WorldWideScience

Sample records for learning computer science

  1. Game based learning for computer science education

    NARCIS (Netherlands)

    Schmitz, Birgit; Czauderna, André; Klemke, Roland; Specht, Marcus

    2011-01-01

    Schmitz, B., Czauderna, A., Klemke, R., & Specht, M. (2011). Game based learning for computer science education. In G. van der Veer, P. B. Sloep, & M. van Eekelen (Eds.), Computer Science Education Research Conference (CSERC '11) (pp. 81-86). Heerlen, The Netherlands: Open Universiteit.

  2. A Computer Learning Center for Environmental Sciences

    Science.gov (United States)

    Mustard, John F.

    2000-01-01

    In the fall of 1998, MacMillan Hall opened at Brown University to students. In MacMillan Hall was the new Computer Learning Center, since named the EarthLab which was outfitted with high-end workstations and peripherals primarily focused on the use of remotely sensed and other spatial data in the environmental sciences. The NASA grant we received as part of the "Centers of Excellence in Applications of Remote Sensing to Regional and Global Integrated Environmental Assessments" was the primary source of funds to outfit this learning and research center. Since opening, we have expanded the range of learning and research opportunities and integrated a cross-campus network of disciplines who have come together to learn and use spatial data of all kinds. The EarthLab also forms a core of undergraduate, graduate, and faculty research on environmental problems that draw upon the unique perspective of remotely sensed data. Over the last two years, the Earthlab has been a center for research on the environmental impact of water resource use in and regions, impact of the green revolution on forest cover in India, the design of forest preserves in Vietnam, and detailed assessments of the utility of thermal and hyperspectral data for water quality analysis. It has also been used extensively for local environmental activities, in particular studies on the impact of lead on the health of urban children in Rhode Island. Finally, the EarthLab has also served as a key educational and analysis center for activities related to the Brown University Affiliated Research Center that is devoted to transferring university research to the private sector.

  3. Learning computer science by watching video games

    OpenAIRE

    Nagataki, Hiroyuki

    2014-01-01

    This paper proposes a teaching method that utilizes video games in computer science education. The primary characteristic of this approach is that it utilizes video games as observational materials. The underlying idea is that by observing the computational behavior of a wide variety of video games, learners will easily grasp the fundamental architecture, theory, and technology of computers. The results of a case study conducted indicate that the method enhances the motivation of students for...

  4. Learning Science through Computer Games and Simulations

    Science.gov (United States)

    Honey, Margaret A., Ed.; Hilton, Margaret, Ed.

    2011-01-01

    At a time when scientific and technological competence is vital to the nation's future, the weak performance of U.S. students in science reflects the uneven quality of current science education. Although young children come to school with innate curiosity and intuitive ideas about the world around them, science classes rarely tap this potential.…

  5. How A Flipped Learning Environment Affects Learning In A Course On Theoretical Computer Science

    DEFF Research Database (Denmark)

    Gnaur, Dorina; Hüttel, Hans

    2014-01-01

    This paper reports initial experiences with flipping the classroom in an undergraduate computer science course as part of an overall attempt to enhance the pedagogical support for student learning. Our findings indicate that, just as the flipped classroom implies, a shift of focus in the learning...... context influences the way students engage with the course and their learning strategies....

  6. The Effects of Integrating Service Learning into Computer Science: An Inter-Institutional Longitudinal Study

    Science.gov (United States)

    Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang

    2015-01-01

    This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of…

  7. Supporting students' learning in the domain of computer science

    Science.gov (United States)

    Gasparinatou, Alexandra; Grigoriadou, Maria

    2011-03-01

    Previous studies have shown that students with low knowledge understand and learn better from more cohesive texts, whereas high-knowledge students have been shown to learn better from texts of lower cohesion. This study examines whether high-knowledge readers in computer science benefit from a text of low cohesion. Undergraduate students (n = 65) read one of four versions of a text concerning Local Network Topologies, orthogonally varying local and global cohesion. Participants' comprehension was examined through free-recall measure, text-based, bridging-inference, elaborative-inference, problem-solving questions and a sorting task. The results indicated that high-knowledge readers benefited from the low-cohesion text. The interaction of text cohesion and knowledge was reliable for the sorting activity, for elaborative-inference and for problem-solving questions. Although high-knowledge readers performed better in text-based and in bridging-inference questions with the low-cohesion text, the interaction of text cohesion and knowledge was not reliable. The results suggest a more complex view of when and for whom textual cohesion affects comprehension and consequently learning in computer science.

  8. Spiral and Project-Based Learning with Peer Assessment in a Computer Science Project Management Course

    Science.gov (United States)

    Jaime, Arturo; Blanco, José Miguel; Domínguez, César; Sánchez, Ana; Heras, Jónathan; Usandizaga, Imanol

    2016-01-01

    Different learning methods such as project-based learning, spiral learning and peer assessment have been implemented in science disciplines with different outcomes. This paper presents a proposal for a project management course in the context of a computer science degree. Our proposal combines three well-known methods: project-based learning,…

  9. Choosing Learning Methods Suitable for Teaching and Learning in Computer Science

    Science.gov (United States)

    Taylor, Estelle; Breed, Marnus; Hauman, Ilette; Homann, Armando

    2013-01-01

    Our aim is to determine which teaching methods students in Computer Science and Information Systems prefer. There are in total 5 different paradigms (behaviorism, cognitivism, constructivism, design-based and humanism) with 32 models between them. Each model is unique and states different learning methods. Recommendations are made on methods that…

  10. The effects of integrating service learning into computer science: an inter-institutional longitudinal study

    Science.gov (United States)

    Payton, Jamie; Barnes, Tiffany; Buch, Kim; Rorrer, Audrey; Zuo, Huifang

    2015-07-01

    This study is a follow-up to one published in computer science education in 2010 that reported preliminary results showing a positive impact of service learning on student attitudes associated with success and retention in computer science. That paper described how service learning was incorporated into a computer science course in the context of the Students & Technology in Academia, Research, and Service (STARS) Alliance, an NSF-supported broadening participation in computing initiative that aims to diversify the computer science pipeline through innovative pedagogy and inter-institutional partnerships. The current paper describes how the STARS Alliance has expanded to diverse institutions, all using service learning as a vehicle for broadening participation in computing and enhancing attitudes and behaviors associated with student success. Results supported the STARS model of service learning for enhancing computing efficacy and computing commitment and for providing diverse students with many personal and professional development benefits.

  11. Students’ needs of Computer Science: learning about image processing

    Directory of Open Access Journals (Sweden)

    Juana Marlen Tellez Reinoso

    2009-12-01

    Full Text Available To learn the treatment to image, specifically in the application Photoshop Marinates is one of the objectives in the specialty of Degree in Education, Computer Sciencie, guided to guarantee the preparation of the students as future professional, being able to reach in each citizen of our country an Integral General Culture. With that purpose a computer application is suggested, of tutorial type, entitled “Learning Treatment to Image".

  12. Computer Graphics for Student Engagement in Science Learning.

    Science.gov (United States)

    Cifuentes, Lauren; Hsieh, Yi-Chuan Jane

    2001-01-01

    Discusses student use of computer graphics software and presents documentation from a visualization workshop designed to help learners use computer graphics to construct meaning while they studied science concepts. Describes problems and benefits when delivering visualization workshops in the natural setting of a middle school. (Author/LRW)

  13. NEW SCIENCE OF LEARNING: COGNITION, COMPUTERS AND COLLABORATION IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Reviewed by Onur DONMEZ

    2011-01-01

    Full Text Available Information and Communication Technologies (ICTs have pervaded and changed much of our lives both on individual and societal scales. PCs, notebooks, tablets, cell phones, RSS feeds, emails, podcasts, tweets, social networks are all technologies we are familiar with and we are intensively using them in our daily lives. It is safe to say that our lives are becoming more and more digitized day by day.We have already invented bunch of terms to refer effects of these technologies on our lives. Digital nomads, grasshopper minds, millennium learners, digital natives, information age, knowledge building, knowledge society, network society are all terms invented to refer societal changes motivated by ICTs. New opportunities provided by ICTs are also shaping skill and quality demands of the next age. Individuals have to match these qualities if they want to earn their rightful places in tomorrow‘s world. Education is of course the sole light to guide them in their transformation to tomorrow‘s individual. One question arises however: ―are today‘s educational paradigms and practices ready to confront such a challenge?‖ There is a coherent and strong opinion among educators that the answer is ―NO‖. ―Today‘s students think and process information fundamentally differently from their predecessors‖(Prensky, 2001. And education has to keep pace with these students and their needs. But how? Khine & Saleh managed to gather distinguished colleagues around this question within their book titled ―New Science of Learning: Cognition, Computers and Collaboration‖. The book is composed of 29 chapters within three major topics which are: cognition, computers and collaboration.

  14. New trends in networking, computing, e-learning, systems sciences, and engineering

    CERN Document Server

    Sobh, Tarek

    2015-01-01

    This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers form the conference proceedings of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  • Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; • Includes chapters in the most advanced areas of Computing, Informatics, Systems Sciences, and Engineering; • Accessible to a wide range of readership, including professors, researchers, practitioners and...

  15. The MORPG-Based Learning System for Multiple Courses: A Case Study on Computer Science Curriculum

    Science.gov (United States)

    Liu, Kuo-Yu

    2015-01-01

    This study aimed at developing a Multiplayer Online Role Playing Game-based (MORPG) Learning system which enabled instructors to construct a game scenario and manage sharable and reusable learning content for multiple courses. It used the curriculum of "Introduction to Computer Science" as a study case to assess students' learning…

  16. A Delphi Study on Technology Enhanced Learning (TEL) Applied on Computer Science (CS) Skills

    Science.gov (United States)

    Porta, Marcela; Mas-Machuca, Marta; Martinez-Costa, Carme; Maillet, Katherine

    2012-01-01

    Technology Enhanced Learning (TEL) is a new pedagogical domain aiming to study the usage of information and communication technologies to support teaching and learning. The following study investigated how this domain is used to increase technical skills in Computer Science (CS). A Delphi method was applied, using three-rounds of online survey…

  17. The impact of computer-based versus "traditional" textbook science instruction on selected student learning outcomes

    Science.gov (United States)

    Rothman, Alan H.

    This study reports the results of research designed to examine the impact of computer-based science instruction on elementary school level students' science content achievement, their attitude about science learning, their level of critical thinking-inquiry skills, and their level of cognitive and English language development. The study compared these learning outcomes resulting from a computer-based approach compared to the learning outcomes from a traditional, textbook-based approach to science instruction. The computer-based approach was inherent in a curriculum titled The Voyage of the Mimi , published by The Bank Street College Project in Science and Mathematics (1984). The study sample included 209 fifth-grade students enrolled in three schools in a suburban school district. This sample was divided into three groups, each receiving one of the following instructional treatments: (a) Mixed-instruction primarily based on the use of a hardcopy textbook in conjunction with computer-based instructional materials as one component of the science course; (b) Non-Traditional, Technology-Based -instruction fully utilizing computer-based material; and (c) Traditional, Textbook-Based-instruction utilizing only the textbook as the basis for instruction. Pre-test, or pre-treatment, data related to each of the student learning outcomes was collected at the beginning of the school year and post-test data was collected at the end of the school year. Statistical analyses of pre-test data were used as a covariate to account for possible pre-existing differences with regard to the variables examined among the three student groups. This study concluded that non-traditional, computer-based instruction in science significantly improved students' attitudes toward science learning and their level of English language development. Non-significant, positive trends were found for the following student learning outcomes: overall science achievement and development of critical thinking

  18. Service-Learning in the Computer and Information Sciences Practical Applications in Engineering Education

    CERN Document Server

    Nejmeh, Brian A

    2012-01-01

    A road map for service-learning partnerships between information science and nonprofit organizations While service-learning is a well-known educational method for integrating learning experiences with community service, it is only now beginning to emerge in computer and information sciences (CIS). Offering a truly global perspective, this book introduces for the first time an essential framework for service learning in CIS, addressing both the challenges and opportunities of this approach for all stakeholders involved-faculty, students, and community nonprofit organizations (NPOs), both dome

  19. Abstraction ability as an indicator of success for learning computing science?

    DEFF Research Database (Denmark)

    Bennedsen, Jens; Caspersen, Michael Edelgaard

    2008-01-01

    Computing scientists generally agree that abstract thinking is a crucial component for practicing computer science. We report on a three-year longitudinal study to confirm the hypothesis that general abstraction ability has a positive impact on performance in computing science. Abstraction ability...... is operationalized as stages of cognitive development for which validated tests exist. Performance in computing science is operationalized as grade in the final assessment of ten courses of a bachelor's degree programme in computing science. The validity of the operationalizations is discussed. We have investigated...... the positive impact overall, for two groupings of courses (a content-based grouping and a grouping based on SOLO levels of the courses' intended learning outcome), and for each individual course. Surprisingly, our study shows that there is hardly any correlation between stage of cognitive development...

  20. Computer sciences

    Science.gov (United States)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  1. TEACHING AND LEARNING METHODOLOGIES SUPPORTED BY ICT APPLIED IN COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Jose CAPACHO

    2016-04-01

    Full Text Available The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory. Genetic-Cognitive Psychology Theory and Dialectics Psychology. Based on the theoretical framework the following methodologies were developed: Game Theory, Constructivist Approach, Personalized Teaching, Problem Solving, Cooperative Collaborative learning, Learning projects using ICT. These methodologies were applied to the teaching learning process during the Algorithms and Complexity – A&C course, which belongs to the area of ​​Computer Science. The course develops the concepts of Computers, Complexity and Intractability, Recurrence Equations, Divide and Conquer, Greedy Algorithms, Dynamic Programming, Shortest Path Problem and Graph Theory. The main value of the research is the theoretical support of the methodologies and their application supported by ICT using learning objects. The course aforementioned was built on the Blackboard platform evaluating the operation of methodologies. The results of the evaluation are presented for each of them, showing the learning outcomes achieved by students, which verifies that methodologies are functional.

  2. Computer Simulations to Support Science Instruction and Learning: A critical review of the literature

    Science.gov (United States)

    Smetana, Lara Kathleen; Bell, Randy L.

    2012-06-01

    Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.

  3. A review of Computer Science resources for learning and teaching with K-12 computing curricula: an Australian case study

    Science.gov (United States)

    Falkner, Katrina; Vivian, Rebecca

    2015-10-01

    To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age children, with the intention to engage children and increase interest, rather than to formally teach concepts and skills. What is the educational quality of existing Computer Science resources and to what extent are they suitable for classroom learning and teaching? In this paper, an assessment framework is presented to evaluate the quality of online Computer Science resources. Further, a semi-systematic review of available online Computer Science resources was conducted to evaluate resources available for classroom learning and teaching and to identify gaps in resource availability, using the Australian curriculum as a case study analysis. The findings reveal a predominance of quality resources, however, a number of critical gaps were identified. This paper provides recommendations and guidance for the development of new and supplementary resources and future research.

  4. Effects of Response-Driven Feedback in Computer Science Learning

    Science.gov (United States)

    Fernandez Aleman, J. L.; Palmer-Brown, D.; Jayne, C.

    2011-01-01

    This paper presents the results of a project on generating diagnostic feedback for guided learning in a first-year course on programming and a Master's course on software quality. An online multiple-choice questions (MCQs) system is integrated with neural network-based data analysis. Findings about how students use the system suggest that the…

  5. Designing for deeper learning in a blended computer science course for middle school students

    Science.gov (United States)

    Grover, Shuchi; Pea, Roy; Cooper, Stephen

    2015-04-01

    The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course on Stanford's OpenEdX MOOC platform for blended in-class learning. Unique aspects of FACT include balanced pedagogical designs that address the cognitive, interpersonal, and intrapersonal aspects of "deeper learning"; a focus on pedagogical strategies for mediating and assessing for transfer from block-based to text-based programming; curricular materials for remedying misperceptions of computing; and "systems of assessments" (including formative and summative quizzes and tests, directed as well as open-ended programming assignments, and a transfer test) to get a comprehensive picture of students' deeper computational learning. Empirical investigations, accomplished over two iterations of a design-based research effort with students (aged 11-14 years) in a public school, sought to examine student understanding of algorithmic constructs, and how well students transferred this learning from Scratch to text-based languages. Changes in student perceptions of computing as a discipline were measured. Results and mixed-method analyses revealed that students in both studies (1) achieved substantial learning gains in algorithmic thinking skills, (2) were able to transfer their learning from Scratch to a text-based programming context, and (3) achieved significant growth toward a more mature understanding of computing as a discipline. Factor analyses of prior computing experience, multivariate regression analyses, and qualitative analyses of student projects and artifact-based interviews were conducted to better understand the factors affecting learning outcomes. Prior computing experiences (as measured by a pretest) and math ability were

  6. Supporting Student Learning in Computer Science Education via the Adaptive Learning Environment ALMA

    Directory of Open Access Journals (Sweden)

    Alexandra Gasparinatou

    2015-10-01

    Full Text Available This study presents the ALMA environment (Adaptive Learning Models from texts and Activities. ALMA supports the processes of learning and assessment via: (1 texts differing in local and global cohesion for students with low, medium, and high background knowledge; (2 activities corresponding to different levels of comprehension which prompt the student to practically implement different text-reading strategies, with the recommended activity sequence adapted to the student’s learning style; (3 an overall framework for informing, guiding, and supporting students in performing the activities; and; (4 individualized support and guidance according to student specific characteristics. ALMA also, supports students in distance learning or in blended learning in which students are submitted to face-to-face learning supported by computer technology. The adaptive techniques provided via ALMA are: (a adaptive presentation and (b adaptive navigation. Digital learning material, in accordance with the text comprehension model described by Kintsch, was introduced into the ALMA environment. This material can be exploited in either distance or blended learning.

  7. Smart learning objects for smart education in computer science theory, methodology and robot-based implementation

    CERN Document Server

    Stuikys, Vytautas

    2015-01-01

    This monograph presents the challenges, vision and context to design smart learning objects (SLOs) through Computer Science (CS) education modelling and feature model transformations. It presents the latest research on the meta-programming-based generative learning objects (the latter with advanced features are treated as SLOs) and the use of educational robots in teaching CS topics. The introduced methodology includes the overall processes to develop SLO and smart educational environment (SEE) and integrates both into the real education setting to provide teaching in CS using constructivist a

  8. The kids got game: Computer/video games, gender and learning outcomes in science classrooms

    Science.gov (United States)

    Anderson, Janice Lyn

    In recent years educators have begun to explore how to purposively design computer/video games to support student learning. This interest in video games has arisen in part because educational video games appear to have the potential to improve student motivation and interest in technology, and engage students in learning through the use of a familiar medium (Squire, 2005; Shaffer, 2006; Gee, 2005). The purpose of this dissertation research is to specifically address the issue of student learning through the use of educational computer/video games. Using the Quest Atlantis computer game, this study involved a mixed model research strategy that allowed for both broad understandings of classroom practices and specific analysis of outcomes through the themes that emerged from the case studies of the gendered groups using the game. Specifically, this study examined how fifth-grade students learning about science concepts, such as water quality and ecosystems, unfolds over time as they participate in the Quest Atlantis computer game. Data sources included classroom observations and video, pre- and post-written assessments, pre- and post- student content interviews, student field notebooks, field reports and the field notes of the researcher. To make sense of how students learning unfolded, video was analyzed using a framework of interaction analysis and small group interactions (Jordan & Henderson, 1995; Webb, 1995). These coded units were then examined with respect to student artifacts and assessments and patterns of learning trajectories analyzed. The analysis revealed that overall, student learning outcomes improved from pre- to post-assessments for all students. While there were no observable gendered differences with respect to the test scores and content interviews, there were gendered differences with respect to game play. Implications for game design, use of external scaffolds, games as tools for learning and gendered findings are discussed.

  9. The Need for Computer Science

    Science.gov (United States)

    Margolis, Jane; Goode, Joanna; Bernier, David

    2011-01-01

    Broadening computer science learning to include more students is a crucial item on the United States' education agenda, these authors say. Although policymakers advocate more computer science expertise, computer science offerings in high schools are few--and actually shrinking. In addition, poorly resourced schools with a high percentage of…

  10. Impacts and Characteristics of Computer-Based Science Inquiry Learning Environments for Precollege Students

    Science.gov (United States)

    Donnelly, Dermot F.; Linn, Marcia C.; Ludvigsen, Sten

    2014-01-01

    The National Science Foundation-sponsored report "Fostering Learning in the Networked World" called for "a common, open platform to support communities of developers and learners in ways that enable both to take advantage of advances in the learning sciences." We review research on science inquiry learning environments (ILEs)…

  11. Pathways of professional learning for elementary science teachers using computer learning environments

    Science.gov (United States)

    Williams, Latonya Michelle

    This dissertation reports on a three year study designed to investigate the trajectories of two urban elementary school teachers---a novice and an experienced teacher---learning to teach a science curriculum unit using an inquiry approach supported by the Web-based Inquiry Science Environment (WISE). This research investigated teachers' development in knowledge and practice. Through analyses of video records of classroom instruction and professional development meetings, repeated interviews, and student assessments, I have produced case studies of teachers' journeys as they implement the technological inquiry-based instructional model. This study captures the interplay between the teachers' pedagogical content knowledge, enacted practice, and insights into students' thinking about complex science ideas. I trace the factors that encouraged and supported the teachers' development, in addition to the kinds of struggles they faced and overcame. I discuss the social supports I provided for the teachers, including scaffolding them in reflecting on their practice, assisting them with curriculum customizations, and supporting their learning such as arranging online interactions with scientists. I analyze spontaneous activities such as teachers' own reflections. The results suggest that the novice and experienced teacher's classroom practices became more inquiry oriented across time. For both teachers, use of technology accompanied an increase in science dialogue with small groups in years two and three. The novice teacher began asking inquiry questions in her second year of classroom experience, after a great deal of professional support. Both teachers improved in their pedagogical content knowledge from years one through three as a result of the varied professional development supports. The results suggest that teachers' improvement in instructional strategies and pedagogical content knowledge accompanied students' improvement in understanding of the science content.

  12. It Takes a Village: Supporting Inquiry- and Equity-Oriented Computer Science Pedagogy through a Professional Learning Community

    Science.gov (United States)

    Ryoo, Jean; Goode, Joanna; Margolis, Jane

    2015-01-01

    This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science…

  13. Piloting a new approach: making use of technology to present a distance learning computer science course

    Directory of Open Access Journals (Sweden)

    Tina Wilson

    1996-12-01

    dimension; and (c a motivational dimension. We will focus on the design and management of a conference M205-STILE, which was employed by the Open University's Computer Science department to supplement the teaching of an undergraduate course. The conference was structured into sub-conferences to take account of the above three dimensions and to facilitate students' computer-supported collaborative learning. This paper reports on the construction of the CMC environment, but more importantly how the three dimensions can be sustained through the role of a person whom we have called an Interactive Media Facilitator (IMF. This implementation is part of the 'Students' and Teachers' Integrated Learning Environment' (STILE project.

  14. A Blended Learning Module in Statistics for Computer Science and Engineering Students Revisited

    Directory of Open Access Journals (Sweden)

    Christina Andersson

    2017-11-01

    Full Text Available Teaching a statistics course for undergraduate computer science students can be very challenging: As statistics teachers we are usually faced with problems ranging from a complete disinterest in the subject to lack of basic knowledge in mathematics and anxiety for failing the exam, since statistics has the reputation of having high failure rates. In our case, we additionally struggle with difficulties in the timing of the lectures as well as often occurring absence of the students due to spare-time jobs or a long traveling time to the university. This paper reveals how these issues can be addressed by the introduction of a blended learning module in statistics. In the following, we describe an e-learning development process used to implement time- and location-independent learning in statistics. The study focuses on a six-step-approach for developing the blended learning module. In addition, the teaching framework for the blended module is presented, including suggestions for increasing the interest in learning the course. Furthermore, the first experimental in-class usage, including evaluation of the students’ expectations, has been completed and the outcome is discussed.

  15. It takes a village: supporting inquiry- and equity-oriented computer science pedagogy through a professional learning community

    Science.gov (United States)

    Ryoo, Jean; Goode, Joanna; Margolis, Jane

    2015-10-01

    This article describes the importance that high school computer science teachers place on a teachers' professional learning community designed around an inquiry- and equity-oriented approach for broadening participation in computing. Using grounded theory to analyze four years of teacher surveys and interviews from the Exploring Computer Science (ECS) program in the Los Angeles Unified School District, this article describes how participating in professional development activities purposefully aimed at fostering a teachers' professional learning community helps ECS teachers make the transition to an inquiry-based classroom culture and break professional isolation. This professional learning community also provides experiences that challenge prevalent deficit notions and stereotypes about which students can or cannot excel in computer science.

  16. Get set for computer science

    CERN Document Server

    Edwards, Alistair

    2006-01-01

    This book is aimed at students who are thinking of studying Computer Science or a related topic at university. Part One is a brief introduction to the topics that make up Computer Science, some of which you would expect to find as course modules in a Computer Science programme. These descriptions should help you to tell the difference between Computer Science as taught in different departments and so help you to choose a course that best suits you. Part Two builds on what you have learned about the nature of Computer Science by giving you guidance in choosing universities and making your appli

  17. Computational Science with the Titan Supercomputer: Early Outcomes and Lessons Learned

    Science.gov (United States)

    Wells, Jack

    2014-03-01

    Modeling and simulation with petascale computing has supercharged the process of innovation and understanding, dramatically accelerating time-to-insight and time-to-discovery. This presentation will focus on early outcomes from the Titan supercomputer at the Oak Ridge National Laboratory. Titan has over 18,000 hybrid compute nodes consisting of both CPUs and GPUs. In this presentation, I will discuss the lessons we have learned in deploying Titan and preparing applications to move from conventional CPU architectures to a hybrid machine. I will present early results of materials applications running on Titan and the implications for the research community as we prepare for exascale supercomputer in the next decade. Lastly, I will provide an overview of user programs at the Oak Ridge Leadership Computing Facility with specific information how researchers may apply for allocations of computing resources. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

  18. Teaching and Learning Methodologies Supported by ICT Applied in Computer Science

    Science.gov (United States)

    Capacho, Jose

    2016-01-01

    The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory.…

  19. FREE SOFTWARE IN ELECTRONIC LEARNING FUTURE TEACHERS OF MATHEMATICS, PHYSICS AND COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Vladyslav Ye. Velychko

    2016-05-01

    Full Text Available Popularity of the use of free software in the IT industry is much higher than its popular use in educational activities. Disadvantages of free software and problems of its implementation in the educational process is a limiting factor for its use in the education system, however, openness, accessibility and functionality are the main factors for the introduction of free software in the educational process. Nevertheless, for future teachers of mathematics, physics and informatics free software is designed as well as possible because of the specificity of its creation, and therefore, there is a question of the system analysis of the possibilities of using open source software in e-learning for future teachers of mathematics, physics and computer science.

  20. A Review of Computer Science Resources for Learning and Teaching with K-12 Computing Curricula: An Australian Case Study

    Science.gov (United States)

    Falkner, Katrina; Vivian, Rebecca

    2015-01-01

    To support teachers to implement Computer Science curricula into classrooms from the very first year of school, teachers, schools and organisations seek quality curriculum resources to support implementation and teacher professional development. Until now, many Computer Science resources and outreach initiatives have targeted K-12 school-age…

  1. Towards a Framework to Improve the Quality of Teaching and Learning: Consciousness and Validation in Computer Engineering Science, UCT

    Science.gov (United States)

    Lévano, Marcos; Albornoz, Andrea

    2016-01-01

    This paper aims to propose a framework to improve the quality in teaching and learning in order to develop good practices to train professionals in the career of computer engineering science. To demonstrate the progress and achievements, our work is based on two principles for the formation of professionals, one based on the model of learning…

  2. Computer Support for Knowledge Communication in Science Exhibitions: Novel Perspectives from Research on Collaborative Learning

    Science.gov (United States)

    Knipfer, Kristin; Mayr, Eva; Zahn, Carmen; Schwan, Stephan; Hesse, Friedrich W.

    2009-01-01

    In this article, the potentials of advanced technologies for learning in science exhibitions are outlined. For this purpose, we conceptualize science exhibitions as "dynamic information space for knowledge building" which includes three pathways of knowledge communication. This article centers on the second pathway, that is, knowledge…

  3. Democratizing Computer Science

    Science.gov (United States)

    Margolis, Jane; Goode, Joanna; Ryoo, Jean J.

    2015-01-01

    Computer science programs are too often identified with a narrow stratum of the student population, often white or Asian boys who have access to computers at home. But because computers play such a huge role in our world today, all students can benefit from the study of computer science and the opportunity to build skills related to computing. The…

  4. Designing for Deeper Learning in a Blended Computer Science Course for Middle School Students

    Science.gov (United States)

    Grover, Shuchi; Pea, Roy; Cooper, Stephen

    2015-01-01

    The focus of this research was to create and test an introductory computer science course for middle school. Titled "Foundations for Advancing Computational Thinking" (FACT), the course aims to prepare and motivate middle school learners for future engagement with algorithmic problem solving. FACT was also piloted as a seven-week course…

  5. Learning to Teach Computer Science: Qualitative Insights into Secondary Teachers' Pedagogical Content Knowledge

    Science.gov (United States)

    Hubbard, Aleata Kimberly

    2017-01-01

    In this dissertation, I explored the pedagogical content knowledge of in-service high school educators recently assigned to teach computer science for the first time. Teachers were participating in a professional development program where they co-taught introductory computing classes with tech industry professionals. The study was motivated by…

  6. ICASE Computer Science Program

    Science.gov (United States)

    1985-01-01

    The Institute for Computer Applications in Science and Engineering computer science program is discussed in outline form. Information is given on such topics as problem decomposition, algorithm development, programming languages, and parallel architectures.

  7. Improving learning with science and social studies text using computer-based concept maps for students with disabilities.

    Science.gov (United States)

    Ciullo, Stephen; Falcomata, Terry S; Pfannenstiel, Kathleen; Billingsley, Glenna

    2015-01-01

    Concept maps have been used to help students with learning disabilities (LD) improve literacy skills and content learning, predominantly in secondary school. However, despite increased access to classroom technology, no previous studies have examined the efficacy of computer-based concept maps to improve learning from informational text for students with LD in elementary school. In this study, we used a concurrent delayed multiple probe design to evaluate the interactive use of computer-based concept maps on content acquisition with science and social studies texts for Hispanic students with LD in Grades 4 and 5. Findings from this study suggest that students improved content knowledge during intervention relative to a traditional instruction baseline condition. Learning outcomes and social validity information are considered to inform recommendations for future research and the feasibility of classroom implementation. © The Author(s) 2014.

  8. The comparative effect of individually-generated vs. collaboratively-generated computer-based concept mapping on science concept learning

    Science.gov (United States)

    Kwon, So Young

    Using a quasi-experimental design, the researcher investigated the comparative effects of individually-generated and collaboratively-generated computer-based concept mapping on middle school science concept learning. Qualitative data were analyzed to explain quantitative findings. One hundred sixty-one students (74 boys and 87 girls) in eight, seventh grade science classes at a middle school in Southeast Texas completed the entire study. Using prior science performance scores to assure equivalence of student achievement across groups, the researcher assigned the teacher's classes to one of the three experimental groups. The independent variable, group, consisted of three levels: 40 students in a control group, 59 students trained to individually generate concept maps on computers, and 62 students trained to collaboratively generate concept maps on computers. The dependent variables were science concept learning as demonstrated by comprehension test scores, and quality of concept maps created by students in experimental groups as demonstrated by rubric scores. Students in the experimental groups received concept mapping training and used their newly acquired concept mapping skills to individually or collaboratively construct computer-based concept maps during study time. The control group, the individually-generated concept mapping group, and the collaboratively-generated concept mapping group had equivalent learning experiences for 50 minutes during five days, excepting that students in a control group worked independently without concept mapping activities, students in the individual group worked individually to construct concept maps, and students in the collaborative group worked collaboratively to construct concept maps during their study time. Both collaboratively and individually generated computer-based concept mapping had a positive effect on seventh grade middle school science concept learning but neither strategy was more effective than the other. However

  9. From boring to scoring - a collaborative serious game for learning and practicing mathematical logic for computer science education

    Science.gov (United States)

    Schäfer, Andreas; Holz, Jan; Leonhardt, Thiemo; Schroeder, Ulrik; Brauner, Philipp; Ziefle, Martina

    2013-06-01

    In this study, we address the problem of low retention and high dropout rates of computer science university students in early semesters of the studies. Complex and high abstract mathematical learning materials have been identified as one reason for the dropout rate. In order to support the understanding and practicing of core mathematical concepts, we developed a game-based multitouch learning environment in which the need for a suitable learning environment for mathematical logic was combined with the ability to train cooperation and collaboration in a learning scenario. As application domain, the field of mathematical logic had been chosen. The development process was accomplished along three steps: First, ethnographic interviews were run with 12 students of computer science revealing typical problems with mathematical logic. Second, a multitouch learning environment was developed. The game consists of multiple learning and playing modes in which teams of students can collaborate or compete against each other. Finally, a twofold evaluation of the environment was carried out (user study and cognitive walk-through). Overall, the evaluation showed that the game environment was easy to use and rated as helpful: The chosen approach of a multiplayer game supporting competition, collaboration, and cooperation is perceived as motivating and "fun."

  10. Computer literacy and E-learning perception in Cameroon: the case of Yaounde Faculty of Medicine and Biomedical Sciences

    Science.gov (United States)

    2013-01-01

    Background Health science education faces numerous challenges: assimilation of knowledge, management of increasing numbers of learners or changes in educational models and methodologies. With the emergence of e-learning, the use of information and communication technologies (ICT) and Internet to improve teaching and learning in health science training institutions has become a crucial issue for low and middle income countries, including sub-Saharan Africa. In this perspective, the Faculty of Medicine and Biomedical Sciences (FMBS) of Yaoundé has played a pioneering role in Cameroon in making significant efforts to improve students’ and lecturers’ access to computers and to Internet on its campus. The objective is to investigate how computer literacy and the perception towards e-learning and its potential could contribute to the learning and teaching process within the FMBS academic community. Method A cross-sectional survey was carried out among students, residents and lecturers. The data was gathered through a written questionnaire distributed at FMBS campus and analysed with routine statistical software. Results 307 participants answered the questionnaire: 218 students, 57 residents and 32 lecturers. Results show that most students, residents and lecturers have access to computers and Internet, although students’ access is mainly at home for computers and at cyber cafés for Internet. Most of the participants have a fairly good mastery of ICT. However, some basic rules of good practices concerning the use of ICT in the health domain were still not well known. Google is the most frequently used engine to retrieve health literature for all participants; only 7% of students and 16% of residents have heard about Medical Subject Headings (MeSH). The potential of e-learning in the improvement of teaching and learning still remains insufficiently exploited. About two thirds of the students are not familiar with the concept of e-leaning. 84% of students and 58% of

  11. Computer literacy and E-learning perception in Cameroon: the case of Yaounde Faculty of Medicine and Biomedical Sciences.

    Science.gov (United States)

    Bediang, Georges; Stoll, Beat; Geissbuhler, Antoine; Klohn, Axel M; Stuckelberger, Astrid; Nko'o, Samuel; Chastonay, Philippe

    2013-04-19

    Health science education faces numerous challenges: assimilation of knowledge, management of increasing numbers of learners or changes in educational models and methodologies. With the emergence of e-learning, the use of information and communication technologies (ICT) and Internet to improve teaching and learning in health science training institutions has become a crucial issue for low and middle income countries, including sub-Saharan Africa. In this perspective, the Faculty of Medicine and Biomedical Sciences (FMBS) of Yaoundé has played a pioneering role in Cameroon in making significant efforts to improve students' and lecturers' access to computers and to Internet on its campus.The objective is to investigate how computer literacy and the perception towards e-learning and its potential could contribute to the learning and teaching process within the FMBS academic community. A cross-sectional survey was carried out among students, residents and lecturers. The data was gathered through a written questionnaire distributed at FMBS campus and analysed with routine statistical software. 307 participants answered the questionnaire: 218 students, 57 residents and 32 lecturers. Results show that most students, residents and lecturers have access to computers and Internet, although students' access is mainly at home for computers and at cyber cafés for Internet. Most of the participants have a fairly good mastery of ICT. However, some basic rules of good practices concerning the use of ICT in the health domain were still not well known. Google is the most frequently used engine to retrieve health literature for all participants; only 7% of students and 16% of residents have heard about Medical Subject Headings (MeSH).The potential of e-learning in the improvement of teaching and learning still remains insufficiently exploited. About two thirds of the students are not familiar with the concept of e-leaning. 84% of students and 58% of residents had never had access to

  12. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT,J.

    2004-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security.

