WorldWideScience

Sample records for learning cognitive control

  1. Memory and cognitive control circuits in mathematical cognition and learning.

    Science.gov (United States)

    Menon, V

    2016-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal-frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal-frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. © 2016 Elsevier B.V. All rights reserved.

  2. Memory and cognitive control circuits in mathematical cognition and learning

    Science.gov (United States)

    Menon, V.

    2018-01-01

    Numerical cognition relies on interactions within and between multiple functional brain systems, including those subserving quantity processing, working memory, declarative memory, and cognitive control. This chapter describes recent advances in our understanding of memory and control circuits in mathematical cognition and learning. The working memory system involves multiple parietal–frontal circuits which create short-term representations that allow manipulation of discrete quantities over several seconds. In contrast, hippocampal–frontal circuits underlying the declarative memory system play an important role in formation of associative memories and binding of new and old information, leading to the formation of long-term memories that allow generalization beyond individual problem attributes. The flow of information across these systems is regulated by flexible cognitive control systems which facilitate the integration and manipulation of quantity and mnemonic information. The implications of recent research for formulating a more comprehensive systems neuroscience view of the neural basis of mathematical learning and knowledge acquisition in both children and adults are discussed. PMID:27339012

  3. Cognitive Models for Learning to Control Dynamic Systems

    National Research Council Canada - National Science Library

    Eberhart, Russ; Hu, Xiaohui; Chen, Yaobin

    2008-01-01

    Report developed under STTR contract for topic "Cognitive models for learning to control dynamic systems" demonstrated a swarm intelligence learning algorithm and its application in unmanned aerial vehicle (UAV) mission planning...

  4. Language experience differentiates prefrontal and subcortical activation of the cognitive control network in novel word learning.

    Science.gov (United States)

    Bradley, Kailyn A L; King, Kelly E; Hernandez, Arturo E

    2013-02-15

    The purpose of this study was to examine the cognitive control mechanisms in adult English speaking monolinguals compared to early sequential Spanish-English bilinguals during the initial stages of novel word learning. Functional magnetic resonance imaging during a lexico-semantic task after only 2h of exposure to novel German vocabulary flashcards showed that monolinguals activated a broader set of cortical control regions associated with higher-level cognitive processes, including the supplementary motor area (SMA), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC), as well as the caudate, implicated in cognitive control of language. However, bilinguals recruited a more localized subcortical network that included the putamen, associated more with motor control of language. These results suggest that experience managing multiple languages may differentiate the learning strategy and subsequent neural mechanisms of cognitive control used by bilinguals compared to monolinguals in the early stages of novel word learning. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Instructional Control of Cognitive Load in the Design of Complex Learning Environments

    NARCIS (Netherlands)

    Kester, Liesbeth; Paas, Fred; Van Merriënboer, Jeroen

    2010-01-01

    Kester, L., Paas, F., & Van Merriënboer, J. J. G. (2010). Instructional control of cognitive load in the design of complex learning environments. In J. L. Plass, R. Moreno, & Roland Brünken (Eds.), Cognitive Load Theory (pp. 109-130). New York: Cambridge University Press.

  6. Patients with Parkinson's disease learn to control complex systems-an indication for intact implicit cognitive skill learning.

    Science.gov (United States)

    Witt, Karsten; Daniels, Christine; Daniel, Victoria; Schmitt-Eliassen, Julia; Volkmann, Jens; Deuschl, Günther

    2006-01-01

    Implicit memory and learning mechanisms are composed of multiple processes and systems. Previous studies demonstrated a basal ganglia involvement in purely cognitive tasks that form stimulus response habits by reinforcement learning such as implicit classification learning. We will test the basal ganglia influence on two cognitive implicit tasks previously described by Berry and Broadbent, the sugar production task and the personal interaction task. Furthermore, we will investigate the relationship between certain aspects of an executive dysfunction and implicit learning. To this end, we have tested 22 Parkinsonian patients and 22 age-matched controls on two implicit cognitive tasks, in which participants learned to control a complex system. They interacted with the system by choosing an input value and obtaining an output that was related in a complex manner to the input. The objective was to reach and maintain a specific target value across trials (dynamic system learning). The two tasks followed the same underlying complex rule but had different surface appearances. Subsequently, participants performed an executive test battery including the Stroop test, verbal fluency and the Wisconsin card sorting test (WCST). The results demonstrate intact implicit learning in patients, despite an executive dysfunction in the Parkinsonian group. They lead to the conclusion that the basal ganglia system affected in Parkinson's disease does not contribute to the implicit acquisition of a new cognitive skill. Furthermore, the Parkinsonian patients were able to reach a specific goal in an implicit learning context despite impaired goal directed behaviour in the WCST, a classic test of executive functions. These results demonstrate a functional independence of implicit cognitive skill learning and certain aspects of executive functions.

  7. Uncertainty and Cognitive Control

    Directory of Open Access Journals (Sweden)

    Faisal eMushtaq

    2011-10-01

    Full Text Available A growing trend of neuroimaging, behavioural and computational research has investigated the topic of outcome uncertainty in decision-making. Although evidence to date indicates that humans are very effective in learning to adapt to uncertain situations, the nature of the specific cognitive processes involved in the adaptation to uncertainty are still a matter of debate. In this article, we reviewed evidence suggesting that cognitive control processes are at the heart of uncertainty in decision-making contexts. Available evidence suggests that: (1 There is a strong conceptual overlap between the constructs of uncertainty and cognitive control; (2 There is a remarkable overlap between the neural networks associated with uncertainty and the brain networks subserving cognitive control; (3 The perception and estimation of uncertainty might play a key role in monitoring processes and the evaluation of the need for control; (4 Potential interactions between uncertainty and cognitive control might play a significant role in several affective disorders.

  8. Learning and Cognition

    Science.gov (United States)

    Gr ver Aukrust, Vibeke, Ed.

    2011-01-01

    This collection of 58 articles from the recently-published third edition of the International Encyclopedia of Education focuses on learning, memory, attention, problem solving, concept formation, and language. Learning and cognition is the foundation of cognitive psychology and encompasses many topics including attention, memory, categorization,…

  9. Food2Learn: Randomized control trial investigating influence of krill oil supplementation on learning, cognition, and behaviour in healthy adolescents. Design presentation

    NARCIS (Netherlands)

    Van der Wurff, Inge; Von Schacky, Clemens; Berge, Kjetil; Kirschner, Paul A.; De Groot, Renate

    2014-01-01

    Food2Learn is a double blind randomized controlled trial which looks at the influence of Krill oil (rich in LCPUFA) on the cognitive performance, academic performance and mental well-being of student of lower vocational schools.

  10. Maladaptive Schemas and Affective Control in Students with Learning Disability: Benefits of Mindfulness-Based Cognitive Therapy

    OpenAIRE

    Nasrollah Vaisi; Mohammad Rostami; Zohreh Zangooei; Mohammad-Ali Khaksar-Beldachi

    2015-01-01

    Objectives: This study intended to examine the effectiveness of mindfulness-based cognitive therapy on moderating maladaptive schemas and affective control in students suffering from learning disabilities. Methods: This experimental research was conducted using pretest-posttest and a control group. The population included all the female students who  were studying in the Koohdasht's middle schools (academic year: 2012-2013). The sample included 40 female students suffering from learn...

  11. Modafinil combined with cognitive training is associated with improved learning in healthy volunteers--a randomised controlled trial.

    Science.gov (United States)

    Gilleen, J; Michalopoulou, P G; Reichenberg, A; Drake, R; Wykes, T; Lewis, S W; Kapur, S

    2014-04-01

    Improving cognition in people with neuropsychiatric disorders remains a major clinical target. By themselves pharmacological and non-pharmacological approaches have shown only modest effects in improving cognition. In the present study we tested a recently-proposed methodology to combine CT with a 'cognitive-enhancing' drug to improve cognitive test scores and expanded on previous approaches by delivering combination drug and CT, over a long intervention of repeated sessions, and used multiple tasks to reveal the cognitive processes being enhanced. We also aimed to determine whether gains from this combination approach generalised to untrained tests. In this proof of principle randomised-controlled trial thirty-three healthy volunteers were randomised to receive either modafinil or placebo combined with daily cognitive training over two weeks. Volunteers were trained on tasks of new-language learning, working memory and verbal learning following 200 mg modafinil or placebo for ten days. Improvements in trained and untrained tasks were measured. Rate of new-language learning was significantly enhanced with modafinil, and effects were greatest over the first five sessions. Modafinil improved within-day learning rather than between-day retention. No enhancement of gains with modafinil was observed in working memory nor rate of verbal learning. Gains in all tasks were retained post drug-administration, but transfer effects to broad cognitive abilities were not seen. This study shows that combining CT with modafinil specifically elevates learning over early training sessions compared to CT with placebo and provides a proof of principle experimental paradigm for pharmacological enhancement of cognitive remediation. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  12. Reinforcement learning modulates the stability of cognitive control settings for object selection

    Directory of Open Access Journals (Sweden)

    Anthony William Sali

    2013-12-01

    Full Text Available Cognitive flexibility reflects both a trait that reliably differs between individuals and a state that can fluctuate moment-to-moment. Whether individuals can undergo persistent changes in cognitive flexibility as a result of reward learning is less understood. Here, we investigated whether reinforcing a periodic shift in an object selection strategy can make an individual more prone to switch strategies in a subsequent unrelated task. Participants completed two different choice tasks in which they selected one of four objects in an attempt to obtain a hidden reward on each trial. During a training phase, objects were defined by color. Participants received either consistent reward contingencies in which one color was more often rewarded, or contingencies in which the color that was more often rewarded changed periodically and without warning. Following the training phase, all participants completed a test phase in which reward contingencies were defined by spatial location and the location that was more often rewarded remained constant across the entire task. Those participants who received inconsistent contingencies during training continued to make more variable selections during the test phase in comparison to those who received the consistent training. Furthermore, a difference in the likelihood to switch selections on a trial-by-trial basis emerged between training groups: participants who received consistent contingencies during training were less likely to switch object selections following an unrewarded trial and more likely to repeat a selection following reward. Our findings provide evidence that the extent to which priority shifting is reinforced modulates the stability of cognitive control settings in a persistent manner, such that individuals become generally more or less prone to shifting priorities in the future.

  13. Prenatal Cigarette Exposure and Infant Learning Stimulation as Predictors of Cognitive Control in Childhood

    Science.gov (United States)

    Mezzacappa, Enrico; Buckner, John C.; Earls, Felton

    2011-01-01

    Prenatal exposures to neurotoxins and postnatal parenting practices have been shown to independently predict variations in the cognitive development and emotional-behavioral well-being of infants and children. We examined the independent contributions of prenatal cigarette exposure and infant learning stimulation, as well as their…

  14. Effects of arousal on cognitive control: empirical tests of the conflict-modulated Hebbian-learning hypothesis.

    Science.gov (United States)

    Brown, Stephen B R E; van Steenbergen, Henk; Kedar, Tomer; Nieuwenhuis, Sander

    2014-01-01

    An increasing number of empirical phenomena that were previously interpreted as a result of cognitive control, turn out to reflect (in part) simple associative-learning effects. A prime example is the proportion congruency effect, the finding that interference effects (such as the Stroop effect) decrease as the proportion of incongruent stimuli increases. While this was previously regarded as strong evidence for a global conflict monitoring-cognitive control loop, recent evidence has shown that the proportion congruency effect is largely item-specific and hence must be due to associative learning. The goal of our research was to test a recent hypothesis about the mechanism underlying such associative-learning effects, the conflict-modulated Hebbian-learning hypothesis, which proposes that the effect of conflict on associative learning is mediated by phasic arousal responses. In Experiment 1, we examined in detail the relationship between the item-specific proportion congruency effect and an autonomic measure of phasic arousal: task-evoked pupillary responses. In Experiment 2, we used a task-irrelevant phasic arousal manipulation and examined the effect on item-specific learning of incongruent stimulus-response associations. The results provide little evidence for the conflict-modulated Hebbian-learning hypothesis, which requires additional empirical support to remain tenable.

  15. Effects of arousal on cognitive control: Empirical tests of the conflict-modulated Hebbian-learning hypothesis

    Directory of Open Access Journals (Sweden)

    Stephen B.R.E. Brown

    2014-01-01

    Full Text Available An increasing number of empirical phenomena that were previously interpreted as a result of cognitive control, turn out to reflect (in part simple associative-learning effects. A prime example is the proportion congruency effect, the finding that interference effects (such as the Stroop effect decrease as the proportion of incongruent stimuli increases. While this was previously regarded as strong evidence for a global conflict monitoring-cognitive control loop, recent evidence has shown that the proportion congruency effect is largely item-specific and hence must be due to associative learning. The goal of our research was to test a recent hypothesis about the mechanism underlying such associative-learning effects, the conflict-modulated Hebbian-learning hypothesis, which proposes that the effect of conflict on associative learning is mediated by phasic arousal responses. In Experiment 1, we examined in detail the relationship between the item-specific proportion congruency effect and an autonomic measure of phasic arousal: task-evoked pupillary responses. In Experiment 2, we used a task-irrelevant phasic arousal manipulation and examined the effect on item-specific learning of incongruent stimulus-response associations. The results provide little evidence for the conflict-modulated Hebbian-learning hypothesis, which requires additional empirical support to remain tenable.

  16. Learning: from association to cognition.

    Science.gov (United States)

    Shanks, David R

    2010-01-01

    Since the very earliest experimental investigations of learning, tension has existed between association-based and cognitive theories. Associationism accounts for the phenomena of both conditioning and "higher" forms of learning via concepts such as excitation, inhibition, and reinforcement, whereas cognitive theories assume that learning depends on hypothesis testing, cognitive models, and propositional reasoning. Cognitive theories have received considerable impetus in regard to both human and animal learning from recent research suggesting that the key illustration of cue selection in learning, blocking, often arises from inferential reasoning. At the same time, a dichotomous view that separates noncognitive, unconscious (implicit) learning from cognitive, conscious (explicit) learning has gained favor. This review selectively describes key findings from this research, evaluates evidence for and against associative and cognitive explanatory constructs, and critically examines both the dichotomous view of learning as well as the claim that learning can occur unconsciously.

  17. COGNITIVE FATIGUE FACILITATES PROCEDURAL SEQUENCE LEARNING

    Directory of Open Access Journals (Sweden)

    Guillermo eBorragán

    2016-03-01

    Full Text Available Enhanced procedural learning has been evidenced in conditions where cognitive control is diminished, including hypnosis, disruption of prefrontal activity and non-optimal time of the day. Another condition depleting the availability of controlled resources is cognitive fatigue. We tested the hypothesis that cognitive fatigue, eventually leading to diminished cognitive control, facilitates procedural sequence learning. In a two-day experiment, twenty-three young healthy adults were administered a serial reaction time task (SRTT following the induction of high or low levels of cognitive fatigue, in a counterbalanced order. Cognitive fatigue was induced using the Time load Dual-back (TloadDback paradigm, a dual working memory task that allows tailoring cognitive load levels to the individual's optimal performance capacity. In line with our hypothesis, reaction times in the SRTT were faster in the high- than in the low-level fatigue condition, and performance improvement showed more of a benefit from the sequential components than from motor. Altogether, our results suggest a paradoxical, facilitating impact of cognitive fatigue on procedural motor sequence learning. We propose that facilitated learning in the high-level fatigue condition stems from a reduction in the cognitive resources devoted to cognitive control processes that normally oppose automatic procedural acquisition mechanisms.

  18. A new computational account of cognitive control over reinforcement-based decision-making: Modeling of a probabilistic learning task.

    Science.gov (United States)

    Zendehrouh, Sareh

    2015-11-01

    Recent work on decision-making field offers an account of dual-system theory for decision-making process. This theory holds that this process is conducted by two main controllers: a goal-directed system and a habitual system. In the reinforcement learning (RL) domain, the habitual behaviors are connected with model-free methods, in which appropriate actions are learned through trial-and-error experiences. However, goal-directed behaviors are associated with model-based methods of RL, in which actions are selected using a model of the environment. Studies on cognitive control also suggest that during processes like decision-making, some cortical and subcortical structures work in concert to monitor the consequences of decisions and to adjust control according to current task demands. Here a computational model is presented based on dual system theory and cognitive control perspective of decision-making. The proposed model is used to simulate human performance on a variant of probabilistic learning task. The basic proposal is that the brain implements a dual controller, while an accompanying monitoring system detects some kinds of conflict including a hypothetical cost-conflict one. The simulation results address existing theories about two event-related potentials, namely error related negativity (ERN) and feedback related negativity (FRN), and explore the best account of them. Based on the results, some testable predictions are also presented. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Cognitive Control Structures in the Imitation Learning of Spatial Sequences and Rhythms-An fMRI Study.

    Science.gov (United States)

    Sakreida, Katrin; Higuchi, Satomi; Di Dio, Cinzia; Ziessler, Michael; Turgeon, Martine; Roberts, Neil; Vogt, Stefan

    2018-03-01

    Imitation learning involves the acquisition of novel motor patterns based on action observation (AO). We used event-related functional magnetic resonance imaging to study the imitation learning of spatial sequences and rhythms during AO, motor imagery (MI), and imitative execution in nonmusicians and musicians. While both tasks engaged the fronto-parietal mirror circuit, the spatial sequence task recruited posterior parietal and dorsal premotor regions more strongly. The rhythm task involved an additional network for auditory working memory. This partial dissociation supports the concept of task-specific mirror mechanisms. Two regions of cognitive control were identified: 1) dorsolateral prefrontal cortex (DLPFC) was found to be more strongly activated during MI of novel spatial sequences, which allowed us to extend the 2-level model of imitation learning by Buccino et al. (2004) to spatial sequences. 2) During imitative execution of both tasks, the posterior medial frontal cortex was robustly activated, along with the DLPFC, which suggests that both regions are involved in the cognitive control of imitation learning. The musicians' selective behavioral advantage for rhythm imitation was reflected cortically in enhanced sensory-motor processing during AO and by the absence of practice-related activation differences in DLPFC during rhythm execution. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Cognitive Architectures for Multimedia Learning

    Science.gov (United States)

    Reed, Stephen K.

    2006-01-01

    This article provides a tutorial overview of cognitive architectures that can form a theoretical foundation for designing multimedia instruction. Cognitive architectures include a description of memory stores, memory codes, and cognitive operations. Architectures that are relevant to multimedia learning include Paivio's dual coding theory,…

  1. Maladaptive Schemas and Affective Control in Students with Learning Disability: Benefits of Mindfulness-Based Cognitive Therapy

    Directory of Open Access Journals (Sweden)

    Nasrollah Vaisi

    2015-09-01

    Full Text Available Objectives: This study intended to examine the effectiveness of mindfulness-based cognitive therapy on moderating maladaptive schemas and affective control in students suffering from learning disabilities. Methods: This experimental research was conducted using pretest-posttest and a control group. The population included all the female students who  were studying in the Koohdasht's middle schools (academic year: 2012-2013. The sample included 40 female students suffering from learning disabilities who had been randomly selected out of Koohdasht's middle school students after identification and a structured clinical interview and  they were put into experimental  and control groups (20 students each group. For data collection, Affective Control Scale and Young Schema Questionnaire were used. Results: The results of multivariate covariance analysis showed that mindfulness-based cognitive therapy has significantly decreased maladaptive schemas, depression, anxiety, and anger in subjects (P<0.001. Discussion: This finding represents important implications regarding education and mental health improvement in exceptional students. Therefore, it is recommended to use this  therapeutic  package in schools and clinics as a supplement to other therapies in order to decrease negative emotions and to prevent formation of maladaptive schemas in these students.

  2. Lexical selection in the semantically blocked cyclic naming task: The role of cognitive control and learning

    Directory of Open Access Journals (Sweden)

    Jason E. Crowther

    2014-01-01

    Full Text Available Studies of semantic interference in language production have provided evidence for a role of cognitive control mechanisms in regulating the activation of semantic competitors during naming. The present study investigated the relationship between individual differences in cognitive control abilities, for both younger and older adults, and the degree of semantic interference in a blocked cyclic naming task. We predicted that individuals with lower working memory capacity (as measured by word span, lesser ability to inhibit distracting responses (as measured by Stroop interference, and a lesser ability to resolve proactive interference (as measured by a recent negatives task would show a greater increase in semantic interference in naming, with effects being larger for older adults. Instead, measures of cognitive control were found to relate to specific indices of semantic interference in the naming task, rather than overall degree of semantic interference, and few interactions with age were found, with younger and older adults performing similarly. The increase in naming latencies across naming trials within a cycle were negatively correlated with word span for both related and unrelated conditions, suggesting a strategy of narrowing response alternatives based upon memory for the set of item names. Evidence for a role of inhibition in response selection was obtained, as Stroop interference correlated positively with the change in naming latencies across cycles for the related, but not unrelated, condition. In contrast, recent negatives interference correlated negatively with the change in naming latencies across unrelated cycles, suggesting that individual differences in this tap the degree of strengthening of links in a lexical network based upon prior exposure. Results are discussed in terms of current models of lexical selection and consequences for word retrieval in more naturalistic production.

  3. Computational Cognitive Neuroscience Modeling of Sequential Skill Learning

    Science.gov (United States)

    2016-09-21

    learning during declarative control. 8. Journal of Experimental Psychology : Learning, Memory , and Cognition . 9. Crossley, M. J., Ashby, F. G., & Maddox...learning: Sensitivity to feedback timing. Frontiers in Psychology – Cognitive Science, 5, article 643, 1-9. 15. Worthy, D.A. & Maddox, W.T. (2014). A...Learning, Memory , and Cognition . Crossley, M. J., Ashby, F. G., & Maddox, W. T. (2014). Context-dependent savings in procedural category learning

  4. Learning Potential and Cognitive Modifiability

    Science.gov (United States)

    Kozulin, Alex

    2011-01-01

    The relationship between thinking and learning constitutes one of the fundamental problems of cognitive psychology. Though there is an obvious overlap between the domains of thinking and learning, it seems more productive to consider learning as being predominantly acquisition while considering thinking as the application of the existent concepts…

  5. Associative learning and animal cognition.

    Science.gov (United States)

    Dickinson, Anthony

    2012-10-05

    Associative learning plays a variety of roles in the study of animal cognition from a core theoretical component to a null hypothesis against which the contribution of cognitive processes is assessed. Two developments in contemporary associative learning have enhanced its relevance to animal cognition. The first concerns the role of associatively activated representations, whereas the second is the development of hybrid theories in which learning is determined by prediction errors, both directly and indirectly through associability processes. However, it remains unclear whether these developments allow associative theory to capture the psychological rationality of cognition. I argue that embodying associative processes within specific processing architectures provides mechanisms that can mediate psychological rationality and illustrate such embodiment by discussing the relationship between practical reasoning and the associative-cybernetic model of goal-directed action.

  6. Cognitive Synergy in Multimedia Learning

    Science.gov (United States)

    Kim, Daesang; Kim, Dong-Joong; Whang, Woo-Hyung

    2013-01-01

    The main focus of our study was to investigate multimedia effects that had different results from the findings of existing multimedia learning studies. First, we describe and summarize three experimental studies we conducted from 2006 to 2010. Then we analyze our findings to explore learner characteristics that may impact the cognitive processes…

  7. Understanding Cognitive Language Learning Strategies

    Directory of Open Access Journals (Sweden)

    Sergio Di Carlo

    2017-01-01

    Full Text Available Over time, definitions and taxonomies of language learning strategies have been critically examined. This article defines and classifies cognitive language learning strategies on a more grounded basis. Language learning is a macro-process for which the general hypotheses of information processing are valid. Cognitive strategies are represented by the pillars underlying the encoding, storage and retrieval of information. In order to understand the processes taking place on these three dimensions, a functional model was elaborated from multiple theoretical contributions and previous models: the Smart Processing Model. This model operates with linguistic inputs as well as with any other kind of information. It helps to illustrate the stages, relations, modules and processes that occur during the flow of information. This theoretical advance is a core element to classify cognitive strategies. Contributions from cognitive neuroscience have also been considered to establish the proposed classification which consists of five categories. Each of these categories has a different predominant function: classification, preparation, association, elaboration and transfer-practice. This better founded taxonomy opens the doors to potential studies that would allow a better understanding of the interdisciplinary complexity of language learning. Pedagogical and methodological implications are also discussed.

  8. Evolution, learning, and cognition

    National Research Council Canada - National Science Library

    Lee, Y. C

    1988-01-01

    ... networks suitable for practical real world applications, and the realization, by researchers in artificial intelligent systems, of the need to incorporate automatic learning capability into knowledge-based systems in order to deal with the inherent imprecise, incomplete, and ever-changing nature of the real world knowledge base. The publication of this ...

  9. Stimulating cognition in schizophrenia: A controlled pilot study of the effects of prefrontal transcranial direct current stimulation upon memory and learning.

    Science.gov (United States)

    Orlov, Natasza D; Tracy, Derek K; Joyce, Daniel; Patel, Shinal; Rodzinka-Pasko, Joanna; Dolan, Hayley; Hodsoll, John; Collier, Tracy; Rothwell, John; Shergill, Sukhwinder S

    Schizophrenia is characterized by prominent cognitive deficits, impacting on memory and learning; these are strongly associated with the prefrontal cortex. To combine two interventions, transcranial direct current stimulation (tDCS) over the prefrontal cortex and cognitive training, to examine change in cognitive performance in patients with schizophrenia. A double blind, sham-controlled pilot study of 49 patients with schizophrenia, randomized into real or sham tDCS stimulation groups. Subjects participated in 4 days of cognitive training (days 1, 2, 14, 56) with tDCS applied at day-1 and day-14. The primary outcome measure was change in accuracy on working memory and implicit learning tasks from baseline. The secondary outcome measure was the generalization of learning to non-trained task, indexed by the CogState neuropsychological battery. Data analysis was conducted using multilevel modelling and multiple regressions. 24 participants were randomized to real tDCS and 25 to sham. The working memory task demonstrated a significant mean difference in performance in the tDCS treatment group: at day-2 (b = 0.68, CI 0.14-1.21; p = 0.044) and at day-56 (b = 0.71, 0.16-1.26; p = 0.044). There were no significant effects of tDCS on implicit learning. Trend evidence of generalization onto untrained tasks of attention and vigilance task (b = 0.40, 0.43-0.77; p = 0.058) was found. This is the first study to show a significant longer-term effect of tDCS on working memory in schizophrenia. Given the current lack of effective therapies for cognitive deficits, tDCS may offer an important novel approach to modulating brain networks to ameliorate cognitive deficits in schizophrenia. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Cognitive Style and Mobile E-Learning in Emergent Otorhinolaryngology-Head and Neck Surgery Disorders for Millennial Undergraduate Medical Students: Randomized Controlled Trial.

    Science.gov (United States)

    Lee, Li-Ang; Chao, Yi-Ping; Huang, Chung-Guei; Fang, Ji-Tseng; Wang, Shu-Ling; Chuang, Cheng-Keng; Kang, Chung-Jan; Hsin, Li-Jen; Lin, Wan-Ni; Fang, Tuan-Jen; Li, Hsueh-Yu

    2018-02-13

    Electronic learning (e-learning) through mobile technology represents a novel way to teach emergent otorhinolaryngology-head and neck surgery (ORL-HNS) disorders to undergraduate medical students. Whether a cognitive style of education combined with learning modules can impact learning outcomes and satisfaction in millennial medical students is unknown. The aim of this study was to assess the impact of cognitive styles and learning modules using mobile e-learning on knowledge gain, competence gain, and satisfaction for emergent ORL-HNS disorders. This randomized controlled trial included 60 undergraduate medical students who were novices in ORL-HNS at an academic teaching hospital. The cognitive style of the participants was assessed using the group embedded figures test. The students were randomly assigned (1:1) to a novel interactive multimedia (IM) group and conventional Microsoft PowerPoint show (PPS) group matched by age, sex, and cognitive style. The content for the gamified IM module was derived from and corresponded to the textbook-based learning material of the PPS module (video lectures). The participants were unblinded and used fully automated courseware containing the IM or PPS module on a 7-inch tablet for 100 min. Knowledge and competence were assessed using multiple-choice questions and multimedia situation tests, respectively. Each participant also rated their global satisfaction. All of the participants (median age 23 years, range 22-26 years; 36 males and 24 females) received the intended intervention after randomization. Overall, the participants had significant gains in knowledge (median 50%, interquartile range [IQR]=17%-80%, Plearning modules (IM or PPS) had significant effects on both knowledge gain (both adjusted Plearning is an effective modality to improve knowledge of emergent ORL-HNS in millennial undergraduate medical students. Our findings suggest the necessity of developing various modules for undergraduate medical students with

  11. Altered brain activation in a reversal learning task unmasks adaptive changes in cognitive control in writer's cramp.

    Science.gov (United States)

    Zeuner, Kirsten E; Knutzen, Arne; Granert, Oliver; Sablowsky, Simone; Götz, Julia; Wolff, Stephan; Jansen, Olav; Dressler, Dirk; Schneider, Susanne A; Klein, Christine; Deuschl, Günther; van Eimeren, Thilo; Witt, Karsten

    2016-01-01

    Previous receptor binding studies suggest dopamine function is altered in the basal ganglia circuitry in task-specific dystonia, a condition characterized by contraction of agonist and antagonist muscles while performing specific tasks. Dopamine plays a role in reward-based learning. Using fMRI, this study compared 31 right-handed writer's cramp patients to 35 controls in reward-based learning of a probabilistic reversal-learning task. All subjects chose between two stimuli and indicated their response with their left or right index finger. One stimulus response was rewarded 80%, the other 20%. After contingencies reversal, the second stimulus response was rewarded in 80%. We further linked the DRD2/ANKK1-TaqIa polymorphism, which is associated with 30% reduction of the striatal dopamine receptor density with reward-based learning and assumed impaired reversal learning in A + subjects. Feedback learning in patients was normal. Blood-oxygen level dependent (BOLD) signal in controls increased with negative feedback in the insula, rostral cingulate cortex, middle frontal gyrus and parietal cortex (pFWE based learning. The dACC is connected with the basal ganglia-thalamo-loop modulated by dopaminergic signaling. This finding suggests disturbed integration of reinforcement history in decision making and implicate that the reward system might contribute to the pathogenesis in writer's cramp.

  12. Effectiveness of a School-Based Physical Activity Intervention on Cognitive Performance in Danish Adolescents: LCoMotion—Learning, Cognition and Motion – A Cluster Randomized Controlled Trial

    Science.gov (United States)

    Domazet, Sidsel Louise; Froberg, Karsten; Hillman, Charles H.; Andersen, Lars Bo; Bugge, Anna

    2016-01-01

    Background Physical activity is associated not only with health-related parameters, but also with cognitive and academic performance. However, no large scale school-based physical activity interventions have investigated effects on cognitive performance in adolescents. The aim of this study was to describe the effectiveness of a school-based physical activity intervention in enhancing cognitive performance in 12–14 years old adolescents. Methods A 20 week cluster randomized controlled trial was conducted including seven intervention and seven control schools. A total of 632 students (mean (SD) age: 12.9 (0.6) years) completed the trial with baseline and follow-up data on primary or secondary outcomes (74% of randomized subjects). The intervention targeted physical activity during academic subjects, recess, school transportation and leisure-time. Cognitive performance was assessed using an executive functions test of inhibition (flanker task) with the primary outcomes being accuracy and reaction time on congruent and incongruent trials. Secondary outcomes included mathematics performance, physical activity levels, body-mass index, waist-circumference and cardiorespiratory fitness. Results No significant difference in change, comparing the intervention group to the control group, was observed on the primary outcomes (p’s>0.05) or mathematics skills (p>0.05). An intervention effect was found for cardiorespiratory fitness in girls (21 meters (95% CI: 4.4–38.6) and body-mass index in boys (-0.22 kg/m2 (95% CI: -0.39–0.05). Contrary to our predictions, a significantly larger change in interference control for reaction time was found in favor of the control group (5.0 milliseconds (95% CI: 0–9). Baseline to mid-intervention changes in physical activity levels did not differ significantly between groups (all p’s>0.05). Conclusions No evidence was found for effectiveness of a 20-week multi-faceted school-based physical activity intervention for enhancing

  13. Effectiveness of a School-Based Physical Activity Intervention on Cognitive Performance in Danish Adolescents: LCoMotion-Learning, Cognition and Motion - A Cluster Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Jakob Tarp

    Full Text Available Physical activity is associated not only with health-related parameters, but also with cognitive and academic performance. However, no large scale school-based physical activity interventions have investigated effects on cognitive performance in adolescents. The aim of this study was to describe the effectiveness of a school-based physical activity intervention in enhancing cognitive performance in 12-14 years old adolescents.A 20 week cluster randomized controlled trial was conducted including seven intervention and seven control schools. A total of 632 students (mean (SD age: 12.9 (0.6 years completed the trial with baseline and follow-up data on primary or secondary outcomes (74% of randomized subjects. The intervention targeted physical activity during academic subjects, recess, school transportation and leisure-time. Cognitive performance was assessed using an executive functions test of inhibition (flanker task with the primary outcomes being accuracy and reaction time on congruent and incongruent trials. Secondary outcomes included mathematics performance, physical activity levels, body-mass index, waist-circumference and cardiorespiratory fitness.No significant difference in change, comparing the intervention group to the control group, was observed on the primary outcomes (p's>0.05 or mathematics skills (p>0.05. An intervention effect was found for cardiorespiratory fitness in girls (21 meters (95% CI: 4.4-38.6 and body-mass index in boys (-0.22 kg/m2 (95% CI: -0.39-0.05. Contrary to our predictions, a significantly larger change in interference control for reaction time was found in favor of the control group (5.0 milliseconds (95% CI: 0-9. Baseline to mid-intervention changes in physical activity levels did not differ significantly between groups (all p's>0.05.No evidence was found for effectiveness of a 20-week multi-faceted school-based physical activity intervention for enhancing executive functioning or mathematics skills compared

  14. Effectiveness of a School-Based Physical Activity Intervention on Cognitive Performance in Danish Adolescents: LCoMotion-Learning, Cognition and Motion - A Cluster Randomized Controlled Trial.

    Science.gov (United States)

    Tarp, Jakob; Domazet, Sidsel Louise; Froberg, Karsten; Hillman, Charles H; Andersen, Lars Bo; Bugge, Anna

    2016-01-01

    Physical activity is associated not only with health-related parameters, but also with cognitive and academic performance. However, no large scale school-based physical activity interventions have investigated effects on cognitive performance in adolescents. The aim of this study was to describe the effectiveness of a school-based physical activity intervention in enhancing cognitive performance in 12-14 years old adolescents. A 20 week cluster randomized controlled trial was conducted including seven intervention and seven control schools. A total of 632 students (mean (SD) age: 12.9 (0.6) years) completed the trial with baseline and follow-up data on primary or secondary outcomes (74% of randomized subjects). The intervention targeted physical activity during academic subjects, recess, school transportation and leisure-time. Cognitive performance was assessed using an executive functions test of inhibition (flanker task) with the primary outcomes being accuracy and reaction time on congruent and incongruent trials. Secondary outcomes included mathematics performance, physical activity levels, body-mass index, waist-circumference and cardiorespiratory fitness. No significant difference in change, comparing the intervention group to the control group, was observed on the primary outcomes (p's>0.05) or mathematics skills (p>0.05). An intervention effect was found for cardiorespiratory fitness in girls (21 meters (95% CI: 4.4-38.6) and body-mass index in boys (-0.22 kg/m2 (95% CI: -0.39-0.05). Contrary to our predictions, a significantly larger change in interference control for reaction time was found in favor of the control group (5.0 milliseconds (95% CI: 0-9). Baseline to mid-intervention changes in physical activity levels did not differ significantly between groups (all p's>0.05). No evidence was found for effectiveness of a 20-week multi-faceted school-based physical activity intervention for enhancing executive functioning or mathematics skills compared to a

  15. Cognitive Style and Mobile E-Learning in Emergent Otorhinolaryngology-Head and Neck Surgery Disorders for Millennial Undergraduate Medical Students: Randomized Controlled Trial

    Science.gov (United States)

    Chao, Yi-Ping; Huang, Chung-Guei; Fang, Ji-Tseng; Wang, Shu-Ling; Chuang, Cheng-Keng; Kang, Chung-Jan; Hsin, Li-Jen; Lin, Wan-Ni; Fang, Tuan-Jen; Li, Hsueh-Yu

    2018-01-01

    Background Electronic learning (e-learning) through mobile technology represents a novel way to teach emergent otorhinolaryngology-head and neck surgery (ORL-HNS) disorders to undergraduate medical students. Whether a cognitive style of education combined with learning modules can impact learning outcomes and satisfaction in millennial medical students is unknown. Objective The aim of this study was to assess the impact of cognitive styles and learning modules using mobile e-learning on knowledge gain, competence gain, and satisfaction for emergent ORL-HNS disorders. Methods This randomized controlled trial included 60 undergraduate medical students who were novices in ORL-HNS at an academic teaching hospital. The cognitive style of the participants was assessed using the group embedded figures test. The students were randomly assigned (1:1) to a novel interactive multimedia (IM) group and conventional Microsoft PowerPoint show (PPS) group matched by age, sex, and cognitive style. The content for the gamified IM module was derived from and corresponded to the textbook-based learning material of the PPS module (video lectures). The participants were unblinded and used fully automated courseware containing the IM or PPS module on a 7-inch tablet for 100 min. Knowledge and competence were assessed using multiple-choice questions and multimedia situation tests, respectively. Each participant also rated their global satisfaction. Results All of the participants (median age 23 years, range 22-26 years; 36 males and 24 females) received the intended intervention after randomization. Overall, the participants had significant gains in knowledge (median 50%, interquartile range [IQR]=17%-80%, P<.001) and competence (median 13%, IQR=0%-33%, P=.006). There were no significant differences in knowledge gain (40%, IQR=13%-76% vs 60%, IQR=20%-100%, P=.42) and competence gain (0%, IQR= −21% to 38% vs 25%, IQR=0%-33%, P=.16) between the IM and PPS groups. However, the IM group had

  16. Emotional foundations of cognitive control

    Science.gov (United States)

    Inzlicht, Michael; Bartholow, Bruce D.; Hirsh, Jacob B.

    2015-01-01

    Often seen as the paragon of higher cognition, here we suggest that cognitive control is dependent on emotion. Rather than asking whether control is influenced by emotion, we ask whether control itself can be understood as an emotional process. Reviewing converging evidence from cybernetics, animal research, cognitive neuroscience, and social and personality psychology, we suggest that cognitive control is initiated when goal conflicts evoke phasic changes to emotional primitives that both focus attention on the presence of goal conflicts and energize conflict resolution to support goal-directed behavior. Critically, we propose that emotion is not an inert byproduct of conflict but is instrumental in recruiting control. Appreciating the emotional foundations of control leads to testable predictions that can spur future research. PMID:25659515

  17. Emotional foundations of cognitive control.

    Science.gov (United States)

    Inzlicht, Michael; Bartholow, Bruce D; Hirsh, Jacob B

    2015-03-01

    Often seen as the paragon of higher cognition, here we suggest that cognitive control is dependent on emotion. Rather than asking whether control is influenced by emotion, we ask whether control itself can be understood as an emotional process. Reviewing converging evidence from cybernetics, animal research, cognitive neuroscience, and social and personality psychology, we suggest that cognitive control is initiated when goal conflicts evoke phasic changes to emotional primitives that both focus attention on the presence of goal conflicts and energize conflict resolution to support goal-directed behavior. Critically, we propose that emotion is not an inert byproduct of conflict but is instrumental in recruiting control. Appreciating the emotional foundations of control leads to testable predictions that can spur future research. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The effects of cognitive load during intertrial intervals on judgements of control: The role of working memory and contextual learning.

    Science.gov (United States)

    Cavus, H A; Msetfi, Rachel M

    2016-11-01

    When there is no contingency between actions and outcomes, but outcomes occur frequently, people tend to judge that they have control over those outcomes, a phenomenon known as the outcome density (OD) effect. Recent studies show that the OD effect depends on the duration of the temporal interval between action-outcome conjunctions, with longer intervals inducing stronger effects. However, under some circumstances OD effect is reduced, for example when participants are mildly depressed. We reasoned that working memory (WM) plays an important role in learning of context; with reduced WM capacity to process contextual information during intertrial intervals (ITIs) during contingency learning might lead to reduced OD effects (limited capacity hypothesis). To test this, we used a novel dual-task procedure that increases the WM load during the ITIs of an operant (e.g., action-outcome) contingency learning task to impact contextual learning. We tested our hypotheses in groups of students with zero (Experiments 1, N=34), and positive contingencies (Experiment 2, N=34). The findings indicated that WM load during the ITIs reduced the OD effects compared to no load conditions (Experiment 1 and 2). In Experiment 2, we observed reduced OD effects on action judgements under high load in zero and positive contingencies. However, the participants' judgements were still sensitive to the difference between zero and positive contingencies. We discuss the implications of our findings for the effects of depression and context in contingency learning. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Cognitive Load of Learner Control: Extraneous or Germane Load?

    Directory of Open Access Journals (Sweden)

    Mieke Vandewaetere

    2013-01-01

    Full Text Available Computer-based learning environments become more tailored when learners can exert control over one or more parts of the learning process. Learner control (LC demands additional efforts of learners because, in addition to learning, they also have to monitor that learning. As a consequence, LC may cause additional cognitive load and even cognitive overload. The central question in this study is what type of cognitive load is induced by LC and whether the experienced load is related to learning outcomes. For this study, half of the students had control over task selection, while the other half had not. Within each condition, students were assigned to a single treatment, with the primary task to solely focus on the learning content, and a dual treatment, comprising a primary task and a secondary task. The results indicate that LC did not impose higher cognitive load as measured by secondary task scores and mental effort ratings.

  20. Understanding the cognitive processes involved in writing to learn.

    Science.gov (United States)

    Arnold, Kathleen M; Umanath, Sharda; Thio, Kara; Reilly, Walter B; McDaniel, Mark A; Marsh, Elizabeth J

    2017-06-01

    Writing is often used as a tool for learning. However, empirical support for the benefits of writing-to-learn is mixed, likely because the literature conflates diverse activities (e.g., summaries, term papers) under the single umbrella of writing-to-learn. Following recent trends in the writing-to-learn literature, the authors focus on the underlying cognitive processes. They draw on the largely independent writing-to-learn and cognitive psychology learning literatures to identify important cognitive processes. The current experiment examines learning from 3 writing tasks (and 1 nonwriting control), with an emphasis on whether or not the tasks engaged retrieval. Tasks that engaged retrieval (essay writing and free recall) led to better final test performance than those that did not (note taking and highlighting). Individual differences in structure building (the ability to construct mental representations of narratives; Gernsbacher, Varner, & Faust, 1990) modified this effect; skilled structure builders benefited more from essay writing and free recall than did less skilled structure builders. Further, more essay-like responses led to better performance, implicating the importance of additional cognitive processes such as reorganization and elaboration. The results highlight how both task instructions and individual differences affect the cognitive processes involved when writing-to-learn, with consequences for the effectiveness of the learning strategy. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  1. Measuring Cognitive Load in Embodied Learning Settings.

    Science.gov (United States)

    Skulmowski, Alexander; Rey, Günter Daniel

    2017-01-01

    In recent years, research on embodied cognition has inspired a number of studies on multimedia learning and instructional psychology. However, in contrast to traditional research on education and multimedia learning, studies on embodied learning (i.e., focusing on bodily action and perception in the context of education) in some cases pose new problems for the measurement of cognitive load. This review provides an overview over recent studies on embodied learning in which cognitive load was measured using surveys, behavioral data, or physiological measures. The different methods are assessed in terms of their success in finding differences of cognitive load in embodied learning scenarios. At the same time, we highlight the most important challenges for researchers aiming to include these measures into their study designs. The main issues we identified are: (1) Subjective measures must be appropriately phrased to be useful for embodied learning; (2) recent findings indicate potentials as well as problematic aspects of dual-task measures; (3) the use of physiological measures offers great potential, but may require mobile equipment in the context of embodied scenarios; (4) meta-cognitive measures can be useful extensions of cognitive load measurement for embodied learning.

  2. Measuring Cognitive Load in Embodied Learning Settings

    Directory of Open Access Journals (Sweden)

    Alexander Skulmowski

    2017-08-01

    Full Text Available In recent years, research on embodied cognition has inspired a number of studies on multimedia learning and instructional psychology. However, in contrast to traditional research on education and multimedia learning, studies on embodied learning (i.e., focusing on bodily action and perception in the context of education in some cases pose new problems for the measurement of cognitive load. This review provides an overview over recent studies on embodied learning in which cognitive load was measured using surveys, behavioral data, or physiological measures. The different methods are assessed in terms of their success in finding differences of cognitive load in embodied learning scenarios. At the same time, we highlight the most important challenges for researchers aiming to include these measures into their study designs. The main issues we identified are: (1 Subjective measures must be appropriately phrased to be useful for embodied learning; (2 recent findings indicate potentials as well as problematic aspects of dual-task measures; (3 the use of physiological measures offers great potential, but may require mobile equipment in the context of embodied scenarios; (4 meta-cognitive measures can be useful extensions of cognitive load measurement for embodied learning.

  3. Music cognition: Learning and processing

    NARCIS (Netherlands)

    Rohrmeier, M.; Rebuschat, P.; Honing, H.; Loui, P.; Wiggins, G.; Pearce, M.T.; Müllensiefen, D.; Taatgen, N.; van Rijn, H.

    2009-01-01

    In recent years, the study of music perception and cognition has witnessed an enormous growth of interest. Music cognition is an intrinsically interdisciplinary subject which combines insights and research methods from many of the cognitive sciences. This trend is clearly reflected, for example, in

  4. Age Moderates the Association of Aerobic Exercise with Initial Learning of an Online Task Requiring Cognitive Control.

    Science.gov (United States)

    O'Connor, Patrick J; Tomporowski, Phillip D; Dishman, Rodney K

    2015-11-01

    The aim of this study was to examine whether people differed in change in performance across the first five blocks of an online flanker task and whether those trajectories of change were associated with self-reported aerobic or resistance exercise frequency according to age. A total of 8752 men and women aged 13-89 completed a lifestyle survey and five 45-s games (each game was a block of ~46 trials) of an online flanker task. Accuracy of the congruent and incongruent flanker stimuli was analyzed using latent class and growth curve modeling adjusting for time between blocks, whether the blocks occurred on the same or different days, education, smoking, sleep, caffeinated coffee and tea use, and Lumosity training status ("free play" or part of a "daily brain workout"). Aerobic and resistance exercise were unrelated to first block accuracies. For the more cognitively demanding incongruent flanker stimuli, aerobic activity was positively related to the linear increase in accuracy [B=0.577%, 95% confidence interval (CI), 0.112 to 1.25 per day above the weekly mean of 2.8 days] and inversely related to the quadratic deceleration of accuracy gains (B=-0.619% CI, -1.117 to -0.121 per day). An interaction of aerobic activity with age indicated that active participants younger than age 45 had a larger linear increase and a smaller quadratic deceleration compared to other participants. Age moderates the association between self-reported aerobic, but not self-reported resistance, exercise and changes in cognitive control that occur with practice during incongruent presentations across five blocks of a 45-s online, flanker task.

  5. The Learning Way: Meta-Cognitive Aspects of Experiential Learning

    Science.gov (United States)

    Kolb, Alice Y.; Kolb, David A.

    2009-01-01

    Contemporary research on meta-cognition has reintroduced conscious experience into psychological research on learning and stimulated a fresh look at classical experiential learning scholars who gave experience a central role in the learning process--William James, John Dewey, Kurt Lewin, Carl Rogers, and Paulo Freire. In particular James's…

  6. Event structure and cognitive control.

    Science.gov (United States)

    Reimer, Jason F; Radvansky, Gabriel A; Lorsbach, Thomas C; Armendarez, Joseph J

    2015-09-01

    Recently, a great deal of research has demonstrated that although everyday experience is continuous in nature, it is parsed into separate events. The aim of the present study was to examine whether event structure can influence the effectiveness of cognitive control. Across 5 experiments we varied the structure of events within the AX-CPT by shifting the spatial location of cues and probes on a computer screen. When location shifts were present, a pattern of AX-CPT performance consistent with enhanced cognitive control was found. To test whether the location shift effects were caused by the presence of event boundaries per se, other aspects of the AX-CPT were manipulated, such as the color of cues and probes and the inclusion of a distractor task during the cue-probe delay. Changes in cognitive control were not found under these conditions, suggesting that the location shift effects were specifically related to the formation of separate event models. Together, these results can be accounted for by the Event Horizon Model and a representation-based theory of cognitive control, and suggest that cognitive control can be influenced by the surrounding environmental structure. (c) 2015 APA, all rights reserved).

  7. Autonomous Learning from a Social Cognitive Perspective

    Science.gov (United States)

    Ponton, Michael K.; Rhea, Nancy E.

    2006-01-01

    The current perspective of autonomous learning defines it as the agentive exhibition of resourcefulness, initiative, and persistence in self-directed learning. As a form of human agency, it has been argued in the literature that this perspective should be consistent with Bandura's (1986) Social Cognitive Theory (SCT). The purpose of this article…

  8. Effect of Play-based Therapy on Meta-cognitive and Behavioral Aspects of Executive Function: A Randomized, Controlled, Clinical Trial on the Students With Learning Disabilities.

    Science.gov (United States)

    Karamali Esmaili, Samaneh; Shafaroodi, Narges; Hassani Mehraban, Afsoon; Parand, Akram; Zarei, Masoume; Akbari-Zardkhaneh, Saeed

    2017-01-01

    Although the effect of educational methods on executive function (EF) is well known, training this function by a playful method is debatable. The current study aimed at investigating if a play-based intervention is effective on metacognitive and behavioral skills of EF in students with specific learning disabilities. In the current randomized, clinical trial, 49 subjects within the age range of 7 to 11 years with specific learning disabilities were randomly assigned into the intervention (25 subjects; mean age 8.5±1.33 years) and control (24 subjects; mean age 8.7±1.03 years) groups. Subjects in the intervention group received EF group training based on playing activities; subjects in the control group received no intervention. The behavior rating inventory of executive function (BRIEF) was administered to evaluate the behavioral and cognitive aspects of EF. The duration of the intervention was 6 hours per week for 9 weeks. Multivariate analysis of covariance was used to compare mean changes (before and after) in the BRIEF scores between the groups. The assumptions of multivariate analysis of covariance were examined. After controlling pre-test conditions, the intervention and control groups scored significantly differently on both the metacognition (P=0.002; effect size=0.20) and behavior regulation indices (P=0.01; effect size=0.12) of BRIEF. Play-based therapy is effective on the metacognitive and behavioral aspects of EF in students with specific learning disabilities. Professionals can use play-based therapy rather than educational approaches in clinical practice to enhance EF skills.

  9. Use of cognitive artifacts in chemistry learning

    Science.gov (United States)

    Yengin, Ilker

    In everyday life, we interact with cognitive artifacts to receive and/or manipulate information so as to alter our thinking processes. CHEM/TEAC 869Q is a distance course that includes extensive explicit instruction in the use of a cognitive artifact. This study investigates issues related to the design of that online artifact. In order to understand design implications and how cognitive artifacts contribute to students' thinking and learning, a qualitative research methodology was engaged that utilized think aloud sessions. Participants' described constrained and structured cognitive models while using the artifact. The study also was informed by interviews and researcher's field notes. A purposeful sampling method led to the selection of participants, four males and two females, who had no prior history of using a course from the 869 series but who had experienced the scientific content covered by the CHEM869Q course. Analysis of the results showed both that a cognitive artifact may lead users' minds in decision making, and that problem solving processes were affected by cognitive artifact's design. When there is no design flaw, users generally thought that the cognitive artifact was helpful by simplifying steps, overcoming other limitations, and reducing errors in a reliable, effective, and easy to use way. Moreover, results showed that successful implementation of cognitive artifacts into teaching --learning practices depended on user willingness to transfer a task to the artifact. While users may like the idea of benefiting from a cognitive artifact, nevertheless, they may tend to limit their usage. They sometimes think that delegating a task to a cognitive artifact makes them dependent, and that they may not learn how to perform the tasks by themselves. They appear more willing to use a cognitive artifact after they have done the task by themselves.

  10. Cognitive Clusters in Specific Learning Disorder.

    Science.gov (United States)

    Poletti, Michele; Carretta, Elisa; Bonvicini, Laura; Giorgi-Rossi, Paolo

    The heterogeneity among children with learning disabilities still represents a barrier and a challenge in their conceptualization. Although a dimensional approach has been gaining support, the categorical approach is still the most adopted, as in the recent fifth edition of the Diagnostic and Statistical Manual of Mental Disorders. The introduction of the single overarching diagnostic category of specific learning disorder (SLD) could underemphasize interindividual clinical differences regarding intracategory cognitive functioning and learning proficiency, according to current models of multiple cognitive deficits at the basis of neurodevelopmental disorders. The characterization of specific cognitive profiles associated with an already manifest SLD could help identify possible early cognitive markers of SLD risk and distinct trajectories of atypical cognitive development leading to SLD. In this perspective, we applied a cluster analysis to identify groups of children with a Diagnostic and Statistical Manual-based diagnosis of SLD with similar cognitive profiles and to describe the association between clusters and SLD subtypes. A sample of 205 children with a diagnosis of SLD were enrolled. Cluster analyses (agglomerative hierarchical and nonhierarchical iterative clustering technique) were used successively on 10 core subtests of the Wechsler Intelligence Scale for Children-Fourth Edition. The 4-cluster solution was adopted, and external validation found differences in terms of SLD subtype frequencies and learning proficiency among clusters. Clinical implications of these findings are discussed, tracing directions for further studies.

  11. Classifying cognitive profiles using machine learning with privileged information in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Hanin Hamdan Alahmadi

    2016-11-01

    Full Text Available Early diagnosis of dementia is critical for assessing disease progression and potential treatment. State-or-the-art machine learning techniques have been increasingly employed to take on this diagnostic task. In this study, we employed Generalised Matrix Learning Vector Quantization (GMLVQ classifiers to discriminate patients with Mild Cognitive Impairment (MCI from healthy controls based on their cognitive skills. Further, we adopted a ``Learning with privileged information'' approach to combine cognitive and fMRI data for the classification task. The resulting classifier operates solely on the cognitive data while it incorporates the fMRI data as privileged information (PI during training. This novel classifier is of practical use as the collection of brain imaging data is not always possible with patients and older participants.MCI patients and healthy age-matched controls were trained to extract structure from temporal sequences. We ask whether machine learning classifiers can be used to discriminate patients from controls based on the learning performance and whether differences between these groups relate to individual cognitive profiles. To this end, we tested participants in four cognitive tasks: working memory, cognitive inhibition, divided attention, and selective attention. We also collected fMRI data before and after training on the learning task and extracted fMRI responses and connectivity as features for machine learning classifiers. Our results show that the PI guided GMLVQ classifiers outperform the baseline classifier that only used the cognitive data. In addition, we found that for the baseline classifier, divided attention is the only relevant cognitive feature. When PI was incorporated, divided attention remained the most relevant feature while cognitive inhibition became also relevant for the task. Interestingly, this analysis for the fMRI GMLVQ classifier suggests that (1 when overall fMRI signal for structured stimuli is

  12. Learning Science: Some Insights from Cognitive Science

    Science.gov (United States)

    Matthews, P. S. C.

    Theories of teaching and learning, including those associated with constructivism, often make no overt reference to an underlying assumption that they make; that is, human cognition depends on domain-free, general-purpose processing by the brain. This assumption is shown to be incompatible with evidence from studies of children's early learning. Rather, cognition is modular in nature, and often domain-specific. Recognition of modularity requires a re-evaluation of some aspects of current accounts of learning science. Especially, children's ideas in science are sometimes triggered rather than learned. It is in the nature of triggered conceptual structures that they are not necessarily expressible in language, and that they may not be susceptible to change by later learning.

  13. Associative Cognitive CREED for Successful Grammar Learning

    Directory of Open Access Journals (Sweden)

    Andrias Tri Susanto

    2016-06-01

    Full Text Available This research article reports a qualitative study which was conducted to investigate ways successful EFL learners learned English grammar. The subjects of this research were eight successful EFL learners from six different countries in Asia: China, Indonesia, Japan, South Korea, Thailand, and Vietnam. The data was collected by interviewing each subject in person individually at an agreed time and place. The result showed that all the grammar learning processes described by the subjects were closely linked to the framework of Associative Cognitive CREED. There were also some contributing factors that could be integrally combined salient to the overall grammar learning process. However, interestingly, each subject emphasized different aspects of learning.

