WorldWideScience

Sample records for learning activities enhanced

  1. Developing design-based STEM education learning activities to enhance students' creative thinking

    Science.gov (United States)

    Pinasa, Siwa; Siripun, Kulpatsorn; Yuenyong, Chokchai

    2018-01-01

    Creative thinking on applying science and mathematics knowledge is required by the future STEM career. The STEM education should be provided for the required skills of future STEM career. This paper aimed to clarify the developing STEM education learning activities to enhance students' creative thinking. The learning activities were developed for Grade 10 students who will study in the subject of independent study (IS) of Khon Kaen Wittayayon School, Khon Kaen, Thailand. The developing STEM education learning activities for enhancing students' creative thinking was developed regarding on 6 steps including (1) providing of understanding of fundamental STEM education concept, (2) generating creative thinking from prototype, (4) revised ideas, (5) engineering ability, and (6) presentation and discussion. The paper will clarify the 18 weeks activities that will be provided based these 6 steps of developing learning activities. Then, these STEM learning activities will be discussed to provide the chance of enhancing students' creative thinking. The paper may have implication for STEM education in school setting.

  2. Enhancing learning in geosciences and water engineering via lab activities

    Science.gov (United States)

    Valyrakis, Manousos; Cheng, Ming

    2016-04-01

    This study focuses on the utilisation of lab based activities to enhance the learning experience of engineering students studying Water Engineering and Geosciences. In particular, the use of modern highly visual and tangible presentation techniques within an appropriate laboratory based space are used to introduce undergraduate students to advanced engineering concepts. A specific lab activity, namely "Flood-City", is presented as a case study to enhance the active engagement rate, improve the learning experience of the students and better achieve the intended learning objectives of the course within a broad context of the engineering and geosciences curriculum. Such activities, have been used over the last few years from the Water Engineering group @ Glasgow, with success for outreach purposes (e.g. Glasgow Science Festival and demos at the Glasgow Science Centre and Kelvingrove museum). The activity involves a specific setup of the demonstration flume in a sand-box configuration, with elements and activities designed so as to gamely the overall learning activity. Social media platforms can also be used effectively to the same goals, particularly in cases were the students already engage in these online media. To assess the effectiveness of this activity a purpose designed questionnaire is offered to the students. Specifically, the questionnaire covers several aspects that may affect student learning, performance and satisfaction, such as students' motivation, factors to effective learning (also assessed by follow-up quizzes), and methods of communication and assessment. The results, analysed to assess the effectiveness of the learning activity as the students perceive it, offer a promising potential for the use of such activities in outreach and learning.

  3. Examining factors affecting beginning teachers' transfer of learning of ICT-enhanced learning activities in their teaching practice

    NARCIS (Netherlands)

    Agyei, D.D.; Voogt, J.

    2014-01-01

    This study examined 100 beginning teachers’ transfer of learning when utilising Information Communication Technology-enhanced activity-based learning activities. The beginning teachers had participated in a professional development program that was characterised by ‘learning technology by

  4. Does the Room Matter? Active Learning in Traditional and Enhanced Lecture Spaces

    Science.gov (United States)

    Stoltzfus, Jon R.; Libarkin, Julie

    2016-01-01

    SCALE-UP–type classrooms, originating with the Student-Centered Active Learning Environment with Upside-down Pedagogies project, are designed to facilitate active learning by maximizing opportunities for interactions between students and embedding technology in the classroom. Positive impacts when active learning replaces lecture are well documented, both in traditional lecture halls and SCALE-UP–type classrooms. However, few studies have carefully analyzed student outcomes when comparable active learning–based instruction takes place in a traditional lecture hall and a SCALE-UP–type classroom. Using a quasi-experimental design, we compared student perceptions and performance between sections of a nonmajors biology course, one taught in a traditional lecture hall and one taught in a SCALE-UP–type classroom. Instruction in both sections followed a flipped model that relied heavily on cooperative learning and was as identical as possible given the infrastructure differences between classrooms. Results showed that students in both sections thought that SCALE-UP infrastructure would enhance performance. However, measures of actual student performance showed no difference between the two sections. We conclude that, while SCALE-UP–type classrooms may facilitate implementation of active learning, it is the active learning and not the SCALE-UP infrastructure that enhances student performance. As a consequence, we suggest that institutions can modify existing classrooms to enhance student engagement without incorporating expensive technology. PMID:27909018

  5. Enhanced Multisensory Integration and Motor Reactivation after Active Motor Learning of Audiovisual Associations

    Science.gov (United States)

    Butler, Andrew J.; James, Thomas W.; James, Karin Harman

    2011-01-01

    Everyday experience affords us many opportunities to learn about objects through multiple senses using physical interaction. Previous work has shown that active motor learning of unisensory items enhances memory and leads to the involvement of motor systems during subsequent perception. However, the impact of active motor learning on subsequent…

  6. Enhancing active learning in microbiology through case based learning: experiences from an Indian medical school.

    Science.gov (United States)

    Ciraj, A M; Vinod, P; Ramnarayan, K

    2010-01-01

    Case-based learning (CBL) is an interactive student-centered exploration of real life situations. This paper describes the use of CBL as an educational strategy for promoting active learning in microbiology. CBL was introduced in the microbiology curriculum for the second year medical students after an orientation program for faculty and students. After intervention, the average student scores in CBL topics were compared with scores obtained in lecture topics. An attempt was also made to find the effect of CBL on the academic performance. Student and faculty perception on CBL were also recorded. In a cross sectional survey conducted to assess the effectiveness of CBL, students responded that, apart from helping them acquire substantive knowledge in microbiology, CBL sessions enhanced their analytic, collaborative, and communication skills. The block examination scores in CBL topics were significantly higher than those obtained for lecture topics. Faculty rated the process to be highly effective in stimulating student interest and long term retention of microbiology knowledge. The student scores were significantly higher in the group that used CBL, compared to the group that had not used CBL as a learning strategy. Our experience indicated that CBL sessions enhanced active learning in microbiology. More frequent use of CBL sessions would not only help the student gain requisite knowledge in microbiology but also enhance their analytic and communication skills.

  7. Enhancement of collaboration activities utilizing 21st century learning design rubric

    Science.gov (United States)

    Cubero, Dave D.; Gargar, Clare V., Lady; Nallano, Gerlett Grace D.; Magsayo, Joy R.; Guarin, Rica Mae B.; Lahoylahoy, Myrna E.

    2018-01-01

    Twenty first century learners have incredibly diverse learning interests, needs, and aspirations. Engaging middle school students and sculpting successful, confident, and creative learners is a constant endeavor for educators [4]. In the 21st century classroom environments in which students can develop the skills they need in workplace. Collaboration occurs when students work together to create, discuss challenge and develop deeper critical thinking. In today's workplace, collaboration is essential as only few tasks are completed alone (Calgary and Park, 2016). The collaborative project-based curriculum used in this classroom develops the higher order thinking skills, effective communication skills, and knowledge of technology that students will need in the 21st century workplace. The study therefore aims to promote collaboration skills among learners as it is deemed as one of the top 21st century skills. Collaborative learning unleashes a unique intellectual and social synergy. This study aims to enhance the collaborative skills of students through conducting collaboration activities in learning the Ecosystem. This research utilizes pretest-posttest and employs descriptive research designs. It uses modified activities about the lesson on Ecosystem and utilizes a Collaboration Rubric to rate the modified activities. The activities were rated by ten In-Service teachers and there are 105 students who participated in doing the activities. The paired t-test is then used to analyze the data. The In-Service teachers evaluated the 1st and 2nd adapted activity and are rated as fair. Thus, the modified activities were enhanced since the ratings of each activity did not meet the criterion of the collaboration rubric. As for the 3rd adapted activity is rated as excellent and is ready for implementation. The evaluators provided comments and suggestions such as producing colored pictures on the activities, omitting some questions, and making the words simpler to enhance the

  8. A calpain-2 selective inhibitor enhances learning & memory by prolonging ERK activation.

    Science.gov (United States)

    Liu, Yan; Wang, Yubin; Zhu, Guoqi; Sun, Jiandong; Bi, Xiaoning; Baudry, Michel

    2016-06-01

    While calpain-1 activation is required for LTP induction by theta burst stimulation (TBS), calpain-2 activation limits its magnitude during the consolidation period. A selective calpain-2 inhibitor applied either before or shortly after TBS enhanced the degree of potentiation. In the present study, we tested whether the selective calpain-2 inhibitor, Z-Leu-Abu-CONH-CH2-C6H3 (3, 5-(OMe)2 (C2I), could enhance learning and memory in wild-type (WT) and calpain-1 knock-out (C1KO) mice. We first showed that C2I could reestablish TBS-LTP in hippocampal slices from C1KO mice, and this effect was blocked by PD98059, an inhibitor of ERK. TBS resulted in PTEN degradation in hippocampal slices from both WT and C1KO mice, and C2I treatment blocked this effect in both mouse genotypes. Systemic injection of C2I 30 min before training in the fear-conditioning paradigm resulted in a biphasic dose-response curve, with low doses enhancing and high doses inhibiting freezing behavior. The difference between the doses needed to enhance and inhibit learning matches the difference in concentrations producing inhibition of calpain-2 and calpain-1. A low dose of C2I also restored normal learning in a novel object recognition task in C1KO mice. Levels of SCOP, a ERK phosphatase known to be cleaved by calpain-1, were decreased in dorsal hippocampus early but not late following training in WT mice; C2I treatment did not affect the early decrease in SCOP levels but prevented its recovery at the later time-point and prolonged ERK activation. The results indicate that calpain-2 activation limits the extent of learning, an effect possibly due to temporal limitation of ERK activation, as a result of SCOP synthesis induced by calpain-2-mediated PTEN degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. CAMKII activation is not required for maintenance of learning-induced enhancement of neuronal excitability.

    Directory of Open Access Journals (Sweden)

    Ori Liraz

    Full Text Available Pyramidal neurons in the piriform cortex from olfactory-discrimination trained rats show enhanced intrinsic neuronal excitability that lasts for several days after learning. Such enhanced intrinsic excitability is mediated by long-term reduction in the post-burst after-hyperpolarization (AHP which is generated by repetitive spike firing. AHP reduction is due to decreased conductance of a calcium-dependent potassium current, the sI(AHP. We have previously shown that learning-induced AHP reduction is maintained by persistent protein kinase C (PKC and extracellular regulated kinase (ERK activation. However, the molecular machinery underlying this long-lasting modulation of intrinsic excitability is yet to be fully described. Here we examine whether the CaMKII, which is known to be crucial in learning, memory and synaptic plasticity processes, is instrumental for the maintenance of learning-induced AHP reduction. KN93, that selectively blocks CaMKII autophosphorylation at Thr286, reduced the AHP in neurons from trained and control rat to the same extent. Consequently, the differences in AHP amplitude and neuronal adaptation between neurons from trained rats and controls remained. Accordingly, the level of activated CaMKII was similar in pirifrom cortex samples taken form trained and control rats. Our data show that although CaMKII modulates the amplitude of AHP of pyramidal neurons in the piriform cortex, its activation is not required for maintaining learning-induced enhancement of neuronal excitability.

  10. Computational intelligence for technology enhanced learning

    Energy Technology Data Exchange (ETDEWEB)

    Xhafa, Fatos [Polytechnic Univ. of Catalonia, Barcelona (Spain). Dept. of Languages and Informatics Systems; Caballe, Santi; Daradoumis, Thanasis [Open Univ. of Catalonia, Barcelona (Spain). Dept. of Computer Sciences Multimedia and Telecommunications; Abraham, Ajith [Machine Intelligence Research Labs (MIR Labs), Auburn, WA (United States). Scientific Network for Innovation and Research Excellence; Juan Perez, Angel Alejandro (eds.) [Open Univ. of Catalonia, Barcelona (Spain). Dept. of Information Sciences

    2010-07-01

    E-Learning has become one of the most wide spread ways of distance teaching and learning. Technologies such as Web, Grid, and Mobile and Wireless networks are pushing teaching and learning communities to find new and intelligent ways of using these technologies to enhance teaching and learning activities. Indeed, these new technologies can play an important role in increasing the support to teachers and learners, to shorten the time to learning and teaching; yet, it is necessary to use intelligent techniques to take advantage of these new technologies to achieve the desired support to teachers and learners and enhance learners' performance in distributed learning environments. The chapters of this volume bring advances in using intelligent techniques for technology enhanced learning as well as development of e-Learning applications based on such techniques and supported by technology. Such intelligent techniques include clustering and classification for personalization of learning, intelligent context-aware techniques, adaptive learning, data mining techniques and ontologies in e-Learning systems, among others. Academics, scientists, software developers, teachers and tutors and students interested in e-Learning will find this book useful for their academic, research and practice activity. (orig.)

  11. Enhancing Students' Learning: Instant Feedback Cards

    Science.gov (United States)

    Mohrweis, Lawrence C.; Shinham, Kathe M.

    2015-01-01

    This study illustrates an active learning approach using instant feedback cards in the first course in accounting. The objectives of this study are to (1) describe instant feedback cards and (2) show how this tool, when used in an active learning environment, can enhance learning. We examined whether students exposed to immediate feedback…

  12. Acute stress enhances learning and memory by activating acid-sensing ion channels in rats.

    Science.gov (United States)

    Ye, Shunjie; Yang, Rong; Xiong, Qiuju; Yang, Youhua; Zhou, Lianying; Gong, Yeli; Li, Changlei; Ding, Zhenhan; Ye, Guohai; Xiong, Zhe

    2018-04-15

    Acute stress has been shown to enhance learning and memory ability, predominantly through the action of corticosteroid stress hormones. However, the valuable targets for promoting learning and memory induced by acute stress and the underlying molecular mechanisms remain unclear. Acid-sensing ion channels (ASICs) play an important role in central neuronal systems and involves in depression, synaptic plasticity and learning and memory. In the current study, we used a combination of electrophysiological and behavioral approaches in an effort to explore the effects of acute stress on ASICs. We found that corticosterone (CORT) induced by acute stress caused a potentiation of ASICs current via glucocorticoid receptors (GRs) not mineralocorticoid receptors (MRs). Meanwhile, CORT did not produce an increase of ASICs current by pretreated with GF109203X, an antagonist of protein kinase C (PKC), whereas CORT did result in a markedly enhancement of ASICs current by bryostatin 1, an agonist of PKC, suggesting that potentiation of ASICs function may be depended on PKC activating. More importantly, an antagonist of ASICs, amiloride (10 μM) reduced the performance of learning and memory induced by acute stress, which is further suggesting that ASICs as the key components involves in cognitive processes induced by acute stress. These results indicate that acute stress causes the enhancement of ASICs function by activating PKC signaling pathway, which leads to potentiated learning and memory. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A saturation hypothesis to explain both enhanced and impaired learning with enhanced plasticity

    Science.gov (United States)

    Nguyen-Vu, TD Barbara; Zhao, Grace Q; Lahiri, Subhaneil; Kimpo, Rhea R; Lee, Hanmi; Ganguli, Surya; Shatz, Carla J; Raymond, Jennifer L

    2017-01-01

    Across many studies, animals with enhanced synaptic plasticity exhibit either enhanced or impaired learning, raising a conceptual puzzle: how enhanced plasticity can yield opposite learning outcomes? Here, we show that the recent history of experience can determine whether mice with enhanced plasticity exhibit enhanced or impaired learning in response to the same training. Mice with enhanced cerebellar LTD, due to double knockout (DKO) of MHCI H2-Kb/H2-Db (KbDb−/−), exhibited oculomotor learning deficits. However, the same mice exhibited enhanced learning after appropriate pre-training. Theoretical analysis revealed that synapses with history-dependent learning rules could recapitulate the data, and suggested that saturation may be a key factor limiting the ability of enhanced plasticity to enhance learning. Optogenetic stimulation designed to saturate LTD produced the same impairment in WT as observed in DKO mice. Overall, our results suggest that the recent history of activity and the threshold for synaptic plasticity conspire to effect divergent learning outcomes. DOI: http://dx.doi.org/10.7554/eLife.20147.001 PMID:28234229

  14. Effectiveness and student perceptions of an active learning activity using a headline news story to enhance in-class learning of cell cycle regulation.

    Science.gov (United States)

    Dirks-Naylor, Amie J

    2016-06-01

    An active learning activity was used to engage students and enhance in-class learning of cell cycle regulation in a PharmD level integrated biological sciences course. The aim of the present study was to determine the effectiveness and perception of the in-class activity. After completion of a lecture on the topic of cell cycle regulation, students completed a 10-question multiple-choice quiz before and after engaging in the activity. The activity involved reading of a headline news article published by ScienceDaily.com entitled "One Gene Lost Equals One limb Regained." The name of the gene was deleted from the article and, thus, the end goal of the activity was to determine the gene of interest by the description in the story. The activity included compiling a list of all potential gene candidates before sufficient information was given to identify the gene of interest (p21). A survey was completed to determine student perceptions of the activity. Quiz scores improved by an average of 20% after the activity (40.1 ± 1.95 vs. 59.9 ± 2.14,Pactivity, found the news article interesting, and believed that the activity improved their understanding of cell cycle regulation. The majority of students agreed that the in-class activity piqued their interest for learning the subject matter and also agreed that if they understand a concept during class, they are more likely to want to study that concept outside of class. In conclusion, the activity improved in-class understanding and enhanced interest in cell cycle regulation. Copyright © 2016 The American Physiological Society.

  15. Enhancing Community Service Learning Via Practical Learning Communities

    Directory of Open Access Journals (Sweden)

    Ilana Ronen

    2015-02-01

    Full Text Available The advantages of learning communities focused on analyzing social issues and educational repercussions in the field are presented in this study. The research examines the contribution of a learning community to enhancing student teachers' responsibility and their social involvement. The assumption was that participating in learning community would further implement student teachers' community social involvement while enhancing responsibility in their field of action. A questionnaire aimed to present the student teachers' attitudes involving all aspects of studying in the learning community and their social activity in the community was conducted. The findings pinpointed that there were positive contributions of the learning communities from a personal aspect such as developing self-learning, and learning about “me”, as well as broaden their teaching skills, through methodology for teacher training, and developing reflective thought. These insights can also be implemented in various educational frameworks and during service learning as part of teacher training.

  16. The Effectiveness of Cooperative Learning Activities in Enhancing EFL Learners' Fluency

    Science.gov (United States)

    Alrayah, Hassan

    2018-01-01

    This research-paper aims at examining the effectiveness of cooperative learning activities in enhancing EFL learners' fluency. The researcher has used the descriptive approach, recorded interviews for testing fluency as tools of data collection and the software program SPSS as a tool for the statistical treatment of data. Research sample consists…

  17. Enhancing learning with the social media: student teachers’ perceptions on Twitter in a debate activity

    Directory of Open Access Journals (Sweden)

    Gemma Tur

    2015-01-01

    Full Text Available This paper presents research focused on the educational experience of students using the microblogging platform Twitter for debate activities in three groups in different teacher education programmes at the University of the Balearic Islands, Spain. The implementation of this technology-based task in a face-to-face class was introduced as an innovative experience as a way of enhancing student learning and fostering participation in the context of formal learning. The educational objectives of these activities, besides working on the topics of the debate, were to empower student teachers’ Personal Learning Environments, engage student participation and enhance their use of social media and mobile devices for learning. Student perceptions were assessed by means of a questionnaire completed by them at the end of the courses. Tweets related to the debate were also collected in order to obtain some statistical data on student participation. Data collected allowed the researchers to observe student teacher engagement with the use of Twitter for the debate activity and its impact on their learning and understanding of the debate topic. Results also showed positive perceptions towards the use of social media in education and students’ willingness for future use, learning opportunities from Twitter and the use of mobile technology were also envisioned. Finally, conclusions argue the implications for practice of the current study and highlight some issues for further research, such as the exploration of new and innovative uses for teachers’ professional development and the empowerment of new activities and habits in learning on the move.

  18. A Studi on High Plant Systems Course with Active Learning in Higher Education Through Outdoor Learning to Increase Student Learning Activities

    OpenAIRE

    Nur Rokhimah Hanik, Anwari Adi Nugroho

    2015-01-01

    Biology learning especially high plant system courses needs to be applied to active learning centered on the student (Active Learning In Higher Education) to enhance the students' learning activities so that the quality of learning for the better. Outdoor Learning is one of the active learning invites students to learn outside of the classroom by exploring the surrounding environment. This research aims to improve the students' learning activities in the course of high plant systems through t...

  19. Promoting Active Learning in Calculus and General Physics through Interactive and Media-Enhanced Lectures

    Directory of Open Access Journals (Sweden)

    Guoqing Tang

    2004-02-01

    Full Text Available In this paper we present an approach of incorporating interactive and media-enhanced lectures to promote active learning in Calculus and General Physics courses. The pedagogical practice of using interactive techniques in lectures to require "heads-on" and "hands-on" learning, and involve students more as active participants than passive receivers is a part of academic curricular reform efforts undertaken currently by the mathematics, physics and chemistry departments at North Carolina A&T State University under the NSF funded project "Talent-21: Gateway for Advancing Science and Mathematics Talents."

  20. The Game Enhanced Learning Model

    DEFF Research Database (Denmark)

    Reng, Lars; Schoenau-Fog, Henrik

    2016-01-01

    will describe the levels of the model, which is based on our experience in teaching professional game development at university level. Furthermore, we have been using the model to inspire numerous educators to improve their students’ motivation and skills. The model presents various game-based learning...... activities, and depicts their required planning and expected outcome through eight levels. At its lower levels, the model contains the possibilities of using stand-alone analogue and digital games as teachers, utilizing games as a facilitator of learning activities, exploiting gamification and motivating......In this paper, we will introduce the Game Enhanced learning Model (GEM), which describes a range of gameoriented learning activities. The model is intended to give an overview of the possibilities of game-based learning in general and all the way up to purposive game productions. In the paper, we...

  1. Nitric oxide facilitates active avoidance learning via enhancement of glutamate levels in the hippocampal dentate gyrus.

    Science.gov (United States)

    Wang, Shi; Pan, De-Xi; Wang, Dan; Wan, Peng; Qiu, De-Lai; Jin, Qing-Hua

    2014-09-01

    The hippocampus is a key structure for learning and memory in mammals, and long-term potentiation (LTP) is an important cellular mechanism responsible for learning and memory. Despite a number of studies indicating that nitric oxide (NO) is involved in the formation and maintenance of LTP as a retrograde messenger, few studies have used neurotransmitter release as a visual indicator in awake animals to explore the role of NO in learning-dependent long-term enhancement of synaptic efficiency. Therefore, in the present study, the effects of l-NMMA (a NO synthase inhibitor) and SNP (a NO donor) on extracellular glutamate (Glu) concentrations and amplitudes of field excitatory postsynaptic potential (fEPSP) were measured in the hippocampal dentate gyrus (DG) region during the acquisition and extinction of active-avoidance behavior in freely-moving conscious rats. In the control group, the extracellular concentration of Glu in the DG was significantly increased during the acquisition of active-avoidance behavior and gradually returned to baseline levels following extinction training. In the experimental group, the change in Glu concentration was significantly reduced by local microinjection of l-NMMA, as was the acquisition of the active-avoidance behavior. In contrast, the change in Glu concentration was significantly enhanced by SNP, and the acquisition of the active-avoidance behavior was significantly accelerated. Furthermore, in all groups, the changes in extracellular Glu were accompanied by corresponding changes in fEPSP amplitude and active-avoidance behavior. Our results suggest that NO in the hippocampal DG facilitates active avoidance learning via enhancements of glutamate levels and synaptic efficiency in rats. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Guiding Curriculum Development: Student Perceptions for the Second Language Learning in Technology-Enhanced Learning Environments

    Science.gov (United States)

    Gürleyik, Sinan; Akdemir, Elif

    2018-01-01

    Developing curriculum to enhance student learning is the primer purpose of all curricular activities. Availability of recent tools supporting to teach various skills including reading, listening, speaking and writing has opened a new avenue for curricular activities in technology-enhanced learning environments. Understanding the perceptions of…

  3. Teachers as designers of technology enhanced learning

    NARCIS (Netherlands)

    Kali, Yael; McKenney, Susan; Sagy, Ornit; Voogt, Joke

    2015-01-01

    Design of (technology-enhanced) learning activities and materials is one fruitful process through which teachers learn and become professionals. To facilitate this process, research is needed to understand how teachers learn through design, how this process may be supported, and how teacher

  4. Enhancing the T-shaped learning profile when teaching hydrology using data, modeling, and visualization activities

    Science.gov (United States)

    Sanchez, Christopher A.; Ruddell, Benjamin L.; Schiesser, Roy; Merwade, Venkatesh

    2016-03-01

    Previous research has suggested that the use of more authentic learning activities can produce more robust and durable knowledge gains. This is consistent with calls within civil engineering education, specifically hydrology, that suggest that curricula should more often include professional perspective and data analysis skills to better develop the "T-shaped" knowledge profile of a professional hydrologist (i.e., professional breadth combined with technical depth). It was expected that the inclusion of a data-driven simulation lab exercise that was contextualized within a real-world situation and more consistent with the job duties of a professional in the field, would provide enhanced learning and appreciation of job duties beyond more conventional paper-and-pencil exercises in a lower-division undergraduate course. Results indicate that while students learned in both conditions, learning was enhanced for the data-driven simulation group in nearly every content area. This pattern of results suggests that the use of data-driven modeling and visualization activities can have a significant positive impact on instruction. This increase in learning likely facilitates the development of student perspective and conceptual mastery, enabling students to make better choices about their studies, while also better preparing them for work as a professional in the field.

  5. Activation of β-adrenoceptor facilitates active avoidance learning through enhancement of glutamate levels in the hippocampal dentate gyrus.

    Science.gov (United States)

    Lv, Jing; Feng, Hao; Chen, Ling; Wang, Wei-Yao; Yue, Xue-Ling; Jin, Qing-Hua

    2017-10-18

    Long-term potentiation (LTP) is widely accepted as the best studied model for neurophysiological mechanisms that could underlie learning and memory formation. Despite a number of studies indicating that β-adrenoceptors in the hippocampal dentate gyrus (DG) is involved in the modulation of learning and memory as well as LTP, few studies have used glutamate release as a visual indicator in awake animals to explore the role of β-adrenoceptors in learning-dependent LTP. Therefore, in the present study, the effects of propranolol (an antagonist of β-adrenoceptor) and isoproterenol (an agonist of β-adrenoceptor) on extracellular concentrations of glutamate and amplitudes of field excitatory postsynaptic potential were measured in the DG region during active avoidance learning in freely moving conscious rats. In the control group, the glutamate level in the DG was significantly increased during the acquisition of active avoidance behavior and returned to basal level following extinction training. In propranolol group, antagonism of β-adrenoceptors in the DG significantly reduced the change in glutamate level, and the acquisition of the active avoidance behavior was significantly inhibited. In contrast, the change in glutamate level was significantly enhanced by isoproterenol, and the acquisition of the active avoidance behavior was significantly accelerated. Furthermore, in all groups, the changes in glutamate level were accompanied by corresponding changes in field excitatory postsynaptic potential amplitude and active avoidance behavior. Our results suggest that activation of β-adrenoceptors in the hippocampal DG facilitates active avoidance learning by modulations of glutamate level and synaptic efficiency in rats.

  6. Active Learning and Self-Regulation Enhance Student Teachers’ Professional Competences

    OpenAIRE

    Virtanen, Päivi; Niemi, Hannele M.; Nevgi, Anne

    2017-01-01

    The study identifies the relationships between active learning, student teachers’ self-regulated learning and professional competences. Further, the aim is to investigate how active learning promotes professional competences of student teachers with different self-regulation profiles. Responses from 422 student teachers to an electronic survey were analysed using statistical methods. It was found that the use of active learning methods, such as goal-oriented and intentional learning as well a...

  7. Recommender Systems for Technology Enhanced Learning: Research Trends & Applications

    NARCIS (Netherlands)

    Manouselis, Nikos; Verbert, Katrien; Drachsler, Hendrik; Santos, Olga

    2014-01-01

    As an area, Technology Enhanced Learning (TEL) aims to design, develop and test socio-technical innovations that will support and enhance learning practices of individuals and organizations. Information retrieval is a pivotal activity in TEL and the deployment of recommender systems has attracted

  8. Enhancing Learning Outcomes through Application Driven Activities in Marketing

    Science.gov (United States)

    Stegemann, Nicole; Sutton-Brady, Catherine

    2013-01-01

    This paper introduces an activity used in class to allow students to apply previously acquired information to a hands-on task. As the authors have previously shown active learning is a way to effectively facilitate and improve students' learning outcomes. As a result to improve learning outcomes we have overtime developed a series of learning…

  9. Enhancement of knowledge construction activities utilizing 21st century learning design rubric

    Science.gov (United States)

    Pedoche, Margarette Anne U.; Taladua, Janica Mae M.; Panal, Geicky Pearl C.; Magsayo, Joy R.; Guarin, Rica Mae B.; Myrna, H. Lahoylahoy

    2018-01-01

    The main objective of the study was to enhance knowledge construction activities on its design particularly the objectives, support materials, student activities and assessment tools. Activities from the 2nd Quarter of Science Learners Material were the basis in the adaptation of activities. The adapted activities were evaluated by the In-service Science teachers and undergone modification by the researchers based on the teacher's comments and suggestions. It was then evaluated, revised, and validated, tried-out using the 21st CLD Rubric. Subjects of the study were 110 students from Grade 7-B, Grade 7-D, Grade 7-F in Geronima Cabrera National High School, Kolambugan, Lanao del Norte during the academic year 2016-2017, the study to determine their learning capabilities investigated by the use of Knowledge Construction Activities in the 21st Century Classroom, to investigate how the lessons were understood and appreciated by students, to stimulate interpretation, analysis, synthesizing, or evaluating ideas and develop critical thinking. Both quantitative and qualitative data were obtained from the students' scores in three activities. Results showed that there was a significant difference between the pretest and posttest scores of students. Mean scores between the pretest and posttest showed a mean difference of 3.35, thus the null hypothesis was rejected. It could be concluded with sufficient evidence to show that the students had basically low prior knowledge about the topic ecosystem. A significant difference was seen in the pretest and posttest, scores of the activities and Ecosystem model results after the implementation phase that a knowledge construction type of activity was better than the traditional one for it promoted meaningful learning and active engagement of students. Based on the results, it was clear that the use of knowledge construction activities had an effect on student's achievement in comparison to traditional teaching method. Thus, it was

  10. Effective Use of Pause Procedure to Enhance Student Engagement and Learning

    OpenAIRE

    Bachhel, Rachna; Thaman, Richa Ghay

    2014-01-01

    Introduction: Active learning strategies have been documented to enhance learning. We created an active learning environment in neuromuscular physiology lectures for first year medical students by using ‘Pause Procedure’.

  11. Teachers as Designers of Technology Enhanced Learning

    NARCIS (Netherlands)

    Kali, Yael; McKenney, Susan; Sagy, Ornit

    2015-01-01

    While the benefits of teacher involvement in designing technology enhanced learning are acknowledged in the literature, far less is known about shaping that involvement to yield those benefits. Research is needed to understand how teachers learn through design; how teacher design activities may be

  12. Teachers as Designers of Technology Enhanced Learning

    NARCIS (Netherlands)

    Kali, Yael; McKenney, Susan; Sagy, Ornit

    2016-01-01

    While the benefits of teacher involvement in designing technology enhanced learning are acknowledged in the literature, far less is known about shaping that involvement to yield those benefits. Research is needed to understand how teachers learn through design; how teacher design activities may be

  13. Which learning activities enhance physiotherapy practice? A systematic review protocol of quantitative and qualitative studies.

    Science.gov (United States)

    Leahy, Edmund; Chipchase, Lucy; Blackstock, Felicity

    2017-04-17

    Learning activities are fundamental for the development of expertise in physiotherapy practice. Continuing professional development (CPD) encompasses formal and informal learning activities undertaken by physiotherapists. Identifying the most efficient and effective learning activities is essential to enable the profession to assimilate research findings and improve clinical skills to ensure the most efficacious care for clients. To date, systematic reviews on the effectiveness of CPD provide limited guidance on the most efficacious models of professional development for physiotherapists. The aim of this systematic review is to evaluate which learning activities enhance physiotherapy practice. A search of Ovid MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health Literature (CINAHL), PsycINFO (Psychological Abstracts), PEDro, Cochrane Library, AMED and Educational Resources and Information Center (ERIC) will be completed. Citation searching and reference list searching will be undertaken to locate additional studies. Quantitative and qualitative studies will be included if they examine the impact of learning activities on clinician's behaviour, attitude, knowledge, beliefs, skills, self-efficacy, work satisfaction and patient outcomes. Risk of bias will be assessed by two independent researchers. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) and Confidence in the Evidence from Reviews of Qualitative research (CERQual) will be used to synthesise results where a meta-analysis is possible. Where a meta-analysis is not possible, a narrative synthesis will be conducted. PROSPERO CRD42016050157.

  14. Developing technology-enhanced active learning for medical education: challenges, solutions, and future directions.

    Science.gov (United States)

    McCoy, Lise; Pettit, Robin K; Lewis, Joy H; Bennett, Thomas; Carrasco, Noel; Brysacz, Stanley; Makin, Inder Raj S; Hutman, Ryan; Schwartz, Frederic N

    2015-04-01

    Growing up in an era of video games and Web-based applications has primed current medical students to expect rapid, interactive feedback. To address this need, the A.T. Still University-School of Osteopathic Medicine in Arizona (Mesa) has developed and integrated a variety of approaches using technology-enhanced active learning for medical education (TEAL-MEd) into its curriculum. Over the course of 3 years (2010-2013), the authors facilitated more than 80 implementations of games and virtual patient simulations into the education of 550 osteopathic medical students. The authors report on 4 key aspects of the TEAL-MEd initiative, including purpose, portfolio of tools, progress to date regarding challenges and solutions, and future directions. Lessons learned may be of benefit to medical educators at academic and clinical training sites who wish to implement TEAL-MEd activities.

  15. Enhancing Engineering Students’ Learning in an Environmental Microbiology Course

    Directory of Open Access Journals (Sweden)

    Zhi Zhou

    2012-08-01

    Full Text Available While environmental engineering students have gained some knowledge of biogeochemical cycles and sewage treatment, most of them haven’t learned microbiology previously and usually have difficulty in learning environmental microbiology because microbiology deals with invisible living microorganisms instead of visible built environment. Many teaching techniques can be used to enhance students’ learning in microbiology courses, such as lectures, animations, videos, small-group discussions, and active learning techniques. All of these techniques have been applied in the engineering class, but the results indicate that these techniques are often inadequate for students. Learning difficulties have to be identified to enhance students’ learning.

  16. Integrative Student Learning: An Effective Team Learning Activity in a Learner-Centered Paradigm

    Directory of Open Access Journals (Sweden)

    Reza Karimi, RPh, PhD

    2011-01-01

    Full Text Available Purpose: An Integrative Student Learning (ISL activity was developed with the intent to enhance the dynamic of student teamwork and enhance student learning by fostering critical-thinking skills, self-directed learning skills, and active learning. Case Study: The ISL activity consists of three portions: teambuilding, teamwork, and a facilitator driven “closing the loop” feedback discussion. For teambuilding, a set of clue sheets or manufacturer‘s drug containers were distributed among student pairs who applied their pharmaceutical knowledge to identify two more student pairs with similar clues or drugs, thus building a team of six. For teamwork, each team completed online exams, composed of integrated pharmaceutical science questions with clinical correlates, using only selected online library resources. For the feedback discussion, facilitators evaluated student impressions, opened a discussion about the ISL activity, and provided feedback to teams’ impressions and questions. This study describes three different ISL activities developed and implemented over three days with first year pharmacy students. Facilitators’ interactions with students and three surveys indicated a majority of students preferred ISL over traditional team activities and over 90% agreed ISL activities promoted active learning, critical-thinking, self-directed learning, teamwork, and student confidence in online library searches. Conclusions: The ISL activity has proven to be an effective learning activity that promotes teamwork and integration of didactic pharmaceutical sciences to enhance student learning of didactic materials and confidence in searching online library resources. It was found that all of this can be accomplished in a short amount of class time with a very reasonable amount of preparation.

  17. Integrative Student Learning: An Effective Team Learning Activity in a Learner-Centered Paradigm

    Directory of Open Access Journals (Sweden)

    Reza Karimi

    2011-01-01

    Full Text Available Purpose: An Integrative Student Learning (ISL activity was developed with the intent to enhance the dynamic of student teamwork and enhance student learning by fostering critical-thinking skills, self-directed learning skills, and active learning. Case Study: The ISL activity consists of three portions: teambuilding, teamwork, and a facilitator driven "closing the loop" feedback discussion. For teambuilding, a set of clue sheets or manufacturer's drug containers were distributed among student pairs who applied their pharmaceutical knowledge to identify two more student pairs with similar clues or drugs, thus building a team of six. For teamwork, each team completed online exams, composed of integrated pharmaceutical science questions with clinical correlates, using only selected online library resources. For the feedback discussion, facilitators evaluated student impressions, opened a discussion about the ISL activity, and provided feedback to teams' impressions and questions. This study describes three different ISL activities developed and implemented over three days with first year pharmacy students. Facilitators' interactions with students and three surveys indicated a majority of students preferred ISL over traditional team activities and over 90% agreed ISL activities promoted active learning, critical-thinking, self-directed learning, teamwork, and student confidence in online library searches. Conclusions: The ISL activity has proven to be an effective learning activity that promotes teamwork and integration of didactic pharmaceutical sciences to enhance student learning of didactic materials and confidence in searching online library resources. It was found that all of this can be accomplished in a short amount of class time with a very reasonable amount of preparation.   Type: Case Study

  18. Peer Learning in Social Media Enhanced Learning Environment

    Directory of Open Access Journals (Sweden)

    Anne-Maritta Tervakari

    2012-09-01

    Full Text Available TUT Circle, a dedicated social media service for students at Tampere University of Technology (TUT, was used as a learning environment for the purpose of enhancing students‘ collaboration, communication and networking skills required in business and working life and for promoting peer learning in small groups. Unfortunately, active conversation was limited. The students intensively read content created by other students, but they did not actively present their opinions, arguments or comments. Another reason for the lack of real conversation was procrastination. The students seemed to need more encouragement to comment on or question the ideas of others, more support to promote intergroup interaction and more assistance with time management.

  19. Teachers as Designers of Technology Enhanced Learning

    Science.gov (United States)

    Kali, Yael; McKenney, Susan; Sagy, Ornit

    2015-01-01

    While the benefits of teacher involvement in designing technology enhanced learning are acknowledged in the literature, far less is known about shaping that involvement to yield those benefits. Research is needed to understand how teachers learn through design; how teacher design activities may be supported; and how teacher involvement in design…

  20. Technology Enhanced Learning

    NARCIS (Netherlands)

    Klemke, Roland; Specht, Marcus

    2013-01-01

    Klemke, R., & Specht, M. (2013, 26-27 September). Technology Enhanced Learning. Presentation at the fourth international conference on eLearning (eLearning 2013), Belgrade, Serbia. http://econference.metropolitan.ac.rs/

  1. Teacher Design Knowledge for Technology Enhanced Learning

    NARCIS (Netherlands)

    McKenney, Susan

    2014-01-01

    This presentation shares a framework for investigating the knowledge teachers need to be able to design technology-enhanced learning. Specific activities are undertaken to consider elements within the framework

  2. Strategies for active learning in online continuing education.

    Science.gov (United States)

    Phillips, Janet M

    2005-01-01

    Online continuing education and staff development is on the rise as the benefits of access, convenience, and quality learning are continuing to take shape. Strategies to enhance learning call for learner participation that is self-directed and independent, thus changing the educator's role from expert to coach and facilitator. Good planning of active learning strategies promotes optimal learning whether the learning content is presented in a course or a just-in-time short module. Active learning strategies can be used to enhance online learning during all phases of the teaching-learning process and can accommodate a variety of learning styles. Feedback from peers, educators, and technology greatly influences learner satisfaction and must be harnessed to provide effective learning experiences. Outcomes of active learning can be assessed online and implemented conveniently and successfully from the initiation of the course or module planning to the end of the evaluation process. Online learning has become accessible and convenient and allows the educator to track learner participation. The future of online education will continue to grow, and using active learning strategies will ensure that quality learning will occur, appealing to a wide variety of learning needs.

  3. Creating Dynamic Learning Environment to Enhance Students’ Engagement in Learning Geometry

    Science.gov (United States)

    Sariyasa

    2017-04-01

    Learning geometry gives many benefits to students. It strengthens the development of deductive thinking and reasoning; it also provides an opportunity to improve visualisation and spatial ability. Some studies, however, have pointed out the difficulties that students encountered when learning geometry. A preliminary study by the author in Bali revealed that one of the main problems was teachers’ difficulties in delivering geometry instruction. It was partly due to the lack of appropriate instructional media. Coupling with dynamic geometry software, dynamic learning environments is a promising solution to this problem. Employing GeoGebra software supported by the well-designed instructional process may result in more meaningful learning, and consequently, students are motivated to engage in the learning process more deeply and actively. In this paper, we provide some examples of GeoGebra-aided learning activities that allow students to interactively explore and investigate geometry concepts and the properties of geometry objects. Thus, it is expected that such learning environment will enhance students’ internalisation process of geometry concepts.