  13. Optimizing Cognitive Load for Learning from Computer-Based Science Simulations

    Science.gov (United States)

    Lee, Hyunjeong; Plass, Jan L.; Homer, Bruce D.

    2006-01-01

    How can cognitive load in visual displays of computer simulations be optimized? Middle-school chemistry students (N = 257) learned with a simulation of the ideal gas law. Visual complexity was manipulated by separating the display of the simulations in two screens (low complexity) or presenting all information on one screen (high complexity). The…

  14. Genetic Science Learning Center

    Science.gov (United States)

    Genetic Science Learning Center Making science and health easy for everyone to understand Home News Our Team What We Do ... Collaboration Conferences Current Projects Publications Contact The Genetic Science Learning Center at The University of Utah is a ...

  15. Effect of Robotics on Elementary Preservice Teachers' Self-Efficacy, Science Learning, and Computational Thinking

    Science.gov (United States)

    Jaipal-Jamani, Kamini; Angeli, Charoula

    2017-01-01

    The current impetus for increasing STEM in K-12 education calls for an examination of how preservice teachers are being prepared to teach STEM. This paper reports on a study that examined elementary preservice teachers' (n = 21) self-efficacy, understanding of science concepts, and computational thinking as they engaged with robotics in a science…

  16. Room escape at class: Escape games activities to facilitate the motivation and learning in computer science

    Directory of Open Access Journals (Sweden)

    Carlos Borrego

    2017-06-01

    Full Text Available Real-life room-escape games are ludic activities in which participants enter a room in order to get out of it only after solving some riddles. In this paper, we explain a Room Escape teaching experience developed in the Engineering School at Universitat Autònoma de Barcelona. The goal of this activity is to increase student’s motivation and to improve their learning on two courses of the second year in the Computer Engineering degree: Computer Networksand Information and Security.

  17. Room escape at class: escape games activities to facilitate the motivation and learning in computer science

    OpenAIRE

    Borrego, Carlos; Fernández, Cristina; Blanes, Ian; Robles, Sergi

    2017-01-01

    Real-life room-escape games are ludic activities in which participants enter a room in order to get out of it only after solving some riddles. In this paper, we explain a Room Escape teaching experience developed in the Engineering School at Universitat Autònoma de Barcelona. The goal of this activity is to increase student’s motivation and to improve their learning on two courses of the second year in the Computer Engineering degree: Computer Networksand Information and Security Peer Revi...

  18. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2005-11-01

    The Brookhaven Computational Science Center brings together researchers in biology, chemistry, physics, and medicine with applied mathematicians and computer scientists to exploit the remarkable opportunities for scientific discovery which have been enabled by modern computers. These opportunities are especially great in computational biology and nanoscience, but extend throughout science and technology and include, for example, nuclear and high energy physics, astrophysics, materials and chemical science, sustainable energy, environment, and homeland security. To achieve our goals we have established a close alliance with applied mathematicians and computer scientists at Stony Brook and Columbia Universities.

  19. Computer-based teaching and evaluation of introductory statistics for health science students: some lessons learned

    Directory of Open Access Journals (Sweden)

    Nuala Colgan

    1994-12-01

    Full Text Available In recent years, it has become possible to introduce health science students to statistical packages at an increasingly early stage in their undergraduate studies. This has enabled teaching to take place in a computer laboratory, using real data, and encouraging an exploratory and research-oriented approach. This paper briefly describes a hypertext Computer Based Tutorial (CBT concerned with descriptive statistics and introductory data analysis. The CBT has three primary objectives: the introduction of concepts, the facilitation of revision, and the acquisition of skills for project work. Objective testing is incorporated and used for both self-assessment and formal examination. Evaluation was carried out with a large group of Health Science students, heterogeneous with regard to their IT skills and basic numeracy. The results of the evaluation contain valuable lessons.

  20. Theory and computational science

    International Nuclear Information System (INIS)

    Durham, P.

    1985-01-01

    The theoretical and computational science carried out at the Daresbury Laboratory in 1984/5 is detailed in the Appendix to the Daresbury Annual Report. The Theory, Computational Science and Applications Groups, provide support work for the experimental projects conducted at Daresbury. Use of the FPS-164 processor is also described. (U.K.)

  1. COMPUTATIONAL SCIENCE CENTER

    International Nuclear Information System (INIS)

    DAVENPORT, J.

    2006-01-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to bring together

  2. COMPUTATIONAL SCIENCE CENTER

    Energy Technology Data Exchange (ETDEWEB)

    DAVENPORT, J.

    2006-11-01

    Computational Science is an integral component of Brookhaven's multi science mission, and is a reflection of the increased role of computation across all of science. Brookhaven currently has major efforts in data storage and analysis for the Relativistic Heavy Ion Collider (RHIC) and the ATLAS detector at CERN, and in quantum chromodynamics. The Laboratory is host for the QCDOC machines (quantum chromodynamics on a chip), 10 teraflop/s computers which boast 12,288 processors each. There are two here, one for the Riken/BNL Research Center and the other supported by DOE for the US Lattice Gauge Community and other scientific users. A 100 teraflop/s supercomputer will be installed at Brookhaven in the coming year, managed jointly by Brookhaven and Stony Brook, and funded by a grant from New York State. This machine will be used for computational science across Brookhaven's entire research program, and also by researchers at Stony Brook and across New York State. With Stony Brook, Brookhaven has formed the New York Center for Computational Science (NYCCS) as a focal point for interdisciplinary computational science, which is closely linked to Brookhaven's Computational Science Center (CSC). The CSC has established a strong program in computational science, with an emphasis on nanoscale electronic structure and molecular dynamics, accelerator design, computational fluid dynamics, medical imaging, parallel computing and numerical algorithms. We have been an active participant in DOES SciDAC program (Scientific Discovery through Advanced Computing). We are also planning a major expansion in computational biology in keeping with Laboratory initiatives. Additional laboratory initiatives with a dependence on a high level of computation include the development of hydrodynamics models for the interpretation of RHIC data, computational models for the atmospheric transport of aerosols, and models for combustion and for energy utilization. The CSC was formed to

  3. From chalkboard, slides, and paper to e-learning: How computing technologies have transformed anatomical sciences education.

    Science.gov (United States)

    Trelease, Robert B

    2016-11-01

    Until the late-twentieth century, primary anatomical sciences education was relatively unenhanced by advanced technology and dependent on the mainstays of printed textbooks, chalkboard- and photographic projection-based classroom lectures, and cadaver dissection laboratories. But over the past three decades, diffusion of innovations in computer technology transformed the practices of anatomical education and research, along with other aspects of work and daily life. Increasing adoption of first-generation personal computers (PCs) in the 1980s paved the way for the first practical educational applications, and visionary anatomists foresaw the usefulness of computers for teaching. While early computers lacked high-resolution graphics capabilities and interactive user interfaces, applications with video discs demonstrated the practicality of programming digital multimedia linking descriptive text with anatomical imaging. Desktop publishing established that computers could be used for producing enhanced lecture notes, and commercial presentation software made it possible to give lectures using anatomical and medical imaging, as well as animations. Concurrently, computer processing supported the deployment of medical imaging modalities, including computed tomography, magnetic resonance imaging, and ultrasound, that were subsequently integrated into anatomy instruction. Following its public birth in the mid-1990s, the World Wide Web became the ubiquitous multimedia networking technology underlying the conduct of contemporary education and research. Digital video, structural simulations, and mobile devices have been more recently applied to education. Progressive implementation of computer-based learning methods interacted with waves of ongoing curricular change, and such technologies have been deemed crucial for continuing medical education reforms, providing new challenges and opportunities for anatomical sciences educators. Anat Sci Educ 9: 583-602. © 2016 American

  4. Computer science handbook

    CERN Document Server

    Tucker, Allen B

    2004-01-01

    Due to the great response to the famous Computer Science Handbook edited by Allen B. Tucker, … in 2004 Chapman & Hall/CRC published a second edition of this comprehensive reference book. Within more than 70 chapters, every one new or significantly revised, one can find any kind of information and references about computer science one can imagine. … All in all, there is absolute nothing about computer science that can not be found in the encyclopedia with its 110 survey articles …-Christoph Meinel, Zentralblatt MATH

  5. Computational Science and Innovation

    International Nuclear Information System (INIS)

    Dean, David Jarvis

    2011-01-01

    Simulations - utilizing computers to solve complicated science and engineering problems - are a key ingredient of modern science. The U.S. Department of Energy (DOE) is a world leader in the development of high-performance computing (HPC), the development of applied math and algorithms that utilize the full potential of HPC platforms, and the application of computing to science and engineering problems. An interesting general question is whether the DOE can strategically utilize its capability in simulations to advance innovation more broadly. In this article, I will argue that this is certainly possible.

  6. Computational mediation as factor of motivation and meaningful learning in education of sciences of 9th grade: astronomy topics

    Science.gov (United States)

    Da Silva, F. M.; Furtado, W. W.

    2012-10-01

    The main purpose of this study was to analyze the contribution of using hypertext and pedagogic mediation in search of a Meaningful Learning Process in Sciences. We investigate the usage of hypertext in the teaching and learning methods of Astronomy modules. A survey was conducted with students from the 9th grade of Primary School of a public school in the city of Goiânia, Goiás in Brazil. We have analyzed the possibilities that hypermedia can offer in the teaching and learning process, using as reference David Ausubel's Theory of Meaningful Learning. The study was divided into four phases: application of an initial questionnaire on students, development of didactic material (hypertext), six classes held in a computer lab with the use of hypermedia and a final questionnaire applied in the lab after classes. This research indicated that the use of hypertext linked to pedagogical mediation processes is seen as a motivational tool and has potential to foster to Meaningful Learning.

  7. Quantum computer science

    CERN Document Server

    Lanzagorta, Marco

    2009-01-01

    In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computing rather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distin

  8. Physics vs. computer science

    International Nuclear Information System (INIS)

    Pike, R.

    1982-01-01

    With computers becoming more frequently used in theoretical and experimental physics, physicists can no longer afford to be ignorant of the basic techniques and results of computer science. Computing principles belong in a physicist's tool box, along with experimental methods and applied mathematics, and the easiest way to educate physicists in computing is to provide, as part of the undergraduate curriculum, a computing course designed specifically for physicists. As well, the working physicist should interact with computer scientists, giving them challenging problems in return for their expertise. (orig.)

  9. Theoretical Computer Science

    DEFF Research Database (Denmark)

    2002-01-01

    The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...

  10. Computer Labs | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  11. Computer Resources | College of Engineering & Applied Science

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  12. Computer Science | Classification | College of Engineering & Applied

    Science.gov (United States)

    Engineering Concentration on Ergonomics M.S. Program in Computer Science Interdisciplinary Concentration on Structural Engineering Laboratory Water Resources Laboratory Computer Science Department Computer Science Academic Programs Computer Science Undergraduate Programs Computer Science Major Computer Science Tracks

  13. Effects of a Teacher Professional Development Program on Science Teachers' Views about Using Computers in Teaching and Learning

    Science.gov (United States)

    Çetin, Nagihan Imer

    2016-01-01

    The purpose of this study was to examine science teachers' level of using computers in teaching and the impact of a teacher professional development program (TPDP) on their views regarding utilizing computers in science education. Forty-three in-service science teachers from different regions of Turkey attended a 5 day TPDP. The TPDP was…

  14. Research in computer science

    Science.gov (United States)

    Ortega, J. M.

    1986-01-01

    Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.

  15. Computer science I essentials

    CERN Document Server

    Raus, Randall

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Computer Science I includes fundamental computer concepts, number representations, Boolean algebra, switching circuits, and computer architecture.

  16. Sustainable computational science

    DEFF Research Database (Denmark)

    Rougier, Nicolas; Hinsen, Konrad; Alexandre, Frédéric

    2017-01-01

    Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results, however computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research...... workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested, hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages...... the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research can be replicated from its description. To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience...

  17. Computer and information science

    CERN Document Server

    2016-01-01

    This edited book presents scientific results of the 15th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2016) which was held on June 26– 29 in Okayama, Japan. The aim of this conference was to bring together researchers and scientists, businessmen and entrepreneurs, teachers, engineers, computer users, and students to discuss the numerous fields of computer science and to share their experiences and exchange new ideas and information in a meaningful way. Research results about all aspects (theory, applications and tools) of computer and information science, and to discuss the practical challenges encountered along the way and the solutions adopted to solve them. The conference organizers selected the best papers from those papers accepted for presentation at the conference. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rigorous rounds of review. This publication captures 12 of the conference’s most promising...

  18. Debunking the Computer Science Digital Library: Lessons Learned in Collection Development at Seneca College of Applied Arts & Technology

    Science.gov (United States)

    Buczynski, James Andrew

    2005-01-01

    Developing a library collection to support the curriculum of Canada's largest computer studies school has debunked many myths about collecting computer science and technology information resources. Computer science students are among the heaviest print book and e-book users in the library. Circulation statistics indicate that the demand for print…

  19. Saving Face While Geeking Out: Video Game Testing as a Justification for Learning Computer Science

    Science.gov (United States)

    DiSalvo, Betsy; Guzdial, Mark; Bruckman, Amy; McKlin, Tom

    2014-01-01

    Why would individuals who are capable of learning opt not to? Learning is important for stability and success. It would seem rational that students in groups that are frequently underrepresented or marginalized would be motivated to learn. However, negotiation of multiple identities and self-beliefs can impact motivations to learn. For example,…

  20. Large-Scale Sentinel-1 Processing for Solid Earth Science and Urgent Response using Cloud Computing and Machine Learning

    Science.gov (United States)

    Hua, H.; Owen, S. E.; Yun, S. H.; Agram, P. S.; Manipon, G.; Starch, M.; Sacco, G. F.; Bue, B. D.; Dang, L. B.; Linick, J. P.; Malarout, N.; Rosen, P. A.; Fielding, E. J.; Lundgren, P.; Moore, A. W.; Liu, Z.; Farr, T.; Webb, F.; Simons, M.; Gurrola, E. M.

    2017-12-01

    With the increased availability of open SAR data (e.g. Sentinel-1 A/B), new challenges are being faced with processing and analyzing the voluminous SAR datasets to make geodetic measurements. Upcoming SAR missions such as NISAR are expected to generate close to 100TB per day. The Advanced Rapid Imaging and Analysis (ARIA) project can now generate geocoded unwrapped phase and coherence products from Sentinel-1 TOPS mode data in an automated fashion, using the ISCE software. This capability is currently being exercised on various study sites across the United States and around the globe, including Hawaii, Central California, Iceland and South America. The automated and large-scale SAR data processing and analysis capabilities use cloud computing techniques to speed the computations and provide scalable processing power and storage. Aspects such as how to processing these voluminous SLCs and interferograms at global scales, keeping up with the large daily SAR data volumes, and how to handle the voluminous data rates are being explored. Scene-partitioning approaches in the processing pipeline help in handling global-scale processing up to unwrapped interferograms with stitching done at a late stage. We have built an advanced science data system with rapid search functions to enable access to the derived data products. Rapid image processing of Sentinel-1 data to interferograms and time series is already being applied to natural hazards including earthquakes, floods, volcanic eruptions, and land subsidence due to fluid withdrawal. We will present the status of the ARIA science data system for generating science-ready data products and challenges that arise from being able to process SAR datasets to derived time series data products at large scales. For example, how do we perform large-scale data quality screening on interferograms? What approaches can be used to minimize compute, storage, and data movement costs for time series analysis in the cloud? We will also

  1. Computer science: Data analysis meets quantum physics

    Science.gov (United States)

    Schramm, Steven

    2017-10-01

    A technique that combines machine learning and quantum computing has been used to identify the particles known as Higgs bosons. The method could find applications in many areas of science. See Letter p.375

  2. Personal Learning Network Clusters: A Comparison between Mathematics and Computer Science Students

    Science.gov (United States)

    Harding, Ansie; Engelbrecht, Johann

    2015-01-01

    "Personal learning environments" (PLEs) and "personal learning networks" (PLNs) are well-known concepts. A personal learning network "cluster" is a small group of people who regularly interact academically and whose PLNs have a non-empty intersection that includes all the other members. At university level PLN…

  3. A Game Based e-Learning System to Teach Artificial Intelligence in the Computer Sciences Degree

    Science.gov (United States)

    de Castro-Santos, Amable; Fajardo, Waldo; Molina-Solana, Miguel

    2017-01-01

    Our students taking the Artificial Intelligence and Knowledge Engineering courses often encounter a large number of problems to solve which are not directly related to the subject to be learned. To solve this problem, we have developed a game based e-learning system. The elected game, that has been implemented as an e-learning system, allows to…

  4. Partnership in Computational Science

    Energy Technology Data Exchange (ETDEWEB)

    Huray, Paul G.

    1999-02-24

    This is the final report for the "Partnership in Computational Science" (PICS) award in an amount of $500,000 for the period January 1, 1993 through December 31, 1993. A copy of the proposal with its budget is attached as Appendix A. This report first describes the consequent significance of the DOE award in building infrastructure of high performance computing in the Southeast and then describes the work accomplished under this grant and a list of publications resulting from it.

  5. An Empirical Evaluation of Puzzle-Based Learning as an Interest Approach for Teaching Introductory Computer Science

    Science.gov (United States)

    Merrick, K. E.

    2010-01-01

    This correspondence describes an adaptation of puzzle-based learning to teaching an introductory computer programming course. Students from two offerings of the course--with and without the puzzle-based learning--were surveyed over a two-year period. Empirical results show that the synthesis of puzzle-based learning concepts with existing course…

  6. When Life and Learning Do Not Fit: Challenges of Workload and Communication in Introductory Computer Science Online

    Science.gov (United States)

    Benda, Klara; Bruckman, Amy; Guzdial, Mark

    2012-01-01

    We present the results of an interview study investigating student experiences in two online introductory computer science courses. Our theoretical approach is situated at the intersection of two research traditions: "distance and adult education research," which tends to be sociologically oriented, and "computer science education…

  7. Computer/Information Science

    Science.gov (United States)

    Birman, Ken; Roughgarden, Tim; Seltzer, Margo; Spohrer, Jim; Stolterman, Erik; Kearsley, Greg; Koszalka, Tiffany; de Jong, Ton

    2013-01-01

    Scholars representing the field of computer/information science were asked to identify what they considered to be the most exciting and imaginative work currently being done in their field, as well as how that work might change our understanding. The scholars included Ken Birman, Jennifer Rexford, Tim Roughgarden, Margo Seltzer, Jim Spohrer, and…

  8. Monitoring and Depth of Strategy Use in Computer-Based Learning Environments for Science and History

    Science.gov (United States)

    Deekens, Victor M.; Greene, Jeffrey A.; Lobczowski, Nikki G.

    2018-01-01

    Background: Self-regulated learning (SRL) models position metacognitive monitoring as central to SRL processing and predictive of student learning outcomes (Winne & Hadwin, 2008; Zimmerman, 2000). A body of research evidence also indicates that depth of strategy use, ranging from surface to deep processing, is predictive of learning…

  9. Gamification for Engaging Computer Science Students in Learning Activities: A Case Study

    Science.gov (United States)

    Ibáñez, Maria-Blanca; Di-Serio, Ángela; Delgado-Kloos, Carlos

    2014-01-01

    Gamification is the use of game design elements in non-game settings to engage participants and encourage desired behaviors. It has been identified as a promising technique to improve students' engagement which could have a positive impact on learning. This study evaluated the learning effectiveness and engagement appeal of a gamified learning…

  10. The Impact of an Interdisciplinary Space Program on Computer Science Student Learning

    Science.gov (United States)

    Straub, Jeremy; Marsh, Ronald; Whalen, David

    2015-01-01

    Project-based learning and interdisciplinary projects present an opportunity for students to learn both technical skills and other skills which are relevant to their workplace success. This paper presents an assessment of the educational impact of the OpenOrbiter program, a student-run, interdisciplinary CubeSat (a type of small satellite with…

  11. How Science Students Can Learn about Unobservable Phenomena Using Computer-Based Analogies

    Science.gov (United States)

    Trey, L.; Khan, S.

    2008-01-01

    A novel instructional computer simulation that incorporates a dynamic analogy to represent Le Chatelier's Principle was designed to investigate the contribution of this feature to students' understanding. Two groups of 12th grade Chemistry students (n=15) interacted with the computer simulation during the study. Both groups did the same…

  12. Deep learning for computational chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Goh, Garrett B. [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland Washington 99354; Hodas, Nathan O. [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland Washington 99354; Vishnu, Abhinav [Advanced Computing, Mathematics, and Data Division, Pacific Northwest National Laboratory, 902 Battelle Blvd Richland Washington 99354

    2017-03-08

    The rise and fall of artificial neural networks is well documented in the scientific literature of both the fields of computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on “deep” neural networks. Within the last few years, we have seen the transformative impact of deep learning the computer science domain, notably in speech recognition and computer vision, to the extent that the majority of practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. In this review, we provide an introductory overview into the theory of deep neural networks and their unique properties as compared to traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including QSAR, virtual screening, protein structure modeling, QM calculations, materials synthesis and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against non neural networks state-of-the-art models across disparate research topics, and deep neural network based models often exceeded the “glass ceiling” expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a useful tool and may grow into a pivotal role for various challenges in the computational chemistry field.

  13. Computer science II essentials

    CERN Document Server

    Raus, Randall

    2012-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Computer Science II includes organization of a computer, memory and input/output, coding, data structures, and program development. Also included is an overview of the most commonly

  14. A Study on the Learning Efficiency of Multimedia-Presented, Computer-Based Science Information

    Science.gov (United States)

    Guan, Ying-Hua

    2009-01-01

    This study investigated the effects of multimedia presentations on the efficiency of learning scientific information (i.e. information on basic anatomy of human brains and their functions, the definition of cognitive psychology, and the structure of human memory). Experiment 1 investigated whether the modality effect could be observed when the…

  15. Computational Materials Science | Materials Science | NREL

    Science.gov (United States)

    Computational Materials Science Computational Materials Science An image of interconnecting, sphere science capabilities span many research fields and interests. Electronic, Optical, and Transport Properties of Photovoltaic Materials Material properties and defect physics of Si, CdTe, III-V, CIGS, CZTS

  16. ASCR Workshop on Quantum Computing for Science

    Energy Technology Data Exchange (ETDEWEB)

    Aspuru-Guzik, Alan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Dam, Wim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Farhi, Edward [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gaitan, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Humble, Travis [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jordan, Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Landahl, Andrew J [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Love, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lucas, Robert [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Preskill, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muller, Richard P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Svore, Krysta [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wiebe, Nathan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Williams, Carl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-01

    This report details the findings of the DOE ASCR Workshop on Quantum Computing for Science that was organized to assess the viability of quantum computing technologies to meet the computational requirements of the DOE’s science and energy mission, and to identify the potential impact of quantum technologies. The workshop was held on February 17-18, 2015, in Bethesda, MD, to solicit input from members of the quantum computing community. The workshop considered models of quantum computation and programming environments, physical science applications relevant to DOE's science mission as well as quantum simulation, and applied mathematics topics including potential quantum algorithms for linear algebra, graph theory, and machine learning. This report summarizes these perspectives into an outlook on the opportunities for quantum computing to impact problems relevant to the DOE’s mission as well as the additional research required to bring quantum computing to the point where it can have such impact.

  17. Computer Science Concept Inventories: Past and Future

    Science.gov (United States)

    Taylor, C.; Zingaro, D.; Porter, L.; Webb, K. C.; Lee, C. B.; Clancy, M.

    2014-01-01

    Concept Inventories (CIs) are assessments designed to measure student learning of core concepts. CIs have become well known for their major impact on pedagogical techniques in other sciences, especially physics. Presently, there are no widely used, validated CIs for computer science. However, considerable groundwork has been performed in the form…

  18. An evaluation of a professional learning network for computer science teachers

    Science.gov (United States)

    Cutts, Quintin; Robertson, Judy; Donaldson, Peter; O'Donnell, Laurie

    2017-01-01

    This paper describes and evaluates aspects of a professional development programme for existing CS teachers in secondary schools (PLAN C) which was designed to support teachers at a time of substantial curricular change. The paper's particular focus is on the formation of a teacher professional development network across several hundred teachers and a wide geographical area. Evidence from a series of observations and teacher surveys over a two-year period is analysed with respect to the project's programme theory in order to illustrate not only whether it worked as intended, by why. Results indicate that the PLAN C design has been successful in increasing teachers' professional confidence and appears to have catalysed powerful change in attitudes to learning. Presentation of challenging pedagogical content knowledge and conceptual frameworks, high-quality teacher-led professional dialogue, along with the space for reflection and classroom trials, triggered examination of the teachers' own current practices.

  19. Computer science a concise introduction

    CERN Document Server

    Sinclair, Ian

    2014-01-01

    Computer Science: A Concise Introduction covers the fundamentals of computer science. The book describes micro-, mini-, and mainframe computers and their uses; the ranges and types of computers and peripherals currently available; applications to numerical computation; and commercial data processing and industrial control processes. The functions of data preparation, data control, computer operations, applications programming, systems analysis and design, database administration, and network control are also encompassed. The book then discusses batch, on-line, and real-time systems; the basic

  20. Learning Science, Learning about Science, Doing Science: Different Goals Demand Different Learning Methods

    Science.gov (United States)

    Hodson, Derek

    2014-01-01

    This opinion piece paper urges teachers and teacher educators to draw careful distinctions among four basic learning goals: learning science, learning about science, doing science and learning to address socio-scientific issues. In elaboration, the author urges that careful attention is paid to the selection of teaching/learning methods that…

  1. Computing handbook computer science and software engineering

    CERN Document Server

    Gonzalez, Teofilo; Tucker, Allen

    2014-01-01

    Overview of Computer Science Structure and Organization of Computing Peter J. DenningComputational Thinking Valerie BarrAlgorithms and Complexity Data Structures Mark WeissBasic Techniques for Design and Analysis of Algorithms Edward ReingoldGraph and Network Algorithms Samir Khuller and Balaji RaghavachariComputational Geometry Marc van KreveldComplexity Theory Eric Allender, Michael Loui, and Kenneth ReganFormal Models and Computability Tao Jiang, Ming Li, and Bala

  2. Deep learning for computational chemistry.

    Science.gov (United States)

    Goh, Garrett B; Hodas, Nathan O; Vishnu, Abhinav

    2017-06-15

    The rise and fall of artificial neural networks is well documented in the scientific literature of both computer science and computational chemistry. Yet almost two decades later, we are now seeing a resurgence of interest in deep learning, a machine learning algorithm based on multilayer neural networks. Within the last few years, we have seen the transformative impact of deep learning in many domains, particularly in speech recognition and computer vision, to the extent that the majority of expert practitioners in those field are now regularly eschewing prior established models in favor of deep learning models. In this review, we provide an introductory overview into the theory of deep neural networks and their unique properties that distinguish them from traditional machine learning algorithms used in cheminformatics. By providing an overview of the variety of emerging applications of deep neural networks, we highlight its ubiquity and broad applicability to a wide range of challenges in the field, including quantitative structure activity relationship, virtual screening, protein structure prediction, quantum chemistry, materials design, and property prediction. In reviewing the performance of deep neural networks, we observed a consistent outperformance against non-neural networks state-of-the-art models across disparate research topics, and deep neural network-based models often exceeded the "glass ceiling" expectations of their respective tasks. Coupled with the maturity of GPU-accelerated computing for training deep neural networks and the exponential growth of chemical data on which to train these networks on, we anticipate that deep learning algorithms will be a valuable tool for computational chemistry. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Mathematics and Computer Science | Argonne National Laboratory

    Science.gov (United States)

    Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Applications Software Extreme Computing Data-Intensive Science Applied Mathematics Science & Engineering Opportunities For Employees Staff Directory Argonne National Laboratory Mathematics and Computer Science Tools

  4. Volunteer Computing for Science Gateways

    OpenAIRE

    Anderson, David

    2017-01-01

    This poster offers information about volunteer computing for science gateways that offer high-throughput computing services. Volunteer computing can be used to get computing power. This increases the visibility of the gateway to the general public as well as increasing computing capacity at little cost.

  5. Make Computer Learning Stick.

    Science.gov (United States)

    Casella, Vicki

    1985-01-01

    Teachers are using computer programs in conjunction with many classroom staples such as art supplies, math manipulatives, and science reference books. Twelve software programs and related activities are described which teach visual and auditory memory and spatial relations, as well as subject areas such as anatomy and geography. (MT)

  6. Development and Use of a Computer Software for Learning by Observation and Appreciation: A New Way of Planetary Science Education

    Science.gov (United States)

    Mikouchi, A. K.; Mikouchi, T.

    2000-01-01

    We developed a computer software to make users learn about the Moon through their observation and appreciation. We performed a usability test at school, and knew that 7th grade students enjoyed it, making them more interested in the Moon than before.

  7. Computational Science: Ensuring America's Competitiveness

    National Research Council Canada - National Science Library

    Reed, Daniel A; Bajcsy, Ruzena; Fernandez, Manuel A; Griffiths, Jose-Marie; Mott, Randall D; Dongarra, J. J; Johnson, Chris R; Inouye, Alan S; Miner, William; Matzke, Martha K; Ponick, Terry L

    2005-01-01

    Computational science is now indispensable to the solution of complex problems in every sector, from traditional science and engineering domains to such key areas as national security, public health...

  8. Putting Making into High School Computer Science Classrooms: Promoting Equity in Teaching and Learning with Electronic Textiles in "Exploring Computer Science"

    Science.gov (United States)

    Fields, Deborah Ann; Kafai, Yasmin; Nakajima, Tomoko; Goode, Joanna; Margolis, Jane

    2018-01-01

    Recent discussions of making have focused on developing out-of-school makerspaces and activities to provide more equitable and enriching learning opportunities for youth. Yet school classrooms present a unique opportunity to help broaden access, diversify representation, and deepen participation in making. In turning to classrooms, we want to…

  9. Computational Science: Ensuring America's Competitiveness

    National Research Council Canada - National Science Library

    Reed, Daniel A; Bajcsy, Ruzena; Fernandez, Manuel A; Griffiths, Jose-Marie; Mott, Randall D; Dongarra, J. J; Johnson, Chris R; Inouye, Alan S; Miner, William; Matzke, Martha K; Ponick, Terry L

    2005-01-01

    ... previously deemed intractable. Yet, despite the great opportunities and needs, universities and the Federal government have not effectively recognized the strategic significance of computational science in either...

  10. The Effect of In-Service Training of Computer Science Teachers on Scratch Programming Language Skills Using an Electronic Learning Platform on Programming Skills and the Attitudes towards Teaching Programming

    Science.gov (United States)

    Alkaria, Ahmed; Alhassan, Riyadh

    2017-01-01

    This study was conducted to examine the effect of in-service training of computer science teachers in Scratch language using an electronic learning platform on acquiring programming skills and attitudes towards teaching programming. The sample of this study consisted of 40 middle school computer science teachers. They were assigned into two…

  11. Learning Science Through Visualization

    Science.gov (United States)

    Chaudhury, S. Raj

    2005-01-01

    In the context of an introductory physical science course for non-science majors, I have been trying to understand how scientific visualizations of natural phenomena can constructively impact student learning. I have also necessarily been concerned with the instructional and assessment approaches that need to be considered when focusing on learning science through visually rich information sources. The overall project can be broken down into three distinct segments : (i) comparing students' abilities to demonstrate proportional reasoning competency on visual and verbal tasks (ii) decoding and deconstructing visualizations of an object falling under gravity (iii) the role of directed instruction to elicit alternate, valid scientific visualizations of the structure of the solar system. Evidence of student learning was collected in multiple forms for this project - quantitative analysis of student performance on written, graded assessments (tests and quizzes); qualitative analysis of videos of student 'think aloud' sessions. The results indicate that there are significant barriers for non-science majors to succeed in mastering the content of science courses, but with informed approaches to instruction and assessment, these barriers can be overcome.

  12. MODEL OF THE IMPLEMENTATION PROCESS OF DESIGNING A CLOUD-BASED LEARNING ENVIRONMENT FOR THE PREPARATION OF BACHELOR OF COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Vakaliuk T.

    2017-12-01

    Full Text Available The article presents the model of the process of implementation of the design of a cloud-oriented learning environment (CBLE for the preparation of bachelor of computer science, which consists of seven stages: analysis, setting goals and objectives, formulating requirements for the cloud-oriented learning environment, modeling the CBLE, developing CBLE, using CBLE in the educational Bachelor of Computer Science and Performance Testing. Each stage contains sub-steps. The analysis stage is considered in three aspects: psychological, pedagogical and technological. The formulation of the requirements for the CBLE was carried out taking into account the content and objectives of the training; experience of using CBLE; the personal qualities and knowledge, skills and abilities of students. The simulation phase was divided into sub-stages: the development of a structural and functional model of the CBLE for the preparation of bachelors of computer science; development of a model of cloud-oriented learning support system (COLSS; development of a model of interaction processes in CBLE. The fifth stage was also divided into the following sub-steps: domain registration and customization of the appearance of COLSS; definition of the disciplines provided by the curriculum preparation of bachelors of computer science; creation of own cabinets of teachers and students; download educational and methodological and accompanying materials; the choice of traditional and cloud-oriented forms, methods, means of training. The verification of the functioning of the CBLE will be carried out in the following areas: the functioning of the CBLE; results of students' educational activity; formation of information and communication competence of students.

  13. Soft computing in computer and information science

    CERN Document Server

    Fray, Imed; Pejaś, Jerzy

    2015-01-01

    This book presents a carefully selected and reviewed collection of papers presented during the 19th Advanced Computer Systems conference ACS-2014. The Advanced Computer Systems conference concentrated from its beginning on methods and algorithms of artificial intelligence. Further future brought new areas of interest concerning technical informatics related to soft computing and some more technological aspects of computer science such as multimedia and computer graphics, software engineering, web systems, information security and safety or project management. These topics are represented in the present book under the categories Artificial Intelligence, Design of Information and Multimedia Systems, Information Technology Security and Software Technologies.

  14. Programming Paradigms in Computer Science Education

    OpenAIRE

    Bolshakova, Elena

    2005-01-01

    Main styles, or paradigms of programming – imperative, functional, logic, and object-oriented – are shortly described and compared, and corresponding programming techniques are outlined. Programming languages are classified in accordance with the main style and techniques supported. It is argued that profound education in computer science should include learning base programming techniques of all main programming paradigms.

  15. Learning Science beyond the Classroom.

    Science.gov (United States)

    Ramey-Gassert, Linda

    1997-01-01

    Examines a cross-section of craft knowledge and research-based literature of science learning beyond the classroom. Describes informal science education programs, and discusses implications for science teaching, focusing on the importance of informal science learning for children and in-service and preservice teachers. Proposes a model for…

  16. Introduction Of Computational Materials Science

    International Nuclear Information System (INIS)

    Lee, Jun Geun

    2006-08-01

    This book gives, descriptions of computer simulation, computational materials science, typical three ways of computational materials science, empirical methods ; molecular dynamics such as potential energy, Newton's equation of motion, data production and analysis of results, quantum mechanical methods like wave equation, approximation, Hartree method, and density functional theory, dealing of solid such as pseudopotential method, tight-binding methods embedded atom method, Car-Parrinello method and combination simulation.

  17. NASA's computer science research program

    Science.gov (United States)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  18. Computational Science Facility (CSF)

    Data.gov (United States)

    Federal Laboratory Consortium — PNNL Institutional Computing (PIC) is focused on meeting DOE's mission needs and is part of PNNL's overarching research computing strategy. PIC supports large-scale...

  19. Quantum Computer Science

    Science.gov (United States)

    Mermin, N. David

    2007-08-01

    Preface; 1. Cbits and Qbits; 2. General features and some simple examples; 3. Breaking RSA encryption with a quantum computer; 4. Searching with a quantum computer; 5. Quantum error correction; 6. Protocols that use just a few Qbits; Appendices; Index.

  20. Physical computation and cognitive science

    CERN Document Server

    Fresco, Nir

    2014-01-01

    This book presents a study of digital computation in contemporary cognitive science. Digital computation is a highly ambiguous concept, as there is no common core definition for it in cognitive science. Since this concept plays a central role in cognitive theory, an adequate cognitive explanation requires an explicit account of digital computation. More specifically, it requires an account of how digital computation is implemented in physical systems. The main challenge is to deliver an account encompassing the multiple types of existing models of computation without ending up in pancomputationalism, that is, the view that every physical system is a digital computing system. This book shows that only two accounts, among the ones examined by the author, are adequate for explaining physical computation. One of them is the instructional information processing account, which is developed here for the first time.   “This book provides a thorough and timely analysis of differing accounts of computation while adv...

