acquisition of acoustic and visual modal concepts is achieved by the same general cognitive mechanism. Additionally, we attempt to account for these results with two models of concept learning difficulty: the generalized invariance structure theory model (Vigo in Cognition 129(1):138-162, 2013, Mathematical principles of human conceptual behavior, Routledge, New York, 2014) and the generalized context model (Nosofsky in J Exp Psychol Learn Mem Cogn 10(1):104-114, 1984, J Exp Psychol 115(1):39-57, 1986).

  17. Results and Implications of a 12-Year Longitudinal Study of Science Concept Learning

    Science.gov (United States)

    Novak, Joseph D.

    2005-03-01

    This paper describes the methods and outcomes of a 12-year longitudinal study into the effects of an early intervention program, while reflecting back on changes that have occurred in approaches to research, learning and instruction since the preliminary inception stages of the study in the mid 1960s. We began the study to challenge the prevailing consensus at the time that primary school children were either preoperational or concrete operational in their cognitive development and they could not learn abstract concepts. Our early research, based on Ausubelian theory, suggested otherwise. The paper describes the development and implementation of a Grade 1-2 audio tutorial science instructional sequence, and the subsequent tracing over 12 years, of the children's conceptual understandings in science compared to a matched control group. During the study the concept map was developed as a new tool to trace children's conceptual development. We found that students in the instruction group far outperformed their non-instructed counterparts, and this difference increased as they progressed through middle and high school. The data clearly support the earlier introduction of science instruction on basic science concepts, such as the particulate nature of matter, energy and energy transformations. The data suggest that national curriculum standards for science grossly underestimate the learning capabilities of primary-grade children. The study has helped to lay a foundation for guided instruction using computers and concept mapping that may help both teachers and students become more proficient in understanding science.

  18. The Concept of L2 User and the goals of Second Language Learning

    Directory of Open Access Journals (Sweden)

    Willy Juanggo

    2017-07-01

    Full Text Available It is generally considered that knowing one language is not enough in this era. People need to learn a second language in addition to their mother tongue to meet the demand of today’s life as many of them are becoming a part of multilingual society as well as to face the globalisation. This paper aims to demonstrate the reasons of people learning a second by looking at the several goals they want to achieve in current situation and link it to the second language learning in education context. Subsequently, it also provides some criticism against the majority of English language teachings that set native speaker’s competence as the ultimate goal and highlights the concept of L2 user as a new paradigm and its implication to second language learning.

  19. Making clinical case-based learning in veterinary medicine visible: analysis of collaborative concept-mapping processes and reflections.

    Science.gov (United States)

    Khosa, Deep K; Volet, Simone E; Bolton, John R

    2014-01-01

    The value of collaborative concept mapping in assisting students to develop an understanding of complex concepts across a broad range of basic and applied science subjects is well documented. Less is known about students' learning processes that occur during the construction of a concept map, especially in the context of clinical cases in veterinary medicine. This study investigated the unfolding collaborative learning processes that took place in real-time concept mapping of a clinical case by veterinary medical students and explored students' and their teacher's reflections on the value of this activity. This study had two parts. The first part investigated the cognitive and metacognitive learning processes of two groups of students who displayed divergent learning outcomes in a concept mapping task. Meaningful group differences were found in their level of learning engagement in terms of the extent to which they spent time understanding and co-constructing knowledge along with completing the task at hand. The second part explored students' and their teacher's views on the value of concept mapping as a learning and teaching tool. The students' and their teacher's perceptions revealed congruent and contrasting notions about the usefulness of concept mapping. The relevance of concept mapping to clinical case-based learning in veterinary medicine is discussed, along with directions for future research.

  20. The Effect of Contextual Teaching and Learning Combined with Peer Tutoring towards Learning Achievement on Human Digestive System Concept

    Directory of Open Access Journals (Sweden)

    Farhah Abadiyah

    2017-11-01

    Full Text Available This research aims to know the influence of contextual teaching and learning (CTL combined with peer tutoring toward learning achievement on human digestive system concept. This research was conducted at one of State Senior High School in South Tangerang in the academic year of 2016/2017. The research method was quasi experiment with nonequivalent pretest-postest control group design. The sample was taken by simple random sampling. The total of the sampels were 86 students which consisted of 44 students as a controlled group and 42 students as an experimental group. The research instrument was objective test which consisted of 25 multiple choice items of each pretest and posttest. The research also used observation sheets for teacher and students activity. The result of data analysis using t-test on the two groups show that the value of tcount was 2.40 and ttable was 1.99 on significant level α = 0,05, so that tcount > ttable.. This result indicated that there was influence of contextual teaching and learning (CTL combined with peer tutoring toward learning achievement on human digestive system concept.

  1. Scoping literature review on the Learning Organisation concept as applied to the health system.

    Science.gov (United States)

    Akhnif, E; Macq, J; Idrissi Fakhreddine, M O; Meessen, B

    2017-03-01

    ᅟ: There is growing interest in the use of the management concept of a 'learning organisation'. The objective of this review is to explore work undertaken towards the application of this concept to the health sector in general and to reach the goal of universal health coverage in particular. Of interest are the exploration of evaluation frameworks and their application in health. We used a scoping literature review based on the York methodology. We conducted an online search using selected keywords on some of the main databases on health science, selected websites and main reference books on learning organisations. We restricted the focus of our search on sources in the English language only. Inclusive and exclusive criteria were applied to arrive at a final list of articles, from which information was extracted and then selected and inserted in a chart. We identified 263 articles and other documents from our search. From these, 50 articles were selected for a full analysis and 27 articles were used for the summary. The majority of the articles concerned hospital settings (15 articles, 55%). Seven articles (25%) were related to the application of the concept to the health centre setting. Four articles discussed the application of the concept to the health system (14%). Most of the applications involved high-income countries (21 articles, 78%), with only one article being related to a low-income country. We found 13 different frameworks that were applied to different health organisations. The scoping review allowed us to assess applications of the learning organisation concept to the health sector to date. Such applications are still rare, but are increasingly being used. There is no uniform framework thus far, but convergence as for the dimensions that matter is increasing. Many methodological questions remain unanswered. We also identified a gap in terms of the use of this concept in low- and middle-income countries and to the health system as a whole.

  2. Blended learning concept for the support of know-how transfer in a nuclear company

    International Nuclear Information System (INIS)

    Langenberger, Nina

    2010-01-01

    AREVA is the largest growing nuclear company. Development and construction of new power plants, sustainment and maintenance of existing installations require many professionally trained personnel, more than 800 new appointments per year trigger the in-plant training and education. The AREVA NP Training Center is in charge of the education and training of the personnel. The contribution deals with the applied blended learning concept and the know-how transfer within AREVA NP. Web-based training and the virtual class room are part of the concept.

  3. Pilot Study of Flow and Meaningfulness as Psychological Learning Concepts in Patient Education: A Short Report

    DEFF Research Database (Denmark)

    Nicic, Sara; Nørby, Karina; Bruun Johansen, Clea

    2014-01-01

    of this study was to investigate the applicability of these concepts of positive psychological theory in a patient education setting. Methods: This pilot study combines participating observation of group based patient education and 8 qualitative interviews with 4 patients with type 2 diabetes. Meaning......Abstract Background: The aim of this pilot study was to explore patient experiences of meaningfulness and flow related to group based patient education in type 2 diabetes. Meaningfulness and flow are underexposed as psychological learning concepts in patient education, and the ambition...

  4. Concept Mapping as an Innovative Tool for the Assessment of Learning: An Experimental Experience among Business Management Degree Students

    Science.gov (United States)

    Ruiz-Palomino, Pablo; Martinez-Canas, Ricardo

    2013-01-01

    In the search to improve the quality of education at the university level, the use of concept mapping is becoming an important instructional technique for enhancing the teaching-learning process. This educational tool is based on cognitive theories by making a distinction between learning by rote (memorizing) and learning by meaning, where…

  5. Using concept similarity in cross ontology for adaptive e-Learning systems

    Directory of Open Access Journals (Sweden)

    B. Saleena

    2015-01-01

    Full Text Available e-Learning is one of the most preferred media of learning by the learners. The learners search the web to gather knowledge about a particular topic from the information in the repositories. Retrieval of relevant materials from a domain can be easily implemented if the information is organized and related in some way. Ontologies are a key concept that helps us to relate information for providing the more relevant lessons to the learner. This paper proposes an adaptive e-Learning system, which generates a user specific e-Learning content by comparing the concepts with more than one system using similarity measures. A cross ontology measure is defined, which consists of fuzzy domain ontology as the primary ontology and the domain expert’s ontology as the secondary ontology, for the comparison process. A personalized document is provided to the user with a user profile, which includes the data obtained from the processing of the proposed method under a User score, which is obtained through the user evaluation. The results of the proposed e-Learning system under the designed cross ontology similarity measure show a significant increase in performance and accuracy under different conditions. The assessment of the comparative analysis, showed the difference in performance of our proposed method over other methods. Based on the assessment results it is proved that the proposed approach is effective over other methods.

  6. E-Learning Content Design Standards Based on Interactive Digital Concepts Maps in the Light of Meaningful and Constructivist Learning Theory

    Science.gov (United States)

    Afify, Mohammed Kamal

    2018-01-01

    The present study aims to identify standards of interactive digital concepts maps design and their measurement indicators as a tool to develop, organize and administer e-learning content in the light of Meaningful Learning Theory and Constructivist Learning Theory. To achieve the objective of the research, the author prepared a list of E-learning…

  7. Innovative learning model for improving students’ argumentation skill and concept understanding on science

    Science.gov (United States)

    Nafsiati Astuti, Rini

    2018-04-01

    Argumentation skill is the ability to compose and maintain arguments consisting of claims, supports for evidence, and strengthened-reasons. Argumentation is an important skill student needs to face the challenges of globalization in the 21st century. It is not an ability that can be developed by itself along with the physical development of human, but it must be developed under nerve like process, giving stimulus so as to require a person to be able to argue. Therefore, teachers should develop students’ skill of arguing in science learning in the classroom. The purpose of this study is to obtain an innovative learning model that are valid in terms of content and construct in improving the skills of argumentation and concept understanding of junior high school students. The assessment of content validity and construct validity was done through Focus Group Discussion (FGD), using the content and construct validation sheet, book model, learning video, and a set of learning aids for one meeting. Assessment results from 3 (three) experts showed that the learning model developed in the category was valid. The validity itself shows that the developed learning model has met the content requirement, the student needs, state of the art, strong theoretical and empirical foundation and construct validity, which has a connection of syntax stages and components of learning model so that it can be applied in the classroom activities

  8. CONCERING THE INTERRELATION OF E-LEARNING CONCEPTS IN HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    B. E. Starichenko

    2014-01-01

    Full Text Available The research objective is the classification and conventional interpretations of the concepts of «e-learning», «distance learning» and «blended learning»; its interconnection and correlation of the didactic system of modern education. The authors note that the deficiency of general data theories in pedagogical literature, - on the one hand, and active development of learning types essentially complicate framing and contents of modern education didactic system. Methods. The authors give the key feature of the generic difference betweenthe traditional and e-learning on the basis of the analysis and correlation made by various researchers’ viewpoints; the key feature - the information resources’ usage in educational process (i.e. devices for data processing, storage, transmission, and the information is presented in digital format. The authors single out that blended learning means implementation of traditional types and methods of specific educational tasks including the e-learning elements. Distance learning is proposed to be electronic itself; it’s supposed to be the final variation of e-learning.Scientific novelty and practical significance. The presented approach based on the digital resources’ level application permits to determine all-existing higher education learning types; to establish connection and show differences between them. The authors draw the conclusion that recommended approach can be usedfor further methodology development of modeling the specialists’ training variants in higher school. It is specially noted that this very training is considered as the collaboration of teachers and students focused on knowledge acquisition, work methods and communication features that correspond the future profession requirements. A mention should be made that it is necessary to use educational information material supplement and needed electronic devices or equipment.

  9. The challenge of consciousness with special reference to the exclusive disjunction

    Directory of Open Access Journals (Sweden)

    Alex Antonites

    2015-10-01

    Full Text Available The theory of evolution makes sense of the emergence of consciousness. Reduction is not wrong as such, but must not be totalised. The fact that we are star stuff does not preclude the novelty of consciousness. Materialism is naturalism, but naturalism need not be materialism. Neural pathways are relevant but are not the total picture. The central thesis is about David Chalmers’s philosophy being based on an exclusive disjunction. An inclusive disjunction is, when explained, more appropriate. Functionalism is appropriate. Thomas Nagel’s philosophy on first person ontology can still be maintained. Quantum and complexity theories’ hypothesis on consciousness is more compatible with freedom of decision than classical theories.

  10. Enhanced non-disjunction and recombination as consequences of γ-induced deficiencies in Petunia hybrida

    International Nuclear Information System (INIS)

    Cornu, A.; Maizonnier, D.

    1979-01-01

    Non-disjunction events, spontaneous or induced, are rather frequent in plants. In Petunia, no significant effect of γ-radiations was detected. However, the study of some monogametic mutants characterized by a terminal deletion showed that, at the level of the chromosome pair involved by this deletion, both the frequency of specific trisomics and the recombination fractions between 4 marker loci were considerably increased in the progeny of the mutants as compared with that of the control. These features, i.e. deletion-induced non-disjunction and recombination, may be considered as indirect effects of radiations. Generalization to other species may be of importance in the fields of mammalian genetics and plant breeding. (Auth.)

  11. Disjunctive Probabilistic Modal Logic is Enough for Bisimilarity on Reactive Probabilistic Systems

    OpenAIRE

    Bernardo, Marco; Miculan, Marino

    2016-01-01

    Larsen and Skou characterized probabilistic bisimilarity over reactive probabilistic systems with a logic including true, negation, conjunction, and a diamond modality decorated with a probabilistic lower bound. Later on, Desharnais, Edalat, and Panangaden showed that negation is not necessary to characterize the same equivalence. In this paper, we prove that the logical characterization holds also when conjunction is replaced by disjunction, with negation still being not necessary. To this e...

  12. THE METHOD OF CONSTRUCTING A BOOLEAN FORMULA OF A POLYGON IN THE DISJUNCTIVE NORMAL FORM

    Directory of Open Access Journals (Sweden)

    A. A. Butov

    2014-01-01

    Full Text Available The paper focuses on finalizing the method of finding a polygon Boolean formula in disjunctive normal form, described in the previous article [1]. An improved method eliminates the drawback asso-ciated with the existence of a class of problems for which the solution is only approximate. The pro-posed method always allows to find an exact solution. The method can be used, in particular, in the systems of computer-aided design of integrated circuits topology.

  13. Elucidating the mechanisms of paternal non-disjunction of chromosome 21 in humans.

    Science.gov (United States)

    Savage, A R; Petersen, M B; Pettay, D; Taft, L; Allran, K; Freeman, S B; Karadima, G; Avramopoulos, D; Torfs, C; Mikkelsen, M; Hassold, T J; Sherman, S L

    1998-08-01

    Paternal non-disjunction of chromosome 21 accounts for 5-10% of Down syndrome cases, therefore, relative to the maternally derived cases, little is known about paternally derived trisomy 21. We present the first analysis of recombination and non-disjunction for a large paternally derived population of free trisomy 21 conceptuses ( n = 67). Unlike maternal cases where the ratio of meiosis I (MI) to meiosis II (MII) errors is 3:1, a near 1:1 ratio exists among paternal cases, with a slight excess of MII errors. We found no paternal age effect for the overall population nor when classifying cases according to stage of non-disjunction error. Among 22 MI cases, only five had an observable recombinant event. This differs significantly from the 11 expected events ( P < 0.02, Fisher's exact), suggesting reduced recombination along the non-disjoined chromosomes 21 involved in paternal MI non-disjunction. No difference in recombination was detected among 27 paternal MII cases as compared with controls. However, cases exhibited a slight increase in the frequency of proximal and medial exchange when compared with controls (0.37 versus 0.28, respectively). Lastly, this study confirmed previous reports of excess male probands among paternally derived trisomy 21 cases. However, we report evidence suggesting an MII stage-specific sex ratio disturbance where 2.5 male probands were found for each female proband. Classification of MII cases based on the position of the exchange event suggested that the proband sex ratio disturbance was restricted to non-telomeric exchange cases. Based on these findings, we propose new models to explain the association between paternally derived trisomy 21 and excessive male probands.

  14. THE EFFECT OF SELF-CONCEPT ON THE MATHEMATICS LEARNING ACHIEVEMENT

    Directory of Open Access Journals (Sweden)

    Rosliana Siregar

    2018-05-01

    Full Text Available Abstract. This study aims to determine the effect of self-concepts on mathematics learning achievement of students of class X at State Senior High School 14 Medan. The population in this study is all students of class X State Senior High School 14 Medan which amounted to 304 students. Technique of sampling using technique of Proportionate Stratified Random Sampling counted 40 student for research sample. Data collection using questionnaire method and documentation method. Data analysis technique used is regression analysis, correlation analysis and t test with significance level of 5%. Testing data in this study using the help of SPSS 15 for Windows program for each test result. The results showed that there is a significant influence between self-concept and mathematics learning achievement obtained from the t count (3,572> t table (1.68, with a probability significance of 0.01 <0.05. The magnitude of the determination coefficient of 25.1%

  15. Surface blemish detection from passive imagery using learned fuzzy set concepts

    International Nuclear Information System (INIS)

    Gurbuz, S.; Carver, A.; Schalkoff, R.

    1997-12-01

    An image analysis method for real-time surface blemish detection using passive imagery and fuzzy set concepts is described. The method develops an internal knowledge representation for surface blemish characteristics on the basis of experience, thus facilitating autonomous learning based upon positive and negative exemplars. The method incorporates fuzzy set concepts in the learning subsystem and image segmentation algorithms, thereby mimicking human visual perception. This enables a generic solution for color image segmentation. This method has been applied in the development of ARIES (Autonomous Robotic Inspection Experimental System), designed to inspect DOE warehouse waste storage drums for rust. In this project, the ARIES vision system is used to acquire drum surface images under controlled conditions and subsequently perform visual inspection leading to the classification of the drum as acceptable or suspect

  16. "So they are not alive?": Dementia, reality disjunctions and conversational strategies.

    Science.gov (United States)

    Hydén, Lars-Christer; Samuelsson, Christina

    2018-01-01

    In some conversations involving persons with Alzheimer's disease, the participants may have to deal with the difficulty that they do not share a common ground in terms of not only who is alive or dead, but even more, who could possibly be alive. It is as if the participants face a reality disjunction. There are very few empirical studies of this difficulty in conversations involving persons with Alzheimer's disease or other kinds of dementia diagnoses. Often studies of confabulation have a focus on the behavior and experience of the healthy participants, but rarely on the interaction and the collaborative contributions made by the person with dementia. In the present article, we discuss various strategies used by all participants in an everyday conversation. The material consists of an hour long everyday conversation between a woman with Alzheimer's disease and two healthy participants (relatives). This conversation is analyzed by looking at the organization of the interaction with an emphasis on how the participants deal with instances of reality disjunctions. The result from the analysis demonstrates that both the healthy participants as well as the person with dementia together skillfully avoid the face threats posed by reality disjunctive contributions by not pursuing argumentative lines that in the end might jeopardize both the collaborative and the personal relations.

  17. Sociocultural context as a facilitator of student learning of function concepts in mathematics

    Directory of Open Access Journals (Sweden)

    Evangelina Díaz Obando

    2016-03-01

    Full Text Available In Costa Rica, many secondary students have serious difficulties to establish relationships between mathematics and real-life contexts. They question the utilitarian role of the school mathematics. This fact motivated the research object of this report which evidences the need to overcome methodologies unrelated to students’ reality, toward new didactical options that help students to value mathematics, reasoning and its  applications, connecting it with their socio-cultural context. The research used a case study as a qualitative methodology and the social constructivism as an educational paradigm in which the knowledge is built by the student; as a product of his social interactions. A collection of learning situations was designed, validated, and implemented. It allowed establishing relationships between mathematical concepts and the socio-cultural context of participants. It analyzed the impact of students’socio-cultural context in their mathematics learning of basic concepts of real variable functions, consistent with the Ministry of Education (MEP Official Program.  Among the results, it was found that using students’sociocultural context improved their motivational processes, mathematics sense making, and promoted cooperative social interactions. It was evidenced that contextualized learning situations favored concepts comprehension that allow students to see mathematics as a discipline closely related with their every-day life.

  18. Temporal Dynamics of Task Switching and Abstract-Concept Learning in Pigeons

    Directory of Open Access Journals (Sweden)

    Thomas Alexander Daniel

    2015-09-01

    Full Text Available The current study examined whether pigeons could learn to use abstract concepts as the basis for conditionally switching behavior as a function of time. Using a mid-session reversal task, experienced pigeons were trained to switch from matching-to-sample (MTS to non-matching-to-sample (NMTS conditional discriminations within a session. One group had prior training with MTS, while the other had prior training with NMTS. Over training, stimulus set size was progressively doubled from 3 to 6 to 12 stimuli to promote abstract concept development. Prior experience had an effect on the initial learning at each of the set sizes but by the end of training there were no group differences, as both groups showed similar within-session linear matching functions. After acquiring the 12-item set, abstract-concept learning was tested by placing novel stimuli at the beginning and end of a test session. Prior matching and non-matching experience affected transfer behavior. The matching experienced group transferred to novel stimuli in both the matching and non-matching portion of the sessions using a matching rule. The non-matching experienced group transferred to novel stimuli in both portions of the session using a non-matching rule. The representations used as the basis for mid-session reversal of the conditional discrimination behaviors and subsequent transfer behavior appears to have different temporal sources. The implications for the flexibility and organization of complex behaviors are considered.

  19. Testing complex animal cognition: Concept learning, proactive interference, and list memory.

    Science.gov (United States)

    Wright, Anthony A

    2018-01-01

    This article describes an approach for assessing and comparing complex cognition in rhesus monkeys and pigeons by training them in a sequence of synergistic tasks, each yielding a whole function for enhanced comparisons. These species were trained in similar same/different tasks with expanding training sets (8, 16, 32, 64, 128 … 1024 pictures) followed by novel-stimulus transfer eventually resulting in full abstract-concept learning. Concept-learning functions revealed better rhesus transfer throughout and full concept learning at the 128 set, versus pigeons at the 256 set. They were then tested in delayed same/different tasks for proactive interference by inserting occasional tests within trial-unique sessions where the test stimulus matched a previous sample stimulus (1, 2, 4, 8, 16 trials prior). Proactive-interference functions revealed time-based interference for pigeons (1, 10 s delays), but event-based interference for rhesus (no effect of 1, 10, 20 s delays). They were then tested in list-memory tasks by expanding the sample to four samples in trial-unique sessions (minimizing proactive interference). The four-item, list-memory functions revealed strong recency memory at short delays, gradually changing to strong primacy memory at long delays over 30 s for rhesus, and 10 s for pigeons. Other species comparisons and future directions are discussed. © 2018 Society for the Experimental Analysis of Behavior.

  20. Intertextual learning strategy with guided inquiry on solubility equilibrium concept to improve the student’s scientific processing skills

    Science.gov (United States)

    Wardani, K. U.; Mulyani, S.; Wiji

    2018-04-01

    The aim of this study was to develop intertextual learning strategy with guided inquiry on solubility equilibrium concept to enhance student’s scientific processing skills. This study was conducted with consideration of some various studies which found that lack of student’s process skills in learning chemistry was caused by learning chemistry is just a concept. The method used in this study is a Research and Development to generate the intertextual learning strategy with guided inquiry. The instruments used in the form of sheets validation are used to determine the congruence of learning activities by step guided inquiry learning and scientific processing skills with aspects of learning activities. Validation results obtained that the learning activities conducted in line with aspects of indicators of the scientific processing skills.