  14. The Effects of Mood, Cognitive Style, and Cognitive Ability on Implicit Learning

    Science.gov (United States)

    Pretz, Jean E.; Totz, Kathryn Sentman; Kaufman, Scott Barry

    2010-01-01

    In an experiment with 109 undergraduates, we examined the effect of mood, cognitive style, and cognitive ability on implicit learning in the Artificial Grammar (AG) and Serial Reaction Time (SRT) tasks. Negative mood facilitated AG learning, but had no significant effect on SRT learning. Rational cognitive style predicted greater learning on both…

  15. Rational metareasoning and the plasticity of cognitive control

    Science.gov (United States)

    Shenhav, Amitai; Musslick, Sebastian; Griffiths, Thomas L.

    2018-01-01

    The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people’s ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure. PMID:29694347

  16. Rational metareasoning and the plasticity of cognitive control.

    Science.gov (United States)

    Lieder, Falk; Shenhav, Amitai; Musslick, Sebastian; Griffiths, Thomas L

    2018-04-01

    The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people's ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure.

  17. Rational metareasoning and the plasticity of cognitive control.

    Directory of Open Access Journals (Sweden)

    Falk Lieder

    2018-04-01

    Full Text Available The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people's ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure.

  18. Reward Learning, Neurocognition, Social Cognition, and Symptomatology in Psychosis.

    Science.gov (United States)

    Lewandowski, Kathryn E; Whitton, Alexis E; Pizzagalli, Diego A; Norris, Lesley A; Ongur, Dost; Hall, Mei-Hua

    2016-01-01

    Patients with psychosis spectrum disorders exhibit deficits in social and neurocognition, as well as hallmark abnormalities in motivation and reward processing. Aspects of reward processing may overlap behaviorally and neurobiologically with some elements of cognitive functioning, and abnormalities in these processes may share partially overlapping etiologies in patients. However, whether reward processing and cognition are associated across the psychoses and linked to state and trait clinical symptomatology is unclear. The present study examined associations between cognitive functioning, reward learning, and clinical symptomatology in a cross-diagnostic sample. Patients with schizophrenia (SZ; n = 37), bipolar I disorder with psychosis (BD; n = 42), and healthy controls (n = 29) were assessed for clinical symptoms (patients only), neurocognitive functioning using the MATRICS Battery (MCCB) and reward learning using the probabilistic reward task (PRT). Groups were compared on neurocognition and PRT response bias, and associations between PRT response bias and neurocognition or clinical symptoms were examined controlling for demographic variables and PRT task difficulty (discriminability). Patients with SZ performed worse than controls on most measures of neurocognition; patients with BD exhibited deficits in some domains between the level of patients with SZ and controls. The SZ - but not BD - group exhibited deficits in social cognition compared to controls. Patients and controls did not differ on PRT response bias, but did differ on PRT discriminability. Better response bias across the sample was associated with poorer social cognition, but not neurocognition; conversely, discriminability was associated with neurocognition but not social cognition. Symptoms of psychosis, particularly negative symptoms, were associated with poorer response bias across patient groups. Reward learning was associated with symptoms of psychosis - in particular negative

  19. Event Structure and Cognitive Control

    OpenAIRE

    Reimer, Jason F.; Radvansky, Gabriel A.; Lorsbach, Thomas C.; Armendarez, Joseph J.

    2015-01-01

    Recently, a great deal of research has demonstrated that although everyday experience is continuous in nature, it is parsed into separate events. The aim of the present study was to examine whether event structure can influence the effectiveness of cognitive control. Across five experiments we varied the structure of events within the AX-CPT by shifting the spatial location of cues and probes on a computer screen. When location shifts were present, a pattern of AX-CPT performance consistent w...

  20. Exploration and Learning for Cognitive Robots

    NARCIS (Netherlands)

    Rudinac, M.

    2013-01-01

    Before a future with household robots is really feasible, those robots need to be easily adaptable to novel environments and users, be able to apply previously acquired knowledge, and able to learn from perceiving and interacting with the world and users around them. This thesis proposes a cognitive

  1. Gender, abilities, cognitive style and students' achievement in cooperative learning

    Directory of Open Access Journals (Sweden)

    Cirila Peklaj

    2003-12-01

    Full Text Available The purpose of the study was to investigate the effects of cooperative learning on achievement in mathematics and native language and to analyze students' achievement in cooperative learning according to their gender, abilities and cognitive style. Three hundred and seventy three (170 in the experimental and 203 in the control group fifth grade students from nine different primary schools participated in the study. In experimental group, cooperative learning was introduced in one quarter of the hours dedicated to mathematics and Slovene language during the school year. Control group received the traditional way of teaching in both courses. The results were analyzed with ANOVA. Positive effects of cooperative learning were found in both courses. Results in cooperative learning group were further analyzed according to students' gender, abilities and cognitive style. No significant interaction between students' achievement and their gender or abilities were found. Statistically significant interactions between students' cognitive style and achievement were found in both courses. Field-dependent students benefited most from cooperative learning.

  2. Learning from neural control.

    Science.gov (United States)

    Wang, Cong; Hill, David J

    2006-01-01

    One of the amazing successes of biological systems is their ability to "learn by doing" and so adapt to their environment. In this paper, first, a deterministic learning mechanism is presented, by which an appropriately designed adaptive neural controller is capable of learning closed-loop system dynamics during tracking control to a periodic reference orbit. Among various neural network (NN) architectures, the localized radial basis function (RBF) network is employed. A property of persistence of excitation (PE) for RBF networks is established, and a partial PE condition of closed-loop signals, i.e., the PE condition of a regression subvector constructed out of the RBFs along a periodic state trajectory, is proven to be satisfied. Accurate NN approximation for closed-loop system dynamics is achieved in a local region along the periodic state trajectory, and a learning ability is implemented during a closed-loop feedback control process. Second, based on the deterministic learning mechanism, a neural learning control scheme is proposed which can effectively recall and reuse the learned knowledge to achieve closed-loop stability and improved control performance. The significance of this paper is that the presented deterministic learning mechanism and the neural learning control scheme provide elementary components toward the development of a biologically-plausible learning and control methodology. Simulation studies are included to demonstrate the effectiveness of the approach.

  3. Bilingualism and Musicianship Enhance Cognitive Control

    Directory of Open Access Journals (Sweden)

    Scott R. Schroeder

    2016-01-01

    Full Text Available Learning how to speak a second language (i.e., becoming a bilingual and learning how to play a musical instrument (i.e., becoming a musician are both thought to increase executive control through experience-dependent plasticity. However, evidence supporting this effect is mixed for bilingualism and limited for musicianship. In addition, the combined effects of bilingualism and musicianship on executive control are unknown. To determine whether bilingualism, musicianship, and combined bilingualism and musicianship improve executive control, we tested 219 young adults belonging to one of four groups (bilinguals, musicians, bilingual musicians, and controls on a nonlinguistic, nonmusical, visual-spatial Simon task that measured the ability to ignore an irrelevant and misinformative cue. Results revealed that bilinguals, musicians, and bilingual musicians showed an enhanced ability to ignore a distracting cue relative to controls, with similar levels of superior performance among bilinguals, musicians, and bilingual musicians. These results indicate that bilingualism and musicianship improve executive control and have implications for educational and rehabilitation programs that use music and foreign language instruction to boost cognitive performance.

  4. Bilingualism and Musicianship Enhance Cognitive Control.

    Science.gov (United States)

    Schroeder, Scott R; Marian, Viorica; Shook, Anthony; Bartolotti, James

    2016-01-01

    Learning how to speak a second language (i.e., becoming a bilingual) and learning how to play a musical instrument (i.e., becoming a musician) are both thought to increase executive control through experience-dependent plasticity. However, evidence supporting this effect is mixed for bilingualism and limited for musicianship. In addition, the combined effects of bilingualism and musicianship on executive control are unknown. To determine whether bilingualism, musicianship, and combined bilingualism and musicianship improve executive control, we tested 219 young adults belonging to one of four groups (bilinguals, musicians, bilingual musicians, and controls) on a nonlinguistic, nonmusical, visual-spatial Simon task that measured the ability to ignore an irrelevant and misinformative cue. Results revealed that bilinguals, musicians, and bilingual musicians showed an enhanced ability to ignore a distracting cue relative to controls, with similar levels of superior performance among bilinguals, musicians, and bilingual musicians. These results indicate that bilingualism and musicianship improve executive control and have implications for educational and rehabilitation programs that use music and foreign language instruction to boost cognitive performance.

  5. THE POSITIVE EFFECTS OF COGNITIVE LEARNING STYLES IN ELT CLASSES

    OpenAIRE

    Ozlem Yagcioglu

    2016-01-01

    In the EFL, ESL, ESP and in the ELT classes, students are taught their courses with different kinds of methods and approaches. Cognitive learning styles are the most essential styles in foreign language education. In this paper, the positive effects of cognitive learning styles will be handled. The benefits of these styles will be highlighted. Games on cognitive learning styles will be explained. Sample classroom activities will be shared. Useful books, videos and websites on cognitive learni...

  6. Approaches to learning, need for cognition, and strategic flexibility among university students.

    Science.gov (United States)

    Evans, Christina J; Kirby, John R; Fabrigar, Leandre R

    2003-12-01

    Considerable research has described students' deep and surface approaches to learning. Other research has described individuals' self-regulated learning and need for cognition. There is a need for research examining the relationships among these constructs. This study explored relationships among approaches to learning (deep, surface), need for cognition, and three types of control of learning (adaptive, inflexible, irresolute). Theory suggested similarities among the deep approach, need for cognition, and adaptive control (aspects of self-regulated learning); and among surface, inflexible, and irresolute control (aspects of an ineffective approach to learning). One-factor and two-factor models were proposed. Participants were 226 Canadian military college students. Participants completed the following questionnaires: the Study Process Questionnaire (Biggs, 1978), the Need for Cognition Scale (Cacioppo & Petty, 1982), and the Strategic Flexibility Questionnaire (Cantwell & Moore, 1996). Confirmatory factor analysis supported the identification of the six scale factors. Second order confirmatory factor analysis indicated three factors representing constructs underlying these factors. Neither the one- nor two-factor models accounted adequately for the data. Self-regulated learning was defined by measures of the deep approach to learning, need for cognition, and adaptive control of learning. The second factor divided into one factor consisting of irresolute control, the surface approach, and negative need for cognition; and another consisting of inflexible and negative adaptive control. Substantial relationships among scales support the need for further theory development.

  7. Complex Mobile Learning That Adapts to Learners' Cognitive Load

    Science.gov (United States)

    Deegan, Robin

    2015-01-01

    Mobile learning is cognitively demanding and frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where these fields interact and presents an…

  8. Mirror Neurons, Embodied Cognitive Agents and Imitation Learning

    Czech Academy of Sciences Publication Activity Database

    Wiedermann, Jiří

    2003-01-01

    Roč. 22, č. 6 (2003), s. 545-559 ISSN 1335-9150 R&D Projects: GA ČR GA201/02/1456 Institutional research plan: CEZ:AV0Z1030915 Keywords : complete agents * mirror neurons * embodied cognition * imitation learning * sensorimotor control Subject RIV: BA - General Mathematics Impact factor: 0.254, year: 2003 http://www.cai.sk/ojs/index.php/cai/article/view/468

  9. Can Cognitive Neuroscience Ground a Science of Learning?

    Science.gov (United States)

    Kelly, Anthony E.

    2011-01-01

    In this article, I review recent findings in cognitive neuroscience in learning, particularly in the learning of mathematics and of reading. I argue that while cognitive neuroscience is in its infancy as a field, theories of learning will need to incorporate and account for this growing body of empirical data.

  10. Performance, Cognitive Load, and Behaviour of Technology-Assisted English Listening Learning: From CALL to MALL

    Science.gov (United States)

    Chang, Chi-Cheng; Warden, Clyde A.; Liang, Chaoyun; Chou, Pao-Nan

    2018-01-01

    This study examines differences in English listening comprehension, cognitive load, and learning behaviour between outdoor ubiquitous learning and indoor computer-assisted learning. An experimental design, employing a pretest-posttest control group is employed. Randomly assigned foreign language university majors joined either the experimental…

  11. Embodied Language Learning and Cognitive Bootstrapping

    DEFF Research Database (Denmark)

    Lyon, C.E.; Nehaniv, C. L.; Saunders, Joe

    2016-01-01

    Co-development of action, conceptualization and social interaction mutually scaffold and support each other within a virtuous feedback cycle in the development of human language in children. Within this framework, the purpose of this article is to bring together diverse but complementary accounts...... of research methods that jointly contribute to our understanding of cognitive development and in particular, language acquisition in robots. Thus, we include research pertaining to developmental robotics, cognitive science, psychology, linguistics and neuroscience, as well as practical computer science...... the humanoid robot iCub are reported, while human learning relevant to developmental robotics has also contributed useful results. Disparate approaches are brought together via common underlying design principles. Without claiming to model human language acquisition directly, we are nonetheless inspired...

  12. Immune Genetic Learning of Fuzzy Cognitive Map

    Institute of Scientific and Technical Information of China (English)

    LIN Chun-mei; HE Yue; TANG Bing-yong

    2006-01-01

    This paper presents a hybrid methodology of automatically constructing fuzzy cognitive map (FCM). The method uses immune genetic algorithm to learn the connection matrix of FCM. In the algorithm, the DNA coding method is used and an immune operator based on immune mechanism is constructed. The characteristics of the system and the experts' knowledge are abstracted as vaccine for restraining the degenerative phenomena during evolution so as to improve the algorithmic efficiency. Finally, an illustrative example is provided, and its results suggest that the method is capable of automatically generating FCM model.

  13. No Negative Priming without Cognitive Control

    Science.gov (United States)

    de Fockert, Jan W.; Mizon, Guy A.; D'Ubaldo, Mariangela

    2010-01-01

    There is evidence that the efficiency of selective attention depends on the availability of cognitive control mechanisms as distractor processing has been found to increase with high load on working memory or dual task coordination (Lavie, Hirst, de Fockert, & Viding, 2004). We tested the prediction that cognitive control load would also…

  14. Context, Not Conflict, Drives Cognitive Control

    Science.gov (United States)

    Schlaghecken, Friederike; Martini, Paolo

    2012-01-01

    Theories of cognitive control generally assume that perceived conflict acts as a signal to engage inhibitory mechanisms that suppress subsequent conflicting information. Crucially, an absence of conflict is not regarded as being a relevant signal for cognitive control. Using a cueing, a priming, and a Simon task, we provide evidence that conflict…

  15. Different slopes for different folks: alpha and delta EEG power predict subsequent video game learning rate and improvements in cognitive control tasks.

    Science.gov (United States)

    Mathewson, Kyle E; Basak, Chandramallika; Maclin, Edward L; Low, Kathy A; Boot, Walter R; Kramer, Arthur F; Fabiani, Monica; Gratton, Gabriele

    2012-12-01

    We hypothesized that control processes, as measured using electrophysiological (EEG) variables, influence the rate of learning of complex tasks. Specifically, we measured alpha power, event-related spectral perturbations (ERSPs), and event-related brain potentials during early training of the Space Fortress task, and correlated these measures with subsequent learning rate and performance in transfer tasks. Once initial score was partialled out, the best predictors were frontal alpha power and alpha and delta ERSPs, but not P300. By combining these predictors, we could explain about 50% of the learning rate variance and 10%-20% of the variance in transfer to other tasks using only pretraining EEG measures. Thus, control processes, as indexed by alpha and delta EEG oscillations, can predict learning and skill improvements. The results are of potential use to optimize training regimes. Copyright © 2012 Society for Psychophysiological Research.

  16. Relationship between motor and cognitive learning abilities among ...

    African Journals Online (AJOL)

    Osama Abdelkarim

    2017-01-11

    Jan 11, 2017 ... the cognitive learning abilities (i.e. mathematical thinking, r = 0.62 and ...... exercise was efficient both in the promotion of learning English .... Ishigawara K, Ishizuka H. Effects of Brain Activation through Physical Exercise.

  17. A re-view of cognitive mediators in learned helplessness.

    Science.gov (United States)

    Tennen, H

    1982-12-01

    The findings of Oakes and Curtis (1982), Tennen, Drum, Gillen, and Stanton (1982), and Tennen, Gillen, and Drum (1982) provide a challenge to learned helplessness theory's focus on cognitive mediators of the helplessness phenomenon. In response to these findings, Alloy (1982) argues that these studies do not challenge helplessness theory because they do not measure expected control and because they confuse necessary and sufficient causes of learned helplessness. Silver, Wortman, and Klos (1982) contend that these studies provide an inadequate test of the model because subjects are confronted with experiences which are unlike those in their natural environment. The present article argues that by Alloy's (1982) criteria, an adequate test of the learned helplessness model has not yet been conducted. Previous studies which measured expected control have not supported the model's predictions. Moreover, if perceived response-outcome independence is a sufficient, but not a necessary cause of learned helplessness, the model loses much of its heuristic value. In response to the argument that these studies lack ecological validity, this article clarifies the distinction between experimental realism and mundane realism. While real-world studies have discovered intriguing relations between perceptions of control, attributions, and coping with illness or victimization, they have not tested predictions of the learned helplessness model.

  18. The Positive Effects of Cognitive Learning Styles in ELT Classes

    Science.gov (United States)

    Yagcioglu, Ozlem

    2016-01-01

    In the EFL, ESL, ESP and in the ELT classes, students are taught their courses with different kinds of methods and approaches. Cognitive learning styles are the most essential styles in foreign language education. In this paper, the positive effects of cognitive learning styles will be handled. The benefits of these styles will be highlighted.…

  19. An information theory account of cognitive control.

    Science.gov (United States)

    Fan, Jin

    2014-01-01

    Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory.

  20. An information theory account of cognitive control

    Directory of Open Access Journals (Sweden)

    Jin eFan

    2014-09-01

    Full Text Available Our ability to efficiently process information and generate appropriate responses depends on the processes collectively called cognitive control. Despite a considerable focus in the literature on the cognitive control of information processing, neural mechanisms underlying control are still unclear, and have not been characterized by considering the quantity of information to be processed. A novel and comprehensive account of cognitive control is proposed using concepts from information theory, which is concerned with communication system analysis and the quantification of information. This account treats the brain as an information-processing entity where cognitive control and its underlying brain networks play a pivotal role in dealing with conditions of uncertainty. This hypothesis and theory article justifies the validity and properties of such an account and relates experimental findings to the frontoparietal network under the framework of information theory.

  1. The cognitive impact of interactive design features for learning complex materials in medical education.

    Science.gov (United States)

    Song, Hyuksoon S; Pusic, Martin; Nick, Michael W; Sarpel, Umut; Plass, Jan L; Kalet, Adina L

    2014-02-01

    To identify the most effective way for medical students to interact with a browser-based learning module on the symptoms and neurological underpinnings of stroke syndromes, this study manipulated the way in which subjects interacted with a graphical model of the brain and examined the impact of functional changes on learning outcomes. It was hypothesized that behavioral interactions that were behaviorally more engaging and which required deeper consideration of the model would result in heightened cognitive interaction and better learning than those whose manipulation required less deliberate behavioral and cognitive processing. One hundred forty four students were randomly assigned to four conditions whose model controls incorporated features that required different levels of behavioral and cognitive interaction: Movie (low behavioral/low cognitive, n = 40), Slider (high behavioral/low cognitive, n = 36), Click (low behavioral/high cognitive, n = 30), and Drag (high behavioral/high cognitive, n = 38). Analysis of Covariates (ANCOVA) showed that students who received the treatments associated with lower cognitive interactivity (Movie and Slider) performed better on a transfer task than those receiving the module associated with high cognitive interactivity (Click and Drag, partial eta squared = .03). In addition, the students in the high cognitive interactivity conditions spent significantly more time on the stroke locator activity than other conditions (partial eta squared = .36). The results suggest that interaction with controls that were tightly coupled with the model and whose manipulation required deliberate consideration of the model's features may have overtaxed subjects' cognitive resources. Cognitive effort that facilitated manipulation of content, though directed at the model, may have resulted in extraneous cognitive load, impeding subjects in recognizing the deeper, global relationships in the materials. Instructional designers must, therefore, keep in

  2. Proactive learning for artificial cognitive systems

    Science.gov (United States)

    Lee, Soo-Young

    2010-04-01

    The Artificial Cognitive Systems (ACS) will be developed for human-like functions such as vision, auditory, inference, and behavior. Especially, computational models and artificial HW/SW systems will be devised for Proactive Learning (PL) and Self-Identity (SI). The PL model provides bilateral interactions between robot and unknown environment (people, other robots, cyberspace). For the situation awareness in unknown environment it is required to receive audiovisual signals and to accumulate knowledge. If the knowledge is not enough, the PL should improve by itself though internet and others. For human-oriented decision making it is also required for the robot to have self-identify and emotion. Finally, the developed models and system will be mounted on a robot for the human-robot co-existing society. The developed ACS will be tested against the new Turing Test for the situation awareness. The Test problems will consist of several video clips, and the performance of the ACSs will be compared against those of human with several levels of cognitive ability.

  3. COGNITIVE SKILLS: A Modest Way of Learning through Technology

    OpenAIRE

    Satya Sundar SETHY

    2012-01-01

    Learning is an ever-present phenomenon. It takes place irrespective of time and place. It engages learners in their interested topic/content. Learning absorbs many skills, such as; reading skills, writing skills, technological skills, emotional skills, behavioral skills, cognitive skills, and language skills. Out of all these, cognitive skills play significant role for apprehending a concept and comprehending a discussion. In the context of distance education (DE), learning never restrains to...

  4. EFFICIENT SPECTRUM UTILIZATION IN COGNITIVE RADIO THROUGH REINFORCEMENT LEARNING

    Directory of Open Access Journals (Sweden)

    Dhananjay Kumar

    2013-09-01

    Full Text Available Machine learning schemes can be employed in cognitive radio systems to intelligently locate the spectrum holes with some knowledge about the operating environment. In this paper, we formulate a variation of Actor Critic Learning algorithm known as Continuous Actor Critic Learning Automaton (CACLA and compare this scheme with Actor Critic Learning scheme and existing Q–learning scheme. Simulation results show that our CACLA scheme has lesser execution time and achieves higher throughput compared to other two schemes.

  5. Effect of episodic and working memory impairments on semantic and cognitive procedural learning at alcohol treatment entry.

    Science.gov (United States)

    Pitel, Anne Lise; Witkowski, Thomas; Vabret, François; Guillery-Girard, Bérengère; Desgranges, Béatrice; Eustache, Francis; Beaunieux, Hélène

    2007-02-01

    Chronic alcoholism is known to impair the functioning of episodic and working memory, which may consequently reduce the ability to learn complex novel information. Nevertheless, semantic and cognitive procedural learning have not been properly explored at alcohol treatment entry, despite its potential clinical relevance. The goal of the present study was therefore to determine whether alcoholic patients, immediately after the weaning phase, are cognitively able to acquire complex new knowledge, given their episodic and working memory deficits. Twenty alcoholic inpatients with episodic memory and working memory deficits at alcohol treatment entry and a control group of 20 healthy subjects underwent a protocol of semantic acquisition and cognitive procedural learning. The semantic learning task consisted of the acquisition of 10 novel concepts, while subjects were administered the Tower of Toronto task to measure cognitive procedural learning. Analyses showed that although alcoholic subjects were able to acquire the category and features of the semantic concepts, albeit slowly, they presented impaired label learning. In the control group, executive functions and episodic memory predicted semantic learning in the first and second halves of the protocol, respectively. In addition to the cognitive processes involved in the learning strategies invoked by controls, alcoholic subjects seem to attempt to compensate for their impaired cognitive functions, invoking capacities of short-term passive storage. Regarding cognitive procedural learning, although the patients eventually achieved the same results as the controls, they failed to automate the procedure. Contrary to the control group, the alcoholic groups' learning performance was predicted by controlled cognitive functions throughout the protocol. At alcohol treatment entry, alcoholic patients with neuropsychological deficits have difficulty acquiring novel semantic and cognitive procedural knowledge. Compared with

  6. Cognitive culture: theoretical and empirical insights into social learning strategies.

    Science.gov (United States)

    Rendell, Luke; Fogarty, Laurel; Hoppitt, William J E; Morgan, Thomas J H; Webster, Mike M; Laland, Kevin N

    2011-02-01

    Research into social learning (learning from others) has expanded significantly in recent years, not least because of productive interactions between theoretical and empirical approaches. This has been coupled with a new emphasis on learning strategies, which places social learning within a cognitive decision-making framework. Understanding when, how and why individuals learn from others is a significant challenge, but one that is critical to numerous fields in multiple academic disciplines, including the study of social cognition. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Neuromorphic cognitive systems a learning and memory centered approach

    CERN Document Server

    Yu, Qiang; Hu, Jun; Tan Chen, Kay

    2017-01-01

    This book presents neuromorphic cognitive systems from a learning and memory-centered perspective. It illustrates how to build a system network of neurons to perform spike-based information processing, computing, and high-level cognitive tasks. It is beneficial to a wide spectrum of readers, including undergraduate and postgraduate students and researchers who are interested in neuromorphic computing and neuromorphic engineering, as well as engineers and professionals in industry who are involved in the design and applications of neuromorphic cognitive systems, neuromorphic sensors and processors, and cognitive robotics. The book formulates a systematic framework, from the basic mathematical and computational methods in spike-based neural encoding, learning in both single and multi-layered networks, to a near cognitive level composed of memory and cognition. Since the mechanisms for integrating spiking neurons integrate to formulate cognitive functions as in the brain are little understood, studies of neuromo...

  8. Mathematics Intervention Utilizing Carnegie Learning's Cognitive Tutor® and Compass Learning's Odyssey Math®

    Science.gov (United States)

    Barton, James M.

    2016-01-01

    Carnegie Learning's Cognitive Tutor®The purpose of this study is to determine whether there is a statistically significant difference between pre-test and post-test achievement scores when Compass Learning's Odyssey Math® is used together with Carnegie Learning's Math Cognitive Tutor® in a mathematics intervention program at ABC Middle School. The…

  9. The Inseparability of Cognition and Emotion in Second Language Learning

    Science.gov (United States)

    Swain, Merrill

    2013-01-01

    The scholarly literature about the process of second language (L2) learning has focused to a considerable extent on cognitive processes. Left aside are questions about how emotions fit into an understanding of L2 learning. One goal of this plenary is to demonstrate that we have limited our understanding of L2 learning by failing to take into…

  10. Reggio Emilia Inspired Learning Groups: Relationships, Communication, Cognition, and Play

    Science.gov (United States)

    Hong, Seong Bock; Shaffer, LaShorage; Han, Jisu

    2017-01-01

    A key aspect of the Reggio Emilia inspired curriculum is a learning group approach that fosters social and cognitive development. The purpose of this paper is to investigate how a Reggio Emilia inspired learning group approach works for children with and without disabilities. This study gives insight into how to form an appropriate learning group…

  11. Song learning and cognitive ability are not consistently related in a songbird.

    Science.gov (United States)

    Anderson, Rindy C; Searcy, William A; Peters, Susan; Hughes, Melissa; DuBois, Adrienne L; Nowicki, Stephen

    2017-03-01

    Learned aspects of song have been hypothesized to signal cognitive ability in songbirds. We tested this hypothesis in hand-reared song sparrows (Melospiza melodia) that were tutored with playback of adult songs during the critical period for song learning. The songs developed by the 19 male subjects were compared to the model songs to produce two measures of song learning: the proportion of notes copied from models and the average spectrogram cross-correlation between copied notes and model notes. Song repertoire size, which reflects song complexity, was also measured. At 1 year of age, subjects were given a battery of five cognitive tests that measured speed of learning in the context of a novel foraging task, color association, color reversal, detour-reaching, and spatial learning. Bivariate correlations between the three song measures and the five cognitive measures revealed no significant associations. As in other studies of avian cognition, different cognitive measures were for the most part not correlated with each other, and this result remained true when 22 hand-reared female song sparrows were added to the analysis. General linear mixed models controlling for effects of neophobia and nest of origin indicated that all three song measures were associated with better performance on color reversal and spatial learning but were associated with worse performance on novel foraging and detour-reaching. Overall, the results do not support the hypothesis that learned aspects of song signal cognitive ability.

  12. I Can Stand Learning: A Controlled Pilot Intervention Study on the Effects of Increased Standing Time on Cognitive Function in Primary School Children

    Directory of Open Access Journals (Sweden)

    Katharina Wick

    2018-02-01

    Full Text Available Sedentarism is considered an independent cardiovascular risk factor. Thus, the present study investigated the effects of employing standing desks in classrooms on cognitive function. The intervention class (IG; n = 19 was supplied with standing desks and balance pads for 11 weeks. The control class (CG; n = 19 received lessons as usual. Standing time was assessed objectively (accelerometers and subjectively (self-report sheets, external classroom observers. The impact of standing on the digit span task and Eriksen flanker task was analysed. The standing time of the IG was higher during the school day in comparison to the CG (lesson: p = 0.004; break: p = 0.003. The intra-class correlation coefficient between self-reports and external observation was high (ICC = 0.94. The IG improved slightly on the Digit Span Task compared to CG. Employing standing desks for at least 1 h per school day serves as a feasible and effective opportunity to improve cognitive function.

  13. Constructivism, the so-called semantic learning theories, and situated cognition versus the psychological learning theories.

    Science.gov (United States)

    Aparicio, Juan José; Rodríguez Moneo, María

    2005-11-01

    In this paper, the perspective of situated cognition, which gave rise both to the pragmatic theories and the so-called semantic theories of learning and has probably become the most representative standpoint of constructivism, is examined. We consider the claim of situated cognition to provide alternative explanations of the learning phenomenon to those of psychology and, especially, to those of the symbolic perspective, currently predominant in cognitive psychology. The level of analysis of situated cognition (i.e., global interactive systems) is considered an inappropriate approach to the problem of learning. From our analysis, it is concluded that the pragmatic theories and the so-called semantic theories of learning which originated in situated cognition can hardly be considered alternatives to the psychological learning theories, and they are unlikely to add anything of interest to the learning theory or to contribute to the improvement of our knowledge about the learning phenomenon.

  14. Enhanced Learning through Multimodal Training: Evidence from a Comprehensive Cognitive, Physical Fitness, and Neuroscience Intervention.

    Science.gov (United States)

    Ward, N; Paul, E; Watson, P; Cooke, G E; Hillman, C H; Cohen, N J; Kramer, A F; Barbey, A K

    2017-07-19

    The potential impact of brain training methods for enhancing human cognition in healthy and clinical populations has motivated increasing public interest and scientific scrutiny. At issue is the merits of intervention modalities, such as computer-based cognitive training, physical exercise training, and non-invasive brain stimulation, and whether such interventions synergistically enhance cognition. To investigate this issue, we conducted a comprehensive 4-month randomized controlled trial in which 318 healthy, young adults were enrolled in one of five interventions: (1) Computer-based cognitive training on six adaptive tests of executive function; (2) Cognitive and physical exercise training; (3) Cognitive training combined with non-invasive brain stimulation and physical exercise training; (4) Active control training in adaptive visual search and change detection tasks; and (5) Passive control. Our findings demonstrate that multimodal training significantly enhanced learning (relative to computer-based cognitive training alone) and provided an effective method to promote skill learning across multiple cognitive domains, spanning executive functions, working memory, and planning and problem solving. These results help to establish the beneficial effects of multimodal intervention and identify key areas for future research in the continued effort to improve human cognition.

  15. Effects of Cognitive Behaviour and Social Learning Therapies On ...

    African Journals Online (AJOL)

    This study investigated the effects of Cognitive Behaviour Therapy and Social Learning ... After exposure to intervention therapies, the results showed that there was significant difference in the post-test aggression scores of participants.

  16. Cognitive-Linguistic Functioning and Learning to Read in Preschoolers

    Science.gov (United States)

    Goldstein, David M.

    1976-01-01

    The major results partially confirm the hypothesis of a reciprocal relationship between the experience of learning to read and the cognitive-linguistic skills which undergo development between the ages of five and seven. (RC)

  17. A comparative analysis of three metaheuristic methods applied to fuzzy cognitive maps learning

    Directory of Open Access Journals (Sweden)

    Bruno A. Angélico

    2013-12-01

    Full Text Available This work analyses the performance of three different population-based metaheuristic approaches applied to Fuzzy cognitive maps (FCM learning in qualitative control of processes. Fuzzy cognitive maps permit to include the previous specialist knowledge in the control rule. Particularly, Particle Swarm Optimization (PSO, Genetic Algorithm (GA and an Ant Colony Optimization (ACO are considered for obtaining appropriate weight matrices for learning the FCM. A statistical convergence analysis within 10000 simulations of each algorithm is presented. In order to validate the proposed approach, two industrial control process problems previously described in the literature are considered in this work.

  18. A Hybrid Cognitive-Reactive Multi-Agent Controller

    National Research Council Canada - National Science Library

    Bugajska, Magdalena D; Schultz, Alan C; Trafton, J. G; Taylor, Matthew; Mintz, Farilee E

    2002-01-01

    ...). In this system, the learning algorithm handles reactive aspects of the task and provides an adaptation mechanism, while the cognitive model handles cognitive aspects of the task and ensures the realism of the behavior...

  19. The effects of autonomous learning on cognitive load and learning results

    NARCIS (Netherlands)

    Gorissen, Chantal; Kester, Liesbeth; Brand-Gruwel, Saskia; Martens, Rob

    2012-01-01

    Gorissen, C. J. J., Kester, L., Brand-Gruwel, S., & Martens, R. L. (2011, August). The Effects of Autonomous Learning on Cognitive Load and Learning Results. Presentation at the EARLI conference. Exeter, UK.

  20. Using Cognitive Tutor Software in Learning Linear Algebra Word Concept

    Science.gov (United States)

    Yang, Kai-Ju

    2015-01-01

    This paper reports on a study of twelve 10th grade students using Cognitive Tutor, a math software program, to learn linear algebra word concept. The study's purpose was to examine whether students' mathematics performance as it is related to using Cognitive Tutor provided evidence to support Koedlinger's (2002) four instructional principles used…

  1. Cognitive Play and Mathematical Learning in Computer Microworlds.

    Science.gov (United States)

    Steffe, Leslie P.; Wiegel, Heide G.

    1994-01-01

    Uses the constructivist principle of active learning to explore the possibly essential elements in transforming a cognitive play activity into mathematical activity. Suggests that for such transformation to occur, cognitive play activity must involve operations of intelligence that, yield situations of mathematical schemes. Illustrates the…

  2. Organizational Change, Leadership and Learning: Culture as Cognitive Process.

    Science.gov (United States)

    Lakomski, Gabriele

    2001-01-01

    Examines the claim that it is necessary to change an organization's culture in order to bring about organizational change. Considers the purported causal relationship between the role of the leader and organizational learning and develops the notion of culture as cognitive process based on research in cultural anthropology and cognitive science.…

  3. Situating cognitive/socio-cognitive approaches to student learning in genetics

    Science.gov (United States)

    Kindfield, Ann C. H.

    2009-03-01

    In this volume, Furberg and Arnseth report on a study of genetics learning from a socio-cultural perspective, focusing on students' meaning making as they engage in collaborative problem solving. Throughout the paper, they criticize research on student understanding and conceptual change conducted from a cognitive/socio-cognitive perspective on several reasonable grounds. However, their characterization of work undertaken from this perspective sometimes borders on caricature, failing to acknowledge the complexities of the research and the contexts within which it has been carried out. In this commentary, I expand their characterization of the cognitive/socio-cognitive perspective in general and situate my own work on genetics learning so as to provide a richer view of the enterprise. From this richer, more situated view, I conclude that research from both perspectives and collaboration between those looking at learning from different perspectives will ultimately provide a more complete picture of science learning.

  4. Why formal learning theory matters for cognitive science.

    Science.gov (United States)

    Fulop, Sean; Chater, Nick

    2013-01-01

    This article reviews a number of different areas in the foundations of formal learning theory. After outlining the general framework for formal models of learning, the Bayesian approach to learning is summarized. This leads to a discussion of Solomonoff's Universal Prior Distribution for Bayesian learning. Gold's model of identification in the limit is also outlined. We next discuss a number of aspects of learning theory raised in contributed papers, related to both computational and representational complexity. The article concludes with a description of how semi-supervised learning can be applied to the study of cognitive learning models. Throughout this overview, the specific points raised by our contributing authors are connected to the models and methods under review. Copyright © 2013 Cognitive Science Society, Inc.

  5. Example-based learning: Integrating cognitive and social-cognitive research perspectives

    NARCIS (Netherlands)

    T.A.J.M. van Gog (Tamara); N. Rummel (Nikol)

    2010-01-01

    textabstractExample-based learning has been studied from different perspectives. Cognitive research has mainly focused on worked examples, which typically provide students with a written worked-out didactical solution to a problem to study. Social-cognitive research has mostly focused on modeling

  6. Effects of Higher-order Cognitive Strategy Training on Gist Reasoning and Fact Learning in Adolescents

    Directory of Open Access Journals (Sweden)

    Jacquelyn F Gamino

    2010-12-01

    Full Text Available Improving the reasoning skills of adolescents across the United States has become a major concern for educators and scientists who are dedicated to identifying evidence-based protocols to improve student outcome. This small sample randomized, control pilot study sought to determine the efficacy of higher-order cognitive training on gist-reasoning and fact-learning in an inner-city public middle school. The study compared gist-reasoning and fact-learning performances after training in a smaller sample when tested in Spanish, many of the students’ native language, versus English. The 54 eighth grade students who participated in this pilot study were enrolled in an urban middle school, predominantly from lower socio-economic status families, and were primarily of minority descent. The students were randomized into one of three groups, one that learned cognitive strategies promoting abstraction of meaning, a group that learned rote memory strategies, or a control group to ascertain the impact of each program on gist-reasoning and fact-learning from text-based information. We found that the students who had cognitive strategy instruction that entailed abstraction of meaning significantly improved their gist-reasoning and fact-learning ability. The students who learned rote memory strategies significantly improved their fact-learning scores from a text but not gist-reasoning ability. The control group showed no significant change in either gist-reasoning or fact-learning ability. A trend toward significant improvement in overall reading scores for the group that learned to abstract meaning as well as a significant correlation between gist-reasoning ability and the critical thinking on a state-mandated standardized reading test was also found. There were no significant differences between English and Spanish performance of gist reasoning and fact learning. Our findings suggest that teaching higher-order cognitive strategies facilitates gist

  7. Cognitive Control Signals in Posterior Cingulate Cortex

    Directory of Open Access Journals (Sweden)

    Benjamin eHayden

    2010-12-01

    Full Text Available Efficiently shifting between tasks is a central function of cognitive control. The role of the default network—a constellation of areas with high baseline activity that declines during task performance—in cognitive control remains poorly understood. We hypothesized that task switching demands cognitive control to shift the balance of processing towards the external world, and therefore predicted that switching between the two tasks would require suppression of activity of neurons within the CGp. To test this idea, we recorded the activity of single neurons in posterior cingulate cortex (CGp, a central node in the default network, in monkeys performing two interleaved tasks. As predicted, we found that basal levels of neuronal activity were reduced following a switch from one task to another and gradually returned to pre-switch baseline on subsequent trials. We failed to observe these effects in lateral intraparietal cortex (LIP, part of the dorsal fronto-parietal cortical attention network directly connected to CGp. These findings indicate that suppression of neuronal activity in CGp facilitates cognitive control, and suggest that activity in the default network reflects processes that directly compete with control processes elsewhere in the brain..

  8. Evaluating the relationship between white matter integrity, cognition, and varieties of video game learning.

    Science.gov (United States)

    Ray, Nicholas R; O'Connell, Margaret A; Nashiro, Kaoru; Smith, Evan T; Qin, Shuo; Basak, Chandramallika

    2017-01-01

    Many studies are currently researching the effects of video games, particularly in the domain of cognitive training. Great variability exists among video games however, and few studies have attempted to compare different types of video games. Little is known, for instance, about the cognitive processes or brain structures that underlie learning of different genres of video games. To examine the cognitive and neural underpinnings of two different types of game learning in order to evaluate their common and separate correlates, with the hopes of informing future intervention research. Participants (31 younger adults and 31 older adults) completed an extensive cognitive battery and played two different genres of video games, one action game and one strategy game, for 1.5 hours each. DTI scans were acquired for each participant, and regional fractional anisotropy (FA) values were extracted using the JHU atlas. Behavioral results indicated that better performance on tasks of working memory and perceptual discrimination was related to enhanced learning in both games, even after controlling for age, whereas better performance on a perceptual speed task was uniquely related with enhanced learning of the strategy game. DTI results indicated that white matter FA in the right fornix/stria terminalis was correlated with action game learning, whereas white matter FA in the left cingulum/hippocampus was correlated with strategy game learning, even after controlling for age. Although cognition, to a large extent, was a common predictor of both types of game learning, regional white matter FA could separately predict action and strategy game learning. Given the neural and cognitive correlates of strategy game learning, strategy games may provide a more beneficial training tool for adults suffering from memory-related disorders or declines in processing speed, particularly older adults.

  9. Application of a cognitive neuroscience perspective of cognitive control to late-life anxiety

    Science.gov (United States)

    Beaudreau, Sherry A.; MacKay-Brandt, Anna; Reynolds, Jeremy

    2013-01-01

    Recent evidence supports a negative association between anxiety and cognitive control. Given age-related reductions in some cognitive abilities and the relation of late life anxiety to cognitive impairment, this negative association may be particularly relevant to older adults. This critical review conceptualizes anxiety and cognitive control from cognitive neuroscience and cognitive aging theoretical perspectives and evaluates the methodological approaches and measures used to assess cognitive control. Consistent with behavioral investigations of young adults, the studies reviewed implicate specific and potentially negative effects of anxiety on cognitive control processes in older adults. Hypotheses regarding the role of both aging and anxiety on cognitive control, the bi-directionality between anxiety and cognitive control, and the potential for specific symptoms of anxiety (particularly worry) to mediate this association, are specified and discussed. PMID:23602352

  10. Cognitive Control: Dynamic, Sustained, and Voluntary Influences

    Science.gov (United States)

    Fernandez-Duque, Diego; Knight, MaryBeth

    2008-01-01

    The cost of incongruent stimuli is reduced when conflict is expected. This series of experiments tested whether this improved performance is due to repetition priming or to enhanced cognitive control. Using a paradigm in which Word and Number Stroop alternated every trial, Experiment 1 assessed dynamic trial-to-trial changes. Incongruent trials…

  11. Cognitive and metacognitive processes in self-regulation of learning

    Directory of Open Access Journals (Sweden)

    Erika Tomec

    2006-08-01

    Full Text Available The purpose of the present study was to investigate differences among secondary school students in cognitive and metacognitive processes in self-regulated learning (SRL according to year of education, learning program, sex and achievement. Beside this, the autors were interested in the relationship between (metacognitive components of self-regulated learning. The theoretical framework of the research was the four-component model of self-regulated learning by Hofer, Yu and Pintrich (1998. The focus was on the first part of the model which is about cognitive structure and cognitive strategies.Metacognitive awareness inventory (Shraw and Sperling Dennison, 1994 and Cognitive strategies awareness questionnaire (Pečjak, 2000, in Peklaj and Pečjak, 2002 were applied. In a sample of 321 students, differences in perception of importance of cognitive strategies among students attending different grades (1st and 4th, students attending different learning programs, students of different gender and students with different achievements emerged. Students' achievement in the whole sample was related to amount of metacognitive awareness. In the sample of 4-year students and students attending professional secondary schools, students' achievement was additionally related to appraisal of importance elaboration and organizational strategies. Further statistical analyses of relationship between components in SRL showed high positive correlation between cognitive and metacognitive components.

  12. Cognitive Learning Styles: Can You Engineer a "Perfect" Match?

    Science.gov (United States)

    Khuzzan, Sharifah Mazlina Syed; Goulding, Jack Steven

    2016-01-01

    Education and training is widely acknowledged as being one of the key factors for leveraging organisational success. However, it is equally acknowledged that skills development and the acquisition of learning through managed cognitive approaches has yet to provide a "perfect" match. Whilst it is argued that an ideal learning scenario…

  13. Emerging Technologies as Cognitive Tools for Authentic Learning

    Science.gov (United States)

    Herrington, Jan; Parker, Jenni

    2013-01-01

    Employing emerging technologies in learning is becoming increasingly important as a means to support the development of digital media literacy. Using a theoretical framework of authentic learning and technology as cognitive tools, this paper examined student responses to the infusion of emerging technologies in a large first year teacher education…

  14. Cognitive and Social Aspects of Engagement in Active Learning

    Science.gov (United States)

    Koretsky, Milo

    2017-01-01

    This article reports analysis of students' written reflections as to what helps them learn in an active learning environment. Eight hundred and twenty seven responses from 403 students in four different studio courses over two years were analyzed. An emergent coding scheme identified 55% of the responses as associated with cognitive processes…

  15. Assessing Student Learning in Academic Advising Using Social Cognitive Theory

    Science.gov (United States)

    Erlich, Richard J.; Russ-Eft, Darlene F.

    2013-01-01

    We investigated whether the social cognitive theory constructs of self-efficacy and self-regulated learning apply to academic advising for measuring student learning outcomes. Community college students (N = 120) participated in an individual academic-advising session. We assessed students' post-intervention self-efficacy in academic planning and…

  16. Cognitive ability predicts motor learning on a virtual reality game in patients with TBI.

    Science.gov (United States)

    O'Neil, Rochelle L; Skeel, Reid L; Ustinova, Ksenia I

    2013-01-01

    Virtual reality games and simulations have been utilized successfully for motor rehabilitation of individuals with traumatic brain injury (TBI). Little is known, however, how TBI-related cognitive decline affects learning of motor tasks in virtual environments. To fill this gap, we examined learning within a virtual reality game involving various reaching motions in 14 patients with TBI and 15 healthy individuals with different cognitive abilities. All participants practiced ten 90-second gaming trials to assess various aspects of motor learning. Cognitive abilities were assessed with a battery of tests including measures of memory, executive functioning, and visuospatial ability. Overall, participants with TBI showed both reduced performance and a slower learning rate in the virtual reality game compared to healthy individuals. Numerous correlations between overall performance and several of the cognitive ability domains were revealed for both the patient and control groups, with the best predictor being overall cognitive ability. The results may provide a starting point for rehabilitation programs regarding which cognitive domains interact with motor learning.

  17. The relation between Assessment for Learning and elementary students' cognitive and metacognitive strategy use.

    Science.gov (United States)

    Baas, Diana; Castelijns, Jos; Vermeulen, Marjan; Martens, Rob; Segers, Mien

    2015-03-01

    Assessment for Learning (AfL) is believed to create a rich learning environment in which students develop their cognitive and metacognitive strategies. Monitoring student growth and providing scaffolds that shed light on the next step in the learning process are hypothesized to be essential elements of AfL that enhance cognitive and metacognitive strategies. However, empirical evidence for the relation between AfL and students' strategy use is scarce. This study investigates the relation between AfL and elementary school students' use of cognitive and metacognitive strategies. The sample comprised 528 grade four to six students (9- to 12-year-olds) from seven Dutch elementary schools. Students' perceptions of AfL and their cognitive and metacognitive strategy use were measured by means of questionnaires. Structural equation modelling was used to investigate the relations among the variables. The results reveal that monitoring activities that provide students an understanding of where they are in their learning process predict Students' task orientation and planning. Scaffolding activities that support students in taking the next step in their learning are positively related to the use of both surface and deep-level learning strategies and the extent to which they evaluate their learning process after performing tasks. The results underline the importance of assessment practices in ceding responsibility to students in taking control of their own learning. © 2014 The British Psychological Society.

  18. The Influence of Cognitive Learning Style and Learning Independence on the Students' Learning Outcomes

    Science.gov (United States)

    Prayekti

    2018-01-01

    Students of Open University are strongly required to be able to study independently. They rely heavily on the cognitive learning styles that they have in attempt to get maximum scores in every final exam. The participants of this research were students in the Physics Education program taking Thermodynamic subject course. The research analysis…

  19. Reasoning, Cognitive Control, and Moral Intuition

    Directory of Open Access Journals (Sweden)

    Richard ePatterson

    2012-12-01

    Full Text Available Recent Social Intuitionist work suggests that moral judgments are intuitive (not based on conscious deliberation or any significant chain of inference, and that the reasons we produce to explain or justify our judgments and actions are for the most part post hoc rationalizations rather than the actual source of those judgments. This is consistent with work on judgment and explanation in other domains, and it correctly challenges one-sidedly rationalistic accounts. We suggest that in fact reasoning has a great deal of influence on moral judgments and on intuitive judgments in general. This influence is not apparent from study of judgments simply in their immediate context, but it is crucial for the question of how cognition can help us avoid deleterious effects and enhance potentially beneficial effects of affect on judgment, action, and cognition itself. We begin with established work on several reactive strategies for cognitive control of affect (e.g., suppression, reappraisal, then give special attention to more complex sorts of conflict (extended deliberation involving multiple interacting factors, both affective and reflective. These situations are especially difficult to study in a controlled way, but we propose some possible experimental approaches. We then review proactive strategies for control, including avoidance of temptation and mindfulness meditation (Froeliger, et al, 2012, This Issue. We give special attention to the role of slow or cool cognitive processes (e.g., deliberation, planning, executive control in the inculcation of long-term dispositions, traits, intuitions, skills or habits. The latter are critical because they in turn give rise to a great many of our fast, intuitive judgments. The reasoning processes involved here are distinct from post hoc rationalizations and have a very real impact on countless intuitive judgments in concrete situations. This calls for a substantial enlargement of research on cognitive control.

  20. Driving to learn in a powered wheelchair: the process of learning joystick use in people with profound cognitive disabilities.

    Science.gov (United States)

    Nilsson, Lisbeth; Eklund, Mona; Nyberg, Per; Thulesius, Hans

    2011-01-01

    The Driving to Learn project explored ways to help people with profound cognitive disabilities practice operating a joystick-operated powered wheelchair. The project used a grounded theory approach with constant comparative analysis and was carried out over 12 yr. The participants were 45 children and adults with profound cognitive disabilities. Reference groups included 17 typically developing infants and 64 participants with lesser degrees of cognitive disability. The data sources included video recordings, field notes, open interviews, and a rich mixture of literature. The findings that emerged yielded strategies for facilitating achievements, an 8-phase learning process, an assessment tool, and a grounded theory of deplateauing explaining the properties necessary for participants to exceed expected limitations and plateaus. Eight participants with profound cognitive disabilities reached goal-directed driving or higher. Participants were empowered by attaining increased control over tool use, improving their autonomy and quality of life.

  1. Ontology Update in the Cognitive Model of Ontology Learning

    Directory of Open Access Journals (Sweden)

    Zhang De-Hai

    2016-01-01

    Full Text Available Ontology has been used in many hot-spot fields, but most ontology construction methods are semiautomatic, and the construction process of ontology is still a tedious and painstaking task. In this paper, a kind of cognitive models is presented for ontology learning which can simulate human being’s learning from world. In this model, the cognitive strategies are applied with the constrained axioms. Ontology update is a key step when the new knowledge adds into the existing ontology and conflict with old knowledge in the process of ontology learning. This proposal designs and validates the method of ontology update based on the axiomatic cognitive model, which include the ontology update postulates, axioms and operations of the learning model. It is proved that these operators subject to the established axiom system.

  2. Study protocol: the Fueling Learning through Exercise (FLEX) study - a randomized controlled trial of the impact of school-based physical activity programs on children's physical activity, cognitive function, and academic achievement.

    Science.gov (United States)

    Wright, Catherine M; Duquesnay, Paula J; Anzman-Frasca, Stephanie; Chomitz, Virginia R; Chui, Kenneth; Economos, Christina D; Langevin, Elizabeth G; Nelson, Miriam E; Sacheck, Jennifer M

    2016-10-13

    Physical activity (PA) is critical to preventing childhood obesity and contributes to children's overall physical and cognitive health, yet fewer than half of all children achieve the recommended 60 min per day of moderate-to-vigorous physical activity (MVPA). Schools are an ideal setting to meeting PA guidelines, but competing demands and limited resources have impacted PA opportunities. The Fueling Learning through Exercise (FLEX) Study is a randomized controlled trial that will evaluate the impact of two innovative school-based PA programs on children's MVPA, cognitive function, and academic outcomes. Twenty-four public elementary schools from low-income, ethnically diverse communities around Massachusetts were recruited and randomized to receive either 100 Mile Club® (walking/running program) or Just Move™ (classroom-based PA program) intervention, or control. Schoolchildren (grades 3-4, approximately 50 per school) were recruited to participate in evaluation. Primary outcome measures include PA via 7-day accelerometry (Actigraph GT3X+ and wGT3X-BT), cognitive assessments, and academic achievement via state standardized test scores. Additional measures include height and weight, surveys assessing psycho-social factors related to PA, and dietary intake. School-level surveys assess PA infrastructure and resources and intervention implementation. Data are collected at baseline, mid-point (5-6 months post-baseline), and post-intervention (approximately 1.5 years post-baseline). Demographic data were collected by parents/caregivers at baseline. Mixed-effect models will test the short- and long-term effects of both programs on minutes spent in MVPA, as well as secondary outcomes including cognitive and academic outcomes. The FLEX study will evaluate strategies for increasing children's MVPA through two innovative, low-cost, school-based PA programs as well as their impact on children's cognitive functioning and academic success. Demonstration of a relationship

  3. Study protocol: the Fueling Learning through Exercise (FLEX study – a randomized controlled trial of the impact of school-based physical activity programs on children’s physical activity, cognitive function, and academic achievement

    Directory of Open Access Journals (Sweden)

    Catherine M. Wright

    2016-10-01

    Full Text Available Abstract Background Physical activity (PA is critical to preventing childhood obesity and contributes to children’s overall physical and cognitive health, yet fewer than half of all children achieve the recommended 60 min per day of moderate-to-vigorous physical activity (MVPA. Schools are an ideal setting to meeting PA guidelines, but competing demands and limited resources have impacted PA opportunities. The Fueling Learning through Exercise (FLEX Study is a randomized controlled trial that will evaluate the impact of two innovative school-based PA programs on children’s MVPA, cognitive function, and academic outcomes. Methods Twenty-four public elementary schools from low-income, ethnically diverse communities around Massachusetts were recruited and randomized to receive either 100 Mile Club® (walking/running program or Just Move™ (classroom-based PA program intervention, or control. Schoolchildren (grades 3–4, approximately 50 per school were recruited to participate in evaluation. Primary outcome measures include PA via 7-day accelerometry (Actigraph GT3X+ and wGT3X-BT, cognitive assessments, and academic achievement via state standardized test scores. Additional measures include height and weight, surveys assessing psycho-social factors related to PA, and dietary intake. School-level surveys assess PA infrastructure and resources and intervention implementation. Data are collected at baseline, mid-point (5–6 months post-baseline, and post-intervention (approximately 1.5 years post-baseline. Demographic data were collected by parents/caregivers at baseline. Mixed-effect models will test the short- and long-term effects of both programs on minutes spent in MVPA, as well as secondary outcomes including cognitive and academic outcomes. Discussion The FLEX study will evaluate strategies for increasing children’s MVPA through two innovative, low-cost, school-based PA programs as well as their impact on children’s cognitive

  4. Digital Learning As Enhanced Learning Processing? Cognitive Evidence for New insight of Smart Learning.

    Science.gov (United States)

    Di Giacomo, Dina; Ranieri, Jessica; Lacasa, Pilar

    2017-01-01

    Large use of technology improved quality of life across aging and favoring the development of digital skills. Digital skills can be considered an enhancing to human cognitive activities. New research trend is about the impact of the technology in the elaboration information processing of the children. We wanted to analyze the influence of technology in early age evaluating the impact on cognition. We investigated the performance of a sample composed of n. 191 children in school age distributed in two groups as users: high digital users and low digital users. We measured the verbal and visuoperceptual cognitive performance of children by n. 8 standardized psychological tests and ad hoc self-report questionnaire. Results have evidenced the influence of digital exposition on cognitive development: the cognitive performance is looked enhanced and better developed: high digital users performed better in naming, semantic, visual memory and logical reasoning tasks. Our finding confirms the data present in literature and suggests the strong impact of the technology using not only in the social, educational and quality of life of the people, but also it outlines the functionality and the effect of the digital exposition in early age; increased cognitive abilities of the children tailor digital skilled generation with enhanced cognitive processing toward to smart learning.

  5. Learning to remember: Cognitive training-induced attenuation of age-related memory decline depends on sex and cognitive demand, and can transfer to untrained cognitive domains

    Science.gov (United States)

    Talboom, Joshua S.; West, Stephen G.; Engler-Chiurazzi, Elizabeth B.; Enders, Craig K.; Crain, Ian; Bimonte-Nelson, Heather A.