  1. Computational Experiments for Science and Engineering Education

    Science.gov (United States)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  2. Theoretical computer science and the natural sciences

    Science.gov (United States)

    Marchal, Bruno

    2005-12-01

    I present some fundamental theorems in computer science and illustrate their relevance in Biology and Physics. I do not assume prerequisites in mathematics or computer science beyond the set N of natural numbers, functions from N to N, the use of some notational conveniences to describe functions, and at some point, a minimal amount of linear algebra and logic. I start with Cantor's transcendental proof by diagonalization of the non enumerability of the collection of functions from natural numbers to the natural numbers. I explain why this proof is not entirely convincing and show how, by restricting the notion of function in terms of discrete well defined processes, we are led to the non algorithmic enumerability of the computable functions, but also-through Church's thesis-to the algorithmic enumerability of partial computable functions. Such a notion of function constitutes, with respect to our purpose, a crucial generalization of that concept. This will make easy to justify deep and astonishing (counter-intuitive) incompleteness results about computers and similar machines. The modified Cantor diagonalization will provide a theory of concrete self-reference and I illustrate it by pointing toward an elementary theory of self-reproduction-in the Amoeba's way-and cellular self-regeneration-in the flatworm Planaria's way. To make it easier, I introduce a very simple and powerful formal system known as the Schoenfinkel-Curry combinators. I will use the combinators to illustrate in a more concrete way the notion introduced above. The combinators, thanks to their low-level fine grained design, will also make it possible to make a rough but hopefully illuminating description of the main lessons gained by the careful observation of nature, and to describe some new relations, which should exist between computer science, the science of life and the science of inert matter, once some philosophical, if not theological, hypotheses are made in the cognitive sciences. In the

  3. Molecular Science Computing: 2010 Greenbook

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, Wibe A.; Cowley, David E.; Dunning, Thom H.; Vorpagel, Erich R.

    2010-04-02

    This 2010 Greenbook outlines the science drivers for performing integrated computational environmental molecular research at EMSL and defines the next-generation HPC capabilities that must be developed at the MSC to address this critical research. The EMSL MSC Science Panel used EMSL’s vision and science focus and white papers from current and potential future EMSL scientific user communities to define the scientific direction and resulting HPC resource requirements presented in this 2010 Greenbook.

  4. Computer Science Professionals and Greek Library Science

    Science.gov (United States)

    Dendrinos, Markos N.

    2008-01-01

    This paper attempts to present the current state of computer science penetration into librarianship in terms of both workplace and education issues. The shift from material libraries into digital libraries is mirrored in the corresponding shift from librarians into information scientists. New library data and metadata, as well as new automated…

  5. Cloud computing and services science

    NARCIS (Netherlands)

    Ivanov, Ivan; van Sinderen, Marten J.; Shishkov, Boris

    2012-01-01

    This book is essentially a collection of the best papers of the International Conference on Cloud Computing and Services Science (CLOSER), which was held in Noordwijkerhout, The Netherlands on May 7–9, 2011. The conference addressed technology trends in the domain of cloud computing in relation to a

  6. Computational colour science using MATLAB

    CERN Document Server

    Westland, Stephen; Cheung, Vien

    2012-01-01

    Computational Colour Science Using MATLAB 2nd Edition offers a practical, problem-based approach to colour physics. The book focuses on the key issues encountered in modern colour engineering, including efficient representation of colour information, Fourier analysis of reflectance spectra and advanced colorimetric computation. Emphasis is placed on the practical applications rather than the techniques themselves, with material structured around key topics. These topics include colour calibration of visual displays, computer recipe prediction and models for colour-appearance prediction. Each t

  7. Foundations for a new science of learning.

    Science.gov (United States)

    Meltzoff, Andrew N; Kuhl, Patricia K; Movellan, Javier; Sejnowski, Terrence J

    2009-07-17

    Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared with those of other species. Homo sapiens is also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior and possess powerful implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning to understand the brain mechanisms underlying learning and how shared brain systems for perception and action support social learning. Machine learning algorithms are being developed that allow robots and computers to learn autonomously. New insights from many different fields are converging to create a new science of learning that may transform educational practices.

  8. Fiction as an Introduction to Computer Science Research

    Science.gov (United States)

    Goldsmith, Judy; Mattei, Nicholas

    2014-01-01

    The undergraduate computer science curriculum is generally focused on skills and tools; most students are not exposed to much research in the field, and do not learn how to navigate the research literature. We describe how fiction reviews (and specifically science fiction) are used as a gateway to research reviews. Students learn a little about…

  9. Computer Science Research at Langley

    Science.gov (United States)

    Voigt, S. J. (Editor)

    1982-01-01

    A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

  10. Linking computers for science

    CERN Multimedia

    2005-01-01

    After the success of SETI@home, many other scientists have found computer power donated by the public to be a valuable resource - and sometimes the only possibility to achieve their goals. In July, representatives of several “public resource computing” projects came to CERN to discuss technical issues and R&D activities on the common computing platform they are using, BOINC. This photograph shows the LHC@home screen-saver which uses the BOINC platform: the dots represent protons and the position of the status bar indicates the progress of the calculations. This summer, CERN hosted the first “pangalactic workshop” on BOINC (Berkeley Open Interface for Network Computing). BOINC is modelled on SETI@home, which millions of people have downloaded to help search for signs of extraterrestrial intelligence in radio-astronomical data. BOINC provides a general-purpose framework for scientists to adapt their software to, so that the public can install and run it. An important part of BOINC is managing the...

  11. Teaching computer science at school: some ideas

    OpenAIRE

    Bodei, Chiara; Grossi, Roberto; Lagan?, Maria Rita; Righi, Marco

    2010-01-01

    As a young discipline, Computer Science does not rely on longly tested didactic procedures. This allows the experimentation of innovative teaching methods at schools, especially in early childhood education. Our approach is based on the idea that abstracts notions should be gained as the final result of a learning path made of concrete and touchable steps. To illustrate our methodology, we present some of the teaching projects we proposed.

  12. Writing for computer science

    CERN Document Server

    Zobel, Justin

    2015-01-01

    All researchers need to write or speak about their work, and to have research  that is worth presenting. Based on the author's decades of experience as a researcher and advisor, this third edition provides detailed guidance on writing and presentations and a comprehensive introduction to research methods, the how-to of being a successful scientist.  Topics include: ·         Development of ideas into research questions; ·         How to find, read, evaluate and referee other research; ·         Design and evaluation of experiments and appropriate use of statistics; ·         Ethics, the principles of science and examples of science gone wrong. Much of the book is a step-by-step guide to effective communication, with advice on:  ·         Writing style and editing; ·         Figures, graphs and tables; ·         Mathematics and algorithms; ·         Literature reviews and referees' reports; ·         Structuring of arguments an...

  13. Mathematics, Physics and Computer Sciences The computation of ...

    African Journals Online (AJOL)

    Mathematics, Physics and Computer Sciences The computation of system matrices for biquadraticsquare finite ... Global Journal of Pure and Applied Sciences ... The computation of system matrices for biquadraticsquare finite elements.

  14. Social sciences via network analysis and computation

    CERN Document Server

    Kanduc, Tadej

    2015-01-01

    In recent years information and communication technologies have gained significant importance in the social sciences. Because there is such rapid growth of knowledge, methods and computer infrastructure, research can now seamlessly connect interdisciplinary fields such as business process management, data processing and mathematics. This study presents some of the latest results, practices and state-of-the-art approaches in network analysis, machine learning, data mining, data clustering and classifications in the contents of social sciences. It also covers various real-life examples such as t

  15. Learning Science and the Science of Learning. Science Educators' Essay Collection.

    Science.gov (United States)

    Bybee, Rodger W., Ed.

    This yearbook addresses critical issues in science learning and teaching. Contents are divided into four sections: (1) "How Do Students Learn Science?"; (2) "Designing Curriculum for Student Learning"; (3) "Teaching That Enhances Student Learning"; and (4) "Assessing Student Learning." Papers include: (1) "How Students Learn and How Teachers…

  16. Teachability in Computational Learning

    OpenAIRE

    Shinohara, Ayumi; Miyano, Satoru

    1990-01-01

    This paper considers computationai learning from the viewpoint of teaching. We introduce a notion of teachability with which we establish a relationship between the learnability and teachability. We also discuss the complexity issues of a teacher in relation to learning.

  17. Factors influencing exemplary science teachers' levels of computer use

    Science.gov (United States)

    Hakverdi, Meral

    the exemplary science teachers' level of computer use suggesting that computer use is dependent on perceived abilities at using computers. The teachers' use of computer-related applications/tools during class, and their personal self-efficacy, age, and gender are highly related with their level of knowledge/skills in using specific computer applications for science instruction. The teachers' level of knowledge/skills in using specific computer applications for science instruction and gender related to their use of computer-related applications/tools during class and the students' use of computer-related applications/tools in or for their science class. In conclusion, exemplary science teachers need assistance in learning and using computer-related applications/tool in their science class.

  18. Learning Science: Some Insights from Cognitive Science

    Science.gov (United States)

    Matthews, P. S. C.

    Theories of teaching and learning, including those associated with constructivism, often make no overt reference to an underlying assumption that they make; that is, human cognition depends on domain-free, general-purpose processing by the brain. This assumption is shown to be incompatible with evidence from studies of children's early learning. Rather, cognition is modular in nature, and often domain-specific. Recognition of modularity requires a re-evaluation of some aspects of current accounts of learning science. Especially, children's ideas in science are sometimes triggered rather than learned. It is in the nature of triggered conceptual structures that they are not necessarily expressible in language, and that they may not be susceptible to change by later learning.

  19. International Developments in Computer Science.

    Science.gov (United States)

    1982-06-01

    background on 52 53 China’s scientific research and on their computer science before 1978. A useful companion to the directory is another publication of the...bimonthly publication in Portuguese; occasional translation of foreign articles into Portuguese. Data News: A bimonthly industry newsletter. Sistemas ...computer-related topics; Spanish. Delta: Publication of local users group; Spanish. Sistemas : Publication of System Engineers of Colombia; Spanish. CUBA

  20. On the use of Cloud Computing and Machine Learning for Large-Scale SAR Science Data Processing and Quality Assessment Analysi

    Science.gov (United States)

    Hua, H.

    2016-12-01

    Geodetic imaging is revolutionizing geophysics, but the scope of discovery has been limited by labor-intensive technological implementation of the analyses. The Advanced Rapid Imaging and Analysis (ARIA) project has proven capability to automate SAR data processing and analysis. Existing and upcoming SAR missions such as Sentinel-1A/B and NISAR are also expected to generate massive amounts of SAR data. This has brought to the forefront the need for analytical tools for SAR quality assessment (QA) on the large volumes of SAR data-a critical step before higher-level time series and velocity products can be reliably generated. Initially leveraging an advanced hybrid-cloud computing science data system for performing large-scale processing, machine learning approaches were augmented for automated analysis of various quality metrics. Machine learning-based user-training of features, cross-validation, prediction models were integrated into our cloud-based science data processing flow to enable large-scale and high-throughput QA analytics for enabling improvements to the production quality of geodetic data products.

  1. My Computer Is Learning.

    Science.gov (United States)

    Good, Ron

    1986-01-01

    Describes instructional uses of computer programs found in David Heiserman's book "Projects in Machine Intelligence for Your Home Computer." The programs feature "creatures" of various colors that move around within a rectangular white border. (JN)

  2. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. ... science achievement: inadequate school resources and weak household ..... informal interviews with the science teachers of the.

  3. Mobile learning and computational thinking

    Directory of Open Access Journals (Sweden)

    José Manuel Freixo Nunes

    2017-11-01

    Full Text Available Computational thinking can be thought of as an approach to problem solving which has been applied to different areas of learning and which has become an important field of investigation in the area of educational research. [continue

  4. Evolutionary computation for reinforcement learning

    NARCIS (Netherlands)

    Whiteson, S.; Wiering, M.; van Otterlo, M.

    2012-01-01

    Algorithms for evolutionary computation, which simulate the process of natural selection to solve optimization problems, are an effective tool for discovering high-performing reinforcement-learning policies. Because they can automatically find good representations, handle continuous action spaces,

  5. Mobile learning and computational thinking

    OpenAIRE

    José Manuel Freixo Nunes; Teresa Margarida Loureiro Cardoso

    2017-01-01

    Computational thinking can be thought of as an approach to problem solving which has been applied to different areas of learning and which has become an important field of investigation in the area of educational research. [continue

  6. Computability, complexity, and languages fundamentals of theoretical computer science

    CERN Document Server

    Davis, Martin D; Rheinboldt, Werner

    1983-01-01

    Computability, Complexity, and Languages: Fundamentals of Theoretical Computer Science provides an introduction to the various aspects of theoretical computer science. Theoretical computer science is the mathematical study of models of computation. This text is composed of five parts encompassing 17 chapters, and begins with an introduction to the use of proofs in mathematics and the development of computability theory in the context of an extremely simple abstract programming language. The succeeding parts demonstrate the performance of abstract programming language using a macro expa

  7. Reinforcement learning in computer vision

    Science.gov (United States)

    Bernstein, A. V.; Burnaev, E. V.

    2018-04-01

    Nowadays, machine learning has become one of the basic technologies used in solving various computer vision tasks such as feature detection, image segmentation, object recognition and tracking. In many applications, various complex systems such as robots are equipped with visual sensors from which they learn state of surrounding environment by solving corresponding computer vision tasks. Solutions of these tasks are used for making decisions about possible future actions. It is not surprising that when solving computer vision tasks we should take into account special aspects of their subsequent application in model-based predictive control. Reinforcement learning is one of modern machine learning technologies in which learning is carried out through interaction with the environment. In recent years, Reinforcement learning has been used both for solving such applied tasks as processing and analysis of visual information, and for solving specific computer vision problems such as filtering, extracting image features, localizing objects in scenes, and many others. The paper describes shortly the Reinforcement learning technology and its use for solving computer vision problems.

  8. The NASA computer science research program plan

    Science.gov (United States)

    1983-01-01

    A taxonomy of computer science is included, one state of the art of each of the major computer science categories is summarized. A functional breakdown of NASA programs under Aeronautics R and D, space R and T, and institutional support is also included. These areas were assessed against the computer science categories. Concurrent processing, highly reliable computing, and information management are identified.

  9. Computer Support for Vicarious Learning.

    Science.gov (United States)

    Monthienvichienchai, Rachada; Sasse, M. Angela

    This paper investigates how computer support for vicarious learning can be implemented by taking a principled approach to selecting and combining different media to capture educational dialogues. The main goal is to create vicarious learning materials of appropriate pedagogic content and production quality, and at the same time minimize the…

  10. Advances in Computer Science and Education

    CERN Document Server

    Huang, Xiong

    2012-01-01

    CSE2011 is an integrated conference concentration its focus on computer science and education. In the proceeding, you can learn much more knowledge about computer science and education of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful

  11. Computer Augmented Learning; A Survey.

    Science.gov (United States)

    Kindred, J.

    The report contains a description and summary of computer augmented learning devices and systems. The devices are of two general types programed instruction systems based on the teaching machines pioneered by Pressey and developed by Skinner, and the so-called "docile" systems that permit greater user-direction with the computer under student…

  12. Computer science and operations research

    CERN Document Server

    Balci, Osman

    1992-01-01

    The interface of Operation Research and Computer Science - although elusive to a precise definition - has been a fertile area of both methodological and applied research. The papers in this book, written by experts in their respective fields, convey the current state-of-the-art in this interface across a broad spectrum of research domains which include optimization techniques, linear programming, interior point algorithms, networks, computer graphics in operations research, parallel algorithms and implementations, planning and scheduling, genetic algorithms, heuristic search techniques and dat

  13. Learning with Ubiquitous Computing

    Science.gov (United States)

    Rosenheck, Louisa

    2008-01-01

    If ubiquitous computing becomes a reality and is widely adopted, it will inevitably have an impact on education. This article reviews the background of ubiquitous computing and current research projects done involving educational "ubicomp." Finally it explores how ubicomp may and may not change education in both formal and informal settings and…

  14. A survey of computer science capstone course literature

    Science.gov (United States)

    Dugan, Robert F., Jr.

    2011-09-01

    In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software process phases, project type, documentation, tools, groups, and instructor administration. We reflected on these issues and thecomputer science capstone course we have taught for seven years. The survey summarized, organized, and synthesized the literature to provide a referenced resource for computer science instructors and researchers interested in computer science capstone courses.

  15. Project-based learning strategy, supported by virtual mediations and computer tools in a poultry production course: case study in Agricultural Sciences

    Directory of Open Access Journals (Sweden)

    Luis Díaz S

    2017-12-01

    Full Text Available The project-based learning strategy, supported by virtual mediations and computer tools, was applied to 42 students of a program of Animal Science in the course poultry Production in which the degree of familiarization, academic productivity, e-mail asynchronous mediation, the domain of the excel spreadsheet and the appreciation against the implemented methodology. The results showed that 100% of the students did not know the learning strategy and showed fears at the beginning of the activity. The final grades obtained (4.44 ± 0.14, 38.09%; 3.67 ± 0.09; 38.09%; 2.8, 19.05%, delivered products and degree of achievement (100%, 31 students; 88.88%, 5 students; 77.77%, 3 students; 55.55%, 3 students were influenced by the degree of mastery of the spreadsheet (8 students showed mastery, 26 a basic level to elementary and scarce, the rest and the registered participation level. It was found that the strategy generated motivation in the students reflected in the accomplishment of the goals and objectives drawn at the beginning of the course, increased the student-teacher interaction and reached a high academic performance (final grades ≥3.7 in the majority of the participants (73.8%.

  16. A Cross-Cultural Study of the Effect of a Graph-Oriented Computer-Assisted Project-Based Learning Environment on Middle School Students' Science Knowledge and Argumentation Skills

    Science.gov (United States)

    Hsu, P.-S.; Van Dyke, M.; Chen, Y.; Smith, T. J.

    2016-01-01

    The purpose of this mixed-methods study was to explore how seventh graders in a suburban school in the United States and sixth graders in an urban school in Taiwan developed argumentation skills and science knowledge in a project-based learning environment that incorporated a graph-oriented, computer-assisted application (GOCAA). A total of 42…

  17. Labour market expectation of Nigerian computer science ...

    African Journals Online (AJOL)

    ... of Nigerian computer science / Information Communication Technology (ICT) graduates. ... It also x-rays the women performance in Computer Science. ... key players were analyzed using variables such as competence, creativity, innovation, ...

  18. University rankings in computer science

    DEFF Research Database (Denmark)

    Ehret, Philip; Zuccala, Alesia Ann; Gipp, Bela

    2017-01-01

    This is a research-in-progress paper concerning two types of institutional rankings, the Leiden and QS World ranking, and their relationship to a list of universities’ ‘geo-based’ impact scores, and Computing Research and Education Conference (CORE) participation scores in the field of computer...... science. A ‘geo-based’ impact measure examines the geographical distribution of incoming citations to a particular university’s journal articles for a specific period of time. It takes into account both the number of citations and the geographical variability in these citations. The CORE participation...... score is calculated on the basis of the number of weighted proceedings papers that a university has contributed to either an A*, A, B, or C conference as ranked by the Computing Research and Education Association of Australasia. In addition to calculating the correlations between the distinct university...

  19. Advanced in Computer Science and its Applications

    CERN Document Server

    Yen, Neil; Park, James; CSA 2013

    2014-01-01

    The theme of CSA is focused on the various aspects of computer science and its applications for advances in computer science and its applications and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of computer science and its applications. Therefore this book will be include the various theories and practical applications in computer science and its applications.

  20. Mathematics and Computer Science: Exploring a Symbiotic Relationship

    Science.gov (United States)

    Bravaco, Ralph; Simonson, Shai

    2004-01-01

    This paper describes a "learning community" designed for sophomore computer science majors who are simultaneously studying discrete mathematics. The learning community consists of three courses: Discrete Mathematics, Data Structures and an Integrative Seminar/Lab. The seminar functions as a link that integrates the two disciplines. Participation…

  1. Preparing Future Secondary Computer Science Educators

    Science.gov (United States)

    Ajwa, Iyad

    2007-01-01

    Although nearly every college offers a major in computer science, many computer science teachers at the secondary level have received little formal training. This paper presents details of a project that could make a significant contribution to national efforts to improve computer science education by combining teacher education and professional…

  2. Computer Science and the Liberal Arts

    Science.gov (United States)

    Shannon, Christine

    2010-01-01

    Computer science and the liberal arts have much to offer each other. Yet liberal arts colleges, in particular, have been slow to recognize the opportunity that the study of computer science provides for achieving the goals of a liberal education. After the precipitous drop in computer science enrollments during the first decade of this century,…

  3. Girls Save the World through Computer Science

    Science.gov (United States)

    Murakami, Christine

    2011-01-01

    It's no secret that fewer and fewer women are entering computer science fields. Attracting high school girls to computer science is only part of the solution. Retaining them while they are in higher education or the workforce is also a challenge. To solve this, there is a need to show girls that computer science is a wide-open field that offers…

  4. Computer-aided design and computer science technology

    Science.gov (United States)

    Fulton, R. E.; Voigt, S. J.

    1976-01-01

    A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.

  5. Science Learning Centres Roundup

    Science.gov (United States)

    Baker, Yvonne

    2013-01-01

    A recent YouGov poll indicated that almost half of eight to 18-year-olds aspire to a career in science. The latest Association of Colleges enrolment survey indicates a large increase in uptake of science, technology, engineering and mathematics (STEM) at further education (FE) colleges. These reports, along with other findings that suggest an…

  6. Probability, statistics, and computational science.

    Science.gov (United States)

    Beerenwinkel, Niko; Siebourg, Juliane

    2012-01-01

    In this chapter, we review basic concepts from probability theory and computational statistics that are fundamental to evolutionary genomics. We provide a very basic introduction to statistical modeling and discuss general principles, including maximum likelihood and Bayesian inference. Markov chains, hidden Markov models, and Bayesian network models are introduced in more detail as they occur frequently and in many variations in genomics applications. In particular, we discuss efficient inference algorithms and methods for learning these models from partially observed data. Several simple examples are given throughout the text, some of which point to models that are discussed in more detail in subsequent chapters.

  7. Evaluating mobile centric readiness of students: A case of computer science students in open-distance learning

    CSIR Research Space (South Africa)

    Chipangura, B

    2015-07-01

    Full Text Available and Education]: Distance learning Keywords Mobile centric services, mobile information access, mobile readiness 1. INTRODUCTION As the mobile phone market matures in terms of penetration rate, subscription rate, handsets functionality and mobile centric..., this reflects a ratio of one mobile phone per person. High mobile phone penetration has made it possible for digitally alienated communities in developing countries to have improved access to business, health, education and social services. Indeed, this has...

  8. Learning and geometry computational approaches

    CERN Document Server

    Smith, Carl

    1996-01-01

    The field of computational learning theory arose out of the desire to for­ mally understand the process of learning. As potential applications to artificial intelligence became apparent, the new field grew rapidly. The learning of geo­ metric objects became a natural area of study. The possibility of using learning techniques to compensate for unsolvability provided an attraction for individ­ uals with an immediate need to solve such difficult problems. Researchers at the Center for Night Vision were interested in solving the problem of interpreting data produced by a variety of sensors. Current vision techniques, which have a strong geometric component, can be used to extract features. However, these techniques fall short of useful recognition of the sensed objects. One potential solution is to incorporate learning techniques into the geometric manipulation of sensor data. As a first step toward realizing such a solution, the Systems Research Center at the University of Maryland, in conjunction with the C...

  9. Creating science simulations through Computational Thinking Patterns

    Science.gov (United States)

    Basawapatna, Ashok Ram

    Computational thinking aims to outline fundamental skills from computer science that everyone should learn. As currently defined, with help from the National Science Foundation (NSF), these skills include problem formulation, logically organizing data, automating solutions through algorithmic thinking, and representing data through abstraction. One aim of the NSF is to integrate these and other computational thinking concepts into the classroom. End-user programming tools offer a unique opportunity to accomplish this goal. An end-user programming tool that allows students with little or no prior experience the ability to create simulations based on phenomena they see in-class could be a first step towards meeting most, if not all, of the above computational thinking goals. This thesis describes the creation, implementation and initial testing of a programming tool, called the Simulation Creation Toolkit, with which users apply high-level agent interactions called Computational Thinking Patterns (CTPs) to create simulations. Employing Computational Thinking Patterns obviates lower behavior-level programming and allows users to directly create agent interactions in a simulation by making an analogy with real world phenomena they are trying to represent. Data collected from 21 sixth grade students with no prior programming experience and 45 seventh grade students with minimal programming experience indicates that this is an effective first step towards enabling students to create simulations in the classroom environment. Furthermore, an analogical reasoning study that looked at how users might apply patterns to create simulations from high- level descriptions with little guidance shows promising results. These initial results indicate that the high level strategy employed by the Simulation Creation Toolkit is a promising strategy towards incorporating Computational Thinking concepts in the classroom environment.

  10. Functional Programming in Computer Science

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Loren James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Marion Kei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-19

    We explore functional programming through a 16-week internship at Los Alamos National Laboratory. Functional programming is a branch of computer science that has exploded in popularity over the past decade due to its high-level syntax, ease of parallelization, and abundant applications. First, we summarize functional programming by listing the advantages of functional programming languages over the usual imperative languages, and we introduce the concept of parsing. Second, we discuss the importance of lambda calculus in the theory of functional programming. Lambda calculus was invented by Alonzo Church in the 1930s to formalize the concept of effective computability, and every functional language is essentially some implementation of lambda calculus. Finally, we display the lasting products of the internship: additions to a compiler and runtime system for the pure functional language STG, including both a set of tests that indicate the validity of updates to the compiler and a compiler pass that checks for illegal instances of duplicate names.

  11. Innovations and Advances in Computer, Information, Systems Sciences, and Engineering

    CERN Document Server

    Sobh, Tarek

    2013-01-01

    Innovations and Advances in Computer, Information, Systems Sciences, and Engineering includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2011). The contents of this book are a set of rigorously reviewed, world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology and Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.

  12. Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering

    CERN Document Server

    Elleithy, Khaled

    2013-01-01

    Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of  Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning. This book includes the proceedings of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2010). The proceedings are a set of rigorously reviewed world-class manuscripts presenting the state of international practice in Innovative Algorithms and Techniques in Automation, Industrial Electronics and Telecommunications.

  13. Sustaining Student Engagement in Learning Science

    Science.gov (United States)

    Ateh, Comfort M.; Charpentier, Alicia

    2014-01-01

    Many students perceive science to be a difficult subject and are minimally engaged in learning it. This article describes a lesson that embedded an activity to engage students in learning science. It also identifies features of a science lesson that are likely to enhance students' engagement and learning of science and possibly reverse students'…

  14. Computer-Mediated Collaborative Learning

    Science.gov (United States)

    Beatty, Ken; Nunan, David

    2004-01-01

    The study reported here investigates collaborative learning at the computer. Ten pairs of students were presented with a series of comprehension questions about Mary Shelley's novel "Frankenstein or a Modern Prometheus" along with a CD-ROM, "Frankenstein Illuminated," containing the novel and a variety of source material. Five students worked with…

  15. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    International Nuclear Information System (INIS)

    Hules, John A.

    2008-01-01

    Scientists today rely on advances in computer science, mathematics, and computational science, as well as large-scale computing and networking facilities, to increase our understanding of ourselves, our planet, and our universe. Berkeley Lab's Computing Sciences organization researches, develops, and deploys new tools and technologies to meet these needs and to advance research in such areas as global climate change, combustion, fusion energy, nanotechnology, biology, and astrophysics

  16. Proceedings of the 2011 2nd International Congress on Computer Applications and Computational Science

    CERN Document Server

    Nguyen, Quang

    2012-01-01

    The latest inventions in computer technology influence most of human daily activities. In the near future, there is tendency that all of aspect of human life will be dependent on computer applications. In manufacturing, robotics and automation have become vital for high quality products. In education, the model of teaching and learning is focusing more on electronic media than traditional ones. Issues related to energy savings and environment is becoming critical.   Computational Science should enhance the quality of human life,  not only solve their problems. Computational Science should help humans to make wise decisions by presenting choices and their possible consequences. Computational Science should help us make sense of observations, understand natural language, plan and reason with extensive background knowledge. Intelligence with wisdom is perhaps an ultimate goal for human-oriented science.   This book is a compilation of some recent research findings in computer application and computational sci...

  17. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Family experiences, the motivation for science learning and science achievement of ... active learning and achievement goals); boys perceived family experiences ... Recommendations were made as to how schools can support families in ...

  18. Computing, Environment and Life Sciences | Argonne National Laboratory

    Science.gov (United States)

    Computing, Environment and Life Sciences Research Divisions BIOBiosciences CPSComputational Science DSLData Argonne Leadership Computing Facility Biosciences Division Environmental Science Division Mathematics and Computer Science Division Facilities and Institutes Argonne Leadership Computing Facility News Events About

  19. The Science of Learning. 2nd Edition

    Science.gov (United States)

    Pear, Joseph J.

    2016-01-01

    For over a century and a quarter, the science of learning has expanded at an increasing rate and has achieved the status of a mature science. It has developed powerful methodologies and applications. The rise of this science has been so swift that other learning texts often overlook the fact that, like other mature sciences, the science of…

  20. Computer science handbook. Vol. 13.3. Environmental computer science. Computer science methods for environmental protection and environmental research

    International Nuclear Information System (INIS)

    Page, B.; Hilty, L.M.

    1994-01-01

    Environmental computer science is a new partial discipline of applied computer science, which makes use of methods and techniques of information processing in environmental protection. Thanks to the inter-disciplinary nature of environmental problems, computer science acts as a mediator between numerous disciplines and institutions in this sector. The handbook reflects the broad spectrum of state-of-the art environmental computer science. The following important subjects are dealt with: Environmental databases and information systems, environmental monitoring, modelling and simulation, visualization of environmental data and knowledge-based systems in the environmental sector. (orig.) [de

  1. Learning Universal Computations with Spikes

    Science.gov (United States)

    Thalmeier, Dominik; Uhlmann, Marvin; Kappen, Hilbert J.; Memmesheimer, Raoul-Martin

    2016-01-01

    Providing the neurobiological basis of information processing in higher animals, spiking neural networks must be able to learn a variety of complicated computations, including the generation of appropriate, possibly delayed reactions to inputs and the self-sustained generation of complex activity patterns, e.g. for locomotion. Many such computations require previous building of intrinsic world models. Here we show how spiking neural networks may solve these different tasks. Firstly, we derive constraints under which classes of spiking neural networks lend themselves to substrates of powerful general purpose computing. The networks contain dendritic or synaptic nonlinearities and have a constrained connectivity. We then combine such networks with learning rules for outputs or recurrent connections. We show that this allows to learn even difficult benchmark tasks such as the self-sustained generation of desired low-dimensional chaotic dynamics or memory-dependent computations. Furthermore, we show how spiking networks can build models of external world systems and use the acquired knowledge to control them. PMID:27309381

  2. Integrating Computational Science Tools into a Thermodynamics Course

    Science.gov (United States)

    Vieira, Camilo; Magana, Alejandra J.; García, R. Edwin; Jana, Aniruddha; Krafcik, Matthew

    2018-01-01

    Computational tools and methods have permeated multiple science and engineering disciplines, because they enable scientists and engineers to process large amounts of data, represent abstract phenomena, and to model and simulate complex concepts. In order to prepare future engineers with the ability to use computational tools in the context of their disciplines, some universities have started to integrate these tools within core courses. This paper evaluates the effect of introducing three computational modules within a thermodynamics course on student disciplinary learning and self-beliefs about computation. The results suggest that using worked examples paired to computer simulations to implement these modules have a positive effect on (1) student disciplinary learning, (2) student perceived ability to do scientific computing, and (3) student perceived ability to do computer programming. These effects were identified regardless of the students' prior experiences with computer programming.

  3. Scientific Representation and Science Learning

    Science.gov (United States)

    Matta, Corrado

    2014-01-01

    In this article I examine three examples of philosophical theories of scientific representation with the aim of assessing which of these is a good candidate for a philosophical theory of scientific representation in science learning. The three candidate theories are Giere's intentional approach, Suárez's inferential approach and Lynch and…

  4. Dictionary learning in visual computing

    CERN Document Server

    Zhang, Qiang

    2015-01-01

    The last few years have witnessed fast development on dictionary learning approaches for a set of visual computing tasks, largely due to their utilization in developing new techniques based on sparse representation. Compared with conventional techniques employing manually defined dictionaries, such as Fourier Transform and Wavelet Transform, dictionary learning aims at obtaining a dictionary adaptively from the data so as to support optimal sparse representation of the data. In contrast to conventional clustering algorithms like K-means, where a data point is associated with only one cluster c

  5. Designing an American Sign Language Avatar for Learning Computer Science Concepts for Deaf or Hard-of-Hearing Students and Deaf Interpreters

    Science.gov (United States)

    Andrei, Stefan; Osborne, Lawrence; Smith, Zanthia

    2013-01-01

    The current learning process of Deaf or Hard of Hearing (D/HH) students taking Science, Technology, Engineering, and Mathematics (STEM) courses needs, in general, a sign interpreter for the translation of English text into American Sign Language (ASL) signs. This method is at best impractical due to the lack of availability of a specialized sign…

  6. "I'm the Same Teacher": The Attitudes of Science and Computer Literacy Teachers Regarding Integrating ICT in Instruction to Advance Meaningful Learning

    Science.gov (United States)

    Steiner, Dasi; Mendelovitch, Miriam

    2017-01-01

    The communications revolution reaches all sectors of the population and makes information accessible to all. This development presents complex challenges which require changes in the education system, teaching methods and learning environment. The integration of ICT (Information and Communications Technology) and science teaching requires…

  7. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  8. A Case Study of the Introduction of Computer Science in NZ Schools

    Science.gov (United States)

    Bell, Tim; Andreae, Peter; Robins, Anthony

    2014-01-01

    For many years computing in New Zealand schools was focused on teaching students how to use computers, and there was little opportunity for students to learn about programming and computer science as formal subjects. In this article we review a series of initiatives that occurred from 2007 to 2009 that led to programming and computer science being…

  9. On teaching computer ethics within a computer science department.

    Science.gov (United States)

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  10. Advances in Computer Science and Engineering

    CERN Document Server

    Second International Conference on Advances in Computer Science and Engineering (CES 2012)

    2012-01-01

    This book includes the proceedings of the second International Conference on Advances in Computer Science and Engineering (CES 2012), which was held during January 13-14, 2012 in Sanya, China. The papers in these proceedings of CES 2012 focus on the researchers’ advanced works in their fields of Computer Science and Engineering mainly organized in four topics, (1) Software Engineering, (2) Intelligent Computing, (3) Computer Networks, and (4) Artificial Intelligence Software.

  11. 30th International Symposium on Computer and Information Sciences

    CERN Document Server

    Gelenbe, Erol; Gorbil, Gokce; Lent, Ricardo

    2016-01-01

    The 30th Anniversary of the ISCIS (International Symposium on Computer and Information Sciences) series of conferences, started by Professor Erol Gelenbe at Bilkent University, Turkey, in 1986, will be held at Imperial College London on September 22-24, 2015. The preceding two ISCIS conferences were held in Krakow, Poland in 2014, and in Paris, France, in 2013.   The Proceedings of ISCIS 2015 published by Springer brings together rigorously reviewed contributions from leading international experts. It explores new areas of research and technological development in computer science, computer engineering, and information technology, and presents new applications in fast changing fields such as information science, computer science and bioinformatics.   The topics covered include (but are not limited to) advances in networking technologies, software defined networks, distributed systems and the cloud, security in the Internet of Things, sensor systems, and machine learning and large data sets.

  12. Learning Lunar Science Through the Selene Videogame

    Science.gov (United States)

    Reese, D. D.; Wood, C. A.

    2010-03-01

    Selene is a videogame to promote and assess learning of lunar science concepts. As players build and modify a Moon, Selene measures learning as it occurs. Selene is a model for 21st century learning and embedded assessment.

  13. Learning to consult with computers.

    Science.gov (United States)

    Liaw, S T; Marty, J J

    2001-07-01

    To develop and evaluate a strategy to teach skills and issues associated with computers in the consultation. An overview lecture plus a workshop before and a workshop after practice placements, during the 10-week general practice (GP) term in the 5th year of the University of Melbourne medical course. Pre- and post-intervention study using a mix of qualitative and quantitative methods within a strategic evaluation framework. Self-reported attitudes and skills with clinical applications before, during and after the intervention. Most students had significant general computer experience but little in the medical area. They found the workshops relevant, interesting and easy to follow. The role-play approach facilitated students' learning of relevant communication and consulting skills and an appreciation of issues associated with using the information technology tools in simulated clinical situations to augment and complement their consulting skills. The workshops and exposure to GP systems were associated with an increase in the use of clinical software, more realistic expectations of existing clinical and medical record software and an understanding of the barriers to the use of computers in the consultation. The educational intervention assisted students to develop and express an understanding of the importance of consulting and communication skills in teaching and learning about medical informatics tools, hardware and software design, workplace issues and the impact of clinical computer systems on the consultation and patient care.