  1. Comparing cognition by integrating concept learning, proactive interference, and list memory.

    Science.gov (United States)

    Wright, Anthony A; Kelly, Debbie M; Katz, Jeffrey S

    2018-06-01

    This article describes an approach for training a variety of species to learn the abstract concept of same/different, which in turn forms the basis for testing proactive interference and list memory. The stimulus set for concept-learning training was progressively doubled from 8, 16, 32, 64, 128 . . . to 1,024 different pictures with novel-stimulus transfer following learning. All species fully learned the same/different abstract concept: capuchin and rhesus monkeys learned more readily than pigeons; nutcrackers and magpies were at least equivalent to monkeys and transferred somewhat better following initial training sets. A similar task using the 1,024-picture set plus delays was used to test proactive interference on occasional trials. Pigeons revealed greater interference with 10-s than with 1-s delays, whereas delay time had no effect on rhesus monkeys, suggesting that the monkeys' interference was event based. This same single-item same/different task was expanded to a 4-item list memory task to test animal list memory. Humans were tested similarly with lists of kaleidoscope pictures. Delays between the list and test were manipulated, resulting in strong initial recency effects (i.e., strong 4th-item memory) at short delays and changing to a strong primacy effect (i.e., strong 1st-item memory) at long delays (pigeons 0-s to 10-s delays; monkeys 0-s to 30-s delays; humans 0-s to 100-s delays). Results and findings are discussed in terms of these species' cognition and memory comparisons, evolutionary implications, and future directions for testing other species in these synergistically related tasks.

  2. Comparing deep learning and concept extraction based methods for patient phenotyping from clinical narratives.

    Science.gov (United States)

    Gehrmann, Sebastian; Dernoncourt, Franck; Li, Yeran; Carlson, Eric T; Wu, Joy T; Welt, Jonathan; Foote, John; Moseley, Edward T; Grant, David W; Tyler, Patrick D; Celi, Leo A

    2018-01-01

    In secondary analysis of electronic health records, a crucial task consists in correctly identifying the patient cohort under investigation. In many cases, the most valuable and relevant information for an accurate classification of medical conditions exist only in clinical narratives. Therefore, it is necessary to use natural language processing (NLP) techniques to extract and evaluate these narratives. The most commonly used approach to this problem relies on extracting a number of clinician-defined medical concepts from text and using machine learning techniques to identify whether a particular patient has a certain condition. However, recent advances in deep learning and NLP enable models to learn a rich representation of (medical) language. Convolutional neural networks (CNN) for text classification can augment the existing techniques by leveraging the representation of language to learn which phrases in a text are relevant for a given medical condition. In this work, we compare concept extraction based methods with CNNs and other commonly used models in NLP in ten phenotyping tasks using 1,610 discharge summaries from the MIMIC-III database. We show that CNNs outperform concept extraction based methods in almost all of the tasks, with an improvement in F1-score of up to 26 and up to 7 percentage points in area under the ROC curve (AUC). We additionally assess the interpretability of both approaches by presenting and evaluating methods that calculate and extract the most salient phrases for a prediction. The results indicate that CNNs are a valid alternative to existing approaches in patient phenotyping and cohort identification, and should be further investigated. Moreover, the deep learning approach presented in this paper can be used to assist clinicians during chart review or support the extraction of billing codes from text by identifying and highlighting relevant phrases for various medical conditions.

  3. ‘The Edification of the Church’: Richard Hooker’s Theology of Worship and the Protestant Inward / Outward Disjunction

    Directory of Open Access Journals (Sweden)

    Littlejohn W. Bradford

    2014-06-01

    Full Text Available Sixteenth-century English Protestants struggled with the legacy left them by the Lutheran reformation: a strict disjunction between inward and outward that hindered the development of a robust theology of worship. For Luther, outward forms of worship had more to do with the edification of the neighbour than they did with pleasing God. But what exactly did ‘edification’ mean? On the one hand, English Protestants sought to avoid the Roman Catholic view that certain elements of worship held an intrinsic spiritual value; on the other hand, many did not want to imply that forms of worship were spiritually arbitrary and had a merely civil value. Richard Hooker developed his theology of worship in response to this challenge, seeking to maintain a clear distinction between the inward worship of the heart and the outward forms of public worship, while refusing to disassociate the two. The result was a concept of edification which sought to do justice to both civil and spiritual concerns, without, pace Peter Lake and other scholars, conceding an inch to a Catholic theology of worship

  4. The effectiveness of concept mapping and retrieval practice as learning strategies in an undergraduate physiology course.

    Science.gov (United States)

    Burdo, Joseph; O'Dwyer, Laura

    2015-12-01

    Concept mapping and retrieval practice are both educational methods that have separately been reported to provide significant benefits for learning in diverse settings. Concept mapping involves diagramming a hierarchical representation of relationships between distinct pieces of information, whereas retrieval practice involves retrieving information that was previously coded into memory. The relative benefits of these two methods have never been tested against each other in a classroom setting. Our study was designed to investigate whether or not concept mapping or retrieval practice produced a significant learning benefit in an undergraduate physiology course as measured by exam performance and, if so, was the benefit of one method significantly greater than the other. We found that there was a trend toward increased exam scores for the retrieval practice group compared with both the control group and concept mapping group, and that trend achieved statistical significance for one of the four module exams in the course. We also found that women performed statistically better than men on the module exam that contained a substantial amount of material relating to female reproductive physiology. Copyright © 2015 The American Physiological Society.

  5. Solar cost reduction through technical improvements: the concepts of learning and experience

    Energy Technology Data Exchange (ETDEWEB)

    Krawiec, F.; Flaim, T.

    1979-10-01

    The concepts of learning and experience are reviewed and their usefulness for predicting the future costs of solar technologies are evaluated. The literature review indicated that the cost estimates for solar energy technologies are typically made assuming a fixed production process, characterized by standard capacity factors, overhead, and labor costs. The learning curve is suggested as a generalization of the costs of potential solar energy systems. The concept of experience is too ambiguous to be useful for cost estimation. There is no logical reason to believe that costs will decline purely as a function of cumulative production, and experience curves do not allow the analyst to identify logical sources of cost reduction directly. The procedures for using learning and aggregated cost curves to estimate the costs of solar technologies are outlined. It is recommended that production histories of analogous products and processes are analyzed and the learning and cost curves for these surrogates are estimated. These curves, if judged applicable, can be used to predict the cost reductions in manufacturing solar energy technologies.

  6. Learning and Processing Abstract Words and Concepts: Insights From Typical and Atypical Development.

    Science.gov (United States)

    Vigliocco, Gabriella; Ponari, Marta; Norbury, Courtenay

    2018-05-21

    The paper describes two plausible hypotheses concerning the learning of abstract words and concepts. According to a first hypothesis, children would learn abstract words by extracting co-occurrences among words in linguistic input, using, for example, mechanisms as described by models of Distributional Semantics. According to a second hypothesis, children would exploit the fact that abstract words tend to have more emotional associations than concrete words to infer that they refer to internal/mental states. Each hypothesis makes specific predictions with regards to when and which abstract words are more likely to be learned; also they make different predictions concerning the impact of developmental disorders. We start by providing a review of work characterizing how abstract words and concepts are learned in development, especially between the ages of 6 and 12. Second, we review some work from our group that tests the two hypotheses above. This work investigates typically developing (TD) children and children with atypical development (developmental language disorders [DLD] and autism spectrum disorder [ASD] with and without language deficits). We conclude that the use of strategies based on emotional information, or on co-occurrences in language, may play a role at different developmental stages. © 2018 Cognitive Science Society Inc.

  7. Bootstrapping in a language of thought: a formal model of numerical concept learning.

    Science.gov (United States)

    Piantadosi, Steven T; Tenenbaum, Joshua B; Goodman, Noah D

    2012-05-01

    In acquiring number words, children exhibit a qualitative leap in which they transition from understanding a few number words, to possessing a rich system of interrelated numerical concepts. We present a computational framework for understanding this inductive leap as the consequence of statistical inference over a sufficiently powerful representational system. We provide an implemented model that is powerful enough to learn number word meanings and other related conceptual systems from naturalistic data. The model shows that bootstrapping can be made computationally and philosophically well-founded as a theory of number learning. Our approach demonstrates how learners may combine core cognitive operations to build sophisticated representations during the course of development, and how this process explains observed developmental patterns in number word learning. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. The Concept Maps as a Didactic Resource Tool of Meaningful Learning in Astronomy Themes

    Science.gov (United States)

    Silveira, Felipa Pacífico Ribeiro de Assis; Mendonça, Conceição Aparecida Soares

    2015-07-01

    This article presents the results of an investigation that sought to understand the performance of the conceptual map (MC) as a teaching resource facilitator of meaningful learning of scientific concepts on astronomical themes, developed with elementary school students. The methodology employed to obtain and process the data was based on a quantitative and qualitative approach. On the quantitative level we designed a quasi-experimental research with a control group that did not use the MC and an experimental group that used the MC, both being evaluated in the beginning and end of the process. In this case, the performance of both groups is displayed in a descriptive and analytical study. In the qualitative approach, the MCs were interpreted using the structuring and assigned meanings shared by the student during his/her presentation. The results demonstrated through the improvement of qualifications that the MC made a difference in conceptual learning and in certain skills revealed by learning indicators.

  9. Effects of basic character design and animation concepts using the flipped learning and project-based learning approach on learning achievement and creative thinking of higher education students

    Science.gov (United States)

    Autapao, Kanyarat; Minwong, Panthul

    2018-01-01

    Creative thinking was an important learning skill in the 21st Century via learning and innovation to promote students' creative thinking and working with others and to construct innovation. This is one of the important skills that determine the readiness of the participants to step into the complex society. The purposes of this research were 1) to compare the learning achievement of students after using basic character design and animation concepts using the flipped learning and project-based learning and 2) to make a comparison students' creative thinking between pretest and posttest. The populations were 29 students in Multimedia Technology program at Thepsatri Rajabhat University in the 2nd semester of the academic year 2016. The experimental instruments were lesson plans of basic character design and animation concepts using the flipped learning and project based learning. The data collecting instrument was creative thinking test. The data were analyzed by the arithmetic mean, standard deviation and The Wilcoxon Matched Pairs Signed-Ranks Test. The results of this research were 1) the learning achievement of students were statistically significance of .01 level and 2) the mean score of student's creativity assessment were statistically significance of .05 level. When considering all of 11 KPIs, showed that respondents' post-test mean scores higher than pre-test. And 5 KPIs were statistically significance of .05 level, consist of Originality, Fluency, Elaboration, Resistance to Premature Closure, and Intrinsic Motivation. It's were statistically significance of .042, .004, .049, .024 and .015 respectively. And 6 KPIs were non-statistically significant, include of Flexibility, Tolerance of Ambiguity, Divergent Thinking, Convergent Thinking, Risk Taking, and Extrinsic Motivation. The findings revealed that the flipped learning and project based learning provided students the freedom to simply learn on their own aptitude. When working together with project

  10. Non-Technical Skills Bingo-a game to facilitate the learning of complex concepts.

    Science.gov (United States)

    Dieckmann, Peter; Glavin, Ronnie; Hartvigsen Grønholm Jepsen, Rikke Malene; Krage, Ralf

    2016-01-01

    Acquiring the concepts of non-technical skills (NTS) beyond a superficial level is a challenge for healthcare professionals and simulation faculty. Current simulation-based approaches to teach NTS are challenged when learners have to master NTS concepts, clinically challenging situations, and simulation as a complex technique. The combination of all three aspects might overwhelm learners. To facilitate the deeper comprehension of NTS concepts, we describe an innovative video-based game, the Non-Technical Skills (NTS) Bingo. Participants get NTS Bingo cards that show five NTS elements each. While observing (non-medical) video clips, they try to find examples for the elements on their cards, typically observable behaviours that match a given element. After the video, participants "defend" their solution in a discussion with the game leader and other players. This discussion and the reflection aim to deepen the processing of the NTS concepts. We provide practical guidance for the conduct of NTS Bingo, including a selection of usable video clips and tips for the facilitated discussion after a clip. We use NTS in anaesthesia as example and provide guidance on how to adapt NTS Bingo to other disciplines. NTS Bingo is based on theoretical considerations on concept learning, which we describe to support the rationale for its conduct.

  11. Conceptual Elements: A Detailed Framework to Support and Assess Student Learning of Biology Core Concepts

    Science.gov (United States)

    Cary, Tawnya; Branchaw, Janet

    2017-01-01

    The Vision and Change in Undergraduate Biology Education: Call to Action report has inspired and supported a nationwide movement to restructure undergraduate biology curricula to address overarching disciplinary concepts and competencies. The report outlines the concepts and competencies generally but does not provide a detailed framework to guide the development of the learning outcomes, instructional materials, and assessment instruments needed to create a reformed biology curriculum. In this essay, we present a detailed Vision and Change core concept framework that articulates key components that transcend subdisciplines and scales for each overarching biological concept, the Conceptual Elements (CE) Framework. The CE Framework was developed using a grassroots approach of iterative revision and incorporates feedback from more than 60 biologists and undergraduate biology educators from across the United States. The final validation step resulted in strong national consensus, with greater than 92% of responders agreeing that each core concept list was ready for use by the biological sciences community, as determined by scientific accuracy and completeness. In addition, we describe in detail how educators and departments can use the CE Framework to guide and document reformation of individual courses as well as entire curricula. PMID:28450444

  12. Integrated learning of mathematics, science and technology concepts through LEGO/Logo projects

    Science.gov (United States)

    Wu, Lina

    This dissertation examined integrated learning in the domains of mathematics, science and technology based on Piaget's constructivism, Papert's constructionism, and project-based approach to education. Ten fifth grade students were involved in a two-month long after school program where they designed and built their own computer-controlled LEGO/Logo projects that required the use of gears, ratios and motion concepts. The design of this study centered on three notions of integrated learning: (1) integration in terms of what educational materials/settings provide, (2) integration in terms of students' use of those materials, and (3) integration in the psychological sense. In terms of the first notion, the results generally showed that the LEGO/Logo environment supported the integrated learning of math, science and technology concepts. Regarding the second notion, the students all completed impressive projects of their own design. They successfully combined gears, motors, and LEGO parts together to create motion and writing control commands to manipulate the motion. But contrary to my initial expectations, their successful designs did not require numerical reasoning about ratios in designing effective gear systems. When they did reason about gear relationships, they worked with "qualitative" ratios, e.g., "a larger driver gear with a smaller driven gear increases the speed." In terms of the third notion of integrated learning, there was evidence in all four case study students of the psychological processes involved in linking mathematical, scientific, and/or technological concepts together to achieve new conceptual units. The students not only made connections between ideas and experiences, but also recognized decisive patterns and relationships in their project work. The students with stronger overall project performances showed more evidence of synthesis than the students with relatively weaker performances did. The findings support the conclusion that all three

  13. Evaluating meaningful learning using concept mapping in dental hygiene education: a pilot study.

    Science.gov (United States)

    Canasi, Dina M; Amyot, Cynthia; Tira, Daniel

    2014-02-01

    Concept mapping, as a teaching strategy, has been shown to promote critical thinking and problem solving in educational settings. Dental clinicians must distinguish between critical and irrelevant characteristics in the delivery of care, thus necessitating reasoning skills to do so. One of the aims of the American Dental Education Association Commission on Change and Innovation (ADEA-CCI) is to identify deficiencies in curriculum which were meant to improve critical thinking and problem solving skills necessary in clinical practice. The purpose of this study was to compare 2 teaching strategies, traditional lecture and lecture supported by concept mapping exercises within collaborative working groups, to determine if there is a beneficial effect on meaningful learning. For this pilot study, the study population consisted of students from 2 geographically separated associate level dental hygiene programs in the southeastern U.S. A quasi-experimental control group pre- and post-test design was used. The degree of meaningful learning achieved by both programs was assessed by comparing pre- and post-test results. Both programs experienced a significant degree of meaningful learning from pre- to post-test. However, there was no statistically significant difference between the programs on the post-test. These results were in direct contrast to research in other disciplines on concept mapping and its effect on promoting meaningful learning. Further investigation into the study's outcome was obtained through a follow-up focus group. In spite of careful attention to methodology in the development of this research project, the focus group illuminated methodological failings that potentially impacted the outcome of the study. Recommendations are underscored for future conduct of educational research of this kind.

  14. Combination of inquiry learning model and computer simulation to improve mastery concept and the correlation with critical thinking skills (CTS)

    Science.gov (United States)

    Nugraha, Muhamad Gina; Kaniawati, Ida; Rusdiana, Dadi; Kirana, Kartika Hajar

    2016-02-01

    Among the purposes of physics learning at high school is to master the physics concepts and cultivate scientific attitude (including critical attitude), develop inductive and deductive reasoning skills. According to Ennis et al., inductive and deductive reasoning skills are part of critical thinking. Based on preliminary studies, both of the competence are lack achieved, it is seen from student learning outcomes is low and learning processes that are not conducive to cultivate critical thinking (teacher-centered learning). One of learning model that predicted can increase mastery concepts and train CTS is inquiry learning model aided computer simulations. In this model, students were given the opportunity to be actively involved in the experiment and also get a good explanation with the computer simulations. From research with randomized control group pretest-posttest design, we found that the inquiry learning model aided computer simulations can significantly improve students' mastery concepts than the conventional (teacher-centered) method. With inquiry learning model aided computer simulations, 20% of students have high CTS, 63.3% were medium and 16.7% were low. CTS greatly contribute to the students' mastery concept with a correlation coefficient of 0.697 and quite contribute to the enhancement mastery concept with a correlation coefficient of 0.603.

  15. Using Expectancy Value Theory as a Framework to Reduce Student Resistance to Active Learning: A Proof of Concept.

    Science.gov (United States)

    Cooper, Katelyn M; Ashley, Michael; Brownell, Sara E

    2017-01-01

    There has been a national movement to transition college science courses from passive lectures to active learning environments. Active learning has been shown to be a more effective way for students to learn, yet there is concern that some students are resistant to active learning approaches. Although there is much discussion about student resistance to active learning, few studies have explored this topic. Furthermore, a limited number of studies have applied theoretical frameworks to student engagement in active learning. We propose using a theoretical lens of expectancy value theory to understand student resistance to active learning. In this study, we examined student perceptions of active learning after participating in 40 hours of active learning. We used the principal components of expectancy value theory to probe student experience in active learning: student perceived self-efficacy in active learning, value of active learning, and potential cost of participating in active learning. We found that students showed positive changes in the components of expectancy value theory and reported high levels of engagement in active learning, which provide proof of concept that expectancy value theory can be used to boost student perceptions of active learning and their engagement in active learning classrooms. From these findings, we have built a theoretical framework of expectancy value theory applied to active learning.

  16. Citizenship education in Lebanon: An introduction into students’ concepts and learning experiences

    Directory of Open Access Journals (Sweden)

    Bassel Akar

    2007-12-01

    Full Text Available Lebanon continues to use citizenship education as a tool for social cohesion in its post-conflict sectarian society. Recently, teachers from previous studies (Akar, 2006 have raised certain issues concerning the challenges of teaching citizenship in Lebanon’s National and Civic Education classrooms. This initial study in Lebanon explores some of the challenges that students face when learning citizenship within their classroom by investigating their concepts of citizenship in addition to their learning experiences. Thirty-one students from two year-11 classrooms in different schools participated. During a 45-minute class lesson, I administered a survey pack collecting quantitative and qualitative data. This pack included a diamond ranking exercise, open-ended questions and a 15-minute class discussion at the end of class. Evidence showed that these students value active and dynamic behaviours based on humanistic and democratic principles. They also demonstrated a strong sense of national identity with little or no reference to a global one. Finally, the findings showed that traditional methods of learning such as memorization and the paradoxical climate of learning democratic civic behaviours in a society of internal conflicts further challenged their learning experiences.

  17. Tugboats and tennis games: Preservice conceptions of teaching and learning revealed through metaphors

    Science.gov (United States)

    Gurney, Bruce F.

    Black (1979) writes about the inextricable interrelationships among language, perception, knowledge, experience and metaphor. An extension of this, grounded in Wittgenstein's (1953) notion of the symbolic, experiential basis of first language, is the view that metaphors are windows into this primitive, personal framework. The purpose of this paper is to take an exploratory look at preservice teachers' metaphors of teaching and learning and to examine some components of student teachers' own intuitions in this area. In this study, a questionnaire was administered to one hundred and fifty-one science education students at the beginning of their preservice training on which they were challenged to generate a personal metaphor for teaching and learning. Descriptive elements within the responses were differentiated and applied to the development of a classification scheme. Both the technique and the categorization are seen as useful devices for the identification of common conceptions about the teaching and learning process. The metaphors have been seen to communicate a richness of meaning which convey elements of mood, control, roles, attitudes and beliefs as they apply to teaching and learning and which, it is argued here, are grounded on more deeply rooted symbols than literal language. In the light of constructivist pedagogy, the elicitation of students' preconceptions is seen to be germane to the organization of learning experiences.Received: 27 June 1993; Revised: 2 August 1994;

  18. The "proactive" model of learning: Integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept.

    Science.gov (United States)

    Zsuga, Judit; Biro, Klara; Papp, Csaba; Tajti, Gabor; Gesztelyi, Rudolf

    2016-02-01

    Reinforcement learning (RL) is a powerful concept underlying forms of associative learning governed by the use of a scalar reward signal, with learning taking place if expectations are violated. RL may be assessed using model-based and model-free approaches. Model-based reinforcement learning involves the amygdala, the hippocampus, and the orbitofrontal cortex (OFC). The model-free system involves the pedunculopontine-tegmental nucleus (PPTgN), the ventral tegmental area (VTA) and the ventral striatum (VS). Based on the functional connectivity of VS, model-free and model based RL systems center on the VS that by integrating model-free signals (received as reward prediction error) and model-based reward related input computes value. Using the concept of reinforcement learning agent we propose that the VS serves as the value function component of the RL agent. Regarding the model utilized for model-based computations we turned to the proactive brain concept, which offers an ubiquitous function for the default network based on its great functional overlap with contextual associative areas. Hence, by means of the default network the brain continuously organizes its environment into context frames enabling the formulation of analogy-based association that are turned into predictions of what to expect. The OFC integrates reward-related information into context frames upon computing reward expectation by compiling stimulus-reward and context-reward information offered by the amygdala and hippocampus, respectively. Furthermore we suggest that the integration of model-based expectations regarding reward into the value signal is further supported by the efferent of the OFC that reach structures canonical for model-free learning (e.g., the PPTgN, VTA, and VS). (c) 2016 APA, all rights reserved).