  4. Do Simulations Enhance Student Learning? An Empirical Evaluation of an IR Simulation

    Science.gov (United States)

    Shellman, Stephen M.; Turan, Kursad

    2006-01-01

    There is a nascent literature on the question of whether active learning methods, and in particular simulation methods, enhance student learning. In this article, the authors evaluate the utility of an international relations simulation in enhancing learning objectives. Student evaluations provide evidence that the simulation process enhances…

  5. Neural substrates underlying stimulation-enhanced motor skill learning after stroke.

    Science.gov (United States)

    Lefebvre, Stéphanie; Dricot, Laurence; Laloux, Patrice; Gradkowski, Wojciech; Desfontaines, Philippe; Evrard, Frédéric; Peeters, André; Jamart, Jacques; Vandermeeren, Yves

    2015-01-01

    Motor skill learning is one of the key components of motor function recovery after stroke, especially recovery driven by neurorehabilitation. Transcranial direct current stimulation can enhance neurorehabilitation and motor skill learning in stroke patients. However, the neural mechanisms underlying the retention of stimulation-enhanced motor skill learning involving a paretic upper limb have not been resolved. These neural substrates were explored by means of functional magnetic resonance imaging. Nineteen chronic hemiparetic stroke patients participated in a double-blind, cross-over randomized, sham-controlled experiment with two series. Each series consisted of two sessions: (i) an intervention session during which dual transcranial direct current stimulation or sham was applied during motor skill learning with the paretic upper limb; and (ii) an imaging session 1 week later, during which the patients performed the learned motor skill. The motor skill learning task, called the 'circuit game', involves a speed/accuracy trade-off and consists of moving a pointer controlled by a computer mouse along a complex circuit as quickly and accurately as possible. Relative to the sham series, dual transcranial direct current stimulation applied bilaterally over the primary motor cortex during motor skill learning with the paretic upper limb resulted in (i) enhanced online motor skill learning; (ii) enhanced 1-week retention; and (iii) superior transfer of performance improvement to an untrained task. The 1-week retention's enhancement driven by the intervention was associated with a trend towards normalization of the brain activation pattern during performance of the learned motor skill relative to the sham series. A similar trend towards normalization relative to sham was observed during performance of a simple, untrained task without a speed/accuracy constraint, despite a lack of behavioural difference between the dual transcranial direct current stimulation and sham

  6. The better you feel the better you learn: do warm colours and rounded shapes enhance learning outcome in multimedia learning?

    OpenAIRE

    Münchow, Hannes; Mengelkamp, Christoph; Bannert, Maria

    2018-01-01

    The aim of the present study was to examine whether fostering positive activating affect during multimedia learning enhances learning outcome. University students were randomly assigned to either a multimedia learning environment designed to induce positive activating affect through the use of “warm” colours and rounded shapes (n=61) or an affectively neutral environment that used achromatic colours and sharp edges (n=50). Participants learned about the topic of functional neuroanatomy for 20...

  7. Enhancing Student Engagement and Active Learning through Just-in-Time Teaching and the Use of Powerpoint

    Science.gov (United States)

    Wanner, Thomas

    2015-01-01

    This instructional article is about an innovative teaching approach for enhancing student engagement and active learning in higher education through a combination of just-in-time teaching and the use of PowerPoint technology. The central component of this approach was students' pre-lecture preparation of a short PowerPoint presentation in which…

  8. Active Learning and Self-Regulation Enhance Student Teachers' Professional Competences

    Science.gov (United States)

    Virtanen, Päivi; Niemi, Hannele M.; Nevgi, Anne

    2017-01-01

    The study identifies the relationships between active learning, student teachers' self-regulated learning and professional competences. Further, the aim is to investigate how active learning promotes professional competences of student teachers with different self-regulation profiles. Responses from 422 student teachers to an electronic survey…

  9. Doing physical activity – not learning

    DEFF Research Database (Denmark)

    Jensen, Jens-Ole

    2017-01-01

    Introduction In recent years there have been a raising critique concerning PE as a subject which is more concerned with keeping pupils physically active than insuring that they learn something (Annerstedt, 2008). In Denmark, this issue has been actualized in a new sense. In 2014, a new school...... reform with 45 minutes of daily physical activity was introduced to enhance the pupils’ health, well-being and learning capabilities. Instead of focusing on learning bodily skills, physical activities has become an instrument to improve learning in the academic subjects. Physical activities.......g. Biesta, 2010; Standal, 2015) I will argue that the focus on learning outcome and effects on physical activity has gone too far in order to reach the objectives. If the notion of ‘keeping pupils physically active’ is understood as a representation of the core quality of physical activity, it seems...

  10. Why Teach Social Entrepreneurship: Enhance Learning and University-Community Relations through Service-Learning Outreach

    Science.gov (United States)

    Wessel, Stacy; Godshalk, Veronica M.

    2004-01-01

    This article focuses on providing a convincing argument for incorporating social entrepreneurship into the business professor's classroom. The outreach provided by social entrepreneurship enhances learning and promotes university-community relations. Service-learning engagement activities, in the form of social entrepreneurship, create a three-way…

  11. Enhanced Memory as a Common Effect of Active Learning

    Science.gov (United States)

    Markant, Douglas B.; Ruggeri, Azzurra; Gureckis, Todd M.; Xu, Fei

    2016-01-01

    Despite widespread consensus among educators that "active learning" leads to better outcomes than comparatively passive forms of instruction, it is often unclear why these benefits arise. In this article, we review research showing that the opportunity to control the information experienced while learning leads to improved memory…

  12. Captivate: Building Blocks for Implementing Active Learning

    Science.gov (United States)

    Kitchens, Brent; Means, Tawnya; Tan, Yinliang

    2018-01-01

    In this study, the authors propose a set of key elements that impact the success of an active learning implementation: content delivery, active learning methods, physical environment, technology enhancement, incentive alignment, and educator investment. Through a range of metrics the authors present preliminary evidence that students in courses…

  13. Does the Room Matter? Active Learning in Traditional and Enhanced Lecture Spaces

    Science.gov (United States)

    Stoltzfus, Jon R.; Libarkin, Julie

    2016-01-01

    SCALE-UP-type classrooms, originating with the Student-Centered Active Learning Environment with Upside-down Pedagogies project, are designed to facilitate active learning by maximizing opportunities for interactions between students and embedding technology in the classroom. Positive impacts when active learning replaces lecture are well…

  14. Research and Teaching: Instructor Use of Group Active Learning in an Introductory Biology Sequence

    Science.gov (United States)

    Auerbach, Anna Jo; Schussler, Elisabeth E.

    2016-01-01

    Active learning (or learner-centered) pedagogies have been shown to enhance student learning in introductory biology courses. Student collaboration has also been shown to enhance student learning and may be a critical part of effective active learning practices. This study focused on documenting the use of individual active learning and group…

  15. Learning and memory enhancing activity of Ficus carica (Fig: An experimental study in rats

    Directory of Open Access Journals (Sweden)

    Meera Sumanth

    2014-01-01

    Full Text Available Objective: The study aimed to assess the learning and memory enhancing activity of the ethanolic fruit extract of Ficus carica in rats using elevated plus maze (EPM, Hebb-William maze (HWM and Morris water maze (MWM. Materials and Methods: Wistar rats (100-150 g of either sex, were divided into 5 groups (n = 6. Group I (control animals received vehicle, Group II (scopolamine control animals received scopolamine (0.4 mg/kg i.p, Groups III and IV animals received ethanolic fruit extract of F. carica (200 mg/kg and 400 mg/kg p.o and Group V animals received piracetam (400 mg/kg i.p for 27 days. The rats of Groups III-V were injected with a single dose of scopolamine (0.4 mg/kg i.p on 19 th and 27 th day. Assessment of transfer latency (TL, time taken to reach reward chamber (TRC and swim latency (SL was done on 19 th and 27 th day using EPM, HWM and MWM, respectively. The data was analyzed by one-way Analysis of Variance followed by Dunnett′s test. P ≤ 0.05 was considered to be significant. Results: Ethanolic fruit extract of F. carica decreased TL, TRC and SL in comparison to scopolamine treated rats. Conclusion: The fruit of F. carica enhanced learning and memory activity.

  16. [Flipped classroom as a strategy to enhance active learning].

    Science.gov (United States)

    Wakabayashi, Noriyuki

    2015-03-01

    This paper reviews the introduction of a flipped class for fourth grade dentistry students, and analyzes the characteristics of the learning method. In fiscal 2013 and 2014, a series of ten three-hour units for removable partial prosthodontics were completed with the flipped class method; a lecture video of approximately 60 minutes was made by the teacher (author) and uploaded to the university's e-learning website one week before each class. Students were instructed to prepare for the class by watching the streaming video on their PC, tablet, or smartphone. In the flipped class, students were not given a lecture, but were asked to solve short questions displayed on screen, to make a short presentation about a part of the video lecture, and to discuss a critical question related to the main subject of the day. An additional team-based learning (TBL) session with individual and group answers was implemented. The average individual scores were considerably higher in the last two years, when the flipped method was implemented, than in the three previous years when conventional lectures were used. The following learning concepts were discussed: the role of the flipped method as an active learning strategy, the efficacy of lecture videos and short questions, students' participation in the class discussion, present-day value of the method, cooperation with TBL, the significance of active learning in relation with the students' learning ability, and the potential increase in the preparation time and workload for students.

  17. MLS student active learning within a "cloud" technology program.

    Science.gov (United States)

    Tille, Patricia M; Hall, Heather

    2011-01-01

    In November 2009, the MLS program in a large public university serving a geographically large, sparsely populated state instituted an initiative for the integration of technology enhanced teaching and learning within the curriculum. This paper is intended to provide an introduction to the system requirements and sample instructional exercises used to create an active learning technology-based classroom. Discussion includes the following: 1.) define active learning and the essential components, 2.) summarize teaching methods, technology and exercises utilized within a "cloud" technology program, 3.) describe a "cloud" enhanced classroom and programming 4.) identify active learning tools and exercises that can be implemented into laboratory science programs, and 5.) describe the evaluation and assessment of curriculum changes and student outcomes. The integration of technology in the MLS program is a continual process and is intended to provide student-driven active learning experiences.

  18. Technology enhanced learning for occupational and environmental health nursing: a global imperative.

    Science.gov (United States)

    Olson, D K; Cohn, S; Carlson, V

    2000-04-01

    One strategy for decreasing the barriers to higher education and for increasing the competency and performance of the occupational and environmental health nurse in the information age is technology enhanced learning. Technology enhanced learning encompasses a variety of technologies employed in teaching and learning activities of presentation, interaction, and transmission to on campus and distant students. Web based learning is growing faster than any other instructional technology, offering students convenience and a wealth of information.

  19. Architecture for Collaborative Learning Activities in Hybrid Learning Environments

    OpenAIRE

    Ibáñez, María Blanca; Maroto, David; García Rueda, José Jesús; Leony, Derick; Delgado Kloos, Carlos

    2012-01-01

    3D virtual worlds are recognized as collaborative learning environments. However, the underlying technology is not sufficiently mature and the virtual worlds look cartoonish, unlinked to reality. Thus, it is important to enrich them with elements from the real world to enhance student engagement in learning activities. Our approach is to build learning environments where participants can either be in the real world or in its mirror world while sharing the same hybrid space in a collaborative ...

  20. A Learning Activity Design Framework for Supporting Mobile Learning

    Directory of Open Access Journals (Sweden)

    Jalal Nouri

    2016-01-01

    Full Text Available This article introduces the Learning Activity Design (LEAD framework for the development and implementation of mobile learning activities in primary schools. The LEAD framework draws on methodological perspectives suggested by design-based research and interaction design in the specific field of technology-enhanced learning (TEL. The LEAD framework is grounded in four design projects conducted over a period of six years. It contributes a new understanding of the intricacies and multifaceted aspects of the design-process characterizing the development and implementation of mobile devices (i.e. smart phones and tablets in curricular activities conducted in Swedish primary schools. This framework is intended to provide both designers and researchers with methodological tools that take account of the pedagogical foundations of technologically-based educational interventions, usability issues related to the interaction with the mobile application developed, multiple data streams generated during the design project, multiple stakeholders involved in the design process and sustainability aspects of the mobile learning activities implemented in the school classroom.

  1. Enhancing learning with technology

    NARCIS (Netherlands)

    Specht, Marcus; Klemke, Roland

    2013-01-01

    Specht, M., & Klemke, R. (2013, 26-27 September). Enhancing Learning with Technology. In D. Milosevic (Ed.), Proceedings of the fourth international conference on eLearning (eLearning 2013) (pp. 37-45). Belgrade Metropolitan University, Belgrade, Serbia. http://econference.metropolitan.ac.rs/

  2. Mobile Affordances and Learning Theories in Supporting and Enhancing Learning

    Science.gov (United States)

    MacCallum, Kathryn; Day, Stephanie; Skelton, David; Verhaart, Michael

    2017-01-01

    Mobile technology promises to enhance and better support students' learning. The exploration and adoption of appropriate pedagogies that enhance learning is crucial for the wider adoption of mobile learning. An increasing number of studies have started to address how existing learning theory can be used to underpin and better frame mobile learning…

  3. An Innovative Teaching Method To Promote Active Learning: Team-Based Learning

    Science.gov (United States)

    Balasubramanian, R.

    2007-12-01

    Traditional teaching practice based on the textbook-whiteboard- lecture-homework-test paradigm is not very effective in helping students with diverse academic backgrounds achieve higher-order critical thinking skills such as analysis, synthesis, and evaluation. Consequently, there is a critical need for developing a new pedagogical approach to create a collaborative and interactive learning environment in which students with complementary academic backgrounds and learning skills can work together to enhance their learning outcomes. In this presentation, I will discuss an innovative teaching method ('Team-Based Learning (TBL)") which I recently developed at National University of Singapore to promote active learning among students in the environmental engineering program with learning abilities. I implemented this new educational activity in a graduate course. Student feedback indicates that this pedagogical approach is appealing to most students, and promotes active & interactive learning in class. Data will be presented to show that the innovative teaching method has contributed to improved student learning and achievement.

  4. Musical Peddy-Paper: A Collaborative Learning Activity Suported by Augmented Reality

    Science.gov (United States)

    Gomes, José Duarte Cardoso; Figueiredo, Mauro Jorge Guerreiro; Amante, Lúcia da Graça Cruz Domingues; Gomes, Cristina Maria Cardoso

    2014-01-01

    Gaming activities are an integral part of the human learning process, in particular for children. Game-based learning focuses on motivation and children's engagement towards learning. Educational game-based activities are becoming effective strategies to enhance the learning process. This paper presents an educational activity focusing to merge…

  5. Resting alpha activity predicts learning ability in alpha neurofeedback

    Directory of Open Access Journals (Sweden)

    Wenya eNan

    2014-07-01

    Full Text Available Individuals differ in their ability to learn how to regulate the alpha activity by neurofeedback. This study aimed to investigate whether the resting alpha activity is related to the learning ability of alpha enhancement in neurofeedback and could be used as a predictor. A total of 25 subjects performed 20 sessions of individualized alpha neurofeedback in order to learn how to enhance activity in the alpha frequency band. The learning ability was assessed by three indices respectively: the training parameter changes between two periods, within a short period and across the whole training time. It was found that the resting alpha amplitude measured before training had significant positive correlations with all learning indices and could be used as a predictor for the learning ability prediction. This finding would help the researchers in not only predicting the training efficacy in individuals but also gaining further insight into the mechanisms of alpha neurofeedback.

  6. ONLINE EDUCATION, ACTIVE LEARNING, AND ANDRAGOGY: An approach for Student Engagement

    OpenAIRE

    CARUTH, Gail D.

    2015-01-01

    Online learning opportunities have become essential for today’s colleges and universities. Online technology can support active learning approaches to learning. The purpose of the paper was to investigate why active learning in online classes has a positive effect on student engagement. A review of the literature revealed that research studies have been conducted to investigate the benefits of active learning. There exists extensive evidence to support the notion that active learning enhances...

  7. Effects of Sharing Clickers in an Active Learning Environment

    Science.gov (United States)

    Daniel, Todd; Tivener, Kristin

    2016-01-01

    Scientific research into learning enhancement gained by the use of clickers in active classrooms has largely focused on the use of individual clickers. In this study, we compared the learning experiences of participants in active learning groups in which an entire small group shared a single clicker to groups in which each member of the group had…

  8. Teachers' learning on the workshop of STS approach as a way of enhancing inventive thinking skills

    Science.gov (United States)

    Ngaewkoodrua, Nophakun; Yuenyong, Chokchai

    2018-01-01

    To improve science teachers to develop the STS lesson plans for enhancing the students' inventive thinking skills, the workshop of improving science teachers to develop the STS lesson plans for enhancing the Inventive thinking skills were organized. The paper aimed to clarify what teachers learn from the workshop. The goal of the activity of the workshop aimed to: 1) improve participants a better understanding of the relationship between the Inquiry based learning with STS approach, 2) understand the meaning and importance of the STS approach and identify the various stages of Yuenyong (2006) STS learning process, 3) discuss what they learned from the examples of Yuenyong (2006) lesson plan, 4) develop some activities for each stage of Yuenyong (2006) STS approach, and 5) ideas of providing STS approach activities for enhancing inventive thinking skills. Participants included 3 science teachers who work in Khon Kaen, Thailand. Methodology regarded interpretive paradigm. Teachers' learning about pedagogy of enhancing the students' inventive thinking skills will be interpreted through participant observation, teachers' tasks, and interview. The finding revealed that all participants could demonstrate their ideas how to generate the STS lesson plans as a way of enhancing inventive thinking skills. Teachers could mention some element of inventive thinking skills which could be generated on their STS learning activities.

  9. Virtual Reality Learning Activities for Multimedia Students to Enhance Spatial Ability

    Directory of Open Access Journals (Sweden)

    Rafael Molina-Carmona

    2018-04-01

    Full Text Available Virtual Reality is an incipient technology that is proving very useful for training different skills. Our hypothesis is that it is possible to design virtual reality learning activities that can help students to develop their spatial ability. To prove the hypothesis, we have conducted an experiment consisting of training the students using an on-purpose learning activity based on a virtual reality application and assessing the possible improvement of the students’ spatial ability through a widely accepted spatial visualization test. The learning activity consists of a virtual environment where some simple polyhedral shapes are shown and manipulated by moving, rotating and scaling them. The students participating in the experiment are divided into a control and an experimental group, carrying out the same learning activity with the only difference of the device used for the interaction: a traditional computer with screen, keyboard and mouse for the control group, and virtual reality goggles with a smartphone for the experimental group. To assess the experience, all the students have completed a spatial visualization test twice: just before performing the activities and four weeks later, once all the activities were performed. Specifically, we have used the well-known and widely used Purdue Spatial Visualization Test—Rotation (PSVT-R, designed to test rotational visualization ability. The results of the test show that there is an improvement in the test results for both groups, but the improvement is significantly higher in the case of the experimental group. The conclusion is that the virtual reality learning activities have shown to improve the spatial ability of the experimental group.

  10. Memory-enhancing activity of Anacyclus pyrethrum in albino Wistar rats

    Directory of Open Access Journals (Sweden)

    K Sujith

    2012-08-01

    Full Text Available Objective: To explore the potential effect of ethanolic extract of Anacyclus pyrethrum (A. pyrethrum in memory dysfunction. Methods: Memory impairment was produced by administration of scopolamine (1mg/kg i. p in rats. Passive avoidance paradigms, elevated plus maze and social learning task was used to assess learning and memory. Results: A. pyrethrum extract treated group decreased transfer latency in elevated plus maze model paradigm which is an indicative of cognition improvement. In case of passive avoidance paradigm extract treated group exhibited prounced effect in reversal of scopolamine induced amnesia which was revealed by increase in step down latency. Social learning task also revealed the memory enhancing activity of A. pyrethrum extract. Conclusions: Ethanolic extract of A. pyrethrum has been demonstrated to improve cognitive processes by enhancing memory in different experimental paradigms such as passive avoidance paradigms, elevated plus maze and social learning task when administered orallyBrain cholinesterase level was measured to assess central cholinergic activity. The treatment with drugs, which increase cholinergic neurotransmission, causes an improvement in cognitive deficits. The present study suggest that ethanolic extract of A. pyrethrum increased brain cholinesterase level and hence it possess memory enhancing activity in scopolamine induced amnesia model by enhancing central cholinergic neurotransmission.

  11. Enhancing the blended learning experience of Calculus I students

    Directory of Open Access Journals (Sweden)

    A. Al-Ghassani

    2015-08-01

    Full Text Available Blended Learning showed in the last two decades to be one of the effective ways in education and training. We illustrate our initiative experience with blended learning in the course Calculus I. The main goals we want to achieve are improving students understanding of the course concepts, increasing the level of uniformity in this multi-sections course and enhancing students blended learning experience online and offline. Consequently, this affects positively students' academic performance. We describe and discuss the results that we achieved and the challenges we encountered in view of the initiative aims and goals. The blended learning delivery methods were through Learning Management System (LMS as the online medium and through new offline activities inside and outside the classroom. The LMS we used is Moodle. We designed the resources and activities to cater for the learners different needs. The offline activities were chosen and designed to strengthen the weakness in students study skills based in our experience.

  12. Challenges Encountered in Creating Personalised Learning Activities to Suit Students Learning Preferences

    OpenAIRE

    O'Donnell, Eileen; Wade, Vincent; Sharp, Mary; O'Donnell, Liam

    2013-01-01

    This book chapter reviews some of the challenges encountered by educators in creating personalised e-learning activities to suit students learning preferences. Technology-enhanced learning (TEL) alternatively known as e-learning has not yet reached its full potential in higher education. There are still many potential uses as yet undiscovered and other discovered uses which are not yet realisable by many educators. TEL is still predominantly used for e-dissemination and e-administration. This...

  13. Enhancing students' learning in problem based learning: validation of a self-assessment scale for active learning and critical thinking

    NARCIS (Netherlands)

    Khoiriyah, U.; Roberts, C.; Jorm, C.; Vleuten, C.P. van der

    2015-01-01

    BACKGROUND: Problem based learning (PBL) is a powerful learning activity but fidelity to intended models may slip and student engagement wane, negatively impacting learning processes, and outcomes. One potential solution to solve this degradation is by encouraging self-assessment in the PBL

  14. Intelligent data analysis for e-learning enhancing security and trustworthiness in online learning systems

    CERN Document Server

    Miguel, Jorge; Xhafa, Fatos

    2016-01-01

    Intelligent Data Analysis for e-Learning: Enhancing Security and Trustworthiness in Online Learning Systems addresses information security within e-Learning based on trustworthiness assessment and prediction. Over the past decade, many learning management systems have appeared in the education market. Security in these systems is essential for protecting against unfair and dishonest conduct-most notably cheating-however, e-Learning services are often designed and implemented without considering security requirements. This book provides functional approaches of trustworthiness analysis, modeling, assessment, and prediction for stronger security and support in online learning, highlighting the security deficiencies found in most online collaborative learning systems. The book explores trustworthiness methodologies based on collective intelligence than can overcome these deficiencies. It examines trustworthiness analysis that utilizes the large amounts of data-learning activities generate. In addition, as proc...

  15. Students’ mathematical learning in modelling activities

    DEFF Research Database (Denmark)

    Kjeldsen, Tinne Hoff; Blomhøj, Morten

    2013-01-01

    Ten years of experience with analyses of students’ learning in a modelling course for first year university students, led us to see modelling as a didactical activity with the dual goal of developing students’ modelling competency and enhancing their conceptual learning of mathematical concepts i...... create and help overcome hidden cognitive conflicts in students’ understanding; that reflections within modelling can play an important role for the students’ learning of mathematics. These findings are illustrated with a modelling project concerning the world population....

  16. Mechanisms underlying the social enhancement of vocal learning in songbirds.

    Science.gov (United States)

    Chen, Yining; Matheson, Laura E; Sakata, Jon T

    2016-06-14

    Social processes profoundly influence speech and language acquisition. Despite the importance of social influences, little is known about how social interactions modulate vocal learning. Like humans, songbirds learn their vocalizations during development, and they provide an excellent opportunity to reveal mechanisms of social influences on vocal learning. Using yoked experimental designs, we demonstrate that social interactions with adult tutors for as little as 1 d significantly enhanced vocal learning. Social influences on attention to song seemed central to the social enhancement of learning because socially tutored birds were more attentive to the tutor's songs than passively tutored birds, and because variation in attentiveness and in the social modulation of attention significantly predicted variation in vocal learning. Attention to song was influenced by both the nature and amount of tutor song: Pupils paid more attention to songs that tutors directed at them and to tutors that produced fewer songs. Tutors altered their song structure when directing songs at pupils in a manner that resembled how humans alter their vocalizations when speaking to infants, that was distinct from how tutors changed their songs when singing to females, and that could influence attention and learning. Furthermore, social interactions that rapidly enhanced learning increased the activity of noradrenergic and dopaminergic midbrain neurons. These data highlight striking parallels between humans and songbirds in the social modulation of vocal learning and suggest that social influences on attention and midbrain circuitry could represent shared mechanisms underlying the social modulation of vocal learning.

  17. Test-Enhanced Learning in an Immunology and Infectious Disease Medicinal Chemistry/Pharmacology Course.

    Science.gov (United States)

    Hernick, Marcy

    2015-09-25

    Objective. To develop a series of active-learning modules that would improve pharmacy students' performance on summative assessments. Design. A series of optional online active-learning modules containing questions with multiple formats for topics in a first-year (P1) course was created using a test-enhanced learning approach. A subset of module questions was modified and included on summative assessments. Assessment. Student performance on module questions improved with repeated attempts and was predictive of student performance on summative assessments. Performance on examination questions was higher for students with access to modules than for those without access to modules. Module use appeared to have the most impact on low performing students. Conclusion. Test-enhanced learning modules with immediate feedback provide pharmacy students with a learning tool that improves student performance on summative assessments and also may improve metacognitive and test-taking skills.

  18. Recommender Systems in Technology Enhanced Learning

    NARCIS (Netherlands)

    Manouselis, Nikos; Drachsler, Hendrik; Verbert, Katrien; Santos, Olga

    2010-01-01

    Manouselis, N., Drachsler, H., Verbert, K., & Santos, C. S. (Eds.) (2010). Recommender System in Technology Enhanced Learning. Elsevier Procedia Computer Science: Volume 1, Issue 2. Proceedings of the 1st Workshop on Recommender Systems for Technology Enhanced Learning (RecSysTEL). September, 29-30,

  19. Principal Leadership for Technology-enhanced Learning in Science

    Science.gov (United States)

    Gerard, Libby F.; Bowyer, Jane B.; Linn, Marcia C.

    2008-02-01

    Reforms such as technology-enhanced instruction require principal leadership. Yet, many principals report that they need help to guide implementation of science and technology reforms. We identify strategies for helping principals provide this leadership. A two-phase design is employed. In the first phase we elicit principals' varied ideas about the Technology-enhanced Learning in Science (TELS) curriculum materials being implemented by teachers in their schools, and in the second phase we engage principals in a leadership workshop designed based on the ideas they generated. Analysis uses an emergent coding scheme to categorize principals' ideas, and a knowledge integration framework to capture the development of these ideas. The analysis suggests that principals frame their thinking about the implementation of TELS in terms of: principal leadership, curriculum, educational policy, teacher learning, student outcomes and financial resources. They seek to improve their own knowledge to support this reform. The principals organize their ideas around individual school goals and current political issues. Principals prefer professional development activities that engage them in reviewing curricula and student work with other principals. Based on the analysis, this study offers guidelines for creating learning opportunities that enhance principals' leadership abilities in technology and science reform.

  20. Perceptions of Active Learning between Faculty and Undergraduates: Differing Views among Departments

    Science.gov (United States)

    Patrick, Lorelei E.; Howell, Leigh Anne; Wischusen, William

    2016-01-01

    There have been numerous calls recently to increase the use of active learning in university science, technology, engineering, and math (STEM) classrooms to more actively engage students and enhance student learning. However, few studies have investigated faculty and student perceptions regarding the effectiveness of active learning or the…

  1. Supporting intra-group social metacognitive activities with technology: A grammar learning game

    NARCIS (Netherlands)

    Molenaar, I.; Horvers, A.; Desain, P.W.M.

    2017-01-01

    This study investigates the effects of a technology enhanced collaborative grammar learning activity on students sentence parsing and formulation. These types of collaborative learning activities for grammar education are expected to support more effective learning. Yet, effective intra-group social

  2. Postnatal TLR2 activation impairs learning and memory in adulthood.

    Science.gov (United States)

    Madar, Ravit; Rotter, Aviva; Waldman Ben-Asher, Hiba; Mughal, Mohamed R; Arumugam, Thiruma V; Wood, W H; Becker, K G; Mattson, Mark P; Okun, Eitan

    2015-08-01

    Neuroinflammation in the central nervous system is detrimental for learning and memory, as evident form epidemiological studies linking developmental defects and maternal exposure to harmful pathogens. Postnatal infections can also induce neuroinflammatory responses with long-term consequences. These inflammatory responses can lead to motor deficits and/or behavioral disabilities. Toll like receptors (TLRs) are a family of innate immune receptors best known as sensors of microbial-associated molecular patterns, and are the first responders to infection. TLR2 forms heterodimers with either TLR1 or TLR6, is activated in response to gram-positive bacterial infections, and is expressed in the brain during embryonic development. We hypothesized that early postnatal TLR2-mediated neuroinflammation would adversely affect cognitive behavior in the adult. Our data indicate that postnatal TLR2 activation affects learning and memory in adult mice in a heterodimer-dependent manner. TLR2/6 activation improved motor function and fear learning, while TLR2/1 activation impaired spatial learning and enhanced fear learning. Moreover, developmental TLR2 deficiency significantly impairs spatial learning and enhances fear learning, stressing the involvement of the TLR2 pathway in learning and memory. Analysis of the transcriptional effects of TLR2 activation reveals both common and unique transcriptional programs following heterodimer-specific TLR2 activation. These results imply that adult cognitive behavior could be influenced in part, by activation or alterations in the TLR2 pathway at birth. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. A case study of technology-enhanced active learning in introductory cellular biology

    Science.gov (United States)

    Chacon Diaz, Lucia Bernardette

    Science teaching and learning in higher education has been evolving over the years to encourage student retention in STEM fields and reduce student attrition. As novel pedagogical practices emerge in the college science classroom, research on the effectiveness of such approaches must be undertaken. The following research applied a case study research design in order to evaluate the experiences of college students in a TEAL classroom. This case study was conducted during the 2017 Summer Cellular and Organismal Biology course at a four-year Hispanic Serving Institution located in the Southwest region of the United States. The main components evaluated were students' exam performance, self-efficacy beliefs, and behaviors and interactions in the Technology-Enhanced Active Learning (TEAL) classroom. The findings suggest that students enrolled in a TEAL classroom are equally capable of answering high and low order thinking questions. Additionally, students are equally confident in answering high and low order thinking items related to cellular biology. In the TEAL classroom, student-student interactions are encouraged and collaborative behaviors are exhibited. Gender and ethnicity do not influence self-efficacy beliefs in students in the TEAL room, and the overall class average of self-efficacy beliefs tended to be higher compared to exam performance. Based on the findings of this case study, TEAL classrooms are greatly encouraged in science higher education in order to facilitate learning and class engagement for all students. Providing students with the opportunity to expand their academic talents in the science classroom accomplishes a crucial goal in STEM higher education.

  4. Learner Ownership of Technology-Enhanced Learning

    Science.gov (United States)

    Dommett, Eleanor J.

    2018-01-01

    Purpose: This paper aims to examine the different ways in which learners may have ownership over technology-enhanced learning by reflecting on technical, legal and psychological ownership. Design/methodology/approach: The paper uses a variety of examples of technology-enhanced learning ranging from open-source software to cloud storage to discuss…

  5. Enhancing students' learning in problem based learning: validation of a self-assessment scale for active learning and critical thinking.

    Science.gov (United States)

    Khoiriyah, Umatul; Roberts, Chris; Jorm, Christine; Van der Vleuten, C P M

    2015-08-26

    Problem based learning (PBL) is a powerful learning activity but fidelity to intended models may slip and student engagement wane, negatively impacting learning processes, and outcomes. One potential solution to solve this degradation is by encouraging self-assessment in the PBL tutorial. Self-assessment is a central component of the self-regulation of student learning behaviours. There are few measures to investigate self-assessment relevant to PBL processes. We developed a Self-assessment Scale on Active Learning and Critical Thinking (SSACT) to address this gap. We wished to demonstrated evidence of its validity in the context of PBL by exploring its internal structure. We used a mixed methods approach to scale development. We developed scale items from a qualitative investigation, literature review, and consideration of previous existing tools used for study of the PBL process. Expert review panels evaluated its content; a process of validation subsequently reduced the pool of items. We used structural equation modelling to undertake a confirmatory factor analysis (CFA) of the SSACT and coefficient alpha. The 14 item SSACT consisted of two domains "active learning" and "critical thinking." The factorial validity of SSACT was evidenced by all items loading significantly on their expected factors, a good model fit for the data, and good stability across two independent samples. Each subscale had good internal reliability (>0.8) and strongly correlated with each other. The SSACT has sufficient evidence of its validity to support its use in the PBL process to encourage students to self-assess. The implementation of the SSACT may assist students to improve the quality of their learning in achieving PBL goals such as critical thinking and self-directed learning.

  6. Seamless learning: Technology-enhanced learning from practical experiences across contexts

    NARCIS (Netherlands)

    Rusman, Ellen

    2018-01-01

    Rusman, E. (2018, 8th of June). Seamless learning: Technology-enhanced learning from practical experiences across contexts. Keynote presentation at the Seamless learning conference, Maastricht, The Netherlands. http://www.ou.nl/slc

  7. Cognitive emotion regulation enhances aversive prediction error activity while reducing emotional responses.

    Science.gov (United States)

    Mulej Bratec, Satja; Xie, Xiyao; Schmid, Gabriele; Doll, Anselm; Schilbach, Leonhard; Zimmer, Claus; Wohlschläger, Afra; Riedl, Valentin; Sorg, Christian

    2015-12-01

    Cognitive emotion regulation is a powerful way of modulating emotional responses. However, despite the vital role of emotions in learning, it is unknown whether the effect of cognitive emotion regulation also extends to the modulation of learning. Computational models indicate prediction error activity, typically observed in the striatum and ventral tegmental area, as a critical neural mechanism involved in associative learning. We used model-based fMRI during aversive conditioning with and without cognitive emotion regulation to test the hypothesis that emotion regulation would affect prediction error-related neural activity in the striatum and ventral tegmental area, reflecting an emotion regulation-related modulation of learning. Our results show that cognitive emotion regulation reduced emotion-related brain activity, but increased prediction error-related activity in a network involving ventral tegmental area, hippocampus, insula and ventral striatum. While the reduction of response activity was related to behavioral measures of emotion regulation success, the enhancement of prediction error-related neural activity was related to learning performance. Furthermore, functional connectivity between the ventral tegmental area and ventrolateral prefrontal cortex, an area involved in regulation, was specifically increased during emotion regulation and likewise related to learning performance. Our data, therefore, provide first-time evidence that beyond reducing emotional responses, cognitive emotion regulation affects learning by enhancing prediction error-related activity, potentially via tegmental dopaminergic pathways. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Teacher design knowledge for technology enhanced learning: a framework for investigating assets and needs

    NARCIS (Netherlands)

    McKenney, Susan; Kali, Y.; Mauiskaite, L.; Voogt, Joke

    2014-01-01

    Design of (technology-enhanced) learning activities and materials is one fruitful process through which teachers learn and become professionals. To facilitate this process, research is needed to understand how teachers learn through design, how this process may be supported, and how teacher

  9. A Framework for Mobile Learning for Enhancing Learning in Higher Education

    Science.gov (United States)

    Barreh, Kadar Abdillahi; Abas, Zoraini Wati

    2015-01-01

    As mobile learning becomes increasingly pervasive, many higher education institutions have initiated a number of mobile learning initiatives to support their traditional learning modes. This study proposes a framework for mobile learning for enhancing learning in higher education. This framework for mobile learning is based on research conducted…

  10. Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning.

    Science.gov (United States)

    Ballen, Cissy J; Wieman, Carl; Salehi, Shima; Searle, Jeremy B; Zamudio, Kelly R

    2017-01-01

    Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning disproportionately benefits URM students, we quantified the effects of traditional versus active learning on student academic performance, science self-efficacy, and sense of social belonging in a large (more than 250 students) introductory STEM course. A transition to active learning closed the gap in learning gains between non-URM and URM students and led to an increase in science self-efficacy for all students. Sense of social belonging also increased significantly with active learning, but only for non-URM students. Through structural equation modeling, we demonstrate that, for URM students, the increase in self-efficacy mediated the positive effect of active-learning pedagogy on two metrics of student performance. Our results add to a growing body of research that supports varied and inclusive teaching as one pathway to a diversified STEM workforce. © 2017 C. J. Ballen et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Teachers' learning about research for enhancing students' thinking skills in science learning

    Science.gov (United States)

    Nammungkhun, Wisanugorn; Satchukorn, Sureerat; Saenpuk, Nudchanard; Yuenyong, Chokchai; Chantharanuwong, Warawun

    2018-01-01

    This paper aimed to clarify teachers' learning about research for enhancing students' thinking skills in science learning. The study applied the lens of sociocultural view of learning to discuss teachers' learning about research. Participants included teachers who participated in the project of thinking research schools: research for enhancing students' thinking skills. The project of thinking research schools provided participants chance to learn knowledge about research and thinking research, doing research and publication, and participate in the international conference. Methodology regarded ethnographic research. The tools of interpretation included participant observation, interview, and document analysis. The researchers as participants of the research project of thinking research schools tried to clarify what they learned about research from their way of seeing the view of research about enhancing students' thinking skills through participant observation. The findings revealed what and how teachers as apprenticeship learn about research through legitimate peripheral participation in the research project community of practice. The paper clarified teachers' conceptualization about research for enhancing students' thinking through the workshop, doing research, writing up research article with supported by experts, presenting research in the international conference, editing their research article on the way of publishing, and so on.

  12. Technology enhanced peer learning and peer assessment

    DEFF Research Database (Denmark)

    Henriksen, Christian Bugge; Bregnhøj, Henrik; Rosthøj, Susanne

    2016-01-01

    This paper explores the application of learning designs featuring formalised and structured technology enhanced peer learning. These include student produced learning elements, peer review discussions and peer assessment in the BSc/MSc level summer course Restoration of European Ecosystems and Fr...... be a huge benefit from developing learning design patterns that facilitate informal peer learning and reinforce knowledge sharing practices.......This paper explores the application of learning designs featuring formalised and structured technology enhanced peer learning. These include student produced learning elements, peer review discussions and peer assessment in the BSc/MSc level summer course Restoration of European Ecosystems...... and Freshwaters (REEF), the Master thesis preparation seminars for the Master of Public Health (MPH) and the MOOC course Global Environmental Management (GEM). The application of student produced learning elements and peer review discussions is investigated by analyzing quotes from course evaluations...

  13. Enhancement of learning capacity and cholinergic synaptic function by carnitine in aging rats.

    Science.gov (United States)

    Ando, S; Tadenuma, T; Tanaka, Y; Fukui, F; Kobayashi, S; Ohashi, Y; Kawabata, T

    2001-10-15

    The effects of a carnitine derivative, acetyl-L-carnitine (ALCAR), on the cognitive and cholinergic activities of aging rats were examined. Rats were given ALCAR (100 mg/kg) per os for 3 months and were subjected to the Hebb-Williams tasks and a new maze task, AKON-1, to assess their learning capacity. The learning capacity of the ALCAR-treated group was superior to that of the control. Cholinergic activities were determined with synaptosomes isolated from the cortices. The high-affinity choline uptake by synaptosomes, acetylcholine synthesis in synaptosomes, and acetylcholine release from synaptosomes on membrane depolarization were all enhanced in the ALCAR group. This study indicates that chronic administration of ALCAR increases cholinergic synaptic transmission and consequently enhances learning capacity as a cognitive function in aging rats. Copyright 2001 Wiley-Liss, Inc.

  14. Teaching Diversity and Aging through Active Learning Strategies: An Annotated Bibliography.

    Science.gov (United States)

    Fried, Stephen B.; Mehrotra, Chandra M.

    Covering 10 topical areas, this annotated bibliography offers a guide to journal articles, book chapters, monographs, and books useful for teaching diversity and aging through active learning. Active learning experiences may help expand students' awareness of elements of their own diversity, broaden their world view, and enhance their culturally…

  15. Student Motivation from and Resistance to Active Learning Rooted in Essential Science Practices

    Science.gov (United States)

    Owens, David C.; Sadler, Troy D.; Barlow, Angela T.; Smith-Walters, Cindi

    2017-12-01

    Several studies have found active learning to enhance students' motivation and attitudes. Yet, faculty indicate that students resist active learning and censure them on evaluations after incorporating active learning into their instruction, resulting in an apparent paradox. We argue that the disparity in findings across previous studies is the result of variation in the active learning instruction that was implemented. The purpose of this study was to illuminate sources of motivation from and resistance to active learning that resulted from a novel, exemplary active-learning approach rooted in essential science practices and supported by science education literature. This approach was enacted over the course of 4 weeks in eight sections of an introductory undergraduate biology laboratory course. A plant concept inventory, administered to students as a pre-, post-, and delayed-posttest indicated significant proximal and distal learning gains. Qualitative analysis of open-response questionnaires and interviews elucidated sources of motivation and resistance that resulted from this active-learning approach. Several participants indicated this approach enhanced interest, creativity, and motivation to prepare, and resulted in a challenging learning environment that facilitated the sharing of diverse perspectives and the development of a community of learners. Sources of resistance to active learning included participants' unfamiliarity with essential science practices, having to struggle with uncertainty in the absence of authoritative information, and the extra effort required to actively construct knowledge as compared to learning via traditional, teacher-centered instruction. Implications for implementation, including tips for reducing student resistance to active learning, are discussed.

  16. Teacher Feedback during Active Learning: Current Practices in Primary Schools

    Science.gov (United States)

    van den Bergh, Linda; Ros, Anje; Beijaard, Douwe

    2013-01-01

    Background: Feedback is one of the most powerful tools, which teachers can use to enhance student learning. It appears dif?cult for teachers to give qualitatively good feedback, especially during active learning. In this context, teachers should provide facilitative feedback that is focused on the development of meta-cognition and social learning.…

  17. Self-enhancement learning: target-creating learning and its application to self-organizing maps.

    Science.gov (United States)

    Kamimura, Ryotaro

    2011-05-01

    In this article, we propose a new learning method called "self-enhancement learning." In this method, targets for learning are not given from the outside, but they can be spontaneously created within a neural network. To realize the method, we consider a neural network with two different states, namely, an enhanced and a relaxed state. The enhanced state is one in which the network responds very selectively to input patterns, while in the relaxed state, the network responds almost equally to input patterns. The gap between the two states can be reduced by minimizing the Kullback-Leibler divergence between the two states with free energy. To demonstrate the effectiveness of this method, we applied self-enhancement learning to the self-organizing maps, or SOM, in which lateral interactions were added to an enhanced state. We applied the method to the well-known Iris, wine, housing and cancer machine learning database problems. In addition, we applied the method to real-life data, a student survey. Experimental results showed that the U-matrices obtained were similar to those produced by the conventional SOM. Class boundaries were made clearer in the housing and cancer data. For all the data, except for the cancer data, better performance could be obtained in terms of quantitative and topological errors. In addition, we could see that the trustworthiness and continuity, referring to the quality of neighborhood preservation, could be improved by the self-enhancement learning. Finally, we used modern dimensionality reduction methods and compared their results with those obtained by the self-enhancement learning. The results obtained by the self-enhancement were not superior to but comparable with those obtained by the modern dimensionality reduction methods.