  14. Teaching the science of learning.

    Science.gov (United States)

    Weinstein, Yana; Madan, Christopher R; Sumeracki, Megan A

    2018-01-01

    The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration, concrete examples, and dual coding. We describe the basic research behind each strategy and relevant applied research, present examples of existing and suggested implementation, and make recommendations for further research that would broaden the reach of these strategies.

  15. Measuring the Impact of App Inventor for Android and Studio-Based Learning in an Introductory Computer Science Course for Non-Majors

    Science.gov (United States)

    Ahmad, Khuloud Nasser

    2012-01-01

    A reexamination of the traditional instruction of introductory computer science (CS) courses is becoming a necessity. Introductory CS courses tend to have high attrition rates and low success rates. In many universities, the CS department suffered from low enrollment for several years compared to other majors. Multiple studies have linked these…

  16. Home Culture, Science, School and Science Learning: Is Reconciliation Possible?

    Science.gov (United States)

    Tan, Aik-Ling

    2011-01-01

    In response to Meyer and Crawford's article on how nature of science and authentic science inquiry strategies can be used to support the learning of science for underrepresented students, I explore the possibly of reconciliation between the cultures of school, science, school science as well as home. Such reconciliation is only possible when…

  17. Music Learning Based on Computer Software

    Directory of Open Access Journals (Sweden)

    Baihui Yan

    2017-12-01

    Full Text Available In order to better develop and improve students’ music learning, the authors proposed the method of music learning based on computer software. It is still a new field to use computer music software to assist teaching. Hereby, we conducted an in-depth analysis on the computer-enabled music learning and the music learning status in secondary schools, obtaining the specific analytical data. Survey data shows that students have many cognitive problems in the current music classroom, and yet teachers have not found a reasonable countermeasure to them. Against this background, the introduction of computer music software to music learning is a new trial that can not only cultivate the students’ initiatives of music learning, but also enhance their abilities to learn music. Therefore, it is concluded that the computer software based music learning is of great significance to improving the current music learning modes and means.

  18. Central Computer Science Concepts to Research-Based Teacher Training in Computer Science: An Experimental Study

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter

    2012-01-01

    The significance of computer science for economics and society is undisputed. In particular, computer science is acknowledged to play a key role in schools (e.g., by opening multiple career paths). The provision of effective computer science education in schools is dependent on teachers who are able to properly represent the discipline and whose…

  19. CREATIVE APPROACHES TO COMPUTER SCIENCE EDUCATION

    Directory of Open Access Journals (Sweden)

    V. B. Raspopov

    2010-04-01

    Full Text Available Using the example of PPS «Toolbox of multimedia lessons «For Children About Chopin» we demonstrate the possibility of involving creative students in developing the software packages for educational purposes. Similar projects can be assigned to school and college students studying computer sciences and informatics, and implemented under the teachers’ supervision, as advanced assignments or thesis projects as a part of a high school course IT or Computer Sciences, a college course of Applied Scientific Research, or as a part of preparation for students’ participation in the Computer Science competitions or IT- competitions of Youth Academy of Sciences ( MAN in Russian or in Ukrainian.

  20. A Survey of Computer Science Capstone Course Literature

    Science.gov (United States)

    Dugan, Robert F., Jr.

    2011-01-01

    In this article, we surveyed literature related to undergraduate computer science capstone courses. The survey was organized around course and project issues. Course issues included: course models, learning theories, course goals, course topics, student evaluation, and course evaluation. Project issues included: software process models, software…

  1. Mastering Cognitive Development Theory in Computer Science Education

    Science.gov (United States)

    Gluga, Richard; Kay, Judy; Lister, Raymond; Kleitman, Simon; Kleitman, Sabina

    2013-01-01

    To design an effective computer science curriculum, educators require a systematic method of classifying the difficulty level of learning activities and assessment tasks. This is important for curriculum design and implementation and for communication between educators. Different educators must be able to use the method consistently, so that…

  2. Finding the Hook: Computer Science Education in Elementary Contexts

    Science.gov (United States)

    Ozturk, Zehra; Dooley, Caitlin McMunn; Welch, Meghan

    2018-01-01

    The purpose of this study was to investigate how elementary teachers with little knowledge of computer science (CS) and project-based learning (PBL) experienced integrating CS through PBL as a part of a standards-based elementary curriculum in Grades 3-5. The researchers used qualitative constant comparison methods on field notes and reflections…

  3. Music Learning Based on Computer Software

    OpenAIRE

    Baihui Yan; Qiao Zhou

    2017-01-01

    In order to better develop and improve students’ music learning, the authors proposed the method of music learning based on computer software. It is still a new field to use computer music software to assist teaching. Hereby, we conducted an in-depth analysis on the computer-enabled music learning and the music learning status in secondary schools, obtaining the specific analytical data. Survey data shows that students have many cognitive problems in the current music classroom, and yet teach...

  4. Bringing computational science to the public.

    Science.gov (United States)

    McDonagh, James L; Barker, Daniel; Alderson, Rosanna G

    2016-01-01

    The increasing use of computers in science allows for the scientific analyses of large datasets at an increasing pace. We provided examples and interactive demonstrations at Dundee Science Centre as part of the 2015 Women in Science festival, to present aspects of computational science to the general public. We used low-cost Raspberry Pi computers to provide hands on experience in computer programming and demonstrated the application of computers to biology. Computer games were used as a means to introduce computers to younger visitors. The success of the event was evaluated by voluntary feedback forms completed by visitors, in conjunction with our own self-evaluation. This work builds on the original work of the 4273π bioinformatics education program of Barker et al. (2013, BMC Bioinform. 14:243). 4273π provides open source education materials in bioinformatics. This work looks at the potential to adapt similar materials for public engagement events. It appears, at least in our small sample of visitors (n = 13), that basic computational science can be conveyed to people of all ages by means of interactive demonstrations. Children as young as five were able to successfully edit simple computer programs with supervision. This was, in many cases, their first experience of computer programming. The feedback is predominantly positive, showing strong support for improving computational science education, but also included suggestions for improvement. Our conclusions are necessarily preliminary. However, feedback forms suggest methods were generally well received among the participants; "Easy to follow. Clear explanation" and "Very easy. Demonstrators were very informative." Our event, held at a local Science Centre in Dundee, demonstrates that computer games and programming activities suitable for young children can be performed alongside a more specialised and applied introduction to computational science for older visitors.

  5. Flipped learning in science education

    DEFF Research Database (Denmark)

    Andersen, Thomas Dyreborg; Foss, Kristian Kildemoes; Nissen, Stine Karen

    2017-01-01

    During the last decade, massive investment in ICT has been made in Danish schools. There seems, however, to be a need to rethink how to better integrate ICT in education (Bundgaard et al. 2014 p. 216) Flipped learning might be a didactical approach that could contribute to finding a method to use...... research questions are “To what extent can teachers using the FL-teaching method improve Danish pupils' learning outcomes in science subject’s physics / chemistry, biology and geography in terms of the results of national tests?” And “What factors influence on whether FL-teaching improves pupils' learning...... will be addressed. Hereafter an array of different scaffolding activities will be conducted, among these are individual supervision, sharing of materials used in lessons and involving local school leaders in the program. During this 3-year period we will follow the progress of the students involved in the program...

  6. The science of computing shaping a discipline

    CERN Document Server

    Tedre, Matti

    2014-01-01

    The identity of computing has been fiercely debated throughout its short history. Why is it still so hard to define computing as an academic discipline? Is computing a scientific, mathematical, or engineering discipline? By describing the mathematical, engineering, and scientific traditions of computing, The Science of Computing: Shaping a Discipline presents a rich picture of computing from the viewpoints of the field's champions. The book helps readers understand the debates about computing as a discipline. It explains the context of computing's central debates and portrays a broad perspecti

  7. A survey of computational physics introductory computational science

    CERN Document Server

    Landau, Rubin H; Bordeianu, Cristian C

    2008-01-01

    Computational physics is a rapidly growing subfield of computational science, in large part because computers can solve previously intractable problems or simulate natural processes that do not have analytic solutions. The next step beyond Landau's First Course in Scientific Computing and a follow-up to Landau and Páez's Computational Physics, this text presents a broad survey of key topics in computational physics for advanced undergraduates and beginning graduate students, including new discussions of visualization tools, wavelet analysis, molecular dynamics, and computational fluid dynamics

  8. Mathematics and Computer Science: The Interplay

    OpenAIRE

    Madhavan, Veni CE

    2005-01-01

    Mathematics has been an important intellectual preoccupation of man for a long time. Computer science as a formal discipline is about seven decades young. However, one thing in common between all users and producers of mathematical thought is the almost involuntary use of computing. In this article, we bring to fore the many close connections and parallels between the two sciences of mathematics and computing. We show that, unlike in the other branches of human inquiry where mathematics is me...

  9. Semiotics, Information Science, Documents and Computers.

    Science.gov (United States)

    Warner, Julian

    1990-01-01

    Discusses the relationship and value of semiotics to the established domains of information science. Highlights include documentation; computer operations; the language of computing; automata theory; linguistics; speech and writing; and the written language as a unifying principle for the document and the computer. (93 references) (LRW)

  10. Collaborative Learning: Cognitive and Computational Approaches. Advances in Learning and Instruction Series.

    Science.gov (United States)

    Dillenbourg, Pierre, Ed.

    Intended to illustrate the benefits of collaboration between scientists from psychology and computer science, namely machine learning, this book contains the following chapters, most of which are co-authored by scholars from both sides: (1) "Introduction: What Do You Mean by 'Collaborative Learning'?" (Pierre Dillenbourg); (2)…

  11. Enabling Earth Science Through Cloud Computing

    Science.gov (United States)

    Hardman, Sean; Riofrio, Andres; Shams, Khawaja; Freeborn, Dana; Springer, Paul; Chafin, Brian

    2012-01-01

    Cloud Computing holds tremendous potential for missions across the National Aeronautics and Space Administration. Several flight missions are already benefiting from an investment in cloud computing for mission critical pipelines and services through faster processing time, higher availability, and drastically lower costs available on cloud systems. However, these processes do not currently extend to general scientific algorithms relevant to earth science missions. The members of the Airborne Cloud Computing Environment task at the Jet Propulsion Laboratory have worked closely with the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to integrate cloud computing into their science data processing pipeline. This paper details the efforts involved in deploying a science data system for the CARVE mission, evaluating and integrating cloud computing solutions with the system and porting their science algorithms for execution in a cloud environment.

  12. Crystal growth and computational materials science

    International Nuclear Information System (INIS)

    Jayakumar, S.; Ravindran, P.; Arun Kumar, R.; Sudarshan, C.

    2012-01-01

    The proceedings of the international conference on advanced materials discusses the advances being made in the area of single crystals, their preparation and device development from these crystals and details of the progress that is taking place in the computational field relating to materials science. Computational materials science makes use of advanced simulation tools and computer interfaces to develop a virtual platform which can provide a model for real-time experiments. This book includes selected papers in topics of crystal growth and computational materials science. We are confident that the new concepts and results presented will stimulate and enhance progress of research on crystal growth and computational materials science. Papers relevant to INIS are indexed separately

  13. Family experiences, the motivation for science learning and science ...

    African Journals Online (AJOL)

    Schulze, Salome

    Student Motivation for Science Learning questionnaire combined with items investigating family experiences. The findings .... decisions and formulate behavioural goals for their ..... science achievement, making interpretation diffi- cult and ...

  14. Cloud computing with e-science applications

    CERN Document Server

    Terzo, Olivier

    2015-01-01

    The amount of data in everyday life has been exploding. This data increase has been especially significant in scientific fields, where substantial amounts of data must be captured, communicated, aggregated, stored, and analyzed. Cloud Computing with e-Science Applications explains how cloud computing can improve data management in data-heavy fields such as bioinformatics, earth science, and computer science. The book begins with an overview of cloud models supplied by the National Institute of Standards and Technology (NIST), and then:Discusses the challenges imposed by big data on scientific

  15. Online Learning for Muon Science

    Science.gov (United States)

    Baker, Peter J.; Loe, Tom; Telling, Mark; Cottrell, Stephen P.; Hillier, Adrian D.

    As part of the EU-funded project SINE2020 we are developing an online learning environment to introduce people to muon spectroscopy and how it can be applied in a variety of science areas. Currently there are short interactive courses using cosmic ray muons to teach what muons are and how their decays are measured and a guide to analyzing muon data using the Mantid software package, as well as videos from the lectures at the ISIS Muon Spectroscopy Training School 2016. Here we describe the courses that have been developed and how they have already been used.

  16. Design, Development, and Evaluation of a Mobile Learning Application for Computing Education

    Science.gov (United States)

    Oyelere, Solomon Sunday; Suhonen, Jarkko; Wajiga, Greg M.; Sutinen, Erkki

    2018-01-01

    The study focused on the application of the design science research approach in the course of developing a mobile learning application, MobileEdu, for computing education in the Nigerian higher education context. MobileEdu facilitates the learning of computer science courses on mobile devices. The application supports ubiquitous, collaborative,…

  17. Soft Computing Techniques in Vision Science

    CERN Document Server

    Yang, Yeon-Mo

    2012-01-01

    This Special Edited Volume is a unique approach towards Computational solution for the upcoming field of study called Vision Science. From a scientific firmament Optics, Ophthalmology, and Optical Science has surpassed an Odyssey of optimizing configurations of Optical systems, Surveillance Cameras and other Nano optical devices with the metaphor of Nano Science and Technology. Still these systems are falling short of its computational aspect to achieve the pinnacle of human vision system. In this edited volume much attention has been given to address the coupling issues Computational Science and Vision Studies.  It is a comprehensive collection of research works addressing various related areas of Vision Science like Visual Perception and Visual system, Cognitive Psychology, Neuroscience, Psychophysics and Ophthalmology, linguistic relativity, color vision etc. This issue carries some latest developments in the form of research articles and presentations. The volume is rich of contents with technical tools ...

  18. Journal of Computer Science and Its Application

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application ... Cloud model construct for transaction-based cooperative systems · EMAIL FULL TEXT EMAIL FULL TEXT ... The evaluation of tertiary institution service quality using HiEdQUAL and fuzzy ...

  19. Code 672 observational science branch computer networks

    Science.gov (United States)

    Hancock, D. W.; Shirk, H. G.

    1988-01-01

    In general, networking increases productivity due to the speed of transmission, easy access to remote computers, ability to share files, and increased availability of peripherals. Two different networks within the Observational Science Branch are described in detail.

  20. Computational Science: Ensuring America`s Competitiveness

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — ...rationalization and restructuring of computational science within universities and Federal agencies, and the development and maintenance of a multi-decade roadmap...

  1. Philosophy, computing and information science

    CERN Document Server

    Hagengruber, Ruth

    2014-01-01

    Over the last four decades computers and the internet have become an intrinsic part of all our lives, but this speed of development has left related philosophical enquiry behind. Featuring the work of computer scientists and philosophers, these essays provide an overview of an exciting new area of philosophy that is still taking shape.

  2. Computer vision and machine learning for archaeology

    NARCIS (Netherlands)

    van der Maaten, L.J.P.; Boon, P.; Lange, G.; Paijmans, J.J.; Postma, E.

    2006-01-01

    Until now, computer vision and machine learning techniques barely contributed to the archaeological domain. The use of these techniques can support archaeologists in their assessment and classification of archaeological finds. The paper illustrates the use of computer vision techniques for

  3. Third Workshop on Teaching Computational Science (WTCS 2009)

    NARCIS (Netherlands)

    Tirado-Ramos, A.; Shiflet, A.

    2009-01-01

    The Third Workshop on Teaching Computational Science, within the International Conference on Computational Science, provides a platform for discussing innovations in teaching computational sciences at all levels and contexts of higher education. This editorial provides an introduction to the work

  4. Second Workshop on Teaching Computational Science WTCS 2008

    NARCIS (Netherlands)

    Tirado-Ramos, A.

    2008-01-01

    The Second Workshop on Teaching Computational Science, within the International Conference on Computational Science, provides a platform for discussing innovations in teaching computational sciences at all levels and contexts of higher education. This editorial provides an introduction to the work

  5. Applied Computational Mathematics in Social Sciences

    CERN Document Server

    Damaceanu, Romulus-Catalin

    2010-01-01

    Applied Computational Mathematics in Social Sciences adopts a modern scientific approach that combines knowledge from mathematical modeling with various aspects of social science. Special algorithms can be created to simulate an artificial society and a detailed analysis can subsequently be used to project social realities. This Ebook specifically deals with computations using the NetLogo platform, and is intended for researchers interested in advanced human geography and mathematical modeling studies.

  6. Is Computer Science Compatible with Technological Literacy?

    Science.gov (United States)

    Buckler, Chris; Koperski, Kevin; Loveland, Thomas R.

    2018-01-01

    Although technology education evolved over time, and pressure increased to infuse more engineering principles and increase links to STEM (science technology, engineering, and mathematics) initiatives, there has never been an official alignment between technology and engineering education and computer science. There is movement at the federal level…

  7. Rangaswamy Narasimhan: Doyen of Computer Science

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 5. Rangaswamy Narasimhan: Doyen of Computer Science and Technology. Srinivasan Ramani. Article-in-a-Box Volume 13 Issue 5 May 2008 pp 407-409. Fulltext. Click here to view fulltext PDF. Permanent link:

  8. Computational Science at the Argonne Leadership Computing Facility

    Science.gov (United States)

    Romero, Nichols

    2014-03-01

    The goal of the Argonne Leadership Computing Facility (ALCF) is to extend the frontiers of science by solving problems that require innovative approaches and the largest-scale computing systems. ALCF's most powerful computer - Mira, an IBM Blue Gene/Q system - has nearly one million cores. How does one program such systems? What software tools are available? Which scientific and engineering applications are able to utilize such levels of parallelism? This talk will address these questions and describe a sampling of projects that are using ALCF systems in their research, including ones in nanoscience, materials science, and chemistry. Finally, the ways to gain access to ALCF resources will be presented. This research used resources of the Argonne Leadership Computing Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-06CH11357.

  9. Developing a Mobile Learning Management System for Outdoors Nature Science Activities Based on 5E Learning Cycle

    Science.gov (United States)

    Lai, Ah-Fur; Lai, Horng-Yih; Chuang, Wei-Hsiang; Wu, Zih-Heng

    2015-01-01

    Traditional outdoor learning activities such as inquiry-based learning in nature science encounter many dilemmas. Due to prompt development of mobile computing and widespread of mobile devices, mobile learning becomes a big trend on education. The main purpose of this study is to develop a mobile-learning management system for overcoming the…

  10. Group Projects and the Computer Science Curriculum

    Science.gov (United States)

    Joy, Mike

    2005-01-01

    Group projects in computer science are normally delivered with reference to good software engineering practice. The discipline of software engineering is rapidly evolving, and the application of the latest 'agile techniques' to group projects causes a potential conflict with constraints imposed by regulating bodies on the computer science…

  11. Computer science research and technology volume 3

    CERN Document Server

    Bauer, Janice P

    2011-01-01

    This book presents leading-edge research from across the globe in the field of computer science research, technology and applications. Each contribution has been carefully selected for inclusion based on the significance of the research to this fast-moving and diverse field. Some topics included are: network topology; agile programming; virtualization; and reconfigurable computing.

  12. Computer science and the recent innovations of the modern society

    Directory of Open Access Journals (Sweden)

    Greorghe Popescu

    2010-12-01

    Full Text Available The paper “Computer science and the recent innovations of the modern society” presents the importance of computer science, with the most important historical moments in its evolution, the main theoretical elements of the computation science, computer elements and architecture and the latest innovations in the computer science, such as Artificial Intelligence.

  13. International Conference on Computer, Communication and Computational Sciences

    CERN Document Server

    Mishra, Krishn; Tiwari, Shailesh; Singh, Vivek

    2017-01-01

    Exchange of information and innovative ideas are necessary to accelerate the development of technology. With advent of technology, intelligent and soft computing techniques came into existence with a wide scope of implementation in engineering sciences. Keeping this ideology in preference, this book includes the insights that reflect the ‘Advances in Computer and Computational Sciences’ from upcoming researchers and leading academicians across the globe. It contains high-quality peer-reviewed papers of ‘International Conference on Computer, Communication and Computational Sciences (ICCCCS 2016), held during 12-13 August, 2016 in Ajmer, India. These papers are arranged in the form of chapters. The content of the book is divided into two volumes that cover variety of topics such as intelligent hardware and software design, advanced communications, power and energy optimization, intelligent techniques used in internet of things, intelligent image processing, advanced software engineering, evolutionary and ...

  14. Cognitive computing and eScience in health and life science research: artificial intelligence and obesity intervention programs.

    Science.gov (United States)

    Marshall, Thomas; Champagne-Langabeer, Tiffiany; Castelli, Darla; Hoelscher, Deanna

    2017-12-01

    To present research models based on artificial intelligence and discuss the concept of cognitive computing and eScience as disruptive factors in health and life science research methodologies. The paper identifies big data as a catalyst to innovation and the development of artificial intelligence, presents a framework for computer-supported human problem solving and describes a transformation of research support models. This framework includes traditional computer support; federated cognition using machine learning and cognitive agents to augment human intelligence; and a semi-autonomous/autonomous cognitive model, based on deep machine learning, which supports eScience. The paper provides a forward view of the impact of artificial intelligence on our human-computer support and research methods in health and life science research. By augmenting or amplifying human task performance with artificial intelligence, cognitive computing and eScience research models are discussed as novel and innovative systems for developing more effective adaptive obesity intervention programs.

  15. Toward using games to teach fundamental computer science concepts

    Science.gov (United States)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  16. Planning Computer-Aided Distance Learning

    Directory of Open Access Journals (Sweden)

    Nadja Dobnik

    1996-12-01

    Full Text Available Didactics of autonomous learning changes under the influence of new technologies. Computer technology can cover all the functions that a teacher develops in personal contact with the learner. People organizing distance learning must realize all the possibilities offered by computers. Computers can take over and also combine the functions of many tools and systems, e. g. type­ writer, video, telephone. This the contents can be offered in form of classic media by means of text, speech, picture, etc. Computers take over data pro­cessing and function as study materials. Computer included in a computer network can also function as a medium for interactive communication.

  17. Nuclear computational science a century in review

    CERN Document Server

    Azmy, Yousry

    2010-01-01

    Nuclear engineering has undergone extensive progress over the years. In the past century, colossal developments have been made and with specific reference to the mathematical theory and computational science underlying this discipline, advances in areas such as high-order discretization methods, Krylov Methods and Iteration Acceleration have steadily grown. Nuclear Computational Science: A Century in Review addresses these topics and many more; topics which hold special ties to the first half of the century, and topics focused around the unique combination of nuclear engineering, computational

  18. Comment on "Most computational hydrology is not reproducible, so is it really science?" by Christopher Hutton et al.: Let hydrologists learn the latest computer science by working with Research Software Engineers (RSEs) and not reinvent the waterwheel ourselves

    Science.gov (United States)

    Hut, R. W.; van de Giesen, N. C.; Drost, N.

    2017-05-01

    The suggestions by Hutton et al. might not be enough to guarantee reproducible computational hydrology. Archiving software code and research data alone will not be enough. We add to the suggestion of Hutton et al. that hydrologists not only document their (computer) work, but that hydrologists use the latest best practices in designing research software, most notably the use of containers and open interfaces. To make sure hydrologists know of these best practices, we urge close collaboration with Research Software Engineers (RSEs).

  19. Science of learning is learning of science: why we need a dialectical approach to science education research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-06-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed in the other. Even more interestingly, the scientists studying science learning rarely consider their own learning in relation to the phenomena they study. A dialectical, reflexive approach to learning, however, would theorize the movement of an educational science (its learning and development) as a special and general case—subject matter and method—of the phenomenon of learning (in/of) science. In the dialectical approach to the study of science learning, therefore, subject matter, method, and theory fall together. This allows for a perspective in which not only disparate fields of study—school science learning and learning in everyday life—are integrated but also where the progress in the science of science learning coincides with its topic. Following the articulation of a contradictory situation on comparing learning in different settings, I describe the dialectical approach. As a way of providing a concrete example, I then trace the historical movement of my own research group as it simultaneously and alternately studied science learning in formal and informal settings. I conclude by recommending cultural-historical, dialectical approaches to learning and interaction analysis as a context for fruitful interdisciplinary research on science learning within and across different settings.

  20. Transactions on Computational Science IX

    DEFF Research Database (Denmark)

    Diagrams, held in Copenhagen, Denmark, June 23-36, 2009. Topics covered include: divide and conquer construction of Voronoi diagrams; new generalized Voronoi diagrams or properties of existing generalized Voronoi diagrams; and applications of Voronoi diagrams and their duals in graph theory, computer...... graphics, bioinformatics, and spatial process simulation....

  1. Fundamentals: IVC and Computer Science

    NARCIS (Netherlands)

    Gozalvez, Javier; Haerri, Jerome; Hartenstein, Hannes; Heijenk, Geert; Kargl, Frank; Petit, Jonathan; Scheuermann, Björn; Tieler, Tessa; Altintas, O.; Dressler, F.; Hartenstein, H.; Tonguz, O.K.

    The working group on “Fundamentals: IVC and Computer Science‿ discussed the lasting value of achieved research results as well as potential future directions in the field of inter- vehicular communication. Two major themes ‘with variations’ were the dependence on a specific technology (particularly

  2. Computational approach in zeolite science

    NARCIS (Netherlands)

    Pidko, E.A.; Santen, van R.A.; Chester, A.W.; Derouane, E.G.

    2009-01-01

    This chapter presents an overview of different computational methods and their application to various fields of zeolite chemistry. We will discuss static lattice methods based on interatomic potentials to predict zeolite structures and topologies, Monte Carlo simulations for the investigation of

  3. Computer Assisted Language Learning (CALL) Software: Evaluation ...

    African Journals Online (AJOL)

    Evaluating the nature and extent of the influence of Computer Assisted Language Learning (CALL) on the quality of language learning is highly problematic. This is owing to the number and complexity of interacting variables involved in setting the items for teaching and learning languages. This paper identified and ...

  4. Assessment of (Computer-Supported) Collaborative Learning

    Science.gov (United States)

    Strijbos, J. -W.

    2011-01-01

    Within the (Computer-Supported) Collaborative Learning (CS)CL research community, there has been an extensive dialogue on theories and perspectives on learning from collaboration, approaches to scaffold (script) the collaborative process, and most recently research methodology. In contrast, the issue of assessment of collaborative learning has…

  5. Exploring Cloud Computing for Distance Learning

    Science.gov (United States)

    He, Wu; Cernusca, Dan; Abdous, M'hammed

    2011-01-01

    The use of distance courses in learning is growing exponentially. To better support faculty and students for teaching and learning, distance learning programs need to constantly innovate and optimize their IT infrastructures. The new IT paradigm called "cloud computing" has the potential to transform the way that IT resources are utilized and…

  6. Computational Science in Armenia (Invited Talk)

    Science.gov (United States)

    Marandjian, H.; Shoukourian, Yu.

    This survey is devoted to the development of informatics and computer science in Armenia. The results in theoretical computer science (algebraic models, solutions to systems of general form recursive equations, the methods of coding theory, pattern recognition and image processing), constitute the theoretical basis for developing problem-solving-oriented environments. As examples can be mentioned: a synthesizer of optimized distributed recursive programs, software tools for cluster-oriented implementations of two-dimensional cellular automata, a grid-aware web interface with advanced service trading for linear algebra calculations. In the direction of solving scientific problems that require high-performance computing resources, examples of completed projects include the field of physics (parallel computing of complex quantum systems), astrophysics (Armenian virtual laboratory), biology (molecular dynamics study of human red blood cell membrane), meteorology (implementing and evaluating the Weather Research and Forecast Model for the territory of Armenia). The overview also notes that the Institute for Informatics and Automation Problems of the National Academy of Sciences of Armenia has established a scientific and educational infrastructure, uniting computing clusters of scientific and educational institutions of the country and provides the scientific community with access to local and international computational resources, that is a strong support for computational science in Armenia.

  7. SIAM Conference on Computational Science and Engineering

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2005-08-29

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third mode of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS

  8. Science Integrating Learning Objectives: A Cooperative Learning Group Process

    Science.gov (United States)

    Spindler, Matt

    2015-01-01

    The integration of agricultural and science curricular content that capitalizes on natural and inherent connections represents a challenge for secondary agricultural educators. The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives…

  9. Computational Exposure Science: An Emerging Discipline to ...

    Science.gov (United States)

    Background: Computational exposure science represents a frontier of environmental science that is emerging and quickly evolving.Objectives: In this commentary, we define this burgeoning discipline, describe a framework for implementation, and review some key ongoing research elements that are advancing the science with respect to exposure to chemicals in consumer products.Discussion: The fundamental elements of computational exposure science include the development of reliable, computationally efficient predictive exposure models; the identification, acquisition, and application of data to support and evaluate these models; and generation of improved methods for extrapolating across chemicals. We describe our efforts in each of these areas and provide examples that demonstrate both progress and potential.Conclusions: Computational exposure science, linked with comparable efforts in toxicology, is ushering in a new era of risk assessment that greatly expands our ability to evaluate chemical safety and sustainability and to protect public health. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source

  10. Science and Sandy: Lessons Learned

    Science.gov (United States)

    Werner, K.

    2013-12-01

    Following Hurricane Sandy's impact on the mid-Atlantic region, President Obama established a Task Force to '...ensure that the Federal Government continues to provide appropriate resources to support affected State, local, and tribal communities to improve the region's resilience, health, and prosperity by building for the future.' The author was detailed from NOAA to the Task Force between January and June 2013. As the Task Force and others began to take stock of the region's needs and develop plans to address them, many diverse approaches emerged from different areas of expertise including: infrastructure, management and construction, housing, public health, and others. Decision making in this environment was complex with many interests and variables to consider and balance. Although often relevant, science and technical expertise was not always at the forefront of this process. This talk describes the author's experience with the Sandy Task Force focusing on organizing scientific expertise to support the work of the Task Force. This includes a description of federal activity supporting Sandy recovery efforts, the role of the Task Force, and lessons learned from developing a science support function within the Task Force.

  11. Cognitive Correlates of Performance in Algorithms in a Computer Science Course for High School

    Science.gov (United States)

    Avancena, Aimee Theresa; Nishihara, Akinori

    2014-01-01

    Computer science for high school faces many challenging issues. One of these is whether the students possess the appropriate cognitive ability for learning the fundamentals of computer science. Online tests were created based on known cognitive factors and fundamental algorithms and were implemented among the second grade students in the…

  12. Investigating the Role of Student Motivation in Computer Science Education through One-on-One Tutoring

    Science.gov (United States)

    Boyer, Kristy Elizabeth; Phillips, Robert; Wallis, Michael D.; Vouk, Mladen A.; Lester, James C.

    2009-01-01

    The majority of computer science education research to date has focused on purely cognitive student outcomes. Understanding the "motivational" states experienced by students may enhance our understanding of the computer science learning process, and may reveal important instructional interventions that could benefit student engagement and…

  13. Plagiarism in computer science courses

    Energy Technology Data Exchange (ETDEWEB)

    Harris, J.K. [Francis Marion Univ., Florence, SC (United States)

    1994-12-31

    Plagiarism of computer programs has long been a problem in higher education. Ease of electronic copying, vague understanding by students as to what constitutes plagiarism, increasing acceptance of plagiarism by students, lack of enforcement by instructors and school administrators, and a whole host of other factors contribute to plagiarism. The first step in curbing plagiarism is prevention, the second (and much less preferable) is detection. History files and software metrics can be used as a tool to aid in detecting possible plagiarism. This paper gives advice concerning how to deal with plagiarism and with using software monitors to detect plagiarism.

  14. Leading Learning: Science Departments and the Chair

    Science.gov (United States)

    Melville, Wayne; Campbell, Todd; Jones, Doug

    2016-01-01

    In this article, we have considered the role of the chair in leading the learning necessary for a department to become effective in the teaching and learning of science from a reformed perspective. We conceptualize the phrase "leading learning" to mean the chair's constitution of influence, power, and authority to intentionally impact…

  15. Learning With Computers; Today and Tomorrow.

    Science.gov (United States)

    Bork, Alfred

    This paper describes the present practical use of computers in two large beginning physics courses at the University of California, Irvine; discusses the versatility and desirability of computers in the field of education; and projects the possible future directions of computer-based learning. The advantages and disadvantages of educational…

  16. Computer-Based Learning in Chemistry Classes

    Science.gov (United States)

    Pietzner, Verena

    2014-01-01

    Currently not many people would doubt that computers play an essential role in both public and private life in many countries. However, somewhat surprisingly, evidence of computer use is difficult to find in German state schools although other countries have managed to implement computer-based teaching and learning in their schools. This paper…

  17. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  18. Proceedings of computational methods in materials science

    International Nuclear Information System (INIS)

    Mark, J.E. Glicksman, M.E.; Marsh, S.P.

    1992-01-01

    The Symposium on which this volume is based was conceived as a timely expression of some of the fast-paced developments occurring throughout materials science and engineering. It focuses particularly on those involving modern computational methods applied to model and predict the response of materials under a diverse range of physico-chemical conditions. The current easy access of many materials scientists in industry, government laboratories, and academe to high-performance computers has opened many new vistas for predicting the behavior of complex materials under realistic conditions. Some have even argued that modern computational methods in materials science and engineering are literally redefining the bounds of our knowledge from which we predict structure-property relationships, perhaps forever changing the historically descriptive character of the science and much of the engineering

  19. Teacher Learning from Girls' Informal Science Experiences

    Science.gov (United States)

    Birmingham, Daniel J.

    2013-01-01

    School science continues to fail to engage youth from non-dominant communities (Carlone, Huan-Frank & Webb, 2011). However, recent research demonstrates that informal science learning settings support both knowledge gains and increased participation in science among youth from non-dominant communities (Dierking, 2007; Falk et al., 2007; HFRP,…

  20. Applied modelling and computing in social science

    CERN Document Server

    Povh, Janez

    2015-01-01

    In social science outstanding results are yielded by advanced simulation methods, based on state of the art software technologies and an appropriate combination of qualitative and quantitative methods. This book presents examples of successful applications of modelling and computing in social science: business and logistic process simulation and optimization, deeper knowledge extractions from big data, better understanding and predicting of social behaviour and modelling health and environment changes.

  1. Sustainable computational science: the ReScience initiative

    Directory of Open Access Journals (Sweden)

    Nicolas P. Rougier

    2017-12-01

    Full Text Available Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results; however, computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research is reproducible. But this is not exactly true. James Buckheit and David Donoho proposed more than two decades ago that an article about computational results is advertising, not scholarship. The actual scholarship is the full software environment, code, and data that produced the result. This implies new workflows, in particular in peer-reviews. Existing journals have been slow to adapt: source codes are rarely requested and are hardly ever actually executed to check that they produce the results advertised in the article. ReScience is a peer-reviewed journal that targets computational research and encourages the explicit replication of already published research, promoting new and open-source implementations in order to ensure that the original research can be replicated from its description. To achieve this goal, the whole publishing chain is radically different from other traditional scientific journals. ReScience resides on GitHub where each new implementation of a computational study is made available together with comments, explanations, and software tests.

  2. Enacting Informal Science Learning: Exploring the Battle for Informal Learning

    Science.gov (United States)

    Clapham, Andrew

    2016-01-01

    Informal Science Learning (ISL) is a policy narrative of interest in the United Kingdom and abroad. This paper explores how a group of English secondary school science teachers, enacted ISL science clubs through employing the Periodic Table of Videos. It examines how these teachers "battled" to enact ISL policy in performative conditions…

  3. Mathematics for engineering, technology and computing science

    CERN Document Server

    Martin, Hedley G

    1970-01-01

    Mathematics for Engineering, Technology and Computing Science is a text on mathematics for courses in engineering, technology, and computing science. It covers linear algebra, ordinary differential equations, and vector analysis, together with line and multiple integrals. This book consists of eight chapters and begins with a discussion on determinants and linear equations, with emphasis on how the value of a determinant is defined and how it may be obtained. Solution of linear equations and the dependence between linear equations are also considered. The next chapter introduces the reader to

  4. Curricular Influences on Female Afterschool Facilitators' Computer Science Interests and Career Choices

    Science.gov (United States)

    Koch, Melissa; Gorges, Torie

    2016-10-01

    Underrepresented populations such as women, African-Americans, and Latinos/as often come to STEM (science, technology, engineering, and mathematics) careers by less traditional paths than White and Asian males. To better understand how and why women might shift toward STEM, particularly computer science, careers, we investigated the education and career direction of afterschool facilitators, primarily women of color in their twenties and thirties, who taught Build IT, an afterschool computer science curriculum for middle school girls. Many of these women indicated that implementing Build IT had influenced their own interest in technology and computer science and in some cases had resulted in their intent to pursue technology and computer science education. We wanted to explore the role that teaching Build IT may have played in activating or reactivating interest in careers in computer science and to see whether in the years following implementation of Build IT, these women pursued STEM education and/or careers. We reached nine facilitators who implemented the program in 2011-12 or shortly after. Many indicated that while facilitating Build IT, they learned along with the participants, increasing their interest in and confidence with technology and computer science. Seven of the nine participants pursued further STEM or computer science learning or modified their career paths to include more of a STEM or computer science focus. Through interviews, we explored what aspects of Build IT influenced these facilitators' interest and confidence in STEM and when relevant their pursuit of technology and computer science education and careers.