  19. Using concept mapping to measure changes in interdisciplinary learning during high school

    Directory of Open Access Journals (Sweden)

    Priit Reiska

    2018-03-01

    Full Text Available How, when and what kind of learning takes place are key questions in all educational environments. School graduates are expected to have reached a development level whereby they have, among many fundamental skills, the ability to think critically, to plan their studies and their future, and to integrate knowledge across disciplines. However, it is challenging to develop these skills in schools. Following existing curricula, disciplines are often taught separately and by different teachers, making it difficult for students to connect knowledge studied and learned from one discipline to that of another discipline. The Next Generation Science Standards on teaching and learning natural science in the United States point out important crosscutting concepts in science education (NGSS, 2013. In Estonia, similar trends are leading to an emphasis on the need to further develop scientific literacy skills and interdisciplinary learning in students. The changing environment around us must be reflected in changes in our school system. In this paper, we report on research that intends to answer the questions: (a “How much do Estonian students develop an interdisciplinary understanding of science throughout their high school education?”, and (b “Is their thinking more interdisciplinary after two years of studies in an Estonian high school?” Additionally, we analyzed the results based on the type of school the students attended, and we examined the use concept mapping to assess interdisciplinary learning. This research is part of an overall study that involved students from 44 Estonian high schools taking a science test similar to the three-dimensional Programme for International Student Assessment (PISA test (hereafter called PISA-like multidimensional test as well as constructing concept maps, while in 10th and 12th grade. In this paper, we report on the analysis of the results for 182 of the students, concentrating on the analysis of the concept maps

  20. A Nordic perspective on career competences and guidance:Career choices and career learning. NVL & ELGPN concept note

    OpenAIRE

    Thomsen, Rie

    2014-01-01

    This concept note reflects an initiative within the Nordic ELPGN group, in partnership with the Nordic network for adult learning (NVL), to investigate the possibilities for collaboration between the Nordic countries in developing a number of joint documents on career competences and/or a competence framework for career learning in the Nordic countries.The objective for this concept note is to contribute to a shared Nordic frame of understanding for career competences which can be used in the...

  1. Structured feedback on students' concept maps: the proverbial path to learning?

    Science.gov (United States)

    Joseph, Conran; Conradsson, David; Nilsson Wikmar, Lena; Rowe, Michael

    2017-05-25

    Good conceptual knowledge is an essential requirement for health professions students, in that they are required to apply concepts learned in the classroom to a variety of different contexts. However, the use of traditional methods of assessment limits the educator's ability to correct students' conceptual knowledge prior to altering the educational context. Concept mapping (CM) is an educational tool for evaluating conceptual knowledge, but little is known about its use in facilitating the development of richer knowledge frameworks. In addition, structured feedback has the potential to develop good conceptual knowledge. The purpose of this study was to use Kinchin's criteria to assess the impact of structured feedback on the graphical complexity of CM's by observing the development of richer knowledge frameworks. Fifty-eight physiotherapy students created CM's targeting the integration of two knowledge domains within a case-based teaching paradigm. Each student received one round of structured feedback that addressed correction, reinforcement, forensic diagnosis, benchmarking, and longitudinal development on their CM's prior to the final submission. The concept maps were categorized according to Kinchin's criteria as either Spoke, Chain or Net representations, and then evaluated against defined traits of meaningful learning. The inter-rater reliability of categorizing CM's was good. Pre-feedback CM's were predominantly Chain structures (57%), with Net structures appearing least often. There was a significant reduction of the basic Spoke- structured CMs (P = 0.002) and a significant increase of Net-structured maps (P student development.

  2. An effective self-assessment based on concept map extraction from test-sheet for personalized learning

    Science.gov (United States)

    Liew, Keng-Hou; Lin, Yu-Shih; Chang, Yi-Chun; Chu, Chih-Ping

    2013-12-01

    Examination is a traditional way to assess learners' learning status, progress and performance after a learning activity. Except the test grade, a test sheet hides some implicit information such as test concepts, their relationships, importance, and prerequisite. The implicit information can be extracted and constructed a concept map for considering (1) the test concepts covered in the same question means these test concepts have strong relationships, and (2) questions in the same test sheet means the test concepts are relative. Concept map has been successfully employed in many researches to help instructors and learners organize relationships among concepts. However, concept map construction depends on experts who need to take effort and time for the organization of the domain knowledge. In addition, the previous researches regarding to automatic concept map construction are limited to consider all learners of a class, which have not considered personalized learning. To cope with this problem, this paper proposes a new approach to automatically extract and construct concept map based on implicit information in a test sheet. Furthermore, the proposed approach also can help learner for self-assessment and self-diagnosis. Finally, an example is given to depict the effectiveness of proposed approach.

  3. Concept maps: A tool for knowledge management and synthesis in web-based conversational learning.

    Science.gov (United States)

    Joshi, Ankur; Singh, Satendra; Jaswal, Shivani; Badyal, Dinesh Kumar; Singh, Tejinder

    2016-01-01

    Web-based conversational learning provides an opportunity for shared knowledge base creation through collaboration and collective wisdom extraction. Usually, the amount of generated information in such forums is very huge, multidimensional (in alignment with the desirable preconditions for constructivist knowledge creation), and sometimes, the nature of expected new information may not be anticipated in advance. Thus, concept maps (crafted from constructed data) as "process summary" tools may be a solution to improve critical thinking and learning by making connections between the facts or knowledge shared by the participants during online discussion This exploratory paper begins with the description of this innovation tried on a web-based interacting platform (email list management software), FAIMER-Listserv, and generated qualitative evidence through peer-feedback. This process description is further supported by a theoretical construct which shows how social constructivism (inclusive of autonomy and complexity) affects the conversational learning. The paper rationalizes the use of concept map as mid-summary tool for extracting information and further sense making out of this apparent intricacy.

  4. Academic self-concept, learning motivation, and test anxiety of the underestimated student.

    Science.gov (United States)

    Urhahne, Detlef; Chao, Sheng-Han; Florineth, Maria Luise; Luttenberger, Silke; Paechter, Manuela

    2011-03-01

    BACKGROUND. Teachers' judgments of student performance on a standardized achievement test often result in an overestimation of students' abilities. In the majority of cases, a larger group of overestimated students and a smaller group of underestimated students are formed by these judgments. AIMS. In this research study, the consequences of the underestimation of students' mathematical performance potential were examined. SAMPLE. Two hundred and thirty-five fourth grade students and their fourteen mathematics teachers took part in the investigation. METHOD. Students worked on a standardized mathematics achievement test and completed a self-description questionnaire about motivation and affect. Teachers estimated each individual student's potential with regard to mathematics test performance as well as students' expectancy for success, level of aspiration, academic self-concept, learning motivation, and test anxiety. The differences between teachers' judgments on students' test performance and students' actual performance were used to build groups of underestimated and overestimated students. RESULTS. Underestimated students displayed equal levels of test performance, learning motivation, and level of aspiration in comparison with overestimated students, but had lower expectancy for success, lower academic self-concept, and experienced more test anxiety. Teachers expected that underestimated students would receive lower grades on the next mathematics test, believed that students were satisfied with lower grades, and assumed that the students have weaker learning motivation than their overestimated classmates. CONCLUSION. Teachers' judgment error was not confined to test performance but generalized to motivational and affective traits of the students. © 2010 The British Psychological Society.

  5. Teachers' conceptions of learning and teaching in student-centred medical curricula: the impact of context and personal characteristics.

    Science.gov (United States)

    Jacobs, Johanna C G; van Luijk, Scheltus J; van der Vleuten, Cees P M; Kusurkar, Rashmi A; Croiset, Gerda; Scheele, Fedde

    2016-09-21

    Gibbs and Coffey (2004) have reported that teaching practices are influenced by teachers' conceptions of learning and teaching. In our previous research we found significant differences between teachers' conceptions in two medical schools with student-centred education. Medical school was the most important predictor, next to discipline, gender and teaching experience. Our research questions for the current study are (1) which specific elements of medical school explain the effect of medical school on teachers' conceptions of learning and teaching? How? and (2) which contextual and personal characteristics are related to conceptions of learning and teaching? How? Individual interviews were conducted with 13 teachers of the undergraduate curricula in two medical schools. Previously their conceptions of learning and teaching were assessed with the COLT questionnaire. We investigated the meanings they attached to context and personal characteristics, in relation to their conceptions of learning and teaching. We used a template analysis. Large individual differences existed between teachers. Characteristics mentioned at the medical school and curriculum level were 'curriculum tradition', 'support by educational department' and 'management and finances'. Other contextual characteristics were 'leadership style' at all levels but especially of department chairs, 'affordances and support', 'support and relatedness', and 'students' characteristics'. Personal characteristics were 'agency', 'experience with PBL (as a student or a teacher)','personal development', 'motivation and work engagement'and 'high content expertise'. Several context and personal characteristics associated with teachers' conceptions were identified, enabling a broader view on faculty development with attention for these characteristics, next to teaching skills.

  6. Teachers' conceptions of learning and teaching in student-centred medical curricula: the impact of context and personal characteristics

    NARCIS (Netherlands)

    Jacobs, J.C.G.; Luijk, S.J. van; Vleuten, C.P.M. van der; Kusurkar, R.A.; Croiset, G.; Scheele, F.

    2016-01-01

    BACKGROUND: Gibbs and Coffey (2004) have reported that teaching practices are influenced by teachers' conceptions of learning and teaching. In our previous research we found significant differences between teachers' conceptions in two medical schools with student-centred education. Medical school

  7. The Use of Instructional Animations in a College Algebra Course: Can It Facilitate Learning of Concepts and Skill Development?

    Science.gov (United States)

    Serfaty de Markus, Alicia

    2018-01-01

    This quasi-treatment study, using a non-equivalent group design, explored how a set of animations related to various concepts in algebra impacted students' ability to learn as measured by changes in quiz and test scores. The concepts that were investigated were addition and subtraction of rational expressions, solving equations involving rational…

  8. The effectiveness of process oriented guided inquiry learning to reduce alternate conceptions in secondary chemistry

    Science.gov (United States)

    Barthlow, Michelle J.

    2011-12-01

    A nonequivalent, control group, pretest-posttest design was used to investigate student achievement in secondary chemistry. This study investigated the effect of process oriented guided inquiry learning (POGIL) in high school chemistry to reduce alternate conceptions related to the particulate nature of matter versus traditional lecture pedagogy. Data were collected from chemistry students in four large high schools and analyzed using ANCOVA. The results show that POGIL pedagogy, as opposed to traditional lecture pedagogy, resulted in fewer alternate conceptions related to the particulate nature of matter. Male and female students in the POGIL group posted better posttest scores than their traditional group peers. African-American and Hispanic students in the POGIL group exhibited achievement gains consistent with Caucasian and Asian students. Further studies are needed to determine the value of POGIL to address achievement gap concerns in chemistry.

  9. Portuguese primary school children's conceptions about digestion: identification of learning obstacles

    Science.gov (United States)

    Silva, Rui Graça; Lima, Nelson; Coquet, Eduarda; Clément, Pierre

    2004-09-01

    A cross-sectional study of Portuguese primary school pupils' conceptions on digestion and the digestive tract was carried out before and after teaching this topic. Pupils of the prior four school years (5/6 to 9/10 year old) drew what happens to a cookie inside their body. In some cases they also wrote a short text or were interviewed. To identify their level of graphic development, they produced a free-hand drawing. The main conceptual changes in explaining digestion were strongly linked to teaching. Children's previous conceptions were not epistemological obstacles to learning about digestion. The main obstacles were of didactical origin, as images of primary school books do not represent (i) the path of food from the intestine into the blood, (associated to the epistemological obstacle of the permeability of the gut wall); (ii) a clear continuous tract from stomach to anus, which causes a specific confusion at the intestine level.

  10. Conceptual Blending Monitoring Students' Use of Metaphorical Concepts to Further the Learning of Science

    Science.gov (United States)

    Fredriksson, Alexandra; Pelger, Susanne

    2018-03-01

    The aim of this study is to explore how tertiary science students' use of metaphors in their popular science article writing may influence their understanding of subject matter. For this purpose, six popular articles written by students in physics or geology were analysed by means of a close textual analysis and a metaphor analysis. In addition, semi-structured interviews were conducted with the students. The articles showed variation regarding the occurrence of active (non-conventional) metaphors, and metaphorical concepts, i.e. metaphors relating to a common theme. In addition, the interviews indicated that students using active metaphors and metaphorical concepts reflected more actively upon their use of metaphors. These students also discussed the possible relationship between subject understanding and creation of metaphors in terms of conceptual blending. The study suggests that students' process of creating metaphorical concepts could be described and visualised through integrated networks of conceptual blending. Altogether, the study argues for using conceptual blending as a tool for monitoring and encouraging the use of adequate metaphorical concepts, thereby facilitating students' opportunities of understanding and influencing the learning of science.

  11. A Quasi-Experimental Examination: Cognitive Sequencing of Instruction Using Experiential Learning Theory for STEM Concepts in Agricultural Education

    Science.gov (United States)

    Smith, Kasee L.; Rayfield, John

    2017-01-01

    Understanding methods for effectively instructing STEM education concepts is essential in the current climate of education (Freeman, Marginson, & Tyler 2014). Kolb's experiential learning theory (ELT) outlines four specific modes of learning, based on preferences for grasping and transforming information. This quasi-experimental study was…

  12. Naturally Acquired Learned Helplessness: The Relationship of School Failure to Achievement Behavior, Attributions, and Self-Concept.

    Science.gov (United States)

    Johnson, Dona S.

    1981-01-01

    Personality and behavioral consequences of learned helplessness were monitored in children experiencing failure in school. The predictive quality of learned helplessness theory was compared with that of value expectancy theories. Low self-concept was predicted significantly by school failure, internal attributions for failure, and external…

  13. Exploring Factors That Promote Online Learning Experiences and Academic Self-Concept of Minority High School Students

    Science.gov (United States)

    Kumi-Yeboah, Alex; Dogbey, James; Yuan, Guangji

    2018-01-01

    The rapid growth of online education at the K-12 level in recent years presents the need to explore issues that influence the academic experiences of students choosing this method of learning. In this study, we examined factors that promote/hinder the learning experiences and academic self-concept of minority students attending an online high…

  14. On the Role of Discipline-Related Self-Concept in Deep and Surface Approaches to Learning among University Students

    Science.gov (United States)

    Platow, Michael J.; Mavor, Kenneth I.; Grace, Diana M.

    2013-01-01

    The current research examined the role that students' discipline-related self-concepts may play in their deep and surface approaches to learning, their overall learning outcomes, and continued engagement in the discipline itself. Using a cross-lagged panel design of first-year university psychology students, a causal path was observed in which…

  15. Investigating Cross-Cultural Variation in Conceptions of Learning and the Use of Self-Regulated Strategies.

    Science.gov (United States)

    Purdie, Nola; Pillay, Hitendra; Boulton-Lewis, Gillian

    2000-01-01

    Examines concepts of learning, motivational orientations, and use of range of learning strategies focusing on high schools students (n=222) in Australia and in Malaysia (n=168). Indicates that Malaysian students obtained higher scores for more motivation strategies than Australian students. Includes references. (CMK)

  16. The learning evaluations of the concept function in the mathematical subject I

    Directory of Open Access Journals (Sweden)

    Wilmer Valle Castañeda

    2018-03-01

    Full Text Available The evaluation must be one of the most complex tasks that teachers face today, both for the process itself and for having to issue an assessment about the achievements and deficiencies of the students. It is for them that techniques and instruments were developed, which allow the evaluation of the function concept in the Mathematics I subject´s. Methods of the theoretical level, of the empirical level such as the historical-logical analysis, the surveys, were used in the research carried out. The documentary analyses, as well as procedures such as the analysis - synthesis that made it possible to investigate the theoretical and practical fundament´s learning evaluation´s. The evaluation instruments presented allowed for the evaluation of the students in Mathematics I, less than one of the most important functions of the evaluation: the formative or educational function. These constituted a reference for the continuous improvement of student learning.

  17. The Relationships among Scientific Epistemic Beliefs, Conceptions of Learning Science, and Motivation of Learning Science: A Study of Taiwan High School Students

    Science.gov (United States)

    Ho, Hsin-Ning Jessie; Liang, Jyh-Chong

    2015-01-01

    This study explores the relationships among Taiwanese high school students' scientific epistemic beliefs (SEBs), conceptions of learning science (COLS), and motivation of learning science. The questionnaire responses from 470 high school students in Taiwan were gathered for analysis to explain these relationships. The structural equation modeling…

  18. Inferring the biogeographic origins of inter-continental disjunct endemics using a Bayes-DIVA approach

    Institute of Scientific and Technical Information of China (English)

    AJ HARRIS; Jun WEN; Qiu-Yun (Jenny) XIANG

    2013-01-01

    The arcto-Tertiary relictual flora is comprised of many genera that occur non-contiguously in the temperate zones of eastern Asia,Europe,eastern North America,and westem North America.Within each distributional area,species are typically endemic and may thus be widely separated from closely related species within the other areas.It is widely accepted that this common pattern of distribution resulted from of the fragmentation of a once morecontinuous arcto-Tertiary forest.The historical biogeographic events leading to the present-day disjunction have often been investigated using a phylogenetic approach.Limitations to these previous studies have included phylogenetic uncertainty and uncertainty in ancestral range reconstructions.However,the recently described Bayes-DIVA method handles both types of uncertainty.Thus,we used Bayes-DIVA analysis to reconstruct the stem lineage distributions for 185 endemic lineages from 23 disjunct genera representing 17 vascular plant families.In particular,we asked whether endemic lineages within each of the four distributional areas more often evolved from (1) widespread ancestors,(2) ancestors dispersed from other areas,or (3) endemic ancestors.We also considered which of these three biogeographic mechanisms may best explain the origins of arcto-Tertiary disjunct endemics in the neotropics.Our results show that eastern Asian endemics more often evolved from endemic ancestors compared to endemics in Europe and eastern and western North America.Present-day endemic lineages in the latter areas more often arose from widespread ancestors.Our results also provide anecdotal evidence for the importance of dispersal in the biogeographic origins of arcto-Tertiary species endemic in the neotropics.

  19. Learning motion concepts using real-time microcomputer-based laboratory tools

    Science.gov (United States)

    Thornton, Ronald K.; Sokoloff, David R.

    1990-09-01

    Microcomputer-based laboratory (MBL) tools have been developed which interface to Apple II and Macintosh computers. Students use these tools to collect physical data that are graphed in real time and then can be manipulated and analyzed. The MBL tools have made possible discovery-based laboratory curricula that embody results from educational research. These curricula allow students to take an active role in their learning and encourage them to construct physical knowledge from observation of the physical world. The curricula encourage collaborative learning by taking advantage of the fact that MBL tools present data in an immediately understandable graphical form. This article describes one of the tools—the motion detector (hardware and software)—and the kinematics curriculum. The effectiveness of this curriculum compared to traditional college and university methods for helping students learn basic kinematics concepts has been evaluated by pre- and post-testing and by observation. There is strong evidence for significantly improved learning and retention by students who used the MBL materials, compared to those taught in lecture.

  20. Differential-associative processing or example elaboration: Which strategy is best for learning the definitions of related and unrelated concepts?

    Science.gov (United States)

    Hannon, Brenda

    2012-10-01

    Definitions of related concepts (e.g., genotype - phenotype ) are prevalent in introductory classes. Consequently, it is important that educators and students know which strategy(s) work best for learning them. This study showed that a new comparative elaboration strategy, called differential-associative processing, was better for learning definitions of related concepts than was an integrative elaborative strategy, called example elaboration. This outcome occurred even though example elaboration was administered in a naturalistic way (Experiment 1) and students spent more time in the example elaboration condition learning (Experiments 1, 2, 3), and generating pieces of information about the concepts (Experiments 2 and 3). Further, with unrelated concepts ( morpheme-fluid intelligence ), performance was similar regardless if students used differential-associative processing or example elaboration (Experiment 3). Taken as a whole, these results suggest that differential-associative processing is better than example elaboration for learning definitions of related concepts and is as good as example elaboration for learning definitions of unrelated concepts.

  1. Improving learning with science and social studies text using computer-based concept maps for students with disabilities.

    Science.gov (United States)

    Ciullo, Stephen; Falcomata, Terry S; Pfannenstiel, Kathleen; Billingsley, Glenna

    2015-01-01

    Concept maps have been used to help students with learning disabilities (LD) improve literacy skills and content learning, predominantly in secondary school. However, despite increased access to classroom technology, no previous studies have examined the efficacy of computer-based concept maps to improve learning from informational text for students with LD in elementary school. In this study, we used a concurrent delayed multiple probe design to evaluate the interactive use of computer-based concept maps on content acquisition with science and social studies texts for Hispanic students with LD in Grades 4 and 5. Findings from this study suggest that students improved content knowledge during intervention relative to a traditional instruction baseline condition. Learning outcomes and social validity information are considered to inform recommendations for future research and the feasibility of classroom implementation. © The Author(s) 2014.

  2. Effect of learning disabilities on academic self-concept in children with epilepsy and on their quality of life.

    Science.gov (United States)

    Brabcová, Dana; Zárubová, Jana; Kohout, Jiří; Jošt, Jiří; Kršek, Pavel

    2015-01-01

    Academic self-concept could significantly affect academic achievement and self-confidence in children with epilepsy. However, limited attention has been devoted to determining factors influencing academic self-concept of children with epilepsy. We aimed to analyze potentially significant variables (gender, frequency of seizures, duration of epilepsy, intellectual disability, learning disability and attention deficit hyperactivity disorder) in relation to academic self-concept in children with epilepsy and to additional domains of their quality of life. The study group consisted of 182 children and adolescents aged 9-14 years who completed the SPAS (Student's Perception of Ability Scale) questionnaire determining their academic self-concept and the modified Czech version of the CHEQOL-25 (Health-Related Quality of Life Measure for Children with Epilepsy) questionnaire evaluating their health-related quality of life. Using regression analysis, we identified learning disability as a key predictor for academic-self concept of children with epilepsy. While children with epilepsy and with no learning disability exhibited results comparable to children without epilepsy, participants with epilepsy and some learning disability scored significantly lower in almost all domains of academic self-concept. We moreover found that children with epilepsy and learning disability have significantly lower quality of life in intrapersonal and interpersonal domains. In contrast to children with epilepsy and with no learning disability, these participants have practically no correlation between their quality of life and academic self-concept. Our findings suggest that considerable attention should be paid to children having both epilepsy and learning disability. It should comprise services of specialized counselors and teaching assistants with an appropriate knowledge of epilepsy and ability to empathize with these children as well as educational interventions focused on their teachers

  3. Learning abstract visual concepts via probabilistic program induction in a Language of Thought.

    Science.gov (United States)

    Overlan, Matthew C; Jacobs, Robert A; Piantadosi, Steven T

    2017-11-01

    The ability to learn abstract concepts is a powerful component of human cognition. It has been argued that variable binding is the key element enabling this ability, but the computational aspects of variable binding remain poorly understood. Here, we address this shortcoming by formalizing the Hierarchical Language of Thought (HLOT) model of rule learning. Given a set of data items, the model uses Bayesian inference to infer a probability distribution over stochastic programs that implement variable binding. Because the model makes use of symbolic variables as well as Bayesian inference and programs with stochastic primitives, it combines many of the advantages of both symbolic and statistical approaches to cognitive modeling. To evaluate the model, we conducted an experiment in which human subjects viewed training items and then judged which test items belong to the same concept as the training items. We found that the HLOT model provides a close match to human generalization patterns, significantly outperforming two variants of the Generalized Context Model, one variant based on string similarity and the other based on visual similarity using features from a deep convolutional neural network. Additional results suggest that variable binding happens automatically, implying that binding operations do not add complexity to peoples' hypothesized rules. Overall, this work demonstrates that a cognitive model combining symbolic variables with Bayesian inference and stochastic program primitives provides a new perspective for understanding people's patterns of generalization. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Designing problem-based curricula: The role of concept mapping in scaffolding learning for the health sciences

    Directory of Open Access Journals (Sweden)

    Susan M. Bridges

    2015-03-01

    Full Text Available While the utility of concept mapping has been widely reported in primary and secondary educational contexts, its application in the health sciences in higher education has been less frequently noted. Two case studies of the application of concept mapping in undergraduate and postgraduate health sciences are detailed in this paper. The case in undergraduate dental education examines the role of concept mapping in supporting problem-based learning and explores how explicit induction into the principles and practices of CM has add-on benefits to learning in an inquiry-based curriculum. The case in postgraduate medical education describes the utility of concept mapping in an online inquiry-based module design. Specific attention is given to applications of CMapTools™ software to support the implementation of Novakian concept mapping in both inquiry-based curricular contexts.