    2014-01-01

    Aging is associated with progressive changes in learning and memory. A potential approach to attenuate age-related cognitive decline is cognitive training. In this study, adult male and female rats were given either repeated exposure to a T-maze, or no exposure to any maze, and then tested on a final battery of cognitive tasks. Two groups of each sex were tested from 6-18 months old on the same T-maze; one group received a version testing spatial reference memory, and the other group received only the procedural testing components with minimal cognitive demand. Groups three and four of each sex had no maze exposure until the final battery, and were comprised of aged or young rats. The final maze battery included the practiced T-maze plus two novel tasks, one with a similar, and one with a different, memory type to the practice task. The fifth group of each sex was not maze tested, serving as an aged control for the effects of maze testing on neurotrophin protein levels in cognitive brain regions. Results showed that adult intermittent cognitive training enhanced performance on the practice task when aged in both sexes, that cognitive training benefits transferred to novel tasks only in females, and that cognitive demand was necessary for these effects since rats receiving only the procedural testing components showed no improvement on the final maze battery. Further, for both sexes, rats that showed faster learning when young demonstrated better memory when aged. Age-related increases in neurotrophin concentrations in several brain regions were revealed, which was related to performance on the training task only in females. This longitudinal study supports the tenet that cognitive training can help one remember later in life, with broader enhancements and associations with neurotrophins in females. PMID:25104561

  6. Cognitive Learning Theory Takes a Backseat

    DEFF Research Database (Denmark)

    Moesby-Jensen, Cecilie K.

    This paper describes the consequences of a cognitive management development program for middle managers in a public organization. The objective was to teach transformational leadership and teamwork but it occasioned a very limited improved articulation of transformational leadership and teamwork...

  7. Instrumental learning and cognitive flexibility processes are impaired in children exposed to early life stress.

    Science.gov (United States)

    Harms, Madeline B; Shannon Bowen, Katherine E; Hanson, Jamie L; Pollak, Seth D

    2017-10-19

    Children who experience severe early life stress show persistent deficits in many aspects of cognitive and social adaptation. Early stress might be associated with these broad changes in functioning because it impairs general learning mechanisms. To explore this possibility, we examined whether individuals who experienced abusive caregiving in childhood had difficulties with instrumental learning and/or cognitive flexibility as adolescents. Fifty-three 14-17-year-old adolescents (31 exposed to high levels of childhood stress, 22 control) completed an fMRI task that required them to first learn associations in the environment and then update those pairings. Adolescents with histories of early life stress eventually learned to pair stimuli with both positive and negative outcomes, but did so more slowly than their peers. Furthermore, these stress-exposed adolescents showed markedly impaired cognitive flexibility; they were less able than their peers to update those pairings when the contingencies changed. These learning problems were reflected in abnormal activity in learning- and attention-related brain circuitry. Both altered patterns of learning and neural activation were associated with the severity of lifetime stress that the adolescents had experienced. Taken together, the results of this experiment suggest that basic learning processes are impaired in adolescents exposed to early life stress. These general learning mechanisms may help explain the emergence of social problems observed in these individuals. © 2017 The Authors. Developmental Science Published by John Wiley & Sons Ltd.

  8. Humanoid Cognitive Robots That Learn by Imitating: Implications for Consciousness Studies

    Directory of Open Access Journals (Sweden)

    James A. Reggia

    2018-01-01

    Full Text Available While the concept of a conscious machine is intriguing, producing such a machine remains controversial and challenging. Here, we describe how our work on creating a humanoid cognitive robot that learns to perform tasks via imitation learning relates to this issue. Our discussion is divided into three parts. First, we summarize our previous framework for advancing the understanding of the nature of phenomenal consciousness. This framework is based on identifying computational correlates of consciousness. Second, we describe a cognitive robotic system that we recently developed that learns to perform tasks by imitating human-provided demonstrations. This humanoid robot uses cause–effect reasoning to infer a demonstrator’s intentions in performing a task, rather than just imitating the observed actions verbatim. In particular, its cognitive components center on top-down control of a working memory that retains the explanatory interpretations that the robot constructs during learning. Finally, we describe our ongoing work that is focused on converting our robot’s imitation learning cognitive system into purely neurocomputational form, including both its low-level cognitive neuromotor components, its use of working memory, and its causal reasoning mechanisms. Based on our initial results, we argue that the top-down cognitive control of working memory, and in particular its gating mechanisms, is an important potential computational correlate of consciousness in humanoid robots. We conclude that developing high-level neurocognitive control systems for cognitive robots and using them to search for computational correlates of consciousness provides an important approach to advancing our understanding of consciousness, and that it provides a credible and achievable route to ultimately developing a phenomenally conscious machine.

  9. Technology-supported environments for learning through cognitive conflict

    Directory of Open Access Journals (Sweden)

    Anne McDougall

    2002-12-01

    Full Text Available This paper examines ways in which the idea of cognitive conflict is used to facilitate learning, looking at the design and use of learning environments for this purpose. Drawing on previous work in science education and educational computing, three approaches to the design of learning environments utilizing cognitive conflict are introduced. These approaches are described as confrontational, guiding and explanatory, based on the level of the designer's concern with learners' pre-existing understanding, the extent of modification to the learner's conceptual structures intended by the designer, and the directness of steering the learner to the desired understanding. The examples used to illustrate the three approaches are taken from science education, specifically software for learning about Newtonian physics; it is contended however that the argument of the paper applies more broadly, to learning environments for many curriculum areas for school levels and in higher education.

  10. Relational Analysis of High School Students' Cognitive Self-Regulated Learning Strategies and Conceptions of Learning Biology

    Science.gov (United States)

    Sadi, Özlem

    2017-01-01

    The purpose of this study was to analyze the relation between students' cognitive learning strategies and conceptions of learning biology. The two scales, "Cognitive Learning Strategies" and "Conceptions of Learning Biology", were revised and adapted to biology in order to measure the students' learning strategies and…

  11. A protocol for a randomised controlled trial investigating the effect of increasing Omega-3 index with krill oil supplementation on learning, cognition, behaviour and visual processing in typically developing adolescents.

    Science.gov (United States)

    van der Wurff, I S M; von Schacky, C; Berge, K; Kirschner, P A; de Groot, R H M

    2016-07-08

    The influence of n-3 long-chain polyunsaturated fatty acids (LCPUFA) supplementation on brain functioning is debated. Some studies have found positive effects on cognition in children with learning difficulties, elderly people with cognitive impairment and depression scores in depressed individuals. Other studies have found null or negative effects. Observational studies in adolescents have found positive associations between fish consumption (containing n-3 LCPUFAs) and academic achievement. However, intervention studies in typically developing adolescents are missing. The goal of this study is to determine the influence of increasing Omega-3 Index on cognitive functioning, academic achievement and mental well-being of typically developing adolescents. Double-blind, randomised, placebo controlled intervention; 264 adolescents (age 13-15 years) attending lower general secondary education started daily supplementation of 400 mg eicosapentaenoic acid and docosahexaenoic acid (EPA+DHA) in cohort I (n=130) and 800 mg EPA+DHA in cohort II (n=134) or a placebo for 52 weeks. Recruitment took place according to a low Omega-3 Index (performed according to Good Clinical Practice. All data collected are linked to participant number only. The results will be disseminated on group level to participants and schools. The results will be presented at conferences and published in peer-reviewed journals. The study is approved by the Medical Ethical Committee of Atrium-Orbis-Zuyd Hospital and is registered at the Netherlands Trial Register (NTR4082). NTR4082 and NCT02240264; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Mirror Neurons, Embodied Cognitive Agents and Imitation Learning

    OpenAIRE

    Wiedermann, Jiří

    2003-01-01

    Mirror neurons are a relatively recent discovery; it has been conjectured that these neurons play an important role in imitation learning and other cognitive phenomena. We will study a possible place and role of mirror neurons in the neural architecture of embodied cognitive agents. We will formulate and investigate the hypothesis that mirror neurons serve as a mechanism which coordinates the multimodal (i.e., motor, perceptional and proprioceptive) information and completes it so that the ag...

  13. Cognitive components underpinning the development of model-based learning.

    Science.gov (United States)

    Potter, Tracey C S; Bryce, Nessa V; Hartley, Catherine A

    2017-06-01

    Reinforcement learning theory distinguishes "model-free" learning, which fosters reflexive repetition of previously rewarded actions, from "model-based" learning, which recruits a mental model of the environment to flexibly select goal-directed actions. Whereas model-free learning is evident across development, recruitment of model-based learning appears to increase with age. However, the cognitive processes underlying the development of model-based learning remain poorly characterized. Here, we examined whether age-related differences in cognitive processes underlying the construction and flexible recruitment of mental models predict developmental increases in model-based choice. In a cohort of participants aged 9-25, we examined whether the abilities to infer sequential regularities in the environment ("statistical learning"), maintain information in an active state ("working memory") and integrate distant concepts to solve problems ("fluid reasoning") predicted age-related improvements in model-based choice. We found that age-related improvements in statistical learning performance did not mediate the relationship between age and model-based choice. Ceiling performance on our working memory assay prevented examination of its contribution to model-based learning. However, age-related improvements in fluid reasoning statistically mediated the developmental increase in the recruitment of a model-based strategy. These findings suggest that gradual development of fluid reasoning may be a critical component process underlying the emergence of model-based learning. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Learning Declarative and Procedural Knowledge via Video Lectures: Cognitive Load and Learning Effectiveness

    Science.gov (United States)

    Hong, Jianzhong; Pi, Zhongling; Yang, Jiumin

    2018-01-01

    Video lectures are being widely used in online and blended learning classes worldwide, and their learning effectiveness is becoming a focus of many educators and researchers. This study examined the cognitive load and learning effectiveness of video lectures in terms of the type of knowledge being taught (declarative or procedural) and instructor…

  15. Effect of Mastery Learning on Senior Secondary School Students' Cognitive Learning Outcome in Quantitative Chemistry

    Science.gov (United States)

    Mitee, Telimoye Leesi; Obaitan, Georgina N.

    2015-01-01

    The cognitive learning outcome of Senior Secondary School chemistry students has been poor over the years in Nigeria. Poor mathematical skills and inefficient teaching methods have been identified as some of the major reasons for this. Bloom's theory of school learning and philosophy of mastery learning assert that virtually all students are…

  16. Examining Hypermedia Learning: The Role of Cognitive Load and Self-Regulated Learning

    Science.gov (United States)

    Moos, Daniel

    2013-01-01

    Distinct theoretical perspectives, Cognitive Load Theory and Self-Regulated Learning (SRL) theory, have been used to examine individual differences the challenges faced with hypermedia learning. However, research has tended to use these theories independently, resulting in less robust explanations of hypermedia learning. This study examined the…

  17. A functional approach for research on cognitive control: Analysing cognitive control tasks and their effects in terms of operant conditioning.

    Science.gov (United States)

    Liefooghe, Baptist; De Houwer, Jan

    2016-02-01

    Cognitive control is an important mental ability that is examined using a multitude of cognitive control tasks and effects. The present paper presents the first steps in the elaboration of a functional approach, which aims to uncover the communalities and differences between different cognitive control tasks and their effects. Based on the idea that responses in cognitive control tasks qualify as operant behaviour, we propose to reinterpret cognitive control tasks in terms of operant contingencies and cognitive control effects as instances of moderated stimulus control. We illustrate how our approach can be used to uncover communalities between topographically different cognitive control tasks and can lead to novel questions about the processes underlying cognitive control. © 2015 International Union of Psychological Science.

  18. Procedural learning during declarative control.

    Science.gov (United States)

    Crossley, Matthew J; Ashby, F Gregory

    2015-09-01

    There is now abundant evidence that human learning and memory are governed by multiple systems. As a result, research is now turning to the next question of how these putative systems interact. For instance, how is overall control of behavior coordinated, and does learning occur independently within systems regardless of what system is in control? Behavioral, neuroimaging, and neuroscience data are somewhat mixed with respect to these questions. Human neuroimaging and animal lesion studies suggest independent learning and are mostly agnostic with respect to control. Human behavioral studies suggest active inhibition of behavioral output but have little to say regarding learning. The results of two perceptual category-learning experiments are described that strongly suggest that procedural learning does occur while the explicit system is in control of behavior and that this learning might be just as good as if the procedural system was controlling the response. These results are consistent with the idea that declarative memory systems inhibit the ability of the procedural system to access motor output systems but do not prevent procedural learning. (c) 2015 APA, all rights reserved).

  19. Cognitive Learning Strategy as a Partial Effect on Major Field Test in Business Results

    Science.gov (United States)

    Strang, Kenneth David

    2014-01-01

    An experiment was developed to determine if cognitive learning strategies improved standardized university business exam results. Previous studies revealed that factors such as prior ability, age, gender, and culture predicted a student's Major Field Test in Business (MFTB) score better than course content. The experiment control consisted of…

  20. Effects of the Physical Environment on Cognitive Load and Learning: Towards a New Model of Cognitive Load

    Science.gov (United States)

    Choi, Hwan-Hee; van Merriënboer, Jeroen J. G.; Paas, Fred

    2014-01-01

    Although the theoretical framework of cognitive load theory has acknowledged a role for the learning environment, the specific characteristics of the physical learning environment that could affect cognitive load have never been considered, neither theoretically nor empirically. In this article, we argue that the physical learning environment, and…

  1. Bipolar Disorder: What Can Psychotherapists Learn From the Cognitive Research?

    OpenAIRE

    Johnson, Sheri; Tran, Tanya

    2007-01-01

    Randomized controlled trials of psychological treatment, principally cognitive therapy, for bipolar disorder have yielded inconsistent results. Given the status of this evidentiary base, we provide a more fine-grained analysis of the cognitive profiles associated with bipolar disorder to inform clinical practice. In this practice-friendly review, we consider evidence that both negative and positive cognitive styles are related to bipolar disorder. Cross-sectional and prospective evidence sugg...

  2. Evolving autonomous learning in cognitive networks.

    Science.gov (United States)

    Sheneman, Leigh; Hintze, Arend

    2017-12-01

    There are two common approaches for optimizing the performance of a machine: genetic algorithms and machine learning. A genetic algorithm is applied over many generations whereas machine learning works by applying feedback until the system meets a performance threshold. These methods have been previously combined, particularly in artificial neural networks using an external objective feedback mechanism. We adapt this approach to Markov Brains, which are evolvable networks of probabilistic and deterministic logic gates. Prior to this work MB could only adapt from one generation to the other, so we introduce feedback gates which augment their ability to learn during their lifetime. We show that Markov Brains can incorporate these feedback gates in such a way that they do not rely on an external objective feedback signal, but instead can generate internal feedback that is then used to learn. This results in a more biologically accurate model of the evolution of learning, which will enable us to study the interplay between evolution and learning and could be another step towards autonomously learning machines.

  3. Cognitive load imposed by ultrasound-facilitated teaching does not adversely affect gross anatomy learning outcomes.

    Science.gov (United States)

    Jamniczky, Heather A; Cotton, Darrel; Paget, Michael; Ramji, Qahir; Lenz, Ryan; McLaughlin, Kevin; Coderre, Sylvain; Ma, Irene W Y

    2017-03-01

    Ultrasonography is increasingly used in medical education, but its impact on learning outcomes is unclear. Adding ultrasound may facilitate learning, but may also potentially overwhelm novice learners. Based upon the framework of cognitive load theory, this study seeks to evaluate the relationship between cognitive load associated with using ultrasound and learning outcomes. The use of ultrasound was hypothesized to facilitate learning in anatomy for 161 novice first-year medical students. Using linear regression analyses, the relationship between reported cognitive load on using ultrasound and learning outcomes as measured by anatomy laboratory examination scores four weeks after ultrasound-guided anatomy training was evaluated in consenting students. Second anatomy examination scores of students who were taught anatomy with ultrasound were compared with historical controls (those not taught with ultrasound). Ultrasound's perceived utility for learning was measured on a five-point scale. Cognitive load on using ultrasound was measured on a nine-point scale. Primary outcome was the laboratory examination score (60 questions). Learners found ultrasound useful for learning. Weighted factor score on "image interpretation" was negatively, but insignificantly, associated with examination scores [F (1,135) = 0.28, beta = -0.22; P = 0.61]. Weighted factor score on "basic knobology" was positively and insignificantly associated with scores; [F (1,138) = 0.27, beta = 0.42; P = 0.60]. Cohorts exposed to ultrasound had significantly higher scores than historical controls (82.4% ± SD 8.6% vs. 78.8% ± 8.5%, Cohen's d = 0.41, P learning and may improve learning outcomes. Anat Sci Educ 10: 144-151. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  4. Associationism and cognition: human contingency learning at 25.

    Science.gov (United States)

    Shanks, David R

    2007-03-01

    A major topic within human learning, the field of contingency judgement, began to emerge about 25 years ago following publication of an article on depressive realism by Alloy and Abramson (1979). Subsequently, associationism has been the dominant theoretical framework for understanding contingency learning but this has been challenged in recent years by an alternative cognitive or inferential approach. This article outlines the key conceptual differences between these approaches and summarizes some of the main methods that have been employed to distinguish between them.

  5. Interdisciplinary project-based learning: technology for improving student cognition

    OpenAIRE

    Natalia Stozhko; Boris Bortnik; Ludmila Mironova; Albina Tchernysheva; Ekaterina Podshivalova

    2015-01-01

    The article studies a way of enhancing student cognition by using interdisciplinary project-based learning (IPBL) in a higher education institution. IPBL is a creative pedagogic approach allowing students of one area of specialisation to develop projects for students with different academic profiles. The application of this approach in the Ural State University of Economics resulted in a computer-assisted learning system (CALS) designed by IT students. The CALS was used in an analytical chemi...

  6. An Incremental Type-2 Meta-Cognitive Extreme Learning Machine.

    Science.gov (United States)

    Pratama, Mahardhika; Zhang, Guangquan; Er, Meng Joo; Anavatti, Sreenatha

    2017-02-01

    Existing extreme learning algorithm have not taken into account four issues: 1) complexity; 2) uncertainty; 3) concept drift; and 4) high dimensionality. A novel incremental type-2 meta-cognitive extreme learning machine (ELM) called evolving type-2 ELM (eT2ELM) is proposed to cope with the four issues in this paper. The eT2ELM presents three main pillars of human meta-cognition: 1) what-to-learn; 2) how-to-learn; and 3) when-to-learn. The what-to-learn component selects important training samples for model updates by virtue of the online certainty-based active learning method, which renders eT2ELM as a semi-supervised classifier. The how-to-learn element develops a synergy between extreme learning theory and the evolving concept, whereby the hidden nodes can be generated and pruned automatically from data streams with no tuning of hidden nodes. The when-to-learn constituent makes use of the standard sample reserved strategy. A generalized interval type-2 fuzzy neural network is also put forward as a cognitive component, in which a hidden node is built upon the interval type-2 multivariate Gaussian function while exploiting a subset of Chebyshev series in the output node. The efficacy of the proposed eT2ELM is numerically validated in 12 data streams containing various concept drifts. The numerical results are confirmed by thorough statistical tests, where the eT2ELM demonstrates the most encouraging numerical results in delivering reliable prediction, while sustaining low complexity.

  7. Learn How to Control Asthma

    Science.gov (United States)

    ... Guidelines Asthma & Community Health Learn How to Control Asthma Language: English (US) Español (Spanish) Arabic Chinese Français ... Is Asthma Treated? Select a Language What Is Asthma? Asthma is a disease that affects your lungs. ...

  8. The Teacher, Motivation, Acquisition and Cognitive Learning

    Institute of Scientific and Technical Information of China (English)

    Dede Wilson

    2006-01-01

    @@ English is a world language spoken by a great number of non-native speakers, the majority of whom learn to speak and communicate in the language in the classroom. Many factors contribute to learning in the language classroom but the key to success lies in the teacher and students' motivation and the use of motivational teaching strategies that maintain motivation and facilitate the process.

  9. The control of tonic pain by active relief learning.

    Science.gov (United States)

    Zhang, Suyi; Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W; Seymour, Ben

    2018-02-27

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty ('associability') signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. © 2018, Zhang et al.

  10. The control of tonic pain by active relief learning

    Science.gov (United States)

    Mano, Hiroaki; Lee, Michael; Yoshida, Wako; Kawato, Mitsuo; Robbins, Trevor W

    2018-01-01

    Tonic pain after injury characterises a behavioural state that prioritises recovery. Although generally suppressing cognition and attention, tonic pain needs to allow effective relief learning to reduce the cause of the pain. Here, we describe a central learning circuit that supports learning of relief and concurrently suppresses the level of ongoing pain. We used computational modelling of behavioural, physiological and neuroimaging data in two experiments in which subjects learned to terminate tonic pain in static and dynamic escape-learning paradigms. In both studies, we show that active relief-seeking involves a reinforcement learning process manifest by error signals observed in the dorsal putamen. Critically, this system uses an uncertainty (‘associability’) signal detected in pregenual anterior cingulate cortex that both controls the relief learning rate, and endogenously and parametrically modulates the level of tonic pain. The results define a self-organising learning circuit that reduces ongoing pain when learning about potential relief. PMID:29482716

  11. Cognitive allocation and the control room

    International Nuclear Information System (INIS)

    Paradies, M.W.

    1985-01-01

    One of the weakest links in the design of nuclear power plants is the inattention to the needs and capabilities of the operators. This flaw causes decreased plant reliability and reduced plant safety. To solve this problem the designer must, in the earliest stages of the design process, consider the operator's abilities. After the system requirements have been established, the designer must consider what functions to allocate to each part of the system. The human must be considered as part of this system. The allocation of functions needs to consider not only the mechanical tasks to be performed, but also the control requirements and the overall control philosophy. In order for the designers to consider the control philosophy, they need to know what control decisions should be automated and what decisions should be made by an operator. They also need to know how these decisions will be implemented: by an operator or by automation. ''Cognitive Allocation'' is the allocation of the decision making process between operators and machines. It defines the operator's role in the system. When designing a power plant, a cognitive allocation starts the process of considering the operator's abilities. This is the first step to correcting the weakest link in the current plant design

  12. Cognitive independence in foreign language learning

    Directory of Open Access Journals (Sweden)

    Maylín Rodríguez Sánchez

    2015-09-01

    Full Text Available The paper is intended to describe a didactic strategy to contribute to the development of foreign languages course students’ cognitive independence at Camagüey University. In its theoretical conception it is re-defined the concept “cognitive independence”, springing from the context in which the research is carried out, and the distinguishing features that characterize this capacity in students of foreign languages for pedagogical purposes are determined. The strategy comprises four stages: diagnosis, planning, execution, and evaluation. It is included the exemplification of the actions comprised in each stage, as well as the valuation of its effectiveness by means of experts’ opinions. Theoretical and empirical methods were applied, allowing the identification of the scientific problem and the modeling of its solution.

  13. Brain-Based Aspects of Cognitive Learning Approaches in Second Language Learning

    Science.gov (United States)

    Moghaddam, Alireza Navid; Araghi, Seyed Mahdi

    2013-01-01

    Language learning process is one of the complicated behaviors of human beings which has called many scholars and experts' attention especially after the middle of last century by the advent of cognitive psychology that later on we see its implication to education. Unlike previous thought of schools, cognitive psychology deals with the way in which…

  14. Modeling individuals’ cognitive and affective responses in spatial learning behavior

    NARCIS (Netherlands)

    Han, Q.; Arentze, T.A.; Timmermans, H.J.P.; Janssens, D.; Wets, G.; Lo, H.P.; Leung, Stephen C.H.; Tan, Susanna M.L.

    2008-01-01

    Activity-based analysis has slowly shifted gear from analysis of daily activity patterns to analysis and modeling of dynamic activity-travel patterns. In this paper, we describe a dynamic model that is concerned with simulating cognitive and affective responses in spatial learning behavior for a

  15. Learning and Optimization of Cognitive Capabilities. Final Project Report.

    Science.gov (United States)

    Lumsdaine, A.A.; And Others

    The work of a three-year series of experimental studies of human cognition is summarized in this report. Proglem solving and learning in man-machine interaction was investigated, as well as relevant variables and processes. The work included four separate projects: (1) computer-aided problem solving, (2) computer-aided instruction techniques, (3)…

  16. Habitual exercise is associated with cognitive control and cognitive reappraisal success.

    Science.gov (United States)

    Giles, Grace E; Cantelon, Julie A; Eddy, Marianna D; Brunyé, Tad T; Urry, Heather L; Mahoney, Caroline R; Kanarek, Robin B

    2017-12-01

    Habitual exercise is associated with enhanced domain-general cognitive control, such as inhibitory control, selective attention, and working memory, all of which rely on the frontal cortex. However, whether regular exercise is associated with more specific aspects of cognitive control, such as the cognitive control of emotion, remains relatively unexplored. The present study employed a correlational design to determine whether level of habitual exercise was related to performance on the Stroop test measuring selective attention and response inhibition, the cognitive reappraisal task measuring cognitive reappraisal success, and associated changes in prefrontal cortex (PFC) oxygenation using functional near-infrared spectroscopy. 74 individuals (24 men, 50 women, age 18-32 years) participated. Higher habitual physical activity was associated with lower Stroop interference (indicating greater inhibitory control) and enhanced cognitive reappraisal success. Higher habitual exercise was also associated with lower oxygenated hemoglobin (O 2 Hb) in the PFC in response to emotional information. However, NIRS data indicated that exercise was not associated with cognitive control-associated O 2 Hb in the PFC. Behaviorally, the findings support and extend the previous findings that habitual exercise relates to more successful cognitive control of neutral information and cognitive reappraisal of emotional information. Future research should explore whether habitual exercise exerts causal benefits to cognitive control and PFC oxygenation, as well as isolate specific cognitive control processes sensitive to change through habitual exercise.

  17. Learning a Foreign Language: A New Path to Enhancement of Cognitive Functions.

    Science.gov (United States)

    Shoghi Javan, Sara; Ghonsooly, Behzad

    2018-02-01

    The complicated cognitive processes involved in natural (primary) bilingualism lead to significant cognitive development. Executive functions as a fundamental component of human cognition are deemed to be affected by language learning. To date, a large number of studies have investigated how natural (primary) bilingualism influences executive functions; however, the way acquired (secondary) bilingualism manipulates executive functions is poorly understood. To fill this gap, controlling for age, gender, IQ, and socio-economic status, the researchers compared 60 advanced learners of English as a foreign language (EFL) to 60 beginners on measures of executive functions involving Stroop, Wisconsin Card Sorting Task (WCST) and Wechsler's digit span tasks. The results suggested that mastering English as a foreign language causes considerable enhancement in two components of executive functions, namely cognitive flexibility and working memory. However, no significant difference was observed in inhibitory control between the advanced EFL learners and beginners.

  18. Patient learning of treatment contents in cognitive therapy.

    Science.gov (United States)

    Gumport, Nicole B; Dong, Lu; Lee, Jason Y; Harvey, Allison G

    2018-03-01

    Research has demonstrated that both memory and learning for treatment contents are poor, and that both are associated with worse treatment outcome. The Memory Support Intervention has been shown to improve memory for treatment, but it has not yet been established if this intervention can also improve learning of treatment contents. This study was designed to document the number of times participants exhibited each of the indices of learning, to examine the indices of learning and their relationship to recall of treatment points, and to investigate the association between the indices of learning and depression outcome. Adults diagnosed with major depressive disorder (N = 48) were randomly assigned to 14 sessions of cognitive therapy-as-usual (CT-as-usual) or cognitive therapy plus the Memory Support Intervention (CT + Memory Support). Measures of learning, memory, and depressive symptomatology were taken at mid-treatment, post-treatment, and at 6-month follow-up. Relative to the CT-as-usual group, participants in the CT + Memory Support group reported more accurate thoughts and applications of treatment points at mid-treatment, post-treatment, and 6-month follow-up. Patient recall was significantly correlated with application and cognitive generalization. Thoughts and application at mid-treatment were associated with increased odds of treatment response at post-treatment. The learning measure for this study has not yet been psychometrically validated. The results are based on a small sample. Learning during treatment is poor, but modifiable via the Memory Support Intervention. These results provide encouraging data that improving learning of treatment contents can reduce symptoms during and following treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Decreasing Cognitive Load for Learners: Strategy of Web-Based Foreign Language Learning

    Science.gov (United States)

    Zhang, Jianfeng

    2013-01-01

    Cognitive load is one of the important factors that influence the effectiveness and efficiency of web-based foreign language learning. Cognitive load theory assumes that human's cognitive capacity in working memory is limited and if it overloads, learning will be hampered, so that high level of cognitive load can affect the performance of learning…

  20. A Relationship Study of Student Satisfaction with Learning Online and Cognitive Load: Initial Results

    Science.gov (United States)

    Bradford, George R.

    2011-01-01

    This study sought to explore if a relationship exists between cognitive load and student satisfaction with learning online. The study separates academic performance (a.k.a., "learning") from cognitive load and satisfaction to better distinguish influences on cognition (from cognitive load) and motivation (from satisfaction). Considerations that…

  1. The Spiral and the Lattice: Changes in Cognitive Learning Theory with Implications for Art Education.

    Science.gov (United States)

    Efland, Arthur D.

    1995-01-01

    Contrasts recent views of learning and cognition with cognitive learning theories of the late 1950s and early 1960s. Maintains that Jerome Bruner's spiral curriculum approach, still valuable, is not sufficient to explain cognitive development. Proposes a lattice-like cognitive development structure, inviting differing paths of exploration. (CFR)

  2. A machine learning model with human cognitive biases capable of learning from small and biased datasets.

    Science.gov (United States)

    Taniguchi, Hidetaka; Sato, Hiroshi; Shirakawa, Tomohiro

    2018-05-09

    Human learners can generalize a new concept from a small number of samples. In contrast, conventional machine learning methods require large amounts of data to address the same types of problems. Humans have cognitive biases that promote fast learning. Here, we developed a method to reduce the gap between human beings and machines in this type of inference by utilizing cognitive biases. We implemented a human cognitive model into machine learning algorithms and compared their performance with the currently most popular methods, naïve Bayes, support vector machine, neural networks, logistic regression and random forests. We focused on the task of spam classification, which has been studied for a long time in the field of machine learning and often requires a large amount of data to obtain high accuracy. Our models achieved superior performance with small and biased samples in comparison with other representative machine learning methods.

  3. EFFECT OF FLIPPED LEARNING ON COGNITIVE LOAD: A HIGHER EDUCATION RESEARCH

    Directory of Open Access Journals (Sweden)

    Celal Karaca

    2017-01-01

    Full Text Available The purpose of this study is to determine the effect of the flipped learning method on the cognitive load of the students. The study was conducted with a sample of 160 people who were trained in Department of Mechanical Engineering for algorithms and programming courses at a higher education level. The study, which lasted for 8 weeks, has a semi-experimental design. A 9-point scale developed by Paas and Van Merrienboer (1993 was used for cognitive load measurements. At the end of the weekly courses, the scale was filled by the experimental and control groups. Independent sample t test was applied through SPSS 24 program to the obtained data. In both instances, the cognitive load in the experimental group in which the flipped learning method was applied was found to be lower than the cognitive load in the control group in which traditional face-to-face training was applied. As a result, it can be said that flipped learning, if well structured, is a method reducing cognitive load.

  4. Cognitive interference modeling with applications in power and admission control

    KAUST Repository

    Mahmood, Nurul Huda; Yilmaz, Ferkan; Alouini, Mohamed-Slim; Ø ien, Geir Egil

    2012-01-01

    One of the key design challenges in a cognitive radio network is controlling the interference generated at coexisting primary receivers. In order to design efficient cognitive radio systems and to minimize their unwanted consequences

  5. Cognitive diffusion model with user-oriented context-to-text recognition for learning to promote high level cognitive processes

    Directory of Open Access Journals (Sweden)

    Wu-Yuin Hwang

    2014-03-01

    Full Text Available There is a large number of studies on how to promote students’ cognitive processes and learning achievements through various learning activities supported by advanced learning technologies. However, not many of them focus on applying the knowledge that students learn in school to solve authentic daily life problems. This study aims to propose a cognitive diffusion model called User-oriented Context-to-Text Recognition for Learning (U-CTRL to facilitate and improve students’ learning and cognitive processes from lower levels (i.e., Remember and Understand to higher levels (i.e., Apply and above through an innovative approach, called User-Oriented Context-to-Text Recognition for Learning (U-CTRL. With U-CTRL, students participate in learning activities in which they capture the learning context that can be scanned and recognized by a computer application as text. Furthermore, this study proposes the use of an innovative model, called Cognitive Diffusion Model, to investigate the diffusion and transition of students’ cognitive processes in different learning stages including pre-schooling, after-schooling, crossing the chasm, and higher cognitive processing. Finally, two cases are presented to demonstrate how the U-CTRL approach can be used to facilitate student cognition in their learning of English and Natural science.

  6. Social cognitive theory, metacognition, and simulation learning in nursing education.

    Science.gov (United States)

    Burke, Helen; Mancuso, Lorraine

    2012-10-01

    Simulation learning encompasses simple, introductory scenarios requiring response to patients' needs during basic hygienic care and during situations demanding complex decision making. Simulation integrates principles of social cognitive theory (SCT) into an interactive approach to learning that encompasses the core principles of intentionality, forethought, self-reactiveness, and self-reflectiveness. Effective simulation requires an environment conducive to learning and introduces activities that foster symbolic coding operations and mastery of new skills; debriefing builds self-efficacy and supports self-regulation of behavior. Tailoring the level of difficulty to students' mastery level supports successful outcomes and motivation to set higher standards. Mindful selection of simulation complexity and structure matches course learning objectives and supports progressive development of metacognition. Theory-based facilitation of simulated learning optimizes efficacy of this learning method to foster maturation of cognitive processes of SCT, metacognition, and self-directedness. Examples of metacognition that are supported through mindful, theory-based implementation of simulation learning are provided. Copyright 2012, SLACK Incorporated.

  7. Social Cognition as Reinforcement Learning: Feedback Modulates Emotion Inference.

    Science.gov (United States)

    Zaki, Jamil; Kallman, Seth; Wimmer, G Elliott; Ochsner, Kevin; Shohamy, Daphna

    2016-09-01

    Neuroscientific studies of social cognition typically employ paradigms in which perceivers draw single-shot inferences about the internal states of strangers. Real-world social inference features much different parameters: People often encounter and learn about particular social targets (e.g., friends) over time and receive feedback about whether their inferences are correct or incorrect. Here, we examined this process and, more broadly, the intersection between social cognition and reinforcement learning. Perceivers were scanned using fMRI while repeatedly encountering three social targets who produced conflicting visual and verbal emotional cues. Perceivers guessed how targets felt and received feedback about whether they had guessed correctly. Visual cues reliably predicted one target's emotion, verbal cues predicted a second target's emotion, and neither reliably predicted the third target's emotion. Perceivers successfully used this information to update their judgments over time. Furthermore, trial-by-trial learning signals-estimated using two reinforcement learning models-tracked activity in ventral striatum and ventromedial pFC, structures associated with reinforcement learning, and regions associated with updating social impressions, including TPJ. These data suggest that learning about others' emotions, like other forms of feedback learning, relies on domain-general reinforcement mechanisms as well as domain-specific social information processing.

  8. Cognitive Clusters in Specific Learning Disorder

    Science.gov (United States)

    Poletti, Michele; Carretta, Elisa; Bonvicini, Laura; Giorgi-Rossi, Paolo

    2018-01-01

    The heterogeneity among children with learning disabilities still represents a barrier and a challenge in their conceptualization. Although a dimensional approach has been gaining support, the categorical approach is still the most adopted, as in the recent fifth edition of the "Diagnostic and Statistical Manual of Mental Disorders." The…

  9. Operant Learning, Cognitive Development, and Job Aids.

    Science.gov (United States)

    Harmon, N. Paul; King, David R.

    1979-01-01

    Examines the relationship between learning and development in the most general terms, discusses the developmental distinction between concrete and formal operational thought as manifested in adult behavior, and considers the implications of the concrete-formal dichotomy for the design and use of job aids. Notes and a bibliography are provided.…

  10. Learning anatomy via mobile augmented reality: Effects on achievement and cognitive load.

    Science.gov (United States)

    Küçük, Sevda; Kapakin, Samet; Göktaş, Yüksel

    2016-10-01

    Augmented reality (AR), a new generation of technology, has attracted the attention of educators in recent years. In this study, a MagicBook was developed for a neuroanatomy topic by using mobile augmented reality (mAR) technology. This technology integrates virtual learning objects into the real world and allow users to interact with the environment using mobile devices. The purpose of this study was to determine the effects of learning anatomy via mAR on medical students' academic achievement and cognitive load. The mixed method was applied in the study. The random sample consisted of 70 second-year undergraduate medical students: 34 in an experimental group and 36 in a control group. Academic achievement test and cognitive load scale were used as data collection tool. A one-way MANOVA test was used for analysis. The experimental group, which used mAR applications, reported higher achievement and lower cognitive load. The use of mAR applications in anatomy education contributed to the formation of an effective and productive learning environment. Student cognitive load decreased as abstract information became concrete in printed books via multimedia materials in mAR applications. Additionally, students were able to access the materials in the MagicBook anytime and anywhere they wanted. The mobile learning approach helped students learn better by exerting less cognitive effort. Moreover, the sensory experience and real time interaction with environment may provide learning satisfaction and enable students to structure their knowledge to complete the learning tasks. Anat Sci Educ 9: 411-421. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  11. On the Role of Cognitive Abilities in Second Language Vowel Learning.

    Science.gov (United States)

    Ghaffarvand Mokari, Payam; Werner, Stefan

    2018-03-01

    This study investigated the role of different cognitive abilities-inhibitory control, attention control, phonological short-term memory (PSTM), and acoustic short-term memory (AM)-in second language (L2) vowel learning. The participants were 40 Azerbaijani learners of Standard Southern British English. Their perception of L2 vowels was tested through a perceptual discrimination task before and after five sessions of high-variability phonetic training. Inhibitory control was significantly correlated with gains from training in the discrimination of L2 vowel pairs. However, there were no significant correlations between attention control, AM, PSTM, and gains from training. These findings suggest the potential role of inhibitory control in L2 phonological learning. We suggest that inhibitory control facilitates the processing of L2 sounds by allowing learners to ignore the interfering information from L1 during training, leading to better L2 segmental learning.

  12. Multiagent Reinforcement Learning Dynamic Spectrum Access in Cognitive Radios

    Directory of Open Access Journals (Sweden)

    Wu Chun

    2014-02-01

    Full Text Available A multiuser independent Q-learning method which does not need information interaction is proposed for multiuser dynamic spectrum accessing in cognitive radios. The method adopts self-learning paradigm, in which each CR user performs reinforcement learning only through observing individual performance reward without spending communication resource on information interaction with others. The reward is defined suitably to present channel quality and channel conflict status. The learning strategy of sufficient exploration, preference for good channel, and punishment for channel conflict is designed to implement multiuser dynamic spectrum accessing. In two users two channels scenario, a fast learning algorithm is proposed and the convergence to maximal whole reward is proved. The simulation results show that, with the proposed method, the CR system can obtain convergence of Nash equilibrium with large probability and achieve great performance of whole reward.

  13. Cognitive Load Theory and Complex Learning: Recent Developments and Future Directions

    NARCIS (Netherlands)

    Van Merriënboer, Jeroen; Sweller, J.

    2007-01-01

    Traditionally, Cognitive Load Theory (CLT) has focused on instructional methods to decrease extraneous cognitive load so that available cognitive resources can be fully devoted to learning. This article strengthens the cognitive base of CLT by linking cognitive processes to the processes used by

  14. Learning to predict is spared in mild cognitive impairment due to Alzheimer's disease.

    Science.gov (United States)

    Baker, Rosalind; Bentham, Peter; Kourtzi, Zoe

    2015-10-01

    Learning the statistics of the environment is critical for predicting upcoming events. However, little is known about how we translate previous knowledge about scene regularities to sensory predictions. Here, we ask whether patients with mild cognitive impairment due to Alzheimer's disease (MCI-AD) that are known to have spared implicit but impaired explicit recognition memory are able to learn temporal regularities and predict upcoming events. We tested the ability of MCI-AD patients and age-matched controls to predict the orientation of a test stimulus following exposure to sequences of leftwards or rightwards oriented gratings. Our results demonstrate that exposure to temporal sequences without feedback facilitates the ability to predict an upcoming stimulus in both MCI-AD patients and controls. Further, we show that executive cognitive control may account for individual variability in predictive learning. That is, we observed significant positive correlations of performance in attentional and working memory tasks with post-training performance in the prediction task. Taken together, these results suggest a mediating role of circuits involved in cognitive control (i.e. frontal circuits) that may support the ability for predictive learning in MCI-AD.

  15. The Impact of Cognitive Load Theory on Learning Astronomy

    Science.gov (United States)

    Foster, Thomas M.

    2010-01-01

    Every student is different, which is the challenge of astronomy education research (AER) and teaching astronomy. This difference also provides the greatest goal for education researchers - our GUT - we need to be able to quantify these differences and provide explanatory and predictive theories to curriculum developers and teachers. One educational theory that holds promise is Cognitive Load Theory. Cognitive Load Theory begins with the well-established fact that everyone's working memory can hold 7 ± 2 unique items. This quirk of the human brain is why phone numbers are 7 digits long. This quirk is also why we forget peoples’ names after just meeting them, leave the iron on when we leave the house, and become overwhelmed as students of new material. Once the intricacies of Cognitive Load are understood, it becomes possible to design learning environments to marshal the resources students have and guide them to success. Lessons learned from Cognitive Load Theory can and should be applied to learning astronomy. Classroom-ready ideas will be presented.

  16. Consequences of Learned Helplessness and Recognition of the State of Cognitive Exhaustion in Persons with Mild Intellectual Disability.

    Science.gov (United States)

    Gacek, Michał; Smoleń, Tomasz; Pilecka, Władysława

    2017-01-01

    Persons with intellectual disability are a group at risk of being exposed to overly demanding problem-solving situations, which may produce learned helplessness . The research was based on the informational model of learned helplessness. The consequences of exposure to an unsolvable task and the ability to recognize the symptoms of cognitive exhaustion were tested in 120 students with mild intellectual disability. After the exposure to the unsolvable task, persons in the experimental group obtained lower results than the control group in the escape/avoidance learning task, but a similar result was found in the divergent thinking fluency task. Also, participants in the experimental group had difficulties recognizing the symptoms of the cognitive exhaustion state. After a week's time, the difference in escape/avoidance learning performance was still observed. The results indicate that exposure to unsolvable tasks may negatively influence the cognitive performance in persons with intellectual disability, although those persons may not identify the cognitive state related to lowered performance.

  17. Visualizing complex processes using a cognitive-mapping tool to support the learning of clinical reasoning.

    Science.gov (United States)

    Wu, Bian; Wang, Minhong; Grotzer, Tina A; Liu, Jun; Johnson, Janice M

    2016-08-22

    Practical experience with clinical cases has played an important role in supporting the learning of clinical reasoning. However, learning through practical experience involves complex processes difficult to be captured by students. This study aimed to examine the effects of a computer-based cognitive-mapping approach that helps students to externalize the reasoning process and the knowledge underlying the reasoning process when they work with clinical cases. A comparison between the cognitive-mapping approach and the verbal-text approach was made by analyzing their effects on learning outcomes. Fifty-two third-year or higher students from two medical schools participated in the study. Students in the experimental group used the computer-base cognitive-mapping approach, while the control group used the verbal-text approach, to make sense of their thinking and actions when they worked with four simulated cases over 4 weeks. For each case, students in both groups reported their reasoning process (involving data capture, hypotheses formulation, and reasoning with justifications) and the underlying knowledge (involving identified concepts and the relationships between the concepts) using the given approach. The learning products (cognitive maps or verbal text) revealed that students in the cognitive-mapping group outperformed those in the verbal-text group in the reasoning process, but not in making sense of the knowledge underlying the reasoning process. No significant differences were found in a knowledge posttest between the two groups. The computer-based cognitive-mapping approach has shown a promising advantage over the verbal-text approach in improving students' reasoning performance. Further studies are needed to examine the effects of the cognitive-mapping approach in improving the construction of subject-matter knowledge on the basis of practical experience.

  18. Effects of multicomponent training of cognitive control on cognitive function and brain activation in older adults.

    Science.gov (United States)

    Kim, Hoyoung; Chey, Jeanyung; Lee, Sanghun

    2017-11-01

    The aim of this study was to investigate the changes in cognitive functions and brain activation after multicomponent training of cognitive control in non-demented older adults, utilizing neuropsychological tests and fMRI. We developed and implemented a computerized Multicomponent Training of Cognitive Control (MTCC), characterized by task variability and adaptive procedures, in order to maximize training effects in cognitive control and transfer to other cognitive domains. Twenty-seven community-dwelling adults, aged 64-77 years, without any history of neurological or psychiatric problems, participated in this study (14 in the training group and 13 in the control group). The MTCC was administered to the participants assigned to the training group for 8 weeks, while those in the control group received no training. Neuropsychological tests and fMRI were administered prior to and after the training. Trained participants showed improvements in cognitive control, recognition memory and general cognitive functioning. Furthermore, the MTCC led to an increased brain activation of the regions adjacent to the baseline cognitive control-related areas in the frontoparietal network. Future studies are necessary to confirm our hypothesis that MTCC improves cognitive functioning of healthy elderly individuals by expanding their frontoparietal network that is involved in cognitive control. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement.

    Science.gov (United States)

    Looi, Chung Yen; Duta, Mihaela; Brem, Anna-Katharine; Huber, Stefan; Nuerk, Hans-Christoph; Cohen Kadosh, Roi

    2016-02-23

    Cognitive training offers the potential for individualised learning, prevention of cognitive decline, and rehabilitation. However, key research challenges include ecological validity (training design), transfer of learning and long-term effects. Given that cognitive training and neuromodulation affect neuroplasticity, their combination could promote greater, synergistic effects. We investigated whether combining transcranial direct current stimulation (tDCS) with cognitive training could further enhance cognitive performance compared to training alone, and promote transfer within a short period of time. Healthy adults received real or sham tDCS over their dorsolateral prefrontal cortices during two 30-minute mathematics training sessions involving body movements. To examine the role of training, an active control group received tDCS during a non-mathematical task. Those who received real tDCS performed significantly better in the game than the sham group, and showed transfer effects to working memory, a related but non-numerical cognitive domain. This transfer effect was absent in active and sham control groups. Furthermore, training gains were more pronounced amongst those with lower baseline cognitive abilities, suggesting the potential for reducing cognitive inequalities. All effects associated with real tDCS remained 2 months post-training. Our study demonstrates the potential benefit of this approach for long-term enhancement of human learning and cognition.

  20. Cognitive aspects in games workshops for learning a foreign language

    Directory of Open Access Journals (Sweden)

    Claudia Ferrareto Lopes

    2014-08-01

    Full Text Available The goal of the study was to analyze the cognitive aspects related to learning English as a foreign language, by means of games workshops with students of the 6th grade of elementary school from a state school in Londrina. The paper is grounded on Piagetian theory and is descriptive-interpretative study with a qualitative perspective. Two guiding questions motivate the study: what is the role of games workshops for learning English as a foreign language? In what way the cognitive processes are held in the games workshops for learning English? To meet the proposed goals, workshops were implemented with games containing the linguistic contents studied in English classes. The games workshops enabled the observation and analysis of the cognitive aspects involved in learning a foreign language. Results show that the games workshops promote the participation of the students motivating action and output, evidencing gaps on the knowledge and providing equilibration processes. Subjects are asked to produce outputs via games demands, thus evoking knowhow, as well as the thinking about their own products, suggesting a conscious-awareness process.

  1. Superior cognitive mapping through single landmark-related learning than through boundary-related learning.

    Science.gov (United States)

    Zhou, Ruojing; Mou, Weimin

    2016-08-01

    Cognitive mapping is assumed to be through hippocampus-dependent place learning rather than striatum-dependent response learning. However, we proposed that either type of spatial learning, as long as it involves encoding metric relations between locations and reference points, could lead to a cognitive map. Furthermore, the fewer reference points to specify individual locations, the more accurate a cognitive map of these locations will be. We demonstrated that participants have more accurate representations of vectors between 2 locations and of configurations among 3 locations when locations are individually encoded in terms of a single landmark than when locations are encoded in terms of a boundary. Previous findings have shown that learning locations relative to a boundary involve stronger place learning and higher hippocampal activation whereas learning relative to a single landmark involves stronger response learning and higher striatal activation. Recognizing this, we have provided evidence challenging the cognitive map theory but favoring our proposal. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  2. Global efficiency of structural networks mediates cognitive control in Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Rok Berlot

    2016-12-01

    Full Text Available Background: Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. Objective: To determine the contribution of both localised white matter tract damage and disruption of global network architecture to cognitive control, in older age and Mild Cognitive Impairment (MCI.Methods: 25 patients with MCI and 20 age, sex and intelligence-matched healthy volunteers were investigated with 3 Tesla structural magnetic resonance imaging (MRI. Cognitive control and episodic memory were evaluated with established tests. Structural network graphs were constructed from diffusion MRI-based whole-brain tractography. Their global measures were calculated using graph theory. Regression models utilized both global network metrics and microstructure of specific connections, known to be critical for each domain, to predict cognitive scores. Results: Global efficiency and the mean clustering coefficient of networks were reduced in MCI. Cognitive control was associated with global network topology. Episodic memory, in contrast, correlated with individual temporal tracts only. Relationships between cognitive control and network topology were attenuated by addition of single tract measures to regression models, consistent with a partial mediation effect. The mediation effect was stronger in MCI than healthy volunteers, explaining 23-36% of the effect of cingulum microstructure on cognitive control performance. Network clustering was a significant mediator in the relationship between tract microstructure and cognitive control in both groups. Conclusions: The status of critical connections and large-scale network topology are both important for maintenance of cognitive control in MCI. Mediation via large-scale networks is more important in patients with MCI than healthy volunteers. This effect is domain-specific, and true for cognitive

  3. On-campus or online: examining self-regulation and cognitive transfer skills in different learning settings

    Directory of Open Access Journals (Sweden)

    Miri Barak

    2016-11-01

    Full Text Available Abstract This study was set to identify self-regulation skills required for online learning and to characterize cognitive transfer of on-campus and online students. The study included two groups of undergraduate students who studied the same course, but in different settings: online and on-campus. Data collected via an online survey and semi-structured interviews indicated that cognitive strategies and regulation of cognition are significant for successful online learning. Findings also indicated that the online students were more aware of mastery learning and information processing strategies than the on-campus peers. The online students specified the importance of planning, controlling, and evaluation skills for meaningful learning; whereas the on-campus students asserted lack of self-discipline and limited communication skills as barriers for distance learning. Near- and far-transfer components were identified, showing a significant positive correlation with self-regulation skills for both groups of learners.

  4. Memory deficits with intact cognitive control in the methylazoxymethanol acetate (MAM) exposure model of neurodevelopmental insult.

    Science.gov (United States)

    O'Reilly, Kally C; Perica, Maria I; Fenton, André A

    2016-10-01

    Cognitive impairments are amongst the most debilitating deficits of schizophrenia and the best predictor of functional outcome. Schizophrenia is hypothesized to have a neurodevelopmental origin, making animal models of neurodevelopmental insult important for testing predictions that early insults will impair cognitive function. Rats exposed to methylazoxymethanol acetate (MAM) at gestational day 17 display morphological, physiological and behavioral abnormalities relevant to schizophrenia. Here we investigate the cognitive abilities of adult MAM rats. We examined brain activity in MAM rats by histochemically assessing cytochrome oxidase enzyme activity, a metabolic marker of neuronal activity. To assess cognition, we used a hippocampus-dependent two-frame active place avoidance paradigm to examine learning and spatial memory, as well as cognitive control and flexibility using the same environment and evaluating the same set of behaviors. We confirmed that adult MAM rats have altered hippocampal morphology and brain function, and that they are hyperactive in an open field. The latter likely indicates MAM rats have a sensorimotor gating deficit that is common to many animal models used for schizophrenia research. On first inspection, cognitive control seems impaired in MAM rats, indicated by more errors during the two-frame active place avoidance task. Because MAM rats are hyperactive throughout place avoidance training, we considered the possibility that the hyperlocomotion may account for the apparent cognitive deficits. These deficits were reduced on the basis of measures of cognitive performance that account for motor activity differences. However, though other aspects of memory are intact, the ability of MAM rats to express trial-to-trial memory is delayed compared to control rats. These findings suggest that spatial learning and cognitive abilities are largely intact, that the most prominent cognitive deficit is specific to acquiring memory in the MAM

  5. Managing Cognitive Load in Adaptive ICT-Based Learning

    Directory of Open Access Journals (Sweden)

    Slava Kalyuga

    2009-10-01

    Full Text Available The history of technological innovations in education has many examples of failed high expectations. To avoid becoming another one, current multimedia ICT tools need to be designed in accordance with how the human mind works. There are well established characteristics of its architecture that should be taken into account when evaluating, selecting, and using educational technology. This paper starts with a review of the most important features of human cognitive architecture and their implications for ICT-based learning. Expertise reversal effect relates to the interactions between levels of learner prior knowledge and effectiveness of different instructional techniques and procedures. Designs and techniques that are effective with low-knowledge learners can lose their effectiveness and even have negative consequences for more proficient learners. The paper describes recent empirical findings associated with the expertise reversal effect in multimedia and hypermedia learning environments, their interpretation within a cognitive load framework, and implications for the design of learner-tailored multimedia.

  6. Cognitive learning during surgical residency. A model for curriculum evaluation.

    Science.gov (United States)

    Rhodes, R S; Wile, M Z; Persons, M L; Shuck, J M

    1987-02-01

    The program summary of the American Board of Surgery In-Service Training Exam (ABSITE) can be used to quantitate cognitive learning during a surgical residency and to identify areas of curricular weakness in a residency program. Knowledge on each question is categorized as high (known) or low (unknown) depending on the percentage of residents who answered correctly. Knowledge of Level 1 (entry) residents is then compared with Level 5 (exit) residents. Each ABSITE question can thus be categorized on entry versus exit as known-known, unknown-unknown, unknown-known, and known-unknown. Only about half of unknown knowledge on entry appears to become known on exit. Very little knowledge known on entry becomes unknown on exit. Weaknesses in specific subject areas can be readily identified by ranking questions according to the number of exiting residents who answer incorrectly. Use of this technique to quantitate cognitive learning in a residency program may allow objective assessment of changes in curriculum.

  7. A cognitive learning model of clinical nursing leadership.

    Science.gov (United States)

    Pepin, Jacinthe; Dubois, Sylvie; Girard, Francine; Tardif, Jacques; Ha, Laurence

    2011-04-01

    Cognitive modeling of competencies is important to facilitate learning and evaluation. Clinical nursing leadership is considered a competency, as it is a "complex know-act" that students and nurses develop for the quality of care of patients and their families. Previous research on clinical leadership describes the attributes and characteristics of leaders and leadership, but, to our knowledge, a cognitive learning model (CLM) has yet to be developed. The purpose of our research was to develop a CLM of the clinical nursing leadership competency, from the beginning of a nursing program to expertise. An interpretative phenomenological study design was used 1) to document the experience of learning and practicing clinical leadership, and 2) to identify critical-learning turning points. Data was gathered from interviews with 32 baccalaureate students and 21 nurses from two clinical settings. An inductive analysis of data was conducted to determine the learning stages experienced: awareness of clinical leadership in nursing; integration of clinical leadership in actions; active leadership with patient/family; active leadership with the team; and, embedded clinical leadership extended to organizational level and beyond. The resulting CLM could have significant impact on both basic and continuing nursing education. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Situated cognition and cognitive apprenticeship: a model for teaching and learning clinical skills in a technologically rich and authentic learning environment.

    Science.gov (United States)

    Woolley, Norman N; Jarvis, Yvonne

    2007-01-01

    The acquisition of a range of diverse clinical skills is a central feature of the pre-registration nursing curriculum. Prior to exposure to clinical practice, it is essential that learners have the opportunity to practise and develop such skills in a safe and controlled environment under the direction and supervision of clinical experts. However, the competing demands of the HE nursing curriculum coupled with an increased number of learners have resulted in a reduced emphasis on traditional apprenticeship learning. This paper presents an alternative model for clinical skills teaching that draws upon the principles of cognitive apprenticeship [Collins, A., Brown, J.S., Newman, S., 1989. Cognitive Apprenticeship: teaching the crafts of reading, writing and mathematics. In: Resnick, L.B. (Ed.) Knowing. Learning and Instruction: Essays in Honor of Robert Glaser. Lawrence Erlbaum Associates, New Jersey, pp. 453-494] and situated cognition within a technologically rich and authentic learning environment. It will show how high quality DVD materials illustrating clinical skills performed by expert practitioners have been produced and used in conjunction with CCTV and digital recording technologies to support learning within a pedagogic framework appropriate to skills acquisition. It is argued that this model not only better prepares the student for the time they will spend in the practice setting, but also lays the foundation for the development of a clinically competent practitioner with the requisite physical and cognitive skills who is fit for purpose [UKCC, 1999. Fitness for Practice: The UKCC Commission for Nursing and Midwifery Education. United Kingdom Central Council for Nursing Midwifery and Health Visiting, London].