  5. Demystifying computer science for molecular ecologists.

    Science.gov (United States)

    Belcaid, Mahdi; Toonen, Robert J

    2015-06-01

    In this age of data-driven science and high-throughput biology, computational thinking is becoming an increasingly important skill for tackling both new and long-standing biological questions. However, despite its obvious importance and conspicuous integration into many areas of biology, computer science is still viewed as an obscure field that has, thus far, permeated into only a few of the biology curricula across the nation. A national survey has shown that lack of computational literacy in environmental sciences is the norm rather than the exception [Valle & Berdanier (2012) Bulletin of the Ecological Society of America, 93, 373-389]. In this article, we seek to introduce a few important concepts in computer science with the aim of providing a context-specific introduction aimed at research biologists. Our goal was to help biologists understand some of the most important mainstream computational concepts to better appreciate bioinformatics methods and trade-offs that are not obvious to the uninitiated. © 2015 John Wiley & Sons Ltd.

  6. Why formal learning theory matters for cognitive science.

    Science.gov (United States)

    Fulop, Sean; Chater, Nick

    2013-01-01

    This article reviews a number of different areas in the foundations of formal learning theory. After outlining the general framework for formal models of learning, the Bayesian approach to learning is summarized. This leads to a discussion of Solomonoff's Universal Prior Distribution for Bayesian learning. Gold's model of identification in the limit is also outlined. We next discuss a number of aspects of learning theory raised in contributed papers, related to both computational and representational complexity. The article concludes with a description of how semi-supervised learning can be applied to the study of cognitive learning models. Throughout this overview, the specific points raised by our contributing authors are connected to the models and methods under review. Copyright © 2013 Cognitive Science Society, Inc.

  7. Digital Da Vinci computers in the arts and sciences

    CERN Document Server

    Lee, Newton

    2014-01-01

    Explores polymathic education through unconventional and creative applications of computer science in the arts and sciences Examines the use of visual computation, 3d printing, social robotics and computer modeling for computational art creation and design Includes contributions from leading researchers and practitioners in computer science, architecture and digital media

  8. Computer Assisted Language Learning. Routledge Studies in Computer Assisted Language Learning

    Science.gov (United States)

    Pennington, Martha

    2011-01-01

    Computer-assisted language learning (CALL) is an approach to language teaching and learning in which computer technology is used as an aid to the presentation, reinforcement and assessment of material to be learned, usually including a substantial interactive element. This books provides an up-to date and comprehensive overview of…

  9. Enabling Wide-Scale Computer Science Education through Improved Automated Assessment Tools

    Science.gov (United States)

    Boe, Bryce A.

    There is a proliferating demand for newly trained computer scientists as the number of computer science related jobs continues to increase. University programs will only be able to train enough new computer scientists to meet this demand when two things happen: when there are more primary and secondary school students interested in computer science, and when university departments have the resources to handle the resulting increase in enrollment. To meet these goals, significant effort is being made to both incorporate computational thinking into existing primary school education, and to support larger university computer science class sizes. We contribute to this effort through the creation and use of improved automated assessment tools. To enable wide-scale computer science education we do two things. First, we create a framework called Hairball to support the static analysis of Scratch programs targeted for fourth, fifth, and sixth grade students. Scratch is a popular building-block language utilized to pique interest in and teach the basics of computer science. We observe that Hairball allows for rapid curriculum alterations and thus contributes to wide-scale deployment of computer science curriculum. Second, we create a real-time feedback and assessment system utilized in university computer science classes to provide better feedback to students while reducing assessment time. Insights from our analysis of student submission data show that modifications to the system configuration support the way students learn and progress through course material, making it possible for instructors to tailor assignments to optimize learning in growing computer science classes.

  10. Computer science approach to quantum control

    International Nuclear Information System (INIS)

    Janzing, D.

    2006-01-01

    Whereas it is obvious that every computation process is a physical process it has hardly been recognized that many complex physical processes bear similarities to computation processes. This is in particular true for the control of physical systems on the nanoscopic level: usually the system can only be accessed via a rather limited set of elementary control operations and for many purposes only a concatenation of a large number of these basic operations will implement the desired process. This concatenation is in many cases quite similar to building complex programs from elementary steps and principles for designing algorithm may thus be a paradigm for designing control processes. For instance, one can decrease the temperature of one part of a molecule by transferring its heat to the remaining part where it is then dissipated to the environment. But the implementation of such a process involves a complex sequence of electromagnetic pulses. This work considers several hypothetical control processes on the nanoscopic level and show their analogy to computation processes. We show that measuring certain types of quantum observables is such a complex task that every instrument that is able to perform it would necessarily be an extremely powerful computer. Likewise, the implementation of a heat engine on the nanoscale requires to process the heat in a way that is similar to information processing and it can be shown that heat engines with maximal efficiency would be powerful computers, too. In the same way as problems in computer science can be classified by complexity classes we can also classify control problems according to their complexity. Moreover, we directly relate these complexity classes for control problems to the classes in computer science. Unifying notions of complexity in computer science and physics has therefore two aspects: on the one hand, computer science methods help to analyze the complexity of physical processes. On the other hand, reasonable

  11. Computer Learning Through Piaget's Eyes.

    Science.gov (United States)

    Huber, Leonard N.

    1985-01-01

    Discusses Piaget's pre-operational, concrete operational, and formal operational stages and shows how this information sheds light on how children approach computers and computing, particularly with the LOGO programming language. (JN)

  12. Science Prospects And Benefits with Exascale Computing

    Energy Technology Data Exchange (ETDEWEB)

    Kothe, Douglas B [ORNL

    2007-12-01

    Scientific computation has come into its own as a mature technology in all fields of science. Never before have we been able to accurately anticipate, analyze, and plan for complex events that have not yet occurred from the operation of a reactor running at 100 million degrees centigrade to the changing climate a century down the road. Combined with the more traditional approaches of theory and experiment, scientific computation provides a profound tool for insight and solution as we look at complex systems containing billions of components. Nevertheless, it cannot yet do all we would like. Much of scientific computation s potential remains untapped in areas such as materials science, Earth science, energy assurance, fundamental science, biology and medicine, engineering design, and national security because the scientific challenges are far too enormous and complex for the computational resources at hand. Many of these challenges are of immediate global importance. These challenges can be overcome by a revolution in computing that promises real advancement at a greatly accelerated pace. Planned petascale systems (capable of a petaflop, or 1015 floating point operations per second) in the next 3 years and exascale systems (capable of an exaflop, or 1018 floating point operations per second) in the next decade will provide an unprecedented opportunity to attack these global challenges through modeling and simulation. Exascale computers, with a processing capability similar to that of the human brain, will enable the unraveling of longstanding scientific mysteries and present new opportunities. Table ES.1 summarizes these scientific opportunities, their key application areas, and the goals and associated benefits that would result from solutions afforded by exascale computing.

  13. International Conference on Computational Engineering Science

    CERN Document Server

    Yagawa, G

    1988-01-01

    The aim of this Conference was to become a forum for discussion of both academic and industrial research in those areas of computational engineering science and mechanics which involve and enrich the rational application of computers, numerical methods, and mechanics, in modern technology. The papers presented at this Conference cover the following topics: Solid and Structural Mechanics, Constitutive Modelling, Inelastic and Finite Deformation Response, Transient Analysis, Structural Control and Optimization, Fracture Mechanics and Structural Integrity, Computational Fluid Dynamics, Compressible and Incompressible Flow, Aerodynamics, Transport Phenomena, Heat Transfer and Solidification, Electromagnetic Field, Related Soil Mechanics and MHD, Modern Variational Methods, Biomechanics, and Off-Shore-Structural Mechanics.

  14. Application of cluster computing in materials science

    International Nuclear Information System (INIS)

    Kuzmin, A.

    2006-01-01

    Solution of many problems in materials science requires that high performance computing (HPC) be used. Therefore, a cluster computer, Latvian Super-cluster (LASC), was constructed at the Institute of Solid State Physics of the University of Latvia in 2002. The LASC is used for advanced research in the fields of quantum chemistry, solid state physics and nano materials. In this work we overview currently available computational technologies and exemplify their application by interpretation of x-ray absorption spectra for nano-sized ZnO. (author)

  15. 76 Computer Assisted Language Learning (CALL) Software ...

    African Journals Online (AJOL)

    Ike Odimegwu

    combination with other factors which may enhance or ameliorate the ... form of computer-based learning which carries two important features: .... To take some commonplace examples, a ... photographs, and even full-motion video clips.

  16. Vector and parallel processors in computational science

    International Nuclear Information System (INIS)

    Duff, I.S.; Reid, J.K.

    1985-01-01

    These proceedings contain the articles presented at the named conference. These concern hardware and software for vector and parallel processors, numerical methods and algorithms for the computation on such processors, as well as applications of such methods to different fields of physics and related sciences. See hints under the relevant topics. (HSI)

  17. The Student/Library Computer Science Collaborative

    Science.gov (United States)

    Hahn, Jim

    2015-01-01

    With funding from an Institute of Museum and Library Services demonstration grant, librarians of the Undergraduate Library at the University of Illinois at Urbana-Champaign partnered with students in computer science courses to design and build student-centered mobile apps. The grant work called for demonstration of student collaboration…

  18. Soft computing in machine learning

    CERN Document Server

    Park, Jooyoung; Inoue, Atsushi

    2014-01-01

    As users or consumers are now demanding smarter devices, intelligent systems are revolutionizing by utilizing machine learning. Machine learning as part of intelligent systems is already one of the most critical components in everyday tools ranging from search engines and credit card fraud detection to stock market analysis. You can train machines to perform some things, so that they can automatically detect, diagnose, and solve a variety of problems. The intelligent systems have made rapid progress in developing the state of the art in machine learning based on smart and deep perception. Using machine learning, the intelligent systems make widely applications in automated speech recognition, natural language processing, medical diagnosis, bioinformatics, and robot locomotion. This book aims at introducing how to treat a substantial amount of data, to teach machines and to improve decision making models. And this book specializes in the developments of advanced intelligent systems through machine learning. It...

  19. Imprinting Community College Computer Science Education with Software Engineering Principles

    Science.gov (United States)

    Hundley, Jacqueline Holliday

    Although the two-year curriculum guide includes coverage of all eight software engineering core topics, the computer science courses taught in Alabama community colleges limit student exposure to the programming, or coding, phase of the software development lifecycle and offer little experience in requirements analysis, design, testing, and maintenance. We proposed that some software engineering principles can be incorporated into the introductory-level of the computer science curriculum. Our vision is to give community college students a broader exposure to the software development lifecycle. For those students who plan to transfer to a baccalaureate program subsequent to their community college education, our vision is to prepare them sufficiently to move seamlessly into mainstream computer science and software engineering degrees. For those students who plan to move from the community college to a programming career, our vision is to equip them with the foundational knowledge and skills required by the software industry. To accomplish our goals, we developed curriculum modules for teaching seven of the software engineering knowledge areas within current computer science introductory-level courses. Each module was designed to be self-supported with suggested learning objectives, teaching outline, software tool support, teaching activities, and other material to assist the instructor in using it.

  20. Surrounded by Science: Learning Science in Informal Environments

    Science.gov (United States)

    Fenichel, Marilyn; Schweingruber, Heidi A.

    2010-01-01

    Practitioners in informal science settings--museums, after-school programs, science and technology centers, media enterprises, libraries, aquariums, zoos, and botanical gardens--are interested in finding out what learning looks like, how to measure it, and what they can do to ensure that people of all ages, from different backgrounds and cultures,…

  1. Science Hobbyists: Active Users of the Science-Learning Ecosystem

    Science.gov (United States)

    Corin, Elysa N.; Jones, M. Gail; Andre, Thomas; Childers, Gina M.; Stevens, Vanessa

    2017-01-01

    Science hobbyists engage in self-directed, free-choice science learning and many have considerable expertise in their hobby area. This study focused on astronomy and birding hobbyists and examined how they used organizations to support their hobby engagement. Interviews were conducted with 58 amateur astronomers and 49 birders from the midwestern…

  2. [Earth Science Technology Office's Computational Technologies Project

    Science.gov (United States)

    Fischer, James (Technical Monitor); Merkey, Phillip

    2005-01-01

    This grant supported the effort to characterize the problem domain of the Earth Science Technology Office's Computational Technologies Project, to engage the Beowulf Cluster Computing Community as well as the High Performance Computing Research Community so that we can predict the applicability of said technologies to the scientific community represented by the CT project and formulate long term strategies to provide the computational resources necessary to attain the anticipated scientific objectives of the CT project. Specifically, the goal of the evaluation effort is to use the information gathered over the course of the Round-3 investigations to quantify the trends in scientific expectations, the algorithmic requirements and capabilities of high-performance computers to satisfy this anticipated need.

  3. Computational thinking in life science education.

    Directory of Open Access Journals (Sweden)

    Amir Rubinstein

    2014-11-01

    Full Text Available We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1 devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2 focus on discrete notions, rather than on continuous ones, and (3 have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  4. Computational thinking in life science education.

    Science.gov (United States)

    Rubinstein, Amir; Chor, Benny

    2014-11-01

    We join the increasing call to take computational education of life science students a step further, beyond teaching mere programming and employing existing software tools. We describe a new course, focusing on enriching the curriculum of life science students with abstract, algorithmic, and logical thinking, and exposing them to the computational "culture." The design, structure, and content of our course are influenced by recent efforts in this area, collaborations with life scientists, and our own instructional experience. Specifically, we suggest that an effective course of this nature should: (1) devote time to explicitly reflect upon computational thinking processes, resisting the temptation to drift to purely practical instruction, (2) focus on discrete notions, rather than on continuous ones, and (3) have basic programming as a prerequisite, so students need not be preoccupied with elementary programming issues. We strongly recommend that the mere use of existing bioinformatics tools and packages should not replace hands-on programming. Yet, we suggest that programming will mostly serve as a means to practice computational thinking processes. This paper deals with the challenges and considerations of such computational education for life science students. It also describes a concrete implementation of the course and encourages its use by others.

  5. Computer use changes generalization of movement learning.

    Science.gov (United States)

    Wei, Kunlin; Yan, Xiang; Kong, Gaiqing; Yin, Cong; Zhang, Fan; Wang, Qining; Kording, Konrad Paul

    2014-01-06

    Over the past few decades, one of the most salient lifestyle changes for us has been the use of computers. For many of us, manual interaction with a computer occupies a large portion of our working time. Through neural plasticity, this extensive movement training should change our representation of movements (e.g., [1-3]), just like search engines affect memory [4]. However, how computer use affects motor learning is largely understudied. Additionally, as virtually all participants in studies of perception and actions are computer users, a legitimate question is whether insights from these studies bear the signature of computer-use experience. We compared non-computer users with age- and education-matched computer users in standard motor learning experiments. We found that people learned equally fast but that non-computer users generalized significantly less across space, a difference negated by two weeks of intensive computer training. Our findings suggest that computer-use experience shaped our basic sensorimotor behaviors, and this influence should be considered whenever computer users are recruited as study participants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Learning and instruction with computer simulations

    NARCIS (Netherlands)

    de Jong, Anthonius J.M.

    1991-01-01

    The present volume presents the results of an inventory of elements of such a computer learning environment. This inventory was conducted within a DELTA project called SIMULATE. In the project a learning environment that provides intelligent support to learners and that has a simulation as its

  7. Affect and Learning : a computational analysis

    NARCIS (Netherlands)

    Broekens, Douwe Joost

    2007-01-01

    In this thesis we have studied the influence of emotion on learning. We have used computational modelling techniques to do so, more specifically, the reinforcement learning paradigm. Emotion is modelled as artificial affect, a measure that denotes the positiveness versus negativeness of a situation

  8. Activities of the Research Institute for Advanced Computer Science

    Science.gov (United States)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  9. Inventory of Innovative Learning Materials in Marine Science and Technology. UNESCO Reports in Marine Science 60.

    Science.gov (United States)

    Richards, Adrian F.; Richards, Efrosine A.

    The Inventory of Innovative Learning Materials in Marine Science and Technology includes 32 computer-, 148 video-, 16 film-, and 11 CD-ROM-based entries. They concern materials in biosciences (67), chemistry (5), geosciences (16), physics (23), technology (76) and other (20). This first, initial compilations is conceived as the basis for more…

  10. Teaching and Learning in the Mixed-Reality Science Classroom

    Science.gov (United States)

    Tolentino, Lisa; Birchfield, David; Megowan-Romanowicz, Colleen; Johnson-Glenberg, Mina C.; Kelliher, Aisling; Martinez, Christopher

    2009-12-01

    As emerging technologies become increasingly inexpensive and robust, there is an exciting opportunity to move beyond general purpose computing platforms to realize a new generation of K-12 technology-based learning environments. Mixed-reality technologies integrate real world components with interactive digital media to offer new potential to combine best practices in traditional science learning with the powerful affordances of audio/visual simulations. This paper introduces the realization of a learning environment called SMALLab, the Situated Multimedia Arts Learning Laboratory. We present a recent teaching experiment for high school chemistry students. A mix of qualitative and quantitative research documents the efficacy of this approach for students and teachers. We conclude that mixed-reality learning is viable in mainstream high school classrooms and that students can achieve significant learning gains when this technology is co-designed with educators.

  11. Multistategy Learning for Computer Vision

    National Research Council Canada - National Science Library

    Bhanu, Bir

    1998-01-01

    .... With the goal of achieving robustness, our research at UCR is directed towards learning parameters, feedback, contexts, features, concepts, and strategies of IU algorithms for model-based object recognition...

  12. Learning general phonological rules from distributional information: a computational model.

    Science.gov (United States)

    Calamaro, Shira; Jarosz, Gaja

    2015-04-01

    Phonological rules create alternations in the phonetic realizations of related words. These rules must be learned by infants in order to identify the phonological inventory, the morphological structure, and the lexicon of a language. Recent work proposes a computational model for the learning of one kind of phonological alternation, allophony (Peperkamp, Le Calvez, Nadal, & Dupoux, 2006). This paper extends the model to account for learning of a broader set of phonological alternations and the formalization of these alternations as general rules. In Experiment 1, we apply the original model to new data in Dutch and demonstrate its limitations in learning nonallophonic rules. In Experiment 2, we extend the model to allow it to learn general rules for alternations that apply to a class of segments. In Experiment 3, the model is further extended to allow for generalization by context; we argue that this generalization must be constrained by linguistic principles. Copyright © 2014 Cognitive Science Society, Inc.

  13. The Fourth Revolution--Computers and Learning.

    Science.gov (United States)

    Bork, Alfred

    The personal computer is sparking a major historical change in the way people learn, a change that could lead to the disappearance of formal education as we know it. The computer can help resolve many of the difficulties now crippling education by enabling expert teachers and curriculum developers to prepare interactive and individualized…

  14. A Financial Technology Entrepreneurship Program for Computer Science Students

    Science.gov (United States)

    Lawler, James P.; Joseph, Anthony

    2011-01-01

    Education in entrepreneurship is becoming a critical area of curricula for computer science students. Few schools of computer science have a concentration in entrepreneurship in the computing curricula. The paper presents Technology Entrepreneurship in the curricula at a leading school of computer science and information systems, in which students…

  15. Problem Solving Model for Science Learning

    Science.gov (United States)

    Alberida, H.; Lufri; Festiyed; Barlian, E.

    2018-04-01

    This research aims to develop problem solving model for science learning in junior high school. The learning model was developed using the ADDIE model. An analysis phase includes curriculum analysis, analysis of students of SMP Kota Padang, analysis of SMP science teachers, learning analysis, as well as the literature review. The design phase includes product planning a science-learning problem-solving model, which consists of syntax, reaction principle, social system, support system, instructional impact and support. Implementation of problem-solving model in science learning to improve students' science process skills. The development stage consists of three steps: a) designing a prototype, b) performing a formative evaluation and c) a prototype revision. Implementation stage is done through a limited trial. A limited trial was conducted on 24 and 26 August 2015 in Class VII 2 SMPN 12 Padang. The evaluation phase was conducted in the form of experiments at SMPN 1 Padang, SMPN 12 Padang and SMP National Padang. Based on the development research done, the syntax model problem solving for science learning at junior high school consists of the introduction, observation, initial problems, data collection, data organization, data analysis/generalization, and communicating.

  16. Advances in Computer Science and Information Engineering Volume 2

    CERN Document Server

    Lin, Sally

    2012-01-01

    CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.

  17. Advances in Computer Science and Information Engineering Volume 1

    CERN Document Server

    Lin, Sally

    2012-01-01

    CSIE2012 is an integrated conference concentrating its focus on Computer Science and Information Engineering . In the proceeding, you can learn much more knowledge about Computer Science and Information Engineering of researchers from all around the world. The main role of the proceeding is to be used as an exchange pillar for researchers who are working in the mentioned fields. In order to meet the high quality of Springer, AISC series, the organization committee has made their efforts to do the following things. Firstly, poor quality paper has been refused after reviewing course by anonymous referee experts. Secondly, periodically review meetings have been held around the reviewers about five times for exchanging reviewing suggestions. Finally, the conference organizers had several preliminary sessions before the conference. Through efforts of different people and departments, the conference will be successful and fruitful.

  18. Computational Investigations of Multiword Chunks in Language Learning.

    Science.gov (United States)

    McCauley, Stewart M; Christiansen, Morten H

    2017-07-01

    Second-language learners rarely arrive at native proficiency in a number of linguistic domains, including morphological and syntactic processing. Previous approaches to understanding the different outcomes of first- versus second-language learning have focused on cognitive and neural factors. In contrast, we explore the possibility that children and adults may rely on different linguistic units throughout the course of language learning, with specific focus on the granularity of those units. Following recent psycholinguistic evidence for the role of multiword chunks in online language processing, we explore the hypothesis that children rely more heavily on multiword units in language learning than do adults learning a second language. To this end, we take an initial step toward using large-scale, corpus-based computational modeling as a tool for exploring the granularity of speakers' linguistic units. Employing a computational model of language learning, the Chunk-Based Learner, we compare the usefulness of chunk-based knowledge in accounting for the speech of second-language learners versus children and adults speaking their first language. Our findings suggest that while multiword units are likely to play a role in second-language learning, adults may learn less useful chunks, rely on them to a lesser extent, and arrive at them through different means than children learning a first language. Copyright © 2017 Cognitive Science Society, Inc.

  19. Informal Science Learning in the Formal Classroom

    Science.gov (United States)

    Walsh, Lori; Straits, William

    2014-01-01

    In this article the authors share advice from the viewpoints of both a formal and informal educator that will help teachers identify the right Informal Science Institutions (ISIs)--institutions that specialize in learning that occurs outside of the school setting--to maximize their students' learning and use informal education to their…

  20. Strategic Game Moves Mediate Implicit Science Learning

    Science.gov (United States)

    Rowe, Elizabeth; Baker, Ryan S.; Asbell-Clarke, Jodi

    2015-01-01

    Educational games have the potential to be innovative forms of learning assessment, by allowing us to not just study their knowledge but the process that takes students to that knowledge. This paper examines the mediating role of players' moves in digital games on changes in their pre-post classroom measures of implicit science learning. We…

  1. SPORT SCIENCE STUDENTS‟ BELIEFS ABOUT LANGUAGE LEARNING

    Directory of Open Access Journals (Sweden)

    Suvi Akhiriyah

    2017-04-01

    Full Text Available There are many reasons for students of Sport Science to use English. Yet, knowing the importance of learning English is sometimes not enough to encourage them to learn English well. Based on the experience in teaching them, erroneous belief seems to be held by many of them. It arouses curiosity about the beliefs which might be revealed to help the students to be successful in language learning. By investigating sport science students‘ beliefs about language learning, it is expected that types of the beliefs which they hold can be revealed. Understanding students‘ beliefs about language learning is essential because these beliefs can have possible consequences for second language learning and instruction. This study is expected to provide empirical evidence. The subjects of this study were 1st semester students majoring in Sport Science of Sport Science Faculty. There were 4 classes with 38 students in each class. There were approximately 152 students as the population of the study. The sample was taken by using random sampling. All members of the population received the questionnaire. The questionnaire which was later handed back to the researcher is considered as the sample. The instrument in this study is the newest version of Beliefs About Language Learning Inventory (BALLI, version 2.0, developed by Horwitz to asses the beliefs about learning a foreign language.

  2. Psychological Implications of Discovery Learning in Science

    Science.gov (United States)

    Kaufman, Barry A

    1971-01-01

    Describes five aspects of learning as applied to science instruction. Learning readiness, meaningfulness of material, activity and passivity, motivation, and transfer of training are presented in relation to psychological views stated by Ausubel, Bruner, Gagne, Hendrix, Karplus, Piaget, and Suchman. Views given by Gagne and Karplus are considered…

  3. Computational modeling of epiphany learning.

    Science.gov (United States)

    Chen, Wei James; Krajbich, Ian

    2017-05-02

    Models of reinforcement learning (RL) are prevalent in the decision-making literature, but not all behavior seems to conform to the gradual convergence that is a central feature of RL. In some cases learning seems to happen all at once. Limited prior research on these "epiphanies" has shown evidence of sudden changes in behavior, but it remains unclear how such epiphanies occur. We propose a sequential-sampling model of epiphany learning (EL) and test it using an eye-tracking experiment. In the experiment, subjects repeatedly play a strategic game that has an optimal strategy. Subjects can learn over time from feedback but are also allowed to commit to a strategy at any time, eliminating all other options and opportunities to learn. We find that the EL model is consistent with the choices, eye movements, and pupillary responses of subjects who commit to the optimal strategy (correct epiphany) but not always of those who commit to a suboptimal strategy or who do not commit at all. Our findings suggest that EL is driven by a latent evidence accumulation process that can be revealed with eye-tracking data.

  4. Recent Research in Science Teaching and Learning

    Science.gov (United States)

    Allen, Deborah

    2012-01-01

    This article features recent research in science teaching and learning. It presents three current articles of interest in life sciences education, as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as "Abstract available," full text may be…

  5. Advancing Research on Undergraduate Science Learning

    Science.gov (United States)

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  6. The effect of a pretest in an interactive, multimodal pretraining system for learning science concepts

    NARCIS (Netherlands)

    Bos, Floor/Floris; Terlouw, C.; Pilot, Albert

    2009-01-01

    In line with the cognitive theory of multimedia learning by Moreno and Mayer (2007), an interactive, multimodal learning environment was designed for the pretraining of science concepts in the joint area of physics, chemistry, biology, applied mathematics, and computer sciences. In the experimental

  7. Guest Editorial: Special Section on Learning Systems for Science and Technology Education

    NARCIS (Netherlands)

    Bredeweg, B.; McLaren, B.M.; Biswas, B.

    2013-01-01

    Computer-based technology can significantly enhance science education and training, as well as shape both what and how people learn. With this special issue of the IEEE Transactions on Learning Technologies (TLT), we present contributions that address education and training in science and technology

  8. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Esmond [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Evans, Katherine J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Caldwell, Peter [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Charles [Univ. of Texas, Austin, TX (United States); Kerstin, Van Dam [Brookhaven National Lab. (BNL), Upton, NY (United States); Leung, Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Martin, Daniel F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ostrouchov, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tuminaro, Raymond [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Paul [Univ. of California, Davis, CA (United States); Wild, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Williams, Samuel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-01-01

    This report presents results from the DOE-sponsored workshop titled, ``Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for

  9. Advances in Cross-Cutting Ideas for Computational Climate Science

    Energy Technology Data Exchange (ETDEWEB)

    Ng, E.; Evans, K.; Caldwell, P.; Hoffman, F.; Jackson, C.; Van Dam, K.; Leung, R.; Martin, D.; Ostrouchov, G.; Tuminaro, R.; Ullrich, P.; Wild, S.; Williams, S.

    2017-01-01

    This report presents results from the DOE-sponsored workshop titled, Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1) process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling

  10. Innovations and advances in computing, informatics, systems sciences, networking and engineering

    CERN Document Server

    Elleithy, Khaled

    2015-01-01

    Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering  This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Informatics, and Systems Sciences, and Engineering. It includes selected papers from the conference proceedings of the Eighth and some selected papers of the Ninth International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE 2012 & CISSE 2013). Coverage includes topics in: Industrial Electronics, Technology & Automation, Telecommunications and Networking, Systems, Computing Sciences and Software Engineering, Engineering Education, Instructional Technology, Assessment, and E-learning.  ·       Provides the latest in a series of books growing out of the International Joint Conferences on Computer, Information, and Systems Sciences, and Engineering; ·       Includes chapters in the most a...

  11. Who am I? ~ Undergraduate Computer Science Student

    OpenAIRE

    Ferris, Jane

    2012-01-01

    As part of a school review process a survey of the students was designed to gain insight into who the students of the school were. The survey was a voluntary anonymous online survey. Students were able to skip questions and select more than one option in some questions. This was to reduce frustration with participation in the survey and ensure that the survey was completed. This conference details the average undergraduate Computer Science student of a large third level institute.

  12. Developmental Changes in Learning: Computational Mechanisms and Social Influences

    Directory of Open Access Journals (Sweden)

    Florian Bolenz

    2017-11-01

    Full Text Available Our ability to learn from the outcomes of our actions and to adapt our decisions accordingly changes over the course of the human lifespan. In recent years, there has been an increasing interest in using computational models to understand developmental changes in learning and decision-making. Moreover, extensions of these models are currently applied to study socio-emotional influences on learning in different age groups, a topic that is of great relevance for applications in education and health psychology. In this article, we aim to provide an introduction to basic ideas underlying computational models of reinforcement learning and focus on parameters and model variants that might be of interest to developmental scientists. We then highlight recent attempts to use reinforcement learning models to study the influence of social information on learning across development. The aim of this review is to illustrate how computational models can be applied in developmental science, what they can add to our understanding of developmental mechanisms and how they can be used to bridge the gap between psychological and neurobiological theories of development.

  13. Research Institute for Advanced Computer Science

    Science.gov (United States)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  14. Designing Computer-Supported Complex Systems Curricula for the Next Generation Science Standards in High School Science Classrooms

    Directory of Open Access Journals (Sweden)

    Susan A. Yoon

    2016-12-01

    Full Text Available We present a curriculum and instruction framework for computer-supported teaching and learning about complex systems in high school science classrooms. This work responds to a need in K-12 science education research and practice for the articulation of design features for classroom instruction that can address the Next Generation Science Standards (NGSS recently launched in the USA. We outline the features of the framework, including curricular relevance, cognitively rich pedagogies, computational tools for teaching and learning, and the development of content expertise, and provide examples of how the framework is translated into practice. We follow this up with evidence from a preliminary study conducted with 10 teachers and 361 students, aimed at understanding the extent to which students learned from the activities. Results demonstrated gains in students’ complex systems understanding and biology content knowledge. In interviews, students identified influences of various aspects of the curriculum and instruction framework on their learning.

  15. Perspectives on learning, learning to teach and teaching elementary science

    Science.gov (United States)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  16. CLIMANDES climate science e-learning course

    Science.gov (United States)

    Hunziker, Stefan; Giesche, Alena; Jacques-Coper, Martín; Brönnimann, Stefan

    2016-04-01

    Over the past three years, members of the Oeschger Centre for Climate Change Research (OCCR) and the Climatology group at the Institute of Geography at the University of Bern, have developed a new climate science e-learning course as part of the CLIMANDES project. This project is a collaboration between Peruvian and Swiss government, research, and education institutions. The aim of this e-learning material is to strengthen education in climate sciences at the higher education and professional level. The course was recently published in 2015 by Geographica Bernensia, and is hosted online by the Peruvian Servicio Nacional de Meteorología e Hidrología (SENAMHI): http://surmx.com/chamilo/climandes/e-learning/. The course is furthermore available for offline use through USB sticks, and a number of these are currently being distributed to regional training centers around the world by the WMO (World Meteorological Organization). There are eight individual modules of the course that each offer approximately 2 hours of individual learning material, featuring several additional learning activities, such as the online game "The Great Climate Poker" (http://www.climatepoker.unibe.ch/). Overall, over 50 hours of learning material are provided by this course. The modules can be integrated into university lectures, used as single units in workshops, or be combined to serve as a full course. This e-learning course presents a broad spectrum of topics in climate science, including an introduction to climatology, atmospheric and ocean circulation, climate forcings, climate observations and data, working with data products, and climate models. This e-learning course offers a novel approach to teaching climate science to students around the world, particularly through three important features. Firstly, the course is unique in its diverse range of learning strategies, which include individual reading material, video lectures, interactive graphics, responsive quizzes, as well as group

  17. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    Science.gov (United States)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  18. [Research activities in applied mathematics, fluid mechanics, and computer science

    Science.gov (United States)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  19. NASA Center for Computational Sciences: History and Resources

    Science.gov (United States)

    2000-01-01

    The Nasa Center for Computational Sciences (NCCS) has been a leading capacity computing facility, providing a production environment and support resources to address the challenges facing the Earth and space sciences research community.

  20. Archives: Journal of Computer Science and Its Application

    African Journals Online (AJOL)

    Items 1 - 9 of 9 ... Archives: Journal of Computer Science and Its Application. Journal Home > Archives: Journal of Computer Science and Its Application. Log in or Register to get access to full text downloads.

  1. Institute for Computer Applications in Science and Engineering (ICASE)

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.

  2. Journal of Computer Science and Its Application: Site Map

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application: Site Map. Journal Home > About the Journal > Journal of Computer Science and Its Application: Site Map. Log in or Register to get access to full text downloads.

  3. Journal of Computer Science and Its Application: About this journal

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application: About this journal. Journal Home > Journal of Computer Science and Its Application: About this journal. Log in or Register to get access to full text downloads.

  4. Journal of Computer Science and Its Application: Journal Sponsorship

    African Journals Online (AJOL)

    Journal of Computer Science and Its Application: Journal Sponsorship. Journal Home > About the Journal > Journal of Computer Science and Its Application: Journal Sponsorship. Log in or Register to get access to full text downloads.

  5. Science Learning outside the Classroom

    Science.gov (United States)

    Robelen, Erik W.; Sparks, Sarah D.; Cavanagh, Sean; Ash, Katie; Deily, Mary-Ellen Phelps; Adams, Caralee

    2011-01-01

    As concern mounts that U.S. students lack sufficient understanding of science and related fields, it has become increasingly clear that schools can't tackle the challenge alone. This special report explores the field often called "informal science education," which is gaining broader recognition for its role in helping young people…

  6. Architecture, systems research and computational sciences

    CERN Document Server

    2012-01-01

    The Winter 2012 (vol. 14 no. 1) issue of the Nexus Network Journal is dedicated to the theme “Architecture, Systems Research and Computational Sciences”. This is an outgrowth of the session by the same name which took place during the eighth international, interdisciplinary conference “Nexus 2010: Relationships between Architecture and Mathematics, held in Porto, Portugal, in June 2010. Today computer science is an integral part of even strictly historical investigations, such as those concerning the construction of vaults, where the computer is used to survey the existing building, analyse the data and draw the ideal solution. What the papers in this issue make especially evident is that information technology has had an impact at a much deeper level as well: architecture itself can now be considered as a manifestation of information and as a complex system. The issue is completed with other research papers, conference reports and book reviews.

  7. Computational science: Emerging opportunities and challenges

    International Nuclear Information System (INIS)

    Hendrickson, Bruce

    2009-01-01

    In the past two decades, computational methods have emerged as an essential component of the scientific and engineering enterprise. A diverse assortment of scientific applications has been simulated and explored via advanced computational techniques. Computer vendors have built enormous parallel machines to support these activities, and the research community has developed new algorithms and codes, and agreed on standards to facilitate ever more ambitious computations. However, this track record of success will be increasingly hard to sustain in coming years. Power limitations constrain processor clock speeds, so further performance improvements will need to come from ever more parallelism. This higher degree of parallelism will require new thinking about algorithms, programming models, and architectural resilience. Simultaneously, cutting edge science increasingly requires more complex simulations with unstructured and adaptive grids, and multi-scale and multi-physics phenomena. These new codes will push existing parallelization strategies to their limits and beyond. Emerging data-rich scientific applications are also in need of high performance computing, but their complex spatial and temporal data access patterns do not perform well on existing machines. These interacting forces will reshape high performance computing in the coming years.