  5. Teaching Plate Tectonic Concepts using GeoMapApp Learning Activities

    Science.gov (United States)

    Goodwillie, A. M.; Kluge, S.

    2012-12-01

    GeoMapApp Learning Activities ( http://serc.carleton.edu/geomapapp/collection.html ) can help educators to expose undergraduate students to a range of earth science concepts using high-quality data sets in an easy-to-use map-based interface called GeoMapApp. GeoMapApp Learning Activities require students to interact with and analyse research-quality geoscience data as a means to explore and enhance their understanding of underlying content and concepts. Each activity is freely available through the SERC-Carleton web site and offers step-by-step student instructions and answer sheets. Also provided are annotated educator versions of the worksheets that include teaching tips, additional content and suggestions for further work. The activities can be used "off-the-shelf". Or, since the educator may require flexibility to tailor the activities, the documents are provided in Word format for easy modification. Examples of activities include one on the concept of seafloor spreading that requires students to analyse global seafloor crustal age data to calculate spreading rates in different ocean basins. Another activity has students explore hot spots using radiometric age dating of rocks along the Hawaiian-Emperor seamount chain. A third focusses upon the interactive use of contours and profiles to help students visualise 3-D topography on 2-D computer screens. A fourth activity provides a study of mass wasting as revealed through geomorphological evidence. The step-by-step instructions and guided inquiry approach reduce the need for teacher intervention whilst boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities are funded through the NSF GeoEd program and are aimed at students in the introductory undergraduate, community college and high school levels. The activities are

  6. Evolution of the intercontinental disjunctions in six continents in the Ampelopsis clade of the grape family (Vitaceae)

    Science.gov (United States)

    2012-01-01

    Background The Ampelopsis clade (Ampelopsis and its close allies) of the grape family Vitaceae contains ca. 43 species disjunctly distributed in Asia, Europe, North America, South America, Africa, and Australia, and is a rare example to study both the Northern and the Southern Hemisphere intercontinental disjunctions. We reconstruct the temporal and spatial diversification of the Ampelopsis clade to explore the evolutionary processes that have resulted in their intercontinental disjunctions in six continents. Results The Bayesian molecular clock dating and the likelihood ancestral area analyses suggest that the Ampelopsis clade most likely originated in North America with its crown group dated at 41.2 Ma (95% HPD 23.4 - 61.0 Ma) in the middle Eocene. Two independent Laurasian migrations into Eurasia are inferred to have occurred in the early Miocene via the North Atlantic land bridges. The ancestor of the Southern Hemisphere lineage migrated from North America to South America in the early Oligocene. The Gondwanan-like pattern of intercontinental disjunction is best explained by two long-distance dispersals: once from South America to Africa estimated at 30.5 Ma (95% HPD 16.9 - 45.9 Ma), and the other from South America to Australia dated to 19.2 Ma (95% HPD 6.7 - 22.3 Ma). Conclusions The global disjunctions in the Ampelopsis clade are best explained by a diversification model of North American origin, two Laurasian migrations, one migration into South America, and two post-Gondwanan long-distance dispersals. These findings highlight the importance of both vicariance and long distance dispersal in shaping intercontinental disjunctions of flowering plants. PMID:22316163

  7. A Research and Study Course for learning the concept of discrete randomvariable using Monte Carlo methods

    Directory of Open Access Journals (Sweden)

    Vicente D. Estruch

    2017-08-01

    Full Text Available The concept of random variable is a mathematical construct that presents some theoretical complexity. However, learning  this  concept  can  be  facilitated  if  it  is  presented  as  the  end  of  a  sequential  process  of  modeling  of  a  real event. More specifically, to learn the concept of discrete random variable, the Monte Carlo simulation can provide an extremely useful tool because in the process of modeling / simulation one can approach the theoretical concept of random variable, while the random variable is observed \\in action". This paper presents a Research and Study Course  (RSC  based  on  series  of  activities  related  to  random  variables  such  as  training  and  introduction  of  simulation  elements,  then  the  construction  of  the  model  is  presented,  which  is  the  substantial  part  of  the  activity, generating a random variable and its probability function. Starting from a simple situation related to reproduction and  survival  of  the  litter  of  a  rodent,  with  random  components,  step  by  step,  the  model  that  represents  the  real raised situation is built obtaining an \\original" random variable. In the intermediate stages of the construction of the model have a fundamental role the uniform discrete and binomial distributions. The trajectory of these stages allows reinforcing the concept of random variable while exploring the possibilities offered by Monte Carlo methods to  simulate  real  cases  and  the  simplicity  of  implementing  these  methods  by  means  of  the  Matlab© programming language.

  8. Aesthetic concepts, perceptual learning, and linguistic enculturation: considerations from Wittgenstein, language, and music.

    Science.gov (United States)

    Croom, Adam M

    2012-03-01

    Aesthetic non-cognitivists deny that aesthetic statements express genuinely aesthetic beliefs and instead hold that they work primarily to express something non-cognitive, such as attitudes of approval or disapproval, or desire. Non-cognitivists deny that aesthetic statements express aesthetic beliefs because they deny that there are aesthetic features in the world for aesthetic beliefs to represent. Their assumption, shared by scientists and theorists of mind alike, was that language-users possess cognitive mechanisms with which to objectively grasp abstract rules fixed independently of human responses, and that cognizers are thereby capable of grasping rules for the correct application of aesthetic concepts without relying on evaluation or enculturation. However, in this article I use Wittgenstein's rule-following considerations to argue that psychological theories grounded upon this so-called objective model of rule-following fail to adequately account for concept acquisition and mastery. I argue that this is because linguistic enculturation, and the perceptual learning that's often involved, influences and enables the mastery of aesthetic concepts. I argue that part of what's involved in speaking aesthetically is to belong to a cultural practice of making sense of things aesthetically, and that it's within a socio-linguistic community, and that community's practices, that such aesthetic sense can be made intelligible.

  9. A new biogeographically disjunct giant gecko (Gehyra: Gekkonidae: Reptilia) from the East Melanesian Islands

    Science.gov (United States)

    Oliver, Paul M.; Clegg, Jonathan R.; Fisher, Robert N.; Richards, Stephen J.; Taylor, Peter N.; Jocque, Merlijn M. T.

    2016-01-01

    The East Melanesian Islands have been a focal area for research into island biogeography and community ecology. However, previously undescribed and biogeographically significant new species endemic to this region continue to be discovered. Here we describe a phylogenetically distinct (~20% divergence at the mitochondrial ND2 gene) and biogeographically disjunct new species of gecko in the genus Gehyra, from the Admiralty and St Matthias Islands. Gehyra rohan sp. nov. can be distinguished from all congeners by the combination of its very large size, ring of bright orange scales around the eye, moderate degree of lateral folding on the limbs and body, and aspects of head, body and tail scalation. Molecular data indicate mid to late Miocene divergence of the new species from nearest relatives occurring nearly 2000 kilometres away in Vanuatu and Fiji. Large Gehyra have not been recorded on the intervening large islands of the Bismark Archipelago (New Britain and New Ireland) and the Solomon Islands, suggesting this dispersal pre-dated the current configuration of these islands, extinction in intervening regions, or potentially elements of both. Conversely, low genetic divergence between disjunct samples on Manus and Mussau implies recent overseas dispersal via either natural or anthropogenic means.

  10. The Influence of Teachers' Conceptions on Their Students' Learning: Children's Understanding of Sheet Music

    Science.gov (United States)

    López-Íñiguez, Guadalupe; Pozo, Juan Ignacio

    2014-01-01

    Background: Despite increasing interest in teachers' and students' conceptions of learning and teaching, and how they influence their practice, there are few studies testing the influence of teachers' conceptions on their students' learning. Aims: This study tests how teaching conception (TC; with a distinction between…

  11. The eastern Asian and eastern and western North American floristic disjunction: congruent phylogenetic patterns in seven diverse genera.

    Science.gov (United States)

    Xiang, Q Y; Soltis, D E; Soltis, P S

    1998-10-01

    One of the most remarkable examples of intercontinental disjunction of the North Temperate Flora involves eastern Asia and eastern and western North America. Although there has been considerable interest in this phytogeographic pattern for over 150 years (e.g., Gray, 1859; Li, 1952; Graham, 1972; Boufford and Spongberg, 1983; Wu, 1983; Tiffney, 1985a, 1985b), relationships among taxa displaying the disjunction remain obscure. Understanding phylogenetic relationships is, however, a prerequisite for historical biogeographic analyses of this distributional pattern. To understand better the relationships of taxa displaying this intercontinental disjunction, phylogenetic analyses were conducted using a variety of DNA data sets for species of four genera (Cornus, Boykinia, Tiarella, and Trautvetteria) that occur in eastern Asia, eastern North America, and western North America. An area cladogram was constructed for each of the four genera, all of which show a similar pattern of relationship: the eastern Asian species are sister to all North American species. An identical phylogenetic pattern is also found in three other taxa exhibiting this disjunction (Aralia sect. Aralia, Calycanthus, and Adiantum pedatum). The congruent phylogenetic pattern found in these seven diverse genera raises the possibility of a common origin of the eastern Asia, eastern and western North America disjunction. The data are in agreement with the long-standing hypothesis that this well-known floristic disjunction represents the fragmentation of a once continuous Mixed Mesophytic forest community and suggest that the disjunction may have involved only two major vicariance events: an initial split between Eurasia and North America, followed by the isolation of floras between eastern and western North America. However, congruence between phylogenies and geographic distributions does not necessarily indicate an identical phytogeographic history. Taxa exhibiting the same phylogenetic pattern may have

  12. Improving students’ creativity using cooperative learning with virtual media on static fluida concept

    Science.gov (United States)

    Gunawan; Harjono, A.; Sahidu, H.; Nisrina

    2018-04-01

    Creativity is an important component of global competition in the 21st century. Therefore, learning innovation is needed to make students more creative. This research was conducted to improve students' creativity through cooperative learning using virtual media for the static fluid concept. This study was a quasi-experiment through a pre-test post-test design. The samples were chosen using cluster random sampling technique to obtain two groups, namely experimental group and control group. Data were collected using a creativity test in the form of an essay consisting of verbal and figural tests. The data were analyzed using t-test and N-gain test to determine the improvement of creativity in both groups. The results showed that the improvement of students' creativity in the experimental group was higher than the control group. The difference in the improvement of students’ creativity in both group is significant. Students become more creative especially related to indicators of fluency and elaboration. We conclude that the application of cooperative learning model using virtual media has a positive effect on students’ creativity.

  13. Relationship between mathematical abstraction in learning parallel coordinates concept and performance in learning analytic geometry of pre-service mathematics teachers: an investigation

    Science.gov (United States)

    Nurhasanah, F.; Kusumah, Y. S.; Sabandar, J.; Suryadi, D.

    2018-05-01

    As one of the non-conventional mathematics concepts, Parallel Coordinates is potential to be learned by pre-service mathematics teachers in order to give them experiences in constructing richer schemes and doing abstraction process. Unfortunately, the study related to this issue is still limited. This study wants to answer a research question “to what extent the abstraction process of pre-service mathematics teachers in learning concept of Parallel Coordinates could indicate their performance in learning Analytic Geometry”. This is a case study that part of a larger study in examining mathematical abstraction of pre-service mathematics teachers in learning non-conventional mathematics concept. Descriptive statistics method is used in this study to analyze the scores from three different tests: Cartesian Coordinate, Parallel Coordinates, and Analytic Geometry. The participants in this study consist of 45 pre-service mathematics teachers. The result shows that there is a linear association between the score on Cartesian Coordinate and Parallel Coordinates. There also found that the higher levels of the abstraction process in learning Parallel Coordinates are linearly associated with higher student achievement in Analytic Geometry. The result of this study shows that the concept of Parallel Coordinates has a significant role for pre-service mathematics teachers in learning Analytic Geometry.

  14. Concept Maps as a strategy to asses learning in biochemistry using educational softwares

    Directory of Open Access Journals (Sweden)

    A. M. P. Azevedo

    2005-07-01

    Full Text Available This abstract reports  the  use of concept  maps applied  to the evaluation of concepts  learned  through the use of an educational software to study  metabolic  pathways called Diagrama Metabolico Dinamico Virtual  do Ciclo de Krebs (DMDV.  Experience  with the use of this method  was carried  through  with two distinct groups  of students.  The  first  group  was composed  by 24 students (in  2003 who used DMDV during  the  classes (computer room.  The second group was formed by 36 students (in 2004 who could access DMDV software anytime  through  the intranet. The construction of the conceptual map by the student permits  the representation of knowledge, the mental  processes that were absorved and the adaptation during the study,  building new mental schemes that could be related to the concept of reflexioning  abstraction (Piaget, 1995 during  the  process of operation  with  these  concepts.   The evaluation of knowlegde was made by the analysis  of three conceptual  maps constructed by each one of them:   (a  one map  before initiating the  study  with  DMDV,  (b  the  second just  after  the  study and (c the third  one two months  later.  We used the following criteria  for the analysis:  predominance of associative  over classificatory  character; correct concepts  and  relationships; coherence;  number  of relationships;  creativity and  logic.   The  initial  maps  showed  that all  students had  some  previous mental scheme  about  the proposed  concept.    All final  concept maps  showed  an  expansion  of the concepts  as compared  to the initial  maps, something  which can be seen even by a mere glance at the size of graphics.  A purely visual comparison  between the maps indicated  that new elements have been added.   The  associative  character has been shown to predominate as compared  to the  classificatory one.  The

  15. The architecture of Virtual Learning Environments under the conceptions of Bakhtinian studies

    Directory of Open Access Journals (Sweden)

    Adolfo Tanzi Neto

    2014-11-01

    Full Text Available Grounded on the conceptual framework of Bakhtin's architectonic form, we seek to demonstrate that the dimensions of a genre practiced in a virtual learning environment (VLE are directly related to its design (conception, idealization, and form, that is, to its architectonic form as the design of a VLE, which can foster (new multiliteracies, provide flexibility or not for multisemiotic genre practices in the contemporary world. To achieve this aim, we observed the design of two tools from two distinct VLEs; in one of them we found the influence of traditional school relationships of time and space (and power, generating an architectonic form of the traditional school characterized by its genres and literacies. In the other VLE, considering its architectonic form, we concluded that the design tends to favor the use of different modes of language - textual, graphic, sound, with static and dynamic images with easy communication/interaction in the contemporary technological media.

  16. A virtual trainer concept for robot-assisted human motor learning in rowing

    Directory of Open Access Journals (Sweden)

    Baumgartner L.

    2011-12-01

    Full Text Available Keeping the attention level and observing multiple physiological and biomechanical variables at the same time at high precision is very challenging for human trainers. Concurrent augmented feedback, which is suggested to enhance motor learning in complex motor tasks, can also hardly be provided by a human trainer. Thus, in this paper, a concept for a virtual trainer is presented that may overcome the limits of a human trainer. The intended virtual trainer will be implemented in a CAVE providing auditory, visual and haptic cues. As a first application, the virtual trainer will be used in a realistic scenario for sweep rowing. To provide individual feedback to each rower, the virtual trainer quantifies errors and provides concurrent auditory, visual, and haptic feedback. The concurrent feedback will be adapted according to the actual performance, individual maximal rowing velocity, and the athlete’s individual perception.

  17. The Concept of Alliance as an Image and Positioning Instrument for Institutions of Higher Learning

    Directory of Open Access Journals (Sweden)

    Víctor Manuel Alcántar Enríquez

    2004-05-01

    Full Text Available The present work provides a foundation for the concept of alliance which includes the ability of this to foster the university’s societal position as based on public perception of the institution. Accordingly, the work briefly addresses the development of the university’s collaboration with the productive sector, and emphasizes the need for institutions of higher learning to consider as well, those social sectors (including the government outside the realm of industry or technological expansion. The study concludes by affirming that alliance can become an effective instrument for promoting the university. It is therefore necessary to research the social perception of the university as a means of bolstering its relevance.

  18. Capturing the Integration of Practice-Based Learning with Beliefs, Values, and Attitudes using Modified Concept Mapping.

    Science.gov (United States)

    Mcnaughton, Susan; Barrow, Mark; Bagg, Warwick; Frielick, Stanley

    2016-01-01

    Practice-based learning integrates the cognitive, psychomotor, and affective domains and is influenced by students' beliefs, values, and attitudes. Concept mapping has been shown to effectively demonstrate students' changing concepts and knowledge structures. This article discusses how concept mapping was modified to capture students' perceptions of the connections between the domains of thinking and knowing, emotions, behavior, attitudes, values, and beliefs and the specific experiences related to these, over a period of eight months of practice-based clinical learning. The findings demonstrate that while some limitations exist, modified concept mapping is a manageable way to gather rich data about students' perceptions of their clinical practice experiences. These findings also highlight the strong integrating influence of beliefs and values on other areas of practice, suggesting that these need to be attended to as part of a student's educational program.

  19. The influence of project-based learning on the student conception about kinematics and critical thinking skills

    Science.gov (United States)

    Handhika, J.; Cari, C.; Sunarno, W.; Suparmi, A.; Kurniadi, E.

    2018-05-01

    This research revealed the influence of project-based learning (PjBL) to increasing the level of the conception. The research method used the pre-experimental design with one group pre-test post-test. PjBL applied to students of physics education program of IKIP PGRI Madiun (23 Students). The test used to determine the level of conception is multiple choice tests and index of certainty. Activities on PjBL described. Obtained that the PjBL model can increase the level of conception and Critical thinking skills with the average normalized gain 0.49 and 0.57 (Medium category). It can be concluded that the PjBL could improve the level of conception and critical thinking ability of the students. Implementation of each model phase following learning objectives and needs analysis is the key to improve both.

  20. Machine learning methods to predict child posttraumatic stress: a proof of concept study.

    Science.gov (United States)

    Saxe, Glenn N; Ma, Sisi; Ren, Jiwen; Aliferis, Constantin

    2017-07-10

    The care of traumatized children would benefit significantly from accurate predictive models for Posttraumatic Stress Disorder (PTSD), using information available around the time of trauma. Machine Learning (ML) computational methods have yielded strong results in recent applications across many diseases and data types, yet they have not been previously applied to childhood PTSD. Since these methods have not been applied to this complex and debilitating disorder, there is a great deal that remains to be learned about their application. The first step is to prove the concept: Can ML methods - as applied in other fields - produce predictive classification models for childhood PTSD? Additionally, we seek to determine if specific variables can be identified - from the aforementioned predictive classification models - with putative causal relations to PTSD. ML predictive classification methods - with causal discovery feature selection - were applied to a data set of 163 children hospitalized with an injury and PTSD was determined three months after hospital discharge. At the time of hospitalization, 105 risk factor variables were collected spanning a range of biopsychosocial domains. Seven percent of subjects had a high level of PTSD symptoms. A predictive classification model was discovered with significant predictive accuracy. A predictive model constructed based on subsets of potentially causally relevant features achieves similar predictivity compared to the best predictive model constructed with all variables. Causal Discovery feature selection methods identified 58 variables of which 10 were identified as most stable. In this first proof-of-concept application of ML methods to predict childhood Posttraumatic Stress we were able to determine both predictive classification models for childhood PTSD and identify several causal variables. This set of techniques has great potential for enhancing the methodological toolkit in the field and future studies should seek to

  1. Effects of different forms of physiology instruction on the development of students' conceptions of and approaches to science learning.

    Science.gov (United States)

    Lin, Yi-Hui; Liang, Jyh-Chong; Tsai, Chin-Chung

    2012-03-01

    The purpose of this study was to investigate students' conceptions of and approaches to learning science in two different forms: internet-assisted instruction and traditional (face-to-face only) instruction. The participants who took part in the study were 79 college students enrolled in a physiology class in north Taiwan. In all, 46 of the participants were from one class and 33 were from another class. Using a quasi-experimental research approach, the class of 46 students was assigned to be the "internet-assisted instruction group," whereas the class of 33 students was assigned to be the "traditional instruction group." The treatment consisted of a series of online inquiry activities. To explore the effects of different forms of instruction on students' conceptions of and approaches to learning science, two questionnaires were administered before and after the instruction: the Conceptions of Learning Science Questionnaire and the Approaches to Learning Science Questionnaire. Analysis of covariance results revealed that the students in the internet-assisted instruction group showed less agreement than the traditional instruction group in the less advanced conceptions of learning science (such as learning as memorizing and testing). In addition, the internet-assisted instruction group displayed significantly more agreement than the traditional instruction group in more sophisticated conceptions (such as learning as seeing in a new way). Moreover, the internet-assisted instruction group expressed more orientation toward the approaches of deep motive and deep strategy than the traditional instruction group. However, the students in the internet-assisted instruction group also showed more surface motive than the traditional instruction group did.

  2. Understanding Mathematic Concept in Relation and Function Method through Active Learning Type Group to Group Distributed LKS

    Science.gov (United States)

    Kudri, F.; Rahmi, R.; Haryono, Y.

    2018-04-01

    This research is motivated by the lack of understanding of mathematical concepts students and teachers have not familiarize students discussed in groups. This researchaims to determine whether an understanding of mathematical concepts junior class VIII SMPN 2 in Ranah Batahan Kabupaten Pasaman Barat by applying active learning strategy group to group types with LKS better than conventional learning. The type of research is experimental the design of randomized trials on the subject. The population in the study were all students VIII SMPN 2 Ranah Batahan Kabupaten Pasaman Barat in year 2012/2013 which consists of our class room experiment to determine the grade and control class with do nerandomly, so that classes VIII1 elected as a experiment class and class VIII4 as a control class. The instruments used in the test empirically understanding mathematical concepts are shaped by the essay with rt=0,82 greater than rt=0,468 means reliable tests used. The data analysis technique used is the test with the help of MINITAB. Based on the results of the data analisis known that both of the sample are normal and homogenity in real rate α = 0,05, so the hypothesis of this research is received. So, it can be concluded students’ understanding mathematical concept applied the active Group to Group learning strategy with LKS is better than the students’ understanding mathematical concept with Conventional Learning.

  3. [A Study on the Cognitive Learning Effectiveness of Scenario-Based Concept Mapping in a Neurological Nursing Course].