  18. Cabri 3D - assisted collaborative learning to enhance junior high school students’ spatial ability

    Science.gov (United States)

    Muntazhimah; Miatun, A.

    2018-01-01

    The main purpose of this quasi-experimental study was to determine the enhancement of spatial ability of junior high school students who learned through Cabri-3D assisted collaborative learning. The methodology of this study was the nonequivalent group that was conducted to students of the eighth grade in a junior high school as a population. Samples consisted one class of the experimental group who studied with Cabri-3D assisted collaborative learning and one class as a control group who got regular learning activity. The instrument used in this study was a spatial ability test. Analyzing normalized gain of students’ spatial ability based on mathemathical prior knowledge (MPK) and its interactions was tested by two-way ANOVA at a significance level of 5% then continued with using Post Hoc Scheffe test. The research results showed that there was significant difference in enhancement of the spatial ability between students who learnt with Cabri 3D assisted collaborative learning and students who got regular learning, there was significant difference in enhancement of the spatial ability between students who learnt with cabri 3D assisted collaborative learning and students who got regular learning in terms of MPK and there is no significant interaction between learning (Cabri-3D assisted collaborative learning and regular learning) with students’ MPK (high, medium, and low) toward the enhancement of students’ spatial abilities. From the above findings, it can be seen that cabri-3D assisted collaborative learning could enhance spatial ability of junior high school students.

  19. What Do Students Want? Making Sense of Student Preferences in Technology-Enhanced Learning

    Science.gov (United States)

    Pechenkina, Ekaterina; Aeschliman, Carol

    2017-01-01

    This article, with its focus on university students as intended recipients and users of technological innovations in education, explores student preferences across three dimensions of technology-enhanced learning: mode of instruction; communication; and educational technology tools embedded in learning and teaching activities. The article draws on…

  20. Learning in a technology enhanced world

    OpenAIRE

    Specht, Marcus

    2010-01-01

    Specht, M. (2009). Learning in a technology enhanced world. Invited talk given at the World Conference on E-learning in Corporate, Government, Healthcare & Higher Education. October, 27, 2009, Vancouver, Canada.

  1. The Better You Feel the Better You Learn: Do Warm Colours and Rounded Shapes Enhance Learning Outcome in Multimedia Learning?

    Directory of Open Access Journals (Sweden)

    Hannes Münchow

    2017-01-01

    Full Text Available The aim of the present study was to examine whether fostering positive activating affect during multimedia learning enhances learning outcome. University students were randomly assigned to either a multimedia learning environment designed to induce positive activating affect through the use of “warm” colours and rounded shapes (n=61 or an affectively neutral environment that used achromatic colours and sharp edges (n=50. Participants learned about the topic of functional neuroanatomy for 20 minutes and had to answer several questions for comprehension and transfer afterwards. Affective states as well as achievement goal orientations were investigated before and after the learning phase using questionnaires. The results show that participants in the affectively positive environment were superior in comprehension as well as transfer when initial affect was strong. Preexperimental positive affect was therefore a predictor of comprehension and a moderator for transfer. Goal orientations did not influence these effects. The findings support the idea that positive affect, induced through the design of the particular multimedia learning environment, can facilitate performance if initial affective states are taken into account.

  2. From learning objects to learning activities

    DEFF Research Database (Denmark)

    Dalsgaard, Christian

    2005-01-01

    This paper discusses and questions the current metadata standards for learning objects from a pedagogical point of view. From a social constructivist approach, the paper discusses how learning objects can support problem based, self-governed learning activities. In order to support this approach......, it is argued that it is necessary to focus on learning activities rather than on learning objects. Further, it is argued that descriptions of learning objectives and learning activities should be separated from learning objects. The paper presents a new conception of learning objects which supports problem...... based, self-governed activities. Further, a new way of thinking pedagogy into learning objects is introduced. It is argued that a lack of pedagogical thinking in learning objects is not solved through pedagogical metadata. Instead, the paper suggests the concept of references as an alternative...

  3. Using a kinesthetic learning strategy to engage nursing student thinking, enhance retention, and improve critical thinking.

    Science.gov (United States)

    Wagner, Elissa A

    2014-06-01

    This article reports the outcomes of a kinesthetic learning strategy used during a cardiac lecture to engage students and to improve the use of classroom-acquired knowledge in today's challenging clinical settings. Nurse educators are constantly faced with finding new ways to engage students, stimulate critical thinking, and improve clinical application in a rapidly changing and complex health care system. Educators who deviate from the traditional pedagogy of didactic, content-driven teaching to a concept-based, student-centered approach using active and kinesthetic learning activities can enhance engagement and improve clinical problem solving, communication skills, and critical thinking to provide graduates with the tools necessary to be successful. The goals of this learning activity were to decrease the well-known classroom-clinical gap by enhancing engagement, providing deeper understanding of cardiac function and disorders, enhancing critical thinking, and improving clinical application. Copyright 2014, SLACK Incorporated.

  4. Incorporating Active Learning and Student Inquiry into an Introductory Merchandising Class

    Science.gov (United States)

    Lee, Hyun-Hwa; Hines, Jean D.

    2012-01-01

    Many educators believe that student learning is enhanced when they are actively involved in classroom activities that require student inquiry. The purpose of this paper is to report on three student inquiry projects that were incorporated into a merchandising class with the focus on making students responsible for their learning, rather than the…

  5. Moments of movement: active learning and practice development.

    Science.gov (United States)

    Dewing, Jan

    2010-01-01

    As our understanding of practice development becomes more sophisticated, we enhance our understanding of how the facilitation of learning in and from practice, can be more effectively achieved. This paper outlines an approach for enabling and maximizing learning within practice development known as 'Active Learning'. It considers how, given establishing a learning culture is a prerequisite for the sustainability of PD within organisations, practice developers can do more to maximize learning for practitioners and other stakeholders. Active Learning requires that more attention be given by organisations committed to PD, at a corporate and strategic level for how learning strategies are developed in the workplace. Specifically, a move away from a heavy reliance on training may be required. Practice development facilitators also need to review: how they organise and offer learning, so that learning strategies are consistent with the vision, aims and processes of PD; have skills in the planning, delivery and evaluation of learning as part of their role and influence others who provide more traditional methods of training and education.

  6. International Workshop on Evidence-Based Technology Enhanced Learning

    CERN Document Server

    Gennari, Rosella; Marenzi, Ivana; Prieta, Fernando; Rodríguez, Juan

    2012-01-01

    Research on Technology Enhanced Learning (TEL) investigates how information and communication technologies can be designed in order to support pedagogical activities. The workshop proceedings collects contributions concerning evidence based TEL systems, like their design following EBD principles as well as studies or best practices that educators, education stakeholders or psychologists used to diagnose or improve their students' learning skills, including students with specific difficulties. The international ebTEL’12 workshop wants to be a forum in which TEL researchers and practitioners alike can discuss ideas, projects, and lessons related to ebTEL. The workshop takes place in Salamanca, Spain, on March 28th-30th 2012.  

  7. Interactive Learning to Stimulate the Brain's Visual Center and to Enhance Memory Retention

    Science.gov (United States)

    Yun, Yang H.; Allen, Philip A.; Chaumpanich, Kritsakorn; Xiao, Yingcai

    2014-01-01

    This short paper describes an ongoing NSF-funded project on enhancing science and engineering education using the latest technology. More specifically, the project aims at developing an interactive learning system with Microsoft Kinect™ and Unity3D game engine. This system promotes active, rather than passive, learning by employing embodied…

  8. Gestures Enhance Foreign Language Learning

    Directory of Open Access Journals (Sweden)

    Manuela Macedonia

    2012-11-01

    Full Text Available Language and gesture are highly interdependent systems that reciprocally influence each other. For example, performing a gesture when learning a word or a phrase enhances its retrieval compared to pure verbal learning. Although the enhancing effects of co-speech gestures on memory are known to be robust, the underlying neural mechanisms are still unclear. Here, we summarize the results of behavioral and neuroscientific studies. They indicate that the neural representation of words consists of complex multimodal networks connecting perception and motor acts that occur during learning. In this context, gestures can reinforce the sensorimotor representation of a word or a phrase, making it resistant to decay. Also, gestures can favor embodiment of abstract words by creating it from scratch. Thus, we propose the use of gesture as a facilitating educational tool that integrates body and mind.

  9. Peer Learning and Support of Technology in an Undergraduate Biology Course to Enhance Deep Learning

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher…

  10. Enhancing Diversity in Undergraduate Science: Self-Efficacy Drives Performance Gains with Active Learning

    OpenAIRE

    Ballen, Cissy J.; Wieman, Carl; Salehi, Shima; Searle, Jeremy B.; Zamudio, Kelly R.

    2017-01-01

    Efforts to retain underrepresented minority (URM) students in science, technology, engineering, and mathematics (STEM) have shown only limited success in higher education, due in part to a persistent achievement gap between students from historically underrepresented and well-represented backgrounds. To test the hypothesis that active learning disproportionately benefits URM students, we quantified the effects of traditional versus active learning on student academic performance, science self...

  11. Peer Learning and Support of Technology in an Undergraduate Biology Course to Enhance Deep Learning

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher education: technology and the students themselves. Most of the lectures were replaced with continuous individual learning and 1-mo group learning of one topic, both supported by an interactive online tutorial. Assessment included open-ended complex questions requiring higher-order thinking skills that were added to the traditional multiple-choice (MC) exam. Analysis of students’ outcomes indicates no significant difference among the three intervention versions in the MC questions of the exam, while students who took part in active-learning groups at the advanced version of the model had significantly higher scores in the more demanding open-ended questions compared with their counterparts. We believe that social-constructivist learning of one topic during 1 mo has significantly contributed to student deep learning across topics. It developed a biological discourse, which is more typical to advanced stages of learning biology, and changed the image of instructors from “knowledge transmitters” to “role model scientists.” PMID:23222836

  12. Peer learning and support of technology in an undergraduate biology course to enhance deep learning.

    Science.gov (United States)

    Tsaushu, Masha; Tal, Tali; Sagy, Ornit; Kali, Yael; Gepstein, Shimon; Zilberstein, Dan

    2012-01-01

    This study offers an innovative and sustainable instructional model for an introductory undergraduate course. The model was gradually implemented during 3 yr in a research university in a large-lecture biology course that enrolled biology majors and nonmajors. It gives priority to sources not used enough to enhance active learning in higher education: technology and the students themselves. Most of the lectures were replaced with continuous individual learning and 1-mo group learning of one topic, both supported by an interactive online tutorial. Assessment included open-ended complex questions requiring higher-order thinking skills that were added to the traditional multiple-choice (MC) exam. Analysis of students' outcomes indicates no significant difference among the three intervention versions in the MC questions of the exam, while students who took part in active-learning groups at the advanced version of the model had significantly higher scores in the more demanding open-ended questions compared with their counterparts. We believe that social-constructivist learning of one topic during 1 mo has significantly contributed to student deep learning across topics. It developed a biological discourse, which is more typical to advanced stages of learning biology, and changed the image of instructors from "knowledge transmitters" to "role model scientists."

  13. Decentered Online Bible Instruction: How Active Learning Enhances the Study of Scripture

    Science.gov (United States)

    Troftgruben, Troy M.

    2018-01-01

    The field of biblical studies lends itself well to decentered online learning--a kind that uses active learning to engage primary texts and their interpretations. Not only does such an approach work well in online and hybrid formats, it more readily welcomes readings that are more contextual, constructive, and collaborative. Three aspects best…

  14. Interpretable Active Learning

    OpenAIRE

    Phillips, Richard L.; Chang, Kyu Hyun; Friedler, Sorelle A.

    2017-01-01

    Active learning has long been a topic of study in machine learning. However, as increasingly complex and opaque models have become standard practice, the process of active learning, too, has become more opaque. There has been little investigation into interpreting what specific trends and patterns an active learning strategy may be exploring. This work expands on the Local Interpretable Model-agnostic Explanations framework (LIME) to provide explanations for active learning recommendations. W...

  15. Enhancement of synchronized activity between hippocampal CA1 neurons during initial storage of associative fear memory.

    Science.gov (United States)

    Liu, Yu-Zhang; Wang, Yao; Shen, Weida; Wang, Zhiru

    2017-08-01

    Learning and memory storage requires neuronal plasticity induced in the hippocampus and other related brain areas, and this process is thought to rely on synchronized activity in neural networks. We used paired whole-cell recording in vivo to examine the synchronized activity that was induced in hippocampal CA1 neurons by associative fear learning. We found that both membrane potential synchronization and spike synchronization of CA1 neurons could be transiently enhanced after task learning, as observed on day 1 but not day 5. On day 1 after learning, CA1 neurons showed a decrease in firing threshold and rise times of suprathreshold membrane potential changes as well as an increase in spontaneous firing rates, possibly contributing to the enhancement of spike synchronization. The transient enhancement of CA1 neuronal synchronization may play important roles in the induction of neuronal plasticity for initial storage and consolidation of associative memory. The hippocampus is critical for memory acquisition and consolidation. This function requires activity- and experience-induced neuronal plasticity. It is known that neuronal plasticity is largely dependent on synchronized activity. As has been well characterized, repetitive correlated activity of presynaptic and postsynaptic neurons can lead to long-term modifications at their synapses. Studies on network activity have also suggested that memory processing in the hippocampus may involve learning-induced changes of neuronal synchronization, as observed in vivo between hippocampal CA3 and CA1 networks as well as between the rhinal cortex and the hippocampus. However, further investigation of learning-induced synchronized activity in the hippocampus is needed for a full understanding of hippocampal memory processing. In this study, by performing paired whole-cell recording in vivo on CA1 pyramidal cells (PCs) in anaesthetized adult rats, we examined CA1 neuronal synchronization before and after associative fear

  16. When does fading enhance perceptual category learning?

    Science.gov (United States)

    Pashler, Harold; Mozer, Michael C

    2013-07-01

    Training that uses exaggerated versions of a stimulus discrimination (fading) has sometimes been found to enhance category learning, mostly in studies involving animals and impaired populations. However, little is known about whether and when fading facilitates learning for typical individuals. This issue was explored in 7 experiments. In Experiments 1 and 2, observers discriminated stimuli based on a single sensory continuum (time duration and line length, respectively). Adaptive fading dramatically improved performance in training (unsurprisingly) but did not enhance learning as assessed in a final test. The same was true for nonadaptive linear fading (Experiment 3). However, when variation in length (predicting category membership) was embedded among other (category-irrelevant) variation, fading dramatically enhanced not only performance in training but also learning as assessed in a final test (Experiments 4 and 5). Fading also helped learners to acquire a color saturation discrimination amid category-irrelevant variation in hue and brightness, although this learning proved transitory after feedback was withdrawn (Experiment 7). Theoretical implications are discussed, and we argue that fading should have practical utility in naturalistic category learning tasks, which involve extremely high dimensional stimuli and many irrelevant dimensions. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  17. It takes biking to learn: Physical activity improves learning a second language.

    Science.gov (United States)

    Liu, Fengqin; Sulpizio, Simone; Kornpetpanee, Suchada; Job, Remo

    2017-01-01

    Recent studies have shown that concurrent physical activity enhances learning a completely unfamiliar L2 vocabulary as compared to learning it in a static condition. In this paper we report a study whose aim is twofold: to test for possible positive effects of physical activity when L2 learning has already reached some level of proficiency, and to test whether the assumed better performance when engaged in physical activity is limited to the linguistic level probed at training (i.e. L2 vocabulary tested by means of a Word-Picture Verification task), or whether it extends also to the sentence level (which was tested by means of a Sentence Semantic Judgment Task). The results show that Chinese speakers with basic knowledge of English benefited from physical activity while learning a set of new words. Furthermore, their better performance emerged also at the sentential level, as shown by their performance in a Semantic Judgment task. Finally, an interesting temporal asymmetry between the lexical and the sentential level emerges, with the difference between the experimental and control group emerging from the 1st testing session at the lexical level but after several weeks at the sentential level.

  18. Educating Students for a Lifetime of Physical Activity: Enhancing Mindfulness, Motivation, and Meaning

    Science.gov (United States)

    Ennis, Catherine D.

    2017-01-01

    For many years, pedagogical scholars and physical education (PE) teachers have worked to enhance effective teaching and learning environments. Yet for some children, youth, and young adults, many of the benefits associated with a physically active lifestyle remain elusive. Enhancing programming and performance to meet physical activity goals may…

  19. Mobile Technologies Enhance the E-Learning Opportunity

    Science.gov (United States)

    Chuang, Keh-Wen

    2009-01-01

    The objective of this paper is to identify the mobile technologies that enhance the E-Learning opportunity, examine the educational benefits and implementation issues in mobile learning, discuss the guidelines for implementing effective mobile learning, identify the current application and operation of mobile learning, and discuss the future of…

  20. Active-learning implementation in an advanced elective course on infectious diseases.

    Science.gov (United States)

    Hidayat, Levita; Patel, Shreya; Veltri, Keith

    2012-06-18

    To describe the development, implementation, and assessment of an advanced elective course on infectious diseases using active-learning strategies. Pedagogy for active learning was incorporated by means of mini-lecture, journal club, and debate with follow-up discussion. Forty-eight students were enrolled in this 4-week elective course, in which 30% of course time was allocated for active-learning exercises. All activities were fundamentally designed as a stepwise approach in complementing each active-learning exercise. Achievement of the course learning objectives was assessed using a 5-point Likert scale survey instrument. Students' awareness of the significance of antimicrobial resistance was improved (p ≤ 0.05). Students' ability to critically evaluate the infectious-disease literature and its application in informed clinical judgments was also enhanced through these active-learning exercises (p ≤ 0.05). Students agreed that active learning should be part of the pharmacy curriculum and that active-learning exercises improved their critical-thinking, literature-evaluation, and self-learning skills. An elective course using active-learning strategies allowed students to combine information gained from the evaluation of infectious-disease literature, critical thinking, and informed clinical judgment. This blended approach ultimately resulted in an increased knowledge and awareness of infectious diseases.

  1. Business Simulation as an Active Learning Activity for Developing Soft Skills

    Science.gov (United States)

    Levant, Yves; Coulmont, Michel; Sandu, Raluca

    2016-01-01

    Business simulations are innovative instruction models for active or cooperative learning. In this paper, we look at the social constructionist roots of these education models in light of the current efforts to enhance employability skills in undergraduate and graduate studies. More specifically, we analyse the role of business simulations in…

  2. Enhancing the Learning Environment by Learning all the Students' Names

    DEFF Research Database (Denmark)

    Jørgensen, Anker Helms

    the method to learn all the students' names enhances the learning environment substantially.  ReferencesCranton, Patricia (2001) Becoming an authentic teacher in higher education. Malabar, Florida: Krieger Pub. Co.Wiberg, Merete (2011): Personal email communication June 22, 2011.Woodhead, M. M. and Baddeley......Short abstract This paper describes how the teaching environment can be enhanced significantly by a simple method: learning the names of all the students. The method is time-efficient: In a course with 33 students I used 65 minutes in total. My own view of the effect was confirmed in a small study......: The students felt more valued, secure and respected. They also made an effort to learn each other's names. Long abstract In high school teachers know the students' names very soon - anything else is unthinkable (Wiberg, 2011). Not so in universities where knowing the names of all the students is the exception...

  3. Active Learning Through Discussion in E-Learning

    OpenAIRE

    Daru Wahyuningsih

    2016-01-01

    Active learning is generally made by a lecturer in learning face to face. In the face to face learning, lecturer can implement a variety of teaching methods to make students actively involved in learning. This is different from learning that is actuating in e-learning. The main characteristic of e-learning is learning that can take place anytime and anywhere. Special strategies are needed so that lecturer can make students play an active role in the course of e-learning. Research in order to ...

  4. Active learning in physiology practical work | Allers | South African ...

    African Journals Online (AJOL)

    A statistical analysis of the results indicates that when students are actively involved in the teaching-learning process, they enhance their ability to use cognitive skills such as interpretation, judgement and problem-solving skills. The results also underline the importance of an active approach towards practical work and ...

  5. Multi-modal Virtual Scenario Enhances Neurofeedback Learning

    Directory of Open Access Journals (Sweden)

    Avihay Cohen

    2016-08-01

    Full Text Available In the past decade neurofeedback has become the focus of a growing body of research. With real-time fMRI enabling on-line monitoring of emotion related areas such as the amygdala, many have begun testing its therapeutic benefits. However most existing neurofeedback procedures still use monotonic uni-modal interfaces, thus possibly limiting user engagement and weakening learning efficiency. The current study tested a novel multi-sensory neurofeedback animated scenario aimed at enhancing user experience and improving learning. We examined whether relative to a simple uni-modal 2D interface, learning via an interface of complex multi-modal 3D scenario will result in improved neurofeedback learning. As a neural-probe, we used the recently developed fMRI-inspired EEG model of amygdala activity (amygdala-EEG finger print; amygdala-EFP, enabling low-cost and mobile limbic neurofeedback training. Amygdala-EFP was reflected in the animated scenario by the unrest level of a hospital waiting-room in which virtual characters become impatient, approach the admission-desk and complain loudly. Successful down-regulation was reflected as an ease in the room unrest-level. We tested whether relative to a standard uni-modal 2D graphic thermometer interface, this animated scenario could facilitate more effective learning and improve the training experience. Thirty participants underwent two separated neurofeedback sessions (one-week apart practicing down-regulation of the amygdala-EFP signal. In the first session, half trained via the animated scenario and half via a thermometer interface. Learning efficiency was tested by three parameters: (a effect-size of the change in amygdala-EFP following training, (b sustainability of the learned down-regulation in the absence of online feedback, and (c transferability to an unfamiliar context. Comparing amygdala-EFP signal amplitude between the last and the first neurofeedback trials revealed that the animated scenario

  6. #gottacatchemall: Exploring Pokemon Go in Search of Learning Enhancement Objects

    Science.gov (United States)

    Cacchione, Annamaria; Procter-Legg, Emma; Petersen, Sobah Abbas

    2017-01-01

    The Augmented Reality Game, Pokemon Go, took the world by storm in the summer of 2016. City landscapes were decorated with amusing, colourful objects called Pokemon, and the holiday activities were enhanced by catching these wonderful creatures. In light of this, it is inevitable for mobile language learning researchers to reflect on the impact of…

  7. A Framework for Mobile Learning for the enhancement of Learning in Higher Education

    Directory of Open Access Journals (Sweden)

    Kadar Abdillahi Barreh

    2015-07-01

    Full Text Available As mobile learning becomes increasingly pervasive, many higher education institutions have embarked on a number of mobile learning initiatives to support their traditional learning modes. This study proposes a framework for mobile learning for the enhancement of learning in higher education. This framework for mobile learning is based on the research conducted on the second year course entitled “Internet Technology,” taught to second year students in the Department of Mathematics and Computer Science at the University of Djibouti. While the entire gamut of mobile technologies and academic applications needs to be considered, special emphasis and focus is provided to Short Message Services (SMS and popular social network sites such as Facebook, which is widely used for recreation. This paper highlights how mobile learning using SMS and Facebook can be designed to enhance student learning in order to help achieve learning outcomes.

  8. Enhancing social skills through cooperative learning

    Directory of Open Access Journals (Sweden)

    M J Booysen

    2008-04-01

    Full Text Available The National Curriculum Statement of South Africa envisages qualified and competent teachers to deal with the diversity of learners and their needs in the classroom. One of the needs refers to all learners (Gr R-12 who need to acquire the necessary social skills to enable them to work effectively with others as members of a team, group, organization and community. These skills refer inter alia to: learning to work with others, listening to others, giving attention, asking clarifying questions, learning how to evaluate, and to praise others, handling conflict, reflecting on group work and allowing all group members to participate. The most obvious place to deal purposefully with the development of social skills is the classroom. This implies that alternative ways and methods of teaching must be introduced to develop the necessary social skills. This article reports on the findings obtained from a combined quantitative and qualitative study that set out to determine the levels of social competence achieved by a group of Grade 2 learners, and the possible association of a cooperative teaching and learning intervention programme for enhancing the social skills of these learners. The results revealed the latent potential of cooperative learning to enhance the social skills of Grade 2 learners. The significance of this research lies in the contribution it makes to establish the social competence of a group of Grade 2 learners and to determine the possibilities for enhancing their social skills through cooperative learning.

  9. Using Oceanography to Support Active Learning

    Science.gov (United States)

    Byfield, V.

    2012-04-01

    Teachers are always on the lookout for material to give their brightest students, in order to keep them occupied, stimulated and challenged, while the teacher gets on with helping the rest. They are also looking for material that can inspire and enthuse those who think that school is 'just boring!' Oceanography, well presented, has the capacity to do both. As a relatively young science, oceanography is not a core curriculum subject (possibly an advantage), but it draws on the traditional sciences of biology, chemistry, physic and geology, and can provide wonderful examples for teaching concepts in school sciences. It can also give good reasons for learning science, maths and technology. Exciting expeditions (research cruises) to far-flung places; opportunities to explore new worlds, a different angle on topical debates such as climate change, pollution, or conservation can bring a new life to old subjects. Access to 'real' data from satellites or Argo floats can be used to develop analytical and problem solving skills. The challenge is to make all this available in a form that can easily be used by teachers and students to enhance the learning experience. We learn by doing. Active teaching methods require students to develop their own concepts of what they are learning. This stimulates new neural connections in the brain - the physical manifestation of learning. There is a large body of evidence to show that active learning is much better remembered and understood. Active learning develops thinking skills through analysis, problem solving, and evaluation. It helps learners to use their knowledge in realistic and useful ways, and see its importance and relevance. Most importantly, properly used, active learning is fun. This paper presents experiences from a number of education outreach projects that have involved the National Oceanography Centre in Southampton, UK. All contain some element of active learning - from quizzes and puzzles to analysis of real data from

  10. Developing students' listening metacognitive strategies using online videotext self-dictation-generation learning activity

    Directory of Open Access Journals (Sweden)

    Ching Chang

    2014-03-01

    Full Text Available The study is based on the use of a flexible learning framework to help students improve information processes underlying strategy instruction in EFL listening. By exploiting the online videotext self-dictation-generation (video-SDG learning activity implemented on the YouTube caption manager platform, the learning cycle was emphasized to promote metacognitive listening development. Two theories were used to guide the online video-SDG learning activity: a student question-generation method and a metacognitive listening training model in a second language (L2. The study investigated how college students in the online video-SDG activity enhanced the use of listening strategies by developing metacognitive listening skills. With emphasis on the metacognitive instructional process, students could promote their listening comprehension of advertisement videos (AVs. Forty-eight students were recruited to participate in the study. Through data collected from the online learning platform, questionnaires, a focus-group interview, and pre- and post- achievement tests, the results revealed that the online video-SDG learning activity could effectively engage students in reflecting upon their perceptions of specific problems countered, listening strategy usages, and strategic knowledge exploited in the metacognitive instructional process. The importance of employing cost-effective online video-SGD learning activities is worthy of consideration in developing students’ metacognitive listening knowledge for enhancing EFL listening strategy instruction.

  11. Accounting for Sustainability: An Active Learning Assignment

    Science.gov (United States)

    Gusc, Joanna; van Veen-Dirks, Paula

    2017-01-01

    Purpose: Sustainability is one of the newer topics in the accounting courses taught in university teaching programs. The active learning assignment as described in this paper was developed for use in an accounting course in an undergraduate program. The aim was to enhance teaching about sustainability within such a course. The purpose of this…

  12. Machine learning enhanced optical distance sensor

    Science.gov (United States)

    Amin, M. Junaid; Riza, N. A.

    2018-01-01

    Presented for the first time is a machine learning enhanced optical distance sensor. The distance sensor is based on our previously demonstrated distance measurement technique that uses an Electronically Controlled Variable Focus Lens (ECVFL) with a laser source to illuminate a target plane with a controlled optical beam spot. This spot with varying spot sizes is viewed by an off-axis camera and the spot size data is processed to compute the distance. In particular, proposed and demonstrated in this paper is the use of a regularized polynomial regression based supervised machine learning algorithm to enhance the accuracy of the operational sensor. The algorithm uses the acquired features and corresponding labels that are the actual target distance values to train a machine learning model. The optimized training model is trained over a 1000 mm (or 1 m) experimental target distance range. Using the machine learning algorithm produces a training set and testing set distance measurement errors of learning. Applications for the proposed sensor include industrial scenario distance sensing where target material specific training models can be generated to realize low <1% measurement error distance measurements.

  13. Hilar GABAergic interneuron activity controls spatial learning and memory retrieval.

    Directory of Open Access Journals (Sweden)

    Yaisa Andrews-Zwilling

    Full Text Available Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD, the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear.We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0--a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity.Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD.

  14. Teacher feedback during active learning: current practices in primary schools.

    Science.gov (United States)

    van den Bergh, Linda; Ros, Anje; Beijaard, Douwe

    2013-06-01

    Feedback is one of the most powerful tools, which teachers can use to enhance student learning. It appears difficult for teachers to give qualitatively good feedback, especially during active learning. In this context, teachers should provide facilitative feedback that is focused on the development of meta-cognition and social learning. The purpose of the present study is to contribute to the existing knowledge about feedback and to give directions to improve teacher feedback in the context of active learning. The participants comprised 32 teachers who practiced active learning in the domain of environmental studies in the sixth, seventh, or eighth grade of 13 Dutch primary schools. A total of 1,465 teacher-student interactions were examined. Video observations were made of active learning lessons in the domain of environmental studies. A category system was developed based on the literature and empirical data. Teacher-student interactions were assessed using this system. Results. About half of the teacher-student interactions contained feedback. This feedback was usually focused on the tasks that were being performed by the students and on the ways in which these tasks were processed. Only 5% of the feedback was explicitly related to a learning goal. In their feedback, the teachers were directing (rather than facilitating) the learning processes. During active learning, feedback on meta-cognition and social learning is important. Feedback should be explicitly related to learning goals. In practice, these kinds of feedback appear to be scarce. Therefore, giving feedback during active learning seems to be an important topic for teachers' professional development. © 2012 The British Psychological Society.

  15. Timepiece: Extending and Enhancing Learning Time.

    Science.gov (United States)

    Anderson, Lorin W., Ed.; Walberg, Herbert J., Ed.

    This publication offers suggestions for making more productive use of time, a scarce and valued educational resource. The chapter authors, authorities on the use of educational time, write about how to extend and enhance learning time within and outside schools. In "Productive Use of Time," Herbert Walberg describes how learning time can be…

  16. Evaluation of a faculty development program aimed at increasing residents' active learning in lectures.

    Science.gov (United States)

    Desselle, Bonnie C; English, Robin; Hescock, George; Hauser, Andrea; Roy, Melissa; Yang, Tong; Chauvin, Sheila W

    2012-12-01

    Active engagement in the learning process is important to enhance learners' knowledge acquisition and retention and the development of their thinking skills. This study evaluated whether a 1-hour faculty development workshop increased the use of active teaching strategies and enhanced residents' active learning and thinking. Faculty teaching in a pediatrics residency participated in a 1-hour workshop (intervention) approximately 1 month before a scheduled lecture. Participants' responses to a preworkshop/postworkshop questionnaire targeted self-efficacy (confidence) for facilitating active learning and thinking and providing feedback about workshop quality. Trained observers assessed each lecture (3-month baseline phase and 3-month intervention phase) using an 8-item scale for use of active learning strategies and a 7-item scale for residents' engagement in active learning. Observers also assessed lecturer-resident interactions and the extent to which residents were asked to justify their answers. Responses to the workshop questionnaire (n  =  32/34; 94%) demonstrated effectiveness and increased confidence. Faculty in the intervention phase demonstrated increased use of interactive teaching strategies for 6 items, with 5 reaching statistical significance (P ≤ .01). Residents' active learning behaviors in lectures were higher in the intervention arm for all 7 items, with 5 reaching statistical significance. Faculty in the intervention group demonstrated increased use of higher-order questioning (P  =  .02) and solicited justifications for answers (P  =  .01). A 1-hour faculty development program increased faculty use of active learning strategies and residents' engagement in active learning during resident core curriculum lectures.

  17. A Technology Enhanced Learning Model for Quality Education

    Science.gov (United States)

    Sherly, Elizabeth; Uddin, Md. Meraj

    Technology Enhanced Learning and Teaching (TELT) Model provides learning through collaborations and interactions with a framework for content development and collaborative knowledge sharing system as a supplementary for learning to improve the quality of education system. TELT deals with a unique pedagogy model for Technology Enhanced Learning System which includes course management system, digital library, multimedia enriched contents and video lectures, open content management system and collaboration and knowledge sharing systems. Open sources like Moodle and Wiki for content development, video on demand solution with a low cost mid range system, an exhaustive digital library are provided in a portal system. The paper depicts a case study of e-learning initiatives with TELT model at IIITM-K and how effectively implemented.

  18. Learning Activities in a Sociable Smart City

    Directory of Open Access Journals (Sweden)

    Dimitrios Ringas

    2013-08-01

    Full Text Available We present our approach on how smart city technologies may enhance the learning process. We have developed the CLIO urban computing system, which invites people to share personal memories and interact the collective city memory. Various educational scenarios and activities were performed exploiting CLIO; in this paper we present the methodology we followed and the experience we gained. Learning has always been the cognitive process of acquiring skills or knowledge, while teachers are often eager to experiment with novel technological means and methods; our aim was to explore the effect that urban computing could have to the learning process. We applied our methodology in the city of Corfu inviting schools to engage their students in learning through the collective city memory while exploiting urban computing. Results from our experience demonstrate the potential of exploiting urban computing in the learning process and the benefits of learning out of the classroom.

  19. Involving postgraduate's students in undergraduate small group teaching promotes active learning in both

    Science.gov (United States)

    Kalra, Ruchi; Modi, Jyoti Nath; Vyas, Rashmi

    2015-01-01

    Background: Lecture is a common traditional method for teaching, but it may not stimulate higher order thinking and students may also be hesitant to express and interact. The postgraduate (PG) students are less involved with undergraduate (UG) teaching. Team based small group active learning method can contribute to better learning experience. Aim: To-promote active learning skills among the UG students using small group teaching methods involving PG students as facilitators to impart hands-on supervised training in teaching and managerial skills. Methodology: After Institutional approval under faculty supervision 92 UGs and 8 PGs participated in 6 small group sessions utilizing the jigsaw technique. Feedback was collected from both. Observations: Undergraduate Feedback (Percentage of Students Agreed): Learning in small groups was a good experience as it helped in better understanding of the subject (72%), students explored multiple reading resources (79%), they were actively involved in self-learning (88%), students reported initial apprehension of performance (71%), identified their learning gaps (86%), team enhanced their learning process (71%), informal learning in place of lecture was a welcome change (86%), it improved their communication skills (82%), small group learning can be useful for future self-learning (75%). Postgraduate Feedback: Majority performed facilitation for first time, perceived their performance as good (75%), it was helpful in self-learning (100%), felt confident of managing students in small groups (100%), as facilitator they improved their teaching skills, found it more useful and better identified own learning gaps (87.5%). Conclusions: Learning in small groups adopting team based approach involving both UGs and PGs promoted active learning in both and enhanced the teaching skills of the PGs. PMID:26380201

  20. Disk Operating System--DOS. Teacher Packet. Learning Activity Packets.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    The Learning Activity Packets (LAPs) contained in this manual are designed to assist the beginning user in understanding DOS (Disk Operating System). LAPs will not work with any version below DOS Version 3.0 and do not address the enhanced features of versions 4.0 or higher. These elementary activities cover only the DOS commands necessary to…

  1. Combining traditional anatomy lectures with e-learning activities: how do students perceive their learning experience?

    Science.gov (United States)

    Lochner, Lukas; Wieser, Heike; Waldboth, Simone; Mischo-Kelling, Maria

    2016-02-21

    The purpose of this study was to investigate how students perceived their learning experience when combining traditional anatomy lectures with preparatory e-learning activities that consisted of fill-in-the-blank assignments, videos, and multiple-choice quizzes. A qualitative study was conducted to explore changes in study behaviour and perception of learning. Three group interviews with students were conducted and thematically analysed. Data was categorized into four themes: 1. Approaching the course material, 2. Understanding the material, 3. Consolidating the material, and 4. Perceived learning outcome. Students appreciated the clear structure of the course, and reported that online activities encouraged them towards a first engagement with the material. They felt that they were more active during in-class sessions, described self-study before the end-of-term exam as easier, and believed that contents would remain in their memories for a longer time. By adjusting already existing resources, lectures can be combined fairly easily and cost-effectively with preparatory e-learning activities. The creation of online components promote well-structured courses, can help minimize 'student passivity' as a characteristic element of lectures, and can support students in distributing their studies throughout the term, thus suggesting enhanced learning. Further research work should be designed to confirm the afore-mentioned findings through objective measurements of student learning outcomes.

  2. Combining traditional anatomy lectures with e-learning activities: how do students perceive their learning experience?

    Science.gov (United States)

    Wieser, Heike; Waldboth, Simone; Mischo-Kelling, Maria

    2016-01-01

    Objectives The purpose of this study was to investigate how students perceived their learning experience when combining traditional anatomy lectures with preparatory e-learning activities that consisted of fill-in-the-blank assignments, videos, and multiple-choice quizzes. Methods A qualitative study was conducted to explore changes in study behaviour and perception of learning. Three group interviews with students were conducted and thematically analysed. Results Data was categorized into four themes: 1. Approaching the course material, 2. Understanding the material, 3. Consolidating the material, and 4. Perceived learning outcome.  Students appreciated the clear structure of the course, and reported that online activities encouraged them towards a first engagement with the material. They felt that they were more active during in-class sessions, described self-study before the end-of-term exam as easier, and believed that contents would remain in their memories for a longer time. Conclusions By adjusting already existing resources, lectures can be combined fairly easily and cost-effectively with preparatory e-learning activities. The creation of online components promote well-structured courses, can help minimize ‘student passivity’ as a characteristic element of lectures, and can support students in distributing their studies throughout the term, thus suggesting enhanced learning. Further research work should be designed to confirm the afore-mentioned findings through objective measurements of student learning outcomes. PMID:26897012

  3. Business oriented educational experiments enhance active learning by engineering students

    DEFF Research Database (Denmark)

    Christiansen, Nynne Mia; Schjær-Jacobsen, Hans; Simon, Jens

    2012-01-01

    It is generally agreed that one of the keys to recreating industrial growth after the financial crisis is to mobilize universities and engineering schools to be more actively involved in innovation and entrepreneurship activities in cooperation with industrial companies. This active learning...... exploration symposium on bridging the gap between engineering education and business is proposed on the basis of the Copenhagen University College of Engineering (IHK) being involved in a DKK 50m ongoing project “Business Oriented Educational Experiments” financed by the Capital Region of Denmark...... and the European Social Fund. The project is carried out with other major educational institutions in the Copenhagen area and organized in five themes: 1) world class competences, 2) new interactions between education and business, 3) the experimenting organization, 4) education on demand, and 5) new career paths...

  4. Follow-groups, Enhancing Learning Potential at Project Exams

    DEFF Research Database (Denmark)

    Tollestrup, Christian H. T.

    2016-01-01

    In the Problem Based, Project Oriented Learning Program of Industrial Design Engineering at AAU students work and are examined/evaluated in groups. Following a period of a 6 years of ban on group-based exams by the government, the return of the group-based exam at Universities in 2014 has...... and the supervisor. Having the group based exam re-introduced sparked the interest for even further utilizing the exam situation for enhancing the learning outcome for each project and at the same time promote a more open atmosphere. Can the students learn even more and/or put their own project learning...... into perspective by seeing other project exams? So in order to investigate whether there was a possibility to further enhance the learning potential and understanding of the learning outcome the study board for the Architecture & Design program opened for a trial period for 2 semesters for voluntarily organizing...

  5. Enhancing the strategic management of practice learning through the introduction of the role of Learning Environment Manager.