  8. Common Core Science Standards: Implications for Students with Learning Disabilities

    Science.gov (United States)

    Scruggs, Thomas E.; Brigham, Frederick J.; Mastropieri, Margo A.

    2013-01-01

    The Common Core Science Standards represent a new effort to increase science learning for all students. These standards include a focus on English and language arts aspects of science learning, and three dimensions of science standards, including practices of science, crosscutting concepts of science, and disciplinary core ideas in the various…

  9. Design Principles for "Thriving in Our Digital World": A High School Computer Science Course

    Science.gov (United States)

    Veletsianos, George; Beth, Bradley; Lin, Calvin; Russell, Gregory

    2016-01-01

    "Thriving in Our Digital World" is a technology-enhanced dual enrollment course introducing high school students to computer science through project- and problem-based learning. This article describes the evolution of the course and five lessons learned during the design, development, implementation, and iteration of the course from its…

  10. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  11. Excessive online computer use and learning disabilities

    OpenAIRE

    Griffiths, MD

    2010-01-01

    Online gaming has become a very popular leisure activity among adolescents. Research suggests that a small minority of adolescents may display problematic gaming behaviour and that some of these individuals may be addicted to online games, including those who have learning disabilities. This article begins by examining a case study of a 15-year old adolescent with a learning disability who appeared to be addicted to various computer and internet applications. Despite the potential negative ef...

  12. Computer science in Dutch secondary education: independent or integrated?

    NARCIS (Netherlands)

    van der Sijde, Peter; Doornekamp, B.G.

    1992-01-01

    Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an

  13. Empirical Determination of Competence Areas to Computer Science Education

    Science.gov (United States)

    Zendler, Andreas; Klaudt, Dieter; Seitz, Cornelia

    2014-01-01

    The authors discuss empirically determined competence areas to K-12 computer science education, emphasizing the cognitive level of competence. The results of a questionnaire with 120 professors of computer science serve as a database. By using multi-dimensional scaling and cluster analysis, four competence areas to computer science education…

  14. Hispanic Women Overcoming Deterrents to Computer Science: A Phenomenological Study

    Science.gov (United States)

    Herling, Lourdes

    2011-01-01

    The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the…

  15. Marrying Content and Process in Computer Science Education

    Science.gov (United States)

    Zendler, A.; Spannagel, C.; Klaudt, D.

    2011-01-01

    Constructivist approaches to computer science education emphasize that as well as knowledge, thinking skills and processes are involved in active knowledge construction. K-12 computer science curricula must not be based on fashions and trends, but on contents and processes that are observable in various domains of computer science, that can be…

  16. Factors Influencing Exemplary Science Teachers' Levels of Computer Use

    Science.gov (United States)

    Hakverdi, Meral; Dana, Thomas M.; Swain, Colleen

    2011-01-01

    The purpose of this study was to examine exemplary science teachers' use of technology in science instruction, factors influencing their level of computer use, their level of knowledge/skills in using specific computer applications for science instruction, their use of computer-related applications/tools during their instruction, and their…

  17. Advances and challenges in computational plasma science

    International Nuclear Information System (INIS)

    Tang, W M; Chan, V S

    2005-01-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This

  18. Teachers' Organization of Participation Structures for Teaching Science with Computer Technology

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2016-08-01

    This paper describes a qualitative study that investigated the nature of the participation structures and how the participation structures were organized by four science teachers when they constructed and communicated science content in their classrooms with computer technology. Participation structures focus on the activity structures and processes in social settings like classrooms thereby providing glimpses into the complex dynamics of teacher-students interactions, configurations, and conventions during collective meaning making and knowledge creation. Data included observations, interviews, and focus group interviews. Analysis revealed that the dominant participation structure evident within participants' instruction with computer technology was ( Teacher) initiation-( Student and Teacher) response sequences-( Teacher) evaluate participation structure. Three key events characterized the how participants organized this participation structure in their classrooms: setting the stage for interactive instruction, the joint activity, and maintaining accountability. Implications include the following: (1) teacher educators need to tap into the knowledge base that underscores science teachers' learning to teach philosophies when computer technology is used in instruction. (2) Teacher educators need to emphasize the essential idea that learning and cognition is not situated within the computer technology but within the pedagogical practices, specifically the participation structures. (3) The pedagogical practices developed with the integration or with the use of computer technology underscored by the teachers' own knowledge of classroom contexts and curriculum needs to be the focus for how students learn science content with computer technology instead of just focusing on how computer technology solely supports students learning of science content.

  19. From learning science to teaching science: What transfers?

    Science.gov (United States)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways

  20. Lateral Learning for Science Reporters

    International Development Research Centre (IDRC) Digital Library (Canada)

    Cathy Egan

    with social, religious, philosophical, ethical, and political ... they may even feel disconnected from the science carried out in their own ... “networking” is an effective tool in fostering communication for .... less-developed places. And mentors ...

  1. Deep Learning with Dynamic Computation Graphs

    OpenAIRE

    Looks, Moshe; Herreshoff, Marcello; Hutchins, DeLesley; Norvig, Peter

    2017-01-01

    Neural networks that compute over graph structures are a natural fit for problems in a variety of domains, including natural language (parse trees) and cheminformatics (molecular graphs). However, since the computation graph has a different shape and size for every input, such networks do not directly support batched training or inference. They are also difficult to implement in popular deep learning libraries, which are based on static data-flow graphs. We introduce a technique called dynami...

  2. Science Learning Cycle Method to Enhance the Conceptual Understanding and the Learning Independence on Physics Learning

    Science.gov (United States)

    Sulisworo, Dwi; Sutadi, Novitasari

    2017-01-01

    There have been many studies related to the implementation of cooperative learning. However, there are still many problems in school related to the learning outcomes on science lesson, especially in physics. The aim of this study is to observe the application of science learning cycle (SLC) model on improving scientific literacy for secondary…

  3. Computer science education for medical informaticians.

    Science.gov (United States)

    Logan, Judith R; Price, Susan L

    2004-03-18

    The core curriculum in the education of medical informaticians remains a topic of concern and discussion. This paper reports on a survey of medical informaticians with Master's level credentials that asked about computer science (CS) topics or skills that they need in their employment. All subjects were graduates or "near-graduates" of a single medical informatics Master's program that they entered with widely varying educational backgrounds. The survey instrument was validated for face and content validity prior to use. All survey items were rated as having some degree of importance in the work of these professionals, with retrieval and analysis of data from databases, database design and web technologies deemed most important. Least important were networking skills and object-oriented design and concepts. These results are consistent with other work done in the field and suggest that strong emphasis on technical skills, particularly databases, data analysis, web technologies, computer programming and general computer science are part of the core curriculum for medical informatics.

  4. An IoT and Wearable Technology Hackathon for Promoting Careers in Computer Science

    Science.gov (United States)

    Byrne, Jake Rowan; O'Sullivan, Katriona; Sullivan, Kevin

    2017-01-01

    This paper explores the use of a constructivist 21st-century learning model to implement a week-long workshop, delivered as a "hackathon," to encourage preuniversity teenagers to pursue careers in STEM, with a particular emphasis on computer science. For Irish preuniversity students, their experience of computing can vary from word…

  5. States Move toward Computer Science Standards. Policy Update. Vol. 23, No. 17

    Science.gov (United States)

    Tilley-Coulson, Eve

    2016-01-01

    While educators and parents recognize computer science as a key skill for career readiness, only five states have adopted learning standards in this area. Tides are changing, however, as the Every Student Succeeds Act (ESSA) recognizes with its call on states to provide a "well-rounded education" for students, to include computer science…

  6. Pedagogy Matters: Engaging Diverse Students as Community Researchers in Three Computer Science Classrooms

    Science.gov (United States)

    Ryoo, Jean Jinsun

    2013-01-01

    Computing occupations are among the fastest growing in the U.S. and technological innovations are central to solving world problems. Yet only our most privileged students are learning to use technology for creative purposes through rigorous computer science education opportunities. In order to increase access for diverse students and females who…

  7. Machine Learning Techniques in Clinical Vision Sciences.

    Science.gov (United States)

    Caixinha, Miguel; Nunes, Sandrina

    2017-01-01

    This review presents and discusses the contribution of machine learning techniques for diagnosis and disease monitoring in the context of clinical vision science. Many ocular diseases leading to blindness can be halted or delayed when detected and treated at its earliest stages. With the recent developments in diagnostic devices, imaging and genomics, new sources of data for early disease detection and patients' management are now available. Machine learning techniques emerged in the biomedical sciences as clinical decision-support techniques to improve sensitivity and specificity of disease detection and monitoring, increasing objectively the clinical decision-making process. This manuscript presents a review in multimodal ocular disease diagnosis and monitoring based on machine learning approaches. In the first section, the technical issues related to the different machine learning approaches will be present. Machine learning techniques are used to automatically recognize complex patterns in a given dataset. These techniques allows creating homogeneous groups (unsupervised learning), or creating a classifier predicting group membership of new cases (supervised learning), when a group label is available for each case. To ensure a good performance of the machine learning techniques in a given dataset, all possible sources of bias should be removed or minimized. For that, the representativeness of the input dataset for the true population should be confirmed, the noise should be removed, the missing data should be treated and the data dimensionally (i.e., the number of parameters/features and the number of cases in the dataset) should be adjusted. The application of machine learning techniques in ocular disease diagnosis and monitoring will be presented and discussed in the second section of this manuscript. To show the clinical benefits of machine learning in clinical vision sciences, several examples will be presented in glaucoma, age-related macular degeneration

  8. Computing as Empirical Science – Evolution of a Concept

    Directory of Open Access Journals (Sweden)

    Polak Paweł

    2016-12-01

    Full Text Available This article presents the evolution of philosophical and methodological considerations concerning empiricism in computer/computing science. In this study, we trace the most important current events in the history of reflection on computing. The forerunners of Artificial Intelligence H.A. Simon and A. Newell in their paper Computer Science As Empirical Inquiry (1975 started these considerations. Later the concept of empirical computer science was developed by S.S. Shapiro, P. Wegner, A.H. Eden and P.J. Denning. They showed various empirical aspects of computing. This led to a view of the science of computing (or science of information processing - the science of general scope. Some interesting contemporary ways towards a generalized perspective on computations were also shown (e.g. natural computing.

  9. Non-Determinism: An Abstract Concept in Computer Science Studies

    Science.gov (United States)

    Armoni, Michal; Gal-Ezer, Judith

    2007-01-01

    Non-determinism is one of the most important, yet abstract, recurring concepts of Computer Science. It plays an important role in Computer Science areas such as formal language theory, computability theory, distributed computing, and operating systems. We conducted a series of studies on the perception of non-determinism. In the current research,…

  10. Inclusive science education: learning from Wizard

    Science.gov (United States)

    Koomen, Michele Hollingsworth

    2016-06-01

    This case study reports on a student with special education needs in an inclusive seventh grade life science classroom using a framework of disability studies in education. Classroom data collected over 13 weeks consisted of qualitative (student and classroom observations, interviews, student work samples and video-taped classroom teaching and learning record using CETP-COP) methods. Three key findings emerged in the analysis and synthesis of the data: (1) The learning experiences in science for Wizard are marked by a dichotomy straddled between autonomy ["Sometimes I do" (get it)] and dependence ["Sometimes I don't (get it)], (2) the process of learning is fragmented for Wizard because it is underscored by an emerging disciplinary literacy, (3) the nature of the inclusion is fragile and functional. Implications for classroom practices that support students with learning disabilities include focusing on student strengths, intentional use of disciplinary literacy strategies, and opportunities for eliciting student voice in decision making.

  11. Collaborative learning in radiologic science education.

    Science.gov (United States)

    Yates, Jennifer L

    2006-01-01

    Radiologic science is a complex health profession, requiring the competent use of technology as well as the ability to function as part of a team, think critically, exercise independent judgment, solve problems creatively and communicate effectively. This article presents a review of literature in support of the relevance of collaborative learning to radiologic science education. In addition, strategies for effective design, facilitation and authentic assessment of activities are provided for educators wishing to incorporate collaborative techniques into their program curriculum. The connection between the benefits of collaborative learning and necessary workplace skills, particularly in the areas of critical thinking, creative problem solving and communication skills, suggests that collaborative learning techniques may be particularly useful in the education of future radiologic technologists. This article summarizes research identifying the benefits of collaborative learning for adult education and identifying the link between these benefits and the necessary characteristics of medical imaging technologists.

  12. A Human/Computer Learning Network to Improve Biodiversity Conservation and Research

    OpenAIRE

    Kelling, Steve; Gerbracht, Jeff; Fink, Daniel; Lagoze, Carl; Wong, Weng-Keen; Yu, Jun; Damoulas, Theodoros; Gomes, Carla

    2012-01-01

    In this paper we describe eBird, a citizen-science project that takes advantage of the human observational capacity to identify birds to species, which is then used to accurately represent patterns of bird occurrences across broad spatial and temporal extents. eBird employs artificial intelligence techniques such as machine learning to improve data quality by taking advantage of the synergies between human computation and mechanical computation. We call this a Human-Computer Learning Network,...

  13. Future Scenarios for Mobile Science Learning

    Science.gov (United States)

    Burden, Kevin; Kearney, Matthew

    2016-04-01

    This paper adopts scenario planning as a methodological approach and tool to help science educators reconceptualise their use of mobile technologies across various different futures. These `futures' are set out neither as predictions nor prognoses but rather as stimuli to encourage greater discussion and reflection around the use of mobile technologies in science education. Informed by the literature and our empirical data, we consider four alternative futures for science education in a mobile world, with a particular focus on networked collaboration and student agency. We conclude that `seamless learning', whereby students are empowered to use their mobile technologies to negotiate across physical and virtual boundaries (e.g. between school and out-of-school activities), may be the most significant factor in encouraging educators to rethink their existing pedagogical patterns, thereby realizing some of the promises of contextualised participatory science learning.

  14. Collaborative Visualization Project: shared-technology learning environments for science learning

    Science.gov (United States)

    Pea, Roy D.; Gomez, Louis M.

    1993-01-01

    Project-enhanced science learning (PESL) provides students with opportunities for `cognitive apprenticeships' in authentic scientific inquiry using computers for data-collection and analysis. Student teams work on projects with teacher guidance to develop and apply their understanding of science concepts and skills. We are applying advanced computing and communications technologies to augment and transform PESL at-a-distance (beyond the boundaries of the individual school), which is limited today to asynchronous, text-only networking and unsuitable for collaborative science learning involving shared access to multimedia resources such as data, graphs, tables, pictures, and audio-video communication. Our work creates user technology (a Collaborative Science Workbench providing PESL design support and shared synchronous document views, program, and data access; a Science Learning Resource Directory for easy access to resources including two-way video links to collaborators, mentors, museum exhibits, media-rich resources such as scientific visualization graphics), and refine enabling technologies (audiovisual and shared-data telephony, networking) for this PESL niche. We characterize participation scenarios for using these resources and we discuss national networked access to science education expertise.

  15. Learning and the cooperative computational universe

    NARCIS (Netherlands)

    Adriaans, P.; Adriaans, P.; van Benthem, J.

    2008-01-01

    In the summer of 1956, a number of scientists gathered at the Dartmouth College in Hanover, New Hampshire. Their goal was to study human intelligence with the help of computers. Their central hypothesis was: "that every aspect of learning or any other feature of intelligence can in principle be so

  16. Learning and Teaching with a Computer Scanner

    Science.gov (United States)

    Planinsic, G.; Gregorcic, B.; Etkina, E.

    2014-01-01

    This paper introduces the readers to simple inquiry-based activities (experiments with supporting questions) that one can do with a computer scanner to help students learn and apply the concepts of relative motion in 1 and 2D, vibrational motion and the Doppler effect. We also show how to use these activities to help students think like…

  17. Contemporary machine learning: techniques for practitioners in the physical sciences

    Science.gov (United States)

    Spears, Brian

    2017-10-01

    Machine learning is the science of using computers to find relationships in data without explicitly knowing or programming those relationships in advance. Often without realizing it, we employ machine learning every day as we use our phones or drive our cars. Over the last few years, machine learning has found increasingly broad application in the physical sciences. This most often involves building a model relationship between a dependent, measurable output and an associated set of controllable, but complicated, independent inputs. The methods are applicable both to experimental observations and to databases of simulated output from large, detailed numerical simulations. In this tutorial, we will present an overview of current tools and techniques in machine learning - a jumping-off point for researchers interested in using machine learning to advance their work. We will discuss supervised learning techniques for modeling complicated functions, beginning with familiar regression schemes, then advancing to more sophisticated decision trees, modern neural networks, and deep learning methods. Next, we will cover unsupervised learning and techniques for reducing the dimensionality of input spaces and for clustering data. We'll show example applications from both magnetic and inertial confinement fusion. Along the way, we will describe methods for practitioners to help ensure that their models generalize from their training data to as-yet-unseen test data. We will finally point out some limitations to modern machine learning and speculate on some ways that practitioners from the physical sciences may be particularly suited to help. This work was performed by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. COMPUTATIONAL SCIENCE IN IN THE EDUCATIONAL CURRICULUM

    Directory of Open Access Journals (Sweden)

    José Manuel Cabrera Delgado

    2017-06-01

    Full Text Available How to incorporate Computer Science (CS into the basic education curriculum continues to be subject of controversy at the European level. Without there being a defined strategy on behalf of the European Union in this respect, several countries have begun their incorporation showing us the advantages and difficulties of such action. Main elements of CS, such as computational thinking and coding, are already being taught in schools, establishing the need for a curriculum adapted to the ages of the students, training for teachers and enough resources. The purpose of this article, from the knowledge of the experience of these countries, is to respond, or at least to reflect, on the answers to the following questions: what is CS?, what are their main elements?, why is it necessary?, at what age should CS be taught?, what requirements are needed for their incorporation?

  19. The Impact of Computer Use on Learning of Quadratic Functions

    Science.gov (United States)

    Pihlap, Sirje

    2017-01-01

    Studies of the impact of various types of computer use on the results of learning and student motivation have indicated that the use of computers can increase learning motivation, and that computers can have a positive effect, a negative effect, or no effect at all on learning outcomes. Some results indicate that it is not computer use itself that…

  20. Computer and Information Sciences III : 27th International Symposium on Computer and Information Sciences

    CERN Document Server

    Lent, Ricardo

    2013-01-01

    Information technology is the enabling foundation science and technology for all of human activity at the beginning of the 21st century, and advances in this area are crucial to all of us. These advances are taking place all over the world and can only be followed and perceived when researchers from all over the world assemble, and exchange their ideas in conferences such as the one presented in this proceedings volume regarding the 27th International Symposium on Computer and Information Systems, held at the Institut Henri Poincare' in Paris on October 3 and 4, 2012. Computer and Information Sciences III: 27th International Symposium on Computer and Information Sciences contains novel advances in the state of the art covering applied research in electrical and computer engineering and computer science, across the broad area of information technology. It provides access to the main innovative activities in research across the world, and points to the results obtained recently by some of the most active teams ...

  1. Computer and Information Sciences II : 26th International Symposium on Computer and Information Sciences

    CERN Document Server

    Lent, Ricardo; Sakellari, Georgia

    2012-01-01

    Information technology is the enabling foundation for all of human activity at the beginning of the 21st century, and advances in this area are crucial to all of us. These advances are taking place all over the world and can only be followed and perceived when researchers from all over the world assemble, and exchange their ideas in conferences such as the one presented in this proceedings volume regarding the 26th International Symposium on Computer and Information Systems, held at the Royal Society in London on 26th to 28th September 2011. Computer and Information Sciences II contains novel advances in the state of the art covering applied research in electrical and computer engineering and computer science, across the broad area of information technology. It provides access to the main innovative activities in research across the world, and points to the results obtained recently by some of the most active teams in both Europe and Asia.

  2. The quantum computer game: citizen science

    Science.gov (United States)

    Damgaard, Sidse; Mølmer, Klaus; Sherson, Jacob

    2013-05-01

    Progress in the field of quantum computation is hampered by daunting technical challenges. Here we present an alternative approach to solving these by enlisting the aid of computer players around the world. We have previously examined a quantum computation architecture involving ultracold atoms in optical lattices and strongly focused tweezers of light. In The Quantum Computer Game (see http://www.scienceathome.org/), we have encapsulated the time-dependent Schrödinger equation for the problem in a graphical user interface allowing for easy user input. Players can then search the parameter space with real-time graphical feedback in a game context with a global high-score that rewards short gate times and robustness to experimental errors. The game which is still in a demo version has so far been tried by several hundred players. Extensions of the approach to other models such as Gross-Pitaevskii and Bose-Hubbard are currently under development. The game has also been incorporated into science education at high-school and university level as an alternative method for teaching quantum mechanics. Initial quantitative evaluation results are very positive. AU Ideas Center for Community Driven Research, CODER.

  3. Physical Computing and Its Scope--Towards a Constructionist Computer Science Curriculum with Physical Computing

    Science.gov (United States)

    Przybylla, Mareen; Romeike, Ralf

    2014-01-01

    Physical computing covers the design and realization of interactive objects and installations and allows students to develop concrete, tangible products of the real world, which arise from the learners' imagination. This can be used in computer science education to provide students with interesting and motivating access to the different topic…

  4. Student Engagement in a Computer Rich Science Classroom

    Science.gov (United States)

    Hunter, Jeffrey C.

    The purpose of this study was to examine the student lived experience when using computers in a rural science classroom. The overarching question the project sought to examine was: How do rural students relate to computers as a learning tool in comparison to a traditional science classroom? Participant data were collected using a pre-study survey, Experience Sampling during class and post-study interviews. Students want to use computers in their classrooms. Students shared that they overwhelmingly (75%) preferred a computer rich classroom to a traditional classroom (25%). Students reported a higher level of engagement in classes that use technology/computers (83%) versus those that do not use computers (17%). A computer rich classroom increased student control and motivation as reflected by a participant who shared; "by using computers I was more motivated to get the work done" (Maggie, April 25, 2014, survey). The researcher explored a rural school environment. Rural populations represent a large number of students and appear to be underrepresented in current research. The participants, tenth grade Biology students, were sampled in a traditional teacher led class without computers for one week followed by a week using computers daily. Data supported that there is a new gap that separates students, a device divide. This divide separates those who have access to devices that are robust enough to do high level class work from those who do not. Although cellular phones have reduced the number of students who cannot access the Internet, they may have created a false feeling that access to a computer is no longer necessary at home. As this study shows, although most students have Internet access, fewer have access to a device that enables them to complete rigorous class work at home. Participants received little or no training at school in proper, safe use of a computer and the Internet. It is clear that the majorities of students are self-taught or receive guidance

  5. Teaching and Learning of Computational Modelling in Creative Shaping Processes

    Directory of Open Access Journals (Sweden)

    Daniela REIMANN

    2017-10-01

    Full Text Available Today, not only diverse design-related disciplines are required to actively deal with the digitization of information and its potentials and side effects for education processes. In Germany, technology didactics developed in vocational education and computer science education in general education, both separated from media pedagogy as an after-school program. Media education is not a subject in German schools yet. However, in the paper we argue for an interdisciplinary approach to learn about computational modeling in creative processes and aesthetic contexts. It crosses the borders of programming technology, arts and design processes in meaningful contexts. Educational scenarios using smart textile environments are introduced and reflected for project based learning.

  6. Robotics as an integration subject in the computer science university studies. The experience of the University of Almeria

    Directory of Open Access Journals (Sweden)

    Manuela Berenguel Soria

    2012-11-01

    Full Text Available This work presents a global view of the role of robotics in computer science studies, mainly in university degrees. The main motivation of the use of robotics in these studies deals with the following issues: robotics permits to put in practice many computer science fundamental topics, it is a multidisciplinary area which allows to complete the basic knowledge of any computer science student, it facilitates the practice and learning of basic competences of any engineer (for instance, teamwork, and there is a wide market looking for people with robotics knowledge. These ideas are discussed from our own experience in the University of Almeria acquired through the studies of Computer Science Technical Engineering, Computer Science Engineering, Computer Science Degree and Computer Science Postgraduate.

  7. Science of Learning Is Learning of Science: Why We Need a Dialectical Approach to Science Education Research

    Science.gov (United States)

    Roth, Wolff-Michael

    2012-01-01

    Research on learning science in informal settings and the formal (sometimes experimental) study of learning in classrooms or psychological laboratories tend to be separate domains, even drawing on different theories and methods. These differences make it difficult to compare knowing and learning observed in one paradigm/context with those observed…

  8. The Learning Sciences and Liberal Education

    Science.gov (United States)

    Budwig, Nancy

    2013-01-01

    This article makes the case for a new framing of liberal education based on several decades of research emerging from the learning and developmental sciences. This work suggests that general knowledge stems from acquiring both the habits of mind and repertoires of practice that develop from participation in knowledge-building communities. Such…

  9. Science + Writing = Super Learning. Writing Workshop.

    Science.gov (United States)

    Bower, Paula Rogovin

    1993-01-01

    Article presents suggestions for motivating elementary students to learn by combining science and writing. The strategies include planning the right environment; teaching the scientific method; establishing a link to literature; and making time for students to observe, experiment, and write. (SM)

  10. A research program in empirical computer science

    Science.gov (United States)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  11. Laptop Use, Interactive Science Software, and Science Learning Among At-Risk Students

    Science.gov (United States)

    Zheng, Binbin; Warschauer, Mark; Hwang, Jin Kyoung; Collins, Penelope

    2014-08-01

    This year-long, quasi-experimental study investigated the impact of the use of netbook computers and interactive science software on fifth-grade students' science learning processes, academic achievement, and interest in further science, technology, engineering, and mathematics (STEM) study within a linguistically diverse school district in California. Analysis of students' state standardized science test scores indicated that the program helped close gaps in scientific achievement between at-risk learners (i.e., English learners, Hispanics, and free/reduced-lunch recipients) and their counterparts. Teacher and student interviews and classroom observations suggested that computer-supported visual representations and interactions supported diverse learners' scientific understanding and inquiry and enabled more individualized and differentiated instruction. Finally, interviews revealed that the program had a positive impact on students' motivation in science and on their interest in pursuing science-related careers. This study suggests that technology-facilitated science instruction is beneficial for improving at-risk students' science achievement, scaffolding students' scientific understanding, and strengthening students' motivation to pursue STEM-related careers.

  12. Gradient Learning Algorithms for Ontology Computing

    Science.gov (United States)

    Gao, Wei; Zhu, Linli

    2014-01-01

    The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752

  13. Gradient Learning Algorithms for Ontology Computing

    Directory of Open Access Journals (Sweden)

    Wei Gao

    2014-01-01

    Full Text Available The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting.

  14. Computer - based modeling in extract sciences research -III ...

    African Journals Online (AJOL)

    Molecular modeling techniques have been of great applicability in the study of the biological sciences and other exact science fields like agriculture, mathematics, computer science and the like. In this write up, a list of computer programs for predicting, for instance, the structure of proteins has been provided. Discussions on ...

  15. Computer-aided classification of lung nodules on computed tomography images via deep learning technique

    Directory of Open Access Journals (Sweden)

    Hua KL

    2015-08-01

    Full Text Available Kai-Lung Hua,1 Che-Hao Hsu,1 Shintami Chusnul Hidayati,1 Wen-Huang Cheng,2 Yu-Jen Chen3 1Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, 2Research Center for Information Technology Innovation, Academia Sinica, 3Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, Taiwan Abstract: Lung cancer has a poor prognosis when not diagnosed early and unresectable lesions are present. The management of small lung nodules noted on computed tomography scan is controversial due to uncertain tumor characteristics. A conventional computer-aided diagnosis (CAD scheme requires several image processing and pattern recognition steps to accomplish a quantitative tumor differentiation result. In such an ad hoc image analysis pipeline, every step depends heavily on the performance of the previous step. Accordingly, tuning of classification performance in a conventional CAD scheme is very complicated and arduous. Deep learning techniques, on the other hand, have the intrinsic advantage of an automatic exploitation feature and tuning of performance in a seamless fashion. In this study, we attempted to simplify the image analysis pipeline of conventional CAD with deep learning techniques. Specifically, we introduced models of a deep belief network and a convolutional neural network in the context of nodule classification in computed tomography images. Two baseline methods with feature computing steps were implemented for comparison. The experimental results suggest that deep learning methods could achieve better discriminative results and hold promise in the CAD application domain. Keywords: nodule classification, deep learning, deep belief network, convolutional neural network

  16. Improving together: collaborative learning in science communication

    Science.gov (United States)

    Stiller-Reeve, Mathew

    2015-04-01

    Most scientists today recognise that science communication is an important part of the scientific process. Despite this recognition, science writing and communication are generally taught outside the normal academic schedule. If universities offer such courses, they are generally short-term and intensive. On the positive side, such courses rarely fail to motivate. At no fault of their own, the problem with such courses lies in their ephemeral nature. The participants rarely complete a science communication course with an immediate and pressing need to apply these skills. And so the skills fade. We believe that this stalls real progress in the improvement of science communication across the board. Continuity is one of the keys to success! Whilst we wait for the academic system to truly integrate science communication, we can test and develop other approaches. We suggest a new approach that aims to motivate scientists to continue nurturing their communication skills. This approach adopts a collaborative learning framework where scientists form writing groups that meet regularly at different institutes around the world. The members of the groups learn, discuss and improve together. The participants produce short posts, which are published online. In this way, the participants learn and cement basic writing skills. These skills are transferrable, and can be applied to scientific articles as well as other science communication media. In this presentation we reflect on an ongoing project, which applies a collaborative learning framework to help young and early career scientists improve their writing skills. We see that this type of project could be extended to other media such as podcasts, or video shorts.

  17. Computers in a Learning Society. Testimony given before the House Science and Technology Subcommittee on Domestic and International Planning, Analysis, and Cooperation (Washington, D.C., October 13, 1977).

    Science.gov (United States)

    Brown, John Seely; Goldstein, Ira

    A revolution that will transform learning in our society, altering both the methods and the content of education, has been made possible by harnessing tomorrow's powerful computer technology to serve as intelligent instructional systems. The unique quality of the computer that makes a revolution possible is that it can serve not only as a…

  18. A Cognitive Model for Problem Solving in Computer Science

    Science.gov (United States)

    Parham, Jennifer R.

    2009-01-01

    According to industry representatives, computer science education needs to emphasize the processes involved in solving computing problems rather than their solutions. Most of the current assessment tools used by universities and computer science departments analyze student answers to problems rather than investigating the processes involved in…

  19. 6th International Conference on Computer Science and its Applications

    CERN Document Server

    Stojmenovic, Ivan; Jeong, Hwa; Yi, Gangman

    2015-01-01

    The 6th FTRA International Conference on Computer Science and its Applications (CSA-14) will be held in Guam, USA, Dec. 17 - 19, 2014. CSA-14 presents a comprehensive conference focused on the various aspects of advances in engineering systems in computer science, and applications, including ubiquitous computing, U-Health care system, Big Data, UI/UX for human-centric computing, Computing Service, Bioinformatics and Bio-Inspired Computing and will show recent advances on various aspects of computing technology, Ubiquitous Computing Services and its application.

  20. The sociability of computer-supported collaborative learning environments

    NARCIS (Netherlands)

    Kreijns, C.J.; Kirschner, P.A.; Jochems, W.M.G.

    2002-01-01

    There is much positive research on computer-supported collaborative learning (CSCL) environments in asynchronous distributed learning groups (DLGs). There is also research that shows that contemporary CSCL environments do not completely fulfil expectations on supporting interactive group learning,

  1. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    OpenAIRE

    TOJDE

    2009-01-01

    This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trip...

  2. Participation in Informal Science Learning Experiences: The Rich Get Richer?

    Science.gov (United States)

    DeWitt, Jennifer; Archer, Louise

    2017-01-01

    Informal science learning (ISL) experiences have been found to provide valuable opportunities to engage with and learn about science and, as such, form a key part of the STEM learning ecosystem. However, concerns remain around issues of equity and access. The Enterprising Science study builds upon previous research in this area and uses the…

  3. Portable Tablets in Science Museum Learning

    DEFF Research Database (Denmark)

    Gronemann, Sigurd Trolle

    2016-01-01

    Despite the increasing use of portable tablets in learning, their impact has received little attention in research. In five different projects, this media-ethnographic and design-based analysis of the use of portable tablets as a learning resource in science museums investigates how young people...... is identified. It is argued that, paradoxically, museums’ decisions to innovate by introducing new technologies, such as portable tablets, and new pedagogies to support them conflict with many young people’s traditional ideas of museums and learning. The assessment of the implications of museums’ integration...... of portable tablets indicates that in making pedagogical transformations to accommodate new technologies, museums risk opposing didactic intention if pedagogies do not sufficiently attend to young learners’ systemic expectations to learning and to their expectations to the digital experience influenced...

  4. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    Science.gov (United States)

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  5. Gender Differences in the Use of Computers, Programming, and Peer Interactions in Computer Science Classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-01-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new…

  6. E-learn Computed Tomographic Angiography

    DEFF Research Database (Denmark)

    Havsteen, Inger; Christensen, Anders; Nielsen, Jens K

    2012-01-01

    BACKGROUND: Computed tomographic angiography (CTA) is widely available in emergency rooms to assess acute stroke patients. To standardize readings and educate new readers, we developed a 3-step e-learning tool based on the test-teach-retest methodology in 2 acute stroke scenarios: vascular...... occlusion and "spot sign" in acute intracerebral hemorrhage. We hypothesized that an e-learning program enhances reading skills in physicians of varying experience. METHODS: We developed an HTML-based program with a teaching segment and 2 matching test segments. Tests were taken before and after...... sign correctly 69% before versus 92% after teaching (P = .009) and reported a median self-perceived diagnostic certainty of 50% versus 75% (P = .030). Self-perceived diagnostic certainty revealed no significant increase for vascular occlusion. CONCLUSIONS: The e-learning program is a useful educational...

  7. Brains--Computers--Machines: Neural Engineering in Science Classrooms

    Science.gov (United States)

    Chudler, Eric H.; Bergsman, Kristen Clapper

    2016-01-01

    Neural engineering is an emerging field of high relevance to students, teachers, and the general public. This feature presents online resources that educators and scientists can use to introduce students to neural engineering and to integrate core ideas from the life sciences, physical sciences, social sciences, computer science, and engineering…

  8. Enhancing interest in statistics among computer science students using computer tool entrepreneur role play

    Science.gov (United States)

    Judi, Hairulliza Mohamad; Sahari @ Ashari, Noraidah; Eksan, Zanaton Hj

    2017-04-01

    Previous research in Malaysia indicates that there is a problem regarding attitude towards statistics among students. They didn't show positive attitude in affective, cognitive, capability, value, interest and effort aspects although did well in difficulty. This issue should be given substantial attention because students' attitude towards statistics may give impacts on the teaching and learning process of the subject. Teaching statistics using role play is an appropriate attempt to improve attitudes to statistics, to enhance the learning of statistical techniques and statistical thinking, and to increase generic skills. The objectives of the paper are to give an overview on role play in statistics learning and to access the effect of these activities on students' attitude and learning in action research framework. The computer tool entrepreneur role play is conducted in a two-hour tutorial class session of first year students in Faculty of Information Sciences and Technology (FTSM), Universiti Kebangsaan Malaysia, enrolled in Probability and Statistics course. The results show that most students feel that they have enjoyable and great time in the role play. Furthermore, benefits and disadvantages from role play activities were highlighted to complete the review. Role play is expected to serve as an important activities that take into account students' experience, emotions and responses to provide useful information on how to modify student's thinking or behavior to improve learning.

  9. Children's learning of science through literature

    Science.gov (United States)

    O'Kelly, James B.