    Science.gov (United States)

    Pan, Hui-Ching; Hsieh, Suh-Ing; Hsu, Li-Ling

    2015-12-01

    The multiple levels of knowledge related to the neurological system deter many students from pursuing studies on this topic. Thus, in facing complicated and uncertain medical circumstances, nursing students have diffi-culty adjusting and using basic neurological-nursing knowledge and skills. Scenario-based concept-mapping teaching has been shown to promote the integration of complicated data, clarify related concepts, and increase the effectiveness of cognitive learning. To investigate the effect on the neurological-nursing cognition and learning attitude of nursing students of a scenario-based concept-mapping strategy that was integrated into the neurological nursing unit of a medical and surgical nursing course. This quasi-experimental study used experimental and control groups and a pre-test / post-test design. Sopho-more (2nd year) students in a four-year program at a university of science and technology in Taiwan were convenience sampled using cluster randomization that was run under SPSS 17.0. Concept-mapping lessons were used as the intervention for the experimental group. The control group followed traditional lesson plans only. The cognitive learning outcome was measured using the neurological nursing-learning examination. Both concept-mapping and traditional lessons significantly improved post-test neurological nursing learning scores (p learning attitude with regard to the teaching material. Furthermore, a significant number in the experimental group expressed the desire to add more lessons on anatomy, physiology, and pathology. These results indicate that this intervention strategy may help change the widespread fear and refusal of nursing students with regard to neurological lessons and may facilitate interest and positively affect learning in this important subject area. Integrating the concept-mapping strategy and traditional clinical-case lessons into neurological nursing lessons holds the potential to increase post-test scores significantly

  4. Same/different concept learning by capuchin monkeys in matching-to-sample tasks.

    Directory of Open Access Journals (Sweden)

    Valentina Truppa

    Full Text Available The ability to understand similarities and analogies is a fundamental aspect of human advanced cognition. Although subject of considerable research in comparative cognition, the extent to which nonhuman species are capable of analogical reasoning is still debated. This study examined the conditions under which tufted capuchin monkeys (Cebus apella acquire a same/different concept in a matching-to-sample task on the basis of relational similarity among multi-item stimuli. We evaluated (i the ability of five capuchin monkeys to learn the same/different concept on the basis of the number of items composing the stimuli and (ii the ability to match novel stimuli after training with both several small stimulus sets and a large stimulus set. We found the first evidence of same/different relational matching-to-sample abilities in a New World monkey and demonstrated that the ability to match novel stimuli is within the capacity of this species. Therefore, analogical reasoning can emerge in monkeys under specific training conditions.

  5. Same/Different Concept Learning by Capuchin Monkeys in Matching-to-Sample Tasks

    Science.gov (United States)

    Truppa, Valentina; Piano Mortari, Eva; Garofoli, Duilio; Privitera, Sara; Visalberghi, Elisabetta

    2011-01-01

    The ability to understand similarities and analogies is a fundamental aspect of human advanced cognition. Although subject of considerable research in comparative cognition, the extent to which nonhuman species are capable of analogical reasoning is still debated. This study examined the conditions under which tufted capuchin monkeys (Cebus apella) acquire a same/different concept in a matching-to-sample task on the basis of relational similarity among multi-item stimuli. We evaluated (i) the ability of five capuchin monkeys to learn the same/different concept on the basis of the number of items composing the stimuli and (ii) the ability to match novel stimuli after training with both several small stimulus sets and a large stimulus set. We found the first evidence of same/different relational matching-to-sample abilities in a New World monkey and demonstrated that the ability to match novel stimuli is within the capacity of this species. Therefore, analogical reasoning can emerge in monkeys under specific training conditions. PMID:21858225

  6. An efficient incremental learning mechanism for tracking concept drift in spam filtering.

    Directory of Open Access Journals (Sweden)

    Jyh-Jian Sheu

    Full Text Available This research manages in-depth analysis on the knowledge about spams and expects to propose an efficient spam filtering method with the ability of adapting to the dynamic environment. We focus on the analysis of email's header and apply decision tree data mining technique to look for the association rules about spams. Then, we propose an efficient systematic filtering method based on these association rules. Our systematic method has the following major advantages: (1 Checking only the header sections of emails, which is different from those spam filtering methods at present that have to analyze fully the email's content. Meanwhile, the email filtering accuracy is expected to be enhanced. (2 Regarding the solution to the problem of concept drift, we propose a window-based technique to estimate for the condition of concept drift for each unknown email, which will help our filtering method in recognizing the occurrence of spam. (3 We propose an incremental learning mechanism for our filtering method to strengthen the ability of adapting to the dynamic environment.

  7. Use of Physics Innovative Device for Improving Students‟ Motivation and Performance in Learning Selected Concepts in Physics

    Directory of Open Access Journals (Sweden)

    Virginia Songalia Sobremisana

    2017-11-01

    Full Text Available This research was focused on the development and evaluation of physics innovative device in enhancing students’ motivation and performance in learning selected concepts in physics. The Physics innovative device was developed based upon research on student difficulties in learning relevant concepts in physics and their attitudes toward the subject. Basic concepts in mechanics were also made as baselines in the development of the locally-produced Physics innovative learning device. Such learning devices are valuable resources when used either in lecture or demonstration classes. The developmental, descriptive and quasi-experimental research methods were utilized to determine the effectiveness, in terms of motivation and performance, of the innovative device in Physics. The instruments used for the data collection were the Instructional Materials Motivational Scale (IMMS developed by Keller and the students’ performance test. Pretest and posttest mean scores were measured to determine if there is a mean gain score difference between the experimental and control groups. The study revealed that the group taught with the Physics innovative device performed significantly better than those taught in the traditional method and also the use of Physics innovative device generally improved students’ understanding of concepts and led to higher academic achievements. Analysis of the students’ level of motivation showed that their interests were captured, the instructions they received were relevant to their personal goals and motives, their confidence to learn on their own were build-up, and learning for them was rewarding and important. In the four dimensions (ARCS of IMMS students were found to be attentive, confident, and in agreement in using the fun-learning tool having realize its applicability and relevance in learning their Physics lessons. Results of the study disclosed students and teachers consider the novel device acceptable because it is

  8. Linking descriptive geology and quantitative machine learning through an ontology of lithological concepts

    Science.gov (United States)

    Klump, J. F.; Huber, R.; Robertson, J.; Cox, S. J. D.; Woodcock, R.

    2014-12-01

    Despite the recent explosion of quantitative geological data, geology remains a fundamentally qualitative science. Numerical data only constitute a certain part of data collection in the geosciences. In many cases, geological observations are compiled as text into reports and annotations on drill cores, thin sections or drawings of outcrops. The observations are classified into concepts such as lithology, stratigraphy, geological structure, etc. These descriptions are semantically rich and are generally supported by more quantitative observations using geochemical analyses, XRD, hyperspectral scanning, etc, but the goal is geological semantics. In practice it has been difficult to bring the different observations together due to differing perception or granularity of classification in human observation, or the partial observation of only some characteristics using quantitative sensors. In the past years many geological classification schemas have been transferred into ontologies and vocabularies, formalized using RDF and OWL, and published through SPARQL endpoints. Several lithological ontologies were compiled by stratigraphy.net and published through a SPARQL endpoint. This work is complemented by the development of a Python API to integrate this vocabulary into Python-based text mining applications. The applications for the lithological vocabulary and Python API are automated semantic tagging of geochemical data and descriptions of drill cores, machine learning of geochemical compositions that are diagnostic for lithological classifications, and text mining for lithological concepts in reports and geological literature. This combination of applications can be used to identify anomalies in databases, where composition and lithological classification do not match. It can also be used to identify lithological concepts in the literature and infer quantitative values. The resulting semantic tagging opens new possibilities for linking these diverse sources of data.

  9. Self Concept and Learned Helplessness in a group of teachers from Lima Metropolitana

    Directory of Open Access Journals (Sweden)

    Sandra Carrillo Luna

    2001-06-01

    Full Text Available 86 teachers from Lima Metropolitana trained by PLANCAD were assessed with the Self Perception Profile for Adult~ (Messer y Harter, 1986 and with a Learned Helplessness Scale (Macassi, 1988. Correlations between the different domains from Self Concept (SC, Learned Helplessness (LH and sorne social-demographic variables were analyzed. The result~ showed that the LH exhibits significan! and inverse correlations with sorne domains of SC such a~: lntelligence, Job Competence (JC. Sociability, Adequate Provider (AP, Physical Appearance (PA, lntimate Relationships (IR, Academic Achievement (AA and the Job Satisfaction Degree. They also showed significan! correlations between the variable age and two domains of SC: Sociability and IR; between Career Satisfaction and the SC domains of Sociability, AP, JC and IR; also between Job Satisfaction and the SC domains of lntelligence, Household Management, JC, AP, PA and IR. Finally significan! correlations were showed between Academic Achievement with the domain of Sociability. The results also showed significan! Differences between the punctuation obtained from the variables of sex, the institutions.

  10. Structural Modeling for Influence of Mathematics Self-Concept, Motivation to Learn Mathematics and Self-Regulation Learning on Mathematics Academic Achievement

    OpenAIRE

    Hamideh Jafari Koshkouei; Ahmad Shahvarani; Mohammad Hassan Behzadi; Mohsen Rostamy-Malkhalifeh

    2016-01-01

    The present study was carried out to investigate the influence of mathematics self-concept (MSC), motivation to learn mathematics (SMOT) and self-regulation learning (SRL) on students' mathematics academic achievement. This study is of a descriptive survey type. 300 female students at the first grade of high school (the second period) in City Qods, were selected by multiple step cluster sampling method and completed MSC, SMOT and SRL questionnaires. Mathematics academic achievement was measur...

  11. What We Can Learn about Phenomenal Concepts from Wittgenstein’s Private Language

    Directory of Open Access Journals (Sweden)

    Roberto Sá Pereira

    2016-11-01

    Full Text Available This paper is both systematic and historical in nature. From a historical viewpoint, I aim to show that to establish Wittgenstein’s claim that “an ‘inner process’ stands in need of outward criteria” (PI §580 there is an enthymeme in Wittgenstein’s private language argument (henceforth PLA overlooked in the literature, namely Wittgenstein’s suggestion that both perceptual and bodily experiences are transparent in the relevant sense that one cannot point to a mental state and wonder “What is that?” From a systematic viewpoint, I aim to show that Wittgenstein’s PLA teaches us that the prevailing picture of the nature of phenomenal concepts (henceforth PCs is upside down: we can only introspectively know what is going on inside our heads, after we learn of what is going on outside (PI §580. In this regard, I aim to defend two associate claims against the prevailing view of PCs on the basis of PLA. First, by means of transparency, I aim to show that there is no de re awareness of our private sensation that could determine the meaning of sensation-words; for example, I am never aware of the phenomenal blueness of my experience of something blue. The second associated claim is that introspective self-knowledge of our private sensation is always de dicto. We can only know introspectively that phenomenal blueness is the phenomenal character of the experience we are undergoing after we have learned that (de dicto knowledge blue is the color that usually causes in us that kind of experience. Likewise, we can only introspectively know that pain is the phenomenal character of the experience we are undergoing after we have learned that pain is what usually causes some typical pain behavior.

  12. Middle school students' learning of mechanics concepts through engagement in different sequences of physical and virtual experiments

    Science.gov (United States)

    Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon

    2017-08-01

    Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students' learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students' (N = 100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n = 55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n = 45), with the opposite sequence. Repeated measures ANOVA's were conducted to examine how physical and virtual labs impacted students' learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.

  13. Talking and learning physics: Predicting future grades from network measures and Force Concept Inventory pretest scores

    Directory of Open Access Journals (Sweden)

    Jesper Bruun

    2013-07-01

    Full Text Available The role of student interactions in learning situations is a foundation of sociocultural learning theory, and social network analysis can be used to quantify student relations. We discuss how self-reported student interactions can be viewed as processes of meaning making and use this to understand how quantitative measures that describe the position in a network, called centrality measures, can be understood in terms of interactions that happen in the context of a university physics course. We apply this discussion to an empirical data set of self-reported student interactions. In a weekly administered survey, first year university students enrolled in an introductory physics course at a Danish university indicated with whom they remembered having communicated within different interaction categories. For three categories pertaining to (1 communication about how to solve physics problems in the course (called the PS category, (2 communications about the nature of physics concepts (called the CD category, and (3 social interactions that are not strictly related to the content of the physics classes (called the ICS category in the introductory mechanics course, we use the survey data to create networks of student interaction. For each of these networks, we calculate centrality measures for each student and correlate these measures with grades from the introductory course, grades from two subsequent courses, and the pretest Force Concept Inventory (FCI scores. We find highly significant correlations (p<0.001 between network centrality measures and grades in all networks. We find the highest correlations between network centrality measures and future grades. In the network composed of interactions regarding problem solving (the PS network, the centrality measures hide and PageRank show the highest correlations (r=-0.32 and r=0.33, respectively with future grades. In the CD network, the network measure target entropy shows the highest correlation

  14. No-Disjunction and loss of anafasica Hamster-human hybrid embryos of two cells

    International Nuclear Information System (INIS)

    Ponsa, I.; Tusell, L.; Alvarez, R.; Genesca, A.; Miro, R.; Egozcue, J.

    1998-01-01

    To investigate the possible effect anafasica the ionizing radiations in masculine germinal cells a new test it has been developed combining two techniques, the fecundation interspecific gives ovocitos hamster without area pellucid with human sperms and the fluorescent in situ hybridization in cells in interface using probes gives DNA specific centrometricas. Analyzing the segregation gives the chromosomes marked in the embryos two cells, you can detect the reciprocal products easily an anomalous segregation. Give this way the recount the fluorescent signs in the nuclei siblings and in the micronucleus it provides an esteem the due aneuploidy to errors meiotic or premiotic, with this way the resulting aneuploidy the errors in the first division mitotic the embryos, as much no-disjunction as lost anafasica

  15. Cooperative parallel adaptive neighbourhood search for the disjunctively constrained knapsack problem

    Science.gov (United States)

    Quan, Zhe; Wu, Lei

    2017-09-01

    This article investigates the use of parallel computing for solving the disjunctively constrained knapsack problem. The proposed parallel computing model can be viewed as a cooperative algorithm based on a multi-neighbourhood search. The cooperation system is composed of a team manager and a crowd of team members. The team members aim at applying their own search strategies to explore the solution space. The team manager collects the solutions from the members and shares the best one with them. The performance of the proposed method is evaluated on a group of benchmark data sets. The results obtained are compared to those reached by the best methods from the literature. The results show that the proposed method is able to provide the best solutions in most cases. In order to highlight the robustness of the proposed parallel computing model, a new set of large-scale instances is introduced. Encouraging results have been obtained.

  16. Processing inferences at the semantics/pragmatics frontier: disjunctions and free choice.

    Science.gov (United States)

    Chemla, Emmanuel; Bott, Lewis

    2014-03-01

    Linguistic inferences have traditionally been studied and categorized in several categories, such as entailments, implicatures or presuppositions. This typology is mostly based on traditional linguistic means, such as introspective judgments about phrases occurring in different constructions, in different conversational contexts. More recently, the processing properties of these inferences have also been studied (see, e.g., recent work showing that scalar implicatures is a costly phenomenon). Our focus is on free choice permission, a phenomenon by which conjunctive inferences are unexpectedly added to disjunctive sentences. For instance, a sentence such as "Mary is allowed to eat an ice-cream or a cake" is normally understood as granting permission both for eating an ice-cream and for eating a cake. We provide data from four processing studies, which show that, contrary to arguments coming from the theoretical literature, free choice inferences are different from scalar implicatures. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. [Conception and implementation of a novel E-learning module with EbM learning contents in operative dentistry].

    Science.gov (United States)

    Gerhardt-Szép, Susanne; Dreher, Stefanie; Rüttermann, Stefan; Weberschock, Tobias

    2017-11-01

    Computer-assisted learning (CAL) programs are becoming more widely used in medical and dental training. However, the combination of CAL programs and evidence-based education in dentistry has not been described previously. The aim was to determine the acceptance and user-friendliness of a CAL program combined with evidence-based training. The didactic concept of the module includes the case-oriented, problem-based embedding of a total of 32 EbM learning assignments, which can be completed interactively and self-determinedly in an interdisciplinary context using focus patients with different diseases. The present study was conducted at the Dental School of the Goethe University in Frankfurt/Main. Data on acceptance and user-friendliness were collected from three consecutive cohorts of 114 dental students attending their first clinical semester. They used the "Toothache Walk-in Clinic: FOCUS" CAL, which can be downloaded via the Internet. The instrument consisted of 64 statements. The first part addressed general information about the user. The second part contained 43 specific statements on the CAL program. These included factors A (handling and technical aspects), B (content and functional range), and C (didactics and suitability for education). Possible responses ranged from 0 to 3 (0 = strongly disagree, 3 = strongly agree). All of the 114 questionnaires distributed were returned (response rate 100%). Most users (90.1%) considered the topics of evidence-based dentistry important for their training. They rated the program by using German school grades, and the overall rating was 2.26 (SD = 0.64). Most students (88.6%) considered the program useful for their clinical training in the treatment of patients. The mean scores for the 43 specific items amounted to 1.90 (factor A, SD = 0.63), 1.55 (factor B, SD = 1.93), and 2.23 (factor C, SD = 0.79). The CAL program with dental medicine vignettes and learning elements for evidence-based medicine received a primarily

  18. Drama-Based Science Teaching and Its Effect on Students' Understanding of Scientific Concepts and Their Attitudes towards Science Learning

    Science.gov (United States)

    Abed, Osama H.

    2016-01-01

    This study investigated the effect of drama-based science teaching on students' understanding of scientific concepts and their attitudes towards science learning. The study also aimed to examine if there is an interaction between students' achievement level in science and drama-based instruction. The sample consisted of (87) of 7th grade students…

  19. Facilitating Conceptual Change in Understanding State of Matter and Solubility Concepts by Using 5E Learning Cycle Model

    Science.gov (United States)

    Ceylan, Eren; Geban, Omer

    2009-01-01

    The main purpose of the study was to compare the effectiveness of 5E learning cycle model based instruction and traditionally designed chemistry instruction on 10th grade students' understanding of state of matter and solubility concepts. In this study, 119 tenth grade students from chemistry courses instructed by same teacher from an Anatolian…

  20. Metacognitive Reading Strategies in Learning Disability: Relations between Usage Level, Academic Self-Efficacy and Self-Concept

    Science.gov (United States)

    Girli, Alev; Öztürk, Halil

    2017-01-01

    The purpose of this study is to investigate the relationship between the usage levels of metacognitive reading strategies by students diagnosed with specific learning disability (SLD), academic self-efficacy and the concept of self, in comparison to their typically developing (TD) peers. The data to be used in the study were collected using the…

  1. Developing a Local Instruction Theory for Learning the Concept of Angle through Visual Field Activities and Spatial Representations

    NARCIS (Netherlands)

    Bustang, B.; Zulkardi, Z.; Darmawijoyo, D.; Dolk, M.L.A.M.; van Eerde, H.A.A.

    2013-01-01

    This paper reports a study on designing and testing an instructional sequence for the teaching and learning of the concept of angle in Indonesian primary schools. The study’s context is employing the current reform movement adopting Pendidikan Matematika Realistik Indonesia (an Indonesian version of

  2. Developing Pre-Service Teachers' Subject Matter Knowledge of Electromagnetism by Integrating Concept Maps and Collaborative Learning

    Science.gov (United States)

    Govender, Nadaraj

    2015-01-01

    This case study explored the development of two pre-service teachers' subject matter knowledge (SMK) of electromagnetism while integrating the use of concept maps (CM) and collaborative learning (CL) strategies. The study aimed at capturing how these pre-service teachers' SMK in electromagnetism was enhanced after having been taught SMK in a…

  3. Mathematical Challenges to Secondary School Students in a Guided Reinvention Teaching-Learning Strategy towards the Concept of Energy Conservation

    NARCIS (Netherlands)

    Logman, P.S.W.M.; Kaper, W.H.; Ellermeijer, A.L.; Taşar, M.F.

    2014-01-01

    Guiding sixteen-year-old students to rediscover the concept of energy conservation may be done in three distinct learning steps. First, we have chosen for the students to reinvent what we call partial laws of energy conservation (e.g. Σm∙g∙h = k1). Secondly, the students are asked to combine these

  4. Web-Searching to Learn: The Role of Internet Self-Efficacy in Pre-School Educators' Conceptions and Approaches

    Science.gov (United States)

    Kao, Chia-Pin; Chien, Hui-Min

    2017-01-01

    This study was conducted to explore the relationships between pre-school educators' conceptions of and approaches to learning by web-searching through Internet Self-efficacy. Based on data from 242 pre-school educators who had prior experience of participating in web-searching in Taiwan for path analyses, it was found in this study that…

  5. DESIGN AND IMPLEMENTATION OF A PROPOSAL TO TEACH BASIC CONCEPTS IN PRIMARY PHYSICAL BASED ON THE THEORY OF MEANINGFUL LEARNING

    Directory of Open Access Journals (Sweden)

    Diana Paola Martínez-Salcedo

    2015-01-01

    Full Text Available This article discloses an experimental strategy that aims to contribute to science education in Colombia, through a proposal focusing on learning the concept of force. For this experimental teaching sequence for teaching and learning the concept of "Force" was developed from the perspective of meaningful learning of Ausubel; and applied to students from fifth grade of School Lucrecio Jaramillo Vélez, headquarters "Agrupación Colombia".  Initially an investigation of prior knowledge about the concept of force, according to the results was performed was developed and applied a proposal that included questionnaires, field work, observations in science classes, surveys, experiments, socialization of work laboratory and representations contained in the notebooks, the results of these activities were analyzed qualitatively, obtaining an evaluation and interpretation of the acquired learning observed in students an appropriation of the concept, possibly because it is a proposal of an experimental nature, focusing on the student, in which the exploration of phenomena by experimental means is favorable, the approach of hypotheses and troubleshooting, besides favoring an approach to enjoyment and joy by science.

  6. Enhancing Learning Outcomes through New E-Textbooks: A Desirable Combination of Presentation Methods and Concept Maps

    Science.gov (United States)

    Huang, Kuo-Liang; Chen, Kuo-Hsiang; Ho, Chun-Heng

    2014-01-01

    It is possible that e-textbook readers and tablet PC's will become mainstream reading devices in the future. However, knowledge about instructional design in this field of learning sciences is inadequate. This study aimed to analyse how two factors, that is, presentation methods and concept maps, interact with cognitive load and learning…

  7. The Effect of Cooperative Learning Approach Based on Conceptual Change Condition on Students' Understanding of Chemical Equilibrium Concepts

    Science.gov (United States)

    Bilgin, Ibrahim; Geban, Omer

    2006-01-01

    The purpose of this study is to investigate the effects of the cooperative learning approach based on conceptual change conditions over traditional instruction on 10th grade students' conceptual understanding and achievement of computational problems related to chemical equilibrium concepts. The subjects of this study consisted of 87 tenth grade…

  8. Assessing Student Knowledge of Chemistry and Climate Science Concepts Associated with Climate Change: Resources to Inform Teaching and Learning

    Science.gov (United States)

    Versprille, Ashley; Zabih, Adam; Holme, Thomas A.; McKenzie, Lallie; Mahaffy, Peter; Martin, Brian; Towns, Marcy

    2017-01-01

    Climate change is one of the most critical problems facing citizens today. Chemistry faculty are presented with the problem of making general chemistry content simultaneously relevant and interesting. Using climate science to teach chemistry allows faculty to help students learn chemistry content in a rich context. Concepts related to…

  9. Effect of Feedback Strategy and Motivation of Achievement to Improving Learning Results Concept in Learning Civic Education in Vocational High School

    Science.gov (United States)

    Sumarno; Setyosari, Punaji; Haryono

    2017-01-01

    This study aims to examine the effect of feedback strategies on understanding and applying the concept of National ideology to students who have different achievement motivation, on learning Citizenship Education in vocational high schools. This research uses quasi experiment research design (Quasi Experiment). The subjects of this study were 133…

  10. The relationship among self-determination, self-concept, and academic achievement for students with learning disabilities.