    Science.gov (United States)

    Congdon, Graham; Baker, Tracey; Cheesman, Amanda

    2013-03-01

    This paper describes a process evaluation project designed to enhance the strategic management of practice learning within a large Hospital in the North of England. The aim of the project was to introduce the role of the Learning Environment Manager with dedicated responsibility for practice learning of undergraduate student nurses within the Hospital's 49 practice-settings. Whilst aspects of this role were already evident in several of these settings, the project sought to locate and standardise responsibilities related to the organisation and management of learning and teaching in practice explicitly within the existing staffing structure of each practice-setting. Focus group interviews were used to explore significant aspects of the project with key stakeholder groups comprising Learning Environment Managers, the Hospital Clinical Educator, Hospital Department Managers, Ward Managers, Mentors, University Link Lecturers and undergraduate Student Nurses. Interview data were analysed using thematic content analysis. The findings of the project suggest that the Learning Environment Manager role affords providers of practice learning with a robust approach to establish organisation-wide benchmarks that standardise the strategic management of practice learning in collaboration with partner Universities. The role incorporated many operational activities previously undertaken by the Hospital Clinical Educator, thus enabling the Hospital Clinical Educator to make a more strategic contribution to the on-going quality monitoring and enhancement of practice learning across the Hospital. The Learning Environment Manager role was found to provide mentors with high levels of support which in turn helped to promote consistent, positive and holistic practice learning experiences for undergraduate student nurses across the Hospital. Importantly, the role offers a potent catalyst for nurses in practice to regain responsibility for practice learning and re-establish the value of

  6. Theoretical Foundations of Active Learning

    Science.gov (United States)

    2009-05-01

    I study the informational complexity of active learning in a statistical learning theory framework. Specifically, I derive bounds on the rates of...convergence achievable by active learning , under various noise models and under general conditions on the hypothesis class. I also study the theoretical...advantages of active learning over passive learning, and develop procedures for transforming passive learning algorithms into active learning algorithms

  7. Hilar GABAergic Interneuron Activity Controls Spatial Learning and Memory Retrieval

    Science.gov (United States)

    Andrews-Zwilling, Yaisa; Gillespie, Anna K.; Kravitz, Alexxai V.; Nelson, Alexandra B.; Devidze, Nino; Lo, Iris; Yoon, Seo Yeon; Bien-Ly, Nga; Ring, Karen; Zwilling, Daniel; Potter, Gregory B.; Rubenstein, John L. R.; Kreitzer, Anatol C.; Huang, Yadong

    2012-01-01

    Background Although extensive research has demonstrated the importance of excitatory granule neurons in the dentate gyrus of the hippocampus in normal learning and memory and in the pathogenesis of amnesia in Alzheimer's disease (AD), the role of hilar GABAergic inhibitory interneurons, which control the granule neuron activity, remains unclear. Methodology and Principal Findings We explored the function of hilar GABAergic interneurons in spatial learning and memory by inhibiting their activity through Cre-dependent viral expression of enhanced halorhodopsin (eNpHR3.0)—a light-driven chloride pump. Hilar GABAergic interneuron-specific expression of eNpHR3.0 was achieved by bilaterally injecting adeno-associated virus containing a double-floxed inverted open-reading frame encoding eNpHR3.0 into the hilus of the dentate gyrus of mice expressing Cre recombinase under the control of an enhancer specific for GABAergic interneurons. In vitro and in vivo illumination with a yellow laser elicited inhibition of hilar GABAergic interneurons and consequent activation of dentate granule neurons, without affecting pyramidal neurons in the CA3 and CA1 regions of the hippocampus. We found that optogenetic inhibition of hilar GABAergic interneuron activity impaired spatial learning and memory retrieval, without affecting memory retention, as determined in the Morris water maze test. Importantly, optogenetic inhibition of hilar GABAergic interneuron activity did not alter short-term working memory, motor coordination, or exploratory activity. Conclusions and Significance Our findings establish a critical role for hilar GABAergic interneuron activity in controlling spatial learning and memory retrieval and provide evidence for the potential contribution of GABAergic interneuron impairment to the pathogenesis of amnesia in AD. PMID:22792368

  8. The use of an active learning approach in a SCALE-UP learning space improves academic performance in undergraduate General Biology.

    Science.gov (United States)

    Hacisalihoglu, Gokhan; Stephens, Desmond; Johnson, Lewis; Edington, Maurice

    2018-01-01

    Active learning is a pedagogical approach that involves students engaging in collaborative learning, which enables them to take more responsibility for their learning and improve their critical thinking skills. While prior research examined student performance at majority universities, this study focuses on specifically Historically Black Colleges and Universities (HBCUs) for the first time. Here we present work that focuses on the impact of active learning interventions at Florida A&M University, where we measured the impact of active learning strategies coupled with a SCALE-UP (Student Centered Active Learning Environment with Upside-down Pedagogies) learning environment on student success in General Biology. In biology sections where active learning techniques were employed, students watched online videos and completed specific activities before class covering information previously presented in a traditional lecture format. In-class activities were then carefully planned to reinforce critical concepts and enhance critical thinking skills through active learning techniques such as the one-minute paper, think-pair-share, and the utilization of clickers. Students in the active learning and control groups covered the same topics, took the same summative examinations and completed identical homework sets. In addition, the same instructor taught all of the sections included in this study. Testing demonstrated that these interventions increased learning gains by as much as 16%, and students reported an increase in their positive perceptions of active learning and biology. Overall, our results suggest that active learning approaches coupled with the SCALE-UP environment may provide an added opportunity for student success when compared with the standard modes of instruction in General Biology.

  9. Dissociation between active and observational learning from positive and negative feedback in Parkinsonism.

    Science.gov (United States)

    Kobza, Stefan; Ferrea, Stefano; Schnitzler, Alfons; Pollok, Bettina; Südmeyer, Martin; Bellebaum, Christian

    2012-01-01

    Feedback to both actively performed and observed behaviour allows adaptation of future actions. Positive feedback leads to increased activity of dopamine neurons in the substantia nigra, whereas dopamine neuron activity is decreased following negative feedback. Dopamine level reduction in unmedicated Parkinson's Disease patients has been shown to lead to a negative learning bias, i.e. enhanced learning from negative feedback. Recent findings suggest that the neural mechanisms of active and observational learning from feedback might differ, with the striatum playing a less prominent role in observational learning. Therefore, it was hypothesized that unmedicated Parkinson's Disease patients would show a negative learning bias only in active but not in observational learning. In a between-group design, 19 Parkinson's Disease patients and 40 healthy controls engaged in either an active or an observational probabilistic feedback-learning task. For both tasks, transfer phases aimed to assess the bias to learn better from positive or negative feedback. As expected, actively learning patients showed a negative learning bias, whereas controls learned better from positive feedback. In contrast, no difference between patients and controls emerged for observational learning, with both groups showing better learning from positive feedback. These findings add to neural models of reinforcement-learning by suggesting that dopamine-modulated input to the striatum plays a minor role in observational learning from feedback. Future research will have to elucidate the specific neural underpinnings of observational learning.

  10. Seamless Support: Technology Enhanced Learning in Open Distance Learning at NWU

    Science.gov (United States)

    Esterhuizen, Hennie

    2015-01-01

    Frantic attempts of investing in technology to demonstrate willingness to educate for the knowledge society may result in failure to address the real requirements. This paper presents the main features of a framework for integrating Technology Enhanced Learning in Open Distance Learning at North-West University, South Africa. Support towards…

  11. Recommender systems for technology enhanced learning research trends and applications

    CERN Document Server

    Manouselis, Nikos; Verbert, Katrien

    2014-01-01

    Presents cutting edge research from leading experts in the growing field of Recommender Systems for Technology Enhanced Learning (RecSys TEL) International contributions are included to demonstrate the merging of various efforts and communities Topics include: Linked Data and the Social Web as Facilitators for TEL Recommender Systems in Research and Practice, Personalised Learning-Plan Recommendations in Game-Based Learning and Recommendations from Heterogeneous Sources in a Technology Enhanced Learning Ecosystem

  12. ict and quality of teaching–learning related activities in primary ...

    African Journals Online (AJOL)

    Irene

    (ICT) enhance teaching learning related activities in primary schools in Ogoja education zone of Cross. River State ... A sample of six hundred and twenty ... Based on the findings of the study, it was recommended that ... video conferencing).

  13. Technology-Enhanced Learning @ CELSTEC: Ausgangslage, Entwicklung und Trends

    NARCIS (Netherlands)

    Klemke, Roland

    2011-01-01

    Klemke, R. (2011). Technology-Enhanced Learning @ CELSTEC: Ausgangslage, Entwicklung und Trends. Presentation given to visitors from Currenta GmbH in the Learning Media Lab. February, 15, 2011, Heerlen, Netherlands. ICoper-project.

  14. Enhancing learning in tertiary institutions through multimedia based ...

    African Journals Online (AJOL)

    Enhancing learning in tertiary institutions through multimedia based ... convenient and cost-effective courseware reengineering methodology of our age. ... Also discussed are the reasons for converting classroom courses to e-learning format.

  15. Re-imagining Active Learning

    DEFF Research Database (Denmark)

    Dall'Alba, Gloria; Bengtsen, Søren Smedegaard

    2018-01-01

    is largely lacking in the literature on active learning. In this article, we explore the possibility of re-imagining, or at least extending, the meaning of active learning by drawing out dimensions that are neither readily visible nor instrumental, as much of this literature implies. Drawing from educational......Ample attention is being paid in the higher education literature to promoting active learning among students. Where studies on active learning report student outcomes, they indicate improved or equivalent outcomes when compared with traditional lectures, which are considered more passive...... philosophy and, in particular, existential philosophies, we argue that active learning may also be partly invisible, unfocused, unsettling, and not at all instrumentalsometimes even leaving the learner more confused and (temporarily) incompetent. However, such forms of undisclosed or ‘dark’ learning, we...

  16. Application of active learning modalities to achieve medical genetics competencies and their learning outcome assessments

    Directory of Open Access Journals (Sweden)

    Hagiwara N

    2017-12-01

    Full Text Available Nobuko Hagiwara Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USA Abstract: The steadily falling costs of genome sequencing, coupled with the growing number of genetic tests with proven clinical validity, have made the use of genetic testing more common in clinical practice. This development has necessitated nongeneticist physicians, especially primary care physicians, to become more responsible for assessing genetic risks for their patients. Providing undergraduate medical students a solid foundation in genomic medicine, therefore, has become all the more important to ensure the readiness of future physicians in applying genomic medicine to their patient care. In order to further enhance the effectiveness of instructing practical skills in medical genetics, the emphasis of active learning modules in genetics curriculum at medical schools has increased in recent years. This is because of the general acceptance of a better efficacy of active learner-centered pedagogy over passive lecturer-centered pedagogy. However, an objective standard to evaluate students’ skill levels in genomic medicine achieved by active learning is currently missing. Recently, entrustable professional activities (EPAs in genomic medicine have been proposed as a framework for developing physician competencies in genomic medicine. EPAs in genomic medicine provide a convenient guideline for not only developing genomic medicine curriculum but also assessing students’ competency levels in practicing genomic medicine. In this review, the efficacy of different types of active learning modules reported for medical genetics curricula is discussed using EPAs in genomic medicine as a common evaluation standard for modules’ learning outcomes. The utility of the EPAs in genomic medicine for designing active learning modules in undergraduate medical genetics curricula is also discussed. Keywords

  17. Blogs: Enhancing the Learning Experience for Technology Students

    OpenAIRE

    Birney, Rosanne

    2006-01-01

    Weblogs can be used to enhance the learning experience for technology students, by providing them with several features that are often absent in Learning Management Systems (LMSs). This research aims to demonstrate that weblogs can improve the learning experience by allowing students to reflect on their learning, and by allowing them to easily collaborate with their tutors and with one another. The incorporation of weblogs into the existing learning environment can provide several enhancemen...

  18. Validating a Technology Enhanced Student-Centered Learning Model

    Science.gov (United States)

    Kang, Myunghee; Hahn, Jungsun; Chung, Warren

    2015-01-01

    The Technology Enhanced Student Centered Learning (TESCL) Model in this study presents the core factors that ensure the quality of learning in a technology-supported environment. Although the model was conceptually constructed using a student-centered learning framework and drawing upon previous studies, it should be validated through real-world…

  19. Peer learning a pedagogical approach to enhance online learning: A qualitative exploration.

    Science.gov (United States)

    Raymond, Anita; Jacob, Elisabeth; Jacob, Darren; Lyons, Judith

    2016-09-01

    Flexible online programs are becoming increasingly popular method of education for students, allowing them to complete programs in their own time and cater for lifestyle differences. A mixture of delivery modes is one way which allows for enhanced learning. Peer learning is another method of learning which is shown to foster collaboration and prepare healthcare students for their future careers. This paper reports on a project to combine peer and online learning to teach pharmacology to nursing students. To explore undergraduate nursing student opinions of working in peer groups for online learning sessions in a pharmacology course. A qualitative study utilising a self-reported questionnaire. A rural campus of an Australian university. Second year nursing students enrolled in a Bachelor of Nursing Program. A hard copy questionnaire was distributed to all students who attended the final semester lecture for the course. Content analysis of open-ended survey questions was used to identify themes in the written data. Of the 61 students enrolled in the nursing subject, 35 students chose to complete the survey (57%). Students reported a mixed view of the benefits and disadvantages of peer online learning. Sixty 6% (66%) of students liked peer online learning, whilst 29% disliked it and 6% were undecided. Convenience and ease of completion were reported as the most common reason to like peer online learning, whilst Information Technology issues, communication and non-preferred learning method were reasons for not liking peer online learning. Peer online learning groups' acted as one further method to facilitate student learning experiences. Blending peer online learning with traditional face-to-face learning increases the variety of learning methods available to students to enhance their overall learning experience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. PENERAPAN METODE STUDENT ACTIVE LEARNING (SAL MELALUI MULTI MEDIA POWER POINT UNTUK MENINGKATKAN KEAKTIFAN, KETERAMPILAN BERDISKUSI, DAN HASIL BELAJAR MATEMATIKA

    Directory of Open Access Journals (Sweden)

    Rustinah Rustinah

    2017-08-01

    Full Text Available The purpose of this study is find math learning scenarios format with active student learning method of learning mathematics by using multimedia power point to determine how much influence can enhance the activity, discuss the skills and student learning outcomes. Subjects examined or samples studied were students who study at grade students geometry IX.2 SMP Negeri 3 Batanghari, East Lampung. This study occurred during the three months using three cycles. The variables measured in the study include the involvement of the student in the learning process, skills in using media power point and student learning outcomes. Conclusions of this research is that it can increase the creativity of teachers using a variety of learning resources and selection methods that can encourage the creation of a learning process student active learning with contextual approach through multimedia. Can enhance the activity, and fun atusiasme students during the learning process, improve students' skills in solving problems and improve learning outcomes, especially the material geometry.

  1. Supporting the Strengths and Activity of Children with Autism in a Technology-Enhanced Learning Environment

    Science.gov (United States)

    Vellonen, Virpi; Kärnä, Eija; Virnes, Marjo

    2013-01-01

    This paper introduces four principles for the establishment of a technology-enhanced learning environment with and for children with autism spectrum disorders and presents results on how the principles were actualized in relation to children's actions in the environment. The study was conducted as action research premised on the children's active…

  2. Assuring Best Practice in Technology-Enhanced Learning Environments

    Science.gov (United States)

    Keppell, Mike; Suddaby, Gordon; Hard, Natasha

    2015-01-01

    This paper documents the development and findings of the Good Practice Report on Technology-Enhanced Learning and Teaching funded by the Australian Learning and Teaching Council (ALTC). Developing the Good Practice Report required a meta-analysis of 33 ALTC learning and teaching projects relating to technology funded between 2006 and 2010. This…

  3. Retrieval Attempts Enhance Learning, but Retrieval Success (versus Failure) Does Not Matter

    Science.gov (United States)

    Kornell, Nate; Klein, Patricia Jacobs; Rawson, Katherine A.

    2015-01-01

    Retrieving information from memory enhances learning. We propose a 2-stage framework to explain the benefits of retrieval. Stage 1 takes place as one attempts to retrieve an answer, which activates knowledge related to the retrieval cue. Stage 2 begins when the answer becomes available, at which point appropriate connections are strengthened and…

  4. Development of active learning modules in pharmacology for small group teaching.

    Science.gov (United States)

    Tripathi, Raakhi K; Sarkate, Pankaj V; Jalgaonkar, Sharmila V; Rege, Nirmala N

    2015-01-01

    Current teaching in pharmacology in undergraduate medical curriculum in India is primarily drug centered and stresses imparting factual knowledge rather than on pharmacotherapeutic skills. These skills would be better developed through active learning by the students. Hence modules that will encourage active learning were developed and compared with traditional methods within the Seth GS Medical College, Mumbai. After Institutional Review Board approval, 90 second year undergraduate medical students who consented were randomized into six sub-groups, each with 15 students. Pre-test was administered. The three sub-groups were taught a topic using active learning modules (active learning groups), which included problems on case scenarios, critical appraisal of prescriptions and drug identification. The remaining three sub-groups were taught the same topic in a conventional tutorial mode (tutorial learning groups). There was crossover for the second topic. Performance was assessed using post-test. Questionnaires with Likert-scaled items were used to assess feedback on teaching technique, student interaction and group dynamics. The active and tutorial learning groups differed significantly in their post-test scores (11.3 ± 1.9 and 15.9 ± 2.7, respectively, P active learning session as interactive (vs. 37/90 students in tutorial group) and enhanced their understanding vs. 56/90 in tutorial group), aroused intellectual curiosity (47/90 students of active learning group vs. 30/90 in tutorial group) and provoked self-learning (41/90 active learning group vs. 14/90 in tutorial group). Sixty-four students in the active learning group felt that questioning each other helped in understanding the topic, which was the experience of 25/90 students in tutorial group. Nevertheless, students (55/90) preferred tutorial mode of learning to help them score better in their examinations. In this study, students preferred an active learning environment, though to pass examinations, they

  5. Dramatization at Extracurricular Activities as a Means to Enhance Foreign Language Teaching

    Directory of Open Access Journals (Sweden)

    Marina Valeryevna Kuimova

    2015-02-01

    Full Text Available The main purpose of foreign language teaching is to learn to communicate and overcome the language barrier. The article studies dramatization and its appropriateness in foreign language teaching, provides criteria for choosing a literary work for dramatization. The use of dramatization at extracurricular activities develops communication abilities, creativity; enhances motivation to learn a foreign language and strengthens students’ confidence in a foreign language.

  6. Genetic or pharmacological reduction of PERK enhances cortical-dependent taste learning.

    Science.gov (United States)

    Ounallah-Saad, Hadile; Sharma, Vijendra; Edry, Efrat; Rosenblum, Kobi

    2014-10-29

    Protein translation initiation is controlled by levels of eIF2α phosphorylation (p-eIF2α) on Ser51. In addition, increased p-eIF2α levels impair long-term synaptic plasticity and memory consolidation, whereas decreased levels enhance them. Levels of p-eIF2α are determined by four kinases, of which protein kinase RNA-activated (PKR), PKR-like endoplastic reticulum kinase (PERK), and general control nonderepressible 2 are extensively expressed in the mammalian mature brain. Following identification of PERK as the major kinase to determine basal levels of p-eIF2α in primary neuronal cultures, we tested its function as a physiological constraint of memory consolidation in the cortex, the brain structure suggested to store, at least in part, long-term memories in the mammalian brain. To that aim, insular cortex (IC)-dependent positive and negative forms of taste learning were used. Genetic reduction of PERK expression was accomplished by local microinfusion of a lentivirus harboring PERK Short hairpin RNA, and pharmacological inhibition was achieved by local microinfusion of a PERK-specific inhibitor (GSK2606414) to the rat IC. Both genetic reduction of PERK expression and pharmacological inhibition of its activity reduced p-eIF2α levels and enhanced novel taste learning and conditioned taste aversion, but not memory retrieval. Moreover, enhanced extinction was observed together with enhanced associative memory, suggesting increased cortical-dependent behavioral plasticity. The results suggest that, by phosphorylating eIF2α, PERK functions in the cortex as a physiological constraint of memory consolidation, and its downregulation serves as cognitive enhancement. Copyright © 2014 the authors 0270-6474/14/3314624-09$15.00/0.

  7. Methodologies and intelligent systems for technology enhanced learning

    CERN Document Server

    Gennari, Rosella; Vitorini, Pierpaolo; Vicari, Rosa; Prieta, Fernando

    2014-01-01

    This volume presents recent research on Methodologies and Intelligent Systems for Technology Enhanced Learning. It contains the contributions of ebuTEL 2013 conference which took place in Trento, Italy, on September, 16th 2013 and of mis4TEL 2014 conference, which took take place in Salamanca, Spain, on September, 4th-6th 2014 This conference series are an open forum for discussing intelligent systems for Technology Enhanced Learning and empirical methodologies for its design or evaluation.

  8. Do we need teachers as designers of technology enhanced learning?

    NARCIS (Netherlands)

    Kirschner, Paul A.

    2016-01-01

    In this special issue, five teams of researchers discuss different aspects of the teacher as designer of technology enhanced learning situations. This final contribution critically discusses if and how teachers as designers of technology enhanced learning might (not) be feasible or even desirable.

  9. Designing Nordic Technology-Enhanced Learning

    Science.gov (United States)

    Cerratto-Pargman, Teresa; Jarvela, Sanna M.; Milrad, Marcelo

    2012-01-01

    The latest developments of information and communication technologies (ICT) and its large penetration in different sectors of our society pose new challenges and demands in the field of education. This special issue entitled "Designing Nordic technology-enhanced learning (TEL)", presents and discusses how researchers in the Nordic…

  10. Enhancing Simulation Learning with Team Mental Model Mapping

    Science.gov (United States)

    Goltz, Sonia M.

    2017-01-01

    Simulations have been developed for many business courses because of enhanced student engagement and learning. A challenge for instructors using simulations is how to take this learning to the next level since student reflection and learning can vary. This article describes how to use a conceptual mapping game at the beginning and end of a…

  11. Enhancing Students' Language Skills through Blended Learning

    Science.gov (United States)

    Banditvilai, Choosri

    2016-01-01

    This paper presents a case study of using blended learning to enhance students' language skills and learner autonomy in an Asian university environment. Blended learning represents an educational environment for much of the world where computers and the Internet are readily available. It combines self-study with valuable face-to-face interaction…

  12. Perceived Benefits of Technology Enhanced Learning by Learners in Uganda: Three Band Benefits

    OpenAIRE

    Kafuko M. Maria; Namisango Fatuma; Byomire Gorretti

    2016-01-01

    Mobile learning (m-learning) is steadily growing and has undoubtedly derived benefits to learners and tutors in different learning environments. This paper investigates the variation in benefits derived from enhanced classroom learning through use of m-learning platforms in the context of a developing country owing to the fact that it is still in its initial stages. The study focused on how basic technology-enhanced pedagogic innovation like cell phone-based learning is enhancing classroom le...

  13. Emotions as Learning Enhancers of Foreign Language Learning Motivation

    Directory of Open Access Journals (Sweden)

    Méndez López Mariza G.

    2013-04-01

    Full Text Available The present article reports on a study that explores the effects of the emotional experiences of Mexican language learners on their motivation to learn English. In this qualitative research we present how emotions impact the motivation of university language learners in south Mexico. Results suggest that emotions, both negative and positive, contribute to enhancing and diminishing motivation. Althoughnegative emotions may be considered detrimental to foreign language learning, the findings of this study show that negative emotions serve as learning enhancers. Results also evidence that Mexican language learners perceive negative emotions as positive for their language learning process.En este artículo se presenta una investigación en la que se exploran los efectos que causan las experiencias emocionales en la motivación de estudiantes mexicanos al aprender inglés. Con base en un estudio cualitativo se presenta cómo las emociones inciden en la motivación de estudiantes universitarios en el sur de México. Los resultados sugieren que las emociones, tanto positivas como negativas, contribuyen a potenciar y disminuir su motivación. Se encontró que a pesar de que las emociones negativas pueden afectar el aprendizaje de una lengua extranjera, estas actúan incluso como potenciadoras del aprendizaje. Los resultados también indican que los estudiantes mexicanos perciben las emociones negativas como positivas en su proceso de aprendizaje.

  14. Unimodal Learning Enhances Crossmodal Learning in Robotic Audio-Visual Tracking

    DEFF Research Database (Denmark)

    Shaikh, Danish; Bodenhagen, Leon; Manoonpong, Poramate

    2017-01-01

    Crossmodal sensory integration is a fundamental feature of the brain that aids in forming an coherent and unified representation of observed events in the world. Spatiotemporally correlated sensory stimuli brought about by rich sensorimotor experiences drive the development of crossmodal integrat...... a non-holonomic robotic agent towards a moving audio-visual target. Simulation results demonstrate that unimodal learning enhances crossmodal learning and improves both the overall accuracy and precision of multisensory orientation response....

  15. Unimodal Learning Enhances Crossmodal Learning in Robotic Audio-Visual Tracking

    DEFF Research Database (Denmark)

    Shaikh, Danish; Bodenhagen, Leon; Manoonpong, Poramate

    2018-01-01

    Crossmodal sensory integration is a fundamental feature of the brain that aids in forming an coherent and unified representation of observed events in the world. Spatiotemporally correlated sensory stimuli brought about by rich sensorimotor experiences drive the development of crossmodal integrat...... a non-holonomic robotic agent towards a moving audio-visual target. Simulation results demonstrate that unimodal learning enhances crossmodal learning and improves both the overall accuracy and precision of multisensory orientation response....

  16. Critical thinking instruction and technology enhanced learning from the student perspective: A mixed methods research study.

    Science.gov (United States)

    Swart, Ruth

    2017-03-01

    Critical thinking is acclaimed as a valuable asset for graduates from higher education programs. Technology has advanced in quantity and quality; recognized as a requirement of 21st century learners. A mixed methods research study was undertaken, examining undergraduate nursing student engagement with critical thinking instruction, platformed on two technology-enhanced learning environments: a classroom response system face-to-face in-class and an online discussion forum out-of-class. The Community of Inquiry framed the study capturing constructivist collaborative inquiry to support learning, and facilitate critical thinking capability. Inclusion of quantitative and qualitative data sources aimed to gather a comprehensive understanding of students' development of critical thinking and engagement with technology-enhanced learning. The findings from the students' perspectives were positive toward the inclusion of technology-enhanced learning, and use in supporting their development of critical thinking. Students considered the use of two forms of technology beneficial in meeting different needs and preferences, offering varied means to actively participate in learning. They valued critical thinking instruction being intentionally aligned with subject-specific content facilitating understanding, application, and relevance of course material. While the findings are limited to student participants, the instructional strategies and technology-enhanced learning identified as beneficial can inform course design for the development of critical thinking. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Total Recall: Using Film to Enhance Learning

    Science.gov (United States)

    Clayton, Douglas N.

    2012-01-01

    Several scholars (e.g. Bumpus, 2005; Champoux, 1999; Mayer, 2005) and practitioners (Gallos 2007; English & Steffy, 1995; Hackley, 2007) of workplace learning have put forward the claim that the use of film (and other forms of multimedia) enhances learning. If this is the case, particularly given the increasing pressure to do more with less,…

  18. Enhancing Nuclear Newcomer Training with 3D Visualization Learning Tools

    International Nuclear Information System (INIS)

    Gagnon, V.

    2016-01-01

    Full text: While the nuclear power industry is trying to reinforce its safety and regain public support post-Fukushima, it is also faced with a very real challenge that affects its day-to-day activities: a rapidly aging workforce. Statistics show that close to 40% of the current nuclear power industry workforce will retire within the next five years. For newcomer countries, the challenge is even greater, having to develop a completely new workforce. The workforce replacement effort introduces nuclear newcomers of a new generation with different backgrounds and affinities. Major lifestyle differences between the two generations of workers result, amongst other things, in different learning habits and needs for this new breed of learners. Interactivity, high visual content and quick access to information are now necessary to achieve a high level of retention. To enhance existing training programmes or to support the establishment of new training programmes for newcomer countries, L-3 MAPPS has devised learning tools to enhance these training programmes focused on the “Practice-by-Doing” principle. L-3 MAPPS has coupled 3D computer visualization with high-fidelity simulation to bring real-time, simulation-driven animated components and systems allowing immersive and participatory, individual or classroom learning. (author

  19. Active Learning Using Hint Information.

    Science.gov (United States)

    Li, Chun-Liang; Ferng, Chun-Sung; Lin, Hsuan-Tien

    2015-08-01

    The abundance of real-world data and limited labeling budget calls for active learning, an important learning paradigm for reducing human labeling efforts. Many recently developed active learning algorithms consider both uncertainty and representativeness when making querying decisions. However, exploiting representativeness with uncertainty concurrently usually requires tackling sophisticated and challenging learning tasks, such as clustering. In this letter, we propose a new active learning framework, called hinted sampling, which takes both uncertainty and representativeness into account in a simpler way. We design a novel active learning algorithm within the hinted sampling framework with an extended support vector machine. Experimental results validate that the novel active learning algorithm can result in a better and more stable performance than that achieved by state-of-the-art algorithms. We also show that the hinted sampling framework allows improving another active learning algorithm designed from the transductive support vector machine.

  20. Technology Enhanced Learning in Programming Courses--International Perspective

    Science.gov (United States)

    Ivanovic, Mirjana; Xinogalos, Stelios; Pitner, Tomáš; Savic, Miloš

    2017-01-01

    Technology enhanced learning (TEL) is increasingly influencing university education, mainly in overcoming disadvantages of direct instruction teaching approaches, and encouraging creativity, problem solving and critical thinking in student-centered, interactive learning environments. In this paper, experiences from object-oriented programming…

  1. Using Web 2.0 Technology to Enhance, Scaffold and Assess Problem-Based Learning

    Directory of Open Access Journals (Sweden)

    Catherine Hack

    2013-08-01

    Full Text Available Web 2.0 technologies, such as social networks, wikis, blogs, and virtual worlds provide a platform for collaborative working, facilitating sharing of resources and joint document production. They can act as a stimulus to promote active learning and provide an engaging and interactive environment for students, and as such align with the philosophy of Problem-based Learning. Furthermore, Web 2.0 technologies can provide the tutor or facilitator with an opportunity to scaffold and asses the PBL process. However, whilst it is recognised that technology has an important role in enhancing each step of a PBL exercise, academic staff can be reluctant to use it. This paper provides some illustrative examples of the technologies that have been used to enhance, scaffold and assess PBL and their evaluation by distance learning and on-campus students at the University of Ulster. The benefits and limitations of using technology for both staff and students to support PBL are discussed.

  2. Application of active learning modalities to achieve medical genetics competencies and their learning outcome assessments.

    Science.gov (United States)

    Hagiwara, Nobuko

    2017-01-01

    The steadily falling costs of genome sequencing, coupled with the growing number of genetic tests with proven clinical validity, have made the use of genetic testing more common in clinical practice. This development has necessitated nongeneticist physicians, especially primary care physicians, to become more responsible for assessing genetic risks for their patients. Providing undergraduate medical students a solid foundation in genomic medicine, therefore, has become all the more important to ensure the readiness of future physicians in applying genomic medicine to their patient care. In order to further enhance the effectiveness of instructing practical skills in medical genetics, the emphasis of active learning modules in genetics curriculum at medical schools has increased in recent years. This is because of the general acceptance of a better efficacy of active learner-centered pedagogy over passive lecturer-centered pedagogy. However, an objective standard to evaluate students' skill levels in genomic medicine achieved by active learning is currently missing. Recently, entrustable professional activities (EPAs) in genomic medicine have been proposed as a framework for developing physician competencies in genomic medicine. EPAs in genomic medicine provide a convenient guideline for not only developing genomic medicine curriculum but also assessing students' competency levels in practicing genomic medicine. In this review, the efficacy of different types of active learning modules reported for medical genetics curricula is discussed using EPAs in genomic medicine as a common evaluation standard for modules' learning outcomes. The utility of the EPAs in genomic medicine for designing active learning modules in undergraduate medical genetics curricula is also discussed.

  3. The Current Status of E-learning and Strategies to Enhance Educational Competitiveness in Korean Higher Education

    Directory of Open Access Journals (Sweden)

    Junghoon Leem

    2007-03-01

    Full Text Available The purpose of this study was to examine the current status of e-Learning in Korean higher education and find ways to encourage the further use and development of e-Learning systems that aim to enhance Korea's academic competitiveness. A total of 201 universities in Korea (27 national and public, 163 private, and 11 national universities of education were examined in this study. At the time of the study, 85 percent of the universities and colleges had investigated implementing e-Learning. There were special e-Learning teams in most national and public universities, as well as private universities and colleges. Findings from this study found that both teachers and learners alike, lacked meaningful support systems and opportunities to actively participate in e-Learning programs. Although such lack of support was found to be endemic, such lack of support and opportunity was found to be more accute in private universities, private colleges, universities of education, than mid-sized, small-sized, and provincial universities and colleges. Except for a few mid- and small-sized universities and colleges, most large universities and colleges were equipped with technical support such as infrastructure and operational platforms. These same schools, however, did not provide institutional support, nor did they employ appropriate policies needed to further the quality and enhancement of e-Learning offerings. Also, there was no meaningful link found between schools and industry, nor was there adequate financial support in place for the implementation of e-Learning systems, simply because many universities failed to allocate sufficient funding for e-Learning.In conclusion, the strategies for enhancing university competitiveness through e-Learning are as follows: 1 establishing support strategies according to the types of universities; 2 developing quality assurance systems for e-Learning; 3 enhancing support systems for professors and learners; 4 developing

  4. Digital Learning As Enhanced Learning Processing? Cognitive Evidence for New insight of Smart Learning.

    Science.gov (United States)

    Di Giacomo, Dina; Ranieri, Jessica; Lacasa, Pilar

    2017-01-01

    Large use of technology improved quality of life across aging and favoring the development of digital skills. Digital skills can be considered an enhancing to human cognitive activities. New research trend is about the impact of the technology in the elaboration information processing of the children. We wanted to analyze the influence of technology in early age evaluating the impact on cognition. We investigated the performance of a sample composed of n. 191 children in school age distributed in two groups as users: high digital users and low digital users. We measured the verbal and visuoperceptual cognitive performance of children by n. 8 standardized psychological tests and ad hoc self-report questionnaire. Results have evidenced the influence of digital exposition on cognitive development: the cognitive performance is looked enhanced and better developed: high digital users performed better in naming, semantic, visual memory and logical reasoning tasks. Our finding confirms the data present in literature and suggests the strong impact of the technology using not only in the social, educational and quality of life of the people, but also it outlines the functionality and the effect of the digital exposition in early age; increased cognitive abilities of the children tailor digital skilled generation with enhanced cognitive processing toward to smart learning.

  5. Active Learning Methods

    Science.gov (United States)

    Zayapragassarazan, Z.; Kumar, Santosh

    2012-01-01

    Present generation students are primarily active learners with varied learning experiences and lecture courses may not suit all their learning needs. Effective learning involves providing students with a sense of progress and control over their own learning. This requires creating a situation where learners have a chance to try out or test their…

  6. The effectiveness of integration of virtual patients in a collaborative learning activity.

    Science.gov (United States)

    Marei, Hesham F; Donkers, Jeroen; Van Merrienboer, Jeroen J G

    2018-05-07

    Virtual patients (VPs) have been recently integrated within different learning activities. To compare between the effect of using VPs in a collaborative learning activity and using VPs in an independent learning activity on students' knowledge acquisition, retention and transfer. For two different topics, respectively 82 and 76 dental students participated in teaching, learning and assessment sessions with VPs. Students from a female campus and from a male campus have been randomly assigned to condition (collaborative and independent), yielding four experimental groups. Each group received a lecture followed by a learning session using two VPs per topic. Students were administrated immediate and delayed written tests as well as transfer tests using two VPs to assess their knowledge in diagnosis and treatment. For the treatment items of the immediate and delayed written tests, females outperformed males in the collaborative VP group but not in the independent VP group. On the female campus, the use of VPs in a collaborative learning activity is more effective than its use as an independent learning activity in enhancing students' knowledge acquisition and retention. However, the collaborative use of VPs by itself is not enough to produce consistent results across different groups of students and attention should be given to all the factors that would affect students' interaction.

  7. Recommender Systems in Technology Enhanced Learning

    NARCIS (Netherlands)

    Manouselis, Nikos; Drachsler, Hendrik; Vuorikari, Riina; Hummel, Hans; Koper, Rob

    2010-01-01

    Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H. G. K., & Koper, R. (2011). Recommender Systems in Technology Enhanced Learning. In P. B. Kantor, F. Ricci, L. Rokach, & B. Shapira (Eds.), Recommender Systems Handbook (pp. 387-415). Berlin: Springer.

  8. Methodologies and Intelligent Systems for Technology Enhanced Learning

    CERN Document Server

    Gennari, Rosella; Vittorini, Pierpaolo; Prieta, Fernando

    2015-01-01

    This volume presents recent research on Methodologies and Intelligent Systems for Technology Enhanced Learning. It contains the contributions of MIS4TEL 2015, which took place in Salamanca, Spain,. On June 3rd to 5th 2015. Like the previous edition, this proceedings and the conference is an open forum for discussing intelligent systems for Technology Enhanced Learning and empirical methodologies for their design or evaluation MIS4TEL’15 conference has been organized by University of L’aquila, Free University of Bozen-Bolzano and the University of Salamanca.  .

  9. Statistical learning of multisensory regularities is enhanced in musicians: An MEG study.

    Science.gov (United States)

    Paraskevopoulos, Evangelos; Chalas, Nikolas; Kartsidis, Panagiotis; Wollbrink, Andreas; Bamidis, Panagiotis

    2018-07-15

    The present study used magnetoencephalography (MEG) to identify the neural correlates of audiovisual statistical learning, while disentangling the differential contributions of uni- and multi-modal statistical mismatch responses in humans. The applied paradigm was based on a combination of a statistical learning paradigm and a multisensory oddball one, combining an audiovisual, an auditory and a visual stimulation stream, along with the corresponding deviances. Plasticity effects due to musical expertise were investigated by comparing the behavioral and MEG responses of musicians to non-musicians. The behavioral results indicated that the learning was successful for both musicians and non-musicians. The unimodal MEG responses are consistent with previous studies, revealing the contribution of Heschl's gyrus for the identification of auditory statistical mismatches and the contribution of medial temporal and visual association areas for the visual modality. The cortical network underlying audiovisual statistical learning was found to be partly common and partly distinct from the corresponding unimodal networks, comprising right temporal and left inferior frontal sources. Musicians showed enhanced activation in superior temporal and superior frontal gyrus. Connectivity and information processing flow amongst the sources comprising the cortical network of audiovisual statistical learning, as estimated by transfer entropy, was reorganized in musicians, indicating enhanced top-down processing. This neuroplastic effect showed a cross-modal stability between the auditory and audiovisual modalities. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Enhanced democratic learning within the Aalborg Model

    DEFF Research Database (Denmark)

    Qvist, Palle

    2010-01-01

    The Aalborg PBL Model [Kjersdam & Enemark, 1997; Kolmos et al., 2004] is an example of a democratic learning system [Qvist, 2008]. Writing one project each semester in teams is an important element in the model. Medicine with Industrial Specialisation - a study at the Faculties of Engineering......, Science and Medicine at Aalborg University - has combined the Aalborg Model with solving cases as used by other models. A questionnaire survey related to democratic learning indicates that the democratic learning has been enhanced. This paper presents the results....

  11. The Tapioca Bomb: A Demonstration to Enhance Learning about Combustion and Chemical Safety

    Science.gov (United States)

    Keeratichamroen, Wasana; Dechsri, Precharn; Panijpan, Bhinyo; Ruenwongsa, Pintip

    2010-01-01

    In any demonstration to students, producing light and sound usually ensures interest and can enhance understanding and retention of the concepts involved. A guided inquiry (Predict, Observe, Explain: POE) approach was used to involve the students actively in their learning about the explosive combustion of fine flour particles in air in the…

  12. Conditions for the Effectiveness of Multiple Visual Representations in Enhancing STEM Learning

    Science.gov (United States)

    Rau, Martina A.

    2017-01-01

    Visual representations play a critical role in enhancing science, technology, engineering, and mathematics (STEM) learning. Educational psychology research shows that adding visual representations to text can enhance students' learning of content knowledge, compared to text-only. But should students learn with a single type of visual…

  13. Improving Student Understanding of Lipids Concepts in a Biochemistry Course Using Test-Enhanced Learning

    Science.gov (United States)

    Horn, Savannah; Hernick, Marcy

    2015-01-01

    Test-enhanced learning has successfully been used as a means to enhance learning and promote knowledge retention in students. We have examined whether this approach could be used in a biochemistry course to enhance student learning about lipids-related concepts. Students were provided access to two optional learning modules with questions related…

  14. Technology enhanced peer learning and peer assessment

    DEFF Research Database (Denmark)

    Henriksen, Christian Bugge; Bregnhøj, Henrik; Rosthøj, Susanne

    2016-01-01

    This paper explores the application of learning designs featuring formalised and structured technology enhanced peer learning. These include student produced learning elements, peer review discussions and peer assessment in the BSc/MSc level summer course Restoration of European Ecosystems...... and Freshwaters (REEF), the Master thesis preparation seminars for the Master of Public Health (MPH) and the MOOC course Global Environmental Management (GEM). The application of student produced learning elements and peer review discussions is investigated by analyzing quotes from course evaluations...... and performing focus group interviews. The application of peer assessment is investigated by analyzing the agreement of peer assessment between students assessing the same assignment. Our analyses confirm previous research on the value of peer learning and peer assessment and we argue that there could also...

  15. Engage, Enhance, and Extend Learning!

    Science.gov (United States)

    Keren-Kolb, Liz

    2013-01-01

    Educators often say that technology is more than a gimmick or add-on, and that it should engage, enhance, or extend learning in ways that traditional tools do not. Yet they seldom stop to define these terms, and they can be confusing, especially for teachers and preservice teachers. Recently, while collaborating on an English language arts and…

  16. Interactive Videos Enhance Learning about Socio-Ecological Systems

    Science.gov (United States)

    Smithwick, Erica; Baxter, Emily; Kim, Kyung; Edel-Malizia, Stephanie; Rocco, Stevie; Blackstock, Dean

    2018-01-01

    Two forms of interactive video were assessed in an online course focused on conservation. The hypothesis was that interactive video enhances student perceptions about learning and improves mental models of social-ecological systems. Results showed that students reported greater learning and attitudes toward the subject following interactive video.…

  17. Concept Mapping Using Cmap Tools to Enhance Meaningful Learning

    Science.gov (United States)

    Cañas, Alberto J.; Novak, Joseph D.

    Concept maps are graphical tools that have been used in all facets of education and training for organizing and representing knowledge. When learners build concept maps, meaningful learning is facilitated. Computer-based concept mapping software such as CmapTools have further extended the use of concept mapping and greatly enhanced the potential of the tool, facilitating the implementation of a concept map-centered learning environment. In this chapter, we briefly present concept mapping and its theoretical foundation, and illustrate how it can lead to an improved learning environment when it is combined with CmapTools and the Internet. We present the nationwide “Proyecto Conéctate al Conocimiento” in Panama as an example of how concept mapping, together with technology, can be adopted by hundreds of schools as a means to enhance meaningful learning.

  18. Does extrinsic goal framing enhance extrinsic goal-oriented individuals' learning and performance? An experimental test of the match perspective versus self-determination theory

    OpenAIRE

    Vansteenkiste, Maarten; Timmermans, Tinneke; Lens, Willy; Soenens, Bart; Van den Broeck, Anja

    2008-01-01

    Previous work within self-determination theory has shown that experimentally framing a learning activity in terms of extrinsic rather than intrinsic goals results in poorer conceptual learning and performance, presumably because extrinsic goal framing detracts attention from the learning activity and is less directly satisfying of basic psychological needs. According to the match perspective, experimental extrinsic, compared to intrinsic, goal framing should enhance learning and performance f...

  19. Didactic Experiments Suggest Enhanced Learning Outcomes

    DEFF Research Database (Denmark)

    Pals Svendsen, Lisbet

    2011-01-01

    and presenting material in the language studied, just as they were encouraged to systematically use evaluation processes to enhance learning outcomes. Eventually, increased grade point averages suggested that the experiment was successful. The article also mentions subsequent revisions to the original format...

  20. Collaborative Design of Technology-Enhanced Learning: What Can We Learn from Teacher Talk?

    Science.gov (United States)

    McKenney, Susan; Boschman, Ferry; Pieters, Jules; Voogt, Joke

    2016-01-01

    The collaborative design of technology-enhanced learning is seen as a practical and effective professional development strategy, especially because teachers learn from each other as they share and apply knowledge. But how teacher design team participants draw on and develop their knowledge has not yet been investigated. This qualitative…

  1. History and Future of Technology-Enhanced Learning

    NARCIS (Netherlands)

    Westera, Wim

    2009-01-01

    Westera, W. (2009). History and Future of Technology-Enhanced Learning. Keynote Presentation at the First International Conference on Software, Services & Semantic Technologies (3ST). October, 28, 2009, Sofia, Bulgaria.

  2. Distributed learning enhances relational memory consolidation.

    Science.gov (United States)

    Litman, Leib; Davachi, Lila

    2008-09-01

    It has long been known that distributed learning (DL) provides a mnemonic advantage over massed learning (ML). However, the underlying mechanisms that drive this robust mnemonic effect remain largely unknown. In two experiments, we show that DL across a 24 hr interval does not enhance immediate memory performance but instead slows the rate of forgetting relative to ML. Furthermore, we demonstrate that this savings in forgetting is specific to relational, but not item, memory. In the context of extant theories and knowledge of memory consolidation, these results suggest that an important mechanism underlying the mnemonic benefit of DL is enhanced memory consolidation. We speculate that synaptic strengthening mechanisms supporting long-term memory consolidation may be differentially mediated by the spacing of memory reactivation. These findings have broad implications for the scientific study of episodic memory consolidation and, more generally, for educational curriculum development and policy.

  3. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    Science.gov (United States)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  4. Distributed Scaffolding: Synergy in Technology-Enhanced Learning Environments

    Science.gov (United States)

    Ustunel, Hale H.; Tokel, Saniye Tugba

    2018-01-01

    When technology is employed challenges increase in learning environments. Kim et al. ("Sci Educ" 91(6):1010-1030, 2007) presented a pedagogical framework that provides a valid technology-enhanced learning environment. The purpose of the present design-based study was to investigate the micro context dimension of this framework and to…

  5. Journaling; an active learning technique.

    Science.gov (United States)

    Blake, Tim K

    2005-01-01

    Journaling is a method frequently discussed in nursing literature and educational literature as an active learning technique that is meant to enhance reflective practice. Reflective practice is a means of self-examination that involves looking back over what has happened in practice in an effort to improve, or encourage professional growth. Some of the benefits of reflective practice include discovering meaning, making connections between experiences and the classroom, instilling values of the profession, gaining the perspective of others, reflection on professional roles, and development of critical thinking. A review of theory and research is discussed, as well as suggestions for implementation of journaling into coursework.

  6. Implementation literacy strategies on health technology theme Learning to enhance Indonesian Junior High School Student's Physics Literacy

    Science.gov (United States)

    Feranie, Selly; Efendi, Ridwan; Karim, Saeful; Sasmita, Dedi

    2016-08-01

    The PISA results for Indonesian Students are lowest among Asian countries in the past two successive results. Therefore various Innovations in science learning process and its effectiveness enhancing student's science literacy is needed to enrich middle school science teachers. Literacy strategies have been implemented on health technologies theme learning to enhance Indonesian Junior high school Student's Physics literacy in three different health technologies e.g. Lasik surgery that associated with application of Light and Optics concepts, Ultra Sonographer (USG) associated with application of Sound wave concepts and Work out with stationary bike and walking associated with application of motion concepts. Science learning process involves at least teacher instruction, student learning and a science curriculum. We design two main part of literacy strategies in each theme based learning. First part is Integrated Reading Writing Task (IRWT) is given to the students before learning process, the second part is scientific investigation learning process design packed in Problem Based Learning. The first part is to enhance student's science knowledge and reading comprehension and the second part is to enhance student's science competencies. We design a transformation from complexity of physics language to Middle school physics language and from an expensive and complex science investigation to a local material and simply hands on activities. In this paper, we provide briefly how literacy strategies proposed by previous works is redesigned and applied in classroom science learning. Data were analysed using t- test. The increasing value of mean scores in each learning design (with a significance level of p = 0.01) shows that the implementation of this literacy strategy revealed a significant increase in students’ physics literacy achievement. Addition analysis of Avarage normalized gain show that each learning design is in medium-g courses effectiveness category

  7. ICT and quality of teaching–learning related activities in primary ...

    African Journals Online (AJOL)

    The paper is a report of a study carried out to examine how information and communication technology (ICT) enhance teaching learning related activities in primary schools in Ogoja education zone of Cross River State, Nigeria. To achieve the purpose of the study, one research question was formulated to direct the study.

  8. Visual Literacy Skills of Students in College-Level Biology: Learning Outcomes Following Digital or Hand-Drawing Activities

    Science.gov (United States)

    Bell, Justine C.

    2014-01-01

    To test the claim that digital learning tools enhance the acquisition of visual literacy in this generation of biology students, a learning intervention was carried out with 33 students enrolled in an introductory college biology course. This study compared learning outcomes following two types of learning tools: a traditional drawing activity, or…

  9. Bothered by abstractness or engaged by cohesion? Experts' explanations enhance novices' deep-learning.

    Science.gov (United States)

    Lachner, Andreas; Nückles, Matthias

    2015-03-01

    Experts' explanations have been shown to better enhance novices' transfer as compared with advanced students' explanations. Based on research on expertise and text comprehension, we investigated whether the abstractness or the cohesion of experts' and intermediates' explanations accounted for novices' learning. In Study 1, we showed that the superior cohesion of experts' explanations accounted for most of novices' transfer, whereas the degree of abstractness did not impact novices' transfer performance. In Study 2, we investigated novices' processing while learning with experts' and intermediates' explanations. We found that novices studying experts' explanations actively self-regulated their processing of the explanations, as they showed mainly deep-processing activities, whereas novices learning with intermediates' explanations were mainly engaged in shallow-processing activities by paraphrasing the explanations. Thus, we concluded that subject-matter expertise is a crucial prerequisite for instructors. Despite the abstract character of experts' explanations, their subject-matter expertise enables them to generate highly cohesive explanations that serve as a valuable scaffold for students' construction of flexible knowledge by engaging them in deep-level processing. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  10. Active Learning with Statistical Models.

    Science.gov (United States)

    1995-01-01

    Active Learning with Statistical Models ASC-9217041, NSF CDA-9309300 6. AUTHOR(S) David A. Cohn, Zoubin Ghahramani, and Michael I. Jordan 7. PERFORMING...TERMS 15. NUMBER OF PAGES Al, MIT, Artificial Intelligence, active learning , queries, locally weighted 6 regression, LOESS, mixtures of gaussians...COMPUTATIONAL LEARNING DEPARTMENT OF BRAIN AND COGNITIVE SCIENCES A.I. Memo No. 1522 January 9. 1995 C.B.C.L. Paper No. 110 Active Learning with

  11. Learning outcomes between Socioscientific Issues-Based Learning and Conventional Learning Activities

    OpenAIRE

    Piyaluk Wongsri; Prasart Nuangchalerm

    2010-01-01

    Problem statement: Socioscientific issues-based learning activity is essential for scientific reasoning skills and it could be used for analyzing problems be applied to each situation for more successful and suitable. The purposes of this research aimed to compare learning achievement, analytical thinking and moral reasoning of seventh grade students who were organized between socioscientific issues-based learning and conventional learning activities. Approach: The samples used in research we...

  12. Enhancing Formal E-Learning with Edutainment on Social Networks

    Science.gov (United States)

    Labus, A.; Despotovic-Zrakic, M.; Radenkovic, B.; Bogdanovic, Z.; Radenkovic, M.

    2015-01-01

    This paper reports on the investigation of the possibilities of enhancing the formal e-learning process by harnessing the potential of informal game-based learning on social networks. The goal of the research is to improve the outcomes of the formal learning process through the design and implementation of an educational game on a social network…

  13. Improving mathematics teaching and learning experiences for hard of hearing students with wireless technology-enhanced classrooms.

    Science.gov (United States)

    Liu, Chen-Chung; Chou, Chien-Chia; Liu, Baw-Jhiune; Yang, Jui-Wen

    2006-01-01

    Hard of hearing students usually face more difficulties at school than other students. A classroom environment with wireless technology was implemented to explore whether wireless technology could enhance mathematics learning and teaching activities for a hearing teacher and her 7 hard of hearing students in a Taiwan junior high school. Experiments showed that the highly interactive communication through the wireless network increased student participation in learning activities. Students demonstrated more responses to the teacher and fewer distraction behaviors. Fewer mistakes were made in in-class course work because Tablet PCs provided students scaffolds. Students stated that the environment with wireless technology was desirable and said that they hoped to continue using the environment to learn mathematics.

  14. AR-based Technoself Enhanced Learning Approach to Improving Student Engagement

    OpenAIRE

    Jin, L.; Huang, W.; Wen, Z.

    2016-01-01

    The emerging technologies have expanded a new dimension of self – ‘technoself’ driven by socio-technical innovations and taken an important step forward in pervasive learning. Technology Enhanced Learning (TEL) research has increasingly focused on emergent technologies such as Augmented Reality (AR) for augmented learning, mobile learning, and game-based learning in order to improve self-motivation and self-engagement of the learners in enriched multimodal learning environments. These researc...

  15. Tracking Active Learning in the Medical School Curriculum: A Learning-Centered Approach.

    Science.gov (United States)

    McCoy, Lise; Pettit, Robin K; Kellar, Charlyn; Morgan, Christine

    2018-01-01

    Medical education is moving toward active learning during large group lecture sessions. This study investigated the saturation and breadth of active learning techniques implemented in first year medical school large group sessions. Data collection involved retrospective curriculum review and semistructured interviews with 20 faculty. The authors piloted a taxonomy of active learning techniques and mapped learning techniques to attributes of learning-centered instruction. Faculty implemented 25 different active learning techniques over the course of 9 first year courses. Of 646 hours of large group instruction, 476 (74%) involved at least 1 active learning component. The frequency and variety of active learning components integrated throughout the year 1 curriculum reflect faculty familiarity with active learning methods and their support of an active learning culture. This project has sparked reflection on teaching practices and facilitated an evolution from teacher-centered to learning-centered instruction.

  16. Using Social Networks to Enhance Teaching and Learning Experiences in Higher Learning Institutions

    Science.gov (United States)

    Balakrishnan, Vimala

    2014-01-01

    The paper first explores the factors that affect the use of social networks to enhance teaching and learning experiences among students and lecturers, using structured questionnaires prepared based on the Push-Pull-Mooring framework. A total of 455 students and lecturers from higher learning institutions in Malaysia participated in this study.…

  17. eLearning or technology enhanced learning in medical education-Hope, not hype.

    Science.gov (United States)

    Goh, Poh Sun

    2016-09-01

    This Personal View elaborates on my strong conviction that the excitement and positive feelings that many of us have for eLearning or Technology enhanced learning (TeL) is well founded, and will argue why our hopes are justified, and not misplaced. In a nutshell, I believe that eLearning or TeL is a significant advance from previous generations of educational innovation, and offers benefits for students, educators and administrators; by synergistically combining the capabilities of digital content, the Internet, and mobile technology, supported by software and applications or "Apps".

  18. Prototyping Feedback for Technology Enhanced Learning

    DEFF Research Database (Denmark)

    Cojocaru, Dorian; Spikol, Daniel; Friesel, Anna

    2016-01-01

    secondary-level high school STEM learning environments to post-secondary level engineering classes and design studios. Given this experience and framework, the present paper provides a perspective on the importance of using such research experience and iterative prototyping in real learning environments......The development of new educational technologies, in the area of practical activities is the main aim of the FP7 PELARS project. As part of the constructivist learning scenarios, according to the project proposal, the development and evaluation of technology designs are envisaged, for analytic data...... generation for Science, Technology, Engineering and Mathematics (STEM) subjects, such as: technology solutions, infrastructure, activities, assessment, curricula, and classroom furniture and environment designs. Inside four EU national settings, three separate learning contexts are being dealt with – from...

  19. Active-constructive-interactive: a conceptual framework for differentiating learning activities.

    Science.gov (United States)

    Chi, Michelene T H

    2009-01-01

    Active, constructive, and interactive are terms that are commonly used in the cognitive and learning sciences. They describe activities that can be undertaken by learners. However, the literature is actually not explicit about how these terms can be defined; whether they are distinct; and whether they refer to overt manifestations, learning processes, or learning outcomes. Thus, a framework is provided here that offers a way to differentiate active, constructive, and interactive in terms of observable overt activities and underlying learning processes. The framework generates a testable hypothesis for learning: that interactive activities are most likely to be better than constructive activities, which in turn might be better than active activities, which are better than being passive. Studies from the literature are cited to provide evidence in support of this hypothesis. Moreover, postulating underlying learning processes allows us to interpret evidence in the literature more accurately. Specifying distinct overt activities for active, constructive, and interactive also offers suggestions for how learning activities can be coded and how each kind of activity might be elicited. Copyright © 2009 Cognitive Science Society, Inc.

  20. Tracking Active Learning in the Medical School Curriculum: A Learning-Centered Approach

    Science.gov (United States)

    McCoy, Lise; Pettit, Robin K; Kellar, Charlyn; Morgan, Christine

    2018-01-01

    Background: Medical education is moving toward active learning during large group lecture sessions. This study investigated the saturation and breadth of active learning techniques implemented in first year medical school large group sessions. Methods: Data collection involved retrospective curriculum review and semistructured interviews with 20 faculty. The authors piloted a taxonomy of active learning techniques and mapped learning techniques to attributes of learning-centered instruction. Results: Faculty implemented 25 different active learning techniques over the course of 9 first year courses. Of 646 hours of large group instruction, 476 (74%) involved at least 1 active learning component. Conclusions: The frequency and variety of active learning components integrated throughout the year 1 curriculum reflect faculty familiarity with active learning methods and their support of an active learning culture. This project has sparked reflection on teaching practices and facilitated an evolution from teacher-centered to learning-centered instruction. PMID:29707649

  1. PEDLA: predicting enhancers with a deep learning-based algorithmic framework.

    Science.gov (United States)

    Liu, Feng; Li, Hao; Ren, Chao; Bo, Xiaochen; Shu, Wenjie

    2016-06-22

    Transcriptional enhancers are non-coding segments of DNA that play a central role in the spatiotemporal regulation of gene expression programs. However, systematically and precisely predicting enhancers remain a major challenge. Although existing methods have achieved some success in enhancer prediction, they still suffer from many issues. We developed a deep learning-based algorithmic framework named PEDLA (https://github.com/wenjiegroup/PEDLA), which can directly learn an enhancer predictor from massively heterogeneous data and generalize in ways that are mostly consistent across various cell types/tissues. We first trained PEDLA with 1,114-dimensional heterogeneous features in H1 cells, and demonstrated that PEDLA framework integrates diverse heterogeneous features and gives state-of-the-art performance relative to five existing methods for enhancer prediction. We further extended PEDLA to iteratively learn from 22 training cell types/tissues. Our results showed that PEDLA manifested superior performance consistency in both training and independent test sets. On average, PEDLA achieved 95.0% accuracy and a 96.8% geometric mean (GM) of sensitivity and specificity across 22 training cell types/tissues, as well as 95.7% accuracy and a 96.8% GM across 20 independent test cell types/tissues. Together, our work illustrates the power of harnessing state-of-the-art deep learning techniques to consistently identify regulatory elements at a genome-wide scale from massively heterogeneous data across diverse cell types/tissues.

  2. Improvement of Inquiry in a Complex Technology-Enhanced Learning Environment

    NARCIS (Netherlands)

    Pedaste, Margus; Kori, Külli; Maeots, Mario; de Jong, Anthonius J.M.; Riopel, Martin; Smyrnaiou, Zacharoula

    2016-01-01

    Inquiry learning is an effective approach in science education. Complex technology-enhanced learning environments are needed to apply inquiry worldwide to support knowledge gain and improvement of inquiry skills. In our study, we applied an ecology mission in the SCY-Lab learning environment and

  3. Promoting Active Learning of Ethical Issues in Marketing Communications Using Debates

    Science.gov (United States)

    Roy, Donald P.

    2012-01-01

    Expectations from the business world and business school accreditation bodies to create learning outcomes that enhance students' understanding of ethical concepts call for marketing educators to integrate ethics into their pedagogy. This paper summarizes a debate activity used in an undergraduate marketing communications course. Debates engage…

  4. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    Directory of Open Access Journals (Sweden)

    Laura Marchal-Crespo

    2017-09-01

    Full Text Available Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL, i.e., precuneus, and temporal cortex. These neuroimaging findings

  5. Minimax bounds for active learning

    NARCIS (Netherlands)

    Castro, R.M.; Nowak, R.

    2008-01-01

    This paper analyzes the potential advantages and theoretical challenges of "active learning" algorithms. Active learning involves sequential sampling procedures that use information gleaned from previous samples in order to focus the sampling and accelerate the learning process relative to "passive

  6. A Model for Discussing the Quality of Technology-Enhanced Learning in Blended Learning Programmes

    Science.gov (United States)

    Casanova, Diogo; Moreira, António

    2017-01-01

    This paper presents a comprehensive model for supporting informed and critical discussions concerning the quality of Technology-Enhanced Learning in Blended Learning programmes. The model aims to support discussions around domains such as how institutions are prepared, the participants' background and expectations, the course design, and the…

  7. Active Learning Using Arbitrary Binary Valued Queries

    Science.gov (United States)

    1990-10-01

    active learning in the sense that the learner has complete choice in the information received. Specifically, we allow the learner to ask arbitrary yes...no questions. We consider both active learning under a fixed distribution and distribution-free active learning . In the case of active learning , the...a concept class is actively learnable iff it is finite, so that active learning is in fact less powerful than the usual passive learning model. We

  8. Learning through debate during problem-based learning: an active learning strategy.

    Science.gov (United States)

    Mumtaz, Sadaf; Latif, Rabia

    2017-09-01

    We explored medical student's views and perceptions of a series of debates conducted during problem-based learning (PBL) practiced as a part of the Spiral curriculum at the Imam Abdulrahman Bin Faisal University, Saudi Arabia. A series of debates were employed during PBL sessions for second-year female medical students, over the period 2014-2016. Each cohort of students was randomly split into 10 small PBL groups and exposed to weekly PBL activity. Within each group, the students were divided into a proposition half and an opposition half. Students were given 1 wk for debate preparation. The students' responses were recorded on a formulated questionnaire. Descriptive statistics were used to analyze quantitative data, and results are presented as percentages. The usefulness of debate in alleviating potential difficulties in communicating with patients was agreed to by 69% ( n = 126) of participants. That these sessions evoked critical thinking among students was reported by 78% ( n = 142). This series of debates helped 61% ( n = 111) of students to learn effectively about controversial issues. Seventy-one percent ( n = 130) considered that debate promoted argument generation and interpretation skills. Enhanced ability to analyze and research evidence was reported by 59% ( n = 108) of students. One hundred and thirteen students (62%) agreed that debate helped them to improve clinical decision-making, and 75% of students agreed that debates encouraged tolerance toward diverse viewpoints/convincing strategies. The majority of our medical students found debating enhanced analytic decision-making, communication, and critical thinking skills. Copyright © 2017 the American Physiological Society.

  9. The use of technology enhanced learning in health research capacity development: lessons from a cross country research partnership.

    Science.gov (United States)

    Byrne, E; Donaldson, L; Manda-Taylor, L; Brugha, R; Matthews, A; MacDonald, S; Mwapasa, V; Petersen, M; Walsh, A

    2016-05-10

    With the recognition of the need for research capacity strengthening for advancing health and development, this research capacity article explores the use of technology enhanced learning in the delivery of a collaborative postgraduate blended Master's degree in Malawi. Two research questions are addressed: (i) Can technology enhanced learning be used to develop health research capacity?, and: (ii) How can learning content be designed that is transferrable across different contexts? An explanatory sequential mixed methods design was adopted for the evaluation of technology enhanced learning in the Masters programme. A number of online surveys were administered, student participation in online activities monitored and an independent evaluation of the programme conducted. Remote collaboration and engagement are paramount in the design of a blended learning programme and support was needed for selecting the most appropriate technical tools. Internet access proved problematic despite developing the content around low bandwidth availability and training was required for students and teachers/trainers on the tools used. Varying degrees of engagement with the tools used was recorded, and the support of a learning technologist was needed to navigate through challenges faced. Capacity can be built in health research through blended learning programmes. In relation to transferability, the support required institutionally for technology enhanced learning needs to be conceptualised differently from support for face-to-face teaching. Additionally, differences in pedagogical approaches and styles between institutions, as well as existing social norms and values around communication, need to be embedded in the content development if the material is to be used beyond the pilot resource-intensive phase of a project.

  10. Responsive eLearning exercises to enhance student interaction with metabolic pathways.

    Science.gov (United States)

    Roesler, William J; Dreaver-Charles, Kristine

    2018-05-01

    Successful learning of biochemistry requires students to engage with the material. In the past this often involved students writing out pathways by hand, and more recently directing students to online resources such as videos, songs, and animated slide presentations. However, even these latter resources do not really provide students an opportunity to engage with the material in an active fashion. As part of an online introductory metabolism course that was developed at our university, we created a series of twelve online interactive activities using Adobe Captivate 9. These activities targeted glycolysis, gluconeogenesis, the pentose phosphate pathway, glycogen metabolism, the citric acid cycle, and fatty acid oxidation. The interactive exercises consisted of two types. One involved dragging objects such as names of enzymes or allosteric modifiers to their correct drop locations such as a particular point in a metabolic pathway, a specific enzyme, and so forth. A second type involved clicking on objects, locations within a pathway, and so forth, in response to a particular question. In both types of exercises, students received feedback on their decisions in order to enhance learning. The student feedback received on these activities was very positive, and indicated that they found them to increase their confidence in the material and that they had learned the key principles of each pathway. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):223-229, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  11. Infrared image enhancement with learned features

    Science.gov (United States)

    Fan, Zunlin; Bi, Duyan; Ding, Wenshan

    2017-11-01

    Due to the variation of imaging environment and limitations of infrared imaging sensors, infrared images usually have some drawbacks: low contrast, few details and indistinct edges. Hence, to promote the applications of infrared imaging technology, it is essential to improve the qualities of infrared images. To enhance image details and edges adaptively, we propose an infrared image enhancement method under the proposed image enhancement scheme. On the one hand, on the assumption of high-quality image taking more evident structure singularities than low-quality images, we propose an image enhancement scheme that depends on the extractions of structure features. On the other hand, different from the current image enhancement algorithms based on deep learning networks that try to train and build the end-to-end mappings on improving image quality, we analyze the significance of first layer in Stacked Sparse Denoising Auto-encoder and propose a novel feature extraction for the proposed image enhancement scheme. Experiment results prove that the novel feature extraction is free from some artifacts on the edges such as blocking artifacts, ;gradient reversal;, and pseudo contours. Compared with other enhancement methods, the proposed method achieves the best performance in infrared image enhancement.

  12. Does using active learning in thermodynamics lectures improve students’ conceptual understanding and learning experiences?

    International Nuclear Information System (INIS)

    Georgiou, H; Sharma, M D

    2015-01-01

    Encouraging ‘active learning’ in the large lecture theatre emerges as a credible recommendation for improving university courses, with reports often showing significant improvements in learning outcomes. However, the recommendations are based predominantly on studies undertaken in mechanics. We set out to examine those claims in the thermodynamics module of a large first year physics course with an established technique, called interactive lecture demonstrations (ILDs). The study took place at The University of Sydney, where four parallel streams of the thermodynamics module were divided into two streams that experienced the ILDs and two streams that did not. The programme was first implemented in 2011 to gain experience and refine logistical matters and repeated in 2012 with approximately 500 students. A validated survey, the thermal concepts survey, was used as pre-test and post-test to measure learning gains while surveys and interviews provided insights into what the ‘active learning’ meant from student experiences. We analysed lecture recordings to capture the time devoted to different activities in a lecture, including interactivity. The learning gains were in the ‘high gain’ range for the ILD streams and ‘medium gain’ for the other streams. The analysis of the lecture recordings showed that the ILD streams devoted significantly more time to interactivity while surveys and interviews showed that students in the ILD streams were thinking in deep ways. Our study shows that ILDs can make a difference in students’ conceptual understanding as well as their experiences, demonstrating the potential value-add that can be provided by investing in active learning to enhance lectures. (paper)

  13. Learning by Doing: Twenty Successful Active Learning Exercises for Information Systems Courses

    Directory of Open Access Journals (Sweden)

    Alanah Mitchell

    2017-01-01

    Full Text Available Aim/Purpose: This paper provides a review of previously published work related to active learning in information systems (IS courses. Background: There are a rising number of strategies in higher education that offer promise in regards to getting students’ attention and helping them learn, such as flipped classrooms and offering courses online. These learning strategies are part of the pedagogical technique known as active learning. Active learning is a strategy that became popular in the early 1990s and has proven itself as a valid tool for helping students to be engaged with learning. Methodology: This work follows a systematic method for identifying and coding previous research based on an aspect of interest. The authors identified and assessed research through a search of ABI/Inform scholarly journal abstracts and keywords, as well as additional research databases, using the search terms “active learning” and “information systems” from 2000 through June 2016. Contribution: This synthesis of active learning exercises provides guidance for information technology faculty looking to implement active learning strategies in their classroom by demonstrating how IS faculty might begin to introduce more active learning techniques in their teaching as well as by presenting a sample teaching agenda for a class that uses a mix of active and passive learning techniques to engage student learning. Findings: Twenty successful types of active learning exercises in IS courses are presented. Recommendations for Practitioners\t: This paper offers a “how to” resource of successful active learning strategies for IS faculty interested in implementing active learning in the classroom. Recommendation for Researchers: This work provides an example of a systematic literature review as a means to assess successful implementations of active learning in IS. Impact on Society: An updated definition of active learning is presented as well as a meaningful

  14. Effective, Active Learning Strategies for the Oceanography Classroom

    Science.gov (United States)

    Dmochowski, J. E.; Marinov, I.

    2014-12-01

    A decline in enrollment in STEM fields at the university level has prompted extensive research on alternative ways of teaching and learning science. Inquiry-based learning as well as the related "flipped" or "active" lectures, and similar teaching methods and philosophies have been proposed as more effective ways to disseminate knowledge in science classes than the traditional lecture. We will provide a synopsis of our experiences in implementing some of these practices into our Introductory Oceanography, Global Climate Change, and Ocean Atmosphere Dynamics undergraduate courses at the University of Pennsylvania, with both smaller and larger enrollments. By implementing tools such as at-home modules; computer labs; incorporation of current research; pre- and post-lecture quizzes; reflective, qualitative writing assignments; peer review; and a variety of in-class learning strategies, we aim to increase the science literacy of the student population and help students gain a more comprehensive knowledge of the topic, enhance their critical thinking skills, and correct misconceptions. While implementing these teaching techniques with college students is not without complications, we argue that a blended class that flexibly and creatively accounts for class size and science level improves the learning experience and the acquired knowledge. We will present examples of student assignments and activities as well as describe the lessons we have learned, and propose ideas for moving forward to best utilize innovative teaching tools in order to increase science literacy in oceanography and other climate-related courses.

  15. Enhanced visual statistical learning in adults with autism

    Science.gov (United States)

    Roser, Matthew E.; Aslin, Richard N.; McKenzie, Rebecca; Zahra, Daniel; Fiser, József

    2014-01-01

    Individuals with autism spectrum disorder (ASD) are often characterized as having social engagement and language deficiencies, but a sparing of visuo-spatial processing and short-term memory, with some evidence of supra-normal levels of performance in these domains. The present study expanded on this evidence by investigating the observational learning of visuospatial concepts from patterns of covariation across multiple exemplars. Child and adult participants with ASD, and age-matched control participants, viewed multi-shape arrays composed from a random combination of pairs of shapes that were each positioned in a fixed spatial arrangement. After this passive exposure phase, a post-test revealed that all participant groups could discriminate pairs of shapes with high covariation from randomly paired shapes with low covariation. Moreover, learning these shape-pairs with high covariation was superior in adults with ASD than in age-matched controls, while performance in children with ASD was no different than controls. These results extend previous observations of visuospatial enhancement in ASD into the domain of learning, and suggest that enhanced visual statistical learning may have arisen from a sustained bias to attend to local details in complex arrays of visual features. PMID:25151115

  16. Experiential Learning and Research Ethics: Enhancing Knowledge through Action

    Science.gov (United States)

    Teixeira-Poit, Stephanie M.; Cameron, Abigail E.; Schulman, Michael D.

    2011-01-01

    How can instructors use experiential learning strategies to enhance student understanding of research ethics and responsible research conduct? In this article, the authors review literature on using experiential learning to teach research ethics and responsible research conduct. They present a three-step exercise for teaching research ethics and…

  17. An active learning curriculum improves fellows' knowledge and faculty teaching skills.

    Science.gov (United States)

    Inra, Jennifer A; Pelletier, Stephen; Kumar, Navin L; Barnes, Edward L; Shields, Helen M

    2017-01-01

    Traditional didactic lectures are the mainstay of teaching for graduate medical education, although this method may not be the most effective way to transmit information. We created an active learning curriculum for Brigham and Women's Hospital (BWH) gastroenterology fellows to maximize learning. We evaluated whether this new curriculum improved perceived knowledge acquisition and knowledge base. In addition, our study assessed whether coaching faculty members in specific methods to enhance active learning improved their perceived teaching and presentation skills. We compared the Gastroenterology Training Exam (GTE) scores before and after the implementation of this curriculum to assess whether an improved knowledge base was documented. In addition, fellows and faculty members were asked to complete anonymous evaluations regarding their learning and teaching experiences. Fifteen fellows were invited to 12 lectures over a 2-year period. GTE scores improved in the areas of stomach ( p active learning curriculum. Scores in hepatology, as well as biliary and pancreatic study, showed a trend toward improvement ( p >0.05). All fellows believed the lectures were helpful, felt more prepared to take the GTE, and preferred the interactive format to traditional didactic lectures. All lecturers agreed that they acquired new teaching skills, improved teaching and presentation skills, and learned new tools that could help them teach better in the future. An active learning curriculum is preferred by GI fellows and may be helpful for improving transmission of information in any specialty in medical education. Individualized faculty coaching sessions demonstrating new ways to transmit information may be important for an individual faculty member's teaching excellence.

  18. Independent learning modules enhance student performance and understanding of anatomy.

    Science.gov (United States)

    Serrat, Maria A; Dom, Aaron M; Buchanan, James T; Williams, Alison R; Efaw, Morgan L; Richardson, Laura L

    2014-01-01

    Didactic lessons are only one part of the multimodal teaching strategies used in gross anatomy courses today. Increased emphasis is placed on providing more opportunities for students to develop lifelong learning and critical thinking skills during medical training. In a pilot program designed to promote more engaged and independent learning in anatomy, self-study modules were introduced to supplement human gross anatomy instruction at Joan C. Edwards School of Medicine at Marshall University. Modules use three-dimensional constructs to help students understand complex anatomical regions. Resources are self-contained in portable bins and are accessible at any time. Students use modules individually or in groups in a structured self-study format that augments material presented in lecture and laboratory. Pilot outcome data, measured by feedback surveys and examination performance statistics, suggest that the activity may be improving learning in gross anatomy. Positive feedback on both pre- and post-examination surveys showed that students felt the activity helped to increase their understanding of the topic. In concordance with student perception, average examination scores on module-related laboratory and lecture questions were higher in the two years of the pilot program compared with the year before its initiation. Modules can be fabricated on a modest budget using minimal resources, making implementation practical for smaller institutions. Upper level medical students assist in module design and upkeep, enabling continuous opportunities for vertical integration across the curriculum. This resource offers a feasible mechanism for enhancing independent and lifelong learning competencies, which could be a valuable complement to any gross anatomy curriculum. © 2014 American Association of Anatomists.

  19. Working Together: Librarian and Student Collaboration for Active Learning in a Library Eclassroom

    Directory of Open Access Journals (Sweden)

    Marcie Lynne Jacklin

    2010-06-01

    Full Text Available Active learning strategies based on several learning theories were incorporated during instruction sessions for second year Biological Sciences students. The instructional strategies described in this paper are based primarily on sociocultural and collaborative learning theory, with the goal being to expand the relatively small body of literature currently available that discusses the application of these learning theories to library instruction. The learning strategies employed successfully involved students in the learning process ensuring that the experiences were appropriate and effective. The researchers found that, as a result of these strategies (e.g. teaching moments based on the emerging needs of students students’ interest in learning information literacy was increased and students interacted with information given to them as well as with their peers. Collaboration between the Librarians, Co-op Student and Senior Lab Instructor helped to enhance the learning experience for students and also revealed new aspects of the active learning experiences. The primary learning objective, which was to increase the students’ information skills in the Biological Sciences, was realized. The advantages of active learning were realized by both instructors and students. Advantages for students attained during these sessions include having their diverse learning styles addressed; increased interaction with and retention of information; increased responsibility for their own learning; the opportunity to value not only the instructors, but also themselves and their peers as sources of authority and knowledge; improved problem solving abilities; increased interest and opportunities for critical thinking, as a result of the actively exchanging information in a group. The primary advantage enjoyed by the instructors was the opportunity to collaborate with colleagues to reduce the preparation required to create effective library instruction sessions

  20. A Rotational Blended Learning Model: Enhancement and Quality Assurance

    Science.gov (United States)

    Ghoul, Said

    2013-01-01

    Research on blended learning theory and practice is growing nowadays with a focus on the development, evaluation, and quality assurance of case studies. However, the enhancement of blended learning existing models, the specification of their online parts, and the quality assurance related specifically to them have not received enough attention.…

  1. How Social-Media Enhanced Learning Platforms Support Students in Taking Responsibility for Their Own Learning

    DEFF Research Database (Denmark)

    Pals Svendsen, Lisbet; Mondahl, Margrethe

    2013-01-01

    Purpose – The paper is based on the chapter “How Social Media Enhanced Learning Platforms Challenge and Motivate Students to Take Charge of Their Own Learning Processes – A Few Examples” from the publication Increasing Student Engagement and Retention using Social Technologies: Facebook, e...

  2. Flexible Pedagogies: Technology-Enhanced Learning. Flexible Pedagogies: Preparing for the Future Series

    Science.gov (United States)

    Gordon, Neil

    2014-01-01

    This publication is part of our five-strand research project "Flexible Pedagogies: preparing for the future". It focuses on a better understanding of technology-enhanced learning (TEL) and: (1) identifies key international drivers in the move towards technology-enhanced learning; (2) highlights some of the challenges and opportunities…

  3. STEM learning activity among home-educating families

    Science.gov (United States)

    Bachman, Jennifer

    2011-12-01

    Science, technology, engineering, and mathematics (STEM) learning was studied among families in a group of home-educators in the Pacific Northwest. Ethnographic methods recorded learning activity (video, audio, fieldnotes, and artifacts) which was analyzed using a unique combination of Cultural-Historical Activity Theory (CHAT) and Mediated Action (MA), enabling analysis of activity at multiple levels. Findings indicate that STEM learning activity is family-led, guided by parents' values and goals for learning, and negotiated with children to account for learner interests and differences, and available resources. Families' STEM education practice is dynamic, evolves, and influenced by larger societal STEM learning activity. Parents actively seek support and resources for STEM learning within their home-school community, working individually and collectively to share their funds of knowledge. Home-schoolers also access a wide variety of free-choice learning resources: web-based materials, museums, libraries, and community education opportunities (e.g. afterschool, weekend and summer programs, science clubs and classes, etc.). A lesson-heuristic, grounded in Mediated Action, represents and analyzes home STEM learning activity in terms of tensions between parental goals, roles, and lesson structure. One tension observed was between 'academic' goals or school-like activity and 'lifelong' goals or everyday learning activity. Theoretical and experiential learning was found in both activity, though parents with academic goals tended to focus more on theoretical learning and those with lifelong learning goals tended to be more experiential. Examples of the National Research Council's science learning strands (NRC, 2009) were observed in the STEM practices of all these families. Findings contribute to the small but growing body of empirical CHAT research in science education, specifically to the empirical base of family STEM learning practices at home. It also fills a

  4. Interactive, technology-enhanced self-regulated learning tools in healthcare education: a literature review.

    Science.gov (United States)

    Petty, Julia

    2013-01-01

    Learning technology is increasingly being implemented for programmes of blended learning within nurse education. With a growing emphasis on self-directed study particularly in post-basic education, there is a need for learners to be guided in their learning away from practice and limited classroom time. Technology-enabled (TE) tools which engage learners actively can play a part in this. The effectiveness and value of interactive TE learning strategies within healthcare is the focus of this paper. To identify literature that explores the effectiveness of interactive, TE tools on knowledge acquisition and learner satisfaction within healthcare with a view to evaluating their use for post-basic nurse education. A Literature Review was performed focusing on papers exploring the comparative value and perceived benefit of TE tools compared to traditional modes of learning within healthcare. The Databases identified as most suitable due to their relevance to healthcare were accessed through EBSCOhost. Primary, Boolean and advanced searches on key terms were undertaken. Inclusion and exclusion criteria were applied which resulted in a final selection of 11 studies for critique. Analysis of the literature found that knowledge acquisition in most cases was enhanced and measured learner satisfaction was generally positive for interactive, self-regulated TE tools. However, TE education may not suit all learners and this is critiqued in the light of the identified limitations. Interactive self regulation and/or testing can be a valuable learning strategy that can be incorporated into self-directed programmes of study for post-registration learners. Whilst acknowledging the learning styles not suited to such tools, the concurrent use of self-directed TE tools with those learning strategies necessitating a more social presence can work together to support enhancement of knowledge required to deliver rationale for nursing practice. Copyright © 2012 Elsevier Ltd. All rights

  5. dataTEL - Datasets for Technology Enhanced Learning

    NARCIS (Netherlands)

    Drachsler, Hendrik; Verbert, Katrien; Sicilia, Miguel-Angel; Wolpers, Martin; Manouselis, Nikos; Vuorikari, Riina; Lindstaedt, Stefanie; Fischer, Frank

    2011-01-01

    Drachsler, H., Verbert, K., Sicilia, M. A., Wolpers, M., Manouselis, N., Vuorikari, R., Lindstaedt, S., & Fischer, F. (2011). dataTEL - Datasets for Technology Enhanced Learning. STELLAR Alpine Rendez-Vous White Paper. Alpine Rendez-Vous 2011 White paper collection, Nr. 13., France (2011)

  6. Transforming an Introductory Programming Course: From Lectures to Active Learning via Wireless Laptops

    Science.gov (United States)

    Barak, Miri; Harward, Judson; Kocur, George; Lerman, Steven

    2007-08-01

    Within the framework of MIT's course 1.00: Introduction to Computers and Engineering Problem Solving, this paper describes an innovative project entitled: Studio 1.00 that integrates lectures with in-class demonstrations, active learning sessions, and on-task feedback, through the use of wireless laptop computers. This paper also describes a related evaluation study that investigated the effectiveness of different instructional strategies, comparing traditional teaching with two models of the studio format. Students' learning outcomes, specifically, their final grades and conceptual understanding of computational methods and programming, were examined. Findings indicated that Studio-1.00, in both its extensive- and partial-active learning modes, enhanced students' learning outcomes in Java programming. Comparing to the traditional courses, more students in the studio courses received "A" as their final grade and less failed. Moreover, students who regularly attended the active learning sessions were able to conceptualize programming principles better than their peers. We have also found two weaknesses in the teaching format of Studio-1.00 that can guide future versions of the course.

  7. Strategies to Enhance Online Learning Teams. Team Assessment and Diagnostics Instrument and Agent-based Modeling

    Science.gov (United States)

    2010-08-12

    Strategies to Enhance Online Learning Teams Team Assessment and Diagnostics Instrument and Agent-based Modeling Tristan E. Johnson, Ph.D. Learning ...REPORT DATE AUG 2010 2. REPORT TYPE 3. DATES COVERED 00-00-2010 to 00-00-2010 4. TITLE AND SUBTITLE Strategies to Enhance Online Learning ...TeamsTeam Strategies to Enhance Online Learning Teams: Team Assessment and Diagnostics Instrument and Agent-based Modeling 5a. CONTRACT NUMBER 5b. GRANT

  8. JTEL Winter School for Advanced Technologically Enhanced Learning

    NARCIS (Netherlands)

    Glahn, Christian; Gruber, Marion

    2010-01-01

    Glahn, C., & Gruber, M. (2010). JTEL Winter School for Advanced Technologically Enhanced Learning. In ~mail. Das Magazin des Tiroler Bildungsinstituts, 01/10, März (p. 3-4). Innsbruck: Grillhof, Medienzentrum.

  9. Reward prediction error signal enhanced by striatum-amygdala interaction explains the acceleration of probabilistic reward learning by emotion.

    Science.gov (United States)

    Watanabe, Noriya; Sakagami, Masamichi; Haruno, Masahiko

    2013-03-06

    Learning does not only depend on rationality, because real-life learning cannot be isolated from emotion or social factors. Therefore, it is intriguing to determine how emotion changes learning, and to identify which neural substrates underlie this interaction. Here, we show that the task-independent presentation of an emotional face before a reward-predicting cue increases the speed of cue-reward association learning in human subjects compared with trials in which a neutral face is presented. This phenomenon was attributable to an increase in the learning rate, which regulates reward prediction errors. Parallel to these behavioral findings, functional magnetic resonance imaging demonstrated that presentation of an emotional face enhanced reward prediction error (RPE) signal in the ventral striatum. In addition, we also found a functional link between this enhanced RPE signal and increased activity in the amygdala following presentation of an emotional face. Thus, this study revealed an acceleration of cue-reward association learning by emotion, and underscored a role of striatum-amygdala interactions in the modulation of the reward prediction errors by emotion.

  10. Enhancing Children's Outdoor Learning Experiences with a Mobile Application

    Science.gov (United States)

    Rikala, Jenni

    2015-01-01

    This paper examines how a mobile learning application can enhance children's outdoor learning experiences. The study draws upon empirical evidence gathered in one case study conducted in a Finnish primary school setting in the fall of 2012. The data were collected with student and teacher surveys. The case study indicated that the mobile…

  11. Active learning in practice: Implementation of the principles of active learning in an engineering course

    DEFF Research Database (Denmark)

    Rützou, C.

    2017-01-01

    The most common form of teaching is still the form where a teacher presents the subject of the lecture to a listening audience. During teaching history this has proved to be an effective way of teaching, however the probability of students being inactive is high and the learning outcome may...... through the same curriculum as usual during a term? • Will Active Learning reduce failure rate? • Will Active Learning give a higher learning outcome than traditional teaching? This paper deals with the results of this experiment, answers the mentioned questions and presents a way to implement Active...

  12. The neural coding of expected and unexpected monetary performance outcomes: dissociations between active and observational learning.

    Science.gov (United States)

    Bellebaum, C; Jokisch, D; Gizewski, E R; Forsting, M; Daum, I

    2012-02-01

    Successful adaptation to the environment requires the learning of stimulus-response-outcome associations. Such associations can be learned actively by trial and error or by observing the behaviour and accompanying outcomes in other persons. The present study investigated similarities and differences in the neural mechanisms of active and observational learning from monetary feedback using functional magnetic resonance imaging. Two groups of 15 subjects each - active and observational learners - participated in the experiment. On every trial, active learners chose between two stimuli and received monetary feedback. Each observational learner observed the choices and outcomes of one active learner. Learning performance as assessed via active test trials without feedback was comparable between groups. Different activation patterns were observed for the processing of unexpected vs. expected monetary feedback in active and observational learners, particularly for positive outcomes. Activity for unexpected vs. expected reward was stronger in the right striatum in active learning, while activity in the hippocampus was bilaterally enhanced in observational and reduced in active learning. Modulation of activity by prediction error (PE) magnitude was observed in the right putamen in both types of learning, whereas PE related activations in the right anterior caudate nucleus and in the medial orbitofrontal cortex were stronger for active learning. The striatum and orbitofrontal cortex thus appear to link reward stimuli to own behavioural reactions and are less strongly involved when the behavioural outcome refers to another person's action. Alternative explanations such as differences in reward value between active and observational learning are also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Project-Based Learning Using Discussion and Lesson-Learned Methods via Social Media Model for Enhancing Problem Solving Skills

    Science.gov (United States)

    Jewpanich, Chaiwat; Piriyasurawong, Pallop

    2015-01-01

    This research aims to 1) develop the project-based learning using discussion and lesson-learned methods via social media model (PBL-DLL SoMe Model) used for enhancing problem solving skills of undergraduate in education student, and 2) evaluate the PBL-DLL SoMe Model used for enhancing problem solving skills of undergraduate in education student.…

  14. eABLE: Embedding Social Media in Academic Curriculum as a Learning and Assessment Strategy to Enhance Students Learning and E-Professionalism

    Science.gov (United States)

    Megele, Claudia

    2015-01-01

    This paper outlines the redesign of an MSc module to enhance students' engagement and learning through embedding social media technologies into the academic curriculum as a learning and assessment strategy, and in a complementary manner that facilitated and enhanced the achievement of the module's learning outcomes. This paper describes the…

  15. Incorporating active learning in psychiatry education.

    Science.gov (United States)

    Kumar, Sonia; McLean, Loyola; Nash, Louise; Trigwell, Keith

    2017-06-01

    We aim to summarise the active learning literature in higher education and consider its relevance for postgraduate psychiatry trainees, to inform the development of a new Formal Education Course (FEC): the Master of Medicine (Psychiatry) at the University of Sydney. We undertook a literature search on 'active learning', 'flipped classroom', 'problem-based learning' and 'psychiatry education'. The effectiveness of active learning pedagogy in higher education is well supported by evidence; however, there have been few psychiatry-specific studies. A new 'flipped classroom' format was developed for the Master of Medicine (Psychiatry). Postgraduate psychiatry training is an active learning environment; the pedagogical approach to FECs requires further evaluation.

  16. Integrating transformative learning and action learning approaches to enhance ethical leadership for supervisors in the hotel business

    OpenAIRE

    Boonyuen Saranya; Charungkaittikul Suwithida; Ratana-ubol Archanya

    2016-01-01

    Ethical leadership is now increasingly focused in leadership development. The main purpose of this study is to explore two methods of adult learning, action learning and transformative learning, and to use the methods to enhance ethical leadership. Building ethical leadership requires an approach that focuses on personal values, beliefs, or frames of references, which is transformative learning. Transformative learning requires a series of meetings to conduct critical discourse and to follow ...

  17. Instructional Utility and Learning Efficacy of Common Active Learning Strategies

    Science.gov (United States)

    McConell, David A.; Chapman, LeeAnna; Czaijka, C. Douglas; Jones, Jason P.; Ryker, Katherine D.; Wiggen, Jennifer

    2017-01-01

    The adoption of active learning instructional practices in college science, technology, engineering, and mathematics (STEM) courses has been shown to result in improvements in student learning, contribute to increased retention rates, and reduce the achievement gap among different student populations. Descriptions of active learning strategies…

  18. Personal Profiles: Enhancing Social Interaction in Learning Networks

    NARCIS (Netherlands)

    Berlanga, Adriana; Bitter-Rijpkema, Marlies; Brouns, Francis; Sloep, Peter; Fetter, Sibren

    2009-01-01

    Berlanga, A. J., Bitter-Rijpkema, M., Brouns, F., Sloep, P. B., & Fetter, S. (2011). Personal Profiles: Enhancing Social Interaction in Learning Networks. International Journal of Web Based Communities, 7(1), 66-82.

  19. How To Design a Mobile Application to Enhance Teaching and Learning?

    Directory of Open Access Journals (Sweden)

    Dothang Truong

    2014-05-01

    Full Text Available The rapid growth of mobile devices, especially smart phones, has changed the way instructors deliver instructions and students learn class materials. Many universities initiate promoting economic transformation by working to eliminate barriers to educational attainment through incorporating new technologies to enhance the delivery of instructions and student learning outcomes. The purpose of this research is to explore the usage of mobile applications in higher education and develop an application to help college students understand better the class materials, and thereby, enhance their learning outcomes. The detailed description, design, and interface of the application are presented along with dissemination plan.

  20. How Recommender Systems in Technology-Enhanced Learning depend on Context

    NARCIS (Netherlands)

    Drachsler, Hendrik; Manouselis, Nikos

    2009-01-01

    Drachsler, H., & Manouselis, N. (2009). How Recommender Systems in Technology-Enhanced Learning depend on Context. Presentation given at the 1st workshop on Context-aware Recommender Systems for Learning at the Alpine Rendez-Vous 2009. November, 30 - December, 3, 2009, Garmisch-Patenkirchen,

  1. Adaptative Peer to Peer Data Sharing for Technology Enhanced Learning

    Science.gov (United States)

    Angelaccio, Michele; Buttarazzi, Berta

    Starting from the hypothesis that P2P Data Sharing in a direct teaching scenario (e.g.: a classroom lesson) may lead to relevant benefits, this paper explores the features of EduSHARE a Collaborative Learning System useful for Enhanced Learning Process.

  2. The local enhancement conundrum: in search of the adaptive value of a social learning mechanism.

    Science.gov (United States)

    Arbilly, Michal; Laland, Kevin N

    2014-02-01

    Social learning mechanisms are widely thought to vary in their degree of complexity as well as in their prevalence in the natural world. While learning the properties of a stimulus that generalize to similar stimuli at other locations (stimulus enhancement) prima facie appears more useful to an animal than learning about a specific stimulus at a specific location (local enhancement), empirical evidence suggests that the latter is much more widespread in nature. Simulating populations engaged in a producer-scrounger game, we sought to deploy mathematical models to identify the adaptive benefits of reliance on local enhancement and/or stimulus enhancement, and the alternative conditions favoring their evolution. Surprisingly, we found that while stimulus enhancement readily evolves, local enhancement is advantageous only under highly restricted conditions: when generalization of information was made unreliable or when error in social learning was high. Our results generate a conundrum over how seemingly conflicting empirical and theoretical findings can be reconciled. Perhaps the prevalence of local enhancement in nature is due to stimulus enhancement costs independent of the learning task itself (e.g. predation risk), perhaps natural habitats are often characterized by unreliable yet highly rewarding payoffs, or perhaps local enhancement occurs less frequently, and stimulus enhancement more frequently, than widely believed. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. The ICAP Active Learning Framework Predicts the Learning Gains Observed in Intensely Active Classroom Experiences

    Directory of Open Access Journals (Sweden)

    Benjamin L. Wiggins

    2017-05-01

    Full Text Available STEM classrooms (science, technology, engineering, and mathematics in postsecondary education are rapidly improved by the proper use of active learning techniques. These techniques occupy a descriptive spectrum that transcends passive teaching toward active, constructive, and, finally, interactive methods. While aspects of this framework have been examined, no large-scale or actual classroom-based data exist to inform postsecondary education STEM instructors about possible learning gains. We describe the results of a quasi-experimental study to test the apex of the ICAP framework (interactive, constructive, active, and passive in this ecological classroom environment. Students in interactive classrooms demonstrate significantly improved learning outcomes relative to students in constructive classrooms. This improvement in learning is relatively subtle; similar experimental designs without repeated measures would be unlikely to have the power to observe this significance. We discuss the importance of seemingly small learning gains that might propagate throughout a course or departmental curriculum, as well as improvements with the necessity for faculty to develop and implement similar activities.

  4. Technology-enhanced learning in transnational higher education.

    Science.gov (United States)

    Arunasalam, Nirmala

    2016-11-24

    Some university schools of nursing in Australia and the UK have developed collaborative links with Malaysia to deliver part-time Transnational Higher Education (TNHE) post-registration top-up nursing degree courses. It enables nurses trained to diploma level to upgrade to a degree qualification. The views of 18 Malaysian nurses who had studied with one Australian and two UK TNHE universities were explored using a hermeneutic phenomenological approach. Participants recruited via convenience and snowball sampling methods were interviewed in English and Bahasa Malaysia (Malaysian language). Thematic analysis were used to analyse data. Findings indicated nurses' frustration with technology-enhanced teaching and learning and a lack of support throughout the programme. Although nurses developed confidence in using computer technology, they remained disappointed with the level of academic support. The data and some useful strategies outlined provide important insights for TNHE providers, the Malaysian Nursing Board and private hospital employers to consider for enhancing nurses learning and experiences.

  5. Using IMS Learning Design to model collaborative learning activities

    NARCIS (Netherlands)

    Tattersall, Colin

    2006-01-01

    IMS Learning Design provides a counter to the trend towards designing for lone-learners reading from screens. It guides staff and educational developers to start not with content, but with learning activities and the achievement of learning objectives. It recognises that learning can happen without

  6. Creation and Assessment of an Active e-Learning Introductory Geology Course

    Science.gov (United States)

    Sit, Stefany M.; Brudzinski, Michael R.

    2017-12-01

    The recent emphasis in higher education on both student engagement and online learning encouraged the authors to develop an active e-learning environment for an introductory geohazards course, which enrolls 70+ undergraduate students per semester. Instructors focused on replicating the achievements and addressing the challenges within an already established face-to-face student-centered class (Brudzinski and Sikorski 2010; Sit 2013). Through the use of a learning management system (LMS) and other available technologies, a wide range of course components were developed including online homework assignments with automatic grading and tailored feedback, video tutorials of software programs like Google Earth and Microsoft Excel, and more realistic scientific investigations using authentic and freely available data downloaded from the internet. The different course components designed to engage students and improve overall student learning and development were evaluated using student surveys and instructor reflection. Each component can be used independently and intertwined into a face-to-face course. Results suggest that significant opportunities are available in an online environment including the potential for improved student performance and new datasets for educational research. Specifically, results from pre and post-semester Geoscience Concept Inventory (GCI) testing in an active e-learning course show enhanced student learning gains compared to face-to-face lecture-based and student-centered courses.

  7. Create a good learning environment and motivate active learning enthusiasm

    Science.gov (United States)

    Bi, Weihong; Fu, Guangwei; Fu, Xinghu; Zhang, Baojun; Liu, Qiang; Jin, Wa

    2017-08-01

    In view of the current poor learning initiative of undergraduates, the idea of creating a good learning environment and motivating active learning enthusiasm is proposed. In practice, the professional tutor is allocated and professional introduction course is opened for college freshman. It can promote communication between the professional teachers and students as early as possible, and guide students to know and devote the professional knowledge by the preconceived form. Practice results show that these solutions can improve the students interest in learning initiative, so that the active learning and self-learning has become a habit in the classroom.

  8. Concept mapping enhances learning of biochemistry.

    Science.gov (United States)

    Surapaneni, Krishna M; Tekian, Ara

    2013-03-05

    Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, pbiochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.

  9. Concept mapping enhances learning of biochemistry.

    Science.gov (United States)

    Surapaneni, KrishnaM; Tekian, Ara

    2013-01-01

    Teaching basic science courses is challenging in undergraduate medical education because of the ubiquitous use of didactic lectures and reward for recall of factual information during examinations. The purpose of this study is to introduce concept maps with clinical cases (the innovative program) to improve learning of biochemistry course content. Participants were first year medical students (n=150) from Saveetha Medical College and Hospital (India); they were randomly divided into two groups of 75, one group attending the traditional program, the other the innovative program. Student performance was measured using three written knowledge tests (each with a maximum score of 20). The students also evaluated the relevance of the learning process using a 12-item questionnaire. Students in the innovative program using concept mapping outperformed those in the traditional didactic program (means of 7.13-8.28 vs. 12.33-13.93, pbiochemistry to clinical practice, and to enhance their reasoning and learning skills, as well as their deeper understanding for biochemistry.

  10. Does Tracing Worked Examples Enhance Geometry Learning?

    Science.gov (United States)

    Hu, Fang-Tzu; Ginns, Paul; Bobis, Janette

    2014-01-01

    Cognitive load theory seeks to generate novel instructional designs through a focus on human cognitive architecture including a limited working memory; however, the potential for enhancing learning through non-visual or non-auditory working memory channels is yet to be evaluated. This exploratory experiment tested whether explicit instructions to…

  11. Teaching Future Middle Level Educators to Craft Learning Activities That Enhance Young Adolescent Creativity

    Science.gov (United States)

    Hilton, Jason T.

    2016-01-01

    As social and academic forces begin to collide for young adolescents at the beginning of the middle level experience, students experience an unfortunate drop in their creativity. Appropriately trained middle level teachers have the potential to lessen this problem through the use of carefully selected open-ended learning activities that increase…

  12. Twitter as a Teaching Practice to Enhance Active and Informal Learning in Higher Education: The Case of Sustainable Tweets

    Science.gov (United States)

    Kassens-Noor, Eva

    2012-01-01

    With the rise of Web 2.0, a multitude of new possibilities on how to use these online technologies for active learning has intrigued researchers. While most instructors have used Twitter for in-class discussions, this study explores the teaching practice of Twitter as an active, informal, outside-of-class learning tool. Through a comparative…

  13. Technology-Enhanced Problem-Based Learning Methodology in Geographically Dispersed Learners of Tshwane University of Technology

    Directory of Open Access Journals (Sweden)

    Sibitse M. Tlhapane

    2010-03-01

    Full Text Available Improving teaching and learning methodologies is not just a wish but rather strife for most educational institutions globally. To attain this, the Adelaide Tambo School of Nursing Science implemented a Technology-enhanced Problem-Based Learning methodology in the programme B Tech Occupational Nursing, in 2006. This is a two-year post-basic nursing program. The students are geographically dispersed and the curriculum design is the typically student-centred outcomes-based education. The research question posed by this paper is: How does technology-enhanced problem-based learning enhance student-centred learning, thinking skills, social skills and social space for learners? To answer the above question, a case study with both qualitative and quantitative data was utilised. The participants consisted of all students registered for the subject Occupational Health level 4. The sample group was chosen from willing participants from the Pretoria, eMalahleni and Polokwane learning sites, using the snowball method. This method was seen as appropriate due to the timing of the study. Data was collected using a questionnaire with both open and closed-ended questions. An analyses of the students‟ end of year examination was also done, including a comparison of performances by students on technology enhanced problem-based learning and those on problem-based learning only. The findings revealed that with Technology-enhanced Problem Based Learning (PBL, students‟ critical thinking, problem solving, and social skills improved and that social space was enhanced. This was supported by improved grades in students‟ on Technology-enhanced PBL as compared to those on PBL only.

  14. Innovative Assessment Paradigm to Enhance Student Learning in Engineering Education

    Science.gov (United States)

    El-Maaddawy, Tamer

    2017-01-01

    Incorporation of student self-assessment (SSA) in engineering education offers opportunities to support and encourage learner-led-learning. This paper presents an innovative assessment paradigm that integrates formative, summative, and SSA to enhance student learning. The assessment innovation was implemented in a senior-level civil engineering…

  15. Face-to-Face Activities in Blended Learning

    DEFF Research Database (Denmark)

    Kjærgaard, Annemette

    While blended learning combines online and face-to-face teaching, research on blended learning has primarily focused on the role of technology and the opportunities it creates for engaging students. Less focus has been put on face-to-face activities in blended learning. This paper argues...... that it is not only the online activities in blended learning that provide new opportunities for rethinking pedagogy in higher education, it is also imperative to reconsider the face-to-face activities when part of the learning is provided online. Based on a review of blended learning in business and management...... education, we identify what forms of teaching and learning are suggested to take place face-to-face when other activities are moved online. We draw from the Community of Inquiry framework to analyze how face-to-face activities contribute to a blended learning pedagogy and discuss the implications...

  16. Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement.

    Science.gov (United States)

    Looi, Chung Yen; Duta, Mihaela; Brem, Anna-Katharine; Huber, Stefan; Nuerk, Hans-Christoph; Cohen Kadosh, Roi

    2016-02-23

    Cognitive training offers the potential for individualised learning, prevention of cognitive decline, and rehabilitation. However, key research challenges include ecological validity (training design), transfer of learning and long-term effects. Given that cognitive training and neuromodulation affect neuroplasticity, their combination could promote greater, synergistic effects. We investigated whether combining transcranial direct current stimulation (tDCS) with cognitive training could further enhance cognitive performance compared to training alone, and promote transfer within a short period of time. Healthy adults received real or sham tDCS over their dorsolateral prefrontal cortices during two 30-minute mathematics training sessions involving body movements. To examine the role of training, an active control group received tDCS during a non-mathematical task. Those who received real tDCS performed significantly better in the game than the sham group, and showed transfer effects to working memory, a related but non-numerical cognitive domain. This transfer effect was absent in active and sham control groups. Furthermore, training gains were more pronounced amongst those with lower baseline cognitive abilities, suggesting the potential for reducing cognitive inequalities. All effects associated with real tDCS remained 2 months post-training. Our study demonstrates the potential benefit of this approach for long-term enhancement of human learning and cognition.

  17. Intranasal oxytocin enhances socially-reinforced learning in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Lisa A Parr

    2014-09-01

    Full Text Available There are currently no drugs approved for the treatment of social deficits associated with autism spectrum disorders (ASD. One hypothesis for these deficits is that individuals with ASD lack the motivation to attend to social cues because those cues are not implicitly rewarding. Therefore, any drug that could enhance the rewarding quality of social stimuli could have a profound impact on the treatment of ASD, and other social disorders. Oxytocin (OT is a neuropeptide that has been effective in enhancing social cognition and social reward in humans. The present study examined the ability of OT to selectively enhance learning after social compared to nonsocial reward in rhesus monkeys, an important species for modeling the neurobiology of social behavior in humans. Monkeys were required to learn an implicit visual matching task after receiving either intranasal (IN OT or Placebo (saline. Correct trials were rewarded with the presentation of positive and negative social (play faces/threat faces or nonsocial (banana/cage locks stimuli, plus food. Incorrect trials were not rewarded. Results demonstrated a strong effect of socially-reinforced learning, monkeys’ performed significantly better when reinforced with social versus nonsocial stimuli. Additionally, socially-reinforced learning was significantly better and occurred faster after IN-OT compared to placebo treatment. Performance in the IN-OT, but not Placebo, condition was also significantly better when the reinforcement stimuli were emotionally positive compared to negative facial expressions. These data support the hypothesis that OT may function to enhance prosocial behavior in primates by increasing the rewarding quality of emotionally positive, social compared to emotionally negative or nonsocial images. These data also support the use of the rhesus monkey as a model for exploring the neurobiological basis of social behavior and its impairment.

  18. Using technology-enhanced, cooperative, group-project learning for student comprehension and academic performance

    Science.gov (United States)

    Tlhoaele, Malefyane; Suhre, Cor; Hofman, Adriaan

    2016-05-01

    Cooperative learning may improve students' motivation, understanding of course concepts, and academic performance. This study therefore enhanced a cooperative, group-project learning technique with technology resources to determine whether doing so improved students' deep learning and performance. A sample of 118 engineering students, randomly divided into two groups, participated in this study and provided data through questionnaires issued before and after the experiment. The results, obtained through analyses of variance and structural equation modelling, reveal that technology-enhanced, cooperative, group-project learning improves students' comprehension and academic performance.

  19. Student Use of Self-Data for Out-of-Class Graphing Activities Increases Student Engagement and Learning Outcomes†

    Science.gov (United States)

    DeBoy, Cynthia A.

    2017-01-01

    Two out-of-class graphing activities related to hormonal regulation of the reproductive cycle and stress responses are used to determine whether student use of self-data vs. provided data increases engagement, learning outcomes, and attitude changes. Comparisons of quizzes and surveys for students using self- vs. provided data suggest that while both activities increase learning outcomes, use of self-data compared with provided data has a greater impact on increasing learning outcomes, promotes recognition that hormones are relevant, and enhances confidence in graphing skills and graphing efficacy. PMID:29854057

  20. Adolescent-specific patterns of behavior and neural activity during social reinforcement learning.

    Science.gov (United States)

    Jones, Rebecca M; Somerville, Leah H; Li, Jian; Ruberry, Erika J; Powers, Alisa; Mehta, Natasha; Dyke, Jonathan; Casey, B J

    2014-06-01

    Humans are sophisticated social beings. Social cues from others are exceptionally salient, particularly during adolescence. Understanding how adolescents interpret and learn from variable social signals can provide insight into the observed shift in social sensitivity during this period. The present study tested 120 participants between the ages of 8 and 25 years on a social reinforcement learning task where the probability of receiving positive social feedback was parametrically manipulated. Seventy-eight of these participants completed the task during fMRI scanning. Modeling trial-by-trial learning, children and adults showed higher positive learning rates than did adolescents, suggesting that adolescents demonstrated less differentiation in their reaction times for peers who provided more positive feedback. Forming expectations about receiving positive social reinforcement correlated with neural activity within the medial prefrontal cortex and ventral striatum across age. Adolescents, unlike children and adults, showed greater insular activity during positive prediction error learning and increased activity in the supplementary motor cortex and the putamen when receiving positive social feedback regardless of the expected outcome, suggesting that peer approval may motivate adolescents toward action. While different amounts of positive social reinforcement enhanced learning in children and adults, all positive social reinforcement equally motivated adolescents. Together, these findings indicate that sensitivity to peer approval during adolescence goes beyond simple reinforcement theory accounts and suggest possible explanations for how peers may motivate adolescent behavior.

  1. Evaluating Recommender Systems for Technology Enhanced Learning: A Quantitative Survey

    Science.gov (United States)

    Erdt, Mojisola; Fernandez, Alejandro; Rensing, Christoph

    2015-01-01

    The increasing number of publications on recommender systems for Technology Enhanced Learning (TEL) evidence a growing interest in their development and deployment. In order to support learning, recommender systems for TEL need to consider specific requirements, which differ from the requirements for recommender systems in other domains like…

  2. A Learning Management System Enhanced with Internet of Things Applications

    Science.gov (United States)

    Mershad, Khaleel; Wakim, Pilar

    2018-01-01

    A breakthrough in the development of online learning occurred with the utilization of Learning Management Systems (LMS) as a tool for creating, distributing, tracking, and managing various types of educational and training material. Since the appearance of the first LMS, major technological enhancements transformed this tool into a powerful…

  3. UK Higher Education Institutions' Technology-Enhanced Learning Strategies from the Perspective of Disruptive Innovation

    Science.gov (United States)

    Flavin, Michael; Quintero, Valentina

    2018-01-01

    The publication of institutional strategies for learning, teaching and assessment in UK higher education is practically ubiquitous. Strategies for technology-enhanced learning are also widespread. This article examines 44 publicly available UK university strategies for technology-enhanced learning, aiming to assess the extent to which…

  4. Augmented Reality Game-Based Learning: Enriching Students' Experience during Reading Comprehension Activities

    Science.gov (United States)

    Tobar-Muñoz, Hendrys; Baldiris, Silvia; Fabregat, Ramon

    2017-01-01

    Program for International Student Assessment results indicate that while reading comprehension needs to be promoted, teachers are struggling to find ways to motivate students to do reading comprehension activities and although technology-enhanced learning approaches are entering the classroom, researchers are still experimenting with them to…

  5. 5 Hz repetitive transcranial magnetic stimulation over the ipsilesional sensory cortex enhances motor learning after stroke

    Directory of Open Access Journals (Sweden)

    Sonia M Brodie

    2014-03-01

    Full Text Available Sensory feedback is critical for motor learning, and thus to neurorehabilitation after stroke. Whether enhancing sensory feedback by applying excitatory repetitive transcranial magnetic stimulation (rTMS over the ipsilesional primary sensory cortex (IL-S1 might enhance motor learning in chronic stroke has yet to be investigated. The present study investigated the effects of 5 Hz rTMS over IL-S1 paired with skilled motor practice on motor learning, hemiparetic cutaneous somatosensation, and motor function. Individuals with unilateral chronic stroke were pseudo-randomly divided into either Active or Sham 5 Hz rTMS groups (n=11/group. Following stimulation, both groups practiced a Serial Tracking Task (STT with the hemiparetic arm; this was repeated for 5 days. Performance on the STT was quantified by response time, peak velocity, and cumulative distance tracked at baseline, during the 5 days of practice, and at a no-rTMS retention test. Cutaneous somatosensation was measured using two-point discrimination. Standardized sensorimotor tests were performed to assess whether the effects might generalize to impact hemiparetic arm function. The active 5Hz rTMS + training group demonstrated significantly greater improvements in STT performance [response time (F1,286.04=13.016, p< 0.0005, peak velocity (F1,285.95=4.111, p=0.044, and cumulative distance (F1,285.92=4.076, p=0.044] and cutaneous somatosensation (F1,21.15=8.793, p=0.007 across all sessions compared to the sham rTMS + training group. Measures of upper extremity motor function were not significantly different for either group. Our preliminary results suggest that, when paired with motor practice, 5Hz rTMS over IL-S1 enhances motor learning related change in individuals with chronic stroke, potentially as a consequence of improved cutaneous somatosensation, however no improvement in general upper extremity function was observed.

  6. Using Authentic Medication Errors to Promote Pharmacy Student Critical Thinking and Active Learning

    Directory of Open Access Journals (Sweden)

    Reza Karimi

    2018-01-01

    Full Text Available Objective: To promote first year (P1 pharmacy students’ awareness of medication error prevention and to support student learning in biomedical and pharmaceutical sciences. Innovation: A novel curricular activity was created and referred to as “Medication Errors and Sciences Applications (MESA”. The MESA activity encouraged discussions of patient safety among students and faculty to link medication errors to biomedical and pharmaceutical sciences, which ultimately reinforced student learning in P1 curricular topics.   Critical Analysis: Three P1 cohorts implemented the MESA activity and approximately 75% of students from each cohort completed a reliable assessment instrument. Each P1 cohort had at least 14 student teams who generated professional reports analyzing authentic medication errors. The quantitative assessment results indicated that 70-85% of students believed that the MESA activity improved student learning in biomedical and pharmaceutical sciences. More than 95% of students agreed that the MESA activity introduced them to medication errors. Approximately 90% of students agreed that the MESA activity integrated the knowledge and skills they developed through the P1 curriculum, promoted active learning and critical thinking, and encouraged students to be self-directed learners. Furthermore, our data indicated that approximately 90% of students stated that the achievement of Bloom’s taxonomy's six learning objectives was promoted by completing the MESA activity. Next Steps: Pharmacy students’ awareness of medication errors is a critical component of pharmacy education, which pharmacy educators can integrate with biomedical and pharmaceutical sciences to enhance student learning in the P1 year. Treatment of Human Subjects: IRB exemption granted   Type: Note License: CC BY

  7. Enhancing students' higher order thinking skills through computer-based scaffolding in problem-based learning

    Science.gov (United States)

    Kim, Nam Ju

    This multiple paper dissertation addressed several issues in Problem-based learning (PBL) through conceptual analysis, meta-analysis, and empirical research. PBL is characterized by ill-structured tasks, self-directed learning process, and a combination of individual and cooperative learning activities. Students who lack content knowledge and problem-solving skills may struggle to address associated tasks that are beyond their current ability levels in PBL. This dissertation addressed a) scaffolding characteristics (i.e., scaffolding types, delivery method, customization) and their effects on students' perception of optimal challenge in PBL, b) the possibility of virtual learning environments for PBL, and c) the importance of information literacy for successful PBL learning. Specifically, this dissertation demonstrated the effectiveness of scaffolding customization (i.e., fading, adding, and fading/adding) to enhance students' self-directed learning in PBL. Moreover, the effectiveness of scaffolding was greatest when scaffolding customization is self-selected than based on fixed-time interval and their performance. This suggests that it might be important for students to take responsibility for their learning in PBL and individualized and just-in-time scaffolding can be one of the solutions to address K-12 students' difficulties in improving problem-solving skills and adjusting to PBL.

  8. Do International Students Appreciate Active Learning in Lectures?

    Directory of Open Access Journals (Sweden)

    Mauricio Marrone

    2018-03-01

    Full Text Available Active learning has been linked with increased student motivation, engagement and understanding of course material. It promotes deep learning, helping to develop critical thinking and writing skills in students. Less well understood, however, are the responses of international students to active learning. Using social constructivist theory, the purpose of this study is to examine domestic and international student perceptions of active learning introduced into large undergraduate Accounting Information Systems lectures. Several active learning strategies were implemented over one semester and examined through the use of semi-structured interviews as well as pre- and post- implementation surveys. Our results suggest broad improvements for international students in student engagement and understanding of unit material when implementing active learning strategies. Other key implications include international student preference for active learning compared with passive learning styles, and that international students may receive greater benefits from active learning strategies than domestic students due to social factors. Based on these findings this paper proposes that educators should seek to implement active learning to better assist and integrate students of diverse backgrounds.

  9. Active Learning versus Traditional Teaching

    Directory of Open Access Journals (Sweden)

    L.A. Azzalis

    2009-05-01

    Full Text Available In traditional teaching most of the class time is spent with the professor lecturing and the students watching and listening. The students work individually, and cooperation is discouraged. On the other hand,  active learning  changes the focus of activity from the teacher to the learners, in which students solve problems, answer questions, formulate questions of their own, discuss, explain, debate during class;  moreover, students work in teams on problems and projects under conditions that assure positive interdependence and individual accountability. Although student-centered methods have repeatedly been shown to be superior to the traditional teacher-centered approach to instruction, the literature regarding the efficacy of various teaching methods is inconclusive. The purpose of this study was to compare the student perceptions of course and instructor effectiveness, course difficulty, and amount learned between the active learning and lecture sections  in Health Sciences´ courses by statistical data from Anhembi Morumbi University. Results indicated significant  difference between active  learning and traditional  teaching. Our conclusions were that strategies promoting  active  learning to  traditional lectures could increase knowledge and understanding.

  10. Negotiating Content with Learners Using Technology Enhanced Teaching and Learning Solutions

    Directory of Open Access Journals (Sweden)

    Richard Smith

    2011-09-01

    Full Text Available This paper examines issues around learning ‘content’ and its place in the new digital learning culture. We focus on the increasing demands of digital learners for content that is relevant and the challenges this poses if educators are to stay relevant to them. We say ‘relevance’ is best achieved when content is negotiated with learners in collaboration with instructors. We describe strategies in which technology enhanced teaching and learning solutions have enabled learners to negotiate and create digitised learning content that is educationally, culturally and socially relevant. We cite two case studies that exemplify this approach: a trial of negotiated content with primary school aged digital learners at Brisbane School of Distance Education (BSDE, Australia, and the content decision-making processes used for the development of e-learning courses for hearing health professionals and Auditory-Verbal Therapy at Hear and Say WorldWide Brisbane, Australia. We focus on the changing demands and skill sets of digital learners, their learning managers and subject matter experts, and the use of technology enhanced teaching and learning solutions as the negotiating tool in the development of digital content that is academically rigorous and also learner friendly.

  11. COMPETITIVE INTELLIGENCE: THE ENHANCING ROLE OF ORGANIZATIONAL LEARNING CAPABILITY

    OpenAIRE

    HAMAD, Zaina Mustafa Mahmoud; YOZGAT, Ugur

    2017-01-01

    Performinga strong intelligence grants an organization a guaranteeof long-term success. This paper investigates the enhancing effect of organizational learning capabilities on competitive intelligence atthe commercial banks in Jordan. A sample within top and middle managements was used.Measurement instrument validity and model fit were assessed before testinghypotheses. This study emphasizes the role learning capability plays inenhancing intelligence. Key findings support importance of organi...

  12. Constructive feedback as a learning tool to enhance students' self ...

    African Journals Online (AJOL)

    If feedback is provided in a way that can develop students' self-regulatory skills, it could enhance learning and, consequently, lead to improved performance. To improve teaching and learning in higher education (HE), this study sought to determine whether the feedback to first-year students affords them an opportunity to ...

  13. Preface [Special issue on dataTEL – Data Supported Research in Technology-Enhanced Learning

    NARCIS (Netherlands)

    Drachsler, Hendrik; Verbert, Katrien; Manouselis, Nikos; Vuorikari, Riina; Wolpers, Martin; Lindstaedt, Stefanie

    2012-01-01

    Drachsler, H., Verbert, K., Manouselis, N., Vuorikari, R., Wolpers, M., & Lindstaedt, S. (2012). Preface [Special issue on dataTEL – Data Supported Research in Technology-Enhanced Learning]. International Journal Technology Enhanced Learning, Vol. 4, Nos. 1/2, 2012.

  14. The Role of the Visual Arts in Enhancing the Learning Process

    Science.gov (United States)

    Tyler, Christopher W.; Likova, Lora T.

    2011-01-01

    With all the wealth of scientific activities, there remains a certain stigma associated with careers in science, as a result of the inevitable concentration on narrow specializations that are inaccessible to general understanding. Enhancement of the process of scientific learning remains a challenge, particularly in the school setting. While direct explanation seems the best approach to expedite learning any specific subject, it is well known that the ability to deeply absorb facts and concepts is greatly enhanced by placing them in a broader context of relevance to the issues of everyday life and to the larger goals of improvement of the quality of life and advancement to a more evolved society as a whole. If the sciences can be associated with areas of artistic endeavor, they may be viewed as more accessible and favorable topics of study. There is consequently an urgent need for research in the relationship between learning and experience in the arts because both art education and scientific literacy remain at an inadequate level even in economically advanced countries. The focus of this review is the concept that inspiration is an integral aspect of the artistic experience, both for the artist and for the viewer of the artwork. As an integrative response, inspiration involves not only higher cortical circuitry but its integration with the deep brain structures such as limbic system and medial frontal structures, which are understood to mediate the experience of emotions, motivational rewards, and the appreciation of the esthetic values of the impinging stimuli. In this sense, inspiration can turn almost any occupation in life into an avocation, a source of satisfaction in achieving life goals. Conversely, when inspiration is lacking, the motivation to learn, adapt, and prosper is impeded. Thus, inspiration may be viewed as a potent aspect of human experience in linking art and science. PMID:22347854

  15. The Effects of Students' Learning Anxiety and Motivation on the Learning Achievement in the Activity Theory Based Gamified Learning Environment

    Science.gov (United States)

    Su, Chung-Ho

    2017-01-01

    The advancement of mobile game-based learning has encouraged many related studies, which has enabled students to learn more and faster. To enhance the clinical path of cardiac catheterization learning, this paper has developed a mobile 3D-CCGBLS (3D Cardiac Catheterization Game-Based Learning System) with a learning assessment for cardiac…

  16. Active Learning in Engineering Education: a (re)introduction

    DEFF Research Database (Denmark)

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network ‘Active Learning in Engineering Education’ (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE...... were reviewed by the European Journal of Engineering Education community and this theme issue ended up with eight contributions, which are different both in their research and Active Learning approaches. These different Active Learning approaches are aligned with the different approaches that can...

  17. Critical Thinking and Collaboration: A Strategy to Enhance Student Learning

    Directory of Open Access Journals (Sweden)

    Ronald A. Styron, Jr.

    2014-12-01

    Full Text Available In numerous studies relative to collaboration and critical thinking, an instructional strategy called Team- Based Learning has proven to be an effective approach to teaching and learning. Team-Based Learning utilizes a specific sequence of individual work, group work and immediate feedback to create a motivational framework in which students increasingly hold each other accountable for coming to class prepared and contributing to discussion. Using an action research conceptual model diffusion of innovation theory, the process of P-20 quality enhancement using Team-Based Learning is examined.

  18. Active Learning in the Era of Big Data

    Energy Technology Data Exchange (ETDEWEB)

    Jamieson, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Davis, IV, Warren L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Active learning methods automatically adapt data collection by selecting the most informative samples in order to accelerate machine learning. Because of this, real-world testing and comparing active learning algorithms requires collecting new datasets (adaptively), rather than simply applying algorithms to benchmark datasets, as is the norm in (passive) machine learning research. To facilitate the development, testing and deployment of active learning for real applications, we have built an open-source software system for large-scale active learning research and experimentation. The system, called NEXT, provides a unique platform for realworld, reproducible active learning research. This paper details the challenges of building the system and demonstrates its capabilities with several experiments. The results show how experimentation can help expose strengths and weaknesses of active learning algorithms, in sometimes unexpected and enlightening ways.

  19. Pharmacological Activators of the NR4A Nuclear Receptors Enhance LTP in a CREB/CBP-Dependent Manner.

    Science.gov (United States)

    Bridi, Morgan S; Hawk, Joshua D; Chatterjee, Snehajyoti; Safe, Stephen; Abel, Ted

    2017-05-01

    Nr4a nuclear receptors contribute to long-term memory formation and are required for long-term memory enhancement by a class of broad-acting drugs known as histone deacetylase (HDAC) inhibitors. Understanding the molecular mechanisms that regulate these genes and identifying ways to increase their activity may provide novel therapeutic approaches for ameliorating cognitive dysfunction. In the present study, we find that Nr4a gene expression after learning requires the cAMP-response element binding (CREB) interaction domain of the histone acetyltransferase CREB-binding protein (CBP). These gene expression deficits emerge at a time after learning marked by promoter histone acetylation in wild-type mice. Further, mutation of the CREB-CBP interaction domain reduces Nr4a promoter acetylation after learning. As memory enhancement by HDAC inhibitors requires CREB-CBP interaction and Nr4a gene function, these data support the notion that the balance of histone acetylation at the Nr4a promoters is critical for memory formation. NR4A ligands have recently been described, but the effect of these drugs on synaptic plasticity or memory has not been investigated. We find that the 'C-DIM' NR4A ligands, para-phenyl substituted di-indolylmethane compounds, enhance long-term contextual fear memory and increase the duration of long-term potentiation (LTP), a form of hippocampal synaptic plasticity. LTP enhancement by these drugs is eliminated in mice expressing a dominant negative form of NR4A and attenuated in mice with mutation of the CREB-CBP interaction domain. These data define the molecular connection between histone acetylation and Nr4a gene expression after learning. In addition, they suggest that NR4A-activating C-DIM compounds may serve as a potent and selective means to enhance memory and synaptic plasticity.

  20. Kinespell: Kinesthetic Learning Activity and Assessment in a Digital Game-Based Learning Environment

    Science.gov (United States)

    Cariaga, Ada Angeli; Salvador, Jay Andrae; Solamo, Ma. Rowena; Feria, Rommel

    Various approaches in learning are commonly classified into visual, auditory and kinesthetic (VAK) learning styles. One way of addressing the VAK learning styles is through game-based learning which motivates learners pursue knowledge holistically. The paper presents Kinespell, an unconventional method of learning through digital game-based learning. Kinespell is geared towards enhancing not only the learner’s spelling abilities but also the motor skills through utilizing wireless controllers. It monitors player’s performance through integrated assessment scheme. Results show that Kinespell may accommodate the VAK learning styles and is a promising alternative to established methods in learning and assessing students’ performance in Spelling.

  1. Recommender Systems for Learning

    CERN Document Server

    Manouselis, Nikos; Verbert, Katrien; Duval, Erik

    2013-01-01

    Technology enhanced learning (TEL) aims to design, develop and test sociotechnical innovations that will support and enhance learning practices of both individuals and organisations. It is therefore an application domain that generally covers technologies that support all forms of teaching and learning activities. Since information retrieval (in terms of searching for relevant learning resources to support teachers or learners) is a pivotal activity in TEL, the deployment of recommender systems has attracted increased interest. This brief attempts to provide an introduction to recommender systems for TEL settings, as well as to highlight their particularities compared to recommender systems for other application domains.

  2. Implementation of Gasing Learning in ARCS Learning Strategy to Enhance Students’ Motivation in 9th Grade of Indonesian Junior High-School

    Directory of Open Access Journals (Sweden)

    Pri Ariadi Cahya Dinata

    2017-10-01

    Full Text Available The lack of motivation will affect to the students’ learning outcomes. The research was conducted to enhance the students’ motivation with the Gasing learning in the ARCS learning strategy on the static and dynamic electricity. The specific objectives of this research was to describe effect of the gasing learning on the students' learning motivation. The research consisted of 3 cycles of Hopkin’s Classroom Action Research  Model. Each cycle consists of the plan, the action/the observation, and the reflective. The data of students learning motivation obtained by questionnaires and be analyzed with method of successive interval (MSI. The findings of the research are: (1 the result of questionnaire of ARCS motivation in cycle I was 3.71, cycle II was 3,80, and cycle III was 3,99. These results indicate an increase in student learning motivation; (2 The completeness of students’ learning outcomes in cycle I was 68,18%, in cycle II was 90,90%, and in cycle III was 100%. It can be concluded that the Gasing learning in ARCS strategy can enhances students’motivation on static and dinamic electricity in 9th grade of Indonesian Junior High-School. The Gasing learning can be an alternative for the teachers to enhance students’ motivation in learning physics through the provision of comic media and calculations without formulas.

  3. Is Peer Interaction Necessary for Optimal Active Learning?

    Science.gov (United States)

    Linton, Debra L.; Farmer, Jan Keith; Peterson, Ernie

    2014-01-01

    Meta-analyses of active-learning research consistently show that active-learning techniques result in greater student performance than traditional lecture-based courses. However, some individual studies show no effect of active-learning interventions. This may be due to inexperienced implementation of active learning. To minimize the effect of…

  4. Competence Models in Technology-enhanced Competence-based Learning

    NARCIS (Netherlands)

    Sampson, Demetrios; Fytros, Demetrios

    2008-01-01

    Please cite as: Sampson, D., & Fytros, D. (2008). Competence Models in Technology-enhanced Competence-based Learning. In H. H. Adelsberger, Kinshuk, J. M. Pawlowski & D. Sampson (Eds.), International Handbook on Information Technologies for Education and Training, 2nd Edition, Springer, June 2008

  5. Student Perceptions of Active Learning

    Science.gov (United States)

    Lumpkin, Angela; Achen, Rebecca M.; Dodd, Regan K.

    2015-01-01

    A paradigm shift from lecture-based courses to interactive classes punctuated with engaging, student-centered learning activities has begun to characterize the work of some teachers in higher education. Convinced through the literature of the values of using active learning strategies, we assessed through an action research project in five college…

  6. Game-Enhanced Simulation as an Approach to Experiential Learning in Business English

    Science.gov (United States)

    Punyalert, Sansanee

    2017-01-01

    This dissertation aims to integrate various learning approaches, i.e., multiple literacies, experiential learning, game-enhanced learning, and global simulation, into an extracurricular module, in which it remodels traditional ways of teaching input, specifically, the lexical- and grammatical-only approaches of business English at a private…

  7. White noise enhances new-word learning in healthy adults.

    Science.gov (United States)

    Angwin, Anthony J; Wilson, Wayne J; Arnott, Wendy L; Signorini, Annabelle; Barry, Robert J; Copland, David A

    2017-10-12

    Research suggests that listening to white noise may improve some aspects of cognitive performance in individuals with lower attention. This study investigated the impact of white noise on new word learning in healthy young adults, and whether this effect was mediated by executive attention skills. Eighty participants completed a single training session to learn the names of twenty novel objects. The session comprised 5 learning phases, each followed by a recall test. A final recognition test was also administered. Half the participants listened to white noise during the learning phases, and half completed the learning in silence. The noise group demonstrated superior recall accuracy over time, which was not impacted by participant attentional capacity. Recognition accuracy was near ceiling for both groups. These findings suggest that white noise has the capacity to enhance lexical acquisition.

  8. Active-Learning versus Teacher-Centered Instruction for Learning Acids and Bases

    Science.gov (United States)

    Sesen, Burcin Acar; Tarhan, Leman

    2011-01-01

    Background and purpose: Active-learning as a student-centered learning process has begun to take more interest in constructing scientific knowledge. For this reason, this study aimed to investigate the effectiveness of active-learning implementation on high-school students' understanding of "acids and bases". Sample: The sample of this…

  9. The Effects of Metacognitive Learning Strategy in Writing Enhancement of English Studen

    Directory of Open Access Journals (Sweden)

    Nazli Tyfekci

    2017-12-01

    Full Text Available This study investigates the effectiveness of metacognitive learning strategy in writing enhancement of English language and literature students in Kosovo. The research examined students’ metacognitive knowledge and regulation about their priorities regarding drafting, planning, organizing, summarizing, composing, reviewing and later on evaluation. Divided into two phases to first measure their awareness towards metacognition, and then to evaluate their capability in composition through learning strategies, the results of the research suggest that, contrary to the traditional view, in Kosovo, that places its importance on the teacher and not the student, the experimental participants proved that by utilizing metacognitive learning strategy enhances their writing efficiency and effectiveness. Findings also suggest that students’ attitude towards new and modern learning strategies is potently positive and welcoming.

  10. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    Science.gov (United States)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  11. Pointing and tracing gestures may enhance anatomy and physiology learning.

    Science.gov (United States)

    Macken, Lucy; Ginns, Paul

    2014-07-01

    Currently, instructional effects generated by Cognitive load theory (CLT) are limited to visual and auditory cognitive processing. In contrast, "embodied cognition" perspectives suggest a range of gestures, including pointing, may act to support communication and learning, but there is relatively little research showing benefits of such "embodied learning" in the health sciences. This study investigated whether explicit instructions to gesture enhance learning through its cognitive effects. Forty-two university-educated adults were randomly assigned to conditions in which they were instructed to gesture, or not gesture, as they learnt from novel, paper-based materials about the structure and function of the human heart. Subjective ratings were used to measure levels of intrinsic, extraneous and germane cognitive load. Participants who were instructed to gesture performed better on a knowledge test of terminology and a test of comprehension; however, instructions to gesture had no effect on subjective ratings of cognitive load. This very simple instructional re-design has the potential to markedly enhance student learning of typical topics and materials in the health sciences and medicine.

  12. Team-Based Learning Enhances Performance in Introductory Biology

    Science.gov (United States)

    Carmichael, Jeffrey

    2009-01-01

    Given the problems associated with the traditional lecture method, the constraints associated with large classes, and the effectiveness of active learning, continued development and testing of efficient student-centered learning approaches are needed. This study explores the effectiveness of team-based learning (TBL) in a large-enrollment…

  13. Are students' impressions of improved learning through active learning methods reflected by improved test scores?

    Science.gov (United States)

    Everly, Marcee C

    2013-02-01

    To report the transformation from lecture to more active learning methods in a maternity nursing course and to evaluate whether student perception of improved learning through active-learning methods is supported by improved test scores. The process of transforming a course into an active-learning model of teaching is described. A voluntary mid-semester survey for student acceptance of the new teaching method was conducted. Course examination results, from both a standardized exam and a cumulative final exam, among students who received lecture in the classroom and students who had active learning activities in the classroom were compared. Active learning activities were very acceptable to students. The majority of students reported learning more from having active-learning activities in the classroom rather than lecture-only and this belief was supported by improved test scores. Students who had active learning activities in the classroom scored significantly higher on a standardized assessment test than students who received lecture only. The findings support the use of student reflection to evaluate the effectiveness of active-learning methods and help validate the use of student reflection of improved learning in other research projects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Is mobile learning a substitute for electronic learning?

    OpenAIRE

    Sitthiworachart, Jirarat; Joy, Mike

    2008-01-01

    Mobile learning is widely regarded as the next generation of learning technologies, and refers to the use of mobile devices in education to enhance learning activities. The increasing use of mobile devices has encouraged research into the capabilities of mobile learning systems. Many questions arise about mobile learning, such as whether mobile learning can be a substitute for electronic learning, what the potential benefits and problems of utilizing mobile devices in education are, and what ...

  15. Test-enhanced learning: the potential for testing to promote greater learning in undergraduate science courses.

    Science.gov (United States)

    Brame, Cynthia J; Biel, Rachel

    2015-01-01

    Testing within the science classroom is commonly used for both formative and summative assessment purposes to let the student and the instructor gauge progress toward learning goals. Research within cognitive science suggests, however, that testing can also be a learning event. We present summaries of studies that suggest that repeated retrieval can enhance long-term learning in a laboratory setting; various testing formats can promote learning; feedback enhances the benefits of testing; testing can potentiate further study; and benefits of testing are not limited to rote memory. Most of these studies were performed in a laboratory environment, so we also present summaries of experiments suggesting that the benefits of testing can extend to the classroom. Finally, we suggest opportunities that these observations raise for the classroom and for further research. © 2015 C. J. Brame and R. Biel. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Active Learning in the Middle Grades

    Science.gov (United States)

    Edwards, Susan

    2015-01-01

    What is active learning and what does it look like in the classroom? If students are participating in active learning, they are playing a more engaged role in the learning process and are not overly reliant on the teacher (Bransford, Brown, & Cocking, 2003; Petress, 2008). The purpose of this article is to propose a framework to describe and…

  17. Memory-Enhancing Activity of Palmatine in Mice Using Elevated Plus Maze and Morris Water Maze

    Directory of Open Access Journals (Sweden)

    Dinesh Dhingra

    2012-01-01

    Full Text Available The present study was designed to evaluate the effect of palmatine on memory of Swiss young male albino mice. Palmatine (0.1, 0.5, 1 mg/kg, i.p. and physostigmine (0.1 mg/kg, i.p. per se were administered for 10 successive days to separate groups of mice. Effect of drugs on learning and memory of mice was evaluated using elevated plus maze and Morris water maze. Brain acetylcholinesterase activity was also estimated. Effect of palmatine on scopolamine- and diazepam-induced amnesia was also investigated. Palmatine (0.5 and 1 mg/kg and physostigmine significantly improved learning and memory of mice, as indicated by decrease in transfer latency using elevated plus maze, and decrease in escape latency during training and increase in time spent in target quadrant during retrieval using Morris water maze. The drugs did not show any significant effect on locomotor activity of the mice. Memory-enhancing activity of palmatine (1 mg/kg was comparable to physostigmine. Palmatine (1 mg/kg significantly reversed scopolamine- and diazepam-induced amnesia in mice. Palmatine and physostigmine also significantly reduced brain acetylcholinesterase activity of mice. Thus, palmatine showed memory-enhancing activity in mice probably by inhibiting brain acetylcholinesterase activity, through involvement of GABA-benzodiazepine pathway, and due to its antioxidant activity.

  18. Innovation Partnerships to Enhance Student Learning and Development

    Science.gov (United States)

    Roberts, Dennis C.; Komives, Susan R.

    2016-01-01

    Following chapters that have offered examples and tools relevant to higher education institutions that wish to enhance student learning and development, this chapter summarizes and extends the conversation of how true partnerships in international higher education can be cultivated to achieve the deepest impact.

  19. Active Learning Not Associated with Student Learning in a Random Sample of College Biology Courses

    Science.gov (United States)

    Andrews, T. M.; Leonard, M. J.; Colgrove, C. A.; Kalinowski, S. T.

    2011-01-01

    Previous research has suggested that adding active learning to traditional college science lectures substantially improves student learning. However, this research predominantly studied courses taught by science education researchers, who are likely to have exceptional teaching expertise. The present study investigated introductory biology courses randomly selected from a list of prominent colleges and universities to include instructors representing a broader population. We examined the relationship between active learning and student learning in the subject area of natural selection. We found no association between student learning gains and the use of active-learning instruction. Although active learning has the potential to substantially improve student learning, this research suggests that active learning, as used by typical college biology instructors, is not associated with greater learning gains. We contend that most instructors lack the rich and nuanced understanding of teaching and learning that science education researchers have developed. Therefore, active learning as designed and implemented by typical college biology instructors may superficially resemble active learning used by education researchers, but lacks the constructivist elements necessary for improving learning. PMID:22135373

  20. Adaptive Learning in Medical Education: The Final Piece of Technology Enhanced Learning?

    Science.gov (United States)

    Sharma, Neel; Doherty, Iain; Dong, Chaoyan

    2017-09-01

    Technology enhanced learning (TEL) is now common practice in the field of medical education. One of the primary examples of its use is that of high fidelity simulation and computerised mannequins. Further examples include online learning modules, electronic portfolios, virtual patient interactions, massive open online courses and the flipped classroom movement. The rise of TEL has occurred primarily due to the ease of internet access enabling the retrieval and sharing of information in an instant. Furthermore, the compact nature of internet ready devices such as smartphones and laptops has meant that access to information can occur anytime and anywhere. From an educational perspective however, the current utilisation of TEL has been hindered by its lack of understanding of learners' needs. This is concerning, particularly as evidence highlights that during medical training, each individual learner has their own learning requirements and often achieves competency at different rates. In view of this, there has been interest in ensuring TEL is more learner aware and that the learning process should be more personalised. Adaptive learning can aim to achieve this by ensuring content is delivered according to the needs of the learner. This commentary highlights the move towards adaptive learning and the benefits of such an intervention.

  1. Faculty motivations to use active learning among pharmacy educators.

    Science.gov (United States)

    Rockich-Winston, Nicole; Train, Brian C; Rudolph, Michael J; Gillette, Chris

    2018-03-01

    Faculty motivations to use active learning have been limited to surveys evaluating faculty perceptions within active learning studies. Our objective in this study was to evaluate the relationship between faculty intrinsic motivation, extrinsic motivation, and demographic variables and the extent of active learning use in the classroom. An online survey was administered to individual faculty members at 137 colleges and schools of pharmacy across the United States. The survey assessed intrinsic and extrinsic motivations, active learning strategies, classroom time dedicated to active learning, and faculty development resources. Bivariate associations and multivariable stepwise linear regression were used to analyze the results. In total, 979 faculty members completed the questionnaire (23.6% response rate). All motivation variables were significantly correlated with percent active learning use (p active learning methods used in the last year (r = 0.259, p active learning use. Our results suggest that faculty members who are intrinsically motivated to use active learning are more likely to dedicate additional class time to active learning. Furthermore, intrinsic motivation may be positively associated with encouraging faculty members to attend active learning workshops and supporting faculty to use various active learning strategies in the classroom. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Technology Enhanced Learning: Virtual Realities; Concrete Results--Case Study on the Impact of TEL on Learning

    Science.gov (United States)

    Al-Khatib, Hayat

    2011-01-01

    Technology Enhanced Learning is a feature of 21st century education. Innovations in ICT have provided unbound access to information in support of the learning process (APTEL, 2010; Allert et al, 2002; Baldry et al, 2006; Frustenberg et al, 2001; Sarkis, 2010). LMS has been extensively put to use in universities and educational institutions to…

  3. Active learning methods for interactive image retrieval.

    Science.gov (United States)

    Gosselin, Philippe Henri; Cord, Matthieu

    2008-07-01

    Active learning methods have been considered with increased interest in the statistical learning community. Initially developed within a classification framework, a lot of extensions are now being proposed to handle multimedia applications. This paper provides algorithms within a statistical framework to extend active learning for online content-based image retrieval (CBIR). The classification framework is presented with experiments to compare several powerful classification techniques in this information retrieval context. Focusing on interactive methods, active learning strategy is then described. The limitations of this approach for CBIR are emphasized before presenting our new active selection process RETIN. First, as any active method is sensitive to the boundary estimation between classes, the RETIN strategy carries out a boundary correction to make the retrieval process more robust. Second, the criterion of generalization error to optimize the active learning selection is modified to better represent the CBIR objective of database ranking. Third, a batch processing of images is proposed. Our strategy leads to a fast and efficient active learning scheme to retrieve sets of online images (query concept). Experiments on large databases show that the RETIN method performs well in comparison to several other active strategies.

  4. An Enhanced Genetic Approach to Composing Cooperative Learning Groups for Multiple Grouping Criteria

    Science.gov (United States)

    Hwang, Gwo-Jen; Yin, Peng-Yeng; Hwang, Chi-Wei; Tsai, Chin-Chung

    2008-01-01

    Cooperative learning is known to be an effective educational strategy in enhancing the learning performance of students. The goal of a cooperative learning group is to maximize all members' learning efficacy. This is accomplished via promoting each other's success, through assisting, sharing, mentoring, explaining, and encouragement. To achieve…

  5. Processing of action- but not stimulus-related prediction errors differs between active and observational feedback learning.

    Science.gov (United States)

    Kobza, Stefan; Bellebaum, Christian

    2015-01-01

    Learning of stimulus-response-outcome associations is driven by outcome prediction errors (PEs). Previous studies have shown larger PE-dependent activity in the striatum for learning from own as compared to observed actions and the following outcomes despite comparable learning rates. We hypothesised that this finding relates primarily to a stronger integration of action and outcome information in active learners. Using functional magnetic resonance imaging, we investigated brain activations related to action-dependent PEs, reflecting the deviation between action values and obtained outcomes, and action-independent PEs, reflecting the deviation between subjective values of response-preceding cues and obtained outcomes. To this end, 16 active and 15 observational learners engaged in a probabilistic learning card-guessing paradigm. On each trial, active learners saw one out of five cues and pressed either a left or right response button to receive feedback (monetary win or loss). Each observational learner observed exactly those cues, responses and outcomes of one active learner. Learning performance was assessed in active test trials without feedback and did not differ between groups. For both types of PEs, activations were found in the globus pallidus, putamen, cerebellum, and insula in active learners. However, only for action-dependent PEs, activations in these structures and the anterior cingulate were increased in active relative to observational learners. Thus, PE-related activity in the reward system is not generally enhanced in active relative to observational learning but only for action-dependent PEs. For the cerebellum, additional activations were found across groups for cue-related uncertainty, thereby emphasising the cerebellum's role in stimulus-outcome learning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Making Sense of Technologically Enhanced Learning in Context: A Research Agenda

    DEFF Research Database (Denmark)

    Heilesen, Simon; Jensen, Sisse Siggaard

    2006-01-01

    This chapter proposes that technologically enhanced learning should be understood and evaluated by means of a combination of analytical strategies. These will allow us to analyze it both as seen from the macro analytical or ‘outside’ perspective of a rich social, cultural and technological context...... university education. Problematizing some common assumptions about technologically enhanced learning the authors define ten questions that may serve as the basis for a research agenda meant to help us understand why the many visions and ideals of the online or remediated classroom are not more widely...

  7. Proceedings of the 2nd Workshop on Awareness and Reflection in Technology-Enhanced Learning

    NARCIS (Netherlands)

    Moore, Adam; Pammer, Viktoria; Pannese, Lucia; Prilla, Michael; Rajagopal, Kamakshi; Reinhardt, Wolfgang; Ullman, Thomas; Voigt, Christian

    2013-01-01

    Moore, A., Pammer, V., Pannese, L., Prilla, M., Rajagopal, K., Reinhardt, W., Ullman, Th. D., & Voigt, Ch. (Eds.) (2012). Proceedings of the 2nd Workshop on Awareness and Reflection in Technology Enhanced Learning. In conjunction with the 7th European Conference on Technology Enhanced Learning: 21st

  8. Chronic mitragynine (kratom) enhances punishment resistance in natural reward seeking and impairs place learning in mice.

    Science.gov (United States)

    Ismail, Nurul Iman W; Jayabalan, Nanthini; Mansor, Sharif Mahsufi; Müller, Christian P; Muzaimi, Mustapha

    2017-07-01

    Kratom (Mitragyna speciosa) is a widely abused herbal drug preparation in Southeast Asia. It is often consumed as a substitute for heroin, but imposing itself unknown harms and addictive burdens. Mitragynine is the major psychostimulant constituent of kratom that has recently been reported to induce morphine-like behavioural and cognitive effects in rodents. The effects of chronic consumption on non-drug related behaviours are still unclear. In the present study, we investigated the effects of chronic mitragynine treatment on spontaneous activity, reward-related behaviour and cognition in mice in an IntelliCage® system, and compared them with those of morphine and Δ-9-tetrahydrocannabinol (THC). We found that chronic mitragynine treatment significantly potentiated horizontal exploratory activity. It enhanced spontaneous sucrose preference and also its persistence when the preference had aversive consequences. Furthermore, mitragynine impaired place learning and its reversal. Thereby, mitragynine effects closely resembled that of morphine and THC sensitisation. These findings suggest that chronic mitragynine exposure enhances spontaneous locomotor activity and the preference for natural rewards, but impairs learning and memory. These findings confirm pleiotropic effects of mitragynine (kratom) on human lifestyle, but may also support the recognition of the drug's harm potential. © 2016 Society for the Study of Addiction.

  9. H2Oh!: Classroom demonstrations and activities for improving student learning of water concepts

    Science.gov (United States)

    Chan-Hilton, A.; Neupauer, R. M.; Burian, S. J.; Lauer, J. W.; Mathisen, P. P.; Mays, D. C.; Olson, M. S.; Pomeroy, C. A.; Ruddell, B. L.; Sciortino, A.

    2012-12-01

    Research has shown that the use of demonstrations and hands-on activities in the classroom enhances student learning. Students learn more and enjoy classes more when visual and active learning are incorporated into the lecture. Most college-aged students prefer visual modes of learning, while most instruction is conducted in a lecture, or auditory, format. The use of classroom demonstrations provides opportunities for incorporating visual and active learning into the classroom environment. However, while most instructors acknowledge the benefits of these teaching methods, they typically do not have the time and resources to develop and test such activities and to develop plans to incorporate them into their lectures. Members of the Excellence in Water Resources Education Task Committee of the Environmental and Water Resources Institute (EWRI) of the American Society of Civil Engineers (ASCE) have produced a publication that contains a collection of activities aimed to foster excellence in water resources and hydrology education and improve student learning of principles. The book contains forty-five demonstrations and activities that can be used in water-related classes with topics in fluid mechanics, hydraulics, surface water hydrology, groundwater hydrology, and water quality. We present examples of these activities, including topics such as conservation of momentum, buoyancy, Bernoulli's principle, drag force, pipe flow, watershed delineation, reservoir networks, head distribution in aquifers, and molecular diffusion in a porous medium. Unlike full laboratory exercises, these brief demonstrations and activities (most of which take less than fifteen minutes) can be easily incorporated into classroom lectures. For each demonstration, guidance for preparing and conducting the activity, along with a brief overview of the principles that are demonstrated, is provided. The target audience of the activities is undergraduate students, although the activities also may be

  10. Challenges of Using Learning Analytics Techniques to Support Mobile Learning

    Science.gov (United States)

    Arrigo, Marco; Fulantelli, Giovanni; Taibi, Davide

    2015-01-01

    Evaluation of Mobile Learning remains an open research issue, especially as regards the activities that take place outside the classroom. In this context, Learning Analytics can provide answers, and offer the appropriate tools to enhance Mobile Learning experiences. In this poster we introduce a task-interaction framework, using learning analytics…

  11. Active Learning in Engineering Education: A (Re)Introduction

    Science.gov (United States)

    Lima, Rui M.; Andersson, Pernille Hammar; Saalman, Elisabeth

    2017-01-01

    The informal network "Active Learning in Engineering Education" (ALE) has been promoting Active Learning since 2001. ALE creates opportunity for practitioners and researchers of engineering education to collaboratively learn how to foster learning of engineering students. The activities in ALE are centred on the vision that learners…

  12. Negative viscosity can enhance learning of inertial dynamics.

    Science.gov (United States)

    Huang, Felix C; Patton, James L; Mussa-Ivaldi, Ferdinando A

    2009-06-01

    We investigated how learning of inertial load manipulation is influenced by movement amplification with negative viscosity. Using a force-feedback device, subjects trained on anisotropic loads (5 orientations) with free movements in one of three conditions (inertia only, negative viscosity only, or combined), prior to common evaluation conditions (prescribed circular pattern with inertia only). Training with Combined-Load resulted in lower error (6.89±3.25%) compared to Inertia-Only (8.40±4.32%) and Viscosity-Only (8.17±4.13%) according to radial deviation analysis (% of trial mean radius). Combined-Load and Inertia-Only groups exhibited similar unexpected no-load trials (8.38±4.31% versus 8.91±4.70% of trial mean radius), which suggests comparable low-impedance strategies. These findings are remarkable since negative viscosity, only available during training, evidently enhanced learning when combined with inertia. Modeling analysis suggests that a feedforward after-effect of negative viscosity cannot predict such performance gains. Instead, results from Combined-Load training are consistent with greater feedforward inertia compensation along with a small increase in impedance control. The capability of the nervous system to generalize learning from negative viscosity suggests an intriguing new method for enhancing sensorimotor adaptation.

  13. The double-loop feedback for active learning with understanding

    DEFF Research Database (Denmark)

    Christensen, Hans Peter

    2004-01-01

    Learning is an active process, and in engineering education authentic projects is often used to activate the students and promote learning. However, it is not all activity that leads to deep learning; and in a rapid changing society deep understanding is necessary for life-long learning. Empirical...... findings at DTU question the direct link between high activity and a deep approach to learning. Active learning is important to obtain engineering competencies, but active learning requires more than activity. Feedback and reflection is crucial to the learning process, since new knowledge is built...... on the student’s existing understanding. A model for an active learning process with a double-loop feedback is suggested - the first loop gives the student experience through experimentation, the second conceptual understanding through reflection. Students often miss the second loop, so it is important...

  14. Can YouTube enhance student nurse learning?

    Science.gov (United States)

    Clifton, Andrew; Mann, Claire

    2011-05-01

    The delivery of nurse education has changed radically in the past two decades. Increasingly, nurse educators are using new technology in the classroom to enhance their teaching and learning. One recent technological development to emerge is the user-generated content website YouTube. Originally YouTube was used as a repository for sharing home-made videos, more recently online content is being generated by political parties, businesses and educationalists. We recently delivered a module to undergraduate student nurses in which the teaching and learning were highly populated with YouTube resources. We found that the use of YouTube videos increased student engagement, critical awareness and facilitated deep learning. Furthermore, these videos could be accessed at any time of the day and from a place to suit the student. We acknowledge that there are some constraints to using YouTube for teaching and learning particularly around the issue of unregulated content which is often misleading, inaccurate or biased. However, we strongly urge nurse educators to consider using YouTube for teaching and learning, in and outside the classroom, to a generation of students who are native of a rapidly changing digital world. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Effect of quercetin on chronic enhancement of spatial learning and memory of mice

    Institute of Scientific and Technical Information of China (English)

    LIU; Jiancai; YU; Huqing

    2006-01-01

    In this study we evaluated the effect of quercetin on D-galactose-induced aged mice using the Morris water maze (MWM) test. Based on the free radical theory of aging, experiments were performed to study the possible biochemical mechanisms of glutathione (GSH) level and hydroxyl radical (OH-) in the hippocampus and cerebral cortex and the brain tissue enzyme activity of the mice. The results indicated that quercetin can enhance the exploratory behavior, spatial learning and memory of the mice. The effects relate with enhancing the brain functions and inhibiting oxidative stress by quercetin, and relate with increasing the GSH level and decreasing the OH- content. These findings suggest that quercetin can work as a possible natural anti-aging pharmaceutical product.

  16. Incorporation of Socio-scientific Content into Active Learning Activities

    Science.gov (United States)

    King, D. B.; Lewis, J. E.; Anderson, K.; Latch, D.; Sutheimer, S.; Webster, G.; Moog, R.

    2014-12-01

    Active learning has gained increasing support as an effective pedagogical technique to improve student learning. One way to promote active learning in the classroom is the use of in-class activities in place of lecturing. As part of an NSF-funded project, a set of in-class activities have been created that use climate change topics to teach chemistry content. These activities use the Process Oriented Guided Inquiry Learning (POGIL) methodology. In this pedagogical approach a set of models and a series of critical thinking questions are used to guide students through the introduction to or application of course content. Students complete the activities in their groups, with the faculty member as a facilitator of learning. Through assigned group roles and intentionally designed activity structure, process skills, such as teamwork, communication, and information processing, are developed during completion of the activity. Each of these climate change activities contains a socio-scientific component, e.g., social, ethical and economic data. In one activity, greenhouse gases are used to explain the concept of dipole moment. Data about natural and anthropogenic production rates, global warming potential and atmospheric lifetimes for a list of greenhouse gases are presented. The students are asked to identify which greenhouse gas they would regulate, with a corresponding explanation for their choice. They are also asked to identify the disadvantages of regulating the gas they chose in the previous question. In another activity, where carbon sequestration is used to demonstrate the utility of a phase diagram, students use economic and environmental data to choose the best location for sequestration. Too often discussions about climate change (both in and outside the classroom) consist of purely emotional responses. These activities force students to use data to support their arguments and hypothesize about what other data could be used in the corresponding discussion to

  17. Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers.

    Directory of Open Access Journals (Sweden)

    Muhammad Ahmad

    Full Text Available Hyperspectral image classification with a limited number of training samples without loss of accuracy is desirable, as collecting such data is often expensive and time-consuming. However, classifiers trained with limited samples usually end up with a large generalization error. To overcome the said problem, we propose a fuzziness-based active learning framework (FALF, in which we implement the idea of selecting optimal training samples to enhance generalization performance for two different kinds of classifiers, discriminative and generative (e.g. SVM and KNN. The optimal samples are selected by first estimating the boundary of each class and then calculating the fuzziness-based distance between each sample and the estimated class boundaries. Those samples that are at smaller distances from the boundaries and have higher fuzziness are chosen as target candidates for the training set. Through detailed experimentation on three publically available datasets, we showed that when trained with the proposed sample selection framework, both classifiers achieved higher classification accuracy and lower processing time with the small amount of training data as opposed to the case where the training samples were selected randomly. Our experiments demonstrate the effectiveness of our proposed method, which equates favorably with the state-of-the-art methods.

  18. Enhanced Learning through Multimodal Training: Evidence from a Comprehensive Cognitive, Physical Fitness, and Neuroscience Intervention.

    Science.gov (United States)

    Ward, N; Paul, E; Watson, P; Cooke, G E; Hillman, C H; Cohen, N J; Kramer, A F; Barbey, A K

    2017-07-19

    The potential impact of brain training methods for enhancing human cognition in healthy and clinical populations has motivated increasing public interest and scientific scrutiny. At issue is the merits of intervention modalities, such as computer-based cognitive training, physical exercise training, and non-invasive brain stimulation, and whether such interventions synergistically enhance cognition. To investigate this issue, we conducted a comprehensive 4-month randomized controlled trial in which 318 healthy, young adults were enrolled in one of five interventions: (1) Computer-based cognitive training on six adaptive tests of executive function; (2) Cognitive and physical exercise training; (3) Cognitive training combined with non-invasive brain stimulation and physical exercise training; (4) Active control training in adaptive visual search and change detection tasks; and (5) Passive control. Our findings demonstrate that multimodal training significantly enhanced learning (relative to computer-based cognitive training alone) and provided an effective method to promote skill learning across multiple cognitive domains, spanning executive functions, working memory, and planning and problem solving. These results help to establish the beneficial effects of multimodal intervention and identify key areas for future research in the continued effort to improve human cognition.

  19. From Tootsie Rolls to Composites: Assessing a Spectrum of Active Learning Activities in Engineering Mechanics

    Science.gov (United States)

    2009-05-01

    The introduction of active learning exercises into a traditional lecture has been shown to improve students’ learning. Hands-on learning...opportunities in labs and projects provide are additional tools in the active learning toolbox. This paper presents a series of innovative hands-on active ... learning activities for mechanics of materials topics. These activities are based on a Methodology for Developing Hands-on Active Learning Activities, a

  20. Using the 5E Learning Cycle with Metacognitive Technique to Enhance Students’ Mathematical Critical Thinking Skills

    Directory of Open Access Journals (Sweden)

    Runisah Runisah

    2017-02-01

    Full Text Available This study aims to describe enhancement and achievement of mathematical critical thinking skills of students who received the 5E Learning Cycle with Metacognitive technique, the 5E Learning Cycle, and conventional learning. This study use experimental method with pretest-posttest control group design. Population are junior high school students in Indramayu city, Indonesia. Sample are three classes of eighth grade students from high level school and three classes from medium level school. The study reveal that in terms of overall, mathematical critical thinking skills enhancement and achievement of students who received the 5E Learning Cycle with Metacognitive technique is better than students who received the 5E Learning Cycle and conventional learning. Mathematical critical thinking skills of students who received the 5E Learning Cycle is better than students who received conventional learning. There is no interaction effect between learning model and school level toward enhancement and achievement of students’ mathematical critical thinking skills.

  1. The strategic use of lecture recordings to facilitate an active and self-directed learning approach.

    Science.gov (United States)

    Topale, Luminica

    2016-08-12

    New learning technologies have the capacity to dramatically impact how students go about learning and to facilitate an active, self-directed learning approach. In U. S. medical education, students encounter a large volume of content, which must be mastered at an accelerated pace. The added pressure to excel on the USMLE Step 1 licensing exam and competition for residency placements, require that students adopt an informed approach to the use of learning technologies so as to enhance rather than to detract from the learning process. The primary aim of this study was to gain a better understanding of how students were using recorded lectures in their learning and how their study habits have been influenced by the technology. Survey research was undertaken using a convenience sample. Students were asked to voluntarily participate in an electronic survey comprised of 27 closed ended, multiple choice questions, and one open ended item. The survey was designed to explore students' perceptions of how recorded lectures affected their choices regarding class participation and impacted their learning and to gain an understanding of how recorded lectures facilitated a strategic, active learning process. Findings revealed that recorded lectures had little influence on students' choices to participate, and that the perceived benefits of integrating recorded lectures into study practices were related to their facilitation of and impact on efficient, active, and self-directed learning. This study was a useful investigation into how the availability of lecture capture technology influenced medical students' study behaviors and how students were making valuable use of the technology as an active learning tool.

  2. Automatic Earthquake Detection by Active Learning

    Science.gov (United States)

    Bergen, K.; Beroza, G. C.

    2017-12-01

    In recent years, advances in machine learning have transformed fields such as image recognition, natural language processing and recommender systems. Many of these performance gains have relied on the availability of large, labeled data sets to train high-accuracy models; labeled data sets are those for which each sample includes a target class label, such as waveforms tagged as either earthquakes or noise. Earthquake seismologists are increasingly leveraging machine learning and data mining techniques to detect and analyze weak earthquake signals in large seismic data sets. One of the challenges in applying machine learning to seismic data sets is the limited labeled data problem; learning algorithms need to be given examples of earthquake waveforms, but the number of known events, taken from earthquake catalogs, may be insufficient to build an accurate detector. Furthermore, earthquake catalogs are known to be incomplete, resulting in training data that may be biased towards larger events and contain inaccurate labels. This challenge is compounded by the class imbalance problem; the events of interest, earthquakes, are infrequent relative to noise in continuous data sets, and many learning algorithms perform poorly on rare classes. In this work, we investigate the use of active learning for automatic earthquake detection. Active learning is a type of semi-supervised machine learning that uses a human-in-the-loop approach to strategically supplement a small initial training set. The learning algorithm incorporates domain expertise through interaction between a human expert and the algorithm, with the algorithm actively posing queries to the user to improve detection performance. We demonstrate the potential of active machine learning to improve earthquake detection performance with limited available training data.

  3. A Multiplayer Learning Game based on Mixed Reality to Enhance Awareness on Archaeology

    Directory of Open Access Journals (Sweden)

    Mathieu Loiseau

    2014-08-01

    Full Text Available Our research deals with the development of a new type of game-based learning environment: (MMORPG based on mixed reality, applied in the archaeological domain. In this paper, we propose a learning scenario that enhances players’ motivation thanks to individual, collaborative and social activities and that offers a continuous experience between the virtual environment and real places (archaeological sites, museum. After describing the challenge to a rich multidisciplinary approach involving both computer scientists and archaeologists, we present two types of game: multiplayer online role-playing games and mixed reality games. We build on the specificities of these games to make the design choices described in the paper. We also present three modular features we have developed to support independently three activities of the scenario. The proposed approach aims at raising awareness among people on the scientific approach in Archaeology, by providing them information in the virtual environment and encouraging them to go on real sites. We finally discuss the issues raised by this work, such as the tensions between the perceived individual, team and community utilities, as well as the choice of the entering point in the learning scenario (real or virtual for the players’ involvement in the game.

  4. Active learning of Pareto fronts.

    Science.gov (United States)

    Campigotto, Paolo; Passerini, Andrea; Battiti, Roberto

    2014-03-01

    This paper introduces the active learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multiobjective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learned from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art estimation of distribution algorithms and widely known genetic techniques.

  5. Bringing back the body into the mind: Gestures enhance word learning in foreign language

    Directory of Open Access Journals (Sweden)

    Manuela eMacedonia

    2014-12-01

    Full Text Available Foreign language education in the 21st century still teaches vocabulary mainly through reading and listening activities. This is due to the link between teaching practice and traditional philosophy of language, where language is considered to be an abstract phenomenon of the mind. However, a number of studies have shown that accompanying words or phrases of a foreign language with gestures leads to better memory results. In this paper, I review behavioral research on the positive effects of gestures on memory. Then I move to the factors that have been addressed as contributing to the effect, and I embed the reviewed evidence in the theoretical framework of embodiment. Finally, I argue that gestures accompanying foreign language vocabulary learning create embodied representations of those words. I conclude by advocating the use of gestures in future language education as a learning tool that enhances learning the mind.

  6. Distinctiveness and Bidirectional Effects in Input Enhancement for Vocabulary Learning

    Science.gov (United States)

    Barcroft, Joe

    2003-01-01

    This study examined input enhancement and second language (L2) vocabulary learning while exploring the role of "distinctiveness," the degree to which an item in the input diverges from the form in which other items in the input are presented, with regard to the nature and direction of the effects of enhancement. In this study,…

  7. The role of professional objects in technology-enhanced learning environments in higher education

    NARCIS (Netherlands)

    Zitter, I.I.; Bruijn, E. de; Simons, P.R.J.; Cate, Th.J. ten

    2010-01-01

    We study project-based, technology-enhanced learning environments in higher education, which should produce, by means of specific mechanisms, learning outcomes in terms of transferable knowledge and learning-, thinking-, collaboration- and regulation-skills. Our focus is on the role of objects from

  8. Students' Satisfaction on Their Learning Process in Active Learning and Traditional Classrooms

    Science.gov (United States)

    Hyun, Jung; Ediger, Ruth; Lee, Donghun

    2017-01-01

    Studies have shown Active Learning Classrooms [ALCs] help increase student engagement and improve student performance. However, remodeling all traditional classrooms to ALCs entails substantial financial burdens. Thus, an imperative question for institutions of higher education is whether active learning pedagogies can improve learning outcomes…

  9. Self-Regulated Learning Strategies of Engineering College Students While Learning Electric Circuit Concepts with Enhanced Guided Notes

    Science.gov (United States)

    Lawanto, Oenardi; Santoso, Harry

    2013-01-01

    The current study evaluated engineering college students' self-regulated learning (SRL) strategies while learning electric circuit concepts using enhanced guided notes (EGN). Our goal was to describe how students exercise SRL strategies and how their grade performance changes after using EGN. Two research questions guided the study: (1) To what…

  10. A model of using social media for collaborative learning to enhance learners’ performance on learning

    Directory of Open Access Journals (Sweden)

    Waleed Mugahed Al-Rahmi

    2017-10-01

    Full Text Available Social media has been always described as the channel through which knowledge is transmitted between communities and learners. This social media has been utilized by colleges in a way to encourage collaborative learning and social interaction. This study explores the use of social media in the process of collaborative learning through learning Quran and Hadith. Through this investigation, different factors enhancing collaborative learning in learning Quran and Hadith in the context of using social media are going to be examined. 340 respondents participated in this study. The structural equation modeling (SEM was used to analyze the data obtained. Upon analysis and structural model validities, the study resulted in a model used for measuring the influences of the different variables. The study reported direct and indirect significant impacts of these variables on collaborative learning through the use of social media which might lead to a better performance by learners.

  11. GeoMapApp Learning Activities: Grab-and-go inquiry-based geoscience activities that bring cutting-edge technology to the classroom

    Science.gov (United States)

    Goodwillie, A. M.; Kluge, S.

    2011-12-01

    NSF-funded GeoMapApp Learning Activities (http://serc.carleton.edu/geomapapp) provide self-contained learning opportunities that are centred around the principles of guided inquiry. The activities allow students to interact with and analyse research-quality geoscience data to explore and enhance student understanding of underlying geoscience content and concepts. Each activity offers ready-to-use step-by-step student instructions and answer sheets that can be downloaded from the web page. Also provided are annotated teacher versions of the worksheets that include teaching tips, additional content and suggestions for further work. Downloadable pre- and post- quizzes tied to each activity help educators gauge the learning progression of their students. Short multimedia tutorials and details on content alignment with state and national teaching standards round out the package of material that comprises each "grab-and-go" activity. GeoMapApp Learning Activities expose students to content and concepts typically found at the community college, high school and introductory undergraduate levels. The activities are based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool that allows students to access a wide range of geoscience data sets in a virtual lab-like environment. Activities that have so far been created under this project include student exploration of seafloor spreading rates, a study of mass wasting as revealed through geomorphological evidence, and an analysis of plate motion and hotspot traces. The step-by-step instructions and guided inquiry approach lead students through each activity, thus reducing the need for teacher intervention whilst also boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities

  12. Probabilistic electricity price forecasting with variational heteroscedastic Gaussian process and active learning

    International Nuclear Information System (INIS)

    Kou, Peng; Liang, Deliang; Gao, Lin; Lou, Jianyong

    2015-01-01

    Highlights: • A novel active learning model for the probabilistic electricity price forecasting. • Heteroscedastic Gaussian process that captures the local volatility of the electricity price. • Variational Bayesian learning that avoids over-fitting. • Active learning algorithm that reduces the computational efforts. - Abstract: Electricity price forecasting is essential for the market participants in their decision making. Nevertheless, the accuracy of such forecasting cannot be guaranteed due to the high variability of the price data. For this reason, in many cases, rather than merely point forecasting results, market participants are more interested in the probabilistic price forecasting results, i.e., the prediction intervals of the electricity price. Focusing on this issue, this paper proposes a new model for the probabilistic electricity price forecasting. This model is based on the active learning technique and the variational heteroscedastic Gaussian process (VHGP). It provides the heteroscedastic Gaussian prediction intervals, which effectively quantify the heteroscedastic uncertainties associated with the price data. Because the high computational effort of VHGP hinders its application to the large-scale electricity price forecasting tasks, we design an active learning algorithm to select a most informative training subset from the whole available training set. By constructing the forecasting model on this smaller subset, the computational efforts can be significantly reduced. In this way, the practical applicability of the proposed model is enhanced. The forecasting performance and the computational time of the proposed model are evaluated using the real-world electricity price data, which is obtained from the ANEM, PJM, and New England ISO

  13. Intrinsic monitoring of learning success facilitates memory encoding via the activation of the SN/VTA-Hippocampal loop.

    Science.gov (United States)

    Ripollés, Pablo; Marco-Pallarés, Josep; Alicart, Helena; Tempelmann, Claus; Rodríguez-Fornells, Antoni; Noesselt, Toemme

    2016-09-20

    Humans constantly learn in the absence of explicit rewards. However, the neurobiological mechanisms supporting this type of internally-guided learning (without explicit feedback) are still unclear. Here, participants who completed a task in which no external reward/feedback was provided, exhibited enhanced fMRI-signals within the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop) when successfully grasping the meaning of new-words. Importantly, new-words that were better remembered showed increased activation and enhanced functional connectivity between the midbrain, hippocampus, and ventral striatum. Moreover, enhanced emotion-related physiological measures and subjective pleasantness ratings during encoding were associated with remembered new-words after 24 hr. Furthermore, increased subjective pleasantness ratings were also related to new-words remembered after seven days. These results suggest that intrinsic-potentially reward-related-signals, triggered by self-monitoring of correct performance, can promote the storage of new information into long-term memory through the activation of the SN/VTA-Hippocampal loop, possibly via dopaminergic modulation of the midbrain.

  14. Group-Based Active Learning of Classification Models.

    Science.gov (United States)

    Luo, Zhipeng; Hauskrecht, Milos

    2017-05-01

    Learning of classification models from real-world data often requires additional human expert effort to annotate the data. However, this process can be rather costly and finding ways of reducing the human annotation effort is critical for this task. The objective of this paper is to develop and study new ways of providing human feedback for efficient learning of classification models by labeling groups of examples. Briefly, unlike traditional active learning methods that seek feedback on individual examples, we develop a new group-based active learning framework that solicits label information on groups of multiple examples. In order to describe groups in a user-friendly way, conjunctive patterns are used to compactly represent groups. Our empirical study on 12 UCI data sets demonstrates the advantages and superiority of our approach over both classic instance-based active learning work, as well as existing group-based active-learning methods.

  15. Enhancing E-Learning with VRML Techniques

    OpenAIRE

    Sangeetha Senthilkumar; E. Kirubakaran

    2011-01-01

    Virtual Reality (VR) is a computer-generated three-dimensional space that is multi-sensorial, interactive and engaging. Virtual reality is an artificial environment that is created with software and presented to the user in such a way that the user suspends belief and accepts it as a real environment. On a computer, virtual reality is primarily experienced through two of the five senses: sight and sound. This research paper is focused on enhancing E-Learning using the three dimensional Web Te...

  16. Physical experience enhances science learning.

    Science.gov (United States)

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  17. Scene recognition based on integrating active learning with dictionary learning

    Science.gov (United States)

    Wang, Chengxi; Yin, Xueyan; Yang, Lin; Gong, Chengrong; Zheng, Caixia; Yi, Yugen

    2018-04-01

    Scene recognition is a significant topic in the field of computer vision. Most of the existing scene recognition models require a large amount of labeled training samples to achieve a good performance. However, labeling image manually is a time consuming task and often unrealistic in practice. In order to gain satisfying recognition results when labeled samples are insufficient, this paper proposed a scene recognition algorithm named Integrating Active Learning and Dictionary Leaning (IALDL). IALDL adopts projective dictionary pair learning (DPL) as classifier and introduces active learning mechanism into DPL for improving its performance. When constructing sampling criterion in active learning, IALDL considers both the uncertainty and representativeness as the sampling criteria to effectively select the useful unlabeled samples from a given sample set for expanding the training dataset. Experiment results on three standard databases demonstrate the feasibility and validity of the proposed IALDL.

  18. The role of the visual arts in the enhancing the learning process.

    Science.gov (United States)

    Tyler, Christopher W; Likova, Lora T

    2012-01-01

    With all the wealth of scientific activities, there remains a certain stigma associated with careers in science, as a result of the inevitable concentration on narrow specializations that are inaccessible to general understanding. Enhancement of the process of scientific learning remains a challenge, particularly in the school setting. While direct explanation seems the best approach to expedite learning any specific subject, it is well known that the ability to deeply absorb facts and concepts is greatly enhanced by placing them in a broader context of relevance to the issues of everyday life and to the larger goals of improvement of the quality of life and advancement to a more evolved society as a whole. If the sciences can be associated with areas of artistic endeavor, they may be viewed as more accessible and favorable topics of study. There is consequently an urgent need for research in the relationship between learning and experience in the arts because both art education and scientific literacy remain at an inadequate level even in economically advanced countries. The focus of this review is the concept that inspiration is an integral aspect of the artistic experience, both for the artist and for the viewer of the artwork. As an integrative response, inspiration involves not only higher cortical circuitry but its integration with the deep brain structures such as limbic system and medial frontal structures, which are understood to mediate the experience of emotions, motivational rewards, and the appreciation of the esthetic values of the impinging stimuli. In this sense, inspiration can turn almost any occupation in life into an avocation, a source of satisfaction in achieving life goals. Conversely, when inspiration is lacking, the motivation to learn, adapt, and prosper is impeded. Thus, inspiration may be viewed as a potent aspect of human experience in linking art and science.

  19. Implementing digital technology to enhance student learning of pathology.

    Science.gov (United States)

    Farah, C S; Maybury, T

    2009-08-01

    The introduction of digital technologies into the dental curriculum is an ongoing feature of broader changes going on in tertiary education. This report examines the introduction of digital virtual microscopy technology into the curriculum of the School of Dentistry at the University of Queensland (UQ) in Brisbane, Australia. Sixty students studying a course in pathology in 2005 were introduced to virtual microscopy technology alongside the more traditional light microscope and then asked to evaluate their own learning outcomes from this technology via a structured 5-point LIKART survey. A wide variety of questions dealing the pedagogic implications of the introduction of virtual microscopy into pathology were asked of students with the overall result being that it positively enhanced their learning of pathology via digital microscopic means. The success of virtual microscopy in dentistry at UQ is then discussed in the larger context of changes going on in tertiary education. In particular, the change from the print-literate tradition to the electronic one, that is from 'literacy to electracy'. Virtual microscopy is designated as a component of this transformation to electracy. Whilst traditional microscopic skills may still be valued in dental curricula, the move to virtual microscopy and computer-assisted, student-centred learning of pathology appears to enhance the learning experience in relation to its effectiveness in helping students engage and interact with the course material.

  20. Using Technology-Enhanced, Cooperative, Group-Project Learning for Student Comprehension and Academic Performance

    Science.gov (United States)

    Tlhoaele, Malefyane; Suhre, Cor; Hofman, Adriaan

    2016-01-01

    Cooperative learning may improve students' motivation, understanding of course concepts, and academic performance. This study therefore enhanced a cooperative, group-project learning technique with technology resources to determine whether doing so improved students' deep learning and performance. A sample of 118 engineering students, randomly…

  1. Learning from Errors in Dual Vocational Education: Video-Enhanced Instructional Strategies

    Science.gov (United States)

    Cattaneo, Alberto A. P.; Boldrini, Elena

    2017-01-01

    Purpose: Starting from the identification of some theoretically driven instructional principles, this paper presents a set of empirical cases based on strategies to learn from errors. The purpose of this paper is to provide first evidence about the feasibility and the effectiveness for learning of video-enhanced error-based strategies in…

  2. Activation of D1/5 Dopamine Receptors: A Common Mechanism for Enhancing Extinction of Fear and Reward-Seeking Behaviors.

    Science.gov (United States)

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2016-07-01

    Dopamine is critical for many processes that drive learning and memory, including motivation, prediction error, incentive salience, memory consolidation, and response output. Theories of dopamine's function in these processes have, for the most part, been developed from behavioral approaches that examine learning mechanisms in appetitive tasks. A parallel and growing literature indicates that dopamine signaling is involved in consolidation of memories into stable representations in aversive tasks such as fear conditioning. Relatively little is known about how dopamine may modulate memories that form during extinction, when organisms learn that the relation between previously associated events is severed. We investigated whether fear and reward extinction share common mechanisms that could be enhanced with dopamine D1/5 receptor activation. Pharmacological activation of dopamine D1/5 receptors (with SKF 81297) enhanced extinction of both cued and contextual fear. These effects also occurred in the extinction of cocaine-induced conditioned place preference, suggesting that the observed effects on extinction were not specific to a particular type of procedure (aversive or appetitive). A cAMP/PKA biased D1 agonist (SKF 83959) did not affect fear extinction, whereas a broadly efficacious D1 agonist (SKF 83822) promoted fear extinction. Together, these findings show that dopamine D1/5 receptor activation is a target for the enhancement of fear or reward extinction.

  3. The use of blogging in tertiary healthcare educational settings to enhance reflective learning in nursing leadership.

    Science.gov (United States)

    Levine, Theodora C

    2014-01-01

    Web 2.0 technologies such as blogs are increasingly used in academic settings; however, they are not widely used in hospital settings. This project explored the effectiveness of using a blog to enhance reflective learning in a nurse manager leadership development course of a tertiary care hospital setting. Differences in reflective learning between the blog group and traditional learning group were measured post training using a Reflective Learning and Interaction Questionnaire. Although the groups did not differ significantly on any reflective learning dimension (p educators contemplating to incorporate blogs into their learning strategies to enhance reflective learning.

  4. Evolution of Various Library Instruction Strategies: Using Student Feedback to Create and Enhance Online Active Learning Assignments

    Directory of Open Access Journals (Sweden)

    Marcie Lynne Jacklin

    2013-06-01

    Full Text Available This case study traces the evolution of library assignments for biological science students from paper-based workbooks in a blended (hands-on workshop to blended learning workshops using online assignments to online active learning modules which are stand-alone without any face-to-face instruction. As the assignments evolved to adapt to online learning supporting materials in the form of PDFs (portable document format, screen captures and screencasting were embedded into the questions as teaching moments to replace face-to-face instruction. Many aspects of the evolution of the assignment were based on student feedback from evaluations, input from senior lab demonstrators and teaching assistants, and statistical analysis of the students’ performance on the assignment. Advantages and disadvantages of paper-based and online assignments are discussed. An important factor for successful online learning may be the ability to get assistance.

  5. Teaching Plate Tectonic Concepts using GeoMapApp Learning Activities

    Science.gov (United States)

    Goodwillie, A. M.; Kluge, S.

    2012-12-01

    GeoMapApp Learning Activities ( http://serc.carleton.edu/geomapapp/collection.html ) can help educators to expose undergraduate students to a range of earth science concepts using high-quality data sets in an easy-to-use map-based interface called GeoMapApp. GeoMapApp Learning Activities require students to interact with and analyse research-quality geoscience data as a means to explore and enhance their understanding of underlying content and concepts. Each activity is freely available through the SERC-Carleton web site and offers step-by-step student instructions and answer sheets. Also provided are annotated educator versions of the worksheets that include teaching tips, additional content and suggestions for further work. The activities can be used "off-the-shelf". Or, since the educator may require flexibility to tailor the activities, the documents are provided in Word format for easy modification. Examples of activities include one on the concept of seafloor spreading that requires students to analyse global seafloor crustal age data to calculate spreading rates in different ocean basins. Another activity has students explore hot spots using radiometric age dating of rocks along the Hawaiian-Emperor seamount chain. A third focusses upon the interactive use of contours and profiles to help students visualise 3-D topography on 2-D computer screens. A fourth activity provides a study of mass wasting as revealed through geomorphological evidence. The step-by-step instructions and guided inquiry approach reduce the need for teacher intervention whilst boosting the time that students can spend on productive exploration and learning. The activities can be used, for example, in a classroom lab with the educator present and as self-paced assignments in an out-of-class setting. GeoMapApp Learning Activities are funded through the NSF GeoEd program and are aimed at students in the introductory undergraduate, community college and high school levels. The activities are

  6. Role- and Relationship-Based Identity Management for Privacy-Enhanced E-Learning

    Science.gov (United States)

    Anwar, Mohd; Greer, Jim

    2012-01-01

    An e-learning discussion forum, an essential component of today's e-learning systems, offers a platform for social learning activities. However, as learners participate in the discussion forum, privacy emerges as a major concern. Privacy concerns in social learning activities originate from one learner's inability to convey a desired presentation…

  7. Epigenetic switch involved in activation of pioneer factor FOXA1-dependent enhancers

    Science.gov (United States)

    Sérandour, Aurélien A.; Avner, Stéphane; Percevault, Frédéric; Demay, Florence; Bizot, Maud; Lucchetti-Miganeh, Céline; Barloy-Hubler, Frédérique; Brown, Myles; Lupien, Mathieu; Métivier, Raphaël; Salbert, Gilles; Eeckhoute, Jérôme

    2011-01-01

    Transcription factors (TFs) bind specifically to discrete regions of mammalian genomes called cis-regulatory elements. Among those are enhancers, which play key roles in regulation of gene expression during development and differentiation. Despite the recognized central regulatory role exerted by chromatin in control of TF functions, much remains to be learned regarding the chromatin structure of enhancers and how it is established. Here, we have analyzed on a genomic-scale enhancers that recruit FOXA1, a pioneer transcription factor that triggers transcriptional competency of these cis-regulatory sites. Importantly, we found that FOXA1 binds to genomic regions showing local DNA hypomethylation and that its cell-type-specific recruitment to chromatin is linked to differential DNA methylation levels of its binding sites. Using neural differentiation as a model, we showed that induction of FOXA1 expression and its subsequent recruitment to enhancers is associated with DNA demethylation. Concomitantly, histone H3 lysine 4 methylation is induced at these enhancers. These epigenetic changes may both stabilize FOXA1 binding and allow for subsequent recruitment of transcriptional regulatory effectors. Interestingly, when cloned into reporter constructs, FOXA1-dependent enhancers were able to recapitulate their cell type specificity. However, their activities were inhibited by DNA methylation. Hence, these enhancers are intrinsic cell-type-specific regulatory regions of which activities have to be potentiated by FOXA1 through induction of an epigenetic switch that includes notably DNA demethylation. PMID:21233399

  8. Educating Students for a Lifetime of Physical Activity: Enhancing Mindfulness, Motivation, and Meaning.

    Science.gov (United States)

    Ennis, Catherine D

    2017-09-01

    For many years, pedagogical scholars and physical education (PE) teachers have worked to enhance effective teaching and learning environments. Yet for some children, youth, and young adults, many of the benefits associated with a physically active lifestyle remain elusive. Enhancing programming and performance to meet physical activity goals may require moving programs beyond "effective." It will require teachers and program leaders to focus programmatic attention on strategies to actually increase students' out-of-class physical activity behavior. Transformative PE provides physical activity content within a nurturing and motivating environment that can change students' lives. It focuses on PE students' role in cognitive decision making, self-motivation, and their search for personal meaning that can add connection and relevance to physical activities. In this SHAPE America - Society of Health and Physical Educators Research Quarterly for Exercise and Sport Lecture, I have synthesized the research on these topics to emphasize useful findings applicable to teachers' everyday planning and teaching. Using sport, physical activity, dance, and adventure activities as the means to an end for personal and social growth, we can meet our commitment to effective standards-based education while preparing students for a lifetime of physical activity.

  9. Active Learning for Player Modeling

    DEFF Research Database (Denmark)

    Shaker, Noor; Abou-Zleikha, Mohamed; Shaker, Mohammad

    2015-01-01

    Learning models of player behavior has been the focus of several studies. This work is motivated by better understanding of player behavior, a knowledge that can ultimately be employed to provide player-adapted or personalized content. In this paper, we propose the use of active learning for player...... experience modeling. We use a dataset from hundreds of players playing Infinite Mario Bros. as a case study and we employ the random forest method to learn mod- els of player experience through the active learning approach. The results obtained suggest that only part of the dataset (up to half the size...... that the method can be used online during the content generation process where the mod- els can improve and better content can be presented as the game is being played....

  10. Evaluation of Recommender Systems for Technology-Enhanced Learning: Challenges and Possible Solutions

    NARCIS (Netherlands)

    Sandy, Heleau; Drachsler, Hendrik; Gillet, Dennis

    2009-01-01

    Heleou, S., Drachsler, H., & Gillet, D. (2009). Evaluation of Recommender Systems for Technology-Enhanced Learning: Challenges and Possible Solutions. 1st workshop on Context-aware Recommender Systems for Learning at the Alpine Rendez-Vous. November, 30-December, 3, 2009, Garmisch-Patenkirchen,

  11. A Tutorial Programme to Enhance Psychiatry Learning Processes within a PBL-Based Course

    Science.gov (United States)

    Hood, Sean; Chapman, Elaine

    2011-01-01

    This paper describes a tutorial programme developed at the University of Western Australia (UWA) to enhance medical students' learning processes within problem-based learning contexts. The programme encourages students to use more effective learning approaches by scaffolding the development of effective problem-solving strategies, and by reducing…

  12. 2nd International Workshop on Evidence-Based Technology Enhanced Learning

    CERN Document Server

    Gennari, Rosella; Marenzi, Ivana; Mascio, Tania; Prieta, Fernando

    2013-01-01

    Research on Technology Enhanced Learning (TEL) investigates how information and communication technologies can be designed in order to support pedagogical activities. The Evidence Based Design (EBD) of a system bases its decisions on empirical evidence and effectiveness. The evidence-based TEL workshop (ebTEL) brings together TEL and EBD.   The first edition of ebTEL collected contributions in the area of TEL from computer science, artificial intelligence, evidence-based medicine, educational psychology and pedagogy. Like the previous edition, this second edition, ebTEL’13, wants to be a forum in which TEL researchers and practitioners alike can discuss innovative evidence-based ideas, projects, and lessons related to TEL.   The workshop took place in Salamanca, Spain, on May 22nd-24th 2013.  

  13. Research on Mobile Learning Activities Applying Tablets

    Science.gov (United States)

    Kurilovas, Eugenijus; Juskeviciene, Anita; Bireniene, Virginija

    2015-01-01

    The paper aims to present current research on mobile learning activities in Lithuania while implementing flagship EU-funded CCL project on application of tablet computers in education. In the paper, the quality of modern mobile learning activities based on learning personalisation, problem solving, collaboration, and flipped class methods is…

  14. L-histidine enhances learning in stressed zebrafish

    Directory of Open Access Journals (Sweden)

    L.P.V. Cofiel

    2009-01-01

    Full Text Available The aim of the present study was to determine the effect of the histaminergic precursor L-histidine and the H3 receptor antagonist thioperamide on the learning process of zebrafish submitted or not to confinement stress. On each of the 5 consecutive days of experiment (D1, D2, D3, D4, D5, animals had to associate an interruption of the aquarium air supply with food offering. Non-stressed zebrafish received an intraperitoneal injection of 100 mg/kg L-histidine, 10 mg/kg thioperamide or saline after training. Stressed animals received drug treatment and then were submitted to confinement stress for 1 h before the learning procedure. Time to approach the feeder was measured (in seconds and was considered to be indicative of learning. A decrease in time to approach the feeder was observed in the saline-treated group (D1 = 141.92 ± 13.57; D3 = 55 ± 13.54, indicating learning. A delay in learning of stressed animals treated with saline was observed (D1 = 217.5 ± 25.66. L-histidine facilitated learning in stressed (D1 = 118.68 ± 13.9; D2 = 45.88 ± 8.2 and non-stressed (D1 = 151.11 ± 19.20; D5 = 62 ± 14.68 animals. Thioperamide inhibited learning in non-stressed (D1 = 110.38 ± 9.49; D4 = 58.79 ± 16.83 and stressed animals (D1 = 167.3 ± 26.39; D5 = 172.15 ± 27.35. L-histidine prevented the increase in blood glucose after one session of confinement (L-histidine = 65.88 ± 4.50; control = 53 ± 3.50 mg/dL. These results suggest that the histaminergic system enhances learning and modulates stress responses in zebrafish.

  15. Midwifery education and technology enhanced learning: Evaluating online story telling in preregistration midwifery education.

    Science.gov (United States)

    Scamell, Mandie; Hanley, Thomas

    2018-03-01

    A major issue regarding the implementation of blended learning for preregistration health programmes is the analysis of students' perceptions and attitudes towards their learning. It is the extent of the embedding of Technology Enhanced Learning (TEL) into the higher education curriculum that makes this analysis so vital. This paper reports on the quantitative results of a UK based study that was set up to respond to the apparent disconnect between technology enhanced education provision and reliable student evaluation of this mode of learning. Employing a mixed methods research design, the research described here was carried to develop a reliable and valid evaluation tool to measure acceptability of and satisfaction with a blended learning approach, specifically designed for a preregistration midwifery module offered at level 4. Feasibility testing of 46 completed blended learning evaluation questionnaires - Student Midwife Evaluation of Online Learning Effectiveness (SMEOLE) - using descriptive statistics, reliability and internal consistency tests. Standard deviations and mean scores all followed predicted pattern. Results from the reliability and internal consistency testing confirm the feasibility of SMEOLE as an effective tool for measuring student satisfaction with a blended learning approach to preregistration learning. The analysis presented in this paper suggests that we have been successful in our aim to produce an evaluation tool capable of assessing the quality of technology enhanced, University level learning in Midwifery. This work can provide future benchmarking against which midwifery, and other health, blended learning curriculum planning could be structured and evaluated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Active Learning with Irrelevant Examples

    Science.gov (United States)

    Wagstaff, Kiri; Mazzoni, Dominic

    2009-01-01

    An improved active learning method has been devised for training data classifiers. One example of a data classifier is the algorithm used by the United States Postal Service since the 1960s to recognize scans of handwritten digits for processing zip codes. Active learning algorithms enable rapid training with minimal investment of time on the part of human experts to provide training examples consisting of correctly classified (labeled) input data. They function by identifying which examples would be most profitable for a human expert to label. The goal is to maximize classifier accuracy while minimizing the number of examples the expert must label. Although there are several well-established methods for active learning, they may not operate well when irrelevant examples are present in the data set. That is, they may select an item for labeling that the expert simply cannot assign to any of the valid classes. In the context of classifying handwritten digits, the irrelevant items may include stray marks, smudges, and mis-scans. Querying the expert about these items results in wasted time or erroneous labels, if the expert is forced to assign the item to one of the valid classes. In contrast, the new algorithm provides a specific mechanism for avoiding querying the irrelevant items. This algorithm has two components: an active learner (which could be a conventional active learning algorithm) and a relevance classifier. The combination of these components yields a method, denoted Relevance Bias, that enables the active learner to avoid querying irrelevant data so as to increase its learning rate and efficiency when irrelevant items are present. The algorithm collects irrelevant data in a set of rejected examples, then trains the relevance classifier to distinguish between labeled (relevant) training examples and the rejected ones. The active learner combines its ranking of the items with the probability that they are relevant to yield a final decision about which item

  17. How was the activity? A visualization support for a case of location-based learning design

    OpenAIRE

    Hernández Leo, Davinia; Melero Merino, Javier; Sun, Jing; Santos Rodríguez, Patrícia; Blat, Josep

    2014-01-01

    Over the last few years the use of mobile technologies has brought the formulation of location-based learning approaches shaping new or enhanced educational activities. Involving teachers in the design of these activities is important because the designs need to be aligned with the requirements of the specific educational settings. Yet, analysing the implementation of the activities with students is also critical, not only for assessment purposes but also for enabling the identifi...

  18. Integrating transformative learning and action learning approaches to enhance ethical leadership for supervisors in the hotel business

    Directory of Open Access Journals (Sweden)

    Boonyuen Saranya

    2016-01-01

    Full Text Available Ethical leadership is now increasingly focused in leadership development. The main purpose of this study is to explore two methods of adult learning, action learning and transformative learning, and to use the methods to enhance ethical leadership. Building ethical leadership requires an approach that focuses on personal values, beliefs, or frames of references, which is transformative learning. Transformative learning requires a series of meetings to conduct critical discourse and to follow up the learning of learners. By organizing such action learning, human resource developers can optimize their time and effort more effectively. The authors have created a comprehensive model to integrate the two learning approaches in a general way that focuses not only on ethical leadership, but also on all kinds of behavioral transformation in the workplace in the hotel business or even other types of business.

  19. Collaborative innovations with rural and regional secondary teachers: enhancing student learning in mathematics

    Science.gov (United States)

    Pegg, John; Panizzon, Debra

    2011-06-01

    When questioned, secondary mathematics teachers in rural and regional schools in Australia refer to their limited opportunities to engage and share experiences with peers in other schools as an under-utilised and cost-effective mechanism to support their professional learning and enhance their students' learning. The paper reports on the creation and evaluation of a network of learning communities of rural secondary mathematics teachers around a common purpose—enhancement and increased engagement of student learning in mathematics. To achieve this goal, teams of teachers from six rural schools identified an issue hindering improved student learning of mathematics in their school. Working collaboratively with support from university personnel with expertise in curriculum, assessment and quality pedagogy, teachers developed and implemented strategies to address an identified issue in ways that were relevant to their teaching contexts. The research study identifies issues in mathematics of major concern to rural teachers of mathematics, the successes and challenges the teachers faced in working in learning communities on the issue they identified, and the efficacy of the professional learning model.

  20. From Playing to Designing: Enhancing Educational Experiences with Location-Based Mobile Learning Games

    Science.gov (United States)

    Edmonds, Roger; Smith, Simon

    2017-01-01

    This paper presents research into the benefits and implementation strategies of integrating location-based mobile learning games in higher education courses to enhance educational experiences. Two approaches were studied: learning by playing, and learning by designing. In the first, games were developed for undergraduate courses in four discipline…

  1. Active Learning by Querying Informative and Representative Examples.

    Science.gov (United States)

    Huang, Sheng-Jun; Jin, Rong; Zhou, Zhi-Hua

    2014-10-01

    Active learning reduces the labeling cost by iteratively selecting the most valuable data to query their labels. It has attracted a lot of interests given the abundance of unlabeled data and the high cost of labeling. Most active learning approaches select either informative or representative unlabeled instances to query their labels, which could significantly limit their performance. Although several active learning algorithms were proposed to combine the two query selection criteria, they are usually ad hoc in finding unlabeled instances that are both informative and representative. We address this limitation by developing a principled approach, termed QUIRE, based on the min-max view of active learning. The proposed approach provides a systematic way for measuring and combining the informativeness and representativeness of an unlabeled instance. Further, by incorporating the correlation among labels, we extend the QUIRE approach to multi-label learning by actively querying instance-label pairs. Extensive experimental results show that the proposed QUIRE approach outperforms several state-of-the-art active learning approaches in both single-label and multi-label learning.

  2. Density of Visual Input Enhancement and Grammar Learning: A Research Proposal

    Science.gov (United States)

    Tran, Thu Hoang

    2009-01-01

    Research in the field of second language acquisition (SLA) has been done to ascertain the effectiveness of visual input enhancement (VIE) on grammar learning. However, one issue remains unexplored: the effects of VIE density on grammar learning. This paper presents a research proposal to investigate the effects of the density of VIE on English…

  3. Technology-Enhanced Learning in Developing Nations: A review

    Directory of Open Access Journals (Sweden)

    Shalni Gulati

    2008-02-01

    Full Text Available Learning ‘using’ technologies has become a global phenomenon. The Internet is often seen as a value-neutral tool that potentially allows individuals to overcome the constraints of traditional elitist spaces and gain unhindered access to learning. It is widely suggested that online technologies can help address issues of educational equity and social exclusion, and open up democratic and accessible educational opportunities. The national governments and non-governmental agencies who fund educational endeavours in developing countries have advocated the use of new technologies to reduce the cost of reaching and educating large numbers of children and adults who are currently missing out on education. This paper presents an overview of the educational developments in open, distance, and technology-facilitated learning that aim to reach the educationally deprived populations of the world. It reveals the challenges encountered by children and adults in developing countries as they attempt to access available educational opportunities. The discussion questions whether, in face of these challenges, developing nations should continue to invest money, time, and effort into e-learning developments. Can technology-enhanced learning help address the poverty, literacy, social, and political problems in developing countries?

  4. Students Engaged in Learning

    Science.gov (United States)

    Ismail, Emad A.; Groccia, James E.

    2018-01-01

    Engaging students in learning is a basic principle of effective undergraduate education. Outcomes of engaging students include meaningful learning experiences and enhanced skills in all learning domains. This chapter reviews the influence of engaging students in different forms of active learning on cognitive, psychomotor, and affective skill…

  5. Enhancement of problem solving ability of high school students through learning with real engagement in active problem solving (REAPS) model on the concept of heat transfer

    Science.gov (United States)

    Yulindar, A.; Setiawan, A.; Liliawati, W.

    2018-05-01

    This study aims to influence the enhancement of problem solving ability before and after learning using Real Engagement in Active Problem Solving (REAPS) model on the concept of heat transfer. The research method used is quantitative method with 35 high school students in Pontianak as sample. The result of problem solving ability of students is obtained through the test in the form of 3 description questions. The instrument has tested the validity by the expert judgment and field testing that obtained the validity value of 0.84. Based on data analysis, the value of N-Gain is 0.43 and the enhancement of students’ problem solving ability is in medium category. This was caused of students who are less accurate in calculating the results of answers and they also have limited time in doing the questions given.

  6. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is why active learning is such an effective instructional tool and the limits of this instructional method’s ability to influence performance. This dissertation builds a case in three steps for why active learning is an effective instructional tool. In step one, I assessed the influence of different types of active learning (clickers, group activities, and whole class discussions) on student engagement behavior in one semester of two different introductory biology courses and found that active learning positively influenced student engagement behavior significantly more than lecture. For step two, I examined over four semesters whether student engagement behavior was a predictor of performance and found participation (engagement behavior) in the online (video watching) and in-class course activities (clicker participation) that I measure were significant predictors of performance. In the third, I assessed whether certain active learning satisfied the psychological needs that lead to students’ intrinsic motivation to participate in those activities when compared over two semesters and across two different institutions of higher learning. Findings from this last step show us that student’s perceptions of autonomy, competency, and relatedness in doing various types of active learning are significantly higher than lecture and consistent across two institutions of higher learning. Lastly, I tie everything together, discuss implications of the research, and address future directions for research on biology student motivation and behavior.

  7. The International Active Learning Space

    DEFF Research Database (Denmark)

    Manners, Ian James

    2015-01-01

    -Danish students receive the basic international and intercultural skills and knowledge they need in current society. The English-language masters’ seminars I teach at the Department of Political Science are international in terms of students and teacher, but they are also Active Learning seminars......-Danish students (and sometimes teachers) rarely speak to each other or learn each other’s names. In the international AL spaces I create, students must work together on joint tasks which require interaction to address tasks and integration in order to benefit from the multinational activity groups. Planning AL...... that complete the seminar soon become vocal advocates of international AL. Ultimately, enriching student learning through immersing Danish and international students in an international AL space is, for me, the best way of ensuring an internationalised learning outcome, rather than just international mobility....

  8. IMPROVING CAUSE DETECTION SYSTEMS WITH ACTIVE LEARNING

    Data.gov (United States)

    National Aeronautics and Space Administration — IMPROVING CAUSE DETECTION SYSTEMS WITH ACTIVE LEARNING ISAAC PERSING AND VINCENT NG Abstract. Active learning has been successfully applied to many natural language...

  9. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial.

    Science.gov (United States)

    Nkenke, Emeka; Vairaktaris, Elefterios; Bauersachs, Anne; Eitner, Stephan; Budach, Alexander; Knipfer, Christoph; Stelzle, Florian

    2012-03-30

    Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities. Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology-enhanced learning cannot completely replace

  10. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Nkenke Emeka

    2012-03-01

    Full Text Available Abstract Background Technology-enhanced learning (TEL gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. Methods 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation questionnaire for the evaluation of courses given at universities. Results Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. Conclusions It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired

  11. Acceptance of technology-enhanced learning for a theoretical radiological science course: a randomized controlled trial

    Science.gov (United States)

    2012-01-01

    Background Technology-enhanced learning (TEL) gives a view to improved education. However, there is a need to clarify how TEL can be used effectively. The study compared students' attitudes and opinions towards a traditional face-to-face course on theoretical radiological science and a TEL course where students could combine face-to-face lectures and e-learning modules at their best convenience. Methods 42 third-year dental students were randomly assigned to the traditional face-to-face group and the TEL group. Both groups completed questionnaires before the beginning and after completion of the course on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning. After completion of the course both groups also filled in the validated German-language TRIL (Trierer Inventar zur Lehrevaluation) questionnaire for the evaluation of courses given at universities. Results Both groups had a positive attitude towards e-learning that did not change over time. The TEL group attended significantly less face-to-face lectures than the traditional group. However, both groups stated that face-to-face lectures were the basis for education in a theoretical radiological science course. The members of the TEL group rated e-mail reminders significantly more important when they filled in the questionnaire on attitudes and opinions towards a traditional face-to-face lectures and technology-enhanced learning for the second time after completion of the course. The members of the technology-enhanced learning group were significantly less confident in passing the exam compared to the members of the traditional group. However, examination results did not differ significantly for traditional and the TEL group. Conclusions It seems that technology-enhanced learning in a theoretical radiological science course has the potential to reduce the need for face-to-face lectures. At the same time examination results are not impaired. However, technology-enhanced

  12. Time to Engage? Texting to Support and Enhance First Year Undergraduate Learning

    Directory of Open Access Journals (Sweden)

    Geraldine Jones

    2009-04-01

    Full Text Available In this paper we discuss a case study investigating how the academic and personal development of first year students on an undergraduate sports education degree can be supported and enhanced with mobile SMS communication. SMS-based technologies were introduced in response to students’ particular needs (in transition to Higher Education and characteristics (‘digital natives’. Despite being unaccustomed to using their mobile phones for academic study, students willingly participated in SMS communication with their tutor via a texting management service. Drawing on evidence from two student surveys, focus groups and a tutor’s journal, we illustrate the potential that mobile SMS communication has to link and establish continuity between face to face teaching sessions and online learning activities in the Virtual Learning Environment (VLE. Many students perceived the SMS communication to have had a positive impact on their management of study time. We link our findings with the existing literature and argue that mobile text based communication has the potential to support the development of time management skills, an important component of self regulatory learning, a skill which has been shown to be key in making a successful transition.

  13. Excellence in Physics Education Award Talk: Sharing Active Learning Strategies in the Developed and Developing Worlds

    Science.gov (United States)

    Sokoloff, David

    2010-02-01

    Since the first series of National Microcomputer Based Laboratory (MBL) Institutes for Teachers of Physics in Summer, 1987, the Activity Based Physics Group (ABP) has presented numerous professional development institutes and workshops to thousands of high school, college and university faculty, sponsored by National Science Foundation, U.S. Department of Education, Howard Hughes Medical Institute and others. An overview of these programs and details of our instructional strategies will be presented. Some common features of these include: (1) motivating participants through introduction to active learning research literature, including exposure to conceptual evaluations and student learning gains in traditional and active learning courses, (2) exposing participants to active learning strategies through intensive hands-on work using classroom tested curricular materials, (3) relying on these materials to enhance teacher knowledge and correct misconceptions---when necessary, (4) providing opportunities to practice active learning instruction with other participants and (5) distributing or facilitating procurement of equipment and supplies needed to get started. Recently, ABP group members have been working with physics educators from other countries to introduce active learning strategies in the developing world. New programs such as Active Learning in Optics and Photonics (ALOP, UNESCO) and Physware (ICTP/UNESCO/IUPAP), that support active learning using low-cost equipment, have been developed for this purpose. To date, ALOP workshops have been presented to over 500 secondary and college faculty in Ghana, Tunisia, Morocco, India, Tanzania, Brazil, Mexico, Zambia, Cameroon, Colombia, Nepal and Chile, and the ALOP Training Manual has been translated into French and Spanish. The first Physware workshop, held at ICTP in Trieste in 2009, had 32 participants most of whom were from developing countries in Africa, Asia and South America. These programs will be described. )

  14. The Activity Theory Approach to Learning

    Directory of Open Access Journals (Sweden)

    Ritva Engeström

    2014-12-01

    Full Text Available In this paper the author offers a practical view of the theory-grounded research on education action. She draws on studies carried out at the Center for Research on Activity, Development and Learning (CRADLE at the University of Helsinki in Finland. In its work, the Center draws on cultural-historical activity theory (CHAT and is well-known for the theory of Expansive Learning and its more practical application called Developmental Work Research (DWR. These approaches are widely used to understand professional learning and have served as a theoreticaland methodological foundation for studies examining change and professional development in various human activities.

  15. Physical Activity Is Associated with Reduced Implicit Learning but Enhanced Relational Memory and Executive Functioning in Young Adults.

    Directory of Open Access Journals (Sweden)

    Chelsea M Stillman

    Full Text Available Accumulating evidence suggests that physical activity improves explicit memory and executive cognitive functioning at the extreme ends of the lifespan (i.e., in older adults and children. However, it is unknown whether these associations hold for younger adults who are considered to be in their cognitive prime, or for implicit cognitive functions that do not depend on motor sequencing. Here we report the results of a study in which we examine the relationship between objectively measured physical activity and (1 explicit relational memory, (2 executive control, and (3 implicit probabilistic sequence learning in a sample of healthy, college-aged adults. The main finding was that physical activity was positively associated with explicit relational memory and executive control (replicating previous research, but negatively associated with implicit learning, particularly in females. These results raise the intriguing possibility that physical activity upregulates some cognitive processes, but downregulates others. Possible implications of this pattern of results for physical health and health habits are discussed.

  16. History and Evolution of Active Learning Spaces

    Science.gov (United States)

    Beichner, Robert J.

    2014-01-01

    This chapter examines active learning spaces as they have developed over the years. Consistently well-designed classrooms can facilitate active learning even though the details of implementing pedagogies may differ.

  17. GeoMapApp Learning Activities: Enabling the democratisation of geoscience learning

    Science.gov (United States)

    Goodwillie, A. M.; Kluge, S.

    2011-12-01

    GeoMapApp Learning Activities (http://serc.carleton.edu/geomapapp) are step-by-step guided inquiry geoscience education activities that enable students to dictate the pace of learning. They can be used in the classroom or out of class, and their guided nature means that the requirement for teacher intervention is minimised which allows students to spend increased time analysing and understanding a broad range of geoscience data, content and concepts. Based upon GeoMapApp (http://www.geomapapp.org), a free, easy-to-use map-based data exploration and visualisation tool, each activity furnishes the educator with an efficient package of downloadable documents. This includes step-by-step student instructions and answer sheet; a teacher's edition annotated worksheet containing teaching tips, additional content and suggestions for further work; quizzes for use before and after the activity to assess learning; and a multimedia tutorial. The activities can be used by anyone at any time in any place with an internet connection. In essence, GeoMapApp Learning Activities provide students with cutting-edge technology, research-quality geoscience data sets, and inquiry-based learning in a virtual lab-like environment. Examples of activities so far created are student calculation and analysis of the rate of seafloor spreading, and present-day evidence on the seafloor for huge ancient landslides around the Hawaiian islands. The activities are designed primarily for students at the community college, high school and introductory undergraduate levels, exposing students to content and concepts typically found in those settings.

  18. Active Learning Environment with Lenses in Geometric Optics

    Science.gov (United States)

    Tural, Güner

    2015-01-01

    Geometric optics is one of the difficult topics for students within physics discipline. Students learn better via student-centered active learning environments than the teacher-centered learning environments. So this study aimed to present a guide for middle school teachers to teach lenses in geometric optics via active learning environment…

  19. Enhancing the Design and Analysis of Flipped Learning Strategies

    Science.gov (United States)

    Jenkins, Martin; Bokosmaty, Rena; Brown, Melanie; Browne, Chris; Gao, Qi; Hanson, Julie; Kupatadze, Ketevan

    2017-01-01

    There are numerous calls in the literature for research into the flipped learning approach to match the flood of popular media articles praising its impact on student learning and educational outcomes. This paper addresses those calls by proposing pedagogical strategies that promote active learning in "flipped" approaches and improved…

  20. Collegewide Promotion of E-Learning/Active Learning and Faculty Development

    Science.gov (United States)

    Ogawa, Nobuyuki; Shimizu, Akira

    2016-01-01

    Japanese National Institutes of Technology have revealed a plan to strongly promote e-Learning and active learning under the common schematization of education in over 50 campuses nationwide. Our e-Learning and ICT-driven education practiced for more than fifteen years were highly evaluated, and is playing a leading role in promoting e-Learning…

  1. Pedagogical Distance: Explaining Misalignment in Student-Driven Online Learning Activities Using Activity Theory

    Science.gov (United States)

    Westberry, Nicola; Franken, Margaret

    2015-01-01

    This paper provides an Activity Theory analysis of two online student-driven interactive learning activities to interrogate assumptions that such groups can effectively learn in the absence of the teacher. Such an analysis conceptualises learning tasks as constructed objects that drive pedagogical activity. The analysis shows a disconnect between…

  2. Wavelet-enhanced convolutional neural network: a new idea in a deep learning paradigm.

    Science.gov (United States)

    Savareh, Behrouz Alizadeh; Emami, Hassan; Hajiabadi, Mohamadreza; Azimi, Seyed Majid; Ghafoori, Mahyar

    2018-05-29

    Manual brain tumor segmentation is a challenging task that requires the use of machine learning techniques. One of the machine learning techniques that has been given much attention is the convolutional neural network (CNN). The performance of the CNN can be enhanced by combining other data analysis tools such as wavelet transform. In this study, one of the famous implementations of CNN, a fully convolutional