    This study examined the effects of picture books belonging to different literary genres on the learning of science by primary grade students. These genres included modern fantasy, fiction, and nonfiction. The students were exposed to two topics through books, butterflies and snails. The study focused on the effects of those books on children's expressions of (a) knowledge, (b) erroneous information, (c) creative ideas, and (d) the support required to elicit information and ideas from the children. Sixty-one children from three kindergarten and three second grade participated. Children were designated by their teachers as being high or low with respect to academic achievement. These categories allowed measurement of interactions between literary genres, grade levels, and academic achievement levels. Children first learned about butterflies, and then about snails. For each topic, children were interviewed about their knowledge and questions of the topic. Teachers engaged their classes with a book about the topic. The children were re-interviewed about their knowledge and questions about the topic. No class encountered the same genre of book twice. Comparisons of the children's prior knowledge of butterflies and snails indicated that the children possessed significantly more knowledge about butterflies than about snails. Literary genre had one significant effect on children's learning about snails. Contrary to expectations, children who encountered nonfiction produced significantly more creative expressions about snails than children who encountered faction or modern fantasy. No significant effects for literary genre were demonstrated with respect to children's learning about butterflies. The outcomes of the study indicated that nonfiction had its strongest impact on the learning of science when children have a relatively small fund of knowledge about a topic. This study has implications for future research. The inclusion of a larger number of students, classes, and

  10. Roles of Teachers in Orchestrating Learning in Elementary Science Classrooms

    Science.gov (United States)

    Zhai, Junqing; Tan, Aik-Ling

    2015-01-01

    This study delves into the different roles that elementary science teachers play in the classroom to orchestrate science learning opportunities for students. Examining the classroom practices of three elementary science teachers in Singapore, we found that teachers shuttle between four key roles in enabling student learning in science. Teachers…

  11. The Role of Research on Science Teaching and Learning

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Research on science teaching and learning plays an important role in improving science literacy, a goal called for in the National Science Education Standards (NRC 1996) and supported by the National Science Teachers Association (NSTA 2003). NSTA promotes a research agenda that is focused on the goal of enhancing student learning through effective…

  12. Gender differences in the use of computers, programming, and peer interactions in computer science classrooms

    Science.gov (United States)

    Stoilescu, Dorian; Egodawatte, Gunawardena

    2010-12-01

    Research shows that female and male students in undergraduate computer science programs view computer culture differently. Female students are interested more in the use of computers than in doing programming, whereas male students see computer science mainly as a programming activity. The overall purpose of our research was not to find new definitions for computer science culture but to see how male and female students see themselves involved in computer science practices, how they see computer science as a successful career, and what they like and dislike about current computer science practices. The study took place in a mid-sized university in Ontario. Sixteen students and two instructors were interviewed to get their views. We found that male and female views are different on computer use, programming, and the pattern of student interactions. Female and male students did not have any major issues in using computers. In computing programming, female students were not so involved in computing activities whereas male students were heavily involved. As for the opinions about successful computer science professionals, both female and male students emphasized hard working, detailed oriented approaches, and enjoying playing with computers. The myth of the geek as a typical profile of successful computer science students was not found to be true.

  13. Computer simulation in nuclear science and engineering

    International Nuclear Information System (INIS)

    Akiyama, Mamoru; Miya, Kenzo; Iwata, Shuichi; Yagawa, Genki; Kondo, Shusuke; Hoshino, Tsutomu; Shimizu, Akinao; Takahashi, Hiroshi; Nakagawa, Masatoshi.

    1992-01-01

    The numerical simulation technology used for the design of nuclear reactors includes the scientific fields of wide range, and is the cultivated technology which grew in the steady efforts to high calculation accuracy through safety examination, reliability verification test, the assessment of operation results and so on. Taking the opportunity of putting numerical simulation to practical use in wide fields, the numerical simulation of five basic equations which describe the natural world and the progress of its related technologies are reviewed. It is expected that numerical simulation technology contributes to not only the means of design study but also the progress of science and technology such as the construction of new innovative concept, the exploration of new mechanisms and substances, of which the models do not exist in the natural world. The development of atomic energy and the progress of computers, Boltzmann's transport equation and its periphery, Navier-Stokes' equation and its periphery, Maxwell's electromagnetic field equation and its periphery, Schroedinger wave equation and its periphery, computational solid mechanics and its periphery, and probabilistic risk assessment and its periphery are described. (K.I.)

  14. Investigating Your School's Science Teaching and Learning Culture

    Science.gov (United States)

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  15. Collaboration, Collusion and Plagiarism in Computer Science Coursework

    OpenAIRE

    Robert FRASER

    2014-01-01

    We present an overview of the nature of academic dishonesty with respect to computer science coursework. We discuss the efficacy of various policies for collaboration with regard to student education, and we consider a number of strategies for mitigating dishonest behaviour on computer science coursework by addressing some common causes. Computer science coursework is somewhat unique, in that there often exist ideal solutions for problems, and work may be shared and copied with very little ef...

  16. Functional Automata - Formal Languages for Computer Science Students

    Directory of Open Access Journals (Sweden)

    Marco T. Morazán

    2014-12-01

    Full Text Available An introductory formal languages course exposes advanced undergraduate and early graduate students to automata theory, grammars, constructive proofs, computability, and decidability. Programming students find these topics to be challenging or, in many cases, overwhelming and on the fringe of Computer Science. The existence of this perception is not completely absurd since students are asked to design and prove correct machines and grammars without being able to experiment nor get immediate feedback, which is essential in a learning context. This article puts forth the thesis that the theory of computation ought to be taught using tools for actually building computations. It describes the implementation and the classroom use of a library, FSM, designed to provide students with the opportunity to experiment and test their designs using state machines, grammars, and regular expressions. Students are able to perform random testing before proceeding with a formal proof of correctness. That is, students can test their designs much like they do in a programming course. In addition, the library easily allows students to implement the algorithms they develop as part of the constructive proofs they write. Providing students with this ability ought to be a new trend in the formal languages classroom.

  17. 5th Computer Science On-line Conference

    CERN Document Server

    Senkerik, Roman; Oplatkova, Zuzana; Silhavy, Petr; Prokopova, Zdenka

    2016-01-01

    This volume is based on the research papers presented in the 5th Computer Science On-line Conference. The volume Artificial Intelligence Perspectives in Intelligent Systems presents modern trends and methods to real-world problems, and in particular, exploratory research that describes novel approaches in the field of artificial intelligence. New algorithms in a variety of fields are also presented. The Computer Science On-line Conference (CSOC 2016) is intended to provide an international forum for discussions on the latest research results in all areas related to Computer Science. The addressed topics are the theoretical aspects and applications of Computer Science, Artificial Intelligences, Cybernetics, Automation Control Theory and Software Engineering.

  18. Informatics everywhere : information and computation in society, science, and technology

    NARCIS (Netherlands)

    Verhoeff, T.

    2013-01-01

    Informatics is about information and its processing, also known as computation. Nowadays, children grow up taking smartphones and the internet for granted. Information and computation rule society. Science uses computerized equipment to collect, analyze, and visualize massive amounts of data.

  19. Joint Science Education Project: Learning about polar science in Greenland

    Science.gov (United States)

    Foshee Reed, Lynn

    2014-05-01

    The Joint Science Education Project (JSEP) is a successful summer science and culture opportunity in which students and teachers from the United States, Denmark, and Greenland come together to learn about the research conducted in Greenland and the logistics involved in supporting the research. They conduct experiments first-hand and participate in inquiry-based educational activities alongside scientists and graduate students at a variety of locations in and around Kangerlussuaq, Greenland, and on the top of the ice sheet at Summit Station. The Joint Committee, a high-level forum involving the Greenlandic, Danish and U.S. governments, established the Joint Science Education Project in 2007, as a collaborative diplomatic effort during the International Polar Year to: • Educate and inspire the next generation of polar scientists; • Build strong networks of students and teachers among the three countries; and • Provide an opportunity to practice language and communication skills Since its inception, JSEP has had 82 student and 22 teacher participants and has involved numerous scientists and field researchers. The JSEP format has evolved over the years into its current state, which consists of two field-based subprograms on site in Greenland: the Greenland-led Kangerlussuaq Science Field School and the U.S.-led Arctic Science Education Week. All travel, transportation, accommodations, and meals are provided to the participants at no cost. During the 2013 Kangerlussuaq Science Field School, students and teachers gathered data in a biodiversity study, created and set geo- and EarthCaches, calculated glacial discharge at a melt-water stream and river, examined microbes and tested for chemical differences in a variety of lakes, measured ablation at the edge of the Greenland Ice Sheet, and learned about fossils, plants, animals, minerals and rocks of Greenland. In addition, the students planned and led cultural nights, sharing food, games, stories, and traditions of

  20. Research in applied mathematics, numerical analysis, and computer science

    Science.gov (United States)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  1. COMPUTER SCIENCE IN THE EDUCATION OF UKRAINE: FORMATION PROSPECTS

    OpenAIRE

    Viktor Shakotko

    2016-01-01

    The article deals with the formation of computer science as science and school subject as well in the system of education in Ukraine taking into consideration the development tendencies of this science in the world. The introduction of the notion« information technology», «computer science» and «informatics science» into the science, their correlation and the peculiarities of subject sphere determination are analyzed through the historical aspect. The author considers the points of view conce...

  2. Twenty-First Century Learning: Communities, Interaction and Ubiquitous Computing

    Science.gov (United States)

    Leh, Amy S.C.; Kouba, Barbara; Davis, Dirk

    2005-01-01

    Advanced technology makes 21st century learning, communities and interactions unique and leads people to an era of ubiquitous computing. The purpose of this article is to contribute to the discussion of learning in the 21st century. The paper will review literature on learning community, community learning, interaction, 21st century learning and…

  3. Embedding spiritual value through science learning

    Science.gov (United States)

    Johan, H.; Suhandi, A.; Wulan, A. R.; Widiasih; Ruyani, A.; Karyadi, B.; Sipriyadi

    2018-05-01

    The purpose of this study was to embed spiritual value through science learning program especially earth planet. Various phenomena in earth planet describe a divinity of super power. This study used quasi experimental method with one group pre-test-post-test design. Convenience sampling was conducted in this study. 23 pre-service physics teacher was involved. Pre-test and post-test used a questionnaire had been conducted to collected data of spiritual attitude. Open ended question had been utilized at post-test to collected data. A fourth indicators of spiritual value related to divinity of God was used to embed spiritual value. The results show a shifted of students’ awareness to divinity of God. Before implementing the earth planet learning, 85.8% of total students strongly agree that learning activity embed spiritual value while after learning process, it increased be 93.4%. After learning earth planet, it known that students’ spiritual value was influenced by character of earth planet concept which unobservable and media visual which display each incredible phenomena process in our earth planet. It can be concluded that spiritual value can be embedded through unobservable phenomena of during learning earth planet process.

  4. Exploring Theoretical Computer Science Using Paper Toys (for kids)

    DEFF Research Database (Denmark)

    Valente, Andrea

    2004-01-01

    In this paper we propose the structure of an exploratory course in theoretical computer science intended for a broad range of students (and especially kids). The course is built on computational cards, a simple paper toy, in which playing cards are computational elements; computing machines can...

  5. Learning to teach science in urban schools

    Science.gov (United States)

    Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea

    2001-10-01

    Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.

  6. Use of Digital Game Based Learning and Gamification in Secondary School Science: The Effect on Student Engagement, Learning and Gender Difference

    Science.gov (United States)

    Khan, Amna; Ahmad, Farzana Hayat; Malik, Muhammad Muddassir

    2017-01-01

    This study aimed to identify the impact of a game based learning (GBL) application using computer technologies on student engagement in secondary school science classrooms. The literature reveals that conventional Science teaching techniques (teacher-centered lecture and teaching), which foster rote learning among students, are one of the major…

  7. Fourth International Conference on Computer Science and Its Applications (CIIA 2013)

    CERN Document Server

    Mohamed, Otmane; Bellatreche, Ladjel; Recent Advances in Robotics and Automation

    2013-01-01

        "During the last decades Computational Intelligence has emerged and showed its contributions in various broad research communities (computer science, engineering, finance, economic, decision making, etc.). This was done by proposing approaches and algorithms based either on turnkey techniques belonging to the large panoply of solutions offered by computational intelligence such as data mining, genetic algorithms, bio-inspired methods, Bayesian networks, machine learning, fuzzy logic, artificial neural networks, etc. or inspired by computational intelligence techniques to develop new ad-hoc algorithms for the problem under consideration.    This volume is a comprehensive collection of extended contributions from the 4th International Conference on Computer Science and Its Applications (CIIA’2013) organized into four main tracks: Track 1: Computational Intelligence, Track  2: Security & Network Technologies, Track  3: Information Technology and Track 4: Computer Systems and Applications. This ...

  8. The fourth International Conference on Information Science and Cloud Computing

    Science.gov (United States)

    This book comprises the papers accepted by the fourth International Conference on Information Science and Cloud Computing (ISCC), which was held from 18-19 December, 2015 in Guangzhou, China. It has 70 papers divided into four parts. The first part focuses on Information Theory with 20 papers; the second part emphasizes Machine Learning also containing 21 papers; in the third part, there are 21 papers as well in the area of Control Science; and the last part with 8 papers is dedicated to Cloud Science. Each part can be used as an excellent reference by engineers, researchers and students who need to build a knowledge base of the most current advances and state-of-practice in the topics covered by the ISCC conference. Special thanks go to Professor Deyu Qi, General Chair of ISCC 2015, for his leadership in supervising the organization of the entire conference; Professor Tinghuai Ma, Program Chair, and members of program committee for evaluating all the submissions and ensuring the selection of only the highest quality papers; and the authors for sharing their ideas, results and insights. We sincerely hope that you enjoy reading papers included in this book.

  9. Computing Whether She Belongs: Stereotypes Undermine Girls' Interest and Sense of Belonging in Computer Science

    Science.gov (United States)

    Master, Allison; Cheryan, Sapna; Meltzoff, Andrew N.

    2016-01-01

    Computer science has one of the largest gender disparities in science, technology, engineering, and mathematics. An important reason for this disparity is that girls are less likely than boys to enroll in necessary "pipeline courses," such as introductory computer science. Two experiments investigated whether high-school girls' lower…

  10. Interdisciplinary research and education at the biology-engineering-computer science interface: a perspective.

    Science.gov (United States)

    Tadmor, Brigitta; Tidor, Bruce

    2005-09-01

    Progress in the life sciences, including genome sequencing and high-throughput experimentation, offers an opportunity for understanding biology and medicine from a systems perspective. This 'new view', which complements the more traditional component-based approach, involves the integration of biological research with approaches from engineering disciplines and computer science. The result is more than a new set of technologies. Rather, it promises a fundamental reconceptualization of the life sciences based on the development of quantitative and predictive models to describe crucial processes. To achieve this change, learning communities are being formed at the interface of the life sciences, engineering and computer science. Through these communities, research and education will be integrated across disciplines and the challenges associated with multidisciplinary team-based science will be addressed.

  11. Towards a Serious Game to Help Students Learn Computer Programming

    Directory of Open Access Journals (Sweden)

    Mathieu Muratet

    2009-01-01

    Full Text Available Video games are part of our culture like TV, movies, and books. We believe that this kind of software can be used to increase students' interest in computer science. Video games with other goals than entertainment, serious games, are present, today, in several fields such as education, government, health, defence, industry, civil security, and science. This paper presents a study around a serious game dedicated to strengthening programming skills. Real-Time Strategy, which is a popular game genre, seems to be the most suitable kind of game to support such a serious game. From programming teaching features to video game characteristics, we define a teaching organisation to experiment if a serious game can be adapted to learn programming.

  12. It's not maths; it's science: exploring thinking dispositions, learning thresholds and mindfulness in science learning

    Science.gov (United States)

    Quinnell, R.; Thompson, R.; LeBard, R. J.

    2013-09-01

    Developing quantitative skills, or being academically numerate, is part of the curriculum agenda in science teaching and learning. For many of our students, being asked to 'do maths' as part of 'doing science' leads to disengagement from learning. Notions of 'I can't do maths' speak of a rigidity of mind, a 'standoff', forming a barrier to learning in science that needs to be addressed if we, as science educators, are to offer solutions to the so-called 'maths problem' and to support students as they move from being novice to expert. Moving from novice to expert is complex and we lean on several theoretical frameworks (thinking dispositions, threshold concepts and mindfulness in learning) to characterize this pathway in science, with a focus on quantitative skills. Fluid thinking and application of numeracy skills are required to manipulate experimental data sets and are integral to our science practice; we need to stop students from seeing them as optional 'maths' or 'statistics' tasks within our discipline. Being explicit about the ways those in the discipline think, how quantitative data is processed, and allowing places for students to address their skills (including their confidence) offer some ways forward.

  13. Computer games: Apprehension of learning strategies

    Directory of Open Access Journals (Sweden)

    Carlos Antonio Bruno da Silva

    2003-12-01

    Full Text Available Computer games and mainly videogames have proved to be an important tendency in Brazilian children’s play. They are part of the playful culture, which associates modern technology to traditional play preserving the importance of the latter. Based on Vygotsky and Chadwick’s ideas, this work studies the alternatives in the use of videogame by the occupational therapist, educator or parents, aiming prevention of learning difficulty by means of apprehension of learning strategies. Sixty children were investigated under dialectic, descriptive qualitative/quantitative focus. There was a semi-structured interview, direct observation and focused group applied to this intentional sample. Out of the 60 children playing in 3 videogame rental shops in Fortaleza-CE and Quixadá-CE, 30 aged 4 to 6 years old and the other 30 aged 7 and 8. Results indicate that the determination that the videogame is played in-group favors the apprehension of learning and affective strategies, processing, and meta-cognition. Therefore, videogame can be considered an excellent resource in terms of preventing learning difficulties, enabling children to their reality.

  14. Computer science teacher professional development in the United States: a review of studies published between 2004 and 2014

    Science.gov (United States)

    Menekse, Muhsin

    2015-10-01

    While there has been a remarkable interest to make computer science a core K-12 academic subject in the United States, there is a shortage of K-12 computer science teachers to successfully implement computer sciences courses in schools. In order to enhance computer science teacher capacity, training programs have been offered through teacher professional development. In this study, the main goal was to systematically review the studies regarding computer science professional development to understand the scope, context, and effectiveness of these programs in the past decade (2004-2014). Based on 21 journal articles and conference proceedings, this study explored: (1) Type of professional development organization and source of funding, (2) professional development structure and participants, (3) goal of professional development and type of evaluation used, (4) specific computer science concepts and training tools used, (5) and their effectiveness to improve teacher practice and student learning.

  15. Computational ghost imaging using deep learning

    Science.gov (United States)

    Shimobaba, Tomoyoshi; Endo, Yutaka; Nishitsuji, Takashi; Takahashi, Takayuki; Nagahama, Yuki; Hasegawa, Satoki; Sano, Marie; Hirayama, Ryuji; Kakue, Takashi; Shiraki, Atsushi; Ito, Tomoyoshi

    2018-04-01

    Computational ghost imaging (CGI) is a single-pixel imaging technique that exploits the correlation between known random patterns and the measured intensity of light transmitted (or reflected) by an object. Although CGI can obtain two- or three-dimensional images with a single or a few bucket detectors, the quality of the reconstructed images is reduced by noise due to the reconstruction of images from random patterns. In this study, we improve the quality of CGI images using deep learning. A deep neural network is used to automatically learn the features of noise-contaminated CGI images. After training, the network is able to predict low-noise images from new noise-contaminated CGI images.

  16. Developing Deep Learning Applications for Life Science and Pharma Industry.

    Science.gov (United States)

    Siegismund, Daniel; Tolkachev, Vasily; Heyse, Stephan; Sick, Beate; Duerr, Oliver; Steigele, Stephan

    2018-06-01

    Deep Learning has boosted artificial intelligence over the past 5 years and is seen now as one of the major technological innovation areas, predicted to replace lots of repetitive, but complex tasks of human labor within the next decade. It is also expected to be 'game changing' for research activities in pharma and life sciences, where large sets of similar yet complex data samples are systematically analyzed. Deep learning is currently conquering formerly expert domains especially in areas requiring perception, previously not amenable to standard machine learning. A typical example is the automated analysis of images which are typically produced en-masse in many domains, e. g., in high-content screening or digital pathology. Deep learning enables to create competitive applications in so-far defined core domains of 'human intelligence'. Applications of artificial intelligence have been enabled in recent years by (i) the massive availability of data samples, collected in pharma driven drug programs (='big data') as well as (ii) deep learning algorithmic advancements and (iii) increase in compute power. Such applications are based on software frameworks with specific strengths and weaknesses. Here, we introduce typical applications and underlying frameworks for deep learning with a set of practical criteria for developing production ready solutions in life science and pharma research. Based on our own experience in successfully developing deep learning applications we provide suggestions and a baseline for selecting the most suited frameworks for a future-proof and cost-effective development. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Rad World -- computer-animated video radiation and hazardous waste-management science curriculum

    International Nuclear Information System (INIS)

    Powell, B.

    1996-01-01

    The Rad World computer-animated video and curriculum materials were developed through a grant from the Waste-management Education and Research Consortium. The package, which includes a computer-animated video, hands-on activities, and multidisciplinary lessons concerning radiation and hazardous-waste management, was created to approach these subjects in an informative, yet entertaining, manner. The lessons and video, designed to supplement studies of energy and physical science at the middle school and high school level, also implement quality and consistent science education as outlined by the New Mexico Science Standards and Benchmarks (1995). Consistent with the curriculum standards and benchmarks, the curriculum includes library research, collaborative learning, hands-on-science, and discovery learning. Pre- and post-tests are included

  18. Methodical Approaches to Teaching of Computer Modeling in Computer Science Course

    Science.gov (United States)

    Rakhimzhanova, B. Lyazzat; Issabayeva, N. Darazha; Khakimova, Tiyshtik; Bolyskhanova, J. Madina

    2015-01-01

    The purpose of this study was to justify of the formation technique of representation of modeling methodology at computer science lessons. The necessity of studying computer modeling is that the current trends of strengthening of general education and worldview functions of computer science define the necessity of additional research of the…

  19. Learning Performance Enhancement Using Computer-Assisted Language Learning by Collaborative Learning Groups

    Directory of Open Access Journals (Sweden)

    Ya-huei Wang

    2017-08-01

    Full Text Available This study attempted to test whether the use of computer-assisted language learning (CALL and innovative collaborative learning could be more effective than the use of traditional collaborative learning in improving students’ English proficiencies. A true experimental design was used in the study. Four randomly-assigned groups participated in the study: a traditional collaborative learning group (TCLG, 34 students, an innovative collaborative learning group (ICLG, 31 students, a CALL traditional collaborative learning group (CALLTCLG, 32 students, and a CALL innovative collaborative learning group (CALLICLG, 31 students. TOEIC (Test of English for International Communication listening, reading, speaking, and writing pre-test and post-test assessments were given to all students at an interval of sixteen weeks. Multivariate analysis of covariance (MANCOVA, multivariate analysis of variance (MANOVA, and analysis of variance (ANOVA were used to analyze the data. The results revealed that students who used CALL had significantly better learning performance than those who did not. Students in innovative collaborative learning had significantly better learning performances than those in traditional collaborative learning. Additionally, students using CALL innovative collaborative learning had better learning performances than those in CALL collaborative learning, those in innovative collaborative learning, and those in traditional collaborative learning.

  20. Logic in the curricula of Computer Science

    Directory of Open Access Journals (Sweden)

    Margareth Quindeless

    2014-12-01

    Full Text Available The aim of the programs in Computer Science is to educate and train students to understand the problems and build systems that solve them. This process involves applying a special reasoning to model interactions, capabilities, and limitations of the components involved. A good curriculum must involve the use of tools to assist in these tasks, and one that could be considered as a fundamental is the logic, because with it students develop the necessary reasoning. Besides, software developers analyze the behavior of the program during the designed, the depuration, and testing; hardware designers perform minimization and equivalence verification of circuits; designers of operating systems validate routing protocols, programing, and synchronization; and formal logic underlying all these activities. Therefore, a strong background in applied logic would help students to develop or potentiate their ability to reason about complex systems. Unfortunately, few curricula formed and properly trained in logic. Most includes only one or two courses of Discrete Mathematics, which in a few weeks covered truth tables and the propositional calculus, and nothing more. This is not enough, and higher level courses in which they are applied and many other logical concepts are needed. In addition, students will not see the importance of logic in their careers and need to modify the curriculum committees or adapt the curriculum to reverse this situation.

  1. Toward Psychoinformatics: Computer Science Meets Psychology.

    Science.gov (United States)

    Montag, Christian; Duke, Éilish; Markowetz, Alexander

    2016-01-01

    The present paper provides insight into an emerging research discipline called Psychoinformatics. In the context of Psychoinformatics, we emphasize the cooperation between the disciplines of psychology and computer science in handling large data sets derived from heavily used devices, such as smartphones or online social network sites, in order to shed light on a large number of psychological traits, including personality and mood. New challenges await psychologists in light of the resulting "Big Data" sets, because classic psychological methods will only in part be able to analyze this data derived from ubiquitous mobile devices, as well as other everyday technologies. As a consequence, psychologists must enrich their scientific methods through the inclusion of methods from informatics. The paper provides a brief review of one area of this research field, dealing mainly with social networks and smartphones. Moreover, we highlight how data derived from Psychoinformatics can be combined in a meaningful way with data from human neuroscience. We close the paper with some observations of areas for future research and problems that require consideration within this new discipline.

  2. Summer 1994 Computational Science Workshop. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This report documents the work performed by the University of New Mexico Principal Investigators and Research Assistants while hosting the highly successful Summer 1994 Computational Sciences Workshop in Albuquerque on August 6--11, 1994. Included in this report is a final budget for the workshop, along with a summary of the participants` evaluation of the workshop. The workshop proceeding have been delivered under separate cover. In order to assist in the organization of future workshops, we have also included in this report detailed documentation of the pre- and post-workshop activities associated with this contract. Specifically, we have included a section that documents the advertising performed, along with the manner in which applications were handled. A complete list of the workshop participants in this section. Sample letters that were generated while dealing with various commercial entities and departments at the University are also included in a section dealing with workshop logistics. Finally, we have included a section in this report that deals with suggestions for future workshops.

  3. Computer Science and the Liberal Arts: A Philosophical Examination

    Science.gov (United States)

    Walker, Henry M.; Kelemen, Charles

    2010-01-01

    This article explores the philosophy and position of the discipline of computer science within the liberal arts, based upon a discussion of the nature of computer science and a review of the characteristics of the liberal arts. A liberal arts environment provides important opportunities for undergraduate programs, but also presents important…

  4. Stateless Programming as a Motif for Teaching Computer Science

    Science.gov (United States)

    Cohen, Avi

    2004-01-01

    With the development of XML Web Services, the Internet could become an integral part of and the basis for teaching computer science and software engineering. The approach has been applied to a university course for students studying introduction to computer science from the point of view of software development in a stateless, Internet…

  5. New Pedagogies on Teaching Science with Computer Simulations

    Science.gov (United States)

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  6. Studies in Mathematics, Volume 22. Studies in Computer Science.

    Science.gov (United States)

    Pollack, Seymour V., Ed.

    The nine articles in this collection were selected because they represent concerns central to computer science, emphasize topics of particular interest to mathematicians, and underscore the wide range of areas deeply and continually affected by computer science. The contents consist of: "Introduction" (S. V. Pollack), "The…

  7. Gender Digital Divide and Challenges in Undergraduate Computer Science Programs

    Science.gov (United States)

    Stoilescu, Dorian; McDougall, Douglas

    2011-01-01

    Previous research revealed a reduced number of female students registered in computer science studies. In addition, the female students feel isolated, have reduced confidence, and underperform. This article explores differences between female and male students in undergraduate computer science programs in a mid-size university in Ontario. Based on…

  8. Arguing for Computer Science in the School Curriculum

    Science.gov (United States)

    Fluck, Andrew; Webb, Mary; Cox, Margaret; Angeli, Charoula; Malyn-Smith, Joyce; Voogt, Joke; Zagami, Jason

    2016-01-01

    Computer science has been a discipline for some years, and its position in the school curriculum has been contested differently in several countries. This paper looks at its role in three countries to illustrate these differences. A reconsideration of computer science as a separate subject both in primary and secondary education is suggested. At…

  9. "Computer Science Can Feed a Lot of Dreams"

    Science.gov (United States)

    Educational Horizons, 2014

    2014-01-01

    Pat Yongpradit is the director of education at Code.org. He leads all education efforts, including professional development and curriculum creation, and he builds relationships with school districts. Pat joined "Educational Horizons" to talk about why it is important to teach computer science--even for non-computer science teachers. This…

  10. Entrepreneurial Health Informatics for Computer Science and Information Systems Students

    Science.gov (United States)

    Lawler, James; Joseph, Anthony; Narula, Stuti

    2014-01-01

    Corporate entrepreneurship is a critical area of curricula for computer science and information systems students. Few institutions of computer science and information systems have entrepreneurship in the curricula however. This paper presents entrepreneurial health informatics as a course in a concentration of Technology Entrepreneurship at a…

  11. Assessment of Examinations in Computer Science Doctoral Education

    Science.gov (United States)

    Straub, Jeremy

    2014-01-01

    This article surveys the examination requirements for attaining degree candidate (candidacy) status in computer science doctoral programs at all of the computer science doctoral granting institutions in the United States. It presents a framework for program examination requirement categorization, and categorizes these programs by the type or types…

  12. Collaboration, Collusion and Plagiarism in Computer Science Coursework

    Science.gov (United States)

    Fraser, Robert

    2014-01-01

    We present an overview of the nature of academic dishonesty with respect to computer science coursework. We discuss the efficacy of various policies for collaboration with regard to student education, and we consider a number of strategies for mitigating dishonest behaviour on computer science coursework by addressing some common causes. Computer…

  13. The Case for Improving U.S. Computer Science Education

    Science.gov (United States)

    Nager, Adams; Atkinson, Robert

    2016-01-01

    Despite the growing use of computers and software in every facet of our economy, not until recently has computer science education begun to gain traction in American school systems. The current focus on improving science, technology, engineering, and mathematics (STEM) education in the U.S. School system has disregarded differences within STEM…

  14. Case Studies of Liberal Arts Computer Science Programs

    Science.gov (United States)

    Baldwin, D.; Brady, A.; Danyluk, A.; Adams, J.; Lawrence, A.

    2010-01-01

    Many undergraduate liberal arts institutions offer computer science majors. This article illustrates how quality computer science programs can be realized in a wide variety of liberal arts settings by describing and contrasting the actual programs at five liberal arts colleges: Williams College, Kalamazoo College, the State University of New York…

  15. 78 FR 10180 - Annual Computational Science Symposium; Conference

    Science.gov (United States)

    2013-02-13

    ...] Annual Computational Science Symposium; Conference AGENCY: Food and Drug Administration, HHS. ACTION... Pharmaceutical Users Software Exchange (PhUSE), is announcing a public conference entitled ``The FDA/PhUSE Annual Computational Science Symposium.'' The purpose of the conference is to help the broader community align and...

  16. 77 FR 4568 - Annual Computational Science Symposium; Public Conference

    Science.gov (United States)

    2012-01-30

    ...] Annual Computational Science Symposium; Public Conference AGENCY: Food and Drug Administration, HHS... with the Pharmaceutical Users Software Exchange (PhUSE), is announcing a public conference entitled ``The FDA/PhUSE Annual Computational Science Symposium.'' The purpose of the conference is to help the...

  17. Barbara Ryder to head Department of Computer Science

    OpenAIRE

    Daniilidi, Christina

    2008-01-01

    Barbara G. Ryder, professor of computer science at Rutgers, The State University of New Jersey, will become the computer science department head at Virginia Tech, starting in fall 2008. She is the first woman to serve as a department head in the history of the nationally ranked College of Engineering.

  18. minimUML: A Minimalist Approach to UML Diagramming for Early Computer Science Education

    Science.gov (United States)

    Turner, Scott A.; Perez-Quinones, Manuel A.; Edwards, Stephen H.

    2005-01-01

    In introductory computer science courses, the Unified Modeling Language (UML) is commonly used to teach basic object-oriented design. However, there appears to be a lack of suitable software to support this task. Many of the available programs that support UML focus on developing code and not on enhancing learning. Programs designed for…

  19. Understanding Student Retention in Computer Science Education: The Role of Environment, Gains, Barriers and Usefulness

    Science.gov (United States)

    Giannakos, Michail N.; Pappas, Ilias O.; Jaccheri, Letizia; Sampson, Demetrios G.

    2017-01-01

    Researchers have been working to understand the high dropout rates in computer science (CS) education. Despite the great demand for CS professionals, little is known about what influences individuals to complete their CS studies. We identify gains of studying CS, the (learning) environment, degree's usefulness, and barriers as important predictors…

  20. Tri-P-LETS: Changing the Face of High School Computer Science

    Science.gov (United States)

    Sherrell, Linda; Malasri, Kriangsiri; Mills, David; Thomas, Allen; Greer, James

    2012-01-01

    From 2004-2007, the University of Memphis carried out the NSF-funded Tri-P-LETS (Three P Learning Environment for Teachers and Students) project to improve local high-school computer science curricula. The project reached a total of 58 classrooms in eleven high schools emphasizing problem solving skills, programming concepts as opposed to syntax,…

  1. Proceedings of the 6th Computer Science On-line Conference 2017

    CERN Document Server

    Senkerik, Roman; Oplatkova, Zuzana; Prokopova, Zdenka; Silhavy, Petr

    2017-01-01

    This book presents new methods and approaches to real-world problems as well as exploratory research that describes novel artificial intelligence applications, including deep learning, neural networks and hybrid algorithms. This book constitutes the refereed proceedings of the Artificial Intelligence Trends in Intelligent Systems Section of the 6th Computer Science On-line Conference 2017 (CSOC 2017), held in April 2017. .

  2. Computer Technology-Integrated Projects Should Not Supplant Craft Projects in Science Education

    Science.gov (United States)

    Klopp, Tabatha J.; Rule, Audrey C.; Schneider, Jean Suchsland; Boody, Robert M.

    2014-01-01

    The current emphasis on computer technology integration and narrowing of the curriculum has displaced arts and crafts. However, the hands-on, concrete nature of craft work in science modeling enables students to understand difficult concepts and to be engaged and motivated while learning spatial, logical, and sequential thinking skills. Analogy…

  3. 11th International Conference on Computer and Information Science

    CERN Document Server

    Computer and Information 2012

    2012-01-01

    The series "Studies in Computational Intelligence" (SCI) publishes new developments and advances in the various areas of computational intelligence – quickly and with a high quality. The intent is to cover the theory, applications, and design methods of computational intelligence, as embedded in the fields of engineering, computer science, physics and life science, as well as the methodologies behind them. The series contains monographs, lecture notes and edited volumes in computational intelligence spanning the areas of neural networks, connectionist systems, genetic algorithms, evolutionary computation, artificial intelligence, cellular automata, self-organizing systems, soft computing, fuzzy systems, and hybrid intelligent systems. Critical to both contributors and readers are the short publication time and world-wide distribution - this permits a rapid and broad dissemination of research results.   The purpose of the 11th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2012...

  4. Gender differences in an elementary school learning environment: A study on how girls learn science in collaborative learning groups

    Science.gov (United States)

    Greenspan, Yvette Frank

    Girls are marked by low self-confidence manifested through gender discrimination during the early years of socialization and culturalization (AAUW, 1998). The nature of gender bias affects all girls in their studies of science and mathematics, particularly in minority groups, during their school years. It has been found that girls generally do not aspire in either mathematical or science-oriented careers because of such issues as overt and subtle stereotyping, inadequate confidence in ability, and discouragement in scientific competence. Grounded on constructivism, a theoretical framework, this inquiry employs fourth generation evaluation, a twelve-step evaluative process (Guba & Lincoln, 1989). The focus is to discover through qualitative research how fifth grade girls learn science in a co-sexual collaborative learning group, as they engage in hands-on, minds-on experiments. The emphasis is centered on one Hispanic girl in an effort to understand her beliefs, attitudes, and behavior as she becomes a stakeholder with other members of her six person collaborative learning group. The intent is to determine if cultural and social factors impact the learning of scientific concepts based on observations from videotapes, interviews, and student opinion questionnaires. QSR NUD*IST 4, a computer software program is utilized to help categorize and index data. Among the findings, there is evidence that clearly indicates girls' attitudes toward science are altered as they interact with other girls and boys in a collaborative learning group. Observations also indicate that cultural and social factors affect girls' performance as they explore and discover scientific concepts with other girls and boys. Based upon what I have uncovered utilizing qualitative research and confirmed according to current literature, there seems to be an appreciable impact on the way girls appear to learn science. Rooted in the data, the results mirror the conclusions of previous studies, which

  5. African Journals Online: Technology, Computer Science ...

    African Journals Online (AJOL)

    Items 1 - 29 of 29 ... ... aspects of science, technology, agriculture, health and other related fields. ... International Journal of Engineering, Science and Technology ... Mechanical Engineering, Petroleum Engineering, Physics and other related ...

  6. A Computer-Based Instrument That Identifies Common Science Misconceptions

    Science.gov (United States)

    Larrabee, Timothy G.; Stein, Mary; Barman, Charles

    2006-01-01

    This article describes the rationale for and development of a computer-based instrument that helps identify commonly held science misconceptions. The instrument, known as the Science Beliefs Test, is a 47-item instrument that targets topics in chemistry, physics, biology, earth science, and astronomy. The use of an online data collection system…

  7. Computer-Assisted Language Learning: Diversity in Research and Practice

    Science.gov (United States)

    Stockwell, Glenn, Ed.