  9. Promoting middle school students’ abstract-thinking ability through cognitive apprenticeship instruction in mathematics learning

    Science.gov (United States)

    Yusepa, B. G. P.; Kusumah, Y. S.; Kartasasmita, B. G.

    2018-01-01

    The aim of this study is to get an in-depth understanding of students’ abstract-thinking ability in mathematics learning. This study was an experimental research with pre-test and post-test control group design. The subject of this study was eighth-grade students from two junior high schools in Bandung. In each schools, two parallel groups were selected and assigned into control and experimental groups. The experimental group was exposed to Cognitive Apprenticeship Instruction (CAI) treatment, whereas the control group was exposed to conventional learning. The results showed that abstract-thinking ability of students in experimental group was better than that of those in control group in which it could be observed from the overall and school level. It could be concluded that CAI could be a good alternative learning model to enhance students’ abstract-thinking ability.

  10. Aerobic exercise effects upon cognition in Mild Cognitive Impairment: A systematic review of randomized controlled trials.

    Science.gov (United States)

    Cammisuli, D M; Innocenti, A; Franzoni, F; Pruneti, C

    2017-07-01

    Several studies have shown that physical activity has positive effects on cognition in healthy older adults without cognitive complains but lesser is known about the effectiveness of aerobic exercise in patients suffering from Mild Cognitive Impairment (MCI). The aim of the present study was to systematically review the evidence from randomized controlled trials (RCTs) about the effects of aerobic exercise upon cognition in MCI patients. To this end, PubMed, Cochrane and Web of Science databases were analytically searched for RCTs including aerobic exercise interventions for MCI patients. There is evidence that aerobic exercise improves cognition in MCI patients. Overall research reported moderate effects for global cognition, logical memory, inhibitory control and divided attention. Due to methodological limitations of the investigated studies, findings should be interpreted with caution. Standardized training protocols, larger scale interventions and follow-ups may also provide better insight into the preventive effects of aerobic exercise on cognitive deterioration in MCI and its conversion into dementia.

  11. Impaired cognitive plasticity and goal-directed control in adolescent obsessive-compulsive disorder.

    Science.gov (United States)

    Gottwald, Julia; de Wit, Sanne; Apergis-Schoute, Annemieke M; Morein-Zamir, Sharon; Kaser, Muzaffer; Cormack, Francesca; Sule, Akeem; Limmer, Winifred; Morris, Anna Conway; Robbins, Trevor W; Sahakian, Barbara J

    2018-01-22

    Youths with obsessive-compulsive disorder (OCD) experience severe distress and impaired functioning at school and at home. Critical cognitive domains for daily functioning and academic success are learning, memory, cognitive flexibility and goal-directed behavioural control. Performance in these important domains among teenagers with OCD was therefore investigated in this study. A total of 36 youths with OCD and 36 healthy comparison subjects completed two memory tasks: Pattern Recognition Memory (PRM) and Paired Associates Learning (PAL); as well as the Intra-Extra Dimensional Set Shift (IED) task to quantitatively gauge learning as well as cognitive flexibility. A subset of 30 participants of each group also completed a Differential-Outcome Effect (DOE) task followed by a Slips-of-Action Task, designed to assess the balance of goal-directed and habitual behavioural control. Adolescent OCD patients showed a significant learning and memory impairment. Compared with healthy comparison subjects, they made more errors on PRM and PAL and in the first stages of IED involving discrimination and reversal learning. Patients were also slower to learn about contingencies in the DOE task and were less sensitive to outcome devaluation, suggesting an impairment in goal-directed control. This study advances the characterization of juvenile OCD. Patients demonstrated impairments in all learning and memory tasks. We also provide the first experimental evidence of impaired goal-directed control and lack of cognitive plasticity early in the development of OCD. The extent to which the impairments in these cognitive domains impact academic performance and symptom development warrants further investigation.

  12. SAIDO learning as a cognitive intervention for dementia care: a preliminary study.

    Science.gov (United States)

    Kawashima, Ryuta; Hiller, Deborah Lewis; Sereda, Sheryl L; Antonczak, Michelle; Serger, Kara; Gannon, Denise; Ito, Shinji; Otake, Hiroshi; Yunomae, Daisaku; Kobayashi, Akihito; Muller, Christopher; Murata, Hiroyuki; FallCreek, Stephanie

    2015-01-01

    The purpose of this study was to examine the beneficial effects on cognitive function by a cognitive intervention program designed for dementia care called Learning Therapy in Japan and SAIDO Learning in the United States (hereinafter "SAIDO Learning," as appropriate). SAIDO Learning is a working memory training program that uses systematized basic problems in arithmetic and language, including reading aloud, as well as writing. Twenty-three nursing home residents with dementia were assigned as an intervention group, and another 24 people with dementia at another nursing home were assigned as a control group. Both nursing homes were operated by the same organization, and residents of both nursing homes received essentially the same nursing care. Thirteen and 6 subjects of the intervention and control groups, respectively, were clinically diagnosed as Alzheimer disease (AD). After the 6-month intervention, the participants with AD of the intervention group showed statistically significant improvement in cognitive function, as measured by the Mini-Mental State Examination (MMSE) compared with the control participants. In addition, post hoc analysis revealed that the Frontal Assessment Battery at Bedside (FAB) scores of the intervention group tended to improve after 6-month intervention. Based on MDS scores, improvements in total mood severity scores also were observed, but only in the intervention group of the participants with AD. These results suggest that SAIDO Learning is an effective cognitive intervention and is useful for dementia care. An additional outcome of this intervention, which has not yet been evaluated in detail, appears to be that it promotes greater positive engagement of a diversity of nursing home staff in the residents' individual progress and care needs. Copyright © 2015 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  13. Does higher education hone cognitive functioning and learning efficacy? Findings from a large and diverse sample

    Science.gov (United States)

    Guerra-Carrillo, Belén; Katovich, Kiefer

    2017-01-01

    Attending school is a multifaceted experience. Students are not only exposed to new knowledge but are also immersed in a structured environment in which they need to respond flexibly in accordance with changing task goals, keep relevant information in mind, and constantly tackle novel problems. To quantify the cumulative effect of this experience, we examined retrospectively and prospectively, the relationships between educational attainment and both cognitive performance and learning. We analyzed data from 196,388 subscribers to an online cognitive training program. These subscribers, ages 15–60, had completed eight behavioral assessments of executive functioning and reasoning at least once. Controlling for multiple demographic and engagement variables, we found that higher levels of education predicted better performance across the full age range, and modulated performance in some cognitive domains more than others (e.g., reasoning vs. processing speed). Differences were moderate for Bachelor’s degree vs. High School (d = 0.51), and large between Ph.D. vs. Some High School (d = 0.80). Further, the ages of peak cognitive performance for each educational category closely followed the typical range of ages at graduation. This result is consistent with a cumulative effect of recent educational experiences, as well as a decrement in performance as completion of schooling becomes more distant. To begin to characterize the directionality of the relationship between educational attainment and cognitive performance, we conducted a prospective longitudinal analysis. For a subset of 69,202 subscribers who had completed 100 days of cognitive training, we tested whether the degree of novel learning was associated with their level of education. Higher educational attainment predicted bigger gains, but the differences were small (d = 0.04–0.37). Altogether, these results point to the long-lasting trace of an effect of prior cognitive challenges but suggest that new

  14. Does higher education hone cognitive functioning and learning efficacy? Findings from a large and diverse sample.

    Science.gov (United States)

    Guerra-Carrillo, Belén; Katovich, Kiefer; Bunge, Silvia A

    2017-01-01

    Attending school is a multifaceted experience. Students are not only exposed to new knowledge but are also immersed in a structured environment in which they need to respond flexibly in accordance with changing task goals, keep relevant information in mind, and constantly tackle novel problems. To quantify the cumulative effect of this experience, we examined retrospectively and prospectively, the relationships between educational attainment and both cognitive performance and learning. We analyzed data from 196,388 subscribers to an online cognitive training program. These subscribers, ages 15-60, had completed eight behavioral assessments of executive functioning and reasoning at least once. Controlling for multiple demographic and engagement variables, we found that higher levels of education predicted better performance across the full age range, and modulated performance in some cognitive domains more than others (e.g., reasoning vs. processing speed). Differences were moderate for Bachelor's degree vs. High School (d = 0.51), and large between Ph.D. vs. Some High School (d = 0.80). Further, the ages of peak cognitive performance for each educational category closely followed the typical range of ages at graduation. This result is consistent with a cumulative effect of recent educational experiences, as well as a decrement in performance as completion of schooling becomes more distant. To begin to characterize the directionality of the relationship between educational attainment and cognitive performance, we conducted a prospective longitudinal analysis. For a subset of 69,202 subscribers who had completed 100 days of cognitive training, we tested whether the degree of novel learning was associated with their level of education. Higher educational attainment predicted bigger gains, but the differences were small (d = 0.04-0.37). Altogether, these results point to the long-lasting trace of an effect of prior cognitive challenges but suggest that new learning

  15. Complexity control in statistical learning

    Indian Academy of Sciences (India)

    Then we describe how the method of regularization is used to control complexity in learning. We discuss two examples of regularization, one in which the function space used is finite dimensional, and another in which it is a reproducing kernel Hilbert space. Our exposition follows the formulation of Cucker and Smale.

  16. Cognitive control, cognitive reserve, and memory in the aging bilingual brain

    OpenAIRE

    Grant, Angela; Dennis, Nancy A.; Li, Ping

    2014-01-01

    In recent years bilingualism has been linked to both advantages in executive control and positive impacts on aging. Such positive cognitive effects of bilingualism have been attributed to the increased need for language control during bilingual processing and increased cognitive reserve, respectively. However, a mechanistic explanation of how bilingual experience contributes to cognitive reserve is still lacking. The current paper proposes a new focus on bilingual memory as an avenue to explo...

  17. When cognitive exertion does not yield cognitive gain: toward an informational explanation of learned helplessness.

    Science.gov (United States)

    Sedek, G; Kofta, M

    1990-04-01

    This study tested a new information-processing explanation of learned helplessness that proposes that an uncontrollable situation produces helplessness symptoms because it is a source of inconsistent, self-contradictory task information during problem-solving attempts. The flow of such information makes hypothesis-testing activity futile. Prolonged and inefficient activity of this kind leads in turn to the emergence of a state of cognitive exhaustion, with accompanying performance deficits. In 3 experiments, Ss underwent informational helplessness training (IHT): They were sequentially exposed to inconsistent task information during discrimination problems. As predicted, IHT was associated with subjective symptoms of irreducible uncertainty and resulted in (a) performance deterioration on subsequent avoidance learning, (b) heightened negative mood, and (c) subjective symptoms of cognitive exhaustion.

  18. Medication adherence as a learning process: insights from cognitive psychology.

    Science.gov (United States)

    Rottman, Benjamin Margolin; Marcum, Zachary A; Thorpe, Carolyn T; Gellad, Walid F

    2017-03-01

    Non-adherence to medications is one of the largest contributors to sub-optimal health outcomes. Many theories of adherence include a 'value-expectancy' component in which a patient decides to take a medication partly based on expectations about whether it is effective, necessary, and tolerable. We propose reconceptualising this common theme as a kind of 'causal learning' - the patient learns whether a medication is effective, necessary, and tolerable, from experience with the medication. We apply cognitive psychology theories of how people learn cause-effect relations to elaborate this causal-learning challenge. First, expectations and impressions about a medication and beliefs about how a medication works, such as delay of onset, can shape a patient's perceived experience with the medication. Second, beliefs about medications propagate both 'top-down' and 'bottom-up', from experiences with specific medications to general beliefs about medications and vice versa. Third, non-adherence can interfere with learning about a medication, because beliefs, adherence, and experience with a medication are connected in a cyclic learning problem. We propose that by conceptualising non-adherence as a causal-learning process, clinicians can more effectively address a patient's misconceptions and biases, helping the patient develop more accurate impressions of the medication.

  19. Effects of Cognitive Load on Driving Performance: The Cognitive Control Hypothesis.

    Science.gov (United States)

    Engström, Johan; Markkula, Gustav; Victor, Trent; Merat, Natasha

    2017-08-01

    The objective of this paper was to outline an explanatory framework for understanding effects of cognitive load on driving performance and to review the existing experimental literature in the light of this framework. Although there is general consensus that taking the eyes off the forward roadway significantly impairs most aspects of driving, the effects of primarily cognitively loading tasks on driving performance are not well understood. Based on existing models of driver attention, an explanatory framework was outlined. This framework can be summarized in terms of the cognitive control hypothesis: Cognitive load selectively impairs driving subtasks that rely on cognitive control but leaves automatic performance unaffected. An extensive literature review was conducted wherein existing results were reinterpreted based on the proposed framework. It was demonstrated that the general pattern of experimental results reported in the literature aligns well with the cognitive control hypothesis and that several apparent discrepancies between studies can be reconciled based on the proposed framework. More specifically, performance on nonpracticed or inherently variable tasks, relying on cognitive control, is consistently impaired by cognitive load, whereas the performance on automatized (well-practiced and consistently mapped) tasks is unaffected and sometimes even improved. Effects of cognitive load on driving are strongly selective and task dependent. The present results have important implications for the generalization of results obtained from experimental studies to real-world driving. The proposed framework can also serve to guide future research on the potential causal role of cognitive load in real-world crashes.

  20. Implicit perceptual-motor skill learning in mild cognitive impairment and Parkinson's disease.

    Science.gov (United States)

    Gobel, Eric W; Blomeke, Kelsey; Zadikoff, Cindy; Simuni, Tanya; Weintraub, Sandra; Reber, Paul J

    2013-05-01

    Implicit skill learning is hypothesized to depend on nondeclarative memory that operates independent of the medial temporal lobe (MTL) memory system and instead depends on cortico striatal circuits between the basal ganglia and cortical areas supporting motor function and planning. Research with the Serial Reaction Time (SRT) task suggests that patients with memory disorders due to MTL damage exhibit normal implicit sequence learning. However, reports of intact learning rely on observations of no group differences, leading to speculation as to whether implicit sequence learning is fully intact in these patients. Patients with Parkinson's disease (PD) often exhibit impaired sequence learning, but this impairment is not universally observed. Implicit perceptual-motor sequence learning was examined using the Serial Interception Sequence Learning (SISL) task in patients with amnestic Mild Cognitive Impairment (MCI; n = 11) and patients with PD (n = 15). Sequence learning in SISL is resistant to explicit learning and individually adapted task difficulty controls for baseline performance differences. Patients with MCI exhibited robust sequence learning, equivalent to healthy older adults (n = 20), supporting the hypothesis that the MTL does not contribute to learning in this task. In contrast, the majority of patients with PD exhibited no sequence-specific learning in spite of matched overall task performance. Two patients with PD exhibited performance indicative of an explicit compensatory strategy suggesting that impaired implicit learning may lead to greater reliance on explicit memory in some individuals. The differences in learning between patient groups provides strong evidence in favor of implicit sequence learning depending solely on intact basal ganglia function with no contribution from the MTL memory system.

  1. The effect of numbered heads together (NHT) cooperative learning model on the cognitive achievement of students with different academic ability

    Science.gov (United States)

    Leasa, Marleny; Duran Corebima, Aloysius

    2017-01-01

    Learning models and academic ability may affect students’ achievement in science. This study, thus aimed to investigate the effect of numbered heads together (NHT) cooperative learning model on elementary students’ cognitive achievement in natural science. This study employed a quasi-experimental design with pretest-posttest non-equivalent control group with 2 x 2 factorial. There were two learning models compared NHT and the conventional, and two academic ability high and low. The results of ana Cova test confirmed the difference in the students’ cognitive achievement based on learning models and general academic ability. However, the interaction between learning models and academic ability did not affect the students’ cognitive achievement. In conclusion, teachers are strongly recommended to be more creative in designing learning using other types of cooperative learning models. Also, schools are required to create a better learning environment which is more cooperative to avoid unfair competition among students in the classroom and as a result improve the students’ academic ability. Further research needs to be conducted to explore the contribution of other aspects in cooperative learning toward cognitive achievement of students with different academic ability.

  2. Mobile Learning Application Interfaces: First Steps to a Cognitive Load Aware System

    Science.gov (United States)

    Deegan, Robin

    2013-01-01

    Mobile learning is a cognitively demanding application and more frequently the ubiquitous nature of mobile computing means that mobile devices are used in cognitively demanding environments. This paper examines the nature of this use of mobile devices from a Learning, Usability and Cognitive Load Theory perspective. It suggests scenarios where…

  3. Episodic memory deficits slow down the dynamics of cognitive procedural learning in normal ageing

    Science.gov (United States)

    Beaunieux, Hélène; Hubert, Valérie; Pitel, Anne Lise; Desgranges, Béatrice; Eustache, Francis

    2009-01-01

    Cognitive procedural learning is characterized by three phases, each involving distinct processes. Considering the implication of the episodic memory in the first cognitive stage, the impairment of this memory system might be responsible for a slowing down of the cognitive procedural learning dynamics in the course of aging. Performances of massed cognitive procedural learning were evaluated in older and younger participants using the Tower of Toronto task. Nonverbal intelligence and psychomotor abilities were used to analyze procedural dynamics, while episodic memory and working memory were assessed to measure their respective contributions to learning strategies. This experiment showed that older participants did not spontaneously invoke episodic memory and presented a slowdown in the cognitive procedural learning associated with a late involvement of working memory. These findings suggest that the slowdown in the cognitive procedural learning may be linked with the implementation of different learning strategies less involving episodic memory in older subjects. PMID:18654928

  4. Memory and Language Improvements Following Cognitive Control Training

    Science.gov (United States)

    Hussey, Erika K.; Harbison, J. Isaiah; Teubner-Rhodes, Susan E.; Mishler, Alan; Velnoskey, Kayla; Novick, Jared M.

    2017-01-01

    Cognitive control refers to adjusting thoughts and actions when confronted with conflict during information processing. We tested whether this ability is causally linked to performance on certain language and memory tasks by using cognitive control training to systematically modulate people's ability to resolve information-conflict across domains.…

  5. Cognitive Task Analysis of Prioritization in Air Traffic Control.

    Science.gov (United States)

    Redding, Richard E.; And Others

    A cognitive task analysis was performed to analyze the key cognitive components of the en route air traffic controllers' jobs. The goals were to ascertain expert mental models and decision-making strategies and to identify important differences in controller knowledge, skills, and mental models as a function of expertise. Four groups of…

  6. Social exclusion modulates priorities of attention allocation in cognitive control

    Science.gov (United States)

    Xu, Mengsi; Li, Zhiai; Diao, Liuting; Zhang, Lijie; Yuan, Jiajin; Ding, Cody; Yang, Dong

    2016-08-01

    Many studies have investigated how exclusion affects cognitive control and have reported inconsistent results. However, these studies usually treated cognitive control as a unitary concept, whereas it actually involved two main sub-processes: conflict detection and response implementation. Furthermore, existing studies have focused primarily on exclusion’s effects on conscious cognitive control, while recent studies have shown the existence of unconscious cognitive control. Therefore, the present study investigated whether and how exclusion affects the sub-processes underlying conscious and unconscious cognitive control differently. The Cyberball game was used to manipulate social exclusion and participants subsequently performed a masked Go/No-Go task during which event-related potentials were measured. For conscious cognitive control, excluded participants showed a larger N2 but smaller P3 effects than included participants, suggesting that excluded people invest more attention in conscious conflict detection, but less in conscious inhibition of impulsive responses. However, for unconscious cognitive control, excluded participants showed a smaller N2 but larger P3 effects than included participants, suggesting that excluded people invest less attention in unconscious conflict detection, but more in unconscious inhibition of impulsive responses. Together, these results suggest that exclusion causes people to rebalance attention allocation priorities for cognitive control according to a more flexible and adaptive strategy.

  7. Implicit learning deficit in children with Duchenne muscular dystrophy: Evidence for a cerebellar cognitive impairment?

    Science.gov (United States)

    Vicari, Stefano; Piccini, Giorgia; Mercuri, Eugenio; Battini, Roberta; Chieffo, Daniela; Bulgheroni, Sara; Pecini, Chiara; Lucibello, Simona; Lenzi, Sara; Moriconi, Federica; Pane, Marika; D'Amico, Adele; Astrea, Guja; Baranello, Giovanni; Riva, Daria; Cioni, Giovanni; Alfieri, Paolo

    2018-01-01

    This study aimed at comparing implicit sequence learning in individuals affected by Duchenne Muscular Dystrophy without intellectual disability and age-matched typically developing children. A modified version of the Serial Reaction Time task was administered to 32 Duchenne children and 37 controls of comparable chronological age. The Duchenne group showed a reduced rate of implicit learning even if in the absence of global intellectual disability. This finding provides further evidence of the involvement of specific aspects of cognitive function in Duchenne muscular dystrophy and on its possible neurobiological substrate.

  8. Emotion, cognitive load and learning outcomes during simulation training.

    Science.gov (United States)

    Fraser, Kristin; Ma, Irene; Teteris, Elise; Baxter, Heather; Wright, Bruce; McLaughlin, Kevin

    2012-11-01

    Simulation training has emerged as an effective way to complement clinical training of medical students. Yet outcomes from simulation training must be considered suboptimal when 25-30% of students fail to recognise a cardiac murmur on which they were trained 1 hour previously. There are several possible explanations for failure to improve following simulation training, which include the impact of heightened emotions on learning and cognitive overload caused by interactivity with high-fidelity simulators. This study was conducted to assess emotion during simulation training and to explore the relationships between emotion and cognitive load, and diagnostic performance. We trained 84 Year 1 medical students on a scenario of chest pain caused by symptomatic aortic stenosis. After training, students were asked to rate their emotional state and cognitive load. We then provided training on a dyspnoea scenario before asking participants to diagnose the murmur in which they had been trained (aortic stenosis) and a novel murmur (mitral regurgitation). We used factor analysis to identify the principal components of emotion, and then studied the associations between these components of emotion and cognitive load and diagnostic performance. We identified two principal components of emotion, which we felt represented invigoration and tranquillity. Both of these were associated with cognitive load with adjusted regression coefficients of 0.63 (95% confidence interval [CI] 0.28-0.99; p = 0.001) and - 0.44 (95% CI - 0.77 to - 0.10; p = 0.009), respectively. We found a significant negative association between cognitive load and the odds of subsequently identifying the trained murmur (odds ratio 0.27, 95% CI 0.11-0.67; p = 0.004). We found that increased invigoration and reduced tranquillity during simulation training were associated with increased cognitive load, and that the likelihood of correctly identifying a trained murmur declined with increasing cognitive load. Further

  9. Topological schemas of cognitive maps and spatial learning

    Directory of Open Access Journals (Sweden)

    Andrey eBabichev

    2016-03-01

    Full Text Available Spatial navigation in mammals is based on building a mental representation of their environment---a cognitive map. However, both the nature of this cognitive map and its underpinning in neural structures and activity remains vague. A key difficulty is that these maps are collective, emergent phenomena that cannot be reduced to a simple combination of inputs provided by individual neurons. In this paper we suggest computational frameworks for integrating the spiking signals of individual cells into a spatial map, which we call schemas. We provide examples of four schemas defined by different types of topological relations that may be neurophysiologically encoded in the brain and demonstrate that each schema provides its own large-scale characteristics of the environment---the schema integrals. Moreover, we find that, in all cases, these integrals are learned at a rate which is faster than the rate of complete training of neural networks. Thus, the proposed schema framework differentiates between the cognitive aspect of spatial learning and the physiological aspect at the neural network level.

  10. Topological Schemas of Cognitive Maps and Spatial Learning.

    Science.gov (United States)

    Babichev, Andrey; Cheng, Sen; Dabaghian, Yuri A

    2016-01-01

    Spatial navigation in mammals is based on building a mental representation of their environment-a cognitive map. However, both the nature of this cognitive map and its underpinning in neural structures and activity remains vague. A key difficulty is that these maps are collective, emergent phenomena that cannot be reduced to a simple combination of inputs provided by individual neurons. In this paper we suggest computational frameworks for integrating the spiking signals of individual cells into a spatial map, which we call schemas. We provide examples of four schemas defined by different types of topological relations that may be neurophysiologically encoded in the brain and demonstrate that each schema provides its own large-scale characteristics of the environment-the schema integrals. Moreover, we find that, in all cases, these integrals are learned at a rate which is faster than the rate of complete training of neural networks. Thus, the proposed schema framework differentiates between the cognitive aspect of spatial learning and the physiological aspect at the neural network level.

  11. Media Multitasking and Cognitive, Psychological, Neural, and Learning Differences.

    Science.gov (United States)

    Uncapher, Melina R; Lin, Lin; Rosen, Larry D; Kirkorian, Heather L; Baron, Naomi S; Bailey, Kira; Cantor, Joanne; Strayer, David L; Parsons, Thomas D; Wagner, Anthony D

    2017-11-01

    American youth spend more time with media than any other waking activity: an average of 7.5 hours per day, every day. On average, 29% of that time is spent juggling multiple media streams simultaneously (ie, media multitasking). This phenomenon is not limited to American youth but is paralleled across the globe. Given that a large number of media multitaskers (MMTs) are children and young adults whose brains are still developing, there is great urgency to understand the neurocognitive profiles of MMTs. It is critical to understand the relation between the relevant cognitive domains and underlying neural structure and function. Of equal importance is understanding the types of information processing that are necessary in 21st century learning environments. The present review surveys the growing body of evidence demonstrating that heavy MMTs show differences in cognition (eg, poorer memory), psychosocial behavior (eg, increased impulsivity), and neural structure (eg, reduced volume in anterior cingulate cortex). Furthermore, research indicates that multitasking with media during learning (in class or at home) can negatively affect academic outcomes. Until the direction of causality is understood (whether media multitasking causes such behavioral and neural differences or whether individuals with such differences tend to multitask with media more often), the data suggest that engagement with concurrent media streams should be thoughtfully considered. Findings from such research promise to inform policy and practice on an increasingly urgent societal issue while significantly advancing our understanding of the intersections between cognitive, psychosocial, neural, and academic factors. Copyright © 2017 by the American Academy of Pediatrics.

  12. Digital Game-Based Learning Supports Student Motivation, Cognitive Success, and Performance Outcomes

    Science.gov (United States)

    Woo, Jeng-Chung

    2014-01-01

    Traditional multimedia learning is primarily based on the cognitive load concept of information processing theory. Recent digital game-based learning (DGBL) studies have focused on exploring content support for learning motivation and related game characteristics. Motivation, volition, and performance (MVP) theory indicates that cognitive load and…

  13. High body mass index is associated with impaired cognitive control.

    Science.gov (United States)

    Sellaro, Roberta; Colzato, Lorenza S

    2017-06-01

    The prevalence of weight problems is increasing worldwide. There is growing evidence that high body mass index (BMI) is associated with frontal lobe dysfunction and cognitive deficits concerning mental flexibility and inhibitory control efficiency. The present study aims at replicating and extending these observations. We compared cognitive control performance of normal weight (BMI task tapping either inhibitory control (Experiment 1) or interference control (Experiment 2). Experiment 1 replicated previous findings that found less efficient inhibitory control in overweight individuals. Experiment 2 complemented these findings by showing that cognitive control impairments associated with high BMI also extend to the ability to resolve stimulus-induced response conflict and to engage in conflict-driven control adaptation. The present results are consistent with and extend previous literature showing that high BMI in young, otherwise healthy individuals is associated with less efficient cognitive control functioning. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Dyslexia and Dyscalculia: Two Learning Disorders with Different Cognitive Profiles

    Science.gov (United States)

    Landerl, Karin; Fussenegger, Barbara; Moll, Kristina; Willburger, Edith

    2009-01-01

    This study tests the hypothesis that dyslexia and dyscalculia are associated with two largely independent cognitive deficits, namely a phonological deficit in the case of dyslexia and a deficit in the number module in the case of dyscalculia. In four groups of 8- to 10-year-olds (42 control, 21 dyslexic, 20 dyscalculic, and 26…

  15. Instructed fear learning, extinction, and recall: additive effects of cognitive information on emotional learning of fear.

    Science.gov (United States)

    Javanbakht, Arash; Duval, Elizabeth R; Cisneros, Maria E; Taylor, Stephan F; Kessler, Daniel; Liberzon, Israel

    2017-08-01

    The effects of instruction on learning of fear and safety are rarely studied. We aimed to examine the effects of cognitive information and experience on fear learning. Fourty healthy participants, randomly assigned to three groups, went through fear conditioning, extinction learning, and extinction recall with two conditioned stimuli (CS+). Information was presented about the presence or absence of conditioned stimulus-unconditioned stimulus (CS-US) contingency at different stages of the experiment. Information about the CS-US contingency prior to fear conditioning enhanced fear response and reduced extinction recall. Information about the absence of CS-US contingency promoted extinction learning and recall, while omission of this information prior to recall resulted in fear renewal. These findings indicate that contingency information can facilitate fear expression during fear learning, and can facilitate extinction learning and recall. Information seems to function as an element of the larger context in which conditioning occurs.

  16. Individual differences in cognitive control over emotional material modulate cognitive biases linked to depressive symptoms.

    Science.gov (United States)

    Everaert, Jonas; Grahek, Ivan; Koster, Ernst H W

    2017-06-01

    Deficient cognitive control over emotional material and cognitive biases are important mechanisms underlying depression, but the interplay between these emotionally distorted cognitive processes in relation to depressive symptoms is not well understood. This study investigated the relations among deficient cognitive control of emotional information (i.e. inhibition, shifting, and updating difficulties), cognitive biases (i.e. negative attention and interpretation biases), and depressive symptoms. Theory-driven indirect effect models were constructed, hypothesising that deficient cognitive control over emotional material predicts depressive symptoms through negative attention and interpretation biases. Bootstrapping analyses demonstrated that deficient inhibitory control over negative material was related to negative attention bias which in turn predicted a congruent bias in interpretation and subsequently depressive symptoms. Both shifting and updating impairments in response to negative material had an indirect effect on depression severity through negative interpretation bias. No evidence was found for direct effects of deficient cognitive control over emotional material on depressive symptoms. These findings may help to formulate an integrated understanding of the cognitive foundations of depressive symptoms.

  17. Cognitive Theory of Multimedia Learning, Instructional Design Principles, and Students with Learning Disabilities in Computer-Based and Online Learning Environments

    Science.gov (United States)

    Greer, Diana L.; Crutchfield, Stephen A.; Woods, Kari L.

    2013-01-01

    Struggling learners and students with Learning Disabilities often exhibit unique cognitive processing and working memory characteristics that may not align with instructional design principles developed with typically developing learners. This paper explains the Cognitive Theory of Multimedia Learning and underlying Cognitive Load Theory, and…

  18. A Comparison of Learning Outcomes in Cognitive Behavioural Therapy and Existential Therapy

    DEFF Research Database (Denmark)

    Sørensen, Anders Dræby

    of the outcome of psychotherapy through qualitative research. The precise aim is to draw attention to the special characteristics of this outcome in terms of learning outcome. This regards both existential therapy and cognitive behavioural therapy and to clarify the possible differences and similarities between...... the lived experience of the learning outcomes of these approaches. The study also clarifies the differences between existential psychotherapy as an art of learning directed at existential learning of authenticity and cognitive- behavioural therapy as a learning-based medical treatment technology directed...... at behavioural and cognitive learning of adaptive and functional responses that alleviates pathological symptoms....

  19. Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.

    Directory of Open Access Journals (Sweden)

    Cristina F B Murphy

    Full Text Available Despite the well-established involvement of both sensory ("bottom-up" and cognitive ("top-down" processes in literacy, the extent to which auditory or cognitive (memory or attention learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG, memory group (MG, auditory sensory group (SG, placebo group (PG; drawing, painting, and a control, untrained group (CG. Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest, most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness, as the PG and CG improved as much as the other trained groups. Further

  20. Generalization of Auditory Sensory and Cognitive Learning in Typically Developing Children.

    Science.gov (United States)

    Murphy, Cristina F B; Moore, David R; Schochat, Eliane

    2015-01-01

    Despite the well-established involvement of both sensory ("bottom-up") and cognitive ("top-down") processes in literacy, the extent to which auditory or cognitive (memory or attention) learning transfers to phonological and reading skills remains unclear. Most research has demonstrated learning of the trained task or even learning transfer to a closely related task. However, few studies have reported "far-transfer" to a different domain, such as the improvement of phonological and reading skills following auditory or cognitive training. This study assessed the effectiveness of auditory, memory or attention training on far-transfer measures involving phonological and reading skills in typically developing children. Mid-transfer was also assessed through untrained auditory, attention and memory tasks. Sixty 5- to 8-year-old children with normal hearing were quasi-randomly assigned to one of five training groups: attention group (AG), memory group (MG), auditory sensory group (SG), placebo group (PG; drawing, painting), and a control, untrained group (CG). Compliance, mid-transfer and far-transfer measures were evaluated before and after training. All trained groups received 12 x 45-min training sessions over 12 weeks. The CG did not receive any intervention. All trained groups, especially older children, exhibited significant learning of the trained task. On pre- to post-training measures (test-retest), most groups exhibited improvements on most tasks. There was significant mid-transfer for a visual digit span task, with highest span in the MG, relative to other groups. These results show that both sensory and cognitive (memory or attention) training can lead to learning in the trained task and to mid-transfer learning on a task (visual digit span) within the same domain as the trained tasks. However, learning did not transfer to measures of language (reading and phonological awareness), as the PG and CG improved as much as the other trained groups. Further research

  1. Repetitive learning control of continuous chaotic systems

    International Nuclear Information System (INIS)

    Chen Maoyin; Shang Yun; Zhou Donghua

    2004-01-01

    Combining a shift method and the repetitive learning strategy, a repetitive learning controller is proposed to stabilize unstable periodic orbits (UPOs) within chaotic attractors in the sense of least mean square. If nonlinear parts in chaotic systems satisfy Lipschitz condition, the proposed controller can be simplified into a simple proportional repetitive learning controller

  2. A labor/leisure tradeoff in cognitive control

    OpenAIRE

    Kool, Wouter; Botvinick, Matthew

    2012-01-01

    Daily life frequently offers a choice between activities that are profitable but mentally demanding (cognitive labor) and activities that are undemanding but also unproductive (cognitive leisure). Although such decisions are often implicit, they help determine academic performance, career trajectories, and even health outcomes. Previous research has shed light both on the executive control functions that ultimately define cognitive labor and a ‘default mode’ of brain function that accompanies...

  3. The Neural Circuitry of Expertise: Perceptual Learning and Social Cognition

    Directory of Open Access Journals (Sweden)

    Michael eHarre

    2013-12-01

    Full Text Available Amongst the most significant questions we are confronted with today include the integration of the brain's micro-circuitry, our ability to build the complex social networks that underpin society and how our society impacts on our ecological environment. In trying to unravel these issues one place to begin is at the level of the individual: to consider how we accumulate information about our environment, how this information leads to decisions and how our individual decisions in turn create our social environment. While this is an enormous task, we may already have at hand many of the tools we need. This article is intended to review some of the recent results in neuro-cognitive research and show how they can be extended to two very specific types of expertise: perceptual expertise and social cognition. These two cognitive skills span a vast range of our genetic heritage. Perceptual expertise developed very early in our evolutionary history and is likely a highly developed part of all mammals' cognitive ability. On the other hand social cognition is most highly developed in humans in that we are able to maintain larger and more stable long term social connections with more behaviourally diverse individuals than any other species. To illustrate these ideas I will discuss board games as a toy model of social interactions as they include many of the relevant concepts: perceptual learning, decision-making, long term planning and understanding the mental states of other people. Using techniques that have been developed in mathematical psychology, I show that we can represent some of the key features of expertise using stochastic differential equations. Such models demonstrate how an expert's long exposure to a particular context influences the information they accumulate in order to make a decision.These processes are not confined to board games, we are all experts in our daily lives through long exposure to the many regularities of daily tasks and

  4. The Effect of Think-Pair-Share-Write Based on Hybrid Learning on Metakognitive Skills, Creative Thinking and Cognitive Learning at SMA Negeri 3 Malang

    Directory of Open Access Journals (Sweden)

    Ika Yulianti Siregar

    2017-07-01

    Full Text Available The results of biology learning observation show that there are many constraints during the learning process in the class and consultation meeting between teacher and students. The think-pair-share-write based on hybrid learning was conducted to analyze the effect on metacognitive skills, creative thinking and learning outcomes. The research design was quasi experiment with pretest-posttest non-equivalent control group design. The independent variable is think-pair-share-write based on Hybrid learning model, while the dependent variables are metacognitive skills, creative thinking, and cognitive learning outcomes. Metacognitive skills are measured by using metacognitive rubrics. Creative thinking skills and cognitive learning outcomes are measured by using a description test. The data were taken by conducting pretest and posttest. The hypothesis test used was anakova with level of significance 0,05 (P <0,05, as the test result was significant then the test was continued to LSD. Before the anakova test, normality and homogeneity test were performed. The results showed that think-pair-share-write based on Hybrid Learning significantly affecting: 1 the metacognitive skills with F arithmetic of 183,472 and Sig. 0,000; 2 the creative thinking skill with F value of 325,111 and Sig. 0,000; 3 the cognitive learning outcomes with F arithmetic of 175.068 and Sig. 0,000.

  5. Increased brain connectivity and activation after cognitive rehabilitation in Parkinson's disease: a randomized controlled trial.

    Science.gov (United States)

    Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Lucas-Jiménez, Olaia; Gómez-Esteban, Juan Carlos; Gómez-Beldarrain, Maria Ángeles; Ibarretxe-Bilbao, Naroa

    2017-12-01

    Cognitive rehabilitation programs have demonstrated efficacy in improving cognitive functions in Parkinson's disease (PD), but little is known about cerebral changes associated with an integrative cognitive rehabilitation in PD. To assess structural and functional cerebral changes in PD patients, after attending a three-month integrative cognitive rehabilitation program (REHACOP). Forty-four PD patients were randomly divided into REHACOP group (cognitive rehabilitation) and a control group (occupational therapy). T1-weighted, diffusion weighted and functional magnetic resonance images (fMRI) during resting-state and during a memory paradigm (with learning and recognition tasks) were acquired at pre-treatment and post-treatment. Cerebral changes were assessed with repeated measures ANOVA 2 × 2 for group x time interaction. During resting-state fMRI, the REHACOP group showed significantly increased brain connectivity between the left inferior temporal lobe and the bilateral dorsolateral prefrontal cortex compared to the control group. Moreover, during the recognition fMRI task, the REHACOP group showed significantly increased brain activation in the left middle temporal area compared to the control group. During the learning fMRI task, the REHACOP group showed increased brain activation in the left inferior frontal lobe at post-treatment compared to pre-treatment. No significant structural changes were found between pre- and post-treatment. Finally, the REHACOP group showed significant and positive correlations between the brain connectivity and activation and the cognitive performance at post-treatment. This randomized controlled trial suggests that an integrative cognitive rehabilitation program can produce significant functional cerebral changes in PD patients and adds evidence to the efficacy of cognitive rehabilitation programs in the therapeutic approach for PD.

  6. Cognitive Radio Transceivers: RF, Spectrum Sensing, and Learning Algorithms Review

    Directory of Open Access Journals (Sweden)

    Lise Safatly

    2014-01-01

    reconfigurable radio frequency (RF parts, enhanced spectrum sensing algorithms, and sophisticated machine learning techniques. In this paper, we present a review of the recent advances in CR transceivers hardware design and algorithms. For the RF part, three types of antennas are presented: UWB antennas, frequency-reconfigurable/tunable antennas, and UWB antennas with reconfigurable band notches. The main challenges faced by the design of the other RF blocks are also discussed. Sophisticated spectrum sensing algorithms that overcome main sensing challenges such as model uncertainty, hardware impairments, and wideband sensing are highlighted. The cognitive engine features are discussed. Moreover, we study unsupervised classification algorithms and a reinforcement learning (RL algorithm that has been proposed to perform decision-making in CR networks.

  7. Black swans, cognition, and the power of learning from failure.

    Science.gov (United States)

    Catalano, Allison S; Redford, Kent; Margoluis, Richard; Knight, Andrew T

    2018-06-01

    Failure carries undeniable stigma and is difficult to confront for individuals, teams, and organizations. Disciplines such as commercial and military aviation, medicine, and business have long histories of grappling with it, beginning with the recognition that failure is inevitable in every human endeavor. Although conservation may arguably be more complex, conservation professionals can draw on the research and experience of these other disciplines to institutionalize activities and attitudes that foster learning from failure, whether they are minor setbacks or major disasters. Understanding the role of individual cognitive biases, team psychological safety, and organizational willingness to support critical self-examination all contribute to creating a cultural shift in conservation to one that is open to the learning opportunity that failure provides. This new approach to managing failure is a necessary next step in the evolution of conservation effectiveness. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  8. Machine learning based Intelligent cognitive network using fog computing

    Science.gov (United States)

    Lu, Jingyang; Li, Lun; Chen, Genshe; Shen, Dan; Pham, Khanh; Blasch, Erik

    2017-05-01

    In this paper, a Cognitive Radio Network (CRN) based on artificial intelligence is proposed to distribute the limited radio spectrum resources more efficiently. The CRN framework can analyze the time-sensitive signal data close to the signal source using fog computing with different types of machine learning techniques. Depending on the computational capabilities of the fog nodes, different features and machine learning techniques are chosen to optimize spectrum allocation. Also, the computing nodes send the periodic signal summary which is much smaller than the original signal to the cloud so that the overall system spectrum source allocation strategies are dynamically updated. Applying fog computing, the system is more adaptive to the local environment and robust to spectrum changes. As most of the signal data is processed at the fog level, it further strengthens the system security by reducing the communication burden of the communications network.

  9. Positive emotion, reward, and cognitive control: emotional versus motivational influences

    Directory of Open Access Journals (Sweden)

    Kimberly Sarah Chiew

    2011-10-01

    Full Text Available It is becoming increasingly appreciated that affective influences can contribute strongly to goal-oriented cognition and behaviour. However, much work is still needed to properly characterize these influences and the mechanisms by which they contribute to cognitive processing. An important question concerns the nature of emotional manipulations (i.e., direct induction of affectively-valenced subjective experience versus motivational manipulations (e.g., delivery of performance-contingent rewards and punishments and their impact on cognitive control. Empirical evidence suggests that both kinds of manipulations can influence cognitive control in a systematic fashion, but investigations of both have largely been conducted independently of one another. Likewise, some theoretical accounts suggest that emotion and motivation may modulate cognitive control via common neural mechanisms, while others suggest the possibility of dissociable influences. Here, we provide an analysis and synthesis of these various accounts, suggesting potentially fruitful new research directions to test competing hypotheses.

  10. Between architecture and model: Strategies for cognitive control

    NARCIS (Netherlands)

    Taatgen, Niels

    One major limitation of current cognitive architectures is that models are typically constructed in an “empty” architecture, and that the knowledge specifications (typically production rules) are specific to the particular task. This means that general cognitive control strategies have to be

  11. Cognitive performance and electrophysiological indices of cognitive control: a validation study of conflict adaptation.

    Science.gov (United States)

    Clayson, Peter E; Larson, Michael J

    2012-05-01

    Psychiatric and neurologic disorders are associated with deficits in the postconflict recruitment of cognitive control. The primary aim of this study was to validate the relationship between cognitive functioning and indices of conflict adaptation. Event-related potentials were obtained from 89 healthy individuals who completed an Eriksen flanker task. Neuropsychological domains tested included memory, verbal fluency, and attention/executive functioning. Behavioral measures and N2 amplitudes showed significant conflict adaptation (i.e., previous-trial congruencies influenced current-trial measures). Higher scores on the attention/executive functioning and verbal fluency domains were associated with larger incongruent-trial N2 conflict adaptation; measures of cognitive functioning were not related to behavioral indices. This study provides initial validation of N2 conflict adaptation effects as cognitive function-related aspects of cognitive control. Copyright © 2012 Society for Psychophysiological Research.

  12. Cognitive decision modelling of emotion-based learning impairment in schizophrenia: the role of awareness.

    Science.gov (United States)

    Cella, Matteo; Dymond, Simon; Cooper, Andrew; Turnbull, Oliver H

    2012-03-30

    Individuals with schizophrenia often lack insight or awareness. Resulting impairment has been observed in various cognitive domains and, recently, linked to problems in emotion-based learning. The Iowa Gambling Task (IGT) has been used to assess emotion-based decision-making in patients with schizophrenia, but results have been inconclusive. The current study further investigates emotion-based decision-making in schizophrenia by elucidating the unique contribution of awareness. Twenty-five patients with schizophrenia and 24 healthy controls were assessed with a modified version of the IGT recording awareness at regular intervals. Symptom assessment, medication and medical history were recorded for the clinical group. Patients with schizophrenia underperformed on the IGT compared to controls. Subjective awareness levels were significantly lower in the schizophrenia group and were associated with hallucination severity. Cognitive decision modelling further indicated that patients with schizophrenia had impaired attention to losses, compared to controls. This parameter was positively correlated with awareness. We also found that positive symptoms altered awareness levels and suggest that this disruption may contribute to sub-optimal decision-making. Overall, a lack of awareness may be an important aspect in understanding impaired social cognitive functioning and emotion-based learning observed in schizophrenia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Reinforcement Learning for Routing in Cognitive Radio Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    Hasan A. A. Al-Rawi

    2014-01-01

    Full Text Available Cognitive radio (CR enables unlicensed users (or secondary users, SUs to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs. Reinforcement learning (RL is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables a source node to search for a least-cost route to its destination node. While there have been increasing efforts to enhance the traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function, exploitation, and exploration, as well as learning rate through simulation. New approaches and recommendations are proposed to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and the new approaches proposed in this paper improves SUs’ network performance without significantly jeopardizing PUs’ network performance, specifically SUs’ interference to PUs.

  14. Computer-Based Cognitive Training for Mild Cognitive Impairment: Results from a Pilot Randomized, Controlled Trial

    OpenAIRE

    Barnes, Deborah E.; Yaffe, Kristine; Belfor, Nataliya; Jagust, William J.; DeCarli, Charles; Reed, Bruce R.; Kramer, Joel H.

    2009-01-01

    We performed a pilot randomized, controlled trial of intensive, computer-based cognitive training in 47 subjects with mild cognitive impairment (MCI). The intervention group performed exercises specifically designed to improve auditory processing speed and accuracy for 100 minutes/day, 5 days/week for 6 weeks; the control group performed more passive computer activities (reading, listening, visuospatial game) for similar amounts of time. Subjects had a mean age of 74 years and 60% were men; 7...

  15. An approach to children's smoking behavior using social cognitive learning theory.

    Science.gov (United States)

    Bektas, Murat; Ozturk, Candan; Armstrong, Merry

    2010-01-01

    This review article discusses the theoretical principles of social cognitive learning theory and children's risk-taking behavior of cigarette smoking, along with preventive initiatives. Social cognitive learning theorists examine the behavior of initiating and sustained smoking using a social systems approach. The authors discuss the reciprocal determinism aspect of the theory as applied to the importance of individual factors, and environment and behavioral interactions that influence smoking behavior. Included is the concept of vicarious capability that suggests that smoking behavior is determined in response to and interaction with feedback provided by the environment. The principle of self-regulatory capability asserts that people have control over their own behavior and thus that behavior change is possible. The principle of self-efficacy proposes that high level of self-efficacy of an individual may decrease the behavior of attempting to or continuing to smoke. Examples of initiatives to be undertaken in order to prevent smoking in accordance with social cognitive learning theory are presented at the end of each principle.

  16. Cognitive Rehabilitation in Alzheimer's Disease: A Controlled Intervention Trial.

    Science.gov (United States)

    Brueggen, Katharina; Kasper, Elisabeth; Ochmann, Sina; Pfaff, Henrike; Webel, Steffi; Schneider, Wolfgang; Teipel, Stefan

    2017-01-01

    Cognitive Rehabilitation for Alzheimer's disease (AD) is an integrative multimodal intervention. It aims to maintain autonomy and quality of life by enhancing the patients' abilities to compensate for decreased cognitive functioning. We evaluated the feasibility of a group-based Cognitive Rehabilitation approach in mild AD dementia and assessed its effect on activities of daily living (ADL). We included 16 patients with AD dementia in a controlled partial-randomized design. We adapted the manual-guided Cognitive Rehabilitation program (CORDIAL) to a group setting. Over the course of three months, one group received the Cognitive Rehabilitation intervention (n = 8), while the other group received a standardized Cognitive Training as an active control condition (n = 8). ADL-competence was measured as primary outcome. The secondary outcome parameters included cognitive abilities related to daily living, functional cognitive state, and non-cognitive domains, e.g., quality of life. For each scale, we assessed the interaction effect 'intervention by time', i.e., from pre-to post-intervention. We found no significant interaction effect of intervention by time on the primary outcome ADL-competence. The interaction effect was significant for quality of life (Cohen's d: -1.43), showing an increase in the intervention group compared with the control group. Our study demonstrates the feasibility of a group-based Cognitive Rehabilitation program for patients with mild AD dementia. The Cognitive Rehabilitation showed no significant effect on ADL, possibly reflecting a lack of transfer between the therapy setting and real life. However, the group setting enhanced communication skills and coping mechanisms. Effects on ADL may not have reached statistical significance due to a limited sample size. Furthermore, future studies might use an extended duration of the intervention and integrate caregivers to a greater extent to increase transfer to activities of daily living.

  17. Cognitive Function of Children and Adolescents with Attention Deficit Hyperactivity Disorder and Learning Difficulties: A Developmental Perspective

    Directory of Open Access Journals (Sweden)

    Fang Huang

    2016-01-01

    Conclusions: Children and adolescents with ADHD and learning difficulties have more severe cognitive impairment than pure ADHD patients even after controlling for the effect of ADHD symptoms. However, the differences in impairment in inhibition and shift function are no longer significant when these individuals were 12–14 years old.

  18. Mathematical Critical Thinking and Curiosity Attitude in Problem Based Learning and Cognitive Conflict Strategy: A Study in Number Theory Course

    Science.gov (United States)

    Zetriuslita; Wahyudin; Jarnawi

    2017-01-01

    This research aims to describe and analyze result of applying Problem-Based Learning and Cognitive Conflict Strategy (PBLCCS) in increasing students' Mathematical Critical Thinking (MCT) ability and Mathematical Curiosity Attitude (MCA). Adopting a quasi-experimental method with pretest-posttest control group design and using mixed method with…

  19. Deeply Affecting First-Year Students' Thinking: Deep Approaches to Learning and Three Dimensions of Cognitive Development

    Science.gov (United States)

    Laird, Thomas F. Nelson; Seifert, Tricia A.; Pascarella, Ernest T.; Mayhew, Matthew J.; Blaich, Charles F.

    2014-01-01

    This study estimates the effects of a deep approaches to learning scale and its subscales on measures of students' critical thinking, need for cognition, and positive attitudes toward literacy, controlling for pre-college scores for the outcomes and other covariates. Results suggest reflection is critical to making gains across the outcomes.

  20. Effect of Internet-Based Cognitive Apprenticeship Model (i-CAM on Statistics Learning among Postgraduate Students.

    Directory of Open Access Journals (Sweden)

    Farzaneh Saadati

    Full Text Available Because students' ability to use statistics, which is mathematical in nature, is one of the concerns of educators, embedding within an e-learning system the pedagogical characteristics of learning is 'value added' because it facilitates the conventional method of learning mathematics. Many researchers emphasize the effectiveness of cognitive apprenticeship in learning and problem solving in the workplace. In a cognitive apprenticeship learning model, skills are learned within a community of practitioners through observation of modelling and then practice plus coaching. This study utilized an internet-based Cognitive Apprenticeship Model (i-CAM in three phases and evaluated its effectiveness for improving statistics problem-solving performance among postgraduate students. The results showed that, when compared to the conventional mathematics learning model, the i-CAM could significantly promote students' problem-solving performance at the end of each phase. In addition, the combination of the differences in students' test scores were considered to be statistically significant after controlling for the pre-test scores. The findings conveyed in this paper confirmed the considerable value of i-CAM in the improvement of statistics learning for non-specialized postgraduate students.

  1. Effect of Internet-Based Cognitive Apprenticeship Model (i-CAM) on Statistics Learning among Postgraduate Students.

    Science.gov (United States)

    Saadati, Farzaneh; Ahmad Tarmizi, Rohani; Mohd Ayub, Ahmad Fauzi; Abu Bakar, Kamariah

    2015-01-01

    Because students' ability to use statistics, which is mathematical in nature, is one of the concerns of educators, embedding within an e-learning system the pedagogical characteristics of learning is 'value added' because it facilitates the conventional method of learning mathematics. Many researchers emphasize the effectiveness of cognitive apprenticeship in learning and problem solving in the workplace. In a cognitive apprenticeship learning model, skills are learned within a community of practitioners through observation of modelling and then practice plus coaching. This study utilized an internet-based Cognitive Apprenticeship Model (i-CAM) in three phases and evaluated its effectiveness for improving statistics problem-solving performance among postgraduate students. The results showed that, when compared to the conventional mathematics learning model, the i-CAM could significantly promote students' problem-solving performance at the end of each phase. In addition, the combination of the differences in students' test scores were considered to be statistically significant after controlling for the pre-test scores. The findings conveyed in this paper confirmed the considerable value of i-CAM in the improvement of statistics learning for non-specialized postgraduate students.

  2. Applying Social Cognitive Theory to Academic Advising to Assess Student Learning Outcomes

    Science.gov (United States)

    Erlich, Richard J.; Russ-Eft, Darlene

    2011-01-01

    Review of social cognitive theory constructs of self-efficacy and self-regulated learning is applied to academic advising for the purposes of assessing student learning. A brief overview of the history of student learning outcomes in higher education is followed by an explanation of self-efficacy and self-regulated learning constructs and how they…

  3. An Examination of Game-Based Learning from Theories of Flow Experience and Cognitive Load

    Science.gov (United States)

    Lai, Chih-Hung; Chu, Chih-Ming; Liu, Hsiang-Hsuan; Yang, Shun-Bo; Chen, Wei-Hsuan

    2013-01-01

    This study aims to discuss whether game-based learning with the integration of games and digital learning could enhance not only the flow experience in learning but achieve the same flow experience in pure games. In addition, the authors discovered that whether the game-based learning could make learners to reveal higher cognitive load. The…

  4. Cognitive control moderates parenting stress effects on children's diurnal cortisol

    OpenAIRE

    Raffington, Laurel; Schmiedek, Florian; Heim, Christine; Shing, Yee Lee

    2018-01-01

    This study investigated associations between parenting stress in parents and self-reported stress in children with children's diurnal cortisol secretion and whether these associations are moderated by known stress-regulating capacities, namely child cognitive control. Salivary cortisol concentrations were assessed from awakening to evening on two weekend days from 53 6-to-7-year-old children. Children completed a cognitive control task and a self-report stress questionnaire with an experiment...

  5. Cognitive interference modeling with applications in power and admission control

    KAUST Repository

    Mahmood, Nurul Huda

    2012-10-01

    One of the key design challenges in a cognitive radio network is controlling the interference generated at coexisting primary receivers. In order to design efficient cognitive radio systems and to minimize their unwanted consequences, it is therefore necessary to effectively control the secondary interference at the primary receivers. In this paper, a generalized framework for the interference analysis of a cognitive radio network where the different secondary transmitters may transmit with different powers and transmission probabilities, is presented and various applications of this interference model are demonstrated. The findings of the analytical performance analyses are confirmed through selected computer-based Monte-Carlo simulations. © 2012 IEEE.

  6. Childhood adversity and cognitive function in schizophrenia spectrum disorders and healthy controls: evidence for an association between neglect and social cognition.

    Science.gov (United States)

    Kilian, S; Asmal, L; Chiliza, B; Olivier, M R; Phahladira, L; Scheffler, F; Seedat, S; Marder, S R; Green, M F; Emsley, R

    2017-12-22

    Childhood adversity is associated with cognitive impairments in schizophrenia. However, findings to date are inconsistent and little is known about the relationship between social cognition and childhood trauma. We investigated the relationship between childhood abuse and neglect and cognitive function in patients with a first-episode of schizophrenia or schizophreniform disorder (n = 56) and matched healthy controls (n = 52). To the best of our knowledge, this is the first study assessing this relationship in patients and controls exposed to similarly high levels of trauma. Pearson correlational coefficients were used to assess correlations between Childhood Trauma Questionnaire abuse and neglect scores and cognition. For the MCCB domains displaying significant (p childhood neglect remained a significant predictor of impairment in social cognition in both patients and controls. Neglect was also a significant predictor of poorer verbal learning in patients and of attention/vigilance in controls. However, childhood abuse did not significantly predict cognitive impairments in either patients or controls. These findings are cross sectional and do not infer causality. Nonetheless, they indicate that associations between one type of childhood adversity (i.e. neglect) and social cognition are present and are not illness-specific.

  7. Effects of a Mindfulness Meditation Course on Learning and Cognitive Performance among University Students in Taiwan

    Directory of Open Access Journals (Sweden)

    Ho-Hoi Ching

    2015-01-01

    Full Text Available Mindfulness training has recently gained much research interest because of its putative benefits for both mental and physical health. However, little is available in its effects on Asian students. Therefore, a quasi-experimental pre/posttest design was used to assess the effects of a one-semester mindfulness meditation course in 152 first-year Taiwanese university students and compared with 130 controls. The Chinese version of the College Learning Effectiveness Inventory (CLEI and a computer software program focused on specific cognitive tasks were used for the evaluation. Results from the analysis of covariance revealed that while the score of the full CLEI scale was significantly higher in the intervention group compared with the control (P=0.022, none of the comparisons between the nine CLEI subscales were significantly different between the two groups. For the computer cognitive tasks, the intervention group exhibited significantly better performance in the accuracy of the digital vigilance task (P=0.048, choice reaction time (P=0.004, spatial working memory (P=0.042, and digital vigilance task reaction time (P=0.004. This study showed that a one-semester mindfulness meditation course was able to improve learning effectiveness and both attention and memory aspects of cognitive performance among Taiwanese university students.

  8. LCoMotion - Learning, Cognition and Motion; a multicomponent cluster randomized school-based intervention aimed at increasing learning and cognition - rationale, design and methods

    DEFF Research Database (Denmark)

    Bugge, Anna; Tarp, Jakob; Ostergaard, Lars

    2014-01-01

    BACKGROUND: The aim of the study; LCoMotion - Learning, Cognition and Motion was to develop, document, and evaluate a multi-component physical activity (PA) intervention in public schools in Denmark. The primary outcome was cognitive function. Secondary outcomes were academic skills, body composi...

  9. Learning a Foreign Language: A New Path to Enhancement of Cognitive Functions

    Science.gov (United States)

    Shoghi Javan, Sara; Ghonsooly, Behzad

    2018-01-01

    The complicated cognitive processes involved in natural (primary) bilingualism lead to significant cognitive development. Executive functions as a fundamental component of human cognition are deemed to be affected by language learning. To date, a large number of studies have investigated how natural (primary) bilingualism influences executive…

  10. Locating Cognition in Second Language Interaction and Learning: Inside the Skull or in Public View?

    Science.gov (United States)

    Kasper, Gabriele

    2009-01-01

    A key question in the debate on conversation analysis as an approach to SLA concerns the role of cognition in interaction and learning. Where is cognition located, and how is understanding in interaction achieved? For an empirically grounded answer, I will explore the procedural apparatus that sustains socially shared cognition. Following a brief…

  11. The Impact of Cognitive Assessment on the Identity of People with Learning Disabilities

    Science.gov (United States)

    Davidson, Terence; Smith, Hilary; Burns, Jan

    2014-01-01

    Researchers and clinicians have hypothesised that cognitive assessments have the power to influence the self-identity of people with learning disabilities. This research aimed to explore the experience of a sample of people who had been given a cognitive assessment by a psychologist based in a team for people with learning disabilities. Five…

  12. Comparative Effect of Memory and Cognitive Strategies Training on EFL Intermediate Learners' Vocabulary Learning

    Science.gov (United States)

    Banisaeid, Maryam

    2013-01-01

    The present study was conducted to compare the effect of memory and cognitive strategies training on vocabulary learning of intermediate proficiency group of Iranian learners of English as a foreign language. It is to check how memory and cognitive strategies training affect word learning of EFL intermediate learners (N = 60) who were homogenized…

  13. Confronting Social Injustice: Cognitive Dissonance and Civic Development in Higher Education Service-Learning

    Science.gov (United States)

    Rogers, Leslie Cohen

    2012-01-01

    This qualitative, insider account of student civic development in a university service-learning course has two primary goals. One is to propose frameworks for describing the process of civic development of service-learning students that are situated in theories of civic identity, cognitive development, and cognitive dissonance. The other is to…

  14. Cognitive Load Imposed by Ultrasound-Facilitated Teaching Does Not Adversely Affect Gross Anatomy Learning Outcomes

    Science.gov (United States)

    Jamniczky, Heather A.; Cotton, Darrel; Paget, Michael; Ramji, Qahir; Lenz, Ryan; McLaughlin, Kevin; Coderre, Sylvain; Ma, Irene W. Y.

    2017-01-01

    Ultrasonography is increasingly used in medical education, but its impact on learning outcomes is unclear. Adding ultrasound may facilitate learning, but may also potentially overwhelm novice learners. Based upon the framework of cognitive load theory, this study seeks to evaluate the relationship between cognitive load associated with using…

  15. Teachers' Awareness of the Semio-Cognitive Dimension of Learning Mathematics

    Science.gov (United States)

    Iori, Maura

    2018-01-01

    While many semiotic and cognitive studies on learning mathematics have focused primarily on students, this study focuses mainly on teachers, by seeking to bring to light their awareness of the semiotic and cognitive aspects of learning mathematics. The aim is to highlight the degree of awareness that teachers show about: (1) the distinction…

  16. Non-cognitive characteristics of gifted students with learning disabilities : An in-depth systematic review

    NARCIS (Netherlands)

    Beckmann, Else; Minnaert, Alexander

    2018-01-01

    Gifted students who also have learning disabilities (G/LD) are often overlooked when students are assessed either for giftedness or specific learning disabilities. The cognitive and non-cognitive characteristics of these G/LD students are habitually discussed only briefly alongside identification

  17. Diving too Deep: How Cognitive Absorption and Group Learning Behavior Affect Individual Learning

    OpenAIRE

    Magni, Massimo; Paolino, Chiara; Cappetta, Rossella; Proserpio, Luigi

    2013-01-01

    Since organizations and educational institutions are moving toward a training approach which emphasizes the active involvement of participants, there is growing interest in understanding how individual engagement in the training experience affects practicing managers’ individual learning. We identify cognitive absorption as the construct that better describes the state of full engagement and immersion that new approaches in management training require of learners. While some research has emph...

  18. Development of cognitive and affective control networks and decision making.

    Science.gov (United States)

    Kar, Bhoomika R; Vijay, Nivita; Mishra, Shreyasi

    2013-01-01

    Cognitive control and decision making are two important research areas in the realm of higher-order cognition. Control processes such as interference control and monitoring in cognitive and affective contexts have been found to influence the process of decision making. Development of control processes follows a gradual growth pattern associated with the prolonged maturation of underlying neural circuits including the lateral prefrontal cortex, anterior cingulate, and the medial prefrontal cortex. These circuits are also involved in the control of processes that influences decision making, particularly with respect to choice behavior. Developmental studies on affective control have shown distinct patterns of brain activity with adolescents showing greater activation of amygdala whereas adults showing greater activity in ventral prefrontal cortex. Conflict detection, monitoring, and adaptation involve anticipation and subsequent performance adjustments which are also critical to complex decision making. We discuss the gradual developmental patterns observed in two of our studies on conflict monitoring and adaptation in affective and nonaffective contexts. Findings of these studies indicate the need to look at the differences in the effects of the development of cognitive and affective control on decision making in children and particularly adolescents. Neuroimaging studies have shown the involvement of separable neural networks for cognitive (medial prefrontal cortex and anterior cingulate) and affective control (amygdala, ventral medial prefrontal cortex) shows that one system can affect the other also at the neural level. Hence, an understanding of the interaction and balance between the cognitive and affective brain networks may be crucial for self-regulation and decision making during the developmental period, particularly late childhood and adolescence. The chapter highlights the need for empirical investigation on the interaction between the different aspects

  19. Cognitive control components and speech symptoms in people with schizophrenia.

    Science.gov (United States)

    Becker, Theresa M; Cicero, David C; Cowan, Nelson; Kerns, John G

    2012-03-30

    Previous schizophrenia research suggests poor cognitive control is associated with schizophrenia speech symptoms. However, cognitive control is a broad construct. Two important cognitive control components are poor goal maintenance and poor verbal working memory storage. In the current research, people with schizophrenia (n=45) performed three cognitive tasks that varied in their goal maintenance and verbal working memory storage demands. Speech symptoms were assessed using clinical rating scales, ratings of disorganized speech from typed transcripts, and self-reported disorganization. Overall, alogia was associated with both goal maintenance and verbal working memory tasks. Objectively rated disorganized speech was associated with poor goal maintenance and with a task that included both goal maintenance and verbal working memory storage demands. In contrast, self-reported disorganization was unrelated to either amount of objectively rated disorganized speech or to cognitive control task performance, instead being associated with negative mood symptoms. Overall, our results suggest that alogia is associated with both poor goal maintenance and poor verbal working memory storage and that disorganized speech is associated with poor goal maintenance. In addition, patients' own assessment of their disorganization is related to negative mood, but perhaps not to objective disorganized speech or to cognitive control task performance. Published by Elsevier Ireland Ltd.

  20. Cognitive control training for emotion-related impulsivity.

    Science.gov (United States)

    Peckham, Andrew D; Johnson, Sheri L

    2018-06-01

    Many forms of psychopathology are tied to a heightened tendency to respond impulsively to strong emotions, and this tendency, in turn, is closely tied to problems with cognitive control. The goal of the present study was to test whether a two-week, six-session cognitive control training program is efficacious in reducing emotion-related impulsivity. Participants (N = 52) reporting elevated scores on an emotion-related impulsivity measure completed cognitive control training targeting working memory and response inhibition. A subset of participants were randomized to a waitlist control group. Impulsivity, emotion regulation, and performance on near and far-transfer cognitive tasks were assessed at baseline and after completion of training. Emotion-related impulsivity declined significantly from pre-training to post-training and at two-week follow-up; improvements were not observed in the waitlist control group. A decrease in brooding rumination and an increase in reappraisal were also observed. Participants showed significant improvements on trained versions of the working memory and inhibition tasks as well as improvements on an inhibition transfer task. In sum, these preliminary findings show that cognitive training appears to be well-tolerated for people with significant emotion-driven impulsivity. Results provide preliminary support for the efficacy of cognitive training interventions as a way to reduce emotion-related impulsivity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Lateral Hypothalamus as a Motivation-Cognition Interface in the Control of Feeding Behavior

    Directory of Open Access Journals (Sweden)

    Gorica D. Petrovich

    2018-04-01

    Full Text Available Converging evidence for an essential function of the lateral hypothalamus (LHA in the control of feeding behavior has been accumulating since the classic work conducted almost 80 years ago. The LHA is also important in reward and reinforcement processes and behavioral state control. A unifying function for the LHA across these processes has not been fully established. Nonetheless, it is considered to integrate motivation with behavior. More recent work has demonstrated that the LHA is also required when cognitive processes, such as associative learning and memory control feeding behavior, suggesting it may serve as a motivation-cognition interface. Structurally, the LHA is well positioned within the cerebral hemisphere, with its extensive connectional network across the forebrain-brainstem axis, to link motivational and behavioral systems with cognitive processes. Studies that examined how learned cues control food seeking and consumption have implicated the LHA, but due to methodological limitations could not determine whether it underlies motivation, learning, or the integration of these processes. Furthermore, the identification of specific substrates has been limited by the LHA’s extraordinary complexity and heterogeneity. Recent methodological advancements with chemo-and opto-genetic approaches have enabled unprecedented specificity in interrogations of distinct neurons and their pathways in behaving animals, including manipulations during temporally distinct events. These approaches have revealed novel insights about the LHA structure and function. Recent findings that the GABA LHA neurons control feeding and food-reward learning and memory will be reviewed together with past work within the context of the LHA function as an interface between cognition and motivation.

  2. Plasma brain-derived neurotrophic factor levels, learning capacity and cognition in patients with first episode psychosis

    Directory of Open Access Journals (Sweden)

    de Azua Sonia Ruiz

    2013-01-01

    Full Text Available Abstract Background Cognitive impairments are seen in first psychotic episode (FEP patients. The neurobiological underpinnings that might underlie these changes remain unknown. The aim of this study is to investigate whether Brain Derived Neurotrophic Factor (BDNF levels are associated with cognitive impairment in FEP patients compared with healthy controls. Methods 45 FEP patients and 45 healthy controls matched by age, gender and educational level were selected from the Basque Country area of Spain. Plasma BDNF levels were assessed in healthy controls and in patients. A battery of cognitive tests was applied to both groups, with the patients being assessed at 6 months after the acute episode and only in those with a clinical response to treatment. Results Plasma BDNF levels were altered in patients compared with the control group. In FEP patients, we observed a positive association between BDNF levels at six months and five cognitive domains (learning ability, immediate and delayed memory, abstract thinking and processing speed which persisted after controlling for medications prescribed, drug use, intelligence quotient (IQ and negative symptoms. In the healthy control group, BDNF levels were not associated with cognitive test scores. Conclusion Our results suggest that BDNF is associated with the cognitive impairment seen after a FEP. Further investigations of the role of this neurotrophin in the symptoms associated with psychosis onset are warranted.

  3. Optimizing Learning in College: Tips From Cognitive Psychology.

    Science.gov (United States)

    Putnam, Adam L; Sungkhasettee, Victor W; Roediger, Henry L

    2016-09-01

    Every fall, thousands of college students begin their first college courses, often in large lecture settings. Many students, even those who work hard, flounder. What should students be doing differently? Drawing on research in cognitive psychology and our experience as educators, we provide suggestions about how students should approach taking a course in college. We discuss time management techniques, identify the ineffective study strategies students often use, and suggest more effective strategies based on research in the lab and the classroom. In particular, we advise students to space their study sessions on a topic and to quiz themselves, as well as using other active learning strategies while reading. Our goal was to provide a framework for students to succeed in college classes. © The Author(s) 2016.

  4. Video game training enhances cognitive control in older adults.

    Science.gov (United States)

    Anguera, J A; Boccanfuso, J; Rintoul, J L; Al-Hashimi, O; Faraji, F; Janowich, J; Kong, E; Larraburo, Y; Rolle, C; Johnston, E; Gazzaley, A

    2013-09-05

    Cognitive control is defined by a set of neural processes that allow us to interact with our complex environment in a goal-directed manner. Humans regularly challenge these control processes when attempting to simultaneously accomplish multiple goals (multitasking), generating interference as the result of fundamental information processing limitations. It is clear that multitasking behaviour has become ubiquitous in today's technologically dense world, and substantial evidence has accrued regarding multitasking difficulties and cognitive control deficits in our ageing population. Here we show that multitasking performance, as assessed with a custom-designed three-dimensional video game (NeuroRacer), exhibits a linear age-related decline from 20 to 79 years of age. By playing an adaptive version of NeuroRacer in multitasking training mode, older adults (60 to 85 years old) reduced multitasking costs compared to both an active control group and a no-contact control group, attaining levels beyond those achieved by untrained 20-year-old participants, with gains persisting for 6 months. Furthermore, age-related deficits in neural signatures of cognitive control, as measured with electroencephalography, were remediated by multitasking training (enhanced midline frontal theta power and frontal-posterior theta coherence). Critically, this training resulted in performance benefits that extended to untrained cognitive control abilities (enhanced sustained attention and working memory), with an increase in midline frontal theta power predicting the training-induced boost in sustained attention and preservation of multitasking improvement 6 months later. These findings highlight the robust plasticity of the prefrontal cognitive control system in the ageing brain, and provide the first evidence, to our knowledge, of how a custom-designed video game can be used to assess cognitive abilities across the lifespan, evaluate underlying neural mechanisms, and serve as a powerful tool

  5. Learned helplessness, cognitive errors and perfectionism in depressed and non-depressed chronic pain patients

    OpenAIRE

    2014-01-01

    M.A. (Clinical Psychology) The increasing interest in cognitive factors both in the literature on pain and in developments in research on depression has led to the present study, where cognitive factors associated with depression were investigated in clinical groups of chroni c pa in patients. The cognitive factors studied were learned helplessness (Seligman, 1975), cognitive errors and distortions (Beck, 1976), perfectionism (Bums, 19800 1980b), as well as hopelessness (Beck, 1974). It wa...

  6. Cognitive models and computer aids for nuclear plant control room operators

    International Nuclear Information System (INIS)

    Sheridan, T.B.

    1982-01-01

    This paper reviews what is usually meant by a cognitive model of a control room operator in a nuclear power plant. It emphasizes the idea of internal (that is, mental) representation of external events and the use of such representation for the cognitive steps of attending, recognizing or learning, assessing and deciding. As computers play an increasingly important role in nuclear power plants, especially as cognitive aids to human supervisors of highly automated control systems, it is important that the software and computer interface characteristics be compatible with the operator's internal model. Specific examples discussed in this paper are in the monitoring and prediction of the plant state and in the detection and diagnosis of failures. Current trends in SPDS (safety parameter display system) and failure detection/location systems will be discussed in this regard

  7. Cognitive control functions in individuals with obesity with and without binge-eating disorder.

    Science.gov (United States)

    Kollei, Ines; Rustemeier, Martina; Schroeder, Stefanie; Jongen, Sebastian; Herpertz, Stephan; Loeber, Sabine

    2018-03-01

    Deficits in cognitive control are thought to contribute to the maintenance of obesity (OB). Cognitive control is referred to as impulsivity and binge-eating disorder (BED) is characterized by high levels of impulsivity. The present study sought to elucidate which cognitive control functions differentiate between severe OB with and without BED also taking into account hunger as a moderating factor. The study included 48 individuals with OB and BED (OB + BED), 48 individuals with OB and no BED (OB - BED) and 48 normal-weight controls (NWC). Hunger was systematically manipulated: participants were instructed to refrain from eating before testing and received either a liquid meal or flavored water. Then, a comprehensive test battery was administered including a food-related go/no-go task and several subtests from the CANTAB. There were no differences between the groups with regard to food-related response inhibition. However, while manipulating hunger had no impact on performance in the go/no-go task, self-reported hunger significantly influenced task performance by increasing inhibition deficits to high-caloric stimuli in OB + BED. With regard to general cognitive control functions, we found that deficits in attention and impulse control in decision-making distinguished OB from NWC, while reversal learning and risk taking in decision-making appeared to be relevant factors when distinguishing OB + BED from OB - BED. Our results indicate that self-reported hunger differentially affected food-related response inhibition. Group differences in general cognitive control functions were limited to attention, reversal learning, and decision-making. Future research needs to account for other possible moderating factors, such as mood, food craving, or stress. © 2018 Wiley Periodicals, Inc.

  8. Postural control and cognitive task performance in healthy participants while balancing on different support-surface configurations

    NARCIS (Netherlands)

    Dault, MC; Mulder, TW; Duysens, J

    2001-01-01

    Postural control during normal upright stance in humans is a well-learned task. Hence, it has often been argued that it requires very little attention. However, many studies have recently shown that postural control is modified when a cognitive task is executed simultaneously especially in the

  9. Dynamic goal states: adjusting cognitive control without conflict monitoring.

    Science.gov (United States)

    Scherbaum, Stefan; Dshemuchadse, Maja; Ruge, Hannes; Goschke, Thomas

    2012-10-15

    A central topic in the cognitive sciences is how cognitive control is adjusted flexibly to changing environmental demands at different time scales to produce goal-oriented behavior. According to an influential account, the context-sensitive recruitment of cognitive control is mediated by a specialized conflict monitoring process that registers current conflict and signals the demand for enhanced control in subsequent trials. This view has been immensely successful not least due to supporting evidence from neuroimaging studies suggesting that the conflict monitoring function is localized within the anterior cingulate cortex (ACC) which, in turn, signals the demand for enhanced control to the prefrontal cortex (PFC). In this article, we propose an alternative model of the adaptive regulation of cognitive control based on multistable goal attractor network dynamics and adjustments of cognitive control within a conflict trial. Without incorporation of an explicit conflict monitoring module, the model mirrors behavior in conflict tasks accounting for effects of response congruency, sequential conflict adaptation, and proportion of incongruent trials. Importantly, the model also mirrors frequency tagged EEG data indicating continuous conflict adaptation and suggests a reinterpretation of the correlation between ACC and the PFC BOLD data reported in previous imaging studies. Together, our simulation data propose an alternative interpretation of both behavioral data as well as imaging data that have previously been interpreted in favor of a specialized conflict monitoring process in the ACC. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. LCoMotion - Learning, Cognition and Motion; a multicomponent cluster randomized school-based intervention aimed at increasing learning and cognition - rationale, design and methods.

    Science.gov (United States)

    Bugge, Anna; Tarp, Jakob; Østergaard, Lars; Domazet, Sidsel Louise; Andersen, Lars Bo; Froberg, Karsten

    2014-09-18

    The aim of the study; LCoMotion - Learning, Cognition and Motion was to develop, document, and evaluate a multi-component physical activity (PA) intervention in public schools in Denmark. The primary outcome was cognitive function. Secondary outcomes were academic skills, body composition, aerobic fitness and PA. The primary aim of the present paper was to describe the rationale, design and methods of the LCoMotion study. LCoMotion was designed as a cluster-randomized controlled study. Fourteen schools from all five regions in Denmark participated. All students from 6th and 7th grades were invited to participate (n = 869) and consent was obtained for 87% (n = 759). Baseline measurements were obtained in November/December 2013 and follow-up measurements in May/June 2014. The intervention lasted five months and consisted of a "package" of three main components: PA during academic lessons, PA during recess and PA homework. Furthermore a cycling campaign was conducted during the intervention period. Intervention schools should endeavor to ensure that students were physically active for at least 60 min every school day. Cognitive function was measured by a modified Eriksen flanker task and academic skills by a custom made mathematics test. PA was objectively measured by accelerometers (ActiGraph, GT3X and GT3X+) and aerobic fitness assessed by an intermittent shuttle-run test (the Andersen intermittent running test). Furthermore, compliance with the intervention was assessed by short message service (SMS)-tracking and questionnaires were delivered to students, parents and teachers. LCoMotion has ability to provide new insights on the effectiveness of a multicomponent intervention on cognitive function and academic skills in 6th and 7th grade students. Clinicaltrials.gov: NCT02012881 (10/10/2013).

  11. Instructional methods and cognitive and learning styles in web-based learning: report of two randomised trials.

    Science.gov (United States)

    Cook, David A; Gelula, Mark H; Dupras, Denise M; Schwartz, Alan

    2007-09-01

    Adapting web-based (WB) instruction to learners' individual differences may enhance learning. Objectives This study aimed to investigate aptitude-treatment interactions between learning and cognitive styles and WB instructional methods. We carried out a factorial, randomised, controlled, crossover, post-test-only trial involving 89 internal medicine residents, family practice residents and medical students at 2 US medical schools. Parallel versions of a WB course in complementary medicine used either active or reflective questions and different end-of-module review activities ('create and study a summary table' or 'study an instructor-created table'). Participants were matched or mismatched to question type based on active or reflective learning style. Participants used each review activity for 1 course module (crossover design). Outcome measurements included the Index of Learning Styles, the Cognitive Styles Analysis test, knowledge post-test, course rating and preference. Post-test scores were similar for matched (mean +/- standard error of the mean 77.4 +/- 1.7) and mismatched (76.9 +/- 1.7) learners (95% confidence interval [CI] for difference - 4.3 to 5.2l, P = 0.84), as were course ratings (P = 0.16). Post-test scores did not differ between active-type questions (77.1 +/- 2.1) and reflective-type questions (77.2 +/- 1.4; P = 0.97). Post-test scores correlated with course ratings (r = 0.45). There was no difference in post-test subscores for modules completed using the 'construct table' format (78.1 +/- 1.4) or the 'table provided' format (76.1 +/- 1.4; CI - 1.1 to 5.0, P = 0.21), and wholist and analytic styles had no interaction (P = 0.75) or main effect (P = 0.18). There was no association between activity preference and wholist or analytic scores (P = 0.37). Cognitive and learning styles had no apparent influence on learning outcomes. There were no differences in outcome between these instructional methods.

  12. Statistical learning methods: Basics, control and performance

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, J. [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Munich (Germany)]. E-mail: zimmerm@mppmu.mpg.de

    2006-04-01

    The basics of statistical learning are reviewed with a special emphasis on general principles and problems for all different types of learning methods. Different aspects of controlling these methods in a physically adequate way will be discussed. All principles and guidelines will be exercised on examples for statistical learning methods in high energy and astrophysics. These examples prove in addition that statistical learning methods very often lead to a remarkable performance gain compared to the competing classical algorithms.

  13. Statistical learning methods: Basics, control and performance

    International Nuclear Information System (INIS)

    Zimmermann, J.

    2006-01-01

    The basics of statistical learning are reviewed with a special emphasis on general principles and problems for all different types of learning methods. Different aspects of controlling these methods in a physically adequate way will be discussed. All principles and guidelines will be exercised on examples for statistical learning methods in high energy and astrophysics. These examples prove in addition that statistical learning methods very often lead to a remarkable performance gain compared to the competing classical algorithms

  14. Contributions of Cognitive Psychology to the Future of E-Learning

    OpenAIRE

    Aibert, Dietrich; Mori, Toshiaki

    2002-01-01

    At the beginning of the 215t century strong efforts are made for facilitating e-learning (electronic-based learning and teaching). This development is driven mainly by economical and technological dynamics, however also the contributions of educational and learning sciences are requested by the decision maker. Beside methodological contributions, cognitive psychology is fundamental for individualising e-learning processes. Essential for individualisation is the adaptivity of the e-learning sy...

  15. A Novel Dynamic Spectrum Access Framework Based on Reinforcement Learning for Cognitive Radio Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yun Lin

    2016-10-01

    Full Text Available Cognitive radio sensor networks are one of the kinds of application where cognitive techniques can be adopted and have many potential applications, challenges and future research trends. According to the research surveys, dynamic spectrum access is an important and necessary technology for future cognitive sensor networks. Traditional methods of dynamic spectrum access are based on spectrum holes and they have some drawbacks, such as low accessibility and high interruptibility, which negatively affect the transmission performance of the sensor networks. To address this problem, in this paper a new initialization mechanism is proposed to establish a communication link and set up a sensor network without adopting spectrum holes to convey control information. Specifically, firstly a transmission channel model for analyzing the maximum accessible capacity for three different polices in a fading environment is discussed. Secondly, a hybrid spectrum access algorithm based on a reinforcement learning model is proposed for the power allocation problem of both the transmission channel and the control channel. Finally, extensive simulations have been conducted and simulation results show that this new algorithm provides a significant improvement in terms of the tradeoff between the control channel reliability and the efficiency of the transmission channel.

  16. Training Attentional Control Improves Cognitive and Motor Task Performance.

    Science.gov (United States)

    Ducrocq, Emmanuel; Wilson, Mark; Vine, Sam; Derakshan, Nazanin

    2016-10-01

    Attentional control is a necessary function for the regulation of goal-directed behavior. In three experiments we investigated whether training inhibitory control using a visual search task could improve task-specific measures of attentional control and performance. In Experiment 1 results revealed that training elicited a near-transfer effect, improving performance on a cognitive (antisaccade) task assessing inhibitory control. In Experiment 2 an initial far-transfer effect of training was observed on an index of attentional control validated for tennis. The principal aim of Experiment 3 was to expand on these findings by assessing objective gaze measures of inhibitory control during the performance of a tennis task. Training improved inhibitory control and performance when pressure was elevated, confirming the mechanisms by which cognitive anxiety impacts performance. These results suggest that attentional control training can improve inhibition and reduce taskspecific distractibility with promise of transfer to more efficient sporting performance in competitive contexts.

  17. Reinforcement Learning for Ramp Control: An Analysis of Learning Parameters

    Directory of Open Access Journals (Sweden)

    Chao Lu

    2016-08-01

    Full Text Available Reinforcement Learning (RL has been proposed to deal with ramp control problems under dynamic traffic conditions; however, there is a lack of sufficient research on the behaviour and impacts of different learning parameters. This paper describes a ramp control agent based on the RL mechanism and thoroughly analyzed the influence of three learning parameters; namely, learning rate, discount rate and action selection parameter on the algorithm performance. Two indices for the learning speed and convergence stability were used to measure the algorithm performance, based on which a series of simulation-based experiments were designed and conducted by using a macroscopic traffic flow model. Simulation results showed that, compared with the discount rate, the learning rate and action selection parameter made more remarkable impacts on the algorithm performance. Based on the analysis, some suggestionsabout how to select suitable parameter values that can achieve a superior performance were provided.

  18. Enclothed Cognition and Controlled Attention during Insight Problem-Solving

    Science.gov (United States)

    Van Stockum, Charles A., Jr.; DeCaro, Marci S.

    2014-01-01

    Individual differences in working memory capacity (WMC) increase the ability and tendency to devote greater attentional control to a task--improving performance on a wide range of skills. In addition, recent research on enclothed cognition demonstrates that the situational influence of wearing a white lab coat increases controlled attention, due…

  19. An Integrated Model of Cognitive Control in Task Switching

    Science.gov (United States)

    Altmann, Erik M.; Gray, Wayne D.

    2008-01-01

    A model of cognitive control in task switching is developed in which controlled performance depends on the system maintaining access to a code in episodic memory representing the most recently cued task. The main constraint on access to the current task code is proactive interference from old task codes. This interference and the mechanisms that…

  20. Causal Learning in Gambling Disorder: Beyond the Illusion of Control.

    Science.gov (United States)

    Perales, José C; Navas, Juan F; Ruiz de Lara, Cristian M; Maldonado, Antonio; Catena, Andrés

    2017-06-01

    Causal learning is the ability to progressively incorporate raw information about dependencies between events, or between one's behavior and its outcomes, into beliefs of the causal structure of the world. In spite of the fact that some cognitive biases in gambling disorder can be described as alterations of causal learning involving gambling-relevant cues, behaviors, and outcomes, general causal learning mechanisms in gamblers have not been systematically investigated. In the present study, we compared gambling disorder patients against controls in an instrumental causal learning task. Evidence of illusion of control, namely, overestimation of the relationship between one's behavior and an uncorrelated outcome, showed up only in gamblers with strong current symptoms. Interestingly, this effect was part of a more complex pattern, in which gambling disorder patients manifested a poorer ability to discriminate between null and positive contingencies. Additionally, anomalies were related to gambling severity and current gambling disorder symptoms. Gambling-related biases, as measured by a standard psychometric tool, correlated with performance in the causal learning task, but not in the expected direction. Indeed, performance of gamblers with stronger biases tended to resemble the one of controls, which could imply that anomalies of causal learning processes play a role in gambling disorder, but do not seem to underlie gambling-specific biases, at least in a simple, direct way.

  1. Linear System Control Using Stochastic Learning Automata

    Science.gov (United States)

    Ziyad, Nigel; Cox, E. Lucien; Chouikha, Mohamed F.

    1998-01-01

    This paper explains the use of a Stochastic Learning Automata (SLA) to control switching between three systems to produce the desired output response. The SLA learns the optimal choice of the damping ratio for each system to achieve a desired result. We show that the SLA can learn these states for the control of an unknown system with the proper choice of the error criteria. The results of using a single automaton are compared to using multiple automata.

  2. An Exploration of Students' Science Learning Interest Related to Their Cognitive Anxiety, Cognitive Load, Self-Confidence and Learning Progress Using Inquiry-Based Learning with an iPad

    Science.gov (United States)

    Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei

    2017-01-01

    Based on the cognitive-affective theory, the present study designed a science inquiry learning model, "predict-observe-explain" (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning…

  3. Collaborative Learning Using a Project across Multiple Business Courses: A Cognitive Load and Knowledge Convergence Approach

    Science.gov (United States)

    Bhowmick, Sandeep; Chandra, Aruna; Harper, Jeffrey S.; Sweetin, Vernon

    2015-01-01

    Four business professors at a state university in the Midwestern United States launched a collaborative learning project grounded in cognitive learning theory and knowledge convergence theory with the objective of assessing student learning gains in cross-functional knowledge (CFK), course-related knowledge (CRK), and overall satisfaction with…

  4. Cognitive Developmental Level Gender, and the Development of Learned Helplessness on Mathematical Calculation and Reasoning Tasks.

    Science.gov (United States)

    Monaco, Nanci M.; Gentile, J. Ronald

    1987-01-01

    This study was designed to test whether a learned helplessness treatment would decrease performance on mathematical tasks and to extend learned helplessness findings to include the cognitive development dimension. Results showed no differential advantages to either sex in resisting effects of learned helplessness or in benefiting from strategy…

  5. Effects of Computer-Based Visual Representation on Mathematics Learning and Cognitive Load

    Science.gov (United States)

    Yung, Hsin I.; Paas, Fred

    2015-01-01

    Visual representation has been recognized as a powerful learning tool in many learning domains. Based on the assumption that visual representations can support deeper understanding, we examined the effects of visual representations on learning performance and cognitive load in the domain of mathematics. An experimental condition with visual…

  6. The Effects of Positive and Negative Mood on Cognition and Motivation in Multimedia Learning Environment

    Science.gov (United States)

    Liew, Tze Wei; Tan, Su-Mae

    2016-01-01

    The Cognitive-Affective Theory of Learning with Media framework posits that the multimedia learning process is mediated by the learner's mood. Recent studies have shown that positive mood has a facilitating effect on multimedia learning. Though literature has shown that negative mood encourages an individual to engage in a more systematic,…

  7. Modelization of cognition, activity and motivation as indicators for Interactive Learning Environment

    Directory of Open Access Journals (Sweden)

    Asmaa Darouich

    2017-06-01

    Full Text Available In Interactive Learning Environment (ILE, the cognitive activity and behavior of learners are the center of the researchers’ concerns. The improvement of learning through combining these axes as a structure of indicators for well-designed learning environment, encloses the measurement of the educational activity as a part of the learning process. In this paper, we propose a mathematical modeling approach based on learners actions to estimate the cognitive activity, learning behavior and motivation, in accordance with a proposed course content structure. This Cognitive indicator includes the study of knowledge, memory and reasoning. While, activity indicator aims to study effort, resistance and intensity. The results recovered on a sample of students with different levels of education, assume that the proposed approach presents a relation among all these indicators which is relatively reliable in the term of cognitive system.

  8. Methods for control over learning individual trajectory

    Science.gov (United States)

    Mitsel, A. A.; Cherniaeva, N. V.

    2015-09-01

    The article discusses models, methods and algorithms of determining student's optimal individual educational trajectory. A new method of controlling the learning trajectory has been developed as a dynamic model of learning trajectory control, which uses score assessment to construct a sequence of studied subjects.

  9. Cognitive control in adults with attention-deficit/hyperactivity disorder

    DEFF Research Database (Denmark)

    Dramsdahl, Margaretha; Westerhausen, René; Haavik, Jan

    2011-01-01

    The objective of the present study was to investigate the ability of adults with Attention-Deficit/Hyperactivity Disorder (ADHD) to direct their attention and exert cognitive control in a forced instruction dichotic listening (DL) task. The performance of 29 adults with ADHD was compared with 58......-forced condition), or to focus and report either the right- or left-ear syllable (forced-right and forced-left condition). This procedure is presumed to tap distinct cognitive processes: perception (non-forced condition), orienting of attention (forced-right condition), and cognitive control (forced-left condition......). Adults with ADHD did not show significant impairment in the conditions tapping perception and attention orientation, but were significantly impaired in their ability to report the left-ear syllable during the forced-left instruction condition, whereas the control group showed the expected left...

  10. Indirect learning control for nonlinear dynamical systems

    Science.gov (United States)

    Ryu, Yeong Soon; Longman, Richard W.

    1993-01-01

    In a previous paper, learning control algorithms were developed based on adaptive control ideas for linear time variant systems. The learning control methods were shown to have certain advantages over their adaptive control counterparts, such as the ability to produce zero tracking error in time varying systems, and the ability to eliminate repetitive disturbances. In recent years, certain adaptive control algorithms have been developed for multi-body dynamic systems such as robots, with global guaranteed convergence to zero tracking error for the nonlinear system euations. In this paper we study the relationship between such adaptive control methods designed for this specific class of nonlinear systems, and the learning control problem for such systems, seeking to converge to zero tracking error in following a specific command repeatedly, starting from the same initial conditions each time. The extension of these methods from the adaptive control problem to the learning control problem is seen to be trivial. The advantages and disadvantages of using learning control based on such adaptive control concepts for nonlinear systems, and the use of other currently available learning control algorithms are discussed.

  11. NEW SCIENCE OF LEARNING: COGNITION, COMPUTERS AND COLLABORATION IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Reviewed by Onur DONMEZ

    2011-01-01

    Full Text Available Information and Communication Technologies (ICTs have pervaded and changed much of our lives both on individual and societal scales. PCs, notebooks, tablets, cell phones, RSS feeds, emails, podcasts, tweets, social networks are all technologies we are familiar with and we are intensively using them in our daily lives. It is safe to say that our lives are becoming more and more digitized day by day.We have already invented bunch of terms to refer effects of these technologies on our lives. Digital nomads, grasshopper minds, millennium learners, digital natives, information age, knowledge building, knowledge society, network society are all terms invented to refer societal changes motivated by ICTs. New opportunities provided by ICTs are also shaping skill and quality demands of the next age. Individuals have to match these qualities if they want to earn their rightful places in tomorrow‘s world. Education is of course the sole light to guide them in their transformation to tomorrow‘s individual. One question arises however: ―are today‘s educational paradigms and practices ready to confront such a challenge?‖ There is a coherent and strong opinion among educators that the answer is ―NO‖. ―Today‘s students think and process information fundamentally differently from their predecessors‖(Prensky, 2001. And education has to keep pace with these students and their needs. But how? Khine & Saleh managed to gather distinguished colleagues around this question within their book titled ―New Science of Learning: Cognition, Computers and Collaboration‖. The book is composed of 29 chapters within three major topics which are: cognition, computers and collaboration.

  12. The drive to control : how affect and motivation regulate cognitive control

    NARCIS (Netherlands)

    Steenbergen, Hendrik van

    2012-01-01

    The studies described in this thesis aimed to investigate how affect and motivation impact cognitive control, in terms of both behavior and brain activation. Six out of the eight empirical studies found support for indirect effects on cognitive control, as measured with sequential trial-to-trial

  13. A Cognitive Skill Classification Based On Multi Objective Optimization Using Learning Vector Quantization for Serious Games

    Directory of Open Access Journals (Sweden)

    Moh. Aries Syufagi

    2011-12-01

    Full Text Available Nowadays, serious games and game technology are poised to transform the way of educating and training students at all levels. However, pedagogical value in games do not help novice students learn, too many memorizing and reduce learning process due to no information of player’s ability. To asses the cognitive level of player ability, we propose a Cognitive Skill Game (CSG. CSG improves this cognitive concept to monitor how players interact with the game. This game employs Learning Vector Quantization (LVQ for optimizing the cognitive skill input classification of the player. CSG is using teacher’s data to obtain the neuron vector of cognitive skill pattern supervise. Three clusters multi objective target will be classified as; trial and error, carefully and, expert cognitive skill. In the game play experiments using 33 respondent players demonstrates that 61% of players have high trial and error cognitive skill, 21% have high carefully cognitive skill, and 18% have high expert cognitive skill. CSG may provide information to game engine when a player needs help or when wanting a formidable challenge. The game engine will provide the appropriate tasks according to players’ ability. CSG will help balance the emotions of players, so players do not get bored and frustrated. Players have a high interest to finish the game if the player is emotionally stable. Interests in the players strongly support the procedural learning in a serious game.

  14. Cognitive deficits are a matter of emotional context: inflexible strategy use mediates context-specific learning impairments in OCD.

    Science.gov (United States)

    Zetsche, Ulrike; Rief, Winfried; Westermann, Stefan; Exner, Cornelia

    2015-01-01

    The present study examines the interplay between cognitive deficits and emotional context in obsessive-compulsive disorder (OCD) and social phobia (SP). Specifically, this study examines whether the inflexible use of efficient learning strategies in an emotional context underlies impairments in probabilistic classification learning (PCL) in OCD, and whether PCL impairments are specific to OCD. Twenty-three participants with OCD, 30 participants with SP and 30 healthy controls completed a neutral and an OCD-specific PCL task. OCD participants failed to adopt efficient learning strategies and showed fewer beneficial strategy switches than controls only in an OCD-specific context, but not in a neutral context. Additionally, OCD participants did not show any explicit memory impairments. Number of beneficial strategy switches in the OCD-specific task mediated the difference in PCL performance between OCD and control participants. Individuals with SP were impaired in both PCL tasks. In contrast to neuropsychological models postulating general cognitive impairments in OCD, the present findings suggest that it is the interaction between cognition and emotion that is impaired in OCD. Specifically, activated disorder-specific fears may impair the flexible adoption of efficient learning strategies and compromise otherwise unimpaired PCL. Impairments in PCL are not specific to OCD.

  15. Socio-cognitive profiles for visual learning in young and older adults

    Directory of Open Access Journals (Sweden)

    Julie eChristian

    2015-06-01

    Full Text Available It is common wisdom that practice makes perfect; but why do some adults learn better than others? Here, we investigate individuals’ cognitive and social profiles to test which variables account for variability in learning ability across the lifespan. In particular, we focused on visual learning using tasks that test the ability to inhibit distractors and select task-relevant features. We tested the ability of young and older adults to improve through training in the discrimination of visual global forms embedded in a cluttered background. Further, we used a battery of cognitive tasks and psycho-social measures to examine which of these variables predict training-induced improvement in perceptual tasks and may account for individual variability in learning ability. Using partial least squares regression modelling, we show that visual learning is influenced by cognitive (i.e. cognitive inhibition, attention and social (strategic and deep learning factors rather than an individual’s age alone. Further, our results show that independent of age, strong learners rely on cognitive factors such as attention, while weaker learners use more general cognitive strategies. Our findings suggest an important role for higher-cognitive circuits involving executive functions that contribute to our ability to improve in perceptual tasks after training across the lifespan.

  16. Differential neural substrates of working memory and cognitive skill learning in healthy young volunteers

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun

    2005-01-01

    It is known that different neural circuits are involved in working memory and cognitive skill learning that represent explicit and implicit memory functions, respectively. In the present study, we investigated the metabolic correlates of working memory and cognitive skill learning with correlation analysis of FDG PET images. Fourteen right-handed healthy subjects (age, 24 ± 2 yr; 5 males and 9 females) underwent brain FDG PET and neuropsychological testing. Two-back task and weather prediction task were used for the evaluation of working memory and cognitive skill learning, respectively, Correlation between regional glucose metabolism and cognitive task performance was examined using SPM99. A significant positive correlation between 2-back task performance and regional glucose metabolism was found in the prefrontal regions and superior temporal gyri bilaterally. In the first term of weather prediction task the task performance correlated positively with glucose metabolism in the bilateral prefrontal areas, left middle temporal and posterior cingulate gyri, and left thalamus. In the second and third terms of the task, the correlation found in the prefrontal areas, superior temporal and anterior cingulate gyri bilaterally, right insula, left parahippocampal gyrus, and right caudate nucleus. We identified the neural substrates that are related with performance of working memory and cognitive skill learning. These results indicate that brain regions associated with the explicit memory system are recruited in early periods of cognitive skill learning, but additional brain regions including caudate nucleus are involved in late periods of cognitive skill learning

  17. Differential neural substrates of working memory and cognitive skill learning in healthy young volunteers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sang Soo; Lee, Eun Ju; Yoon, Eun Jin; Kim, Yu Kyeong; Lee, Won Woo; Kim, Sang Eun [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2005-07-01

    It is known that different neural circuits are involved in working memory and cognitive skill learning that represent explicit and implicit memory functions, respectively. In the present study, we investigated the metabolic correlates of working memory and cognitive skill learning with correlation analysis of FDG PET images. Fourteen right-handed healthy subjects (age, 24 {+-} 2 yr; 5 males and 9 females) underwent brain FDG PET and neuropsychological testing. Two-back task and weather prediction task were used for the evaluation of working memory and cognitive skill learning, respectively, Correlation between regional glucose metabolism and cognitive task performance was examined using SPM99. A significant positive correlation between 2-back task performance and regional glucose metabolism was found in the prefrontal regions and superior temporal gyri bilaterally. In the first term of weather prediction task the task performance correlated positively with glucose metabolism in the bilateral prefrontal areas, left middle temporal and posterior cingulate gyri, and left thalamus. In the second and third terms of the task, the correlation found in the prefrontal areas, superior temporal and anterior cingulate gyri bilaterally, right insula, left parahippocampal gyrus, and right caudate nucleus. We identified the neural substrates that are related with performance of working memory and cognitive skill learning. These results indicate that brain regions associated with the explicit memory system are recruited in early periods of cognitive skill learning, but additional brain regions including caudate nucleus are involved in late periods of cognitive skill learning.

  18. Primate cognition: attention, episodic memory, prospective memory, self-control, and metacognition as examples of cognitive control in nonhuman primates.

    Science.gov (United States)

    Beran, Michael J; Menzel, Charles R; Parrish, Audrey E; Perdue, Bonnie M; Sayers, Ken; Smith, J David; Washburn, David A

    2016-09-01

    Primate Cognition is the study of cognitive processes, which represent internal mental processes involved in discriminations, decisions, and behaviors of humans and other primate species. Cognitive control involves executive and regulatory processes that allocate attention, manipulate and evaluate available information (and, when necessary, seek additional information), remember past experiences to plan future behaviors, and deal with distraction and impulsivity when they are threats to goal achievement. Areas of research that relate to cognitive control as it is assessed across species include executive attention, episodic memory, prospective memory, metacognition, and self-control. Executive attention refers to the ability to control what sensory stimuli one attends to and how one regulates responses to those stimuli, especially in cases of conflict. Episodic memory refers to memory for personally experienced, autobiographical events. Prospective memory refers to the formation and implementation of future-intended actions, such as remembering what needs to be done later. Metacognition consists of control and monitoring processes that allow individuals to assess what information they have and what information they still need, and then if necessary to seek information. Self-control is a regulatory process whereby individuals forego more immediate or easier to obtain rewards for more delayed or harder to obtain rewards that are objectively more valuable. The behavioral complexity shown by nonhuman primates when given tests to assess these capacities indicates psychological continuities with human cognitive control capacities. However, more research is needed to clarify the proper interpretation of these behaviors with regard to possible cognitive constructs that may underlie such behaviors. WIREs Cogn Sci 2016, 7:294-316. doi: 10.1002/wcs.1397 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  19. Towards a common framework of grounded action cognition: Relating motor control, perception and cognition.

    Science.gov (United States)

    Gentsch, Antje; Weber, Arne; Synofzik, Matthis; Vosgerau, Gottfried; Schütz-Bosbach, Simone

    2016-01-01

    The relation between motor control and action cognition - including action-related thoughts and action-related perception - has been subject to controversial discussions in the last three decades. During these decades, cognitive neuroscience has been increasingly confronted with a huge variety of different accounts trying to understand and explain the relation between these systems, their interdependencies and the mediating mechanisms by establishing notions such as "internal models", "simulation" or "shared representation". These accounts, however, include a large array of partly overlapping, partly contradictory theories using similar terms for different mechanisms and different terms for similar mechanisms. In the absence of a systematic work-up and comparison, this array of accounts and theories leads to confusion in the field, duplication of experimental work, and unconnected parallelism of theory formation within and between different disciplines. Here we provide a systematic comparison of current models and prospective theories that deal with the relation between cognition, perception and motor control mechanisms. In a second step, we propose "grounded action cognition" as a comprehensive metatheoretical framework which defines different hypothetical possibilities of the relations between these domains, offers systematic insights into current models and theories and last but not least may help to increase comparability of empirical research in the domain of action and action cognition. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. The development of Self-control of Cognitive Activity in Preschool Age

    Directory of Open Access Journals (Sweden)

    Chernokova T.E.,

    2015-02-01

    Full Text Available We discuss the problem of self-control formation in the context of metacognitive development of children. The hypothesis of the study was that in the preschool age, the structure of self-cognition begins to form, which includes anticipating, process and final self-control. The aim of the study was to identify the dynamics of self-control of cognitive activity in the preschool years. We used an experimental technique in which children were asked to identify the problem and plan of the learning activities, implement it and evaluate the results. The study involved 60 children aged 4 to 7 years. In all age groups higher rates of current and total self-control were found, but the most intensive dynamics were identified in terms of predictive self-control. In the preschool age children occasionally show a formal self-control. At the age of 5-6 years old, the children start to develop the self-control structure, and significant correlations were found between the indicators of current and final self. The most advanced children demonstrate meaningful self-control. This is due not only to the development of self-awareness, arbitrariness and traditionally described cognitive processes, but also to the development of dialectical thinking and metacognitions.

  1. Global efficiency of structural networks mediates cognitive control in mild cognitive impairment

    NARCIS (Netherlands)

    Berlot, R. (Rok); Metzler-Baddeley, C. (Claudia); M.A. Ikram (Arfan); Jones, D.K. (Derek K.); O'Sullivan, M.J. (Michael J.)

    2016-01-01

    markdownabstract__Background:__ Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. __Objective:__ To determine the contribution of both localized white

  2. Pre-stressor cognitive control is related to intrusive cognition of a stressful film

    NARCIS (Netherlands)

    Wessel, Ineke; Overwijk, Sippie; Verwoerd, Johan; de Vrieze, Nienke

    It has been suggested that relatively weak cognitive control existing prior to a stressful event may be associated with intrusive memories of that stressor afterwards. We explored this in two analog studies employing unselected participants who saw an emotional film fragment and completed behavioral

  3. SIRT1 Regulates Cognitive Performance and Ability of Learning and Memory in Diabetic and Nondiabetic Models

    Directory of Open Access Journals (Sweden)

    Yue Cao

    2017-01-01

    Full Text Available Type 2 diabetes mellitus is a complex age-related metabolic disease. Cognitive dysfunction and learning and memory deficits are main characteristics of age-related metabolic diseases in the central nervous system. The underlying mechanisms contributing to cognitive decline are complex, especially cognitive dysfunction associated with type 2 diabetes mellitus. SIRT1, as one of the modulators in insulin resistance, is indispensable for learning and memory. In the present study, deacetylation, oxidative stress, mitochondrial dysfunction, inflammation, microRNA, and tau phosphorylation are considered in the context of mechanism and significance of SIRT1 in learning and memory in diabetic and nondiabetic murine models. In addition, future research directions in this field are discussed, including therapeutic potential of its activator, resveratrol, and application of other compounds in cognitive improvement. Our findings suggest that SIRT1 might be a potential therapeutic target for the treatment of cognitive impairment induced by type 2 diabetes mellitus.

  4. Non-cognitive Characteristics of Gifted Students With Learning Disabilities: An In-depth Systematic Review.

    Science.gov (United States)

    Beckmann, Else; Minnaert, Alexander

    2018-01-01

    Gifted students who also have learning disabilities (G/LD) are often overlooked when students are assessed either for giftedness or specific learning disabilities. The cognitive and non-cognitive characteristics of these G/LD students are habitually discussed only briefly alongside identification and intervention issues and, beyond that, the relevance of non-cognitive characteristics is often left unconsidered. Accordingly, this study aims to conduct an in-depth review of the non-cognitive characteristics of these students for identification and intervention purposes. Detailed analysis was performed on 23 publications. High levels of negative emotions, low self-perception, and adverse interpersonal relationships, as well as high levels of motivation, coping skills and perseverance were found among these students. A common characteristic was a high degree of frustration with the academic situation. The study reveals that these students show considerably duality in their non-cognitive characteristics which requires tailored counseling skills to provide effective support for their learning needs.

  5. Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Julia S Cordes

    2015-06-01

    Full Text Available Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC, a central hub for cognitive processing, is one of the dysfunctional brain regions in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI in patients with schizophrenia to enable them to control their ACC activity. Training was performed over three days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI. Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: Patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. However, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, schizophrenia patients can learn to regulate localized brain activity. Cognitive strategies and neural network location differ, however, from healthy controls. These data emphasize that for therapeutic interventions in schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social neurofeedback based on fMRI may be one method to accomplish precise learning targets.

  6. Regulatory BC1 RNA in Cognitive Control

    Science.gov (United States)

    Iacoangeli, Anna; Dosunmu, Aderemi; Eom, Taesun; Stefanov, Dimitre G.; Tiedge, Henri

    2017-01-01

    Dendritic regulatory BC1 RNA is a non-protein-coding (npc) RNA that operates in the translational control of gene expression. The absence of BC1 RNA in BC1 knockout (KO) animals causes translational dysregulation that entails neuronal phenotypic alterations including prolonged epileptiform discharges, audiogenic seizure activity in vivo, and…

  7. Effect of Motivational Scaffolding on E-Learning Environments: Self-Efficacy, Learning Achievement, and Cognitive Style

    Science.gov (United States)

    Valencia-Vallejo, Nilson; López-Vargas, Omar; Sanabria-Rodríguez, Luis

    2018-01-01

    The present research studies the effects of motivational scaffolding that favor self-efficacy and improve learning achievement in students with different cognitive styles in the Field Dependence/Independence (FDI) dimension, when they interact in an e-learning environment on mathematics. The research has an experimental design with two groups and…

  8. Instructional control of reinforcement learning: a behavioral and neurocomputational investigation.

    Science.gov (United States)

    Doll, Bradley B; Jacobs, W Jake; Sanfey, Alan G; Frank, Michael J

    2009-11-24

    Humans learn how to behave directly through environmental experience and indirectly through rules and instructions. Behavior analytic research has shown that instructions can control behavior, even when such behavior leads to sub-optimal outcomes (Hayes, S. (Ed.). 1989. Rule-governed behavior: cognition, contingencies, and instructional control. Plenum Press.). Here we examine the control of behavior through instructions in a reinforcement learning task known to depend on striatal dopaminergic function. Participants selected between probabilistically reinforced stimuli, and were (incorrectly) told that a specific stimulus had the highest (or lowest) reinforcement probability. Despite experience to the contrary, instructions drove choice behavior. We present neural network simulations that capture the interactions between instruction-driven and reinforcement-driven behavior via two potential neural circuits: one in which the striatum is inaccurately trained by instruction representations coming from prefrontal cortex/hippocampus (PFC/HC), and another in which the striatum learns the environmentally based reinforcement contingencies, but is "overridden" at decision output. Both models capture the core behavioral phenomena but, because they differ fundamentally on what is learned, make distinct predictions for subsequent behavioral and neuroimaging experiments. Finally, we attempt to distinguish between the proposed computational mechanisms governing instructed behavior by fitting a series of abstract "Q-learning" and Bayesian models to subject data. The best-fitting model supports one of the neural models, suggesting the existence of a "confirmation bias" in which the PFC/HC system trains the reinforcement system by amplifying outcomes that are consistent with instructions while diminishing inconsistent outcomes.

  9. Student Difficulties in Learning Density: A Distributed Cognition Perspective

    Science.gov (United States)

    Xu, Lihua; Clarke, David

    2012-08-01

    Density has been reported as one of the most difficult concepts for secondary school students (e.g. Smith et al. 1997). Discussion about the difficulties of learning this concept has been largely focused on the complexity of the concept itself or student misconceptions. Few, if any, have investigated how the concept of density was constituted in classroom interactions, and what consequences these interactions have for individual students' conceptual understanding. This paper reports a detailed analysis of two lessons on density in a 7th Grade Australian science classroom, employing the theory of Distributed Cognition (Hollan et al. 1999; Hutchins 1995). The analysis demonstrated that student understanding of density was shaped strongly by the public classroom discussion on the density of two metal blocks. It also revealed the ambiguities associated with the teacher demonstration and the student practical work. These ambiguities contributed to student difficulties with the concept of density identified in this classroom. The results of this study suggest that deliberate effort is needed to establish shared understanding not only about the purpose of the activities, but also about the meaning of scientific language and the utility of tools. It also suggests the importance of appropriate employment of instructional resources in order to facilitate student scientific understanding.

  10. The relationship between learning mathematics and general cognitive ability in primary school.

    Science.gov (United States)

    Cowan, Richard; Hurry, Jane; Midouhas, Emily

    2018-06-01

    Three relationships between learning mathematics and general cognitive ability have been hypothesized: The educational hypothesis that learning mathematics develops general cognitive skills, the psychometric hypothesis that differences in general cognitive ability cause differences in mathematical attainment, and the reciprocal influence hypothesis that developments in mathematical ability and general cognitive ability influence each other. These hypotheses are assessed with a sample of 948 children from the Twins Early Development Study who were assessed at 7, 9, and 10 years on mathematics, English, and general cognitive ability. A cross-lagged path analysis with mathematics and general cognitive ability measures supports the reciprocal influence hypothesis between 7 and 9 and between 9 and 10. A second analysis including English assessments only provides evidence of a reciprocal relationship between 7 and 9. Statement of Contribution What is already known on this subject? The correlations between mathematical attainment, literacy, and measures of general cognitive skills are well established. The role of literacy in developing general cognitive skills is emerging. What the present study adds? Mathematics contributes to the development of general cognitive skills. General cognitive ability contributes to mathematical development between 7 and 10. These findings support the hypothesis of reciprocal influence between mathematics and general cognitive ability, at least between 7 and 9. © 2017 The British Psychological Society.

  11. Designing instruction and learning for cognitively gifted pupils in preschool and primary school

    NARCIS (Netherlands)

    Mooij, Ton

    2012-01-01

    Mooij, T. (2013). Designing education and learning for cognitively gifted pupils in preschool and primary school. International Journal of Inclusive Education, 17(6), 597-613. doi:10.1080/13603116.2012.696727

  12. Cognitive-Developmental Learning for a Humanoid Robot: A Caregiver's Gift

    National Research Council Canada - National Science Library

    Arsenio, Artur M

    2004-01-01

    The goal of this work is to build a cognitive system for the humanoid robot, Cog, that exploits human caregivers as catalysts to perceive and learn about actions, objects, scenes, people, and the robot itself...

  13. Biological lifestyle factors in adult distance education: predicting cognitive and learning performance

    NARCIS (Netherlands)

    Gijselaers, Jérôme

    2015-01-01

    Gijselaers, H. J. M. (2015, 20 October). Biological lifestyle factors in adult distance education: predicting cognitive and learning performance. Presentation given for the inter-faculty Data Science group at the Open University of the Netherlands, Heerlen, The Netherlands.

  14. Cognitive and motivational variables that shape academic learning: A preliminary study

    Directory of Open Access Journals (Sweden)

    Palos, Ramona

    2013-07-01

    Full Text Available The aim of this pilot study was to capture the relationship between cognitive and motivational variables and the student learning. 102 students from the Psychology specialization, license cycle, took part in the study. The following tools were used: the Rational-Experiential Inventory (Paccini & Epstein, 1999; the Intellectual development level questionnaire (Paloş, 2009, the Motivated Strategies for Learning Questionnaire (Rao & Sachs, 1999. The results indicated that the motivational and learning strategies used by students are influenced by their intellectual development level and their information processing style. Knowing the cognitive and motivational variables play an important role in devising the educational experiences and in making learning more efficient.

  15. A labor/leisure tradeoff in cognitive control.

    Science.gov (United States)

    Kool, Wouter; Botvinick, Matthew

    2014-02-01

    Daily life frequently offers a choice between activities that are profitable but mentally demanding (cognitive labor) and activities that are undemanding but also unproductive (cognitive leisure). Although such decisions are often implicit, they help determine academic performance, career trajectories, and even health outcomes. Previous research has shed light both on the executive control functions that ultimately define cognitive labor and on a "default mode" of brain function that accompanies cognitive leisure. However, little is known about how labor/leisure decisions are actually made. Here, we identify a central principle guiding such decisions. Results from 3 economic-choice experiments indicate that the motivation underlying cognitive labor/leisure decision making is to strike an optimal balance between income and leisure, as given by a joint utility function. The results reported establish a new connection between microeconomics and research on executive function. They also suggest a new interpretation of so-called ego-depletion effects and a potential new approach to such phenomena as mind wandering and self-control failure.

  16. A labor/leisure tradeoff in cognitive control

    Science.gov (United States)

    Kool, Wouter; Botvinick, Matthew

    2013-01-01

    Daily life frequently offers a choice between activities that are profitable but mentally demanding (cognitive labor) and activities that are undemanding but also unproductive (cognitive leisure). Although such decisions are often implicit, they help determine academic performance, career trajectories, and even health outcomes. Previous research has shed light both on the executive control functions that ultimately define cognitive labor and a ‘default mode’ of brain function that accompanies cognitive leisure. However, little is known about how labor/leisure decisions are actually made. Here, we identify a central principle guiding such decisions. Results from three economic-choice experiments indicate that the motivation underlying cognitive labor/leisure decision-making is to strike an optimal balance between income and leisure, as given by a joint utility function. The results reported establish a new connection between microeconomics and research on executive function. They also suggest a new interpretation of so-called ego-depletion effects, and a potential new approach to such phenomena as mind-wandering and self-control failure. PMID:23230991

  17. Design considerations to improve cognitive ergonomic issues of unmanned vehicle interfaces utilizing video game controllers.

    Science.gov (United States)

    Oppold, P; Rupp, M; Mouloua, M; Hancock, P A; Martin, J

    2012-01-01

    Unmanned (UAVs, UCAVs, and UGVs) systems still have major human factors and ergonomic challenges related to the effective design of their control interface systems, crucial to their efficient operation, maintenance, and safety. Unmanned system interfaces with a human centered approach promote intuitive interfaces that are easier to learn, and reduce human errors and other cognitive ergonomic issues with interface design. Automation has shifted workload from physical to cognitive, thus control interfaces for unmanned systems need to reduce mental workload on the operators and facilitate the interaction between vehicle and operator. Two-handed video game controllers provide wide usability within the overall population, prior exposure for new operators, and a variety of interface complexity levels to match the complexity level of the task and reduce cognitive load. This paper categorizes and provides taxonomy for 121 haptic interfaces from the entertainment industry that can be utilized as control interfaces for unmanned systems. Five categories of controllers were based on the complexity of the buttons, control pads, joysticks, and switches on the controller. This allows the selection of the level of complexity needed for a specific task without creating an entirely new design or utilizing an overly complex design.

  18. The role of consciousness in cognitive control and decision making

    NARCIS (Netherlands)

    van Gaal, S.; de Lange, F.P.; Cohen, M.X.

    2012-01-01

    Here we review studies on the complexity and strength of unconscious information processing. We focus on empirical evidence that relates awareness of information to cognitive control processes (e.g., response inhibition, conflict resolution, and task-switching), the life-time of information

  19. Cognitive control deficits associated with antisocial personality disorder and psychopathy.

    Science.gov (United States)

    Zeier, Joshua D; Baskin-Sommers, Arielle R; Hiatt Racer, Kristina D; Newman, Joseph P

    2012-07-01

    Antisociality has been linked to a variety of executive functioning deficits, including poor cognitive control. Surprisingly, cognitive control deficits are rarely found in psychopathic individuals, despite their notoriously severe and persistent antisocial behavior. In fact, primary (low-anxious) psychopathic individuals display superior performance on cognitive control-type tasks under certain circumstances. To clarify these seemingly contradictory findings, we administered a response competition (i.e., flanker) task to incarcerated offenders, who were assessed for Antisocial Personality Disorder (APD) symptoms and psychopathy. As hypothesized, APD related to poorer accuracy, especially on incongruent trials. Contrary to expectation, however, the same pattern of results was found in psychopathy. Additional analyses indicated that these effects of APD and psychopathy were associated with overlapping variance. The findings suggest that psychopathy and APD symptoms are both associated with deficits in cognitive control, and that this deficit relates to general antisociality as opposed to a specific antisocial syndrome. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  20. Cognitive impairment in schizophrenia across age groups: a case-control study.

    Science.gov (United States)

    Mosiołek, Anna; Gierus, Jacek; Koweszko, Tytus; Szulc, Agata

    2016-02-24

    The potential dynamics of cognitive impairment in schizophrenia is discussed in the literature of the field. Recent publications suggest modest changes in level of cognitive impairment after first psychotic episode. Present article attempts to explore cognitive differences between patients and controls across age groups and differences between age groups in clinical group. One hundred and twenty-eight hospitalized patients with schizophrenia (64 women and 64 men) and 68 individuals from the control group (32 women and 32 men) aged 18-55 years were examined. The patients were divided into age groups (18-25, 26-35, 36-45, 46-55). Both groups were examined using Wisconsin Card Sorting Test, Rey Auditory Verbal Learning Test, Rey Osterrieth Complex Figure Test, Trail Making Test (A and B), Stroop Test, verbal fluency test and Wechsler digit span. Patients with schizophrenia obtained significantly lower scores versus the control group in regard to all the measured cognitive functions (Mann-Whitney U; p age groups, however, statistically important impairment in executive functions (WCST) were present only in "older" groups. Patients with schizophrenia obtained less favourable results than the control group in all age groups. Deficits regarding executive functions do not seem to be at a significant level among the youngest group, whereas they are more noticeable in the group of 46-55-year-olds. Executive functions are significantly lowered in the group aged 36-45 in comparison to the "younger" groups. The level of cognitive functions shows a mild exacerbation in connection with age, whereas cognitive rigidity proved to be related to the number of years spent without hospital treatment.

  1. Role of state-dependent learning in the cognitive effects of caffeine in mice

    OpenAIRE

    Sanday, Leandro [UNIFESP; Zanin, Karina Agustini [UNIFESP; Patti, Camilla de Lima [UNIFESP; Fernandes-Santos, Luciano [UNIFESP; Oliveira, Larissa C. [UNIFESP; Longo, Beatriz Monteiro [UNIFESP; Andersen, Monica Levy [UNIFESP; Tufik, Sergio [UNIFESP; Frussa-Filho, Roberto [UNIFESP

    2013-01-01

    Caffeine is the most widely used psychoactive substance in the world and it is generally believed that it promotes beneficial effects on cognitive performance. However, there is also evidence suggesting that caffeine has inhibitory effects on learning and memory. Considering that caffeine may have anxiogenic effects, thus changing the emotional state of the subjects, state-dependent learning may play a role in caffeine-induced cognitive alterations. Mice were administered 20 mg/kg caffeine be...

  2. Information Memory Processing and Retrieval: Relationships of Concrete Learning and Concrete and Abstract Cognitions.

    Science.gov (United States)

    Dean, Bonnie L.

    Reported is a study related to the Project on an Information Memory Model and designed to encompass the claims of Piaget and Inhelder on differences of kinds of cognition and recall done on figural sorting task cognition at the Project on an Information Memory Model. The work of Piaget and Inhelder has defined learning information flow and related…

  3. Designing an Adaptive Web-Based Learning System Based on Students' Cognitive Styles Identified Online

    Science.gov (United States)

    Lo, Jia-Jiunn; Chan, Ya-Chen; Yeh, Shiou-Wen

    2012-01-01

    This study developed an adaptive web-based learning system focusing on students' cognitive styles. The system is composed of a student model and an adaptation model. It collected students' browsing behaviors to update the student model for unobtrusively identifying student cognitive styles through a multi-layer feed-forward neural network (MLFF).…

  4. The Neuroscience of Mathematical Cognition and Learning. OECD Education Working Papers, No. 136

    Science.gov (United States)

    Looi, Chung Yen; Thompson, Jacqueline; Krause, Beatrix; Kadosh, Roi Cohen

    2016-01-01

    The synergistic potential of cognitive neuroscience and education for efficient learning has attracted considerable interest from the general public, teachers, parents, academics and policymakers alike. This review is aimed at providing 1) an accessible and general overview of the research progress made in cognitive neuroscience research in…

  5. Research on Cognitive Load Theory and its Design Implications for E-Learning

    NARCIS (Netherlands)

    Van Merriënboer, Jeroen; Ayres, Paul

    2007-01-01

    This introduction to the special issue provides a context for the contributing articles. For readers who are not familiar with Cognitive Load Theory (CLT), it provides a very brief description of assumptions regarding memory systems and learning processes, different types of cognitive load

  6. Does Implicit Learning in Non-Demented Parkinson's Disease depend on the Level of Cognitive Functioning?

    Science.gov (United States)

    Vandenbossche, Jochen; Deroost, Natacha; Soetens, Eric; Kerckhofs, Eric

    2009-01-01

    We investigated the influence of the level of cognitive functioning on sequence-specific learning in Parkinson's disease (PD). This was done by examining the relationship between the scales for outcomes in Parkinson's disease-cognition [SCOPA-COG, Marinus, J., Visser, M., Verwey, N. A., Verhey, F. R. J., Middelkoop, H. A. M.,Stiggelbout, A., et…

  7. Applying Cognitive Psychology Based Instructional Design Principles in Mathematics Teaching and Learning: Introduction

    Science.gov (United States)

    Verschaffel, Lieven; Van Dooren, W.; Star, J.

    2017-01-01

    This special issue comprises contributions that address the breadth of current lines of recent research from cognitive psychology that appear promising for positively impacting students' learning of mathematics. More specifically, we included contributions (a) that refer to cognitive psychology based principles and techniques, such as explanatory…

  8. Cognitive control, attention, and the other race effect in memory.

    Science.gov (United States)

    Brown, Thackery I; Uncapher, Melina R; Chow, Tiffany E; Eberhardt, Jennifer L; Wagner, Anthony D

    2017-01-01

    People are better at remembering faces from their own race than other races-a phenomenon with significant societal implications. This Other Race Effect (ORE) in memory could arise from different attentional allocation to, and cognitive control over, same- and other-race faces during encoding. Deeper or more differentiated processing of same-race faces could yield more robust representations of same- vs. other-race faces that could support better recognition memory. Conversely, to the extent that other-race faces may be characterized by lower perceptual expertise, attention and cognitive control may be more important for successful encoding of robust, distinct representations of these stimuli. We tested a mechanistic model in which successful encoding of same- and other-race faces, indexed by subsequent memory performance, is differentially predicted by (a) engagement of frontoparietal networks subserving top-down attention and cognitive control, and (b) interactions between frontoparietal networks and fusiform cortex face processing. European American (EA) and African American (AA) participants underwent fMRI while intentionally encoding EA and AA faces, and ~24 hrs later performed an "old/new" recognition memory task. Univariate analyses revealed greater engagement of frontoparietal top-down attention and cognitive control networks during encoding for same- vs. other-race faces, stemming particularly from a failure to engage the cognitive control network during processing of other-race faces that were subsequently forgotten. Psychophysiological interaction (PPI) analyses further revealed that OREs were characterized by greater functional interaction between medial intraparietal sulcus, a component of the top-down attention network, and fusiform cortex during same- than other-race face encoding. Together, these results suggest that group-based face memory biases at least partially stem from differential allocation of cognitive control and top-down attention during

  9. Cognitive Neurostimulation: Learning to Volitionally Sustain Ventral Tegmental Area Activation.

    Science.gov (United States)

    MacInnes, Jeff J; Dickerson, Kathryn C; Chen, Nan-Kuei; Adcock, R Alison

    2016-03-16

    Activation of the ventral tegmental area (VTA) and mesolimbic networks is essential to motivation, performance, and learning. Humans routinely attempt to motivate themselves, with unclear efficacy or impact on VTA networks. Using fMRI, we found untrained participants' motivational strategies failed to consistently activate VTA. After real-time VTA neurofeedback training, however, participants volitionally induced VTA activation without external aids, relative to baseline, Pre-test, and control groups. VTA self-activation was accompanied by increased mesolimbic network connectivity. Among two comparison groups (no neurofeedback, false neurofeedback) and an alternate neurofeedback group (nucleus accumbens), none sustained activation in target regions of interest nor increased VTA functional connectivity. The results comprise two novel demonstrations: learning and generalization after VTA neurofeedback training and the ability to sustain VTA activation without external reward or reward cues. These findings suggest theoretical alignment of ideas about motivation and midbrain physiology and the potential for generalizable interventions to improve performance and learning. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Mosaic model for sensorimotor learning and control.

    Science.gov (United States)

    Haruno, M; Wolpert, D M; Kawato, M

    2001-10-01

    Humans demonstrate a remarkable ability to generate accurate and appropriate motor behavior under many different and often uncertain environmental conditions. We previously proposed a new modular architecture, the modular selection and identification for control (MOSAIC) model, for motor learning and control based on multiple pairs of forward (predictor) and inverse (controller) models. The architecture simultaneously learns the multiple inverse models necessary for control as well as how to select the set of inverse models appropriate for a given environment. It combines both feedforward and feedback sensorimotor information so that the controllers can be selected both prior to movement and subsequently during movement. This article extends and evaluates the MOSAIC architecture in the following respects. The learning in the architecture was implemented by both the original gradient-descent method and the expectation-maximization (EM) algorithm. Unlike gradient descent, the newly derived EM algorithm is robust to the initial starting conditions and learning parameters. Second, simulations of an object manipulation task prove that the architecture can learn to manipulate multiple objects and switch between them appropriately. Moreover, after learning, the model shows generalization to novel objects whose dynamics lie within the polyhedra of already learned dynamics. Finally, when each of the dynamics is associated with a particular object shape, the model is able to select the appropriate controller before movement execution. When presented with a novel shape-dynamic pairing, inappropriate activation of modules is observed followed by on-line correction.

  11. Developmental continuity in reward-related enhancement of cognitive control.

    Science.gov (United States)

    Strang, Nicole M; Pollak, Seth D

    2014-10-01

    Adolescents engage in more risky behavior than children or adults. The most prominent hypothesis for this phenomenon is that brain systems governing reward sensitivity and brain systems governing self-regulation mature at different rates. Those systems governing reward sensitivity mature in advance of those governing self-control. This hypothesis has substantial empirical support, however, the evidence supporting this theory has been exclusively derived from contexts where self-control systems are required to regulate reward sensitivity in order to promote adaptive behavior. In adults, reward promotes a shift to a proactive control strategy and better cognitive control performance. It is unclear whether children and adolescents will respond to reward in the same way. Using fMRI methodology, we explored whether children and adolescents would demonstrate a shift to proactive control in the context of reward. We tested 22 children, 20 adolescents, and 23 adults. In contrast to our hypothesis, children, adolescents, and adults all demonstrated a shift to proactive cognitive control in the context of reward. In light of the results, current neurobiological theories of adolescent behavior need to be refined to reflect that in certain contexts there is continuity in the manner reward and cognitive control systems interact across development. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Virtual Reality Rehabilitation from Social Cognitive and Motor Learning Theoretical Perspectives in Stroke Population

    Directory of Open Access Journals (Sweden)

    Bita Imam

    2014-01-01

    Full Text Available Objectives. To identify the virtual reality (VR interventions used for the lower extremity rehabilitation in stroke population and to explain their underlying training mechanisms using Social Cognitive (SCT and Motor Learning (MLT theoretical frameworks. Methods. Medline, Embase, Cinahl, and Cochrane databases were searched up to July 11, 2013. Randomized controlled trials that included a VR intervention for lower extremity rehabilitation in stroke population were included. The Physiotherapy Evidence Database (PEDro scale was used to assess the quality of the included studies. The underlying training mechanisms involved in each VR intervention were explained according to the principles of SCT (vicarious learning, performance accomplishment, and verbal persuasion and MLT (focus of attention, order and predictability of practice, augmented feedback, and feedback fading. Results. Eleven studies were included. PEDro scores varied from 3 to 7/10. All studies but one showed significant improvement in outcomes in favour of the VR group (P<0.05. Ten VR interventions followed the principle of performance accomplishment. All the eleven VR interventions directed subject’s attention externally, whereas nine provided training in an unpredictable and variable fashion. Conclusions. The results of this review suggest that VR applications used for lower extremity rehabilitation in stroke population predominantly mediate learning through providing a task-oriented and graduated learning under a variable and unpredictable practice.

  13. Virtual reality rehabilitation from social cognitive and motor learning theoretical perspectives in stroke population.

    Science.gov (United States)

    Imam, Bita; Jarus, Tal

    2014-01-01

    Objectives. To identify the virtual reality (VR) interventions used for the lower extremity rehabilitation in stroke population and to explain their underlying training mechanisms using Social Cognitive (SCT) and Motor Learning (MLT) theoretical frameworks. Methods. Medline, Embase, Cinahl, and Cochrane databases were searched up to July 11, 2013. Randomized controlled trials that included a VR intervention for lower extremity rehabilitation in stroke population were included. The Physiotherapy Evidence Database (PEDro) scale was used to assess the quality of the included studies. The underlying training mechanisms involved in each VR intervention were explained according to the principles of SCT (vicarious learning, performance accomplishment, and verbal persuasion) and MLT (focus of attention, order and predictability of practice, augmented feedback, and feedback fading). Results. Eleven studies were included. PEDro scores varied from 3 to 7/10. All studies but one showed significant improvement in outcomes in favour of the VR group (P learning through providing a task-oriented and graduated learning under a variable and unpredictable practice.

  14. Cognitive control in auditory working memory is enhanced in musicians.

    Directory of Open Access Journals (Sweden)

    Karen Johanne Pallesen

    Full Text Available Musical competence may confer cognitive advantages that extend beyond processing of familiar musical sounds. Behavioural evidence indicates a general enhancement of both working memory and attention in musicians. It is possible that musicians, due to their training, are better able to maintain focus on task-relevant stimuli, a skill which is crucial to working memory. We measured the blood oxygenation-level dependent (BOLD activation signal in musicians and non-musicians during working memory of musical sounds to determine the relation among performance, musical competence and generally enhanced cognition. All participants easily distinguished the stimuli. We tested the hypothesis that musicians nonetheless would perform better, and that differential brain activity would mainly be present in cortical areas involved in cognitive control such as the lateral prefrontal cortex. The musicians performed better as reflected in reaction times and error rates. Musicians also had larger BOLD responses than non-musicians in neuronal networks that sustain attention and cognitive control, including regions of the lateral prefrontal cortex, lateral parietal cortex, insula, and putamen in the right hemisphere, and bilaterally in the posterior dorsal prefrontal cortex and anterior cingulate gyrus. The relationship between the task performance and the magnitude of the BOLD response was more positive in musicians than in non-musicians, particularly during the most difficult working memory task. The results confirm previous findings that neural activity increases during enhanced working memory performance. The results also suggest that superior working memory task performance in musicians rely on an enhanced ability to exert sustained cognitive control. This cognitive benefit in musicians may be a consequence of focused musical training.

  15. Developmental disorders: what can be learned from cognitive neuropsychology?

    Science.gov (United States)

    Castles, Anne; Kohnen, Saskia; Nickels, Lyndsey; Brock, Jon

    2014-01-01

    The discipline of cognitive neuropsychology has been important for informing theories of cognition and describing the nature of acquired cognitive disorders, but its applicability in a developmental context has been questioned. Here, we revisit this issue, asking whether the cognitive neuropsychological approach can be helpful for exploring the nature and causes of developmental disorders and, if so, how. We outline the key features of the cognitive neuropsychological approach, and then consider how some of the major challenges to this approach from a developmental perspective might be met. In doing so, we distinguish between challenges to the methods of cognitive neuropsychology and those facing its deeper conceptual underpinnings. We conclude that the detailed investigation of patterns of both associations and dissociations, and across both developmental and acquired cases, can assist in describing the cognitive deficits within developmental disorders and in delineating possible causal pathways to their acquisition.

  16. Learning styles: The learning methods of air traffic control students

    Science.gov (United States)

    Jackson, Dontae L.

    In the world of aviation, air traffic controllers are an integral part in the overall level of safety that is provided. With a number of controllers reaching retirement age, the Air Traffic Collegiate Training Initiative (AT-CTI) was created to provide a stronger candidate pool. However, AT-CTI Instructors have found that a number of AT-CTI students are unable to memorize types of aircraft effectively. This study focused on the basic learning styles (auditory, visual, and kinesthetic) of students and created a teaching method to try to increase memorization in AT-CTI students. The participants were asked to take a questionnaire to determine their learning style. Upon knowing their learning styles, participants attended two classroom sessions. The participants were given a presentation in the first class, and divided into a control and experimental group for the second class. The control group was given the same presentation from the first classroom session while the experimental group had a group discussion and utilized Middle Tennessee State University's Air Traffic Control simulator to learn the aircraft types. Participants took a quiz and filled out a survey, which tested the new teaching method. An appropriate statistical analysis was applied to determine if there was a significant difference between the control and experimental groups. The results showed that even though the participants felt that the method increased their learning, there was no significant difference between the two groups.

  17. Online reinforcement learning control for aerospace systems

    NARCIS (Netherlands)

    Zhou, Y.

    2018-01-01

    Reinforcement Learning (RL) methods are relatively new in the field of aerospace guidance, navigation, and control. This dissertation aims to exploit RL methods to improve the autonomy and online learning of aerospace systems with respect to the a priori unknown system and environment, dynamical

  18. Frontoparietal cognitive control of verbal memory recall in Alzheimer's disease.

    Science.gov (United States)

    Dhanjal, Novraj S; Wise, Richard J S

    2014-08-01

    Episodic memory retrieval is reliant upon cognitive control systems, of which 2 have been identified with functional neuroimaging: a cingulo-opercular salience network (SN) and a frontoparietal executive network (EN). In Alzheimer's disease (AD), pathology is distributed throughout higher-order cortices. The hypotheses were that this frontoparietal pathology would impair activity associated with verbal memory recall; and that central cholinesterase inhibition (ChI) would modulate this, improving memory recall. Functional magnetic resonance imaging was used to study normal participants and 2 patient groups: mild cognitive impairment (MCI) and AD. Activity within the EN and SN was observed during free recall of previously heard sentences, and related to measures of recall accuracy. In normal subjects, trials with reduced recall were associated with greater activity in both the SN and EN. Better recall was associated with greater activity in medial regions of the default mode network. By comparison, AD patients showed attenuated responses in both the SN and EN compared with either controls or MCI patients, even after recall performance was matched between groups. Following ChI, AD patients showed no modulation of activity within the SN, but increased activity within the EN. There was also enhanced activity within regions associated with episodic and semantic memory during less successful recall, requiring greater cognitive control. The results indicate that in AD, impaired responses of cognitive control networks during verbal memory recall are partly responsible for reduced recall performance. One action of symptom-modifying treatment is partially to reverse the abnormal function of frontoparietal cognitive control and temporal lobe memory networks. © 2014 American Neurological Association.

  19. Neural substrates of cognitive control under the belief of getting neurofeedback training

    Directory of Open Access Journals (Sweden)

    Manuel eNinaus

    2013-12-01

    Full Text Available Learning to modulate one’s own brain activity is the fundament of neurofeedback (NF applications. Besides the neural networks directly involved in the generation and modulation of the neurophysiological parameter being specifically trained, more general determinants of NF efficacy such as self-referential processes and cognitive control have been frequently disregarded. Nonetheless, deeper insight into these cognitive mechanisms and their neuronal underpinnings sheds light on various open NF related questions concerning individual differences, brain-computer interface (BCI illiteracy as well as a more general model of NF learning. In this context, we investigated the neuronal substrate of these more general regulatory mechanisms that are engaged when participants believe that they are receiving NF. Twenty healthy participants (40-63 years, 10 female performed a sham NF paradigm during fMRI scanning. All participants were novices to NF-experiments and were instructed to voluntarily modulate their own brain activity based on a visual display of moving color bars. However, the bar depicted a recording and not the actual brain activity of participants. Reports collected at the end of the experiment indicate that participants were unaware of the sham feedback. In comparison to a passive watching condition, bilateral insula, anterior cingulate cortex and supplementary motor and dorsomedial and lateral prefrontal area were activated when participants actively tried to control the bar. In contrast, when merely watching moving bars, increased activation in the left angular gyrus was observed. These results show that the intention to control a moving bar is sufficient to engage a broad frontoparietal and cingulo-opercular network involved in cognitive control. The results of the present study indicate that tasks such as those generally employed in NF training recruit the neuronal correlates of cognitive control even when only sham NF is presented.

  20. Cognitive Profiles of Mathematical Problem Solving Learning Disability for Different Definitions of Disability

    Science.gov (United States)

    Tolar, Tammy D.; Fuchs, Lynn; Fletcher, Jack M.; Fuchs, Douglas; Hamlett, Carol L.

    2014-01-01

    Three cohorts of third-grade students (N = 813) were evaluated on achievement, cognitive abilities, and behavioral attention according to contrasting research traditions in defining math learning disability (LD) status: low achievement versus extremely low achievement and IQ-achievement discrepant versus strictly low-achieving LD. We use methods from these two traditions to form math problem solving LD groups. To evaluate group differences, we used MANOVA-based profile and canonical analyses to control for relations among the outcomes and regression to control for group definition variables. Results suggest that basic arithmetic is the key distinguishing characteristic that separates low-achieving problem solvers (including LD, regardless of definition) from typically achieving students. Word problem solving is the key distinguishing characteristic that separates IQ-achievement-discrepant from strictly low-achieving LD students, favoring the IQ-achievement-discrepant students. PMID:24939971

  1. The Experimental Research on E-Learning Instructional Design Model Based on Cognitive Flexibility Theory

    Science.gov (United States)

    Cao, Xianzhong; Wang, Feng; Zheng, Zhongmei

    The paper reports an educational experiment on the e-Learning instructional design model based on Cognitive Flexibility Theory, the experiment were made to explore the feasibility and effectiveness of the model in promoting the learning quality in ill-structured domain. The study performed the experiment on two groups of students: one group learned through the system designed by the model and the other learned by the traditional method. The results of the experiment indicate that the e-Learning designed through the model is helpful to promote the intrinsic motivation, learning quality in ill-structured domains, ability to resolve ill-structured problem and creative thinking ability of the students.

  2. Trait susceptibility to worry modulates the effects of cognitive load on cognitive control: An ERP study.

    Science.gov (United States)

    Owens, Max; Derakshan, Nazanin; Richards, Anne

    2015-10-01

    According to the predictions of attentional control theory (ACT) of anxiety (Eysenck, Derakshan, Santos, & Calvo, 2007), worry is a central feature of anxiety that interferes with the ability to inhibit distracting information necessary for successful task performance. However, it is unclear how such cognitive control deficits are modulated by task demands and by the emotionality of the distractors. A sample of 31 participants (25 female) completed a novel flanker task with emotional and neutral distractors under low- and high-cognitive-load conditions. The negative-going N2 event-related potential was measured to index participants' level of top-down resource allocation in the inhibition of distractors under high- and low-load conditions. Results showed N2 amplitudes were larger under high- compared with low-load conditions. In addition, under high but not low load, trait worry was associated with greater N2 amplitudes. Our findings support ACT predictions that trait worry adversely affects goal-directed behavior, and is associated with greater recruitment of cognitive resources to inhibit the impact of distracting information under conditions in which cognitive resources are taxed. (c) 2015 APA, all rights reserved).

  3. Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding

    Science.gov (United States)

    Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.

    2018-04-01

    The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.

  4. A study of the relationship between learning styles and cognitive abilities in engineering students

    Science.gov (United States)

    Hames, E.; Baker, M.

    2015-03-01

    Learning preferences have been indirectly linked to student success in engineering programmes, without a significant body of research to connect learning preferences with cognitive abilities. A better understanding of the relationship between learning styles and cognitive abilities will allow educators to optimise the classroom experience for students. The goal of this study was to determine whether relationships exist between student learning styles, as determined by the Felder-Soloman Inventory of Learning Styles (FSILS), and their cognitive performance. Three tests were used to assess student's cognitive abilities: a matrix reasoning task, a Tower of London task, and a mental rotation task. Statistical t-tests and correlation coefficients were used to quantify the results. Results indicated that the global-sequential, active-referential, and visual-verbal FSILS learning styles scales are related to performance on cognitive tasks. Most of these relationships were found in response times, not accuracy. Differences in task performance between gender groups (male and female) were more notable than differences between learning styles groups.

  5. Learning strategies and general cognitive ability as predictors of gender- specific academic achievement.

    Science.gov (United States)

    Ruffing, Stephanie; Wach, F-Sophie; Spinath, Frank M; Brünken, Roland; Karbach, Julia

    2015-01-01

    Recent research has revealed that learning behavior is associated with academic achievement at the college level, but the impact of specific learning strategies on academic success as well as gender differences therein are still not clear. Therefore, the aim of this study was to investigate gender differences in the incremental contribution of learning strategies over general cognitive ability in the prediction of academic achievement. The relationship between these variables was examined by correlation analyses. A set of t-tests was used to test for gender differences in learning strategies, whereas structural equation modeling as well as multi-group analyses were applied to investigate the incremental contribution of learning strategies for male and female students' academic performance. The sample consisted of 461 students (mean age = 21.2 years, SD = 3.2). Correlation analyses revealed that general cognitive ability as well as the learning strategies effort, attention, and learning environment were positively correlated with academic achievement. Gender differences were found in the reported application of many learning strategies. Importantly, the prediction of achievement in structural equation modeling revealed that only effort explained incremental variance (10%) over general cognitive ability. Results of multi-group analyses showed no gender differences in this prediction model. This finding provides further knowledge regarding gender differences in learning research and the specific role of learning strategies for academic achievement. The incremental assessment of learning strategy use as well as gender-differences in their predictive value contributes to the understanding and improvement of successful academic development.

  6. Fine Motor Control Is Related to Cognitive Control in Adolescents with Down Syndrome

    Science.gov (United States)

    Chen, Chih-Chia; Ringenbach, Shannon D. R.; Albert, Andrew; Semken, Keith

    2014-01-01

    The connection between human cognitive development and motor functioning has been systematically examined in many typical and atypical populations; however, only a few studies focus on people with Down syndrome (DS). Twelve adolescents with DS participated and their cognitive control, measured by the Corsi-Block tapping test (e.g., visual working…

  7. Acute alcohol effects on inhibitory control and implicit cognition: implications for loss of control over drinking

    NARCIS (Netherlands)

    Field, M.; Wiers, R.W.; Christiansen, P.; Fillmore, M.T.; Verster, J.C.

    2010-01-01

    Alcohol impairs inhibitory control, and it alters implicit alcohol cognitions including attentional bias and implicit associations. These effects are seen after doses of alcohol which do not lead to global impairments in cognitive performance. We review studies which demonstrate that the effects of

  8. Cognitive Function of Children and Adolescents with Attention Deficit Hyperactivity Disorder and Learning Difficulties: A Developmental Perspective

    Science.gov (United States)

    Huang, Fang; Sun, Li; Qian, Ying; Liu, Lu; Ma, Quan-Gang; Yang, Li; Cheng, Jia; Cao, Qing-Jiu; Su, Yi; Gao, Qian; Wu, Zhao-Min; Li, Hai-Mei; Qian, Qiu-Jin; Wang, Yu-Feng

    2016-01-01

    Background: The cognitive function of children with either attention deficit hyperactivity disorder (ADHD) or learning disabilities (LDs) is known to be impaired. However, little is known about the cognitive function of children with comorbid ADHD and LD. The present study aimed to explore the cognitive function of children and adolescents with ADHD and learning difficulties in comparison with children with ADHD and healthy controls in different age groups in a large Chinese sample. Methods: Totally, 1043 participants with ADHD and learning difficulties (the ADHD + learning difficulties group), 870 with pure ADHD (the pure ADHD group), and 496 healthy controls were recruited. To investigate the difference in cognitive impairment using a developmental approach, all participants were divided into three age groups (6–8, 9–11, and 12–14 years old). Measurements were the Chinese-Wechsler Intelligence Scale for Children, the Stroop Color-Word Test, the Trail-Making Test, and the Behavior Rating Inventory of Executive Function-Parents (BRIEF). Multivariate analysis of variance was used. Results: The results showed that after controlling for the effect of ADHD symptoms, the ADHD + learning difficulties group was still significantly worse than the pure ADHD group, which was, in turn, worse than the control group on full intelligence quotient (98.66 ± 13.87 vs. 105.17 ± 14.36 vs. 112.93 ± 13.87, P ADHD symptoms, intelligence quotient, age, and gender. As for the age groups, the differences among groups became nonsignificant in the 12–14 years old group for inhibition (meaning interference of the Stroop Color-Word Test, 18.00 [13.00, 25.00] s vs. 17.00 [15.00, 26.00] s vs. 17.00 [10.50, 20.00] s, P = 0.704) and shift function (shifting time of the Trail-Making Test, 62.00 [43.00, 97.00] s vs. 53.00 [38.00, 81.00] s vs. 101.00 [88.00, 114.00] s, P = 0.778). Conclusions: Children and adolescents with ADHD and learning difficulties have more severe cognitive

  9. Karolinska Scales of Personality, cognition and psychotic symptoms in patients with schizophrenia and healthy controls.

    Science.gov (United States)

    Nilsson, Björn Mikael; Holm, Gunnar; Ekselius, Lisa

    2016-01-01

    Studies on both personality dimensions and cognition in schizophrenia are scarce. The objective of the present study was to examine personality traits and the relation to cognitive function and psychotic symptoms in a sample of patients with schizophrenia and healthy controls. In total 23 patients with schizophrenia and 14 controls were assessed with the Karolinska Scales of Personality (KSP). A broad cognitive test programme was used, including the Wechsler Adult Intelligence Scales, the Finger-Tapping Test, the Trail Making Test, the Verbal Fluency Test, the Benton Visual Retention Test, the Wisconsin Card Sorting Test and Rey Auditory Verbal Learning Test . Compared with controls, the patients exhibited prominent elevations on KSP scales measuring anxiety proneness and neuroticism (P = 0.000005-0.0001), on the Detachment scale (P < 0.00009) and lower value on the Socialization scale (P < 0.0002). The patients also scored higher on the Inhibition of Aggression, Suspicion, Guilt and Irritability scales (P = 0.002-0.03) while the remaining five scales did not differ between patients and controls. KSP anxiety-related scales correlated with the Positive and Negative Symptoms Scale (PANSS) general psychopathology subscale. Cognitive test results were uniformly lower in the patient group and correlated with PANSS negative symptoms subscale. There was no association between KSP scale scores and PANSS positive or negative symptoms. The patients revealed a highly discriminative KSP test profile with elevated scores in neuroticism- and psychoticism-related scales as compared to controls. Results support previous findings utilizing other personality inventories in patients with schizophrenia. Cognitive test performance correlated inversely with negative symptoms.

  10. Dynamic adjustments of cognitive control during economic decision making.

    Science.gov (United States)

    Soutschek, Alexander; Schubert, Torsten

    2014-10-01

    Decision making in the Ultimatum game requires the resolution of conflicts between economic self-interest and fairness intuitions. Since cognitive control processes play an important role in conflict resolution, the present study examined how control processes that are triggered by conflicts between fairness and self-interest in unfair offers affect subsequent decisions in the Ultimatum game. Our results revealed that more unfair offers were accepted following previously unfair, compared to previously fair offers. Interestingly, the magnitude of this conflict adaptation effect correlated with the individual subjects' focus on economic self-interest. We concluded that conflicts between fairness and self-interest trigger cognitive control processes, which reinforce the focus on the current task goal. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Learning to Control Advanced Life Support Systems

    Science.gov (United States)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  12. Cognitive Strategies for Learning from Static and Dynamic Visuals.

    Science.gov (United States)

    Lewalter, D.

    2003-01-01

    Studied the effects of including static or dynamic visuals in an expository text on a learning outcome and the use of learning strategies when working with these visuals. Results for 60 undergraduates for both types of illustration indicate different frequencies in the use of learning strategies relevant for the learning outcome. (SLD)

  13. Applications of Stochastic Analyses for Collaborative Learning and Cognitive Assessment

    National Research Council Canada - National Science Library

    Soller, Amy; Stevens, Ron

    2007-01-01

    .... Examples ranging from fields as diverse as defense analysis, cognitive science, and instruction are illustrated throughout to demonstrate the variety of applications that benefit from such stochastic...

  14. Positive affect and cognitive control: approach-motivation intensity influences the balance between cognitive flexibility and stability.

    Science.gov (United States)

    Liu, Ya; Wang, Zhenhong

    2014-05-01

    In most prior research, positive affect has been consistently found to promote cognitive flexibility. However, the motivational dimensional model of affect assumes that the influence of positive affect on cognitive processes is modulated by approach-motivation intensity. In the present study, we extended the motivational dimensional model to the domain of cognitive control by examining the effect of low- versus high-approach-motivated positive affect on the balance between cognitive flexibility and stability in an attentional-set-shifting paradigm. Results showed that low-approach-motivated positive affect promoted cognitive flexibility but also caused higher distractibility, whereas high-approach-motivated positive affect enhanced perseverance but simultaneously reduced distractibility. These results suggest that the balance between cognitive flexibility and stability is modulated by the approach-motivation intensity of positive affective states. Therefore, it is essential to incorporate motivational intensity into studies on the influence of affect on cognitive control.

  15. A Test of Two Alternative Cognitive Processing Models: Learning Styles and Dual Coding

    Science.gov (United States)

    Cuevas, Joshua; Dawson, Bryan L.

    2018-01-01

    This study tested two cognitive models, learning styles and dual coding, which make contradictory predictions about how learners process and retain visual and auditory information. Learning styles-based instructional practices are common in educational environments despite a questionable research base, while the use of dual coding is less…

  16. The Relationship of Scaffolding on Cognitive Load in an Online Self-Regulated Learning Environment

    Science.gov (United States)

    Danilenko, Eugene Paul

    2010-01-01

    Scaffolding learners in self-regulated learning environments is a topic of increasing importance as implementation of online learning grows. Since cognitive overload in hypermedia environments can be a problem for some learners, instructional design strategies can be used to decrease extraneous load or encourage germane load in order to help…

  17. Brain 3M--A New Approach to Learning about Brain, Behavior, and Cognition

    Science.gov (United States)

    Li, Ping; Chaby, Lauren E.; Legault, Jennifer; Braithwaite, Victoria A.

    2015-01-01

    By combining emerging technologies with cognitive and education theories, we are capitalizing on recent findings from adaptive exploration and embodied learning research to address significant gaps in the education of brain sciences for school children and college level students. Through the development of virtual learning tools in combination…

  18. Role of Social Presence and Cognitive Absorption in Online Learning Environments

    Science.gov (United States)

    Leong, Peter

    2011-01-01

    This article investigates the relationships between social presence, cognitive absorption, interest, and student satisfaction in online learning. A hypothesized structural equation model was developed to study these critical variables that may influence interaction in online learning environments. Contrary to expectations, the study determined…

  19. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists.

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.

  20. Deep unsupervised learning on a desktop PC: A primer for cognitive scientists

    Directory of Open Access Journals (Sweden)

    Alberto eTestolin

    2013-05-01

    Full Text Available Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programming parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low-cost graphic cards (GPUs without any specific programming effort, thanks to the use of high-level programming routines (available in MATLAB or Python. We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior.

  1. From Neurons to Brainpower: Cognitive Neuroscience and Brain-Based Learning

    Science.gov (United States)

    Phillips, Janet M.

    2005-01-01

    We have learned more about the brain in the past five years than the previous 100. Neuroimaging, lesion studies, and animal studies have revealed the intricate inner workings of the brain and learning. Synaptogenesis, pruning, sensitive periods, and plasticity have all become accepted concepts of cognitive neuroscience that are now being applied…

  2. Factors Contributing to Cognitive Absorption and Grounded Learning Effectiveness in a Competitive Business Marketing Simulation

    Science.gov (United States)

    Baker, David Scott; Underwood, James, III; Thakur, Ramendra

    2017-01-01

    This study aimed to establish a pedagogical positioning of a business marketing simulation as a grounded learning teaching tool and empirically assess the dimensions of cognitive absorption related to grounded learning effectiveness in an iterative business simulation environment. The method/design and sample consisted of a field study survey…

  3. An Investigation of Relationships among Instructor Immediacy and Affective and Cognitive Learning in the Online Classroom

    Science.gov (United States)

    Baker, Jason D.

    2004-01-01

    A significant body of literature has supported the assertion that communication in the classroom is central to the learning process. Prosocial behaviors, such as nonverbal and verbal immediacy, have been found to promote affective and cognitive learning in traditional instructional settings. This study examined the relationships among instructor…

  4. Carnegie Learning Curricula and Cognitive Tutor™. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2013

    2013-01-01

    "Carnegie Learning Curricula and Cognitive Tutor"®, published by Carnegie Learning, is a secondary math curricula that offers textbooks and interactive software to provide individualized, self-paced instruction based on student needs. The program includes pre-Algebra, Algebra I, Algebra II, and Geometry, as well as a three-course series…

  5. Applying Cognitive Behavioural Methods to Retrain Children's Attributions for Success and Failure in Learning

    Science.gov (United States)

    Toland, John; Boyle, Christopher

    2008-01-01

    This study involves the use of methods derived from cognitive behavioral therapy (CBT) to change the attributions for success and failure of school children with regard to learning. Children with learning difficulties and/or motivational and self-esteem difficulties (n = 29) were identified by their schools. The children then took part in twelve…

  6. Experiential learning and cognitive tools: The impact of simulations on conceptual change in continuing healthcare education

    NARCIS (Netherlands)

    Reeves, Thomas; Reeves, Patricia; McKenney, Susan

    2014-01-01

    Reeves, T. C., Reeves, P. M., & McKenney, S. (2013). Experiential learning and cognitive tools: The impact of simulations on conceptual change in continuing healthcare education. In J. M. Spector, B. B. Lockee, S. E. Smaldino, & M. Herring (eds.), Learning, problem solving, and mindtools: Essays in

  7. Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists

    Science.gov (United States)

    Testolin, Alberto; Stoianov, Ivilin; De Filippo De Grazia, Michele; Zorzi, Marco

    2013-01-01

    Deep belief networks hold great promise for the simulation of human cognition because they show how structured and abstract representations may emerge from probabilistic unsupervised learning. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. However, learning in deep networks typically requires big datasets and it can involve millions of connection weights, which implies that simulations on standard computers are unfeasible. Developing realistic, medium-to-large-scale learning models of cognition would therefore seem to require expertise in programing parallel-computing hardware, and this might explain why the use of this promising approach is still largely confined to the machine learning community. Here we show how simulations of deep unsupervised learning can be easily performed on a desktop PC by exploiting the processors of low cost graphic cards (graphic processor units) without any specific programing effort, thanks to the use of high-level programming routines (available in MATLAB or Python). We also show that even an entry-level graphic card can outperform a small high-performance computing cluster in terms of learning time and with no loss of learning quality. We therefore conclude that graphic card implementations pave the way for a widespread use of deep learning among cognitive scientists for modeling cognition and behavior. PMID:23653617

  8. Strategic Learning in Youth with Traumatic Brain Injury: Evidence for Stall in Higher-Order Cognition

    Science.gov (United States)

    Gamino, Jacquelyn F.; Chapman, Sandra B.; Cook, Lori G.

    2009-01-01

    Little is known about strategic learning ability in preteens and adolescents with traumatic brain injury (TBI). Strategic learning is the ability to combine and synthesize details to form abstracted gist-based meanings, a higher-order cognitive skill associated with frontal lobe functions and higher classroom performance. Summarization tasks were…

  9. The role of consciousness in cognitive control and decision making

    Directory of Open Access Journals (Sweden)

    Simon evan Gaal

    2012-05-01

    Full Text Available Here we review studies on the complexity and strength of unconscious information processing. We focus on empirical evidence that relates awareness of information to cognitive control processes (e.g. response inhibition, conflict resolution, and task-switching, the life-time of information maintenance (e.g. working memory and the possibility to integrate multiple pieces of information across space and time. Overall, the results that we review paint a picture of local and specific effects of unconscious information on various (high-level brain regions, including areas in the prefrontal cortex. Although this neural activation does not elicit any conscious experience, it is functional and capable of influencing many perceptual, cognitive (control and decision-related processes, sometimes even for relatively long periods of time. However, recent evidence also points out interesting dissociations between conscious and unconscious information processing when it comes to the duration, flexibility and the strategic use of that information for complex operations and decision-making. Based on the available evidence, we conclude that the role of task-relevance of subliminal information and meta-cognitive factors in unconscious cognition need more attention in future work.

  10. Valence, arousal and cognitive control: A voluntary task switching study

    Directory of Open Access Journals (Sweden)

    Jelle eDemanet

    2011-11-01

    Full Text Available The present study focused on the interplay between arousal, valence and cognitive control. To this end, we investigated how arousal and valence associated with affective stimuli influenced cognitive flexibility when switching between tasks voluntarily. Three hypotheses were tested. First, a valence hypothesis that states that the positive valence of affective stimuli will facilitate both global and task-switching performance because of increased cognitive flexibility. Second, an arousal hypothesis that states that arousal, and not valence, will specifically impair task-switching performance by strengthening the previously executed task-set. Third, an attention hypothesis that states that both cognitive and emotional control ask for limited attentional resources, and predicts that arousal will impair both global and task-switching performance. The results showed that arousal affected task-switching but not global performance, possibly by phasic modulations of the noradrenergic system that reinforces the previously executed task. In addition, positive valence only affected global performance but not task-switching performance, possibly by phasic modulations of dopamine that stimulates the general ability to perform in a multitasking environment.

  11. How Do College/University Teacher Misbehaviors Influence Student Cognitive Learning, Academic Self-Efficacy, Motivation, and Curiosity?

    Science.gov (United States)

    Banfield, Sara R.

    2009-01-01

    The purpose of this research was to examine the relationship between teacher misbehaviors and a variety of outcome variables, including cognitive learning, motivation, curiosity, and academic self-efficacy. Research has yet to directly address how teacher misbehaviors affect cognitive learning. It is important to assess actual learning as opposed…

  12. [A Study on the Cognitive Learning Effectiveness of Scenario-Based Concept Mapping in a Neurological Nursing Course].

    Science.gov (United States)

    Pan, Hui-Ching; Hsieh, Suh-Ing; Hsu, Li-Ling

    2015-12-01

    The multiple levels of knowledge related to the neurological system deter many students from pursuing studies on this topic. Thus, in facing complicated and uncertain medical circumstances, nursing students have diffi-culty adjusting and using basic neurological-nursing knowledge and skills. Scenario-based concept-mapping teaching has been shown to promote the integration of complicated data, clarify related concepts, and increase the effectiveness of cognitive learning. To investigate the effect on the neurological-nursing cognition and learning attitude of nursing students of a scenario-based concept-mapping strategy that was integrated into the neurological nursing unit of a medical and surgical nursing course. This quasi-experimental study used experimental and control groups and a pre-test / post-test design. Sopho-more (2nd year) students in a four-year program at a university of science and technology in Taiwan were convenience sampled using cluster randomization that was run under SPSS 17.0. Concept-mapping lessons were used as the intervention for the experimental group. The control group followed traditional lesson plans only. The cognitive learning outcome was measured using the neurological nursing-learning examination. Both concept-mapping and traditional lessons significantly improved post-test neurological nursing learning scores (p learning attitude with regard to the teaching material. Furthermore, a significant number in the experimental group expressed the desire to add more lessons on anatomy, physiology, and pathology. These results indicate that this intervention strategy may help change the widespread fear and refusal of nursing students with regard to neurological lessons and may facilitate interest and positively affect learning in this important subject area. Integrating the concept-mapping strategy and traditional clinical-case lessons into neurological nursing lessons holds the potential to increase post-test scores significantly

  13. Promoting fruit and vegetable consumption among students: a randomized controlled trial based on social cognitive theory.

    Science.gov (United States)

    Najimi, Arash; Ghaffari, Mohtasham

    2013-10-01

    To assess the effectiveness of an educational intervention based on social cognitive theory on increasing consumption of fruit and vegetable among Grade 4 students. The randomised study was conducted in Isfahan, Iran, during 2011 and comprised 138 students, who were randomly divided into intervention and control groups. Data was collected at the beginning and three months after the intervention. A self-administered questionnaire based on constructs of social cognitive theory and food consumption was used. Theory-based nutrition education was imparted on the intervention group. Data was analysed using SPSS 15 and appropriate statistical tests. The intervention group had 68 (49.27%) subjects, while there were 70 (50.72%) controls. After the intervention, mean scores of behavioural capability (p social support (p = 0.03), and observational learning (p = 0.002) had significantly improved in the intervention group. Nutritional behaviour also showed significant improvement on mean daily intake of fruits and vegetables in the intervention group (p social cognitive theory led to increase in the consumption of fruits and vegetables among students, which confirmed the efficiency of social cognitive theory for such interventions.

  14. Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making: Attention, Category Learning, and Choice in Neocortex, Superior Colliculus, and Optic Tectum.

    Science.gov (United States)

    Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano

    2015-01-01

    Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine.

  15. Resonant cholinergic dynamics in cognitive and motor decision-making:Attention, category learning, and choice in neocortex, superior colliculus, and optic tectum

    Directory of Open Access Journals (Sweden)

    Stephen eGrossberg

    2016-01-01

    Full Text Available Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance or concrete (high vigilance. Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the avian brain and how such learning may be modulated by acetycholine.

  16. A Framework for Re-thinking Learning in Science from Recent Cognitive Science Perspectives

    Science.gov (United States)

    Tytler, Russell; Prain, Vaughan

    2010-10-01

    Recent accounts by cognitive scientists of factors affecting cognition imply the need to reconsider current dominant conceptual theories about science learning. These new accounts emphasize the role of context, embodied practices, and narrative-based representation rather than learners' cognitive constructs. In this paper we analyse data from a longitudinal study of primary school children's learning to outline a framework based on these contemporary accounts and to delineate key points of difference from conceptual change perspectives. The findings suggest this framework provides strong theoretical and practical insights into how children learn and the key role of representational negotiation in this learning. We argue that the nature and process of conceptual change can be re-interpreted in terms of the development of students' representational resources.

  17. Stroop-like effects in a new-code learning task: A cognitive load theory perspective.

    Science.gov (United States)

    Hazan-Liran, Batel; Miller, Paul

    2017-09-01

    To determine whether and how learning is biased by competing task-irrelevant information that creates extraneous cognitive load, we assessed the efficiency of university students with a learning paradigm in two experiments. The paradigm asked participants to learn associations between eight words and eight digits. We manipulated congruity of the digits' ink colour with the words' semantics. In Experiment 1 word stimuli were colour words (e.g., blue, yellow) and in Experiment 2 colour-related word concepts (e.g., sky, banana). Marked benefits and costs on learning due to variation in extraneous cognitive load originating from processing task-irrelevant information were evident. Implications for cognitive load theory and schooling are discussed.

  18. A social cognitive view of self-regulated learning about health.

    Science.gov (United States)

    Clark, Noreen M; Zimmerman, Barry J

    2014-10-01

    Researchers interested in health-related learning have recently begun to study processes people use to self-regulate their health and their ability to prevent or control chronic disease. This paper represents a social cognitive view of self-regulation that involves three classes of influence on self-regulating behavior: personal, behavioral, and environmental. This triadic model assumes that people self-regulate their health through the use of self-care strategies, setting reasonable health goals, and monitoring feedback concerning the effectiveness of strategies in meeting their goals. People's perceptions of self-efficacy are also assumed to play a major role in motivating them to self-regulate their health functioning. According to social cognitive theory, processes entailed in regulating one's health can be taught through social modeling, supports, and feedback; gradually these external supports are withdrawn as one is able to self-regulate. This paper will analyze self-regulation processes related to controlling or preventing lung disease, specifically management of asthma and eliminating smoking. The educational implications of the triadic model of self-regulation for promoting health and related behavioral functioning will be discussed. © 2014 Society for Public Health Education.

  19. Cognitive Risk Factors for Specific Learning Disorder: Processing Speed, Temporal Processing, and Working Memory.

    Science.gov (United States)

    Moll, Kristina; Göbel, Silke M; Gooch, Debbie; Landerl, Karin; Snowling, Margaret J

    2016-01-01

    High comorbidity rates between reading disorder (RD) and mathematics disorder (MD) indicate that, although the cognitive core deficits underlying these disorders are distinct, additional domain-general risk factors might be shared between the disorders. Three domain-general cognitive abilities were investigated in children with RD and MD: processing speed, temporal processing, and working memory. Since attention problems frequently co-occur with learning disorders, the study examined whether these three factors, which are known to be associated with attention problems, account for the comorbidity between these disorders. The sample comprised 99 primary school children in four groups: children with RD, children with MD, children with both disorders (RD+MD), and typically developing children (TD controls). Measures of processing speed, temporal processing, and memory were analyzed in a series of ANCOVAs including attention ratings as covariate. All three risk factors were associated with poor attention. After controlling for attention, associations with RD and MD differed: Although deficits in verbal memory were associated with both RD and MD, reduced processing speed was related to RD, but not MD; and the association with RD was restricted to processing speed for familiar nameable symbols. In contrast, impairments in temporal processing and visuospatial memory were associated with MD, but not RD. © Hammill Institute on Disabilities 2014.

  20. Effects of novelty-reducing preparation on exploratory behavior and cognitive learning in a science museum setting

    Science.gov (United States)

    Kubota, Carole A.; Olstad, Roger G.

    The purpose of this study was to examine the relationships between (a) novelty and exploratory behavior, (b) novelty and cognitive learning, and (c) exploratory behavior and cognitive learning in science museums. Sixty-four sixth-grade public school students participated in a posttest-only control group design. The control group received a treatment designed to decrease the novelty of a field trip setting through a vicarious exposure while the placebo group received an informative but not novelty-reducing treatment. Both groups then visited the field site where they were videotaped. Statistical analyses were conducted on both dependent variables with socioeconomic status and academic achievement as covariates, novelty-reducing preparation as the independent variable, and gender as moderator variable. Exploratory behavior was shown to be positively correlated with cognitive learning. Significant differences were detected for exploratory behavior. For both dependent variables, gender by treatment group interaction was significant with novelty-reducing preparation shown to be highly effective on boys but having no effect on girls.

  1. The effect of implementing cognitive load theory-based design principles in virtual reality simulation training of surgical skills: a randomized controlled trial

    DEFF Research Database (Denmark)

    Andersen, Steven Arild Wuyts; Mikkelsen, Peter Trier; Konge, Lars

    2016-01-01

    training of mastoidectomy. Methods Eighteen novice medical students received 1 h of self-directed virtual reality simulation training of the mastoidectomy procedure randomized for standard instructions (control) or cognitive load theory-based instructions with a worked example followed by a problem......Background Cognitive overload can inhibit learning, and cognitive load theory-based instructional design principles can be used to optimize learning situations. This study aims to investigate the effect of implementing cognitive load theory-based design principles in virtual reality simulation....... Increased cognitive load when part tasks needed to be integrated in the post-training procedures could be a possible explanation for this. Other instructional designs and methods are needed to lower the cognitive load and improve the performance in virtual reality surgical simulation training of novices....

  2. Blood pressure control to prevent decline in cognition after stroke

    Directory of Open Access Journals (Sweden)

    Ihle-Hansen H

    2015-06-01

    between achieved goal blood pressure or blood pressure reduction after 1 year and the diagnoses of MCI or dementia (P=0.32–0.56.Conclusion: Treatment of hypertension is important for primary and secondary prevention of stroke. Showing a potential beneficial effect of blood pressure control on cognitive function, however, probably needs longer follow-up. Keywords: cognitive impairment, hypertension, cerebrovascular disease, risk factor management, secondary prevention

  3. Investigating gaze-controlled input in a cognitive selection test

    OpenAIRE

    Gayraud, Katja; Hasse, Catrin; Eißfeldt, Hinnerk; Pannasch, Sebastian

    2017-01-01

    In the field of aviation, there is a growing interest in developing more natural forms of interaction between operators and systems to enhance safety and efficiency. These efforts also include eye gaze as an input channel for human-machine interaction. The present study investigates the application of gaze-controlled input in a cognitive selection test called Eye Movement Conflict Detection Test. The test enables eye movements to be studied as an indicator for psychological test performance a...

  4. Making Sense of Crisis: Cognitive Barriers of Learning in Critical Situations

    Directory of Open Access Journals (Sweden)

    Ramona PERGHEL

    2013-09-01

    Full Text Available This paper explores the role of cognitive issues in learning from crisis situations, in particular the managers’ mental representations of crisis and the relationship of these “maps” with the learning process through “sense-making”, as well as the possible cognitive barriers that might prevent the process of learning from crisis and thus allow the incubation of crises to develop in the company. Reviewing secondary data from the current literature, the paper focuses on the complexity of human “sense-making” and understanding the phenomena of crisis and the meaning people assign to it. Considerable attention and analysis has been done in order to assess the manner in which organizations can effectively learn to prevent crisis situations, addressing the theoretical frameworks that analyse the barriers that might occur in the learning from crisis process at an individual and group level, pointing out the need of recognition and sense-making that sometimes the current state of knowledge is not well. The paper argues that the effective organizational learning from crises requires changes in the core beliefs, values and assumptions of organizational members, which translate into sustained behavioural changes and that these changes are possible through intense cognitive processes, in particular through the way managers make sense of crisis situations.  Keywords: crisis, learning, cognitive barriers, sense-making, managers, literature review

  5. A cognitive perspective on technology enhanced learning in medical training: great opportunities, pitfalls and challenges.

    Science.gov (United States)

    Dror, Itiel; Schmidt, Pascal; O'connor, Lanty

    2011-01-01

    As new technology becomes available and is used for educational purposes, educators often take existing training and simply transcribe it into the new technological medium. However, when technology drives e-learning rather than the learner and the learning, and when it uses designs and approaches that were not originally built for e-learning, then often technology does not enhance the learning (it may even be detrimental to it). The success of e-learning depends on it being 'brain friendly', on engaging the learners from an understanding of how the cognitive system works. This enables educators to optimize learning by achieving correct mental representations that will be remembered and applied in practice. Such technology enhanced learning (TEL) involves developing and using novel approaches grounded in cognitive neuroscience; for example, gaming and simulations that distort realism rather than emphasizing visual fidelity and realism, making videos interactive, training for 'error recovery' rather than for 'error reduction', and a whole range of practical ways that result in effective TEL. These are a result of e-learning that is built to fit and support the cognitive system, and therefore optimize the learning.

  6. Cognitive performance and psychosocial functioning in patients with bipolar disorder, unaffected siblings, and healthy controls.

    Science.gov (United States)

    Vasconcelos-Moreno, Mirela P; Bücker, Joana; Bürke, Kelen P; Czepielewski, Leticia; Santos, Barbara T; Fijtman, Adam; Passos, Ives C; Kunz, Mauricio; Bonnín, Caterina Del Mar; Vieta, Eduard; Kapczinski, Flavio; Rosa, Adriane R; Kauer-Sant'Anna, Marcia

    2016-01-01

    To assess cognitive performance and psychosocial functioning in patients with bipolar disorder (BD), in unaffected siblings, and in healthy controls. Subjects were patients with BD (n=36), unaffected siblings (n=35), and healthy controls (n=44). Psychosocial functioning was accessed using the Functioning Assessment Short Test (FAST). A sub-group of patients with BD (n=21), unaffected siblings (n=14), and healthy controls (n=22) also underwent a battery of neuropsychological tests: California Verbal Learning Test (CVLT), Stroop Color and Word Test, and Wisconsin Card Sorting Test (WCST). Clinical and sociodemographic characteristics were analyzed using one-way analysis of variance or the chi-square test; multivariate analysis of covariance was used to examine differences in neuropsychological variables. Patients with BD showed higher FAST total scores (23.90±11.35) than healthy controls (5.86±5.47; p siblings (12.60±11.83; p 0.001). Siblings and healthy controls also showed statistically significant differences in FAST total scores (p = 0.008). Patients performed worse than healthy controls on all CVLT sub-tests (p Siblings did not differ from healthy controls in cognitive tests. Unaffected siblings of patients with BD may show poorer functional performance compared to healthy controls. FAST scores may contribute to the development of markers of vulnerability and endophenotypic traits in at-risk populations.

  7. Lifelong bilingualism maintains neural efficiency for cognitive control in aging.

    Science.gov (United States)

    Gold, Brian T; Kim, Chobok; Johnson, Nathan F; Kryscio, Richard J; Smith, Charles D

    2013-01-09

    Recent behavioral data have shown that lifelong bilingualism can maintain youthful cognitive control abilities in aging. Here, we provide the first direct evidence of a neural basis for the bilingual cognitive control boost in aging. Two experiments were conducted, using a perceptual task-switching paradigm, including a total of 110 participants. In Experiment 1, older adult bilinguals showed better perceptual switching performance than their monolingual peers. In Experiment 2, younger and older adult monolinguals and bilinguals completed the same perceptual task-switching experiment while functional magnetic resonance imaging (fMRI) was performed. Typical age-related performance reductions and fMRI activation increases were observed. However, like younger adults, bilingual older adults outperformed their monolingual peers while displaying decreased activation in left lateral frontal cortex and cingulate cortex. Critically, this attenuation of age-related over-recruitment associated with bilingualism was directly correlated with better task-switching performance. In addition, the lower blood oxygenation level-dependent response in frontal regions accounted for 82% of the variance in the bilingual task-switching reaction time advantage. These results suggest that lifelong bilingualism offsets age-related declines in the neural efficiency for cognitive control processes.

  8. Measuring strategic control in artificial grammar learning.

    Science.gov (United States)

    Norman, Elisabeth; Price, Mark C; Jones, Emma

    2011-12-01

    In response to concerns with existing procedures for measuring strategic control over implicit knowledge in artificial grammar learning (AGL), we introduce a more stringent measurement procedure. After two separate training blocks which each consisted of letter strings derived from a different grammar, participants either judged the grammaticality of novel letter strings with respect to only one of these two grammars (pure-block condition), or had the target grammar varying randomly from trial to trial (novel mixed-block condition) which required a higher degree of conscious flexible control. Random variation in the colour and font of letters was introduced to disguise the nature of the rule and reduce explicit learning. Strategic control was observed both in the pure-block and mixed-block conditions, and even among participants who did not realise the rule was based on letter identity. This indicated detailed strategic control in the absence of explicit learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Blended learning versus traditional teaching-learning-setting: Evaluation of cognitive and affective learning outcomes for the inter-professional field of occupational medicine and prevention / Blended Learning versus traditionelles Lehr-Lernsetting: Evaluierung von kognitiven und affektiven Lernergebnissen für das interprofessionelle Arbeitsfeld Arbeitsmedizin und Prävention

    Directory of Open Access Journals (Sweden)

    Eckler Ursula

    2017-11-01

    Full Text Available Blended learning is characterised as a combination of face-to-face teaching and e-learning in terms of knowledge transfer, students’ learning activities and reduced presence at the teaching facility. The present cohort study investigated long-term effects of blended learning regarding cognitive outcomes as well as self-indicated estimates of immediate learning effects on the affective domain in the inter-professional field of occupational medicine. Physiotherapy students (bachelor degree at FH Campus Wien – University of Applied Sciences completed the course Occupational Medicine/Prevention either in a traditional teaching-learning setting entirely taught face-to-face (control-group, n=94, or with a blended learning model (intervention-group, n=93. Long-term effects (1.5 year follow-up on the cognitive learning outcomes were assessed according to four levels of Bloom’s learning objectives. In addition, students estimated potential benefits resulting from blended learning based on four Krathwohl’s learning objectives for the affective domain by means of a six-option Likert scale (n=282. Concerning cognitive outcomes, significant results favouring both groups were found with effect sizes from small to medium. The traditional teaching-learning setting resulted in significantly better results in the upmost aspired learning objective (analysis at the long-term (p<0,01; r=-0,33. In contrast, the intervention group resulted in significantly better long-term results on learning objective levels 1 (knowledge and 2 (understanding (p=0,01; r=-0,20 and, p=0,02; r=-0,17, respectively. Hence, no general recommendation favouring either the classical setting or blending learning can be drawn regarding the cognitive domain. However, students’ self-indications on the affective domain give preference to blended learning, particularly if inter-professional teamwork is a course objective.

  10. Multi-Objective Reinforcement Learning-Based Deep Neural Networks for Cognitive Space Communications

    Science.gov (United States)

    Ferreria, Paulo Victor R.; Paffenroth, Randy; Wyglinski, Alexander M.; Hackett, Timothy M.; Bilen, Sven G.; Reinhart, Richard C.; Mortensen, Dale J.

    2017-01-01

    Future communication subsystems of space exploration missions can potentially benefit from software-defined radios (SDRs) controlled by machine learning algorithms. In this paper, we propose a novel hybrid radio resource allocation management control algorithm that integrates multi-objective reinforcement learning and deep artificial neural networks. The objective is to efficiently manage communications system resources by monitoring performance functions with common dependent variables that result in conflicting goals. The uncertainty in the performance of thousands of different possible combinations of radio parameters makes the trade-off between exploration and exploitation in reinforcement learning (RL) much more challenging for future critical space-based missions. Thus, the system should spend as little time as possible on exploring actions, and whenever it explores an action, it should perform at acceptable levels most of the time. The proposed approach enables on-line learning by interactions with the environment and restricts poor resource allocation performance through virtual environment exploration. Improvements in the multiobjective performance can be achieved via transmitter parameter adaptation on a packet-basis, with poorly predicted performance promptly resulting in rejected decisions. Simulations presented in this work considered the DVB-S2 standard adaptive transmitter parameters and additional ones expected to be present in future adaptive radio systems. Performance results are provided by analysis of the proposed hybrid algorithm when operating across a satellite communication channel from Earth to GEO orbit during clear sky conditions. The proposed approach constitutes part of the core cognitive engine proof-of-concept to be delivered to the NASA Glenn Research Center SCaN Testbed located onboard the International Space Station.

  11. On equivalence classes in iterative learning control

    NARCIS (Netherlands)

    Verwoerd, M.H.A.; Meinsma, Gjerrit; de Vries, Theodorus J.A.

    2003-01-01

    This paper advocates a new approach to study the relation between causal iterative learning control (ILC) and conventional feedback control. Central to this approach is the introduction of the set of admissible pairs (of operators) defined with respect to a family of iterations. Considered are two

  12. Cognitive load theory: implications of cognitive load theory on the design of learning

    NARCIS (Netherlands)

    Kirschner, P.A.

    2002-01-01

    Cognitive load theory (CLT) can provide guidelines to assist in the presentation of information in a manner that encourages learner activities that optimise intellectual performance. It is based on a cognitive architecture that consists of a limited working memory, with partly independent

  13. Research on cognitive reliability model for main control room considering human factors in nuclear power plants

    International Nuclear Information System (INIS)

    Jiang Jianjun; Zhang Li; Wang Yiqun; Zhang Kun; Peng Yuyuan; Zhou Cheng

    2012-01-01

    Facing the shortcomings of the traditional cognitive factors and cognitive model, this paper presents a Bayesian networks cognitive reliability model by taking the main control room as a reference background and human factors as the key points. The model mainly analyzes the cognitive reliability affected by the human factors, and for the cognitive node and influence factors corresponding to cognitive node, a series of methods and function formulas to compute the node cognitive reliability is proposed. The model and corresponding methods can be applied to the evaluation of cognitive process for the nuclear power plant operators and have a certain significance for the prevention of safety accidents in nuclear power plants. (authors)

  14. Surprise responses in the human brain demonstrate statistical learning under high concurrent cognitive demand

    Science.gov (United States)

    Garrido, Marta Isabel; Teng, Chee Leong James; Taylor, Jeremy Alexander; Rowe, Elise Genevieve; Mattingley, Jason Brett

    2016-06-01

    The ability to learn about regularities in the environment and to make predictions about future events is fundamental for adaptive behaviour. We have previously shown that people can implicitly encode statistical regularities and detect violations therein, as reflected in neuronal responses to unpredictable events that carry a unique prediction error signature. In the real world, however, learning about regularities will often occur in the context of competing cognitive demands. Here we asked whether learning of statistical regularities is modulated by concurrent cognitive load. We compared electroencephalographic metrics associated with responses to pure-tone sounds with frequencies sampled from narrow or wide Gaussian distributions. We showed that outliers evoked a larger response than those in the centre of the stimulus distribution (i.e., an effect of surprise) and that this difference was greater for physically identical outliers in the narrow than in the broad distribution. These results demonstrate an early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. Moreover, we manipulated concurrent cognitive load by having participants perform a visual working memory task while listening to these streams of sounds. We again observed greater prediction error responses in the narrower distribution under both low and high cognitive load. Furthermore, there was no reliable reduction in prediction error magnitude under high-relative to low-cognitive load. Our findings suggest that statistical learning is not a capacity limited process, and that it proceeds automatically even when cognitive resources are taxed by concurrent demands.

  15. A Cognitive Skill Classification Based on Multi Objective Optimization Using Learning Vector Quantization for Serious Games

    Directory of Open Access Journals (Sweden)

    Moh. Aries Syufagi

    2013-09-01

    Full Text Available Nowadays, serious games and game technology are poised to transform the way of educating and training students at all levels. However, pedagogical value in games do not help novice students learn, too many memorizing and reduce learning process due to no information of player’s ability. To asses the cognitive level of player ability, we propose a Cognitive Skill Game (CSG. CSG improves this cognitive concept to monitor how players interact with the game. This game employs Learning Vector Quantization (LVQ for optimizing the cognitive skill input classification of the player. CSG is using teacher’s data to obtain the neuron vector of cognitive skill pattern supervise. Three clusters multi objective XE "multi objective"  target will be classified as; trial and error, carefully and, expert cognitive skill. In the game play experiments employ 33 respondent players demonstrates that 61% of players have high trial and error, 21% have high carefully, and 18% have high expert cognitive skill. CSG may provide information to game engine when a player needs help or when wanting a formidable challenge. The game engine will provide the appropriate tasks according to players’ ability. CSG will help balance the emotions of players, so players do not get bored and frustrated. 

  16. E-learning, dual-task, and cognitive load: The anatomy of a failed experiment.

    Science.gov (United States)

    Van Nuland, Sonya E; Rogers, Kem A

    2016-01-01

    The rising popularity of commercial anatomy e-learning tools has been sustained, in part, due to increased annual enrollment and a reduction in laboratory hours across educational institutions. While e-learning tools continue to gain popularity, the research methodologies used to investigate their impact on learning remain imprecise. As new user interfaces are introduced, it is critical to understand how functionality can influence the load placed on a student's memory resources, also known as cognitive load. To study cognitive load, a dual-task paradigm wherein a learner performs two tasks simultaneously is often used, however, its application within educational research remains uncommon. Using previous paradigms as a guide, a dual-task methodology was developed to assess the cognitive load imposed by two commercial anatomical e-learning tools. Results indicate that the standard dual-task paradigm, as described in the literature, is insensitive to the cognitive load disparities across e-learning tool interfaces. Confounding variables included automation of responses, task performance tradeoff, and poor understanding of primary task cognitive load requirements, leading to unreliable quantitative results. By modifying the secondary task from a basic visual response to a more cognitively demanding task, such as a modified Stroop test, the automation of secondary task responses can be reduced. Furthermore, by recording baseline measures for the primary task as well as the secondary task, it is possible for task performance tradeoff to be detected. Lastly, it is imperative that the cognitive load of the primary task be designed such that it does not overwhelm the individual's ability to learn new material. © 2015 American Association of Anatomists.

  17. Bilingualism modulates dual mechanisms of cognitive control: Evidence from ERPs.

    Science.gov (United States)

    Morales, Julia; Yudes, Carolina; Gómez-Ariza, Carlos J; Bajo, M Teresa

    2015-01-01

    Recent behavioral findings with the AX-Continous Performance Task (AX-CPT; Morales et al., 2013) show that bilinguals only outperform monolinguals under conditions that require the highest adjustment between monitoring (proactive) and inhibitory (reactive) control, which supports the idea that bilingualism modulates the coordination of different control mechanisms. In an ERP experiment we aimed to further investigate the role that bilingualism plays in the dynamic combination of proactive and reactive control in the AX-CPT. Our results strongly indicate that bilingualism facilitates an effective adjustment between both components of cognitive control. First, we replicated previous behavioral results. Second, ERP components indicated that bilingualism influences the conflict monitoring, response inhibition and error monitoring components of control (as indexed by the N2 and P3a elicited by the probe and the error-related negativity following incorrect responses, respectively). Thus, bilinguals exerted higher reactive control than monolinguals but only when they needed to overcome the competing cue-information. These findings join others in suggesting that a better understanding of the cognitive benefits of bilingualism may require consideration of a multi-component perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Learning Control Over Emotion Networks Through Connectivity-Based Neurofeedback.

    Science.gov (United States)

    Koush, Yury; Meskaldji, Djalel-E; Pichon, Swann; Rey, Gwladys; Rieger, Sebastian W; Linden, David E J; Van De Ville, Dimitri; Vuilleumier, Patrik; Scharnowski, Frank

    2017-02-01

    Most mental functions are associated with dynamic interactions within functional brain networks. Thus, training individuals to alter functional brain networks might provide novel and powerful means to improve cognitive performance and emotions. Using a novel connectivity-neurofeedback approach based on functional magnetic resonance imaging (fMRI), we show for the first time that participants can learn to change functional brain networks. Specifically, we taught participants control over a key component of the emotion regulation network, in that they learned to increase top-down connectivity from the dorsomedial prefrontal cortex, which is involved in cognitive control, onto the amygdala, which is involved in emotion processing. After training, participants successfully self-regulated the top-down connectivity between these brain areas even without neurofeedback, and this was associated with concomitant increases in subjective valence ratings of emotional stimuli of the participants. Connectivity-based neurofeedback goes beyond previous neurofeedback approaches, which were limited to training localized activity within a brain region. It allows to noninvasively and nonpharmacologically change interconnected functional brain networks directly, thereby resulting in specific behavioral changes. Our results demonstrate that connectivity-based neurofeedback training of emotion regulation networks enhances emotion regulation capabilities. This approach can potentially lead to powerful therapeutic emotion regulation protocols for neuropsychiatric disorders. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Intraindividual differences in motivation and cognition in students with and without learning disabilities.

    Science.gov (United States)

    Pintrich, P R; Anderman, E M; Klobucar, C

    1994-01-01

    The present study examines several cognitive and motivational variables that distinguish children with learning disabilities (n = 19) from children without learning disabilities (n = 20). The total sample included 30 males and 9 females and was composed of white, fifth-grade students from a middle-class community in the Midwest. Results showed that although the students with learning disabilities displayed lower levels of metacognitive knowledge and reading comprehension, they did not differ from the students without learning disabilities on self-efficacy, intrinsic orientation, or anxiety. In addition, they did not show any signs of learned helplessness, although they did tend to attribute success and failure to external causes more often than the students without learning disabilities. Using a cluster analysis that grouped individuals, we found that differences in the motivational and cognitive variables cut across a priori categories of children with and without learning disabilities. Three clusters were formed: one with high comprehension, motivation, and metacognition (mostly children without learning disabilities); one with low levels of comprehension and metacognition but high intrinsic motivation (all children with learning disabilities); and one with low intrinsic motivation but average comprehension, metacognition, and attributional style (approximately equal numbers of children with and without learning disabilities). Implications for diagnosis and intervention for students with learning disabilities are discussed.

  20. Cognitive learning and its future in urology: surgical skills teaching and assessment.

    Science.gov (United States)

    Shafiei, Somayeh B; Hussein, Ahmed A; Guru, Khurshid A

    2017-07-01

    The aim of this study is to provide an overview of the current status of novel cognitive training approaches in surgery and to investigate the potential role of cognitive training in surgical education. Kinematics of end-effector trajectories, as well as cognitive state features of surgeon trainees and mentors have recently been studied as modalities to objectively evaluate the expertise level of trainees and to shorten the learning process. Virtual reality and haptics also have shown promising in research results in improving the surgical learning process by providing feedback to the trainee. 'Cognitive training' is a novel approach to enhance training and surgical performance. The utility of cognitive training in improving motor skills in other fields, including sports and rehabilitation, is promising enough to justify its utilization to improve surgical performance. However, some surgical procedures, especially ones performed during human-robot interaction in robot-assisted surgery, are much more complicated than sport and rehabilitation. Cognitive training has shown promising results in surgical skills-acquisition in complicated environments such as surgery. However, these methods are mostly developed in research groups using limited individuals. Transferring this research into the clinical applications is a demanding challenge. The aim of this review is to provide an overview of the current status of these novel cognitive training approaches in surgery and to investigate the potential role of cognitive training in surgical education.

  1. AMYGDALA MICROCIRCUITS CONTROLLING LEARNED FEAR

    Science.gov (United States)

    Duvarci, Sevil; Pare, Denis

    2014-01-01

    We review recent work on the role of intrinsic amygdala networks in the regulation of classically conditioned defensive behaviors, commonly known as conditioned fear. These new developments highlight how conditioned fear depends on far more complex networks than initially envisioned. Indeed, multiple parallel inhibitory and excitatory circuits are differentially recruited during the expression versus extinction of conditioned fear. Moreover, shifts between expression and extinction circuits involve coordinated interactions with different regions of the medial prefrontal cortex. However, key areas of uncertainty remain, particularly with respect to the connectivity of the different cell types. Filling these gaps in our knowledge is important because much evidence indicates that human anxiety disorders results from an abnormal regulation of the networks supporting fear learning. PMID:24908482

  2. Power effects on cognitive control: Turning conflict into action.

    Science.gov (United States)

    Schmid, Petra C; Kleiman, Tali; Amodio, David M

    2015-06-01

    Power is known to promote effective goal pursuit, especially when it requires one to overcome distractions or bias. We proposed that this effect involves the ability to engage and implement cognitive control. In Study 1, we demonstrated that power enhances behavioral performance on a response conflict task and that it does so by enhancing controlled processing rather than by reducing automatic processing. In Study 2, we used an event-related potential index of anterior cingulate activity to test whether power effects on control were due to enhanced conflict sensitivity or action implementation. Power did not significantly affect neural sensitivity to conflict; rather, high power was associated with a stronger link between conflict processing and intended action, relative to low power. These findings suggest a new perspective on how social factors can affect controlled processing and offer new evidence regarding the transition between conflict detection and the implementation of action control. (c) 2015 APA, all rights reserved).

  3. Cognitive process modelling of controllers in en route air traffic control.

    Science.gov (United States)

    Inoue, Satoru; Furuta, Kazuo; Nakata, Keiichi; Kanno, Taro; Aoyama, Hisae; Brown, Mark

    2012-01-01

    In recent years, various efforts have been made in air traffic control (ATC) to maintain traffic safety and efficiency in the face of increasing air traffic demands. ATC is a complex process that depends to a large degree on human capabilities, and so understanding how controllers carry out their tasks is an important issue in the design and development of ATC systems. In particular, the human factor is considered to be a serious problem in ATC safety and has been identified as a causal factor in both major and minor incidents. There is, therefore, a need to analyse the mechanisms by which errors occur due to complex factors and to develop systems that can deal with these errors. From the cognitive process perspective, it is essential that system developers have an understanding of the more complex working processes that involve the cooperative work of multiple controllers. Distributed cognition is a methodological framework for analysing cognitive processes that span multiple actors mediated by technology. In this research, we attempt to analyse and model interactions that take place in en route ATC systems based on distributed cognition. We examine the functional problems in an ATC system from a human factors perspective, and conclude by identifying certain measures by which to address these problems. This research focuses on the analysis of air traffic controllers' tasks for en route ATC and modelling controllers' cognitive processes. This research focuses on an experimental study to gain a better understanding of controllers' cognitive processes in air traffic control. We conducted ethnographic observations and then analysed the data to develop a model of controllers' cognitive process. This analysis revealed that strategic routines are applicable to decision making.

  4. How Life Experience Shapes Cognitive Control Strategies: The Case of Air Traffic Control Training.

    Directory of Open Access Journals (Sweden)

    Sandra Arbula

    Full Text Available Although human flexible behavior relies on cognitive control, it would be implausible to assume that there is only one, general mode of cognitive control strategy adopted by all individuals. For instance, different reliance on proactive versus reactive control strategies could explain inter-individual variability. In particular, specific life experiences, like a highly demanding training for future Air Traffic Controllers (ATCs, could modulate cognitive control functions. A group of ATC trainees and a matched group of university students were tested longitudinally on task-switching and Stroop paradigms that allowed us to measure indices of cognitive control. The results showed that the ATCs, with respect to the control group, had substantially smaller mixing costs during long cue-target intervals (CTI and a reduced Stroop interference effect. However, this advantage was present also prior to the training phase. Being more capable in managing multiple task sets and less distracted by interfering events suggests a more efficient selection and maintenance of task relevant information as an inherent characteristic of the ATC group, associated with proactive control. Critically, the training that the ATCs underwent improved their accuracy in general and reduced response time switching costs during short CTIs only. These results indicate a training-induced change in reactive control, which is described as a transient process in charge of stimulus-driven task detection and resolution. This experience-based enhancement of reactive control strategy denotes how cognitive control and executive functions in general can be shaped by real-life training and underlines the importance of experience in explaining inter-individual variability in cognitive functioning.

  5. How Life Experience Shapes Cognitive Control Strategies: The Case of Air Traffic Control Training.

    Science.gov (United States)

    Arbula, Sandra; Capizzi, Mariagrazia; Lombardo, Nicoletta; Vallesi, Antonino

    2016-01-01

    Although human flexible behavior relies on cognitive control, it would be implausible to assume that there is only one, general mode of cognitive control strategy adopted by all individuals. For instance, different reliance on proactive versus reactive control strategies could explain inter-individual variability. In particular, specific life experiences, like a highly demanding training for future Air Traffic Controllers (ATCs), could modulate cognitive control functions. A group of ATC trainees and a matched group of university students were tested longitudinally on task-switching and Stroop paradigms that allowed us to measure indices of cognitive control. The results showed that the ATCs, with respect to the control group, had substantially smaller mixing costs during long cue-target intervals (CTI) and a reduced Stroop interference effect. However, this advantage was present also prior to the training phase. Being more capable in managing multiple task sets and less distracted by interfering events suggests a more efficient selection and maintenance of task relevant information as an inherent characteristic of the ATC group, associated with proactive control. Critically, the training that the ATCs underwent improved their accuracy in general and reduced response time switching costs during short CTIs only. These results indicate a training-induced change in reactive control, which is described as a transient process in charge of stimulus-driven task detection and resolution. This experience-based enhancement of reactive control strategy denotes how cognitive control and executive functions in general can be shaped by real-life training and underlines the importance of experience in explaining inter-individual variability in cognitive functioning.

  6. Cognitive status, lexical learning and memory in deaf adults using sign language

    Directory of Open Access Journals (Sweden)

    Zahra Jafari

    2013-05-01

    Full Text Available Background and Aim : Learning and memory are two high level cognitive performances in human that hearing loss influences them. In our study, mini-mental state examination (MMSE and Ray auditory-verbal learning test (RAVLT was conducted to study cognitive stat us and lexical learning and memory in deaf adults using sign language. Methods: This cross-sectional comparative study was conducted on 30 available congenitally deaf adults using sign language in Persian and 46 normal adults aged 19 to 27 years for both sexes, with a minimum of diploma level of education. After mini-mental state examination, Rey auditory-verbal learning test was run through computers to evaluate lexical learning and memory with visual presentation. Results: Mean scores of mini-mental state examination and Rey auditory-verbal learning test in congenitally deaf adults were significantly lower than normal individuals in all scores (p=0.018 except in the two parts of the Rey test. Significant correlation was found between results of two tests just in the normal group (p=0.043. Gender had no effect on test results. Conclusion: Cognitive status and lexical memory and learning in congenitally deaf individuals is weaker than in normal subjects. It seems that using sign language as the main way of communication in deaf people causes poor lexical memory and learning.

  7. Efficacy of cognitive rehabilitation using computer software with individuals living with schizophrenia: A randomized controlled trial in Japan.

    Science.gov (United States)

    Iwata, Kazuhiko; Matsuda, Yasuhiro; Sato, Sayaka; Furukawa, Shunichi; Watanabe, Yukako; Hatsuse, Norifumi; Ikebuchi, Emi

    2017-03-01

    Cognitive impairment is common in schizophrenia, and is associated with poor psychosocial functioning. Previous studies had inconsistently shown improvement in cognitive functions with cognitive remediation therapy. This study examined whether cognitive remediation is effective in improving both cognitive and social functions in schizophrenia in outpatient settings that provide learning-based psychiatric rehabilitation. This study is the first randomized controlled trial of cognitive remediation in Japan. Study participants were individuals with schizophrenia from 6 outpatient psychiatric medical facilities who were randomly assigned either a cognitive remediation program or treatment as usual. The cognitive remediation intervention includes Cognitive training using computer software (CogPack; Japanese version) administered twice a week and a weekly group over 12 weeks and was based on the Thinking Skills for Work program. Most study participants were attending day treatment services where social skills training, psychoeducation for knowledge about schizophrenia, group activities such as recreation and sport, and other psychosocial treatment were offered. Cognitive and social functioning were assessed using the Brief Assessment of Cognition in Schizophrenia (BACS) and Life Assessment Scale for Mentally Ill (LASMI) at pre- and postintervention. Of the 60 people with schizophrenia enrolled, 29 were allocated to the cognitive remediation group and 31 were allocated to the treatment as usual group. Processing speed, executive function, and the composite score of the BACS showed significantly greater improvement for the cognitive remediation group than the treatment as usual group. In addition, there was significant improvement in interpersonal relationships and work skills on the LASMI for the cognitive remediation group compared with the treatment as usual group. Changes from pretreatment to posttreatment in verbal fluency and interpersonal relationships were

  8. Cognitive control of familiarity: directed forgetting reduces proactive interference in working memory.

    Science.gov (United States)

    Festini, Sara B; Reuter-Lorenz, Patricia A

    2014-03-01

    Proactive interference (PI) occurs when previously learned information interferes with new learning. In a working memory task, PI induces longer response times and more errors to recent negative probes than to new probes, presumably because the recent probe's familiarity invites a "yes" response. Warnings, longer intertrial intervals, and the increased contextual salience of the probes can reduce but not eliminate PI, suggesting that cognitive control over PI is limited. Here we tested whether control exerted in the form of intentional forgetting performed during working memory can reduce the magnitude of PI. In two experiments, participants performed a working memory task with directed-forgetting instructions and the occasional presentation of recent probes. Surprise long-term memory testing indicated better memory for to-be-remembered than for to-be-forgotten items, documenting the classic directed-forgetting effect. Critically, in working memory, PI was virtually eliminated for recent probes from prior to-be-forgotten lists, as compared to recent probes from prior to-be-remembered lists. Thus cognitive control, when executed via directed forgetting, can reduce the adverse and otherwise persistent interference from familiarity, an effect that we attribute to attenuated memory representations of the to-be-forgotten items.

  9. Cognitive control in auditory working memory is enhanced in musicians

    DEFF Research Database (Denmark)

    Pallesen, Karen Johanne; Brattico, Elvira; Bailey, Christopher J

    2010-01-01

    focus on task-relevant stimuli, a skill which is crucial to working memory. We measured the blood oxygenation-level dependent (BOLD) activation signal in musicians and non-musicians during working memory of musical sounds to determine the relation among performance, musical competence and generally...... hemisphere, and bilaterally in the posterior dorsal prefrontal cortex and anterior cingulate gyrus. The relationship between the task performance and the magnitude of the BOLD response was more positive in musicians than in non-musicians, particularly during the most difficult working memory task....... The results confirm previous findings that neural activity increases during enhanced working memory performance. The results also suggest that superior working memory task performance in musicians rely on an enhanced ability to exert sustained cognitive control. This cognitive benefit in musicians may...

  10. Comprehensive Cognitive Assessments are not Necessary for the Identification and Treatment of Learning Disabilities.

    Science.gov (United States)

    Fletcher, Jack M; Miciak, Jeremy

    2017-02-01

    There is considerable controversy about the necessity of cognitive assessment as part of an evaluation for learning and attention problems. The controversy should be adjudicated through an evaluation of empirical research. We review five sources of evidence commonly provided as support for cognitive assessment as part of the learning disability (LD) identification process, highlighting significant gaps in empirical research and where existing evidence is insufficient to establish the reliability and validity of cognitive assessments used in this way. We conclude that current evidence does not justify routine cognitive assessment for LD identification. As an alternative, we offer an instructional conceptualization of LD: a hybrid model that directly informs intervention and is based on documenting low academic achievement, inadequate response to intensive interventions, and a consideration of exclusionary factors. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. COGNITIVE LOAD MEASUREMENT WITHIN THE RESEARCH OF EFFICIENT USAGE OF LEARNING SOFTWARE

    Directory of Open Access Journals (Sweden)

    Tetiana M. Derkach

    2011-05-01

    Full Text Available The methods of cognitive load measurement are described within the research of efficient usage of learning Software. Their classification is given, main advantages and disadvantages are analyzed, as well as area of use of these methods is defined. The article presents an overview of modern Software and Hardware that can be used for cognitive load measurement while studying with information technologies and practical examples of such methods. The use of the secondary task method is reasoned to be the most optimal for cognitive load measurement as well as for detection of optimal conditions for student work with different learning materials. This method allows to receive objective quantification of cognitive load and to investigate its dynamics accurately.

  12. Thalamic control of human attention driven by memory and learning.

    Science.gov (United States)

    de Bourbon-Teles, José; Bentley, Paul; Koshino, Saori; Shah, Kushal; Dutta, Agneish; Malhotra, Paresh; Egner, Tobias; Husain, Masud; Soto, David

    2014-05-05

    The role of the thalamus in high-level cognition-attention, working memory (WM), rule-based learning, and decision making-remains poorly understood, especially in comparison to that of cortical frontoparietal networks [1-3]. Studies of visual thalamus have revealed important roles for pulvinar and lateral geniculate nucleus in visuospatial perception and attention [4-10] and for mediodorsal thalamus in oculomotor control [11]. Ventrolateral thalamus contains subdivisions devoted to action control as part of a circuit involving the basal ganglia [12, 13] and motor, premotor, and prefrontal cortices [14], whereas anterior thalamus forms a memory network in connection with the hippocampus [15]. This connectivity profile suggests that ventrolateral and anterior thalamus may represent a nexus between mnemonic and control functions, such as action or attentional selection. Here, we characterize the role of thalamus in the interplay between memory and visual attention. We show that ventrolateral lesions impair the influence of WM representations on attentional deployment. A subsequent fMRI study in healthy volunteers demonstrates involvement of ventrolateral and, notably, anterior thalamus in biasing attention through WM contents. To further characterize the memory types used by the thalamus to bias attention, we performed a second fMRI study that involved learning of stimulus-stimulus associations and their retrieval from long-term memory to optimize attention in search. Responses in ventrolateral and anterior thalamic nuclei tracked learning of the predictiveness of these abstract associations and their use in directing attention. These findings demonstrate a key role for human thalamus in higher-level cognition, notably, in mnemonic biasing of attention. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Disentangling cognition and emotion in older adults: the role of cognitive control and mental health in emotional conflict adaptation.

    Science.gov (United States)

    Hantke, Nathan C; Gyurak, Anett; Van Moorleghem, Katie; Waring, Jill D; Adamson, Maheen M; O'Hara, Ruth; Beaudreau, Sherry A

    2017-08-01

    Recent research suggests cognition has a bidirectional relationship with emotional processing in older adults, yet the relationship is still poorly understood. We aimed to examine a potential relationship between late-life cognitive function, mental health symptoms, and emotional conflict adaptation. We hypothesized that worse cognitive control abilities would be associated with poorer emotional conflict adaptation. We further hypothesized that a higher severity of mental health symptoms would be associated with poorer emotional conflict adaptation. Participants included 83 cognitively normal community-dwelling older adults who completed a targeted mental health and cognitive battery, and emotion and gender conflict-adaptation tasks. Consistent with our hypothesis, poorer performance on components of cognitive control, specifically attention and working memory, was associated with poorer emotional conflict adaptation. This association with attention and working memory was not observed in the non-affective-based gender conflict adaptation task. Mental health symptoms did not predict emotional conflict adaptation, nor did performance on other cognitive measures. Our findings suggest that emotion conflict adaptation is disrupted in older individuals who have poorer attention and working memory. Components of cognitive control may therefore be an important potential source of inter-individual differences in late-life emotion regulation and cognitive affective deficits. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Sex Hormones and Cognition: Neuroendocrine Influences on Memory and Learning.

    Science.gov (United States)

    Hamson, Dwayne K; Roes, Meighen M; Galea, Liisa A M

    2016-06-13

    Sex differences in neurological disease exist in incidence, severity, progression, and symptoms and may ultimately influence treatment. Cognitive disturbances are frequent in neuropsychiatric disease with men showing greater cognitive impairment in schizophrenia, but women showing more severe dementia and cognitive decline with Alzheimer's disease. Although there are no overall differences in intelligence between the sexes, men, and women demonstrate slight but consistent differences in a number of cognitive domains. These include a male advantage, on average, in some types of spatial abilities and a female advantage on some measures of verbal fluency and memory. Sex differences in traits or behaviors generally indicate the involvement of sex hormones, such as androgens and estrogens. We review the literature on whether adult levels of testosterone and estradiol influence spatial ability in both males and females from rodent models to humans. We also include information on estrogens and their ability to modulate verbal memory in men and women. Estrone and progestins are common components of hormone therapies, and we also review the existing literature concerning their effects on cognition. We also review the sex differences in the hippocampus and prefrontal cortex as they relate to cognitive performance in both rodents and humans. There has been greater recognition in the scientific literature that it is important to study both sexes and also to analyze study findings with sex as a variable. Only by examining these sex differences can we progress to finding treatments that will improve the cognitive health of both men and women. © 2016 American Physiological Society. Compr Physiol 6:1295-1337, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  15. Learning Control: Sense-Making, CNC Machines, and Changes in Vocational Training for Industrial Work

    Science.gov (United States)

    Berner, Boel

    2009-01-01

    The paper explores how novices in school-based vocational training make sense of computerized numerical control (CNC) machines. Based on two ethnographic studies in Swedish schools, one from the early 1980s and one from 2006, it analyses change and continuity in the cognitive, social, and emotional processes of learning how to become a machine…

  16. Positive affect improves working memory: implications for controlled cognitive processing.

    Science.gov (United States)

    Yang, Hwajin; Yang, Sujin; Isen, Alice M

    2013-01-01

    This study examined the effects of positive affect on working memory (WM) and short-term memory (STM). Given that WM involves both storage and controlled processing and that STM primarily involves storage processing, we hypothesised that if positive affect facilitates controlled processing, it should improve WM more than STM. The results demonstrated that positive affect, compared with neutral affect, significantly enhanced WM, as measured by the operation span task. The influence of positive affect on STM, however, was weaker. These results suggest that positive affect enhances WM, a task that involves controlled processing, not just storage processing. Additional analyses of recall and processing times and accuracy further suggest that improved WM under positive affect is not attributable to motivational differences, but results instead from improved controlled cognitive processing.

  17. Effective connectivity within the frontoparietal control network differentiates cognitive control and working memory.

    Science.gov (United States)

    Harding, Ian H; Yücel, Murat; Harrison, Ben J; Pantelis, Christos; Breakspear, Michael

    2015-02-01

    Cognitive control and working memory rely upon a common fronto-parietal network that includes the inferior frontal junction (IFJ), dorsolateral prefrontal cortex (dlPFC), pre-supplementary motor area/dorsal anterior cingulate cortex (pSMA/dACC), and intraparietal sulcus (IPS). This network is able to flexibly adapt its function in response to changing behavioral goals, mediating a wide range of cognitive demands. Here we apply dynamic causal modeling to functional magnetic resonance imaging data to characterize task-related alterations in the strength of network interactions across distinct cognitive processes. Evidence in favor of task-related connectivity dynamics was accrued across a very large space of possible network structures. Cognitive control and working memory demands were manipulated using a factorial combination of the multi-source interference task and a verbal 2-back working memory task, respectively. Both were found to alter the sensitivity of the IFJ to perceptual information, and to increase IFJ-to-pSMA/dACC connectivity. In contrast, increased connectivity from the pSMA/dACC to the IPS, as well as from the dlPFC to the IFJ, was uniquely driven by cognitive control demands; a task-induced negative influence of the dlPFC on the pSMA/dACC was specific to working memory demands. These results reflect a system of both shared and unique context-dependent dynamics within the fronto-parietal network. Mechanisms supporting cognitive engagement, response selection, and action evaluation may be shared across cognitive domains, while dynamic updating of task and context representations within this network are potentially specific to changing demands on cognitive control. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Modafinil and cognitive enhancement in schizophrenia and healthy volunteers: the effects of test battery in a randomised controlled trial.

    Science.gov (United States)

    Lees, J; Michalopoulou, P G; Lewis, S W; Preston, S; Bamford, C; Collier, T; Kalpakidou, A; Wykes, T; Emsley, R; Pandina, G; Kapur, S; Drake, R J

    2017-10-01

    Cognitive deficits in schizophrenia have major functional impacts. Modafinil is a cognitive enhancer whose effect in healthy volunteers is well-described, but whose effects on the cognitive deficits of schizophrenia appear to be inconsistent. Two possible reasons for this are that cognitive test batteries vary in their sensitivity, or that the phase of illness may be important, with patients early in their illness responding better. A double-blind, randomised, placebo-controlled single-dose crossover study of modafinil 200 mg examined this with two cognitive batteries [MATRICS Consensus Cognitive Battery (MCCB) and Cambridge Neuropsychological Test Automated Battery (CANTAB)] in 46 participants with under 3 years' duration of DSM-IV schizophrenia, on stable antipsychotic medication. In parallel, the same design was used in 28 age-, sex-, and education-matched healthy volunteers. Uncorrected p values were calculated using mixed effects models. In patients, modafinil significantly improved CANTAB Paired Associate Learning, non-significantly improved efficiency and significantly slowed performance of the CANTAB Stockings of Cambridge spatial planning task. There was no significant effect on any MCCB domain. In healthy volunteers, modafinil significantly increased CANTAB Rapid Visual Processing, Intra-Extra Dimensional Set Shifting and verbal recall accuracy, and MCCB social cognition performance. The only significant differences between groups were in MCCB visual learning. As in earlier chronic schizophrenia studies, modafinil failed to produce changes in cognition in early psychosis as measured by MCCB. CANTAB proved more sensitive to the effects of modafinil in participants with early schizophrenia and in healthy volunteers. This confirms the importance of selecting the appropriate test battery in treatment studies of cognition in schizophrenia.

  19. When Affect Supports Cognitive Control – A Working Memory Perspective

    Directory of Open Access Journals (Sweden)

    Kolańczyk Alina

    2016-04-01

    Full Text Available The paper delineates a study of executive functions (EFs, construed as procedural working memory (WM, from a motivational perspective. Since WM theories and motivation theories are both concerned with purposive activity, the role of implicit evaluations (affects observed in goal pursuit can be anticipated to arise also in the context of cognitive control, e.g., during the performance of the Stroop task. The role of positive and negative affect in goal pursuit consists in controlling attention resources according to the goal and situational requirements. Positive affect serves to maintain goals and means in the scope of attention (EF1, whereas negative affect activates the inhibition of non-functional contents, e.g., distractors and irrelevant objects (resulting in attention disengagement; EF2. Adaptation to conflict proceeds via sequential triggering of negative and positive affect (EF3. Moreover, it was demonstrated that the focus on action or reflection changes the scope of contents subjected to implicit (affective control. Therefore, I suggest that the motivational system, to a large extent, plays the role of the Central Executive. The paper opens a discussion and proposes studies on affective mechanisms of cognitive control.

  20. Walking or vitamin B for cognition in older adults with mild cognitive impairment? A randomised controlled trial

    NARCIS (Netherlands)

    Uffelen, J.G.Z. van; Chinapaw, M.J.M.; Mechelen, W. van; Hopman-Rock, M.

    2008-01-01

    Objective: To examine the effects of aerobic exercise or vitamin B supplementation on cognitive function in older adults with mild cognitive impairment (MCI). Design: Randomised placebo-controlled trial. Setting: General community. Participants: Community-dwelling adults aged 70-80 with MCI.

  1. Walking or vitamin B for cognition in older adults with mild cognitive impairment? A randomized controlled trial

    NARCIS (Netherlands)

    van Uffelen, J.G.Z.; Chin A Paw, M.J.M.; van Mechelen, W.; Hopman-Rock, M.

    2008-01-01

    Objective: To examine the effects of aerobic exercise or vitamin B supplementation on cognitive function in older adults with mild cognitive impairment (MCI). Design: Randomised placebo-controlled trial. Setting: General community. Participants: Community-dwelling adults aged 70-80 with MCI.

  2. Learning System Center App Controller

    CERN Document Server

    Naeem, Nasir

    2015-01-01

    This book is intended for IT professionals working with Hyper-V, Azure cloud, VMM, and private cloud technologies who are looking for a quick way to get up and running with System Center 2012 R2 App Controller. To get the most out of this book, you should be familiar with Microsoft Hyper-V technology. Knowledge of Virtual Machine Manager is helpful but not mandatory.

  3. Collaborative use of virtual patients after a lecture enhances learning with minimal investment of cognitive load.

    Science.gov (United States)

    Marei, Hesham F; Donkers, Jeroen; Al-Eraky, Mohamed M; Van Merrienboer, Jeroen J G

    2018-05-25

    The use of virtual patients (VPs), due to their high complexity and/or inappropriate sequencing with other instructional methods, might cause a high cognitive load, which hampers learning. To investigate the efficiency of instructional methods that involved three different applications of VPs combined with lectures. From two consecutive batches, 171 out of 183 students have participated in lecture and VPs sessions. One group received a lecture session followed by a collaborative VPs learning activity (collaborative deductive). The other two groups received a lecture session and an independent VP learning activity, which either followed the lecture session (independent deductive) or preceded it (independent inductive). All groups were administrated written knowledge acquisition and retention tests as well as transfer tests using two new VPs. All participants completed a cognitive load questionnaire, which measured intrinsic, extraneous and germane load. Mixed effect analysis of cognitive load and efficiency using the R statistical program was performed. The highest intrinsic and extraneous load was found in the independent inductive group, while the lowest intrinsic and extraneous load was seen in the collaborative deductive group. Furthermore, comparisons showed a significantly higher efficiency, that is, higher performance in combination with lower cognitive load, for the collaborative deductive group than for the other two groups. Collaborative use of VPs after a lecture is the most efficient instructional method, of those tested, as it leads to better learning and transfer combined with lower cognitive load, when compared with independent use of VPs, either before or after the lecture.

  4. Patterns of interactions at grade 5 classroom in learning the topic of statistics viewed from cognitive load theory

    Science.gov (United States)

    Setianingsih, R.

    2018-01-01

    The nature of interactions that occurs among teacher, students, learning sources, and learning environment creates different settings to enhance learning. Any setting created by a teacher is affected by 3 (three) types of cognitive load: intrinsic cognitive load, extraneous cognitive load, and germane cognitive load. This study is qualitative in nature, aims to analyse the patterns of interaction that are constituted in mathematics instructions by taking into account the cognitive load theory. The subjects of this study are 21 fifth-grade students who learn mathematics in small groups and whole-class interactive lessons. The data were collected through classroom observations which were videotaped, while field notes were also taken. The data analysis revealed that students engaged in productive interaction and inquiry while they were learning mathematics in small groups or in whole class setting, in which there was a different type of cognitive load that dominantly affecting the learning processes at each setting. During learning mathematics in whole class setting, the most frequently found interaction patterns were to discuss and compare solution based on self-developed models, followed by expressing opinions. This is consistent with the principles of mathematics learning, which gives students wide opportunities to construct mathematical knowledge through individual learning, learning in small groups as well as learning in whole class settings. It means that by participating in interactive learning, the students are habitually engaged in productive interactions and high level of mathematical thinking.

  5. Aging, subjective experience, and cognitive control: dramatic false remembering by older adults.

    Science.gov (United States)

    Jacoby, Larry L; Bishara, Anthony J; Hessels, Sandra; Toth, Jeffrey P

    2005-05-01

    Recent research suggests that older adults are more susceptible to interference effects than are young adults; however, that research has failed to equate differences in original learning. In 4 experiments, the authors show that older adults are more susceptible to interference effects produced by a misleading prime. Even when original learning was equated, older adults were 10 times as likely to falsely remember misleading information and were much less likely to increase their accuracy by opting not to answer under conditions of free responding. The results are well described by a multinomial model that postulates multiple modes of cognitive control. According to that model, older adults are likely to be captured by misleading information, a form of goal neglect or deficit in inhibitory functions. Copyright 2005 APA, all rights reserved.

  6. The Impact of Cognitive Dissonance on Learning Work Behavior

    Science.gov (United States)

    Dechawatanapaisal, Decha; Siengthai, Sununta

    2006-01-01

    Purpose: This research proposes a framework, which identifies the underlying factors that shape learning behavior in the workplace. It takes organizational members' perspectives into consideration to gain better understanding on managing people and their behavior in the organizational learning process. Design/methodology/approach: Primary data…

  7. Literacy processes cognitive flexibility in learning and teaching

    CERN Document Server

    Cartwright, Kelly B

    2015-01-01

    Reading and writing instruction require individuals--both students and teachers--to flexibly process many kinds of information, from a variety of sources. This is the first book to provide an in-depth examination of cognitive flexibility: how it develops across the lifespan; its role in specific literacy processes, such as phonemic awareness, word recognition, and comprehension; and implications for improving literacy instruction and teacher education. The contributors include leading researchers in literacy, psychology, and cognitive development, who summarize the current state of the science

  8. The development of a model of control room operator cognition

    International Nuclear Information System (INIS)

    Harrison, C. Felicity

    1998-01-01

    The nuclear generation station CRO is one of the main contributors to plant performance and safety. In the past, studies of operator behaviour have been made under emergency or abnormal situations, with little consideration being given to the more routine aspects of plant operation. One of the tasks of the operator is to detect the early signs of a problem, and to take steps to prevent a transition to an abnormal plant state. In order to do this CRO must determine that plant indications are no longer in the normal range, and take action to prevent a further move away from normal. This task is made more difficult by the extreme complexity of the control room, and by the may hindrances that the operator must face. It would therefore be of great benefit to understand CRO cognitive performance, especially under normal operating conditions. Through research carried out at several Canadian nuclear facilities we were able to develop a deeper understanding of CRO monitoring of highly automated systems during normal operations, and specifically to investigate the contributions of cognitive skills to monitoring performance. The consultants were asked to develop a deeper understanding of CRO monitoring during normal operations, and specifically to investigate the contributions of cognitive skills to monitoring performance. The overall objective of this research was to develop and validate a model of CRO monitoring. The findings of this research have practical implications for systems integration, training, and interface design. The result of this work was a model of operator monitoring activities. (author)

  9. Cognitive training in Alzheimer's disease: a controlled randomized study.

    Science.gov (United States)

    Giovagnoli, A R; Manfredi, V; Parente, A; Schifano, L; Oliveri, S; Avanzini, G

    2017-08-01

    This controlled randomized single-blind study evaluated the effects of cognitive training (CT), compared to active music therapy (AMT) and neuroeducation (NE), on initiative in patients with mild to moderate Alzheimer's disease (AD). Secondarily, we explored the effects of CT on episodic memory, mood, and social relationships. Thirty-nine AD patients were randomly assigned to CT, AMT, or NE. Each treatment lasted 3 months. Before, at the end, and 3 months after treatment, neuropsychological tests and self-rated scales assessed initiative, episodic memory, depression, anxiety, and social relationships. At the end of the CT, initiative significantly improved, whereas, at the end of AMT and NE, it was unchanged. Episodic memory showed no changes at the end of CT or AMT and a worsening after NE. The rates of the patients with clinically significant improvement of initiative were greater after CT (about 62%) than after AMT (about 8%) or NE (none). At the 3-month follow-up, initiative and episodic memory declined in all patients. Mood and social relationships improved in the three groups, with greater changes after AMT or NE. In patients with mild to moderate AD, CT can improve initiative and stabilize memory, while the non-cognitive treatments can ameliorate the psychosocial aspects. The combining of CT and non-cognitive treatments may have useful clinical implications.

  10. Catechol-O-methyltransferase (COMT) genotype affects cognitive control during total sleep deprivation.

    Science.gov (United States)

    Satterfield, Brieann C; Hinson, John M; Whitney, Paul; Schmidt, Michelle A; Wisor, Jonathan P; Van Dongen, Hans P A

    2018-02-01

    Adaptive decision making is profoundly impaired by total sleep deprivation (TSD). This suggests that TSD impacts fronto-striatal pathways involved in cognitive control, where dopamine is a key neuromodulator. In the prefrontal cortex (PFC), dopamine is catabolized by the enzyme catechol-O-methyltransferase (COMT). A functional polymorphism (Val158Met) influences COMT's enzymatic activity, resulting in markedly different levels of prefrontal dopamine. We investigated the effect of this polymorphism on adaptive decision making during TSD. Sixty-six healthy young adults participated in one of two in-laboratory studies. After a baseline day, subjects were randomized to either a TSD group (n = 32) with 38 h or 62 h of extended wakefulness or a well-rested control group (n = 34) with 10 h nighttime sleep opportunities. Subjects performed a go/no-go reversal learning (GNGr) task at well-rested baseline and again during TSD or equivalent control. During the task, subjects were required to learn stimulus-response relationships from accuracy feedback. The stimulus-response relationships were reversed halfway through the task, which required subjects to learn the new stimulus-response relationships from accuracy feedback. Performance on the GNGr task was quantified by discriminability (d') between go and no-go stimuli before and after the stimulus-response reversal. GNGr performance did not differ between COMT genotypes when subjects were well-rested. However, TSD exposed a significant vulnerability to adaptive decision making impairment in subjects with the Val allele. Our results indicate that sleep deprivation degrades cognitive control through a fronto-striatal, dopaminergic mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Improving the learning of clinical reasoning through computer-based cognitive representation.

    Science.gov (United States)

    Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A

    2014-01-01

    Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.

  12. Improving the learning of clinical reasoning through computer-based cognitive representation

    Directory of Open Access Journals (Sweden)

    Bian Wu

    2014-12-01

    Full Text Available Objective: Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods: Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results: A significant improvement was found in students’ learning products from the beginning to the end of the study, consistent with students’ report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions: The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge

  13. Cognitive Control Over Immediate Reward in Binge Alcohol Drinkers.

    Science.gov (United States)

    Poulton, Antoinette; Mackenzie, Caitlyn; Harrington, Kaitlyn; Borg, Sarah; Hester, Robert

    2016-02-01

    Cognitive control deficits, as captured by inhibitory control measures, are indicative of increased impulsivity and are considered a marker for substance use disorder vulnerability. While individuals with alcohol use disorder (AUD) typically exhibit inhibitory control dysfunction, evidence of impaired inhibitory control among harmful drinkers, who are at increased risk of developing an AUD, is mixed. This study examined the response inhibition of binge drinkers using a task that employed neutral, as well as both immediate and delayed reward contingencies, to determine whether reward induced heightened impulsivity in this population. Binge alcohol users (n = 42) and controls (n = 42) were administered a Monetary Incentive Control Task that required participants to successfully inhibit a prepotent motor response to both neutral and immediately rewarding stimuli in order to secure a large delayed reward. Binge drinkers had significantly worse response inhibition than controls irrespective of trial condition and even after controlling for differences in weekly intake. Although both binge and control participants exhibited significantly worse inhibitory control in the presence of immediate reward, the control group showed a greater reduction in inhibition accuracy compared to the binge group in reward relative to neutral conditions. Both groups demonstrated significantly enhanced control when forewarned there was an increased chance response inhibition would be required. Control participants secured the delayed reward more often than binge participants. Despite the variability in the literature, this study demonstrated consistent generalized impulse control deficits among binge-drinking individuals that were unrelated to reward manipulations. These findings point to mechanisms that may confer vulnerability for transition from binge drinking to AUD. Copyright © 2016 by the Research Society on Alcoholism.

  14. Effects of age on cognitive control during semantic categorization.

    Science.gov (United States)

    Mudar, Raksha A; Chiang, Hsueh-Sheng; Maguire, Mandy J; Spence, Jeffrey S; Eroh, Justin; Kraut, Michael A; Hart, John

    2015-01-01

    We used event-related potentials (ERPs) to study age effects of perceptual (basic-level) vs. perceptual-semantic (superordinate-level) categorization on cognitive control using the go/nogo paradigm. Twenty-two younger (11 M; 21 ± 2.2 years) and 22 older adults (9 M; 63 ± 5.8 years) completed two visual go/nogo tasks. In the single-car task (SiC) (basic), go/nogo responses were made based on single exemplars of a car (go) and a dog (nogo). In the object animal task (ObA) (superordinate), responses were based on multiple exemplars of objects (go) and animals (nogo). Each task consisted of 200 trials: 160 (80%) 'go' trials that required a response through button pressing and 40 (20%) 'nogo' trials that required inhibition/withholding of a response. ERP data revealed significantly reduced nogo-N2 and nogo-P3 amplitudes in older compared to younger adults, whereas go-N2 and go-P3 amplitudes were comparable in both groups during both categorization tasks. Although the effects of categorization levels on behavioral data and P3 measures were similar in both groups with longer response times, lower accuracy scores, longer P3 latencies, and lower P3 amplitudes in ObA compared to SiC, N2 latency revealed age group differences moderated by the task. Older adults had longer N2 latency for ObA compared to SiC, in contrast, younger adults showed no N2 latency difference between SiC and ObA. Overall, these findings suggest that age differentially affects neural processing related to cognitive control during semantic categorization. Furthermore, in older adults, unlike in younger adults, levels of categorization modulate neural processing related to cognitive control even at the early stages (N2). Published by Elsevier B.V.

  15. The Computational and Neural Basis of Cognitive Control: Charted Territory and New Frontiers

    Science.gov (United States)

    Botvinick, Matthew M.; Cohen, Jonathan D.

    2014-01-01

    Cognitive control has long been one of the most active areas of computational modeling work in cognitive science. The focus on computational models as a medium for specifying and developing theory predates the PDP books, and cognitive control was not one of the areas on which they focused. However, the framework they provided has injected work on…

  16. The development of macros program-based cognitive evaluation model via e-learning course mathematics in senior high school based on curriculum 2013

    Directory of Open Access Journals (Sweden)

    Djoko Purnomo

    2017-02-01

    Full Text Available The specific purpose of this research is: The implementation of the application of the learning tool with a form cognitive learning evaluation model based macros program via E-learning at High School grade X at july-december based on 2013 curriculum. The method used in this research followed the procedures is research and development by Borg and Gall [2]. In second year, population analysis has conducted at several universities in Semarang. The results of the research and application development of macro program-based cognitive evaluation model is effective which can be seen from (1 the student learning result is over KKM, (2 The student independency affects learning result positively, (3 the student learning a result by using macros program-based cognitive evaluation model is better than students class control. Based on the results above, the development of macros program-based cognitive evaluation model that have been tested have met quality standards according to Akker (1999. Large-scale testing includes operational phase of field testing and final product revision, i.e trials in the wider class that includes students in mathematics education major in several universities, they are the Universitas PGRI Semarang, Universitas Islam Sultan Agung and the Universitas Islam NegeriWalisongo Semarang. The positive responses is given by students at the Universitas PGRI Semarang, Universitas Islam Sultan Agung and the Universitas Islam NegeriWalisongo Semarang.

  17. Influence of learning style on instructional multimedia effects on graduate student cognitive and psychomotor performance.

    Science.gov (United States)

    Smith, A Russell; Cavanaugh, Catherine; Jones, Joyce; Venn, John; Wilson, William

    2006-01-01

    Learning outcomes may improve in graduate healthcare students when attention is given to individual learning styles. Interactive multimedia is one tool shown to increase success in meeting the needs of diverse learners. The purpose of this study was to examine the effect of learning style and type of instruction on physical therapy students' cognitive and psychomotor performance. Participants were obtained by a sample of convenience with students recruited from two physical therapy programs. Twenty-seven students volunteered to participate from Program 1. Twenty-three students volunteered to participate from Program 2. Gregorc learning styles were identified through completion of the Gregorc Style Delineator. Students were randomly assigned to one of two instructional strategies: 1) instructional CD or 2) live demonstration. Differences in cognitive or psychomotor performance following instructional multimedia based on learning style were not demonstrated in this study. Written examination scores improved with both instructional strategies demonstrating no differences between the strategies. Practical examination ankle scores were significantly higher in participants receiving CD instruction than in participants receiving live presentation. Learning style did not significantly affect this improvement. Program 2 performed significantly better on written knee and practical knee and ankle examinations. Learning style had no significant effect on student performance following instruction in clinical skills via interactive multimedia. Future research may include additional measurement instruments assessing other models of learning styles and possible interaction of learning style and instructional strategy on students over longer periods of time, such as a semester or an entire curriculum.

  18. Behaviorism, latent learning, and cognitive maps: needed revisions in introductory psychology textbooks.

    Science.gov (United States)

    Jensen, Robert

    2006-01-01

    This paper critically assesses the scholarship in introductory psychology textbooks in relation to the topic of latent learning. A review of the treatment of latent learning in 48 introductory psychology textbooks published between 1948 and 2004, with 21 of these texts published since 1999, reveals that the scholarship on the topic of latent learning demonstrated in introductory textbooks warrants improvement. Errors that persist in textbooks include the assertion that the latent learning experiments demonstrate unequivocally that reinforcement was not necessary for learning to occur, that behavioral theories could not account for the results of the latent learning experiments, that B. F. Skinner was an S-R association behaviorist who argued that reinforcement is necessary for learning to occur, and that because behavioral theories (including that of B. F. Skinner) were unable explain the results of the latent learning experiments the cognitive map invoked by Edward Tolman is the only explanation for latent learning. Finally, the validity of the cognitive map is typically accepted without question. Implications of the presence of these errors for students and the discipline are considered. Lastly, remedies are offered to improve the scholarship found in introductory psychology textbooks.

  19. Machine Learning for Flapping Wing Flight Control

    NARCIS (Netherlands)

    Goedhart, Menno; van Kampen, E.; Armanini, S.F.; de Visser, C.C.; Chu, Q.

    2018-01-01

    Flight control of Flapping Wing Micro Air Vehicles is challenging, because of their complex dynamics and variability due to manufacturing inconsistencies. Machine Learning algorithms can be used to tackle these challenges. A Policy Gradient algorithm is used to tune the gains of a

  20. Approaches to Learning to Control Dynamic Uncertainty

    Directory of Open Access Journals (Sweden)

    Magda Osman

    2015-10-01

    Full Text Available In dynamic environments, when faced with a choice of which learning strategy to adopt, do people choose to mostly explore (maximizing their long term gains or exploit (maximizing their short term gains? More to the point, how does this choice of learning strategy influence one’s later ability to control the environment? In the present study, we explore whether people’s self-reported learning strategies and levels of arousal (i.e., surprise, stress correspond to performance measures of controlling a Highly Uncertain or Moderately Uncertain dynamic environment. Generally, self-reports suggest a preference for exploring the environment to begin with. After which, those in the Highly Uncertain environment generally indicated they exploited more than those in the Moderately Uncertain environment; this difference did not impact on performance on later tests of people’s ability to control the dynamic environment. Levels of arousal were also differentially associated with the uncertainty of the environment. Going beyond behavioral data, our model of dynamic decision-making revealed that, in actual fact, there was no difference in exploitation levels between those in the highly uncertain or moderately uncertain environments, but there were differences based on sensitivity to negative reinforcement. We consider the implications of our findings with respect to learning and strategic approaches to controlling dynamic uncertainty.

  1. Rethinking the Boundaries of Cognitive Load Theory in Complex Learning

    Science.gov (United States)

    Kalyuga, Slava; Singh, Anne-Marie

    2016-01-01

    In the traditional framework of cognitive load theory, it is assumed that the acquisition of domain-specific knowledge structures (or schemas) is the only instructional goal, and therefore, the theory is applicable to any instructional task. Accordingly, the basic concepts of intrinsic (productive) and extraneous (unproductive) types of cognitive…

  2. Modeling language and cognition with deep unsupervised learning: a tutorial overview.

    Science.gov (United States)

    Zorzi, Marco; Testolin, Alberto; Stoianov, Ivilin P

    2013-01-01

    Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981) is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative) learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as a way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition.

  3. Modeling Language and Cognition with Deep Unsupervised Learning:A Tutorial Overview

    Directory of Open Access Journals (Sweden)

    Marco eZorzi

    2013-08-01

    Full Text Available Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981 is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition.

  4. Modeling language and cognition with deep unsupervised learning: a tutorial overview

    Science.gov (United States)

    Zorzi, Marco; Testolin, Alberto; Stoianov, Ivilin P.

    2013-01-01

    Deep unsupervised learning in stochastic recurrent neural networks with many layers of hidden units is a recent breakthrough in neural computation research. These networks build a hierarchy of progressively more complex distributed representations of the sensory data by fitting a hierarchical generative model. In this article we discuss the theoretical foundations of this approach and we review key issues related to training, testing and analysis of deep networks for modeling language and cognitive processing. The classic letter and word perception problem of McClelland and Rumelhart (1981) is used as a tutorial example to illustrate how structured and abstract representations may emerge from deep generative learning. We argue that the focus on deep architectures and generative (rather than discriminative) learning represents a crucial step forward for the connectionist modeling enterprise, because it offers a more plausible model of cortical learning as well as a way to bridge the gap between emergentist connectionist models and structured Bayesian models of cognition. PMID:23970869

  5. A SOCIO-COGNITIVE APPROACH TO KNOWLEDGE CONSTRUCTION THROUGH BLENDED LEARNING

    Directory of Open Access Journals (Sweden)

    Tuba Kocaturk

    2017-01-01

    Full Text Available This paper results from an educational research project that was undertaken by the School of Architecture, at the University of Liverpool funded by the Higher Education Academy in UK. The research explored technology driven shifts in architectural design studio education, identified their cognitive effects on design learning and developed an innovative blended learning approach that was implemented at a masters level digital design studio. The contribution of the research and the proposed approach to the existing knowledge and practice are twofold. Firstly, it offers a new pedagogical framework which integrates social, technical and cognitive dimensions of knowledge construction. And secondly, it offers a unique operational model through the integration of both mediational and instrumental use of digital media. The proposed model provides a useful basis for the effective mobilization of next generation learning technologies which can effectively respond to the learning challenges specific to architectural design knowledge and its means of creation.

  6. Sound as Affective Design Feature in Multimedia Learning--Benefits and Drawbacks from a Cognitive Load Theory Perspective

    Science.gov (United States)

    Königschulte, Anke

    2015-01-01

    The study presented in this paper investigates the potential effects of including non-speech audio such as sound effects into multimedia-based instruction taking into account Sweller's cognitive load theory (Sweller, 2005) and applied frameworks such as the cognitive theory of multimedia learning (Mayer, 2005) and the cognitive affective theory of…

  7. An Exploration of Students' Science Learning Interest Related to Their Cognitive Anxiety, Cognitive Load, Self-Confidence and Learning Progress Using Inquiry-Based Learning With an iPad

    Science.gov (United States)

    Hong, Jon-Chao; Hwang, Ming-Yueh; Tai, Kai-Hsin; Tsai, Chi-Ruei

    2017-12-01

    Based on the cognitive-affective theory, the present study designed a science inquiry learning model, predict-observe-explain (POE), and implemented it in an app called "WhyWhy" to examine the effectiveness of students' science inquiry learning practice. To understand how POE can affect the cognitive-affective learning process, as well as the learning progress, a pretest and a posttest were given to 152 grade 5 elementary school students. The students practiced WhyWhy during six sessions over 6 weeks, and data related to interest in learning science (ILS), cognitive anxiety (CA), and extraneous cognitive load (ECL) were collected and analyzed through confirmatory factor analysis with structure equation modeling. The results showed that students with high ILS have low CA and ECL. In addition, the results also indicated that students with a high level of self-confidence enhancement showed significant improvement in the posttest. The implications of this study suggest that by using technology-enhanced science learning, the POE model is a practical approach to motivate students to learn.

  8. Situated Cognition and Learning Environments: Implications for Teachers On- and Offline in the New Digital Media Age

    Science.gov (United States)

    Gomez, Kimberley; Lee, Ung-Sang

    2015-01-01

    John Seely Brown suggested that learning environments should be spaces in which all work is public, is subject to iterative critique by instructors and peers, and in which social interaction is primary. In such spaces, students and teachers engage in a situated cognition approach to teaching and learning where "cognitive accomplishments rely…

  9. A Commentary on Parent-Child Cognitive Interaction Research: What Have we Learned From Two Decades of Research

    Directory of Open Access Journals (Sweden)

    Yvette Renee Harris

    2016-08-01

    Full Text Available The role of family influences on preschool and school age cognitive development has received considerable empirical attention from cognitive developmental psychology researchers in the last few decades. As a result of the interest, investigators have focused their attention on developing coding/observational systems to capture the interactions occurring between mothers and their young children. This paper reviews a select body of research on parent child cognitive learning interactions with the goal of determining how the researchers have operationalized the behaviors that occur within learning interactions. The paper concludes with a discussion of the suggestions on next steps for conducting parent child cognitive learning interaction research in the future.

  10. Cognitive Machine-Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy.

    Science.gov (United States)

    Sengupta, Partho P; Huang, Yen-Min; Bansal, Manish; Ashrafi, Ali; Fisher, Matt; Shameer, Khader; Gall, Walt; Dudley, Joel T

    2016-06-01

    Associating a patient's profile with the memories of prototypical patients built through previous repeat clinical experience is a key process in clinical judgment. We hypothesized that a similar process using a cognitive computing tool would be well suited for learning and recalling multidimensional attributes of speckle tracking echocardiography data sets derived from patients with known constrictive pericarditis and restrictive cardiomyopathy. Clinical and echocardiographic data of 50 patients with constrictive pericarditis and 44 with restrictive cardiomyopathy were used for developing an associative memory classifier-based machine-learning algorithm. The speckle tracking echocardiography data were normalized in reference to 47 controls with no structural heart disease, and the diagnostic area under the receiver operating characteristic curve of the associative memory classifier was evaluated for differentiating constrictive pericarditis from restrictive cardiomyopathy. Using only speckle tracking echocardiography variables, associative memory classifier achieved a diagnostic area under the curve of 89.2%, which improved to 96.2% with addition of 4 echocardiographic variables. In comparison, the area under the curve of early diastolic mitral annular velocity and left ventricular longitudinal strain were 82.1% and 63.7%, respectively. Furthermore, the associative memory classifier demonstrated greater accuracy and shorter learning curves than other machine-learning approaches, with accuracy asymptotically approaching 90% after a training fraction of 0.3 and remaining flat at higher training fractions. This study demonstrates feasibility of a cognitive machine-learning approach for learning and recalling patterns observed during echocardiographic evaluations. Incorporation of machine-learning algorithms in cardiac imaging may aid standardized assessments and support the quality of interpretations, particularly for novice readers with limited experience. © 2016

  11. A Cognitive Machine Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis from Restrictive Cardiomyopathy

    Science.gov (United States)

    Sengupta, Partho P.; Huang, Yen-Min; Bansal, Manish; Ashrafi, Ali; Fisher, Matt; Shameer, Khader; Gall, Walt; Dudley, Joel T

    2016-01-01

    Background Associating a patient’s profile with the memories of prototypical patients built through previous repeat clinical experience is a key process in clinical judgment. We hypothesized that a similar process using a cognitive computing tool would be well suited for learning and recalling multidimensional attributes of speckle tracking echocardiography (STE) data sets derived from patients with known constrictive pericarditis (CP) and restrictive cardiomyopathy (RCM). Methods and Results Clinical and echocardiographic data of 50 patients with CP and 44 with RCM were used for developing an associative memory classifier (AMC) based machine learning algorithm. The STE data was normalized in reference to 47 controls with no structural heart disease, and the diagnostic area under the receiver operating characteristic curve (AUC) of the AMC was evaluated for differentiating CP from RCM. Using only STE variables, AMC achieved a diagnostic AUC of 89·2%, which improved to 96·2% with addition of 4 echocardiographic variables. In comparison, the AUC of early diastolic mitral annular velocity and left ventricular longitudinal strain were 82.1% and 63·7%, respectively. Furthermore, AMC demonstrated greater accuracy and shorter learning curves than other machine learning approaches with accuracy asymptotically approaching 90% after a training fraction of 0·3 and remaining flat at higher training fractions. Conclusions This study demonstrates feasibility of a cognitive machine learning approach for learning and recalling patterns observed during echocardiographic evaluations. Incorporation of machine learning algorithms in cardiac imaging may aid standardized assessments and support the quality of interpretations, particularly for novice readers with limited experience. PMID:27266599

  12. Cognitive Challenges

    Science.gov (United States)

    ... Privacy Policy Sitemap Learn Engage Donate About TSC Cognitive Challenges Approximately 45% to 60% of individuals with TSC develop cognitive challenges (intellectual disabilities), although the degree of intellectual ...

  13. Neuroanatomical and cognitive mediators of age-related differences in perceptual priming and learning

    OpenAIRE

    Kennedy, Kristen M.; Rodrigue, Karen M.; Head, Denise; Gunning-Dixon, Faith; Raz, Naftali

    2009-01-01

    Our objectives were to assess age differences in perceptual repetition priming and perceptual skill learning, and to determine whether they are mediated by cognitive resources and regional cerebral volume differences. Fragmented picture identification paradigm allows the study of both priming and learning within the same task. We presented this task to 169 adults (ages 18–80), assessed working memory and fluid intelligence, and measured brain volumes of regions that were deemed relevant to th...

  14. MUSCLE OR MOTIVATION? A STOP SIGNAL STUDY ON THE EFFECTS OF SEQUENTIAL COGNITIVE CONTROL

    Directory of Open Access Journals (Sweden)

    Hilde M. Huizenga

    2012-05-01

    Full Text Available Performance in cognitive control tasks deteriorates when these tasks are performed together with other tasks that also require cognitive control, that is, if simultaneous cognitive control is required. Surprisingly, this decrease in performance is also observed if tasks are preceded by other cognitive control tasks, that is, if sequential cognitive control is required. The common explanation for the latter finding is that previous acts of cognitive control deplete a common resource, just like a muscle becomes fatigued after repeated use. An alternative explanation however has also been put forward, namely that repeated acts of cognitive control reduce the motivation to match allocated resources to required resources. In this paper we formalize these two accounts, the muscle and the motivation account, and show that they yield differential predictions on the interaction between simultaneous and sequential cognitive control. Such an interaction is not predicted by the muscle account, whereas it is predicted by the motivation account.These predictions were tested in a paradigm where participants had to perform a series of stop-signal tasks, these tasks varied both in their demands on simultaneous control and in their demands on sequential control. This paradigm, combined with a multilevel analysis, offered the possibility to test the differential predictions directly. Results of two studies indicate that an interaction between simultaneous and sequential cognitive control is present. Therefore it is concluded that effects of sequential cognitive control are best explained by the motivation account.

  15. Effect of Neuroscience-Based Cognitive Skill Training on Growth of Cognitive Deficits Associated with Learning Disabilities in Children Grades 2-4

    Science.gov (United States)

    Avtzon, Sarah Abitbol

    2012-01-01

    Working memory, executive functions, and cognitive processes associated with specific academic areas, are empirically identified as being the core underlying cognitive deficits in students with specific learning disabilities. Using Hebb's theory of neuroplasticity and the principle of automaticity as theoretical bases, this experimental study…

  16. Cognitive Benefits of Social Dancing and Walking in Old Age: The Dancing Mind Randomized Controlled Trial.

    Science.gov (United States)

    Merom, Dafna; Grunseit, Anne; Eramudugolla, Ranmalee; Jefferis, Barbara; Mcneill, Jade; Anstey, Kaarin J

    2016-01-01

    A physically active lifestyle has the potential to prevent cognitive decline and dementia, yet the optimal type of physical activity/exercise remains unclear. Dance is of special interest as it complex sensorimotor rhythmic activity with additional cognitive, social, and affective dimensions. To determine whether dance benefits executive function more than walking, an activity that is simple and functional. Two-arm randomized controlled trial among community-dwelling older adults. The intervention group received 1 h of ballroom dancing twice weekly over 8 months (~69 sessions) in local community dance studios. The control group received a combination of a home walking program with a pedometer and optional biweekly group-based walking in local community park to facilitate socialization. Executive function tests: processing speed and task shift by the Trail Making Tests, response inhibition by the Stroop Color-Word Test, working memory by the Digit Span Backwards test, immediate and delayed verbal recall by the Rey Auditory Verbal Learning Test, and visuospatial recall by the Brief Visuospatial Memory Test (BVST). One hundred and fifteen adults (mean 69.5 years, SD 6.4) completed baseline and delayed baseline (3 weeks apart) before being randomized to either dance (n = 60) or walking (n = 55). Of those randomized, 79 (68%) completed the follow-up measurements (32 weeks from baseline). In the dance group only, "non-completers" had significantly lower baseline scores on all executive function tests than those who completed the full program. Intention-to-treat analyses showed no group effect. In a random effects model including participants who completed all measurements, adjusted for baseline score and covariates (age, education, estimated verbal intelligence, and community), a between-group effect in favor of dance was noted only for BVST total learning (Cohen's D Effect size 0.29, p = 0.07) and delayed recall (Cohen's D Effect size = 0

  17. Cognitive benefits of social dancing and walking in old age: the Dancing Mind randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Dafna eMerom

    2016-02-01

    Full Text Available Background: A physically active lifestyle has the potential to prevent cognitive decline and dementia, yet the optimal type of physical activity/exercise remains unclear. Dance is of special interest as it complex sensorimotor rhythmic activity with additional cognitive, social and affective dimensions. Objectives: to determine whether dance benefits executive function more than walking, an activity that is simple and functional. Methods: Two-arm randomised controlled trial among community-dwelling older adults. The intervention group received 1 hour of ballroom dancing twice weekly over 8 months (~69sessions in local community dance studios. The control group received a combination of a home walking program with a pedometer and optional biweekly group-based walking in local community park to facilitate socialisation. Main outcomes: Main outcomes: executive function tests: processing speed and task shift by the Trail Making Tests (TMT, response inhibition by the Stroop Colour-Word Test (SCWT, working memory by the Digit Span Backwards (DSB test, immediate and delayed verbal recall by the Rey Auditory Verbal Learning Test (RAVLT and visuospatial recall by the Brief Visuospatial Memory Test (BVST. Results: One hundred and fifteen adults (69.5 years, SD6.4 completed baseline and delayed baseline (3 weeks apart before being randomised to either dance (n=60 or walking (n=55. Of those randomized, 79 (68% completed the follow-up measurements (32 weeks from baseline. In the dance group only, ‘non-completers’ had significant lower baseline scores on all executive function tests than those completed the full program. Intention-to-treat analyses showed no group effect. In a random effects model including participants who completed all measurements, adjusted for baseline score and covariates (age, education, estimated verbal intelligence, community, a between group effect in favour of dance was noted only for BVST total learning (Cohen’s D Effect size

  18. Parent-child mediated learning interactions as determinants of cognitive modifiability: recent research and future directions.

    Science.gov (United States)

    Tzuriel, D

    1999-05-01

    The main objectives of this article are to describe the effects of mediated learning experience (MLE) strategies in mother-child interactions on the child's cognitive modifiability, the effects of distal factors (e.g., socioeconomic status, mother's intelligence, child's personality) on MLE interactions, and the effects of situational variables on MLE processes. Methodological aspects of measurement of MLE interactions and of cognitive modifiability, using a dynamic assessment approach, are discussed. Studies with infants showed that the quality of mother-infant MLE interactions predict later cognitive functioning and that MLE patterns and children's cognitive performance change as a result of intervention programs. Studies with preschool and school-aged children showed that MLE interactions predict cognitive modifiability and that distal factors predict MLE interactions but not the child's cognitive modifiability. The child's cognitive modifiability was predicted by MLE interactions in a structured but not in a free-play situation. Mediation for transcendence (e.g., teaching rules and generalizations) appeared to be the strongest predictor of children's cognitive modifiability. Discussion of future research includes the consideration of a holistic transactional approach, which refers to MLE processes, personality, and motivational-affective factors, the cultural context of mediation, perception of the whole family as a mediational unit, and the "mediational normative scripts."

  19. Effect of Cognitive Style on Learning and Retrieval of Navigational Environments

    Directory of Open Access Journals (Sweden)

    Maddalena Boccia

    2017-07-01

    Full Text Available Field independence (FI has been found to correlate with a wide range of cognitive processes requiring cognitive restructuring. Cognitive restructuring, that is going beyond the information given by the setting, is pivotal in creating stable mental representations of the environment, the so-called “cognitive maps,” and it affects visuo-spatial abilities underpinning environmental navigation. Here we evaluated whether FI, by fostering cognitive restructuring of environmental cues on the basis of an internal frame of reference, affects the learning and retrieval of a novel environment. Fifty-four participants were submitted to the Embedded Figure Test (EFT for assessing their Cognitive Style (CS and to the Perspective Taking/Spatial Orientation Test (PTSOT and the Santa Barbara Sense of Direction Scale (SBSOD for assessing their spatial perspective taking and orientation skills. They were also required to learn a path in a novel, real environment (route learning, RL, to recognize landmarks of this path among distracters (landmark recognition, LR, to order them (landmark ordering, LO and to draw the learned path on a map (map drawing, MD. Retrieval tasks were performed both immediately after learning (immediate-retrieval and the day after (24 h-retrieval. Performances on EFT significantly correlated with the time needed to learn the path, with MD (both in the immediate- and in the 24 h- retrievals, results on LR (in 24-retrieval and performances on PTSOT. Interestingly, we found that gender interacted with CS on RL (time of learning and MD. Females performed significantly worse than males only if they were classified as FD, but did not differ from males if they were classified as FI. These results suggest that CS affects learning and retrieval of navigational environment, especially when a map-like representation is required. We propose that CS may be pivotal in forming the cognitive map of the environment, likely due to the higher ability of FI

  20. Online Dictionary Learning Aided Target Recognition In Cognitive GPR

    OpenAIRE

    Giovanneschi, Fabio; Mishra, Kumar Vijay; Gonzalez-Huici, Maria Antonia; Eldar, Yonina C.; Ender, Joachim H. G.

    2017-01-01

    Sparse decomposition of ground penetration radar (GPR) signals facilitates the use of compressed sensing techniques for faster data acquisition and enhanced feature extraction for target classification. In this paper, we investigate the application of an online dictionary learning (ODL) technique in the context of GPR to bring down the learning time as well as improve identification of abandoned anti-personnel landmines. Our experimental results using real data from an L-band GPR for PMN/PMA2...

  1. The role of socio-cognitive variables in predicting learning satisfaction in smart schools

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Firoozi

    2017-03-01

    Full Text Available The present study aimed to investigate the role of Socio-Cognitive variables in predicting learning satisfaction in Smart Schools. The population was all the primary school students studying in smart schools in the city of Shiraz in the school year 2014-2015. The sample, randomly chosen through multi-stage cluster sampling, was 383 primary school students studying in smart schools in Shiraz. The instruments were the Computer Self-Efficiency Questionnaire developed by Torkzadeh (2003, Performance Expectation Questionnaire developed by Compeau and Higgins (1995, System Functionality and Content Feature Questionnaire developed by Pituch and Lee (2006, Interaction Questionnaire developed by Johnston, Killion and Oomen (2005, Learning Climate Questionnaire developed by Chou` and Liu (2005 and Learning Satisfaction Questionnaire developed by Chou and Liu (2005. In order to determine the possible relationship between variables and to predict the changes in the degree of satisfaction, we made use of correlational procedures and step-wise regression analysis. The results indicated that all the socio-cognitive variables have a positive and significant correlation with learning satisfaction. Out of the socio-cognitive variables in question, Computer Self-Efficiency, Performance Expectation and Learning Climate significantly explained 53% of the variance of learning satisfaction.

  2. The Role of Socio-Cognitive Variables in Predicting Learning Satisfaction in Smart Schools

    Directory of Open Access Journals (Sweden)

    Mohammad Reza FIROOZI

    2017-03-01

    Full Text Available The present study aimed to investigate the role of Socio-Cognitive variables in predicting learning satisfaction in Smart Schools. The population was all the primary school students studying in smart schools in the city of Shiraz in the school year 2014-2015. The sample, randomly chosen through multi-stage cluster sampling, was 383 primary school students studying in smart schools in Shiraz. The instruments were the Computer Self-Efficiency Questionnaire developed by Torkzadeh (2003, Performance Expectation Questionnaire developed by Compeau and Higgins (1995, System Functionality and Content Feature Questionnaire developed by Pituch and Lee (2006, Interaction Questionnaire developed by Johnston, Killion and Oomen (2005, Learning Climate Questionnaire developed by Chou` and Liu (2005 and Learning Satisfaction Questionnaire developed by Chou and Liu (2005. In order to determine the possible relationship between variables and to predict the changes in the degree of satisfaction, we made use of correlational procedures and step-wise regression analysis. The results indicated that all the socio-cognitive variables have a positive and significant correlation with learning satisfaction. Out of the socio-cognitive variables in question, Computer Self-Efficiency, Performance Expectation and Learning Climate significantly explained 53% of the variance of learning satisfaction.

  3. Effectiveness of Memantine in Improvement of Cognitive Deficits in Specific Learning Disorder

    Directory of Open Access Journals (Sweden)

    Elham Ahmadi Zahrani

    2016-12-01

    Full Text Available Abstract Background: Specific learning disorder is a neurodevelopmental disorder characterized by persistent difficulties in learning academic skills in reading, written expression, or mathematics. This study was performed to investigate the effectiveness of memantine in the relief of cognitive deficits (selective attention, sustained attention, and working memory in specific learning disorder. Materials and Methods: This study is a clinical trial. Of all children 8-12 years referred to Amir Kabir Hospital 94 patients diagnosed with specific learning disorder based on DSMV diagnostic interview referred by specialist and randomly divided by two groups, memantine and placebo. Cognitive deficits before and after treatment were measured with continuous performance test, Stroop test and Wechsler Digit Span forward and reverse and Corsi test. Results: Multivariate analysis of variance showed a significant difference in error when answering, omission answer and corrected answer in continuous performance test, but this difference is not significant in response time. Difference in forward, reverse and collected auditory was significant and not significant in the auditory span. In active visual working memory at corsi cube test, difference was significant (p <0.05. Conclusion: The results showed that memantine in improvement of sustained attention, auditory working memory and visual working memory, is effective, while in selective attention is not effective and according to similarities of learning disorder and Attention deficit / Hyperactivity disorder (ADHD and the effectiveness of memantine in improvement of symptoms of ADHD, we can also use this drug in improvement of cognitive deficits of specific learning disorder.

  4. Influence of Learning Strategy of Cognitive Conflict on Student Misconception in Computational Physics Course

    Science.gov (United States)

    Akmam, A.; Anshari, R.; Amir, H.; Jalinus, N.; Amran, A.

    2018-04-01

    Misconception is one of the factors causing students are not suitable in to choose a method for problem solving. Computational Physics course is a major subject in the Department of Physics FMIPA UNP Padang. The problem in Computational Physics learning lately is that students have difficulties in constructing knowledge. The indication of this problem was the student learning outcomes do not achieve mastery learning. The root of the problem is the ability of students to think critically weak. Student critical thinking can be improved using cognitive by conflict learning strategies. The research aims to determine the effect of cognitive conflict learning strategy to student misconception on the subject of Computational Physics Course at the Department of Physics, Faculty of Mathematics and Science, Universitas Negeri Padang. The experimental research design conducted after-before design cycles with a sample of 60 students by cluster random sampling. Data were analyzed using repeated Anova measurements. The cognitive conflict learning strategy has a significant effect on student misconception in the subject of Computational Physics Course.

  5. The effects of mother-child mediated learning strategies on psychological resilience and cognitive modifiability of boys with learning disability.

    Science.gov (United States)

    Tzuriel, David; Shomron, Vered

    2018-06-01

    The theoretical framework of the current study is based on mediated learning experience (MLE) theory, which is similar to the scaffolding concept. The main question of the current study was to what extent mother-child MLE strategies affect psychological resilience and cognitive modifiability of boys with learning disability (LD). Secondary questions were to what extent the home environment, severity of boy's LD, and mother's attitude towards her child's LD affect her MLE strategies and consequently the child's psychological resilience and cognitive modifiability. The main objectives of this study were the following: (a) to investigate the effects of mother-child MLE strategies on psychological resilience and cognitive modifiability among 7- to 10-year-old boys with LD, (b) to study the causal effects of distal factors (i.e., socio-economic status [SES], home environment, severity of child's LD, mother's attitude towards LD) and proximal factors (i.e., MLE strategies) on psychological resilience and cognitive modifiability. A sample of mother-child dyads (n = 100) were videotaped during a short teaching interaction. All children were boys diagnosed as children with LD. The interaction was analysed for MLE strategies by the Observation of Mediation Interaction scale. Children were administered psychological resilience tests and their cognitive modifiability was measured by dynamic assessment using the Analogies subtest from the Cognitive Modifiability Battery. Home environment was rated by the Home Observation for Measurement of the Environment (HOME), and mothers answered a questionnaire of attitudes towards child's LD. The findings showed that mother-child MLE strategies, HOME, and socio-economic level contributed significantly to prediction of psychological resilience (78%) and cognitive modifiability (51%). Psychological resilience was positively correlated with cognitive modifiability (Rc = 0.67). Structural equation modelling analysis supported, in general

  6. Erythrocyte polyunsaturated fatty acid status, memory, cognition and mood in older adults with mild cognitive impairment and healthy controls.

    Science.gov (United States)

    Milte, Catherine M; Sinn, Natalie; Street, Steven J; Buckley, Jonathan D; Coates, Alison M; Howe, Peter R C

    2011-01-01

    Polyunsaturated fatty acid (PUFA) levels are altered in adults with cognitive decline and also depression. Depression facilitates progression from mild cognitive impairment (MCI) to dementia. We investigated associations between omega-3 (n-3) and omega-6 (n-6) PUFAs and cognition, memory and depression in 50 adults ≥65 years with MCI and 29 controls. Memory, depressive symptoms and erythrocyte PUFAs (% total fatty acids) were assessed. Eicosapentaenoic acid (EPA) was lower in MCI vs controls (.94% vs 1.26%, pcognitive decline in this population. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Measuring Cognitive Load and Cognition: Metrics for Technology-Enhanced Learning

    Science.gov (United States)

    Martin, Stewart

    2014-01-01

    This critical and reflective literature review examines international research published over the last decade to summarise the different kinds of measures that have been used to explore cognitive load and critiques the strengths and limitations of those focussed on the development of direct empirical approaches. Over the last 40 years, cognitive…

  8. Multiagent -Learning for Aloha-Like Spectrum Access in Cognitive Radio Systems

    Directory of Open Access Journals (Sweden)

    Li Husheng

    2010-01-01

    Full Text Available An Aloha-like spectrum access scheme without negotiation is considered for multiuser and multichannel cognitive radio systems. To avoid collisions incurred by the lack of coordination, each secondary user learns how to select channels according to its experience. Multiagent reinforcement leaning (MARL is applied for the secondary users to learn good strategies of channel selection. Specifically, the framework of -learning is extended from single user case to multiagent case by considering other secondary users as a part of the environment. The dynamics of the -learning are illustrated using a Metrick-Polak plot, which shows the traces of -values in the two-user case. For both complete and partial observation cases, rigorous proofs of the convergence of multiagent -learning without communications, under certain conditions, are provided using the Robins-Monro algorithm and contraction mapping, respectively. The learning performance (speed and gain in utility is evaluated by numerical simulations.

  9. Preexposure effects in spatial learning: From gestaltic to associative and attentional cognitive maps

    Directory of Open Access Journals (Sweden)

    Edward S. Redhead

    2002-01-01

    Full Text Available In this paper a series of studies and theoretical proposals about how preexposure to environmental cues affects subsequent spatial learning are reviewed. Traditionally, spatial learning had been thought to depend on gestaltic non-associative processes, and well established phenomena such as latent learning or instantaneous transfer have been taken to provide evidence for this sort of cognitive mapping. However, reviewing the literature examining these effects reveals that there is no need to advocate for gestaltic processes since standard associative learning theory provides an adequate framework for accounting for navigation skills. Recent studies reveal that attentional processes play a role in spatial learning. The need for an integrated attentional and associative approach to explain spatial learning is discussed.

  10. Game-Theoretic Learning in Distributed Control

    KAUST Repository

    Marden, Jason R.

    2018-01-05

    In distributed architecture control problems, there is a collection of interconnected decision-making components that seek to realize desirable collective behaviors through local interactions and by processing local information. Applications range from autonomous vehicles to energy to transportation. One approach to control of such distributed architectures is to view the components as players in a game. In this approach, two design considerations are the components’ incentives and the rules that dictate how components react to the decisions of other components. In game-theoretic language, the incentives are defined through utility functions, and the reaction rules are online learning dynamics. This chapter presents an overview of this approach, covering basic concepts in game theory, special game classes, measures of distributed efficiency, utility design, and online learning rules, all with the interpretation of using game theory as a prescriptive paradigm for distributed control design.

  11. The effect of cognitive aging on implicit sequence learning and dual tasking

    Directory of Open Access Journals (Sweden)

    Jochen eVandenbossche

    2014-02-01

    Full Text Available We investigated the influence of attentional demands on sequence-specific learning by means of the serial reaction time (SRT task (Nissen & Bullemer, 1987 in young (age 18-25 and aged (age 55-75 adults. Participants had to respond as fast as possible to a stimulus presented in one of four horizontal locations by pressing a key corresponding to the spatial position of the stimulus. During the training phase sequential blocks were accompanied by (1 no secondary task (single, (2 a secondary tone counting task (dual tone, or (3 a secondary shape counting task (dual shape. Both secondary tasks were administered to investigate whether low and high interference tasks interact with implicit learning and age. The testing phase, under baseline single condition, was implemented to assess differences in sequence-specific learning between young and aged adults. Results indicate that (1 aged subjects show less sequence learning compared to young adults, (2 young participants show similar implicit learning effects under both single and dual task conditions when we account for explicit awareness, and (3 aged adults demonstrate reduced learning when the primary task is accompanied with a secondary task, even when explicit awareness is included as a covariate in the analysis. These findings point to implicit learning deficits under dual task conditions that can be related to cognitive aging, demonstrating the need for sufficient cognitive resources while performing a sequence learning task.

  12. Cognitive control reduces sensitivity to relational aggression among adolescent girls.

    Science.gov (United States)

    Baird, Abigail A; Silver, Shari H; Veague, Heather B

    2010-01-01

    Relational aggression is a type of aggression that aims to hurt others through relationships and includes behaviors such as gossip and ostracism. This type of aggression is very common among adolescent girls, and in its more intense forms has been linked with poor psychosocial outcomes, including depression and suicide. In the present study we investigated whether individual differences in sensitivity to relational aggression among adolescent girls predicted recruitment of neural networks associated with executive function and cognitive control. Neural response was measured using functional magnetic resonance imaging during an affect recognition task that included unfamiliar peer faces. A finding of relatively fewer reports of being victimized by relational aggression was associated with increased recruitment of bilateral dorsolateral prefrontal cortices as well as anterior and posterior cingulate cortices in response to the affect recognition task, as well as with greater competence on behavioral measures of executive function. Our results suggest that girls who are able to recruit specific frontal networks to improve cognitive and executive control are less sensitive to relational aggression. © 2010 Psychology Press

  13. Cognitive Systems Modeling and Analysis of Command and Control Systems

    Science.gov (United States)

    Norlander, Arne

    2012-01-01

    Military operations, counter-terrorism operations and emergency response often oblige operators and commanders to operate within distributed organizations and systems for safe and effective mission accomplishment. Tactical commanders and operators frequently encounter violent threats and critical demands on cognitive capacity and reaction time. In the future they will make decisions in situations where operational and system characteristics are highly dynamic and non-linear, i.e. minor events, decisions or actions may have serious and irreversible consequences for the entire mission. Commanders and other decision makers must manage true real time properties at all levels; individual operators, stand-alone technical systems, higher-order integrated human-machine systems and joint operations forces alike. Coping with these conditions in performance assessment, system development and operational testing is a challenge for both practitioners and researchers. This paper reports on research from which the results led to a breakthrough: An integrated approach to information-centered systems analysis to support future command and control systems research development. This approach integrates several areas of research into a coherent framework, Action Control Theory (ACT). It comprises measurement techniques and methodological advances that facilitate a more accurate and deeper understanding of the operational environment, its agents, actors and effectors, generating new and updated models. This in turn generates theoretical advances. Some good examples of successful approaches are found in the research areas of cognitive systems engineering, systems theory, and psychophysiology, and in the fields of dynamic, distributed decision making and naturalistic decision making.

  14. Effectiveness of Game-Based Learning: Influence of Cognitive Style

    Science.gov (United States)

    Milovanović, Miloš; Minović, Miroslav; Kovačević, Ivana; Minović, Jelena; Starčević, Dušan

    Today students have grown up using devices like computers, mobile phones, and video consoles for almost any activity; from studies and work to entertainment or communication. Motivating them with traditional teaching methods such as lectures and written materials becomes more difficult daily. That is why digital games are becoming more and more considered to have a promising role in education process. We decided to conduct a study among university students. Purpose of that study was to try to find some empirical evidence to support the claim that educational games can be used as an effective form of teaching. We also invested an effort to measure effects of different teaching approaches with the respect of individual differences in cognitive styles. Initial results provide a good argument for use of educational games in teaching. In addition, we reported some influence of cognitive style on effectiveness of using educational games.

  15. A consideration of cognitive factors in the learning and education of older adults

    Science.gov (United States)

    Fry, Prem S.

    1992-07-01

    The purpose of this paper is to consider the unique cognitive and intellectual factors that influence the learning and education of older adults. With this objective in mind, the paper reviews the empirical literature on patterns of intellectual and cognitive aging, and ends by discussing the implications and applications of these patterns for the practical and effective education of our elderly citizenry. When we consider the aging of intellectual abilities we are concerned with studying the development of fluid, crystallized and practical intelligence and variations in these abilities from adulthood into advanced old age. We are also concerned with looking at changes in cognitive functions such as attention, memory, information retrieval and tolerance for interference in learning capacity. Much recent work has been successful in showing that intellectual and cognitive decline in old age is not necessarily irreversible. While many elderly persons are very able learners, are highly self-directed, and have ample educational and intellectual resources available, others may benefit from assistance or suggestions about how to compensate for some of the cognitive declines in old age. With this objective the implications are discussed for educators and practitioners who must formulate cognitive training programs for older adults.

  16. A Cognitive Neural Architecture Able to Learn and Communicate through Natural Language.

    Directory of Open Access Journals (Sweden)

    Bruno Golosio

    Full Text Available Communicative interactions involve a kind of procedural knowledge that is used by the human brain for processing verbal and nonverbal inputs and for language production. Although considerable work has been done on modeling human language abilities, it has been difficult to bring them together to a comprehensive tabula rasa system compatible with current knowledge of how verbal information is processed in the brain. This work presents a cognitive system, entirely based on a large-scale neural architecture, which was developed to shed light on the procedural knowledge involved in language elaboration. The main component of this system is the central executive, which is a supervising system that coordinates the other components of the working memory. In our model, the central executive is a neural network that takes as input the neural activation states of the short-term memory and yields as output mental actions, which control the flow of information among the working memory components through neural gating mechanisms. The proposed system is capable of learning to communicate through natural language starting from tabula rasa, without any a priori knowledge of the structure of phrases, meaning of words, role of the different classes of words, only by interacting with a human through a text-based interface, using an open-ended incremental learning process. It is able to learn nouns, verbs, adjectives, pronouns and other word classes, and to use them in expressive language. The model was validated on a corpus of 1587 input sentences, based on literature on early language assessment, at the level of about 4-years old child, and produced 521 output sentences, expressing a broad range of language processing functionalities.

  17. Transforming Principles into Practice: Using Cognitive Active Learning Strategies in the High School Classroom

    Science.gov (United States)

    Swiderski, Suzanne M.

    2011-01-01

    High school teachers who engage students through active learning in their classrooms can more fully understand this instructional practice by examining the theories and strategies underlying the cognitive perspective of educational psychology, which addresses the development of knowledge in the individual mind. Two theoretical explanations,…

  18. Effects of Peer-Tutor Competences on Learner Cognitive Load and Learning Performance during Knowledge Sharing

    Science.gov (United States)

    Hsiao, Ya-Ping; Brouns, Francis; van Bruggen, Jan; Sloep, Peter B.

    2012-01-01

    In Learning Networks, learners need to share knowledge with others to build knowledge. In particular, when working on complex tasks, they often need to acquire extra cognitive resources from others to process a high task load. However, without support high task load and organizing knowledge sharing themselves might easily overload learners'…

  19. The Roles of Working Memory and Cognitive Load in Geoscience Learning

    Science.gov (United States)

    Jaeger, Allison J.; Shipley, Thomas F.; Reynolds, Stephen J.

    2017-01-01

    Working memory is a cognitive system that allows for the simultaneous storage and processing of active information. While working memory has been implicated as an important element for success in many science, technology, engineering, and mathematics (STEM) fields, its specific role in geoscience learning is not fully understood. The major goal of…

  20. Tagclouds and Group Cognition: Effect of Tagging Support on Students' Reflective Learning in Team Blogs

    Science.gov (United States)

    Xie, Ying; Lin, Shu-Yuan

    2016-01-01

    We investigated the effects of supported tagging (a prompting mechanism for students to stop and think about their writing) for team blogging on undergraduate students' reflective learning and the relationship between tagclouds and group cognition. Thirty-nine students were randomly assigned to six groups and blogged for 5 weeks. Three groups were…

  1. Conceptual Metaphor and Embodied Cognition in Science Learning: Introduction to Special Issue

    Science.gov (United States)

    Amin, Tamer G.; Jeppsson, Fredrik; Haglund, Jesper

    2015-01-01

    This special issue of "International Journal of Science Education" is based on the theme "Conceptual Metaphor and Embodied Cognition in Science Learning." The idea for this issue grew out of a symposium organized on this topic at the conference of the European Science Education Research Association (ESERA) in September 2013.…

  2. A Robot-Partner for Preschool Children Learning English Using Socio-Cognitive Conflict

    Science.gov (United States)

    Mazzoni, Elvis; Benvenuti, Martina

    2015-01-01

    This paper presents an exploratory study in which a humanoid robot (MecWilly) acted as a partner to preschool children, helping them to learn English words. In order to use the Socio-Cognitive Conflict paradigm to induce the knowledge acquisition process, we designed a playful activity in which children worked in pairs with another child or with…

  3. Some Technical Implications of Distributed Cognition on the Design on Interactive Learning Environments.

    Science.gov (United States)

    Dillenbourg, Pierre

    1996-01-01

    Maintains that diagnosis, explanation, and tutoring, the functions of an interactive learning environment, are collaborative processes. Examines how human-computer interaction can be improved using a distributed cognition framework. Discusses situational and distributed knowledge theories and provides a model on how they can be used to redesign…

  4. The price of learning good from bad: motivational costs and benefits in cognition and affect

    NARCIS (Netherlands)

    Massar, S.A.A.|info:eu-repo/dai/nl/313875642

    2012-01-01

    The studies presented in this thesis addressed the interactions between motivation, emotion, and cognition. The starting point for the research in this thesis was the question how inter-individual neurophysiological differences can be related to reward- and threat-related learning processes. Central

  5. An Integrated Theory of Prospective Time Interval Estimation: The Role of Cognition, Attention, and Learning

    Science.gov (United States)

    Taatgen, Niels A.; van Rijn, Hedderik; Anderson, John

    2007-01-01

    A theory of prospective time perception is introduced and incorporated as a module in an integrated theory of cognition, thereby extending existing theories and allowing predictions about attention and learning. First, a time perception module is established by fitting existing datasets (interval estimation and bisection and impact of secondary…

  6. Carnegie Learning Curricula and Cognitive Tutor[R] Software. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2010

    2010-01-01

    The combination of "Carnegie Learning Curricula and Cognitive Tutor[R] Software" merges algebra textbooks with interactive software developed around an artificial intelligence model that identifies strengths and weaknesses in an individual student's mastery of mathematical concepts. The software customizes prompts to focus on areas in…

  7. The potential relevance of cognitive neuroscience for the development and use of technology-enhanced learning

    NARCIS (Netherlands)

    Howard-Jones, Paul; Ott, Michela; van Leeuwen, Theo; De Smedt, Bert

    2015-01-01

    There is increasing interest in the application of cognitive neuroscience in educational thinking and practice, and here we review findings from neuroscience that demonstrate its potential relevance to technology-enhanced learning (TEL). First, we identify some of the issues in integrating

  8. Cognitive Neuroscience and Mathematics Learning: How Far Have We Come? Where Do We Need to Go?

    Science.gov (United States)

    Ansari, Daniel; Lyons, Ian M.

    2016-01-01

    In this commentary on the ZDM special issue: "Cognitive neuroscience and mathematics learning--revisited after 5 years," we explore the progress that has been made since ZDM published a similar special issue in 2010. We consider the extent to which future frontiers and methodological concerns raised in the commentary on the 2010 issue by…

  9. The Potential Relevance of Cognitive Neuroscience for the Development and Use of Technology-Enhanced Learning

    Science.gov (United States)

    Howard-Jones, Paul; Ott, Michela; van Leeuwen, Theo; De Smedt, Bert

    2015-01-01

    There is increasing interest in the application of cognitive neuroscience in educational thinking and practice, and here we review findings from neuroscience that demonstrate its potential relevance to technology-enhanced learning (TEL). First, we identify some of the issues in integrating neuroscientific concepts into TEL research. We caution…

  10. Assessing Cognitive Load Theory to Improve Student Learning for Mechanical Engineers

    Science.gov (United States)

    Impelluso, Thomas J.

    2009-01-01

    A computer programming class for students of mechanical engineering was redesigned and assessed: Cognitive Load Theory was used to redesign the content; online technologies were used to redesign the delivery. Student learning improved and the dropout rate was reduced. This article reports on both attitudinal and objective assessment: comparing…

  11. Optimizing Cognitive Load for Learning from Computer-Based Science Simulations

    Science.gov (United States)

    Lee, Hyunjeong; Plass, Jan L.; Homer, Bruce D.

    2006-01-01

    How can cognitive load in visual displays of computer simulations be optimized? Middle-school chemistry students (N = 257) learned with a simulation of the ideal gas law. Visual complexity was manipulated by separating the display of the simulations in two screens (low complexity) or presenting all information on one screen (high complexity). The…

  12. Effects of Presentation Modes on Mobile-Assisted Vocabulary Learning and Cognitive Load

    Science.gov (United States)

    Lin, Chih-Cheng; Yu, Ya-Chuan

    2017-01-01

    Previous studies of multimedia presentations have determined the effects of the combination of text and pictures on vocabulary learning, but not those of the sound of new words. This study was intended to confirm those previous findings from the integration of mobile technologies and the approach of cognitive load. It adopted a within-subjects…

  13. The Beast of Aggregating Cognitive Load Measures in Technology-Based Learning

    Science.gov (United States)

    Leppink, Jimmie; van Merriënboer, Jeroen J. G.

    2015-01-01

    An increasing part of cognitive load research in technology-based learning includes a component of repeated measurements, that is: participants are measured two or more times on the same performance, mental effort or other variable of interest. In many cases, researchers aggregate scores obtained from repeated measurements to one single sum or…

  14. Cognitive Load Theory: A Broader View on the Role of Memory in Learning and Education

    Science.gov (United States)

    Paas, Fred; Ayres, Paul

    2014-01-01

    According to cognitive load theory (CLT), the limitations of working memory (WM) in the learning of new tasks together with its ability to cooperate with an unlimited long-term memory (LTM) for familiar tasks enable human beings to deal effectively with complex problems and acquire highly complex knowledge and skills. With regard to WM, CLT has…

  15. Applying Cognitive Linguistics to Instructed L2 Learning: The English Modals

    Science.gov (United States)

    Tyler, Andrea; Mueller, Charles M.; Ho, Vu

    2010-01-01

    This paper reports the results of a quasi-experimental effects-of-instruction study examining the efficacy of applying a Cognitive Linguistic (CL) approach to L2 learning of the semantics of English modals. In spite of their frequency in typical input, modal verbs present L2 learners with difficulties, party due to their inherent…

  16. Using Cognitive Conflict to Promote the Use of Dialectical Learning for Strategic Decision-Makers

    Science.gov (United States)

    Woods, Jeffrey G.

    2012-01-01

    Purpose: The purpose of this paper is to develop a conceptual model that uses dialectical inquiry (DI) to create cognitive conflict in strategic decision-makers for the purpose of improving strategic decisions. Activation of the dialectical learning process using DI requires strategic decision-makers to integrate conflicting information causing…

  17. An integrated theory of prospective time interval estimation : The role of cognition, attention, and learning

    NARCIS (Netherlands)

    Taatgen, Niels A.; van Rijn, Hedderik; Anderson, John

    A theory of prospective time perception is introduced and incorporated as a module in an integrated theory of cognition, thereby extending existing theories and allowing predictions about attention and learning. First, a time perception module is established by fitting existing datasets (interval

  18. Brain Substrates of Learning and Retention in Mild Cognitive Impairment Diagnosis and Progression to Alzheimer's Disease

    Science.gov (United States)

    Chang, Yu-Ling; Bondi, Mark W.; Fennema-Notestine, Christine; McEvoy, Linda K.; Hagler, Donald J., Jr.; Jacobson, Mark W.; Dale, Anders M.

    2010-01-01

    Understanding the underlying qualitative features of memory deficits in mild cognitive impairment (MCI) can provide critical information for early detection of Alzheimer's disease (AD). This study sought to investigate the utility of both learning and retention measures in (a) the diagnosis of MCI, (b) predicting progression to AD, and (c)…

  19. Example-Based Learning in Heuristic Domains: A Cognitive Load Theory Account

    Science.gov (United States)

    Renkl, Alexander; Hilbert, Tatjana; Schworm, Silke

    2009-01-01

    One classical instructional effect of cognitive load theory (CLT) is the worked-example effect. Although the vast majority of studies have focused on well-structured and algorithmic sub-domains of mathematics or physics, more recent studies have also analyzed learning with examples from complex domains in which only heuristic solution strategies…

  20. Expectancy-Value and Cognitive Process Outcomes in Mathematics Learning: A Structural Equation Analysis

    Science.gov (United States)

    Phan, Huy P.

    2014-01-01

    Existing research has yielded evidence to indicate that the expectancy-value theoretical model predicts students' learning in various achievement contexts. Achievement values and self-efficacy expectations, for example, have been found to exert positive effects on cognitive process and academic achievement outcomes. We tested a conceptual model…