    Science.gov (United States)

    Zheng, Chunmei; Gaumer Erickson, Amy; Kingston, Neal M; Noonan, Patricia M

    2014-01-01

    Research suggests that self-determination skills are positively correlated with factors that have been shown to improve academic achievement, but the direct relationship among self-determination, self-concept, and academic achievement is not fully understood. This study offers an empirical explanation of how self-determination and self-concept affect academic achievement for adolescents with learning disabilities after taking into consideration the covariates of gender, income, and urbanicity. In a nationally representative sample (N = 560), the proposed model closely fit the data, with all proposed path coefficients being statistically significant. The results indicated that there were significant correlations among the three latent variables (i.e., self-determination, self-concept, and academic achievement), with self-determination being a potential predictor of academic achievement for students with learning disabilities. © Hammill Institute on Disabilities 2012.

  11. Possible mechanisms of chromosomal aberrations: VII. Comparative dynamics of sister chromatid disjunction and realization of radiation-induced chromosomal aberrations during mitosis

    International Nuclear Information System (INIS)

    Lebedeva, L.I.; Akhmamet'eva, E.M.

    1994-01-01

    An increase in radiation-induced chromosomal aberrations during c-metaphase sister chromatid disjunction was demonstrated in murine bone marrow cells exposed to a total γ-irradiation at 0.5 Gy. Caffeine (Cf) treatment during mitosis partially suppressed the chromatid disjunction rate and increased the number of radiation-induced aberrations in this mitosis. Nalidixic acid (NA) treatment of c-metaphase cells completely suppressed chromatid disjunction and the realization of induced aberrations. Topoisomerase 2 was assumed to be involved during mitosis in both processes

  12. An explanatory model of academic achievement based on aptitudes, goal orientations, self-concept and learning strategies.

    Science.gov (United States)

    Miñano Pérez, Pablo; Castejón Costa, Juan-Luis; Gilar Corbí, Raquel

    2012-03-01

    As a result of studies examining factors involved in the learning process, various structural models have been developed to explain the direct and indirect effects that occur between the variables in these models. The objective was to evaluate a structural model of cognitive and motivational variables predicting academic achievement, including general intelligence, academic self-concept, goal orientations, effort and learning strategies. The sample comprised of 341 Spanish students in the first year of compulsory secondary education. Different tests and questionnaires were used to evaluate each variable, and Structural Equation Modelling (SEM) was applied to contrast the relationships of the initial model. The model proposed had a satisfactory fit, and all the hypothesised relationships were significant. General intelligence was the variable most able to explain academic achievement. Also important was the direct influence of academic self-concept on achievement, goal orientations and effort, as well as the mediating ability of effort and learning strategies between academic goals and final achievement.

  13. Challenges and weaknesses in the use of concept maps as a learning strategy in undergraduate health programs

    Directory of Open Access Journals (Sweden)

    Enios Carlos Duarte

    2017-09-01

    Full Text Available This paper considers the analysis of concept maps utilized as a learning tool in disciplines dealing with immunological responses in two undergraduate Health programs. In total, 48 concept maps were assessed regarding their propositions and structure. The clarity of the propositions was analyzed by using the Propositional Clarity Table and they were classified as adequate propositions (AP and inadequate propositions (IP. In 48 concept maps, 648 propositions were analyzed in order to determine semantic clarity and conceptual mistakes. Assessments revealed that 69 % of the propositions were classified as adequate and 31 % as inadequate. All the maps analyzed were categorized as showing a network structure. However, when correlating the connections established among the several types of response by the immune system, it was found that despite being structured as a network, only 31.2 % of the concept maps indicated conceptual relationships between the modes of immune response. 27% of the concept maps were made with a high rate of proficiency. Upon the results of our analysis, we realized that there is still a long way in developing the mapping strategy. For us, this low percentage is related to the way undergraduates assimilate the mapping processes. This is a challenge which also reveals limits and weaknesses that may be addressed in future studies. It was noted that results bring into focus that the undergraduates’ learning of concepts associated with the bases of the immunological responses occurred in a meaningful way.

  14. Conceptions of learning research: variations amongst French and Swedish nurses. A phenomenographic study.

    Science.gov (United States)

    Dupin, Cécile Marie; Larsson, Maria; Dariel, Odessa; Debout, Christophe; Rothan-Tondeur, Monique

    2015-01-01

    The development of nursing research capacity and interactions with cultural and structural issues is at various stages throughout Europe. This process appears to be remarkably similar irrespective of the country. Sweden has developed this capacity since the 1990s, whereas France is experiencing a transition. Nevertheless, knowledge about how nurses conceive their learning about nursing research and transitioning toward being researchers is scarce. The aim of this study was to explore French and Swedish RNs' conceptions of research education and educational passage toward research and to describe how learning research contributes to the understanding of their norms and practices. A phenomenographic approach was used to understand and describe the qualitatively different ways in which French and Swedish RNs conceive research and its apprenticeship. A purposive maximum variation sampling of five French and five Swedish Nurse Researchers with PhDs. Individual in-depth interviews conducted in France and Sweden between November 2012 and March 2013 were analysed using phenomenography. The analysis revealed one main category, "Organisational factors to sustain individual apprenticeship". Three descriptive categories have emerged from the data and its variations amongst French and Swedish nurses: (1) entrance into research--modes of commitment; (2) nurses' engagement--the need for dedicated support; and (3) research as the means to resolve nursing situations. This study demonstrates how registered nurses have integrated nursing and researcher roles following different efficient paths. Education in nursing research is part of the strategy needed for the development of nursing research and is supported by the integration of research and practice. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The Impact of Academic Self-Concept, Expectations and the Choice of Learning Strategy on Academic Achievement: The Case of Business Students

    Science.gov (United States)

    Rodriguez, Carlos M.

    2009-01-01

    This study provides evidence of the impact of two critical self-regulation components--academic self-concept and outcome expectations--on the selection of learning strategies conducive to academic achievement in undergraduate business education. Self-concept theory is the framework for the analysis of students' motivations and learning behaviors.…

  16. Is case-based learning an effective teaching strategy to challenge students' alternative conceptions regarding chemical kinetics?

    Science.gov (United States)

    Yalçınkaya, Eylem; Taştan-Kırık, Özgecan; Boz, Yezdan; Yıldıran, Demet

    2012-07-01

    Background: Case-based learning (CBL) is simply teaching the concept to the students based on the cases. CBL involves a case, which is a scenario based on daily life, and study questions related to the case, which allows students to discuss their ideas. Chemical kinetics is one of the most difficult concepts for students in chemistry. Students have generally low levels of conceptual understanding and many alternative conceptions regarding it. Purpose: This study aimed to explore the effect of CBL on dealing with students' alternative conceptions about chemical kinetics. Sample: The sample consists of 53 high school students from one public high school in Turkey. Design and methods : Nonequivalent pre-test and post-test control group design was used. Reaction Rate Concept Test and semi-structured interviews were used for data collection. Convenience sampling technique was followed. For data analysis, the independent samples t-test and ANOVA was performed. Results : Both concept test and interview results showed that students instructed with cases had better understanding of core concepts of chemical kinetics and had less alternative conceptions related to the subject matter compared to the control group students, despite the fact that it was impossible to challenge all the alternative conceptions in the experimental group. Conclusions: CBL is an effective teaching method for challenging students' alternative conceptions in the context of chemical kinetics. Since using cases in small groups and whole class discussions has been found to be an effective way to cope with the alternative conceptions, it can be applied to other subjects and grade levels in high schools with a higher sample size. Furthermore, the effect of this method on academic achievement, motivation and critical thinking skills are other variables that can be investigated for future studies in the subject area of chemistry.

  17. Discovery learning with hierarchy concept to improve analysis ability and study achievement hydrolysis subject

    Directory of Open Access Journals (Sweden)

    Leny Yuliatun

    2017-10-01

    Full Text Available The aim of this research is to applied Discovery Learning (DL by the support of hierarchy concept to improve analysis ability and chemistry study achievement in the Hydrolysis subject at eleventh-grade students of Science 1 of SMA N Karangpandan at the academic year of 2016/2017. This research is using Classroom Action Research which using two cycles. In each cycle has four steps of action, they are planning, implementing, observing, and reflecting. The research subject is the eleventh-grade students of science one which consists of 40 students. The data source is using teacher and students and the data were taken by interviewing, observing, documenting, testing, and using questionnaire. Data analysis technique is using descriptive qualitative analysis. Based on the research shows that the achievement of analysis cycle I am from 52,5% increase into 65% in the cycle II. Meanwhile, the rise in students’ achievement in cognitive aspect increase from 57,5% in cycle I to 75% in cycle II. Achievement in an affective aspect in cycle I am 90% become 92,5% in cycle II. Therefore, there is the increase meant of students number in this aspect although in cycle I all of the indicator has been reached.

  18. Development and Study the Usage of Blended Learning Environment Model Using Engineering Design Concept Learning Activities to Computer Programming Courses for Undergraduate Students of Rajabhat Universities

    Directory of Open Access Journals (Sweden)

    Kasame Tritrakan

    2017-06-01

    Full Text Available The objectives of this research were to study and Synthesise the components, to develop, and to study the usage of blended learning environment model using engineering design concept learning activities to computer programming courses for undergraduate students of Rajabhat universities. The research methodology was divided into 3 phases. Phase I: surveying presents, needs and problems in teaching computer programming of 52 lecturers by using in-depth interview from 5 experienced lecturers. The model’s elements were evaluated by 5 experts. The tools were questionnaire, interview form, and model’s elements assessment form. Phase II: developing the model of blended learning environment and learning activities based on engineering design processes and confirming model by 8 experts. The tools were the draft of learning environment, courseware, and assessment forms. Phase III evaluating the effects of using the implemented environment. The samples were students which formed into 2 groups, 25 people in the experiment group and 27 people in the control group by cluster random sampling. The tools were learning environment, courseware, and assessment tools. The statistics used in this research were means, standard deviation, t-test dependent, and one-way MANOVA. The results found that: 1 Lecturers quite agreed with the physical, mental, social, and information learning environment, learning processes, and assessments. There were all needs in high level. However there were physical environment problems in high level yet quite low in other aspects. 2 The developed learning environment had 4 components which were a 4 types of environments b the inputs included blended learning environment, learning motivation factors, and computer programming content c the processes were analysis of state objectives, design learning environment and activities, developing learning environment and testing materials, implement, ation evaluation and evaluate, 4 the outputs

  19. Some Cognitive Variables in Meaningful Learning of the Physics Concepts of Work and Energy: A Study of Ausubelian Learning Model.

    Science.gov (United States)

    Talisayon, Vivien Millan

    This study is an empirical investigation of Ausubel's paradigm of meaningful learning, applied specifically to the learning of high school physics students. In the first phase of the study path analysis and multiple regression techniques were used to describe the Ausubelian learning variables: available relevant ideas in learner's cognitive…

  20. Direct-to-consumer DNA testing: the fallout for individuals and their families unexpectedly learning of their donor conception origins.

    Science.gov (United States)

    Crawshaw, Marilyn

    2017-07-11

    Increasing numbers of donor-conceived individuals (and/or parents) are seeking individuals genetically related through donor conception. One route is through 'direct-to-consumer' (DTC) DNA testing, prompting calls for fertility services to alert donors and prospective parents to the increasing unsustainability of anonymity and secrecy. The complexity of interpreting DNA results in this context has also been discussed, including their lack of absolute certainty, as has the need for professional and peer support. This commentary highlights a different 'threat', from individuals learning of their donor-conception origins through the use of such tests by themselves or relatives for such purposes as genealogy or health checks. It illustrates the personal complexities faced by three older women and their families on learning not only of their genetic relationship to each other but also to 15 more donor-related siblings. DTC DNA services are a growing feature of modern life. This commentary raises ethical questions about their responsibilities towards those inadvertently learning of donor conception origins and the responsibilities of fertility services to inform prospective parents and donors of this new phenomenon. Considerations of how and when parents should tell their children of their donor-conception origins here instead become how and when children should inform their parents.

  1. The Relationship Between the Learning Style Perceptual Preferences of Urban Fourth Grade Children and the Acquisition of Selected Physical Science Concepts Through Learning Cycle Instructional Methodology.

    Science.gov (United States)

    Adams, Kenneth Mark

    The purpose of this research was to investigate the relationship between the learning style perceptual preferences of fourth grade urban students and the attainment of selected physical science concepts for three simple machines as taught using learning cycle methodology. The sample included all fourth grade children from one urban elementary school (N = 91). The research design followed a quasi-experimental format with a single group, equivalent teacher demonstration and student investigation materials, and identical learning cycle instructional treatment. All subjects completed the Understanding Simple Machines Test (USMT) prior to instructional treatment, and at the conclusion of treatment to measure student concept attainment related to the pendulum, the lever and fulcrum, and the inclined plane. USMT pre and post-test scores, California Achievement Test (CAT-5) percentile scores, and Learning Style Inventory (LSI) standard scores for four perceptual elements for each subject were held in a double blind until completion of the USMT post-test. The hypothesis tested in this study was: Learning style perceptual preferences of fourth grade students as measured by the Dunn, Dunn, and Price Learning Style Inventory (LSI) are significant predictors of success in the acquisition of physical science concepts taught through use of the learning cycle. Analysis of pre and post USMT scores, 18.18 and 30.20 respectively, yielded a significant mean gain of +12.02. A controlled stepwise regression was employed to identify significant predictors of success on the USMT post-test from among USMT pre-test, four CAT-5 percentile scores, and four LSI perceptual standard scores. The CAT -5 Total Math and Total Reading accounted for 64.06% of the variance in the USMT post-test score. The only perceptual element to act as a significant predictor was the Kinesthetic standard score, accounting for 1.72% of the variance. The study revealed that learning cycle instruction does not appear

  2. Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions.

    Science.gov (United States)

    Garnica, Sigisfredo; Spahn, Philipp; Oertel, Bernhard; Ammirati, Joseph; Oberwinkler, Franz

    2011-07-19

    Cortinarius species in section Calochroi display local, clinal and circumboreal patterns of distribution across the Northern Hemisphere where these ectomycorrhizal fungi occur with host trees throughout their geographical range within a continent, or have disjunct intercontinental distributions, the origins of which are not understood. We inferred evolutionary histories of four species, 1) C. arcuatorum, 2) C. aureofulvus, 3) C. elegantior and 4) C. napus, from populations distributed throughout the Old World, and portions of the New World (Central- and North America) based on genetic variation of 154 haplotype internal transcribed spacer (ITS) sequences from 83 population samples. By describing the population structure of these species across their geographical distribution, we attempt to identify their historical migration and patterns of diversification. Models of population structure from nested clade, demographic and coalescent-based analyses revealed genetically differentiated and geographically structured haplotypes in C. arcuatorum and C. elegantior, while C. aureofulvus showed considerably less population structure and C. napus lacked sufficient genetic differentiation to resolve any population structure. Disjunct populations within C. arcuatorum, C. aureofulvus and C. elegantior show little or no morphological differentiation, whereas in C. napus there is a high level of homoplasy and phenotypic plasticity for veil and lamellae colour. The ITS sequences of the type specimens of C. albobrunnoides and C. albobrunnoides var. violaceovelatus were identical to one another and are treated as one species with a wider range of geographic distribution under C. napus. Our results indicate that each of the Calochroi species has undergone a relatively independent evolutionary history, hypothesised as follows: 1) a widely distributed ancestral population of C. arcuatorum diverged into distinctive sympatric populations in the New World; 2) two divergent lineages in C

  3. Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions

    Directory of Open Access Journals (Sweden)

    Ammirati Joseph

    2011-07-01

    Full Text Available Abstract Background Cortinarius species in section Calochroi display local, clinal and circumboreal patterns of distribution across the Northern Hemisphere where these ectomycorrhizal fungi occur with host trees throughout their geographical range within a continent, or have disjunct intercontinental distributions, the origins of which are not understood. We inferred evolutionary histories of four species, 1 C. arcuatorum, 2 C. aureofulvus, 3 C. elegantior and 4 C. napus, from populations distributed throughout the Old World, and portions of the New World (Central- and North America based on genetic variation of 154 haplotype internal transcribed spacer (ITS sequences from 83 population samples. By describing the population structure of these species across their geographical distribution, we attempt to identify their historical migration and patterns of diversification. Results Models of population structure from nested clade, demographic and coalescent-based analyses revealed genetically differentiated and geographically structured haplotypes in C. arcuatorum and C. elegantior, while C. aureofulvus showed considerably less population structure and C. napus lacked sufficient genetic differentiation to resolve any population structure. Disjunct populations within C. arcuatorum, C. aureofulvus and C. elegantior show little or no morphological differentiation, whereas in C. napus there is a high level of homoplasy and phenotypic plasticity for veil and lamellae colour. The ITS sequences of the type specimens of C. albobrunnoides and C. albobrunnoides var. violaceovelatus were identical to one another and are treated as one species with a wider range of geographic distribution under C. napus. Conclusions Our results indicate that each of the Calochroi species has undergone a relatively independent evolutionary history, hypothesised as follows: 1 a widely distributed ancestral population of C. arcuatorum diverged into distinctive sympatric

  4. Effects of using presentation formats that accommodate the learner's multiple intelligences on the learning of freshman college chemistry concepts

    Science.gov (United States)

    Brown Wright, Gloria Aileen

    Howard Gardner's Theory of Multiple Intelligences identifies linguistic, spatial and logical-mathematical intelligences as necessary for learning in the physical sciences. He has identified nine intelligences which all persons possess to varying degrees, and says that learning is most effective when learners receive information in formats that correspond to their intelligence strengths. This research investigated the importance of the multiple intelligences of students in first-year college chemistry to the learning of chemistry concepts. At three pre-selected intervals during the first-semester course each participant received a tutorial on a chemistry topic, each time in a format corresponding to a different one of the three intelligences, just before the concept was introduced by the class lecturer. At the end of the experiment all subjects had experienced each of the three topics once and each format once, after which they were administered a validated instrument to measure their relative strengths in these three intelligences. The difference between a pre- and post-tutorial quiz administered on each occasion was used as a measure of learning. Most subjects were found to have similar strengths in the three intelligences and to benefit from the tutorials regardless of format. Where a difference in the extent of benefit occurred the difference was related to the chemistry concept. Data which indicate that students' preferences support these findings are also included and recommendations for extending this research to other intelligences are made.

  5. The Interaction Model in iLearning Environments and its Use in the Smart Lab Concept

    Directory of Open Access Journals (Sweden)

    Yuliya Lyalina

    2011-11-01

    Full Text Available This paper identifies and discusses current trends and challenges, offers an overview of state-of-the-art technologies in the development of remote and smart laboratories, and introduces the iLearning interaction model. The use of the model allows reconstructing already- existing iLearning environments. The smart lab model is described for face-to-face, Mobile and Blended Learning. As a result, this allows offering new information technology that organizes the educational process according to learning type (face-to-face, hands-on learning, Life Long Learning, E-Learning, M-Learning, Blended learning, Game-based learning, etc.. The remote access Architecture and Interface for the multifunctional Smart Lab will be developed.

  6. Taxonomic monograph of Oxygyne (Thismiaceae), rare achlorophyllous mycoheterotrophs with strongly disjunct distribution.

    Science.gov (United States)

    Cheek, Martin; Tsukaya, Hirokazu; Rudall, Paula J; Suetsugu, Kenji

    2018-01-01

    Oxygyne Schltr. (Thismiaceae) is a rare and little-known genus of achlorophyllous mycoheterotrophic perennial herbs with one of the most remarkable distributions of all angiosperm plant genera globally, being disjunct between Japan and West-Central Africa. Each species is known only from a single location, and in most cases from a single specimen. This monographic study names, describes and maps two new species, Oxygyne duncanii Cheek from cloud forest in SW Region Cameroon and O. frankei Cheek from gallery forest in the Central African Republic , representing the first new Oxygyne species described from Africa in 112 years, and raising the number of described Oxygyne species from four to six. Oxygyne duncanii is remarkable for sharing more morphological characters with two of the three Japanese species ( O. hyodoi C.Abe & Akasawa, O. shinzatoi (H. Ohashi) Tsukaya) than with the geographically much closer type species of the genus, O. triandra from Mt Cameroon. Based mainly on herbarium specimens and field observations made in Cameroon and Japan during a series of botanical surveys, we provide descriptions, synonymy, mapping and extinction risk assessments for each species of Oxygyne , together with keys to the genera of Thismiaceae and the species of Oxygyne . The subterranean structures of African Oxygyne are described for the first time, and found to be consistent with those of the Japanese species. We review and reject an earlier proposal that the Japanese species should be segregated from the African species as a separate genus, Saionia Hatus. The only character that separates the two disjunct species groups is now flower colour: blue or partly-blue in the Japanese species compared with orange-brown in the African species. Studies of the pollination biology and mycorrhizal partners of Oxygyne are still lacking. Two of the six species, O. triandra Schltr. and O. hyodoi , appear to be extinct, and the remaining four are assessed as Critically Endangered using

  7. Taxonomic monograph of Oxygyne (Thismiaceae, rare achlorophyllous mycoheterotrophs with strongly disjunct distribution

    Directory of Open Access Journals (Sweden)

    Martin Cheek

    2018-05-01

    Full Text Available Oxygyne Schltr. (Thismiaceae is a rare and little-known genus of achlorophyllous mycoheterotrophic perennial herbs with one of the most remarkable distributions of all angiosperm plant genera globally, being disjunct between Japan and West–Central Africa. Each species is known only from a single location, and in most cases from a single specimen. This monographic study names, describes and maps two new species, Oxygyne duncanii Cheek from cloud forest in SW Region Cameroon and O. frankei Cheek from gallery forest in the Central African Republic, representing the first new Oxygyne species described from Africa in 112 years, and raising the number of described Oxygyne species from four to six. Oxygyne duncanii is remarkable for sharing more morphological characters with two of the three Japanese species (O. hyodoi C.Abe & Akasawa, O. shinzatoi (H. Ohashi Tsukaya than with the geographically much closer type species of the genus, O. triandra from Mt Cameroon. Based mainly on herbarium specimens and field observations made in Cameroon and Japan during a series of botanical surveys, we provide descriptions, synonymy, mapping and extinction risk assessments for each species of Oxygyne, together with keys to the genera of Thismiaceae and the species of Oxygyne. The subterranean structures of African Oxygyne are described for the first time, and found to be consistent with those of the Japanese species. We review and reject an earlier proposal that the Japanese species should be segregated from the African species as a separate genus, Saionia Hatus. The only character that separates the two disjunct species groups is now flower colour: blue or partly-blue in the Japanese species compared with orange-brown in the African species. Studies of the pollination biology and mycorrhizal partners of Oxygyne are still lacking. Two of the six species, O. triandra Schltr. and O. hyodoi, appear to be extinct, and the remaining four are assessed as Critically

  8. Broadening conceptions of learning in medical education: the message from teamworking.

    Science.gov (United States)

    Bleakley, Alan

    2006-02-01

    There is a mismatch between the broad range of learning theories offered in the wider education literature and a relatively narrow range of theories privileged in the medical education literature. The latter are usually described under the heading of 'adult learning theory'. This paper critically addresses the limitations of the current dominant learning theories informing medical education. An argument is made that such theories, which address how an individual learns, fail to explain how learning occurs in dynamic, complex and unstable systems such as fluid clinical teams. Models of learning that take into account distributed knowing, learning through time as well as space, and the complexity of a learning environment including relationships between persons and artefacts, are more powerful in explaining and predicting how learning occurs in clinical teams. Learning theories may be privileged for ideological reasons, such as medicine's concern with autonomy. Where an increasing amount of medical education occurs in workplace contexts, sociocultural learning theories offer a best-fit exploration and explanation of such learning. We need to continue to develop testable models of learning that inform safe work practice. One type of learning theory will not inform all practice contexts and we need to think about a range of fit-for-purpose theories that are testable in practice. Exciting current developments include dynamicist models of learning drawing on complexity theory.

  9. Effects of Geographic Information System on the Learning of Environmental Education Concepts in Basic Computer-Mediated Classrooms in Nigeria

    Directory of Open Access Journals (Sweden)

    Ayobami Gideon Adeleke

    2017-12-01

    Full Text Available This research paper specifically examined the impact of Geographic Information System (GIS integration in a learning method and on the performance and retention of Environmental Education (EE concepts in basic social studies. Non-equivalent experimental research design was employed. 126 pupils in four intact, computer-mediated classrooms were sampled. Instruments included Envi-Geo Info System (EGIS package and Environmental Information Achievement Test (EAT. The study found no significant effect of treatment on performances of participants in EGIS integrated treatment groups. No significant effect was found across the groups on pupils retention even though, treatment groups retention mean was higher than contemporaries. The study concluded that, adaptation of EGIS into sorted EE concepts will improve learning and might boost retention even in computer-mediated social studies classroom provided the use of GIS is made feasible in Nigeria and adopted into teaching-learning process. It recommended that stakeholders in Nigerian education system should foster workable strategies to improve teaching and learning and that, the use of GIS locally must be placed in the national education objectives. It is in the best interest of the people to learn the rudiments of personal safety, spatial development, incidental natural alerts, as well as preventions and solutions

  10. Understanding groundwater - students' pre-conceptions and conceptual change by means of a theory-guided multimedia learning program

    Science.gov (United States)

    Unterbruner, Ulrike; Hilberg, Sylke; Schiffl, Iris

    2016-06-01

    Education on the subject of groundwater is crucial for sustainability. Nevertheless, international studies with students across different age groups have shown that the basic hydrogeological concept of groundwater defined as water within porous and permeable rocks is not an established everyday notion. Drawing from international research, a multimedia learning program Zwischen Regenwolke und Wasserhahn (between the rain cloud and the tap) was developed, which incorporates specific insights from the fields of conceptual change research, multimedia research, and the model of educational reconstruction. The effectiveness of the learning program was ascertained by means of two studies with Austrian seventh grade pupils as well as teacher-training students from the fields of biology and geography in order to ascertain the effectiveness of the learning program. Using a quasi-experimental research design, the participants' conceptions and knowledge of groundwater were determined in a pre- and post-test. The pupils and students greatly benefitted from working through the learning software independently. Their knowledge of groundwater increased significantly compared to the control group and there was a highly significant increase in the number of scientifically correct notions of groundwater. The acceptance of the program was also generally very high. The results indicate that theory-guided multimedia learning programs can play an important role in the transfer of research results to classroom settings, especially in science education.

  11. Early signs of range disjunction of submountainous plant species: an unexplored consequence of future and contemporary climate changes.

    Science.gov (United States)

    Kuhn, Emilien; Lenoir, Jonathan; Piedallu, Christian; Gégout, Jean-Claude

    2016-06-01

    Poleward and upward species range shifts are the most commonly anticipated and studied consequences of climate warming. However, these global responses to climate change obscure more complex distribution change patterns. We hypothesize that the spatial arrangement of mountain ranges and, consequently, climatic gradients in Europe, will result in range disjunctions. This hypothesis was investigated for submountainous forest plant species at two temporal and spatial scales: (i) under future climate change (between 1950-2000 and 2061-2080 periods) at the European scale and (ii) under contemporary climate change (between 1914-1987 and 1997-2013 periods) at the French scale. We selected 97 submountainous forest plant species occurring in France, among which distribution data across Europe are available for 25 species. By projecting future distribution changes for the 25 submountainous plant species across Europe, we demonstrated that range disjunction is a likely consequence of future climate change. To assess whether it is already taking place, we used a large forest vegetation-plot database covering the entire French territory over 100 years (1914-2013) and found an average decrease in frequency (-0.01 ± 0.004) in lowland areas for the 97 submountainous species - corresponding to a loss of 6% of their historical frequency - along with southward and upward range shifts, suggesting early signs of range disjunctions. Climate-induced range disjunctions should be considered more carefully since they could have dramatic consequences on population genetics and the ability of species to face future climate changes. © 2016 John Wiley & Sons Ltd.

  12. Where to Now? New E-learning Concepts and Co-creation at the Technical University of Denmark

    DEFF Research Database (Denmark)

    Cranfield, Andrew; Jensen, Thomas

    2018-01-01

    qualify our e-didactic and e-learning endeavors. The second part of the paper will look to the future and how a new DEFF funded project running will seek to establish new solutions taking their inspiration from the concept of co-creation. We will discuss underlying theory of the two DEFF projects, target......From 2014 to 2016 DTU Library was involved in a large multi-institutional publicly funded DEFF (The Danish Electronic Research Library) project entitled “E-learning, information literacy and library services” that focused on enhancing links between education and employability, including information...

  13. Systematically reviewing the potential of concept mapping technologies to promote self-regulated learning in primary and secondary science education

    DEFF Research Database (Denmark)

    Stevenson, Matt P.; Hartmeyer, Rikke; Bentsen, Peter

    2017-01-01

    We systematically searched five databases to assess the potential of concept mapping-based technologies to promote self-regulated learning in science education. Our search uncovered 17 relevant studies that investigated seven different types of learning technologies. We performed a narrative....... Computer software was particularly useful for developing cognitive strategies through ease of use. Teaching agents were particularly useful for developing metacognitive strategies by coupling visualisation of knowledge patterns with performance monitoring, aided by a teaching metaphor. Finally, mobile...... devices and teaching agents were most effective in enhancing motivation. Effects on knowledge gains remain unclear due to small sample sizes....

  14. A blended learning concept for an engineering course in the field of color representation and display technologies

    Science.gov (United States)

    Vauderwange, Oliver; Wozniak, Peter; Javahiraly, Nicolas; Curticapean, Dan

    2016-09-01

    The Paper presents the design and development of a blended learning concept for an engineering course in the field of color representation and display technologies. A suitable learning environment is crucial for the success of the teaching scenario. A mixture of theoretical lectures and hands-on activities with practical applications and experiments, combined with the advantages of modern digital media is the main topic of the paper. Blended learning describes the didactical change of attendance periods and online periods. The e-learning environment for the online period is designed toward an easy access and interaction. Present digital media extends the established teaching scenarios and enables the presentation of videos, animations and augmented reality (AR). Visualizations are effective tools to impart learning contents with lasting effect. The preparation and evaluation of the theoretical lectures and the hands-on activities are stimulated and affects positively the attendance periods. The tasks and experiments require the students to work independently and to develop individual solution strategies. This engages and motivates the students, deepens the knowledge. The authors will present their experience with the implemented blended learning scenario in this field of optics and photonics. All aspects of the learning environment will be introduced.

  15. Phylogeographic Analysis Elucidates the Influence of the Ice Ages on the Disjunct Distribution of Relict Dragonflies in Asia

    Science.gov (United States)

    Büsse, Sebastian; von Grumbkow, Philipp; Hummel, Susanne; Shah, Deep Narayan; Tachamo Shah, Ram Devi; Li, Jingke; Zhang, Xueping; Yoshizawa, Kazunori; Wedmann, Sonja; Hörnschemeyer, Thomas

    2012-01-01

    Unusual biogeographic patterns of closely related groups reflect events in the past, and molecular analyses can help to elucidate these events. While ample research on the origin of disjunct distributions of different organism groups in the Western Paleartic has been conducted, such studies are rare for Eastern Palearctic organisms. In this paper we present a phylogeographic analysis of the disjunct distribution pattern of the extant species of the strongly cool-adapted Epiophlebia dragonflies from Asia. We investigated sequences of the usually more conserved 18 S rDNA and 28 S rDNA genes and the more variable sequences of ITS1, ITS2 and CO2 of all three currently recognised Epiophlebia species and of a sample of other odonatan species. In all genes investigated the degrees of similarity between species of Epiophlebia are very high and resemble those otherwise found between different populations of the same species in Odonata. This indicates that substantial gene transfer between these populations occurred in the comparatively recent past. Our analyses imply a wide distribution of the ancestor of extant Epiophlebia in Southeast Asia during the last ice age, when suitable habitats were more common. During the following warming phase, its range contracted, resulting in the current disjunct distribution. Given the strong sensitivity of these species to climatic parameters, the current trend to increasing global temperatures will further reduce acceptable habitats and seriously threaten the existences of these last representatives of an ancient group of Odonata. PMID:22666462

  16. Enriching Student Concept Images: Teaching and Learning Fractions through a Multiple-Embodiment Approach

    Science.gov (United States)

    Zhang, Xiaofen; Clements, M. A.; Ellerton, Nerida F.

    2015-01-01

    This study investigated how fifth-grade children's concept images of the unit fractions represented by the symbols 1/2, 1/3/ and 1/4 changed as a result of their participation in an instructional intervention based on multiple embodiments of fraction concepts. The participants' concept images were examined through pre- and post-teaching written…

  17. Learning Binomial Probability Concepts with Simulation, Random Numbers and a Spreadsheet

    Science.gov (United States)

    Rochowicz, John A., Jr.

    2005-01-01

    This paper introduces the reader to the concepts of binomial probability and simulation. A spreadsheet is used to illustrate these concepts. Random number generators are great technological tools for demonstrating the concepts of probability. Ideas of approximation, estimation, and mathematical usefulness provide numerous ways of learning…

  18. A hybrid guided neighborhood search for the disjunctively constrained knapsack problem

    Directory of Open Access Journals (Sweden)

    Mhand Hifi

    2015-12-01

    Full Text Available In this paper, we investigate the use of a hybrid guided neighborhood search for solving the disjunctively constrained knapsack problem. The studied problem may be viewed as a combination of two NP-hard combinatorial optimization problems: the weighted-independent set and the classical binary knapsack. The proposed algorithm is a hybrid approach that combines both deterministic and random local searches. The deterministic local search is based on a descent method, where both building and exploring procedures are alternatively used for improving the solution at hand. In order to escape from a local optima, a random local search strategy is introduced which is based on a modified ant colony optimization system. During the search process, the ant colony optimization system tries to diversify and to enhance the solutions using some informations collected from the previous iterations. Finally, the proposed algorithm is computationally analyzed on a set of benchmark instances available in the literature. The provided results are compared to those realized by both the Cplex solver and a recent algorithm of the literature. The computational part shows that the obtained results improve most existing solution values.

  19. Utilization during mitotic cell division of loci controlling meiotic recombination and disjunction in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Baker, B.S.; Carpenter, A.T.C.; Ripoll, P.

    1978-01-01

    To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by uv and x rays. Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells

  20. Absence of Cospeciation between the Uncultured Frankia Microsymbionts and the Disjunct Actinorhizal Coriaria Species

    Directory of Open Access Journals (Sweden)

    Imen Nouioui

    2014-01-01

    Full Text Available Coriaria is an actinorhizal plant that forms root nodules in symbiosis with nitrogen-fixing actinobacteria of the genus Frankia. This symbiotic association has drawn interest because of the disjunct geographical distribution of Coriaria in four separate areas of the world and in the context of evolutionary relationships between host plants and their uncultured microsymbionts. The evolution of Frankia-Coriaria symbioses was examined from a phylogenetic viewpoint using multiple genetic markers in both bacteria and host-plant partners. Total DNA extracted from root nodules collected from five species: C. myrtifolia, C. arborea, C. nepalensis, C. japonica, and C. microphylla, growing in the Mediterranean area (Morocco and France, New Zealand, Pakistan, Japan, and Mexico, respectively, was used to amplify glnA gene (glutamine synthetase, dnaA gene (chromosome replication initiator, and the nif DK IGS (intergenic spacer between nifD and nifK genes in Frankia and the matK gene (chloroplast-encoded maturase K and the intergenic transcribed spacers (18S rRNA-ITS1-5.8S rRNA-ITS2-28S rRNA in Coriaria species. Phylogenetic reconstruction indicated that the radiations of Frankia strains and Coriaria species are not congruent. The lack of cospeciation between the two symbiotic partners may be explained by host shift at high taxonomic rank together with wind dispersal and/or survival in nonhost rhizosphere.

  1. Public engagement in climate change - Disjunctions, tensions and blind spots in the UK

    International Nuclear Information System (INIS)

    Hoeppner, C

    2009-01-01

    There is much talk about engaging the public in climate change mitigation and adaptation in the UK and elsewhere. Governments rush to demand greater engagement of the public in tackling climate change and delivering sustainable futures. The importance that public engagement has gained as part of the UK climate agenda begs the questions of what is actually behind this call and what are the implications. This paper analyses the rationale for public engagement as enshrined in major policy documents. This rationale is clearly instrumental in that citizens are expected to engage by adopting the 'right attitude', by performing prescribed behaviours, and by consenting to proposed measures. Using recent cases of climate change mitigation and adaptation practice the paper discusses the implications of such an approach to public engagement. The paper concludes that until the manifold disjunctions between climate related policy agendas and their rationales for engagement are explicitly addressed citizen engagement will be serving incumbent interests rather than contributing to socially sustainable and democratic decision-making

  2. How Role Play Addresses the Difficulties Students Perceive when Writing Reflectively about the Concepts They are Learning in Science

    Science.gov (United States)

    Millar, Susan

    A fundamental problem which confronts Science teachers is the difficulty many students experience in the construction, understanding and remembering of concepts. This is more likely to occur when teachers adhere to a Transmission model of teaching and learning, and fail to provide students with opportunities to construct their own learning. Social construction, followed by individual reflective writing, enables students to construct their own understanding of concepts and effectively promotes deep learning. This method of constructing knowledge in the classroom is often overlooked by teachers as they either have no knowledge of it, or do not know how to appropriate it for successful teaching in Science. This study identifies the difficulties which students often experience when writing reflectively and offers solutions which are likely to reduce these difficulties. These solutions, and the use of reflective writing itself, challenge the ideology of the Sydney Genre School, which forms the basis of the attempt to deal with literacy in the NSW Science Syllabus. The findings of this investigation support the concept of literacy as the ability to use oral and written language, reading and listening to construct meaning. The investigation demonstrates how structured discussion, role play and reflective writing can be used to this end. While the Sydney Genre School methodology focuses on the structure of genre as a prerequisite for understanding concepts in Science, the findings of this study demonstrate that students can use their own words to discuss and write reflectively as they construct scientific concepts for themselves. Social construction and reflective writing can contribute to the construction of concepts and the development of metacognition in Science. However, students often experience difficulties when writing reflectively about scientific concepts they are learning. In this investigation, students identified these difficulties as an inability to understand

  3. The Enhancement of Communication Skill and Prediction Skill in Colloidal Concept by Problem Solving Learning

    OpenAIRE

    Anggraini, Agita Dzulhajh; Fadiawati, Noor; Diawati, Chansyanah

    2012-01-01

    Accuracy educators in selecting and implementing learning models influence students' science process skills. Models of learning that can be applied to improve science process skills and tend constructivist among athers learning model of problem solving. This research was conducted to describe the effectiveness of the learning model of problem solving in improving communication skills and prediction skills. Subjects in this research were students of high school YP Unila Bandar Lampung Even ...

  4. CONCEPT AND STRUCTURE OF AUTOMATED SYSTEM FOR MONITORING STUDENT LEARNING QUALITY

    Directory of Open Access Journals (Sweden)

    M. Yu. Kataev

    2017-01-01

    organization and management of the learning process in a higher educational institution. The factors that affect the level of student knowledge obtained during training are shown. On this basis, the determining factors in assessing the level of knowledge are highlighted. It is offered to build the managing of individual training at any time interval on the basis of a calculation of the generalized criterion which consists of students’ current progress, their activity and time spent for training.The block structure of the automated program system of continuous monitoring of achievements of each student is described. All functional blocks of system are interconnected with educational process. The main advantage of this system is that students have continuous access to materials about own individual achievements and mistakes; from passive consumers of information they turn into active members of the education, and thus, they can achieve bigger effectiveness of personal vocational training. It is pointed out that information base of such system has to be available not only to students and teachers, but also future employers of university graduates.Practical significance. The concept of automated system for education results monitoring and technique of processing of collected material presented in the article are based on a simple and obvious circumstance: a student with high progress spends more time on training and leads active lifestyle in comparison with fellow students; therefore, that student with high probability will be more successful in the chosen profession. Thus, for ease of use, complete, fully detailed and digitized information on individual educational achievements of future expert is necessary not only for effective management of educational process in higher education institutions, but also for employers interested in well-prepared, qualified and hard-working staff intended to take responsibility for labour duties.

  5. Explicit teaching and scaffolding to enhance concept learning by design challenges

    NARCIS (Netherlands)

    MEd Maurice Smeets; MEd Dave van Breukelen; Prof. Dr. Marc de Vries

    2016-01-01

    This paper presents a mixed methods study in which 21 first-year student teachers took part that investigated learning outcomes of a modified learning by design task. The study is part of a series of studies that aims to improve student learning, teaching skills and teacher training. Design-based

  6. Epistemic Trust and Education: Effects of Informant Reliability on Student Learning of Decimal Concepts

    Science.gov (United States)

    Durkin, Kelley; Shafto, Patrick

    2016-01-01

    The epistemic trust literature emphasizes that children's evaluations of informants' trustworthiness affects learning, but there is no evidence that epistemic trust affects learning in academic domains. The current study investigated how reliability affects decimal learning. Fourth and fifth graders (N = 122; M[subscript age] = 10.1 years)…

  7. Towards an understanding of students’ thinking in learning new and unfamiliar concepts: Focus on the factorial function

    Directory of Open Access Journals (Sweden)

    Satsope Maoto

    2015-11-01

    Full Text Available This study used participant observation to explore students’ thinking when learning the concept of factorial functions. First-year university students undertaking a mathematics methodology course were asked to find the number of ways in which five people could sit around a circular table with five seats. Using grounded theory as a qualitative research strategy, we analysed student responses and written reflections according to the sequence of their experiential realities: practical and textual experiences. This was followed by an analysis of their reflections on both experiences in a pedagogical context. We found that the way basic mathematics operations are learned impacts on the student’s ability to experience components of new problems as familiar. Consequently, they encounter these problems as new and unfamiliar. At the same time we found that engagement with practical experience does allow for the emergence of representations that have the potential to be used as foundations for learning new and unfamiliar concepts. The blending of practical, textual and teaching experiences provoked students’ thinking and ultimately their understanding of a given new and unfamiliar mathematics concept.

  8. Differences in Learning Strategies, Goal Orientations, and Self-Concept between Overachieving, Normal-Achieving, and Underachieving Secondary Students

    Science.gov (United States)

    Castejón, Juan L.; Gilar, Raquel; Veas, Alejandro; Miñano, Pablo

    2016-01-01

    The aims of this work were to identify and establish differential characteristics in learning strategies, goal orientations, and self-concept between overachieving, normal-achieving and underachieving secondary students. A total of 1400 Spanish first and second year high school students from the South-East geographical area participated in this study. Three groups of students were established: a group with underachieving students, a group with a normal level of achievement, and a third group with overachieving students. The students were assigned to each group depending on the residual punctuations obtained from a multiple regression analysis in which the punctuation of an IQ test was the predictor and a measure composed of the school grades of nine subjects was the criteria. The results of one-way ANOVA and the Games-Howell post-hoc test showed that underachieving students had significantly lower punctuations in all of the measures of learning strategies and learning goals, as well as all of the academic self-concept, personal self-concept, parental relationship, honesty, and personal stability factors. In contrast, overachieving students had higher punctuations than underachieving students in the same variables and higher punctuations than normal-achieving students in most of the variables in which significant differences were detected. These results have clear educational implications. PMID:27729879

  9. Science literacy and meaningful learning: status of public high school students from Rio de Janeiro face to molecular biology concepts

    Directory of Open Access Journals (Sweden)

    Daniel Alves Escodino

    2013-12-01

    Full Text Available In this work we aimed to determine the level of Molecular Biology (MB science literacy of students from two Brazilian public schools which do not consider the rogerian theory for class planning and from another institution, Cap UERJ, which favours this theory. We applied semiclosed questionnaires specific to the different groups of science literacy levels. Besides, we have asked them to perform conceptual maps with MB concepts in order to observe if they have experienced meaningful learning. Finally, we prepared MB classes for students of the three schools, considering their conceptual maps and tried to evaluate, through a second map execution, if the use of alternative didactics material, which consider meaningful learning process, would have any effect over the appropriation of new concepts. We observed that most students are placed at Functional literacy level. Nonetheless, several students from CAp were also settled at the higher Conceptual and Procedural levels. We found that most students have not experienced meaningful learning and that the employment of didactic material and implementation of proposals which consider the cognitive structure of the students had a significant effect on the appropriation of several concepts.

  10. Towards clarification of convergent concepts: sense of coherence, will to meaning, locus of control, learned helplessness and hardiness.

    Science.gov (United States)

    Sullivan, G C

    1993-11-01

    The multidisciplinary field of stress and stress-related health outcomes has generated theoretical and practical knowledge which is of interest to nurses. Theoretical developments which have assumed a prominent role in the study of stress, health and coping include the identification of various 'stress buffers' several of which bear a strong conceptual resemblance to one another. Antonovsky has developed a Salutogenic Model of stress and resistance, which is presented in this paper. The model's central concept, the sense of coherence, is described and analysed. The sense of coherence, with its three components (meaningfulness, comprehensibility and manageability), is then compared and contrasted with similar concepts. The convergent theoretical notions which are distinguished from Antonovsky's coherence are: will to meaning, locus of control, learned helplessness and hardiness. It is hoped that this analysis will provide greater conceptual clarity for nurses who study and use these concepts in education, practice or research.

  11. The Effects of Learning Activities Corresponding with Students’ Learning Styles on Academic Success and Attitude within the Scope of Constructivist Learning Approach: The Case of the Concepts of Function and Derivative

    Directory of Open Access Journals (Sweden)

    Kemal Özgen

    2014-04-01

    Full Text Available The aim of this study was to identify the effects of learning activities according to students’ learning styles on students’ academic success and attitude towards mathematics within a scope of constructivist learning approach. The study had a semi-experimental research design based on the pre test-post test model with a control group. The participants of the study were students studying at a state high school in the 2010-2011 academic year. As part of the study, activities which were suitable to the students’ learning styles were developed within the scope of constructivist learning approach in line with McCarthy’s 4MAT system with 8 steps of learning and used for the learning of the concepts of function and derivative. Data were collected using data collection tools such as a personal information form, non-routine problems, and a mathematics attitude scale. Descriptive and non-parametric statistics were used for the analysis of quantitative data. Data analysis indicated that, the learning process in which activities appropriate for students’ learning styles were used to contribute to an increase in the students’ academic success and problem solving skills. Yet, there was no statistically significant difference in students’ attitudes towards mathematics.Key Words:    Constructivist learning approach, learning style, learning activity, success, attitude

  12. Understanding groundwater - students' pre-conceptions and conceptual change by a theory-guided multimedia learning program

    Science.gov (United States)

    Unterbruner, U.; Hilberg, S.; Schiffl, I.

    2015-11-01

    Groundwater is a crucial topic in education for sustainable development. Nevertheless, international studies with students of different ages have shown that the basic hydrogeological concept of groundwater defined as water within porous and permeable rocks is not an established everyday notion. Building upon international research a multimedia learning program ("Between the raincloud and the tap") was developed. Insights from the fields of conceptual change research, multimedia research, and the Model of Educational Reconstruction were specifically implemented. Two studies were conducted with Austrian pupils (7th grade) and teacher training students from the fields of biology and geography in order to ascertain the effectiveness of the learning program. Using a quasi-experimental research design, the participants' conceptions and knowledge regarding groundwater were determined in a pre- and post-test. The pupils and students greatly profited from independently working through the learning software. Their knowledge of groundwater increased significantly compared to the control group and there was a highly significant increase in the number of scientifically correct notions of groundwater. The acceptance of the program was also generally very high. The results speak for the fact that theory-guided multimedia learning programs can play an important role in the transfer of research results into the classroom, particularly in science education.

  13. The role of picture of process (pp) on senior high school students’ collision concept learning activities and multirepresentation ability

    Science.gov (United States)

    Sutarto; Indrawati; Wicaksono, I.

    2018-04-01

    The objectives of the study are to describe the effect of PP collision concepts to high school students’ learning activities and multirepresentation abilities. This study was a quasi experimental with non- equivalent post-test only control group design. The population of this study were students who will learn the concept of collision in three state Senior High Schools in Indonesia, with a sample of each school 70 students, 35 students as an experimental group and 35 students as a control group. Technique of data collection were observation and test. The data were analized by descriptive and inferensial statistic. Student learning activities were: group discussions, describing vectors of collision events, and formulating problem-related issues of impact. Multirepresentation capabilities were student ability on image representation, verbal, mathematics, and graph. The results showed that the learning activities in the three aspects for the three high school average categorized good. The impact of using PP on students’ ability on image and graph representation were a significant impact, but for verbal and mathematical skills there are differences but not significant.

  14. The Engineering Design Process: Conceptions Along the Learning-to-Teach Continuum

    Science.gov (United States)

    Iveland, Ashley

    In this study, I sought to identify differences in the views and understandings of engineering design among individuals along the learning-to-teach continuum. To do so, I conducted a comprehensive review of literature to determine the various aspects of engineering design described in the fields of professional engineering and engineering education. Additionally, I reviewed literature on the methods used in teaching engineering design at the secondary (grade 7-12) level - to describe the various models used in classrooms, even before the implementation of the Next Generation Science Standards (NGSS Lead States, 2013). Last, I defined four groups along the learning-to-teach continuum: prospective, preservice, and practicing teachers, as well as teacher educators. The context of this study centered around a California public university, including an internship program where undergraduates engaged with practicing mentor teachers in science and engineering teaching at local high schools, and a teacher education program where secondary science preservice teachers and the teacher educators who taught them participated. Interviews were conducted with all participants to gain insights into their views and understandings of engineering design. Prospective and preservice teachers were interviewed multiple times throughout the year and completed concept maps of the engineering design process multiple times as well; practicing teachers and teacher educators were interviewed once. Three levels of analyses were conducted. I identified 30 aspects of engineering discussed by participants. Through phenomenographic methods, I also constructed six conceptual categories for engineering design to organize those aspects most commonly discussed. These categories were combined to demonstrate a participant's view of engineering design (e.g., business focused, human centered, creative, etc.) as well as their complexity of understanding of engineering design overall (the more categories

  15. Trends in 'poor responder' research: lessons learned from RCTs in assisted conception.

    Science.gov (United States)

    Papathanasiou, Athanasios; Searle, Belinda J; King, Nicole M A; Bhattacharya, Siladitya

    2016-04-01

    A substantial minority of women undergoing IVF will under-respond to controlled ovarian hyperstimulation. These women-so-called 'poor responders'-suffer persistently reduced success rates after IVF. Currently, no single intervention is unanimously accepted as beneficial in overcoming poor ovarian response (POR). This has been supported by the available research on POR, which consists mainly of randomized controlled trials (RCTs ) with an inherent high-risk of bias. The aim of this review was to critically appraise the available experimental trials on POR and provide guidance towards more useful-less wasteful-future research. A comprehensive review was undertaken of RCTs on 'poor responders' published in the last 15 years. Data on various methodological traits as well as important clinical characteristics were extracted from the included studies and summarized, with a view to identifying deficiencies from which lessons can be learned. Based on this analysis, recommendations were provided for further research in this field of assisted conception. We selected and analysed 75 RCTs. A valid, 'low-risk' randomization method was reported in three out of four RCTs. An improving trend in reporting concealment of patient allocation was also evident over the 15-year period. In contrast, methodological quality were more likely to have been published in a high-impact journal. Overall, the majority of published trials on POR suffer from methodological flaws and are, thus, regarded as being high-risk for bias. The same trials have used a variety of definitions for their poor responders and a variety of interventions for their head-to-head comparisons. Not surprisingly, discrepancies are also evident in the findings of trials comparing similar interventions. Based on the identified deficiencies, this novel type of 'methodology and clinical' review has introduced custom recommendations on how to improve future experimental research in the 'poor responder' population. © The Author

  16. Concept Model For Designing Engaging And Motivating Games For Learning - The Smiley-Model

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke; Ørngreen, Rikke

    2012-01-01

    The desire to use learning games in education is increasing, but the development of games for learning is still a growing field. Research shows that it remains difficult to develop learning games that are both instructive and engaging, although it is precisely the presence of these two elements...... that is believed to be an advantage when using learning games in education. In this paper the Smiley-model is presented (figure 1). The model describes which parameters and elements are important when designing a learning game. The present research is a result of a case-based action research study for designing...... a music learning game that teaches children to play piano using sheet music, and at the same time is fun and engaging. Although the model was originally developed for and through music, it has a more generic nature, and may be relevant for other fields as well. The Smiley-model is a condensed version...

  17. Formative use of select-and-fill-in concept maps in online instruction: Implications for students of different learning styles

    Science.gov (United States)

    Kaminski, Charles William

    The purpose of this research was to investigate the formative use of Select and Fill-In (SAFI) maps in online instruction and the cognitive, metacognitive, and affective responses of students to their use. In particular, the implications of their use with students of different learning styles was considered. The research question investigated in this qualitative study was: How do students of different learning styles respond to online instruction in which SAFI maps are utilized? This question was explored by using an emergent, collective case study. Each case consisted of community college students who shared a dominant learning style and were enrolled in an online course in environmental studies. Cases in the study were determined using Kolb's Learning Style Inventory (LSI). Seven forms of data were collected during the study. During the first phase of data collection, dominant learning style and background information on student experience with concept mapping and online instruction was determined. In the second phase of data collection, participants completed SAFI maps and quiz items that corresponded to the content of the maps. Achievement data on the map activities and quiz and student responses to a post-SAFI survey and questionnaire were recorded to identify learner cognitive, metacognitive, and affective responses to the tasks. Upon completion of data collection, cases were constructed and compared across learning styles. Cases are presented using the trends, across participants sharing the same dominant learning style, in achievement, behaviors and attitudes as seen in the evidence present in the data. Triangulation of multiple data sources increased reliability and validity, through cross-case analyses, and produced a thick description of the relationship between the cases for each learning style. Evidence suggesting a cognitive response to the SAFI tasks was inconsistent across cases. However, learners with an affinity towards reflective learning

  18. Learning from the Stones: A Go Approach to Mastering China's Strategic Concept, Shi

    National Research Council Canada - National Science Library

    Lai, David

    2004-01-01

    .... It is through learning the Chinese board game called go. This game is a living reflection of Chinese philosophy, culture, strategic thinking, warfare, military tactics, and diplomatic bargaining...

  19. Surfacing the Structures of Patriarchy: Teaching and Learning Threshold Concepts in Women's Studies

    Science.gov (United States)

    Hassel, Holly; Reddinger, Amy; van Slooten, Jessica

    2011-01-01

    Patriarchy is a threshold concept in women's studies--a significant, defining concept that transforms students' understanding of the discipline. This article reviews our design, implementation, and findings of a lesson study crafted to teach women's studies students the complex idea of patriarchy as a social system. We analyze the lesson using…

  20. Concept Learning in the Undergraduate Classroom: A Case Study in Religious Studies

    Science.gov (United States)

    Jones, Jennifer L.; St. Hilaire, Robert

    2014-01-01

    Popularized by the work of Jerome Bruner in the mid-1990's, the "Concept Attainment Model" is a process of structured inquiry that requires students to make generalizations and draw conclusions from examples (and non-examples) of a particular concept toward developing new insights, hypotheses, and associations regarding what they have…

  1. Learning about a Level Physics Students' Understandings of Particle Physics Using Concept Mapping

    Science.gov (United States)

    Gourlay, H.

    2017-01-01

    This paper describes a small-scale piece of research using concept mapping to elicit A level students' understandings of particle physics. Fifty-nine year 12 (16- and 17 year-old) students from two London schools participated. The exercise took place during school physics lessons. Students were instructed how to make a concept map and were…

  2. Sustainability: Teaching an Interdisciplinary Threshold Concept through Traditional Lecture and Active Learning

    Science.gov (United States)

    Levintova, Ekaterina M.; Mueller, Daniel W.

    2015-01-01

    One of the difficulties in teaching global sustainability in the introductory political science classes is the different emphases placed on this concept and the absence of the consensus on where the overall balance between environmental protection, economic development, and social justice should reside. Like many fuzzy concepts with which students…

  3. Martin Award Paper: Development of Interactive Virtual Laboratories to Help Students Learn Difficult Concepts in Thermodynamics

    Science.gov (United States)

    Bowen, Alec S.; Reid, Daniel R.; Koretsky, Milo D.

    2015-01-01

    In this project, we explore the use of threshold concept theory as a design basis for development of Interactive Virtual Laboratories in thermodynamics. Thermodynamics is a difficult subject for chemical and biological engineering students to master. One reason for the difficulty is the diverse and challenging set of threshold concepts that they…

  4. A Vision of Improvement of Learning: South African Teachers' Conceptions of Classroom Assessment

    Science.gov (United States)

    Sethusha, Mantsose Jane

    2013-01-01

    This article explored conceptions that teachers hold about classroom assessment and how these conceptions influence their classroom assessment practices. The qualitative study employed a case study approach. Semi-structured interviews, observations and document analyses were used. The study utilized Brown's (2004) conceptual framework on…

  5. Disjunct eddy covariance measurements of volatile organic compound fluxes using proton transfer reaction mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Taipale, R.

    2011-07-01

    Volatile organic compounds (VOCs) are emitted into the atmosphere from natural and anthropogenic sources, vegetation being the dominant source on a global scale. Some of these reactive compounds are deemed major contributors or inhibitors to aerosol particle formation and growth, thus making VOC measurements essential for current climate change research. This thesis discusses ecosystem scale VOC fluxes measured above a boreal Scots pine dominated forest in southern Finland. The flux measurements were performed using the micrometeorological disjunct eddy covariance (DEC) method combined with proton transfer reaction mass spectrometry (PTR-MS), which is an online technique for measuring VOC concentrations. The measurement, calibration, and calculation procedures developed in this work proved to be well suited to long-term VOC concentration and flux measurements with PTR-MS. A new averaging approach based on running averaged covariance functions improved the determination of the lag time between wind and concentration measurements, which is a common challenge in DEC when measuring fluxes near the detection limit. The ecosystem scale emissions of methanol, acetaldehyde, and acetone were substantial. These three oxygenated VOCs made up about half of the total emissions, with the rest comprised of monoterpenes. Contrary to the traditional assumption that monoterpene emissions from Scots pine originate mainly as evaporation from specialized storage pools, the DEC measurements indicated a significant contribution from de novo biosynthesis to the ecosystem scale monoterpene emissions. This thesis offers practical guidelines for long-term DEC measurements with PTR-MS. In particular, the new averaging approach to the lag time determination seems useful in the automation of DEC flux calculations. Seasonal variation in the monoterpene biosynthesis and the detailed structure of a revised hybrid algorithm, describing both de novo and pool emissions, should be determined in

  6. Large-scale phylogeography of the disjunct Neotropical tree species Schizolobium parahyba (Fabaceae-Caesalpinioideae).

    Science.gov (United States)

    Turchetto-Zolet, Andreia C; Cruz, Fernanda; Vendramin, Giovanni G; Simon, Marcelo F; Salgueiro, Fabiano; Margis-Pinheiro, Marcia; Margis, Rogerio

    2012-10-01

    Neotropical rainforests exhibit high levels of endemism and diversity. Although the evolutionary genetics of plant diversification has garnered increased interest, phylogeographic studies of widely distributed species remain scarce. Here we describe chloroplast and nuclear variation patterns in Schizolobium parahyba (Fabaceae), a widespread tree in Neotropical rainforests that harbor two varieties with a disjunct distribution. Chloroplast and nuclear sequence analyses yielded 21 and 4 haplotypes, respectively. Two genetic diversity centers that correlate with the two known varieties were identified: the Southeastern Atlantic forest and the Amazonian basin. In contrast, the populations from southern and northeastern Atlantic forests and Andean-Central American forests exhibited low levels of genetic diversity and divergent haplotypes, likely related to historical processes that impact the flora and fauna in these regions, such as a founder's effect after dispersion and demographic expansion. Phylogeographic and demographic patterns suggest that episodes of genetic isolation and dispersal events have shaped the evolutionary history for this species, and different patterns have guided the evolution of S. parahyba. Moreover, the results of this study suggest that the dry corridor formed by Cerrado and Caatinga ecoregions and the Andean uplift acted as barriers to this species' gene flow, a picture that may be generalized to most of the plant biodiversity tropical woodlands and forests. These results also reinforce the importance of evaluating multiple genetic markers for a more comprehensive understanding of population structure and history. Our results provide insight into the conservation efforts and ongoing work on the genetics of population divergence and speciation in these Neotropical rainforests. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Radiation-induced meiotic autosomal non-disjunction in male mice

    International Nuclear Information System (INIS)

    Nijhoff, J.H.; Boer, P. de

    1980-01-01

    Male mice, heterozygous for the Rb(11.13)4Bnr translocation, were irradiated for 14.5 min with either a dose of 15-rad fission neutrons or 60-rad X-rays. Animals of this karyotype are known to show high levels of spontaneous autosomal non- disjunction (20-30%) after anaphase I. The effects of the irradiation on this process were determined after 2 and 3 h in air-dried preparations. The length of the period from the end of meiosis I till the end of meiosis II was assessed autoradiographically, with the aid of cells showing a labelled Y chromosome only and appeared to last less than 3 h. Inter-mouse variation with regard to the duration of the period last premeiotic S-phase till diakinesis/metaphase I prevented a more accurate estimate. On the basis of this 3-h datum, the induced effects were studied at intervals of 2 and 3 h after the start of the irradiation. The influence of irradiation was assessed by scoring: (1) univalents in primary spermatocytes, (2) delections, aneuploid chromosome counts and precocious centromere separation in secondary spermatocytes, and (3) chromatid gaps and breaks in both cell types. Both radiation types induced comparable levels of chromosomal damage. A neutron X-rays RBE value for these parameters was calculated to be 5.4 for the MI stage and 3.3. for the MII stage. The significantly higher incidence of cells showing damage at MII than at diakinesis/MI is not believed to indicate a difference in radiation sensitivity, but is believed to be merely the consequence of the different chromosomal processes taking place during the irradiation taking place during the irradiation-fixation time interval. (orig.)

  8. Interactive Online Modules and Videos for Learning Geological Concepts at the University of Toronto Department of Earth Sciences

    Science.gov (United States)

    Veglio, E.; Graves, L. W.; Bank, C. G.

    2014-12-01

    We designed various computer-based applications and videos as educational resources for undergraduate courses at the University of Toronto in the Earth Science Department. These resources were developed in effort to enhance students' self-learning of key concepts as identified by educators at the department. The interactive learning modules and videos were created using the programs MATLAB and Adobe Creative Suite 5 (Photoshop and Premiere) and range from optical mineralogy (extinction and Becke line), petrology (equilibrium melting in 2-phase systems), crystallography (crystal systems), geophysics (gravity anomaly), and geologic history (evolution of Canada). These resources will be made available for students on internal course websites as well as through the University of Toronto Earth Science's website (www.es.utoronto.ca) where appropriate; the video platform YouTube.com may be used to reach a wide audience and promote the material. Usage of the material will be monitored and feedback will be collected over the next academic year in order to gage the use of these interactive learning tools and to assess if these computer-based applications and videos foster student engagement and active learning, and thus offer an enriched learning experience.

  9. Acquiring Knowledge in Learning Concepts from Electrical Circuits: The Use of Multiple Representations in Technology-Based Learning Environments

    Directory of Open Access Journals (Sweden)

    Abdeljalil Métioui

    2012-04-01

    Full Text Available The constructivists approach on the conception of relative software of modelling to training and teaching of the concepts of current and voltage requires appraisal of several disciplinary fields in order to provide to the learners a training adapted to their representations. Thus, this approach requires the researchers to have adequate knowledge or skills in data processing, didactics and science content. In this regard, several researches underline that the acquisition of basic concepts that span a field of a given knowledge, must take into account the student and the scientific representations. The present research appears in this perspective, and aims to present the interactive computer environments that take into account the students (secondary and college and scientific representations related to simple electric circuits. These computer environments will help the students to analyze the functions of the electric circuits adequately.

  10. PlayIt: Game Based Learning Approach for Teaching Programming Concepts

    Science.gov (United States)

    Mathrani, Anuradha; Christian, Shelly; Ponder-Sutton, Agate

    2016-01-01

    This study demonstrates a game-based learning (GBL) approach to engage students in learning and enhance their programming skills. The paper gives a detailed narrative of how an educational game was mapped with the curriculum of a prescribed programming course in a computing diploma study programme. Two separate student cohorts were invited to…

  11. Improving Critical Thinking Skills of College Students through RMS Model for Learning Basic Concepts in Science

    Science.gov (United States)

    Muhlisin, Ahmad; Susilo, Herawati; Amin, Mohamad; Rohman, Fatchur

    2016-01-01

    The purposes of this study were to: 1) Examine the effect of RMS learning model towards critical thinking skills. 2) Examine the effect of different academic abilities against critical thinking skills. 3) Examine the effect of the interaction between RMS learning model and different academic abilities against critical thinking skills. The research…

  12. Naïve conceptions about multimedia learning: a study on primary school textbooks

    OpenAIRE

    Colombo, Barbara; Antonietti, Alessandro

    2013-01-01

    HIGHLIGHTS This interview study explores beliefs about the instructional role of illustrations We compared illustrators', teachers', students' and common people's ideas Participants' responses were internally coherent and close to multimedia learning theory We propose and discuss an integrated multimedia learning model An interview study, based on specific pictures taken from textbooks used in primary schools, was carried out to investigate illustrators', teachers', students'...

  13. A Teachable Agent Game Engaging Primary School Children to Learn Arithmetic Concepts and Reasoning

    Science.gov (United States)

    Pareto, Lena

    2014-01-01

    In this paper we will describe a learning environment designed to foster conceptual understanding and reasoning in mathematics among younger school children. The learning environment consists of 48 2-player game variants based on a graphical model of arithmetic where the mathematical content is intrinsically interwoven with the game idea. The…

  14. Learning Science through Writing: Associations with Prior Conceptions of Writing and Perceptions of a Writing Program

    Science.gov (United States)

    Ellis, Robert A.; Taylor, Charlotte E.; Drury, Helen

    2007-01-01

    Students in a large undergraduate biology course were expected to write a scientific report as a key part of their course design. This study investigates the quality of learning arising from the writing experience and how it relates to the quality of students' preconceptions of learning through writing and their perceptions of their writing…

  15. The Impact of Different Teaching Approaches and Languages on Student Learning of Introductory Programming Concepts

    Science.gov (United States)

    Kunkle, Wanda M.

    2010-01-01

    Many students experience difficulties learning to program. They find learning to program in the object-oriented paradigm particularly challenging. As a result, computing educators have tried a variety of instructional methods to assist beginning programmers. These include developing approaches geared specifically toward novices and experimenting…

  16. Concept mapping to improve team work, team learning and care of the person with dementia and behavioural and psychological symptoms.

    Science.gov (United States)

    Aberdeen, Suzanne M; Byrne, Graeme

    2018-04-01

    The incidence of behavioural and psychological symptoms of dementia in residential aged care facilities is high. Effective team work and knowledgeable staff are cited as important facilitators of appropriate care responses to clients with these symptoms, but to achieve this within a resource-poor workplace can be challenging. In the study reported in this paper, concept mapping was trialled to enhance multifocal person-centred assessment and care planning as well as team learning. The outcomes of team concept mapping were evaluated using a quasi-experimental design with pre- and post-testing in 11 selected Australian residential aged care facilities , including two control residential aged care facilities , over a nine-month period. It was demonstrated that use of concept mapping improved team function, measured as effectiveness of care planning, as well as enhancing learning, with increased knowledge of dementia care even amongst staff who were not directly involved with the process. It is suggested that these results may be generalizable to other countries and care settings.

  17. Using Interactive Animations to Enhance Teaching, Learning, and Retention of Respiration Pathway Concepts in Face-to-Face and Online High School, Undergraduate, and Continuing Education Learning Environments

    Directory of Open Access Journals (Sweden)

    Sederick C. Rice

    2013-02-01

    Full Text Available One major tool set teachers/instructors can use is online interactive animations, which presents content in a way that helps pique students' interest and differentiates instructional content.  The Virtual Cell Animation Collections (VCAC, developed from the Molecular and Cellular Biology Learning Center, has developed a series of online interactive animations that provide teacher/instructors and students with immersive learning tools for studying and understanding respiration processes.  These virtual tools work as powerful instructional devices to help explain and reinforce concepts of metabolic pathways that would normally be taught traditionally using static textbook pages or by neumonic flashcards. High school, undergraduate, and continuing education students of today learn and retain knowledge differently than their predecessors.  Now teachers face new challenges and must engage and assess students, within a small window during classroom instruction, but also have the skills to provide useful content in distance learning environments.  Educators have to keep up with changing trends in education as a result of technological advances, higher student/teacher ratios, and the influence of social media on education. It is critical for teachers/instructors to be able to present content that not only keeps students interested but also helps bridge learning gaps. VCAC provides high school, undergraduate, and continuing education biology or life science teachers/instructors with classroom strategies and tools for introducing respiration content through free open source online resources. VCAC content supports the development of more inquiry-based classroom and distance-learning environments that can be facilitated by teachers/instructors, which helps improve retention of important respiration subject content and problem-based learning skills for students.

  18. How Do Students Learn to See Concepts in Visualizations? Social Learning Mechanisms with Physical and Virtual Representations

    Science.gov (United States)

    Rau, Martina A.

    2017-01-01

    STEM instruction often uses visual representations. To benefit from these, students need to understand how representations show domain-relevant concepts. Yet, this is difficult for students. Prior research shows that physical representations (objects that students manipulate by hand) and virtual representations (objects on a computer screen that…

  19. Effects of MicroCAD on Learning Fundamental Engineering Graphical Concepts: A Qualitative Study.

    Science.gov (United States)

    Leach, James A.; Gull, Randall L.

    1990-01-01

    Students' reactions and performances were examined when taught engineering geometry concepts using a standard microcomputer-aided drafting software package. Two sample groups were compared based on their computer experience. Included are the methodology, data analysis, and conclusions. (KR)

  20. Management concepts.

    Science.gov (United States)

    Bittner, Rhonda

    2006-01-01

    Management concepts evolve through time. Health care managers can learn new concepts by evaluating classical management strategies, as well as modern-day strategies. Focusing on quality improvement and team building can help managers align the goals of their departments with the goals of the organization, consequently improving patient care.