    2012-01-01

    Computer-assisted language learning (CALL) is an approach to teaching and learning languages that uses computers and other technologies to present, reinforce, and assess material to be learned, or to create environments where teachers and learners can interact with one another and the outside world. This book provides a much-needed overview of the…

  8. World Congress on Engineering and Computer Science 2014

    CERN Document Server

    Amouzegar, Mahyar; Ao, Sio-long

    2015-01-01

    This volume contains thirty-nine revised and extended research articles, written by prominent researchers participating in the World Congress on Engineering and Computer Science 2014, held in San Francisco, October 22-24 2014. Topics covered include engineering mathematics, electrical engineering, circuit design, communications systems, computer science, chemical engineering, systems engineering, and applications of engineering science in industry. This book describes some significant advances in engineering technologies, and also serves as an excellent source of reference for researchers and graduate students.

  9. Development of Computer Science Disciplines - A Social Network Analysis Approach

    OpenAIRE

    Pham, Manh Cuong; Klamma, Ralf; Jarke, Matthias

    2011-01-01

    In contrast to many other scientific disciplines, computer science considers conference publications. Conferences have the advantage of providing fast publication of papers and of bringing researchers together to present and discuss the paper with peers. Previous work on knowledge mapping focused on the map of all sciences or a particular domain based on ISI published JCR (Journal Citation Report). Although this data covers most of important journals, it lacks computer science conference and ...

  10. ONLINE SCIENCE LEARNING:Best Practices and Technologies

    Directory of Open Access Journals (Sweden)

    TOJDE

    2009-04-01

    Full Text Available This essential publication is for all research and academic libraries, especially those institutions with online and distance education courses available in their science education programs. This book will also benefit audiences within the science education community of practice and others interested in STEM education, virtual schools, e-learning, m-learning, natural sciences, physical sciences, biological sciences, geosciences, online learning models, virtual laboratories, virtual field trips, cyberinfrastructure, neurological learning and the neuro-cognitive model. The continued growth in general studies and liberal arts and science programs online has led to a rise in the number of students whose science learning experiences are partially or exclusively online. character and quality of online science instruction.

  11. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    Science.gov (United States)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  12. Investigative Primary Science: A Problem-Based Learning Approach

    Science.gov (United States)

    Etherington, Matthew B.

    2011-01-01

    This study reports on the success of using a problem-based learning approach (PBL) as a pedagogical mode of learning open inquiry science within a traditional four-year undergraduate elementary teacher education program. In 2010, a problem-based learning approach to teaching primary science replaced the traditional content driven syllabus. During…

  13. Computer-based Astronomy Labs for Non-science Majors

    Science.gov (United States)

    Smith, A. B. E.; Murray, S. D.; Ward, R. A.

    1998-12-01

    We describe and demonstrate two laboratory exercises, Kepler's Third Law and Stellar Structure, which are being developed for use in an astronomy laboratory class aimed at non-science majors. The labs run with Microsoft's Excel 98 (Macintosh) or Excel 97 (Windows). They can be run in a classroom setting or in an independent learning environment. The intent of the labs is twofold; first and foremost, students learn the subject matter through a series of informational frames. Next, students enhance their understanding by applying their knowledge in lab procedures, while also gaining familiarity with the use and power of a widely-used software package and scientific tool. No mathematical knowledge beyond basic algebra is required to complete the labs or to understand the computations in the spreadsheets, although the students are exposed to the concepts of numerical integration. The labs are contained in Excel workbook files. In the files are multiple spreadsheets, which contain either a frame with information on how to run the lab, material on the subject, or one or more procedures. Excel's VBA macro language is used to automate the labs. The macros are accessed through button interfaces positioned on the spreadsheets. This is done intentionally so that students can focus on learning the subject matter and the basic spreadsheet features without having to learn advanced Excel features all at once. Students open the file and progress through the informational frames to the procedures. After each procedure, student comments and data are automatically recorded in a preformatted Lab Report spreadsheet. Once all procedures have been completed, the student is prompted for a filename in which to save their Lab Report. The lab reports can then be printed or emailed to the instructor. The files will have full worksheet and workbook protection, and will have a "redo" feature at the end of the lab for students who want to repeat a procedure.

  14. Learning Style and Attitude toward Computer among Iranian Medical Students

    Directory of Open Access Journals (Sweden)

    Seyedeh Shohreh Alavi

    2016-02-01

    Full Text Available Background and purpose: Presently, the method of medical teaching has shifted from lecture-based to computer-based. The learning style may play a key role in the attitude toward learning computer. The goal of this study was to study the relationship between the learning style and attitude toward computer among Iranian medical students.Methods: This cross-sectional study included 400 medical students. Barsch learning style inventory and a questionnaire on the attitude toward computer was sent to each student. The enthusiasm, anxiety, and overall attitude toward computer were compared among the different learning styles.Results: The response rate to the questionnaire was 91.8%. The distribution of learning styles in the students was 181 (49.3% visual, 106 (28.9% auditory, 27 (7.4% tactual, and 53 (14.4% overall. Visual learners were less anxious for computer use and showed more positive attitude toward computer. Sex, age, and academic grade were not associated with students’ attitude toward computer.Conclusions: The learning style is an important factor in the students’ attitude toward computer among medical students, which should be considered in planning computer-based learning programs.Keywords: LEARNING STYLE, ATTITUDE, COMPUTER, MEDICAL STUDENT, ANXIETY, ENTHUSIASM

  15. Montgomery Blair Science, Mathematics and Computer Science Magnet Program: A Successful Model for Meeting the Needs of Highly Able STEM Learners

    Science.gov (United States)

    Stein, David; Ostrander, Peter; Lee, G. Maie

    2016-01-01

    The Magnet Program at Montgomery Blair High School is an application-based magnet program utilizing a curriculum focused on science, mathematics, and computer science catering to interested, talented, and eager to learn students in Montgomery County, Maryland. This article identifies and discusses some of the unique aspects of the Magnet Program…

  16. Science Learning Motivation as Correlate of Students' Academic Performances

    Science.gov (United States)

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P., Jr.; Dupa, Maria Elena D.; Bautista, Romiro G.

    2016-01-01

    This study was designed to analyze the relationship of students' learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of…

  17. "Getting Practical" and the National Network of Science Learning Centres

    Science.gov (United States)

    Chapman, Georgina; Langley, Mark; Skilling, Gus; Walker, John

    2011-01-01

    The national network of Science Learning Centres is a co-ordinating partner in the Getting Practical--Improving Practical Work in Science programme. The principle of training provision for the "Getting Practical" programme is a cascade model. Regional trainers employed by the national network of Science Learning Centres trained the cohort of local…

  18. Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments.

    NARCIS (Netherlands)

    Dewiyanti, Silvia; Brand-Gruwel, Saskia; Jochems, Wim; Broers, Nick

    2008-01-01

    Dewiyanti, S., Brand-Gruwel, S., Jochems, W., & Broers, N. (2007). Students experiences with collaborative learning in asynchronous computer-supported collaborative learning environments. Computers in Human Behavior, 23, 496-514.

  19. Learning science and science education in a new era.

    Science.gov (United States)

    Aysan, Erhan

    2015-06-01

    Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. "Change" is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  20. Learning science and science education in a new era

    Directory of Open Access Journals (Sweden)

    Erhan Aysan

    2015-06-01

    Full Text Available Today, it takes only a few months for the amount of knowledge to double. The volume of information available has grown so much that it cannot be fully encompassed by the human mind. For this reason, science, learning, and education have to change in the third millennium. The question is thus: what is it that needs to be done? The answer may be found through three basic stages. The first stage is persuading scientists of the necessity to change science education. The second stage is more difficult, in that scientists must be told that they should not place an exaggerated importance on their own academic field and that they should see their field as being on an equal basis with other fields. In the last stage, scientists need to condense the bulk of information on their hands to a manageable size. “Change” is the magic word of our time. Change brings about new rules, and this process happens very quickly in a global world. If we scientists do not rapidly change our scientific learning and education, we will find our students and ourselves caught up in an irreversibly destructive and fatal change that sets its own rules, just like the Arab spring.

  1. Undergraduate Students' Earth Science Learning: Relationships among Conceptions, Approaches, and Learning Self-Efficacy in Taiwan

    Science.gov (United States)

    Shen, Kuan-Ming; Lee, Min-Hsien; Tsai, Chin-Chung; Chang, Chun-Yen

    2016-01-01

    In the area of science education research, studies have attempted to investigate conceptions of learning, approaches to learning, and self-efficacy, mainly focusing on science in general or on specific subjects such as biology, physics, and chemistry. However, few empirical studies have probed students' earth science learning. This study aimed to…

  2. Explorations in computing an introduction to computer science

    CERN Document Server

    Conery, John S

    2010-01-01

    Introduction Computation The Limits of Computation Algorithms A Laboratory for Computational ExperimentsThe Ruby WorkbenchIntroducing Ruby and the RubyLabs environment for computational experimentsInteractive Ruby Numbers Variables Methods RubyLabs The Sieve of EratosthenesAn algorithm for finding prime numbersThe Sieve Algorithm The mod Operator Containers Iterators Boolean Values and the delete if Method Exploring the Algorithm The sieve Method A Better Sieve Experiments with the Sieve A Journey of a Thousand MilesIteration as a strategy for solving computational problemsSearching and Sortin

  3. The Effect of a Computer Program Designed with Constructivist Principles for College Non-Science Majors on Understanding of Photosynthesis and Cellular Respiration

    Science.gov (United States)

    Wielard, Valerie Michelle

    2013-01-01

    The primary objective of this project was to learn what effect a computer program would have on academic achievement and attitude toward science of college students enrolled in a biology class for non-science majors. It became apparent that the instructor also had an effect on attitudes toward science. The researcher designed a computer program,…

  4. Constructivist Learning Theory and Climate Science Communication

    Science.gov (United States)

    Somerville, R. C.

    2012-12-01

    Communicating climate science is a form of education. A scientist giving a television interview or testifying before Congress is engaged in an educational activity, though one not identical to teaching graduate students. Knowledge, including knowledge about climate science, should never be communicated as a mere catalogue of facts. Science is a process, a way of regarding the natural world, and a fascinating human activity. A great deal is already known about how to do a better job of science communication, but implementing change is not easy. I am confident that improving climate science communication will involve the paradigm of constructivist learning theory, which traces its roots to the 20th-century Swiss epistemologist Jean Piaget, among others. This theory emphasizes the role of the teacher as supportive facilitator rather than didactic lecturer, "a guide on the side, not a sage on the stage." It also stresses the importance of the teacher making a serious effort to understand and appreciate the prior knowledge and viewpoint of the student, recognizing that students' minds are not empty vessels to be filled or blank slates to be written on. Instead, students come to class with a background of life experiences and a body of existing knowledge, of varying degrees of correctness or accuracy, about almost any topic. Effective communication is also usually a conversation rather than a monologue. We know too that for many audiences, the most trusted messengers are those who share the worldview and cultural values of those with whom they are communicating. Constructivist teaching methods stress making use of the parallels between learning and scientific research, such as the analogies between assessing prior knowledge of the audience and surveying scientific literature for a research project. Meanwhile, a well-funded and effective professional disinformation campaign has been successful in sowing confusion, and as a result, many people mistakenly think climate

  5. Computer Assisted Language Learning (CALL): Using Internet for Effective Language Learning

    NARCIS (Netherlands)

    Kremenska, Anelly

    2006-01-01

    Please, cite this publication as: Kremenska, A. (2006). Computer Assisted Language Learning (CALL): Using Internet for Effective Language Learning. Proceedings of International Workshop in Learning Networks for Lifelong Competence Development, TENCompetence Conference. March 30th-31st, Sofia,

  6. Bringing Computational Thinking into the High School Science and Math Classroom

    Science.gov (United States)

    Trouille, Laura; Beheshti, E.; Horn, M.; Jona, K.; Kalogera, V.; Weintrop, D.; Wilensky, U.; University CT-STEM Project, Northwestern; University CenterTalent Development, Northwestern

    2013-01-01

    Computational thinking (for example, the thought processes involved in developing algorithmic solutions to problems that can then be automated for computation) has revolutionized the way we do science. The Next Generation Science Standards require that teachers support their students’ development of computational thinking and computational modeling skills. As a result, there is a very high demand among teachers for quality materials. Astronomy provides an abundance of opportunities to support student development of computational thinking skills. Our group has taken advantage of this to create a series of astronomy-based computational thinking lesson plans for use in typical physics, astronomy, and math high school classrooms. This project is funded by the NSF Computing Education for the 21st Century grant and is jointly led by Northwestern University’s Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), the Computer Science department, the Learning Sciences department, and the Office of STEM Education Partnerships (OSEP). I will also briefly present the online ‘Astro Adventures’ courses for middle and high school students I have developed through NU’s Center for Talent Development. The online courses take advantage of many of the amazing online astronomy enrichment materials available to the public, including a range of hands-on activities and the ability to take images with the Global Telescope Network. The course culminates with an independent computational research project.

  7. CDM: Teaching Discrete Mathematics to Computer Science Majors

    Science.gov (United States)

    Sutner, Klaus

    2005-01-01

    CDM, for computational discrete mathematics, is a course that attempts to teach a number of topics in discrete mathematics to computer science majors. The course abandons the classical definition-theorem-proof model, and instead relies heavily on computation as a source of motivation and also for experimentation and illustration. The emphasis on…

  8. Computer Science and Technology Publications. NBS Publications List 84.

    Science.gov (United States)

    National Bureau of Standards (DOC), Washington, DC. Inst. for Computer Sciences and Technology.

    This bibliography lists publications of the Institute for Computer Sciences and Technology of the National Bureau of Standards. Publications are listed by subject in the areas of computer security, computer networking, and automation technology. Sections list publications of: (1) current Federal Information Processing Standards; (2) computer…

  9. Science Education Using a Computer Model-Virtual Puget Sound

    Science.gov (United States)

    Fruland, R.; Winn, W.; Oppenheimer, P.; Stahr, F.; Sarason, C.

    2002-12-01

    We created an interactive learning environment based on an oceanographic computer model of Puget Sound-Virtual Puget Sound (VPS)-as an alternative to traditional teaching methods. Students immersed in this navigable 3-D virtual environment observed tidal movements and salinity changes, and performed tracer and buoyancy experiments. Scientific concepts were embedded in a goal-based scenario to locate a new sewage outfall in Puget Sound. Traditional science teaching methods focus on distilled representations of agreed-upon knowledge removed from real-world context and scientific debate. Our strategy leverages students' natural interest in their environment, provides meaningful context and engages students in scientific debate and knowledge creation. Results show that VPS provides a powerful learning environment, but highlights the need for research on how to most effectively represent concepts and organize interactions to support scientific inquiry and understanding. Research is also needed to ensure that new technologies and visualizations do not foster misconceptions, including the impression that the model represents reality rather than being a useful tool. In this presentation we review results from prior work with VPS and outline new work for a modeling partnership recently formed with funding from the National Ocean Partnership Program (NOPP).

  10. Analysis and Assessment of Computer-Supported Collaborative Learning Conversations

    NARCIS (Netherlands)

    Trausan-Matu, Stefan

    2008-01-01

    Trausan-Matu, S. (2008). Analysis and Assessment of Computer-Supported Collaborative Learning Conversations. Workshop presentation at the symposium Learning networks for professional. November, 14, 2008, Heerlen, Nederland: Open Universiteit Nederland.

  11. Scripting intercultural computer-supported collaborative learning in higher education

    NARCIS (Netherlands)

    Popov, V.

    2013-01-01

    Introduction of computer-supported collaborative learning (CSCL), specifically in an intercultural learning environment, creates both challenges and benefits. Among the challenges are the coordination of different attitudes, styles of communication, and patterns of behaving. Among the benefits are

  12. Learning styles: individualizing computer-based learning environments

    Directory of Open Access Journals (Sweden)

    Tim Musson

    1995-12-01

    Full Text Available While the need to adapt teaching to the needs of a student is generally acknowledged (see Corno and Snow, 1986, for a wide review of the literature, little is known about the impact of individual learner-differences on the quality of learning attained within computer-based learning environments (CBLEs. What evidence there is appears to support the notion that individual differences have implications for the degree of success or failure experienced by students (Ford and Ford, 1992 and by trainee end-users of software packages (Bostrom et al, 1990. The problem is to identify the way in which specific individual characteristics of a student interact with particular features of a CBLE, and how the interaction affects the quality of the resultant learning. Teaching in a CBLE is likely to require a subset of teaching strategies different from that subset appropriate to more traditional environments, and the use of a machine may elicit different behaviours from those normally arising in a classroom context.

  13. Computational Cognitive Neuroscience Modeling of Sequential Skill Learning

    Science.gov (United States)

    2016-09-21

    learning during declarative control. 8. Journal of Experimental Psychology : Learning, Memory , and Cognition . 9. Crossley, M. J., Ashby, F. G., & Maddox...learning: Sensitivity to feedback timing. Frontiers in Psychology – Cognitive Science, 5, article 643, 1-9. 15. Worthy, D.A. & Maddox, W.T. (2014). A...Learning, Memory , and Cognition . Crossley, M. J., Ashby, F. G., & Maddox, W. T. (2014). Context-dependent savings in procedural category learning

  14. Correlation of Students' Brain Types to Their Conceptions of Learning Science and Approaches to Learning Science

    Science.gov (United States)

    Park, Jiyeon; Jeon, Dongryul

    2015-01-01

    The systemizing and empathizing brain type represent two contrasted students' characteristics. The present study investigated differences in the conceptions and approaches to learning science between the systemizing and empathizing brain type students. The instruments are questionnaires on the systematizing and empathizing, questionnaires on the…

  15. Ex Machina: Analytical platforms, Law and the Challenges of Computational Legal Science

    Directory of Open Access Journals (Sweden)

    Nicola Lettieri

    2018-04-01

    Full Text Available Over the years, computation has become a fundamental part of the scientific practice in several research fields that goes far beyond the boundaries of natural sciences. Data mining, machine learning, simulations and other computational methods lie today at the hearth of the scientific endeavour in a growing number of social research areas from anthropology to economics. In this scenario, an increasingly important role is played by analytical platforms: integrated environments allowing researchers to experiment cutting-edge data-driven and computation-intensive analyses. The paper discusses the appearance of such tools in the emerging field of computational legal science. After a general introduction to the impact of computational methods on both natural and social sciences, we describe the concept and the features of an analytical platform exploring innovative cross-methodological approaches to the academic and investigative study of crime. Stemming from an ongoing project involving researchers from law, computer science and bioinformatics, the initiative is presented and discussed as an opportunity to raise a debate about the future of legal scholarship and, inside of it, about the challenges of computational legal science.

  16. DZero data-intensive computing on the Open Science Grid

    International Nuclear Information System (INIS)

    Abbott, B.; Baranovski, A.; Diesburg, M.; Garzoglio, G.; Kurca, T.; Mhashilkar, P.

    2007-01-01

    High energy physics experiments periodically reprocess data, in order to take advantage of improved understanding of the detector and the data processing code. Between February and May 2007, the DZero experiment has reprocessed a substantial fraction of its dataset. This consists of half a billion events, corresponding to about 100 TB of data, organized in 300,000 files. The activity utilized resources from sites around the world, including a dozen sites participating to the Open Science Grid consortium (OSG). About 1,500 jobs were run every day across the OSG, consuming and producing hundreds of Gigabytes of data. Access to OSG computing and storage resources was coordinated by the SAM-Grid system. This system organized job access to a complex topology of data queues and job scheduling to clusters, using a SAM-Grid to OSG job forwarding infrastructure. For the first time in the lifetime of the experiment, a data intensive production activity was managed on a general purpose grid, such as OSG. This paper describes the implications of using OSG, where all resources are granted following an opportunistic model, the challenges of operating a data intensive activity over such large computing infrastructure, and the lessons learned throughout the project

  17. DZero data-intensive computing on the Open Science Grid

    International Nuclear Information System (INIS)

    Abbott, B; Baranovski, A; Diesburg, M; Garzoglio, G; Mhashilkar, P; Kurca, T

    2008-01-01

    High energy physics experiments periodically reprocess data, in order to take advantage of improved understanding of the detector and the data processing code. Between February and May 2007, the DZero experiment has reprocessed a substantial fraction of its dataset. This consists of half a billion events, corresponding to about 100 TB of data, organized in 300,000 files. The activity utilized resources from sites around the world, including a dozen sites participating to the Open Science Grid consortium (OSG). About 1,500 jobs were run every day across the OSG, consuming and producing hundreds of Gigabytes of data. Access to OSG computing and storage resources was coordinated by the SAM-Grid system. This system organized job access to a complex topology of data queues and job scheduling to clusters, using a SAM-Grid to OSG job forwarding infrastructure. For the first time in the lifetime of the experiment, a data intensive production activity was managed on a general purpose grid, such as OSG. This paper describes the implications of using OSG, where all resources are granted following an opportunistic model, the challenges of operating a data intensive activity over such large computing infrastructure, and the lessons learned throughout the project

  18. Electronic Learning in the German Science Project "NAWI-Interaktiv"

    Science.gov (United States)

    Wegner, Claas; Homann, Wiebke; Strehlke, Friederike

    2014-01-01

    The German science project "NAWI-Interaktiv" is an example of innovative use of E-Learning and new media education. Since 2009, the learning platform provides learners and teachers with high-quality learning tools, teaching material, useful information and E-learning programs for free. This is to raise the pupils' motivation to learn…

  19. A Computer Security Course in the Undergraduate Computer Science Curriculum.

    Science.gov (United States)

    Spillman, Richard

    1992-01-01

    Discusses the importance of computer security and considers criminal, national security, and personal privacy threats posed by security breakdown. Several examples are given, including incidents involving computer viruses. Objectives, content, instructional strategies, resources, and a sample examination for an experimental undergraduate computer…

  20. Development and Evaluation of a Computer-Aided Learning (CAL ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    Department of Computer & Information Science, Enugu State University of Science & Technology, PO Box 4545, Enugu,. Nigeria . .... teacher to store questions on his own, using a database ..... alternative to lectures in human physiology [12].

  1. World Congress on Engineering and Computer Science 2015

    CERN Document Server

    Kim, Haeng; Amouzegar, Mahyar

    2017-01-01

    This proceedings volume contains selected revised and extended research articles written by researchers who participated in the World Congress on Engineering and Computer Science 2015, held in San Francisco, USA, 21-23 October 2015. Topics covered include engineering mathematics, electrical engineering, circuits, communications systems, computer science, chemical engineering, systems engineering, manufacturing engineering, and industrial applications. The book offers the reader an overview of the state of the art in engineering technologies, computer science, systems engineering and applications, and will serve as an excellent reference work for researchers and graduate students working in these fields.

  2. Graduate Enrollment Increases in Science and Engineering Fields, Especially in Engineering and Computer Sciences. InfoBrief: Science Resources Statistics.

    Science.gov (United States)

    Burrelli, Joan S.

    This brief describes graduate enrollment increases in the science and engineering fields, especially in engineering and computer sciences. Graduate student enrollment is summarized by enrollment status, citizenship, race/ethnicity, and fields. (KHR)

  3. 3rd International Conference on Computer Science, Applied Mathematics and Applications

    CERN Document Server

    Nguyen, Ngoc; Do, Tien

    2015-01-01

    This volume contains the extended versions of papers presented at the 3rd International Conference on Computer Science, Applied Mathematics and Applications (ICCSAMA 2015) held on 11-13 May, 2015 in Metz, France. The book contains 5 parts: 1. Mathematical programming and optimization: theory, methods and software, Operational research and decision making, Machine learning, data security, and bioinformatics, Knowledge information system, Software engineering. All chapters in the book discuss theoretical and algorithmic as well as practical issues connected with computation methods & optimization methods for knowledge engineering and machine learning techniques.  

  4. The Impact of Cloud Computing Technologies in E-learning

    Directory of Open Access Journals (Sweden)

    Hosam Farouk El-Sofany

    2013-01-01

    Full Text Available Cloud computing is a new computing model which is based on the grid computing, distributed computing, parallel computing and virtualization technologies define the shape of a new technology. It is the core technology of the next generation of network computing platform, especially in the field of education, cloud computing is the basic environment and platform of the future E-learning. It provides secure data storage, convenient internet services and strong computing power. This article mainly focuses on the research of the application of cloud computing in E-learning environment. The research study shows that the cloud platform is valued for both students and instructors to achieve the course objective. The paper presents the nature, benefits and cloud computing services, as a platform for e-learning environment.

  5. FORMATION OF ICT COMPETENCES FUTURE TEACHER OF COMPUTER SCIENCE IN THE ELEMENTARY SCHOOL VIA DELPHI SYSTEM

    Directory of Open Access Journals (Sweden)

    Hrihorii Pustovit

    2015-10-01

    Full Text Available In article, authors clarified the concept of "ICT competence of future teachers of computer science in the elementary school"; improved criteria for formation of the ICT competences future teachers of computer science in the elementary school to identify the system ready for use Delphi during process of visual programming in professional activity. We present the model of the formation of the ICT competence future teachers of computer science in the elementary school via visual programming tools, where importance given to the construction of individual learning paths, taking into account individual learning rhythm, because students have different levels of training, they are different in nature perception of information. It is proved that the proposed model will make it possible to carry out training, starting from the result of the educational process at the university, which takes into account the impact of external and internal variables, as well as a feedback mechanism that allows adjustment of the process at different stages. Authors presented developed method of forming ICT competences future teachers of computer science in the elementary school via Delphi tools during learning of visual programming, feature of which is that to present course materials were chosen LMS Moodle platform.

  6. Hispanic women overcoming deterrents to computer science: A phenomenological study

    Science.gov (United States)

    Herling, Lourdes

    The products of computer science are important to all aspects of society and are tools in the solution of the world's problems. It is, therefore, troubling that the United States faces a shortage in qualified graduates in computer science. The number of women and minorities in computer science is significantly lower than the percentage of the U.S. population which they represent. The overall enrollment in computer science programs has continued to decline with the enrollment of women declining at a higher rate than that of men. This study addressed three aspects of underrepresentation about which there has been little previous research: addressing computing disciplines specifically rather than embedding them within the STEM disciplines, what attracts women and minorities to computer science, and addressing the issues of race/ethnicity and gender in conjunction rather than in isolation. Since women of underrepresented ethnicities are more severely underrepresented than women in general, it is important to consider whether race and ethnicity play a role in addition to gender as has been suggested by previous research. Therefore, this study examined what attracted Hispanic women to computer science specifically. The study determines whether being subjected to multiple marginalizations---female and Hispanic---played a role in the experiences of Hispanic women currently in computer science. The study found five emergent themes within the experiences of Hispanic women in computer science. Encouragement and role models strongly influenced not only the participants' choice to major in the field, but to persist as well. Most of the participants experienced a negative atmosphere and feelings of not fitting in while in college and industry. The interdisciplinary nature of computer science was the most common aspect that attracted the participants to computer science. The aptitudes participants commonly believed are needed for success in computer science are the Twenty

  7. Learning from Action Research about Science Teacher Preparation

    Science.gov (United States)

    Mitchener, Carole P.; Jackson, Wendy M.

    2012-01-01

    In this article, we present a case study of a beginning science teacher's year-long action research project, during which she developed a meaningful grasp of learning from practice. Wendy was a participant in the middle grade science program designed for career changers from science professions who had moved to teaching middle grade science. An…

  8. Science learning motivation as correlate of students’ academic performances

    OpenAIRE

    Libao, Nhorvien Jay P.; Sagun, Jessie John B.; Tamangan, Elvira A.; Pattalitan, Agaton P.; Dupa, Maria Elena D.; Bautista, Romiro Gordo

    2016-01-01

    This study was designed to analyze the relationship of students’ learning motivation and their academic performances in science. The study made use of 21 junior and senior Biological Science students to conclude on the formulated research problems. The respondents had a good to very good motivation in learning science. In general, the extent of their motivation do not vary across their sex, age, and curriculum year. Moreover, the respondents had good academic performances in science. Aptly, e...

  9. Analysis of Sci-Hub downloads of computer science papers

    Directory of Open Access Journals (Sweden)

    Andročec Darko

    2017-07-01

    Full Text Available The scientific knowledge is disseminated by research papers. Most of the research literature is copyrighted by publishers and avail- able only through paywalls. Recently, some websites offer most of the recent content for free. One of them is the controversial website Sci-Hub that enables access to more than 47 million pirated research papers. In April 2016, Science Magazine published an article on Sci-Hub activity over the period of six months and publicly released the Sci-Hub’s server log data. The mentioned paper aggregates the view that relies on all downloads and for all fields of study, but these findings might be hiding interesting patterns within computer science. The mentioned Sci-Hub log data was used in this paper to analyse downloads of computer science papers based on DBLP’s list of computer science publications. The top downloads of computer science papers were analysed, together with the geographical location of Sci-Hub users, the most downloaded publishers, types of papers downloaded, and downloads of computer science papers per publication year. The results of this research can be used to improve legal access to the most relevant scientific repositories or journals for the computer science field.

  10. Development, Implementation, and Outcomes of an Equitable Computer Science After-School Program: Findings from Middle-School Students

    Science.gov (United States)

    Mouza, Chrystalla; Marzocchi, Alison; Pan, Yi-Cheng; Pollock, Lori

    2016-01-01

    Current policy efforts that seek to improve learning in science, technology, engineering, and mathematics (STEM) emphasize the importance of helping all students acquire concepts and tools from computer science that help them analyze and develop solutions to everyday problems. These goals have been generally described in the literature under the…

  11. Computational data sciences for assessment and prediction of climate extremes

    Science.gov (United States)

    Ganguly, A. R.

    2011-12-01

    Climate extremes may be defined inclusively as severe weather events or large shifts in global or regional weather patterns which may be caused or exacerbated by natural climate variability or climate change. This area of research arguably represents one of the largest knowledge-gaps in climate science which is relevant for informing resource managers and policy makers. While physics-based climate models are essential in view of non-stationary and nonlinear dynamical processes, their current pace of uncertainty reduction may not be adequate for urgent stakeholder needs. The structure of the models may in some cases preclude reduction of uncertainty for critical processes at scales or for the extremes of interest. On the other hand, methods based on complex networks, extreme value statistics, machine learning, and space-time data mining, have demonstrated significant promise to improve scientific understanding and generate enhanced predictions. When combined with conceptual process understanding at multiple spatiotemporal scales and designed to handle massive data, interdisciplinary data science methods and algorithms may complement or supplement physics-based models. Specific examples from the prior literature and our ongoing work suggests how data-guided improvements may be possible, for example, in the context of ocean meteorology, climate oscillators, teleconnections, and atmospheric process understanding, which in turn can improve projections of regional climate, precipitation extremes and tropical cyclones in an useful and interpretable fashion. A community-wide effort is motivated to develop and adapt computational data science tools for translating climate model simulations to information relevant for adaptation and policy, as well as for improving our scientific understanding of climate extremes from both observed and model-simulated data.

  12. Blended learning as an effective pedagogical paradigm for biomedical science

    Directory of Open Access Journals (Sweden)

    Perry Hartfield

    2013-11-01

    Full Text Available Blended learning combines face-to-face class based and online teaching and learning delivery in order to increase flexibility in how, when, and where students study and learn. The development, integration, and promotion of blended learning in frameworks of curriculum design can optimize the opportunities afforded by information and communication technologies and, concomitantly, accommodate a broad range of student learning styles. This study critically reviews the potential benefits of blended learning as a progressive educative paradigm for the teaching of biomedical science and evaluates the opportunities that blended learning offers for the delivery of accessible, flexible and sustainable teaching and learning experiences. A central tenet of biomedical science education at the tertiary level is the development of comprehensive hands-on practical competencies and technical skills (many of which require laboratory-based learning environments, and it is advanced that a blended learning model, which combines face-to-face synchronous teaching and learning activities with asynchronous online teaching and learning activities, effectively creates an authentic, enriching, and student-centred learning environment for biomedical science. Lastly, a blending learning design for introductory biochemistry will be described as an effective example of integrating face-to-face and online teaching, learning and assessment activities within the teaching domain of biomedical science.   DOI: 10.18870/hlrc.v3i4.169

  13. Collaboration between J-PARC and computing science

    International Nuclear Information System (INIS)

    Nakatani, Takeshi; Inamura, Yasuhiro

    2010-01-01

    Many world-forefront experimental apparatuses are under construction at Materials and Life Science Facility of Japan Proton Accelerator Research Complex (J-PARC), and new experimental methods supported by the computer facility are under development towards practical use. Many problems, however, remains to be developed as a large open use facility under the Low for Promotion of Public Utilization. Some of them need the cooperation of experimental scientists and computer scientists to be solved. Present status of the computing ability at Materials and Life Science Facility of J-PARC, and research results expected to be brought by the collaboration of experimental- and computer-scientists are described. (author)

  14. Deep Learning in Visual Computing and Signal Processing

    OpenAIRE

    Xie, Danfeng; Zhang, Lei; Bai, Li

    2017-01-01

    Deep learning is a subfield of machine learning, which aims to learn a hierarchy of features from input data. Nowadays, researchers have intensively investigated deep learning algorithms for solving challenging problems in many areas such as image classification, speech recognition, signal processing, and natural language processing. In this study, we not only review typical deep learning algorithms in computer vision and signal processing but also provide detailed information on how to apply...

  15. Best practices for measuring students' attitudes toward learning science.

    Science.gov (United States)

    Lovelace, Matthew; Brickman, Peggy

    2013-01-01

    Science educators often characterize the degree to which tests measure different facets of college students' learning, such as knowing, applying, and problem solving. A casual survey of scholarship of teaching and learning research studies reveals that many educators also measure how students' attitudes influence their learning. Students' science attitudes refer to their positive or negative feelings and predispositions to learn science. Science educators use attitude measures, in conjunction with learning measures, to inform the conclusions they draw about the efficacy of their instructional interventions. The measurement of students' attitudes poses similar but distinct challenges as compared with measurement of learning, such as determining validity and reliability of instruments and selecting appropriate methods for conducting statistical analyses. In this review, we will describe techniques commonly used to quantify students' attitudes toward science. We will also discuss best practices for the analysis and interpretation of attitude data.

  16. Equity and Computers for Mathematics Learning: Access and Attitudes

    Science.gov (United States)

    Forgasz, Helen J.

    2004-01-01

    Equity and computer use for secondary mathematics learning was the focus of a three year study. In 2003, a survey was administered to a large sample of grade 7-10 students. Some of the survey items were aimed at determining home access to and ownership of computers, and students' attitudes to mathematics, computers, and computer use for…

  17. Identification of Learning Processes by Means of Computer Graphics.

    Science.gov (United States)

    Sorensen, Birgitte Holm

    1993-01-01

    Describes a development project for the use of computer graphics and video in connection with an inservice training course for primary education teachers in Denmark. Topics addressed include research approaches to computers; computer graphics in learning processes; activities relating to computer graphics; the role of the teacher; and student…

  18. Informal Science learning in PIBID: identifying and interpreting the strands

    Directory of Open Access Journals (Sweden)

    Thomas Barbosa Fejolo

    2013-10-01

    Full Text Available This paper presents a research on informal Science learning in the context of the Institutional Scholarship Program Initiation to Teaching (PIBID. We take as reference the strands of informal Science learning (FAC, representing six dimensions of learning, they are: 1 Development of interest in Science; 2 Understanding of scientific knowledge; 3 Engaging in scientific reasoning; 4 Reflection on Science; 5 Engagement in scientific practice; 6 Identification with Science. For the lifting data, it was used the filming record of the interactions and dialogues of undergraduate students while performing activities of Optical Spectroscopy in the laboratory. Based on the procedures of content analysis and interpretations through communication, we investigate which of the six strands were present during the action of the students in activities. As a result we have drawn a learning profile for each student by distributing communications in different strands of informal Science learning.

  19. Electronic digital computers their use in science and engineering

    CERN Document Server

    Alt, Franz L

    1958-01-01

    Electronic Digital Computers: Their Use in Science and Engineering describes the principles underlying computer design and operation. This book describes the various applications of computers, the stages involved in using them, and their limitations. The machine is composed of the hardware which is run by a program. This text describes the use of magnetic drum for storage of data and some computing. The functions and components of the computer include automatic control, memory, input of instructions by using punched cards, and output from resulting information. Computers operate by using numbe

  20. Logic, mathematics, and computer science modern foundations with practical applications

    CERN Document Server

    Nievergelt, Yves

    2015-01-01

    This text for the first or second year undergraduate in mathematics, logic, computer science, or social sciences, introduces the reader to logic, proofs, sets, and number theory. It also serves as an excellent independent study reference and resource for instructors. Adapted from Foundations of Logic and Mathematics: Applications to Science and Cryptography © 2002 Birkhӓuser, this second edition provides a modern introduction to the foundations of logic, mathematics, and computers science, developing the theory that demonstrates construction of all mathematics and theoretical computer science from logic and set theory.  The focus is on foundations, with specific statements of all the associated axioms and rules of logic and set theory, and  provides complete details and derivations of formal proofs. Copious references to literature that document historical development is also provided. Answers are found to many questions that usually remain unanswered: Why is the truth table for logical implication so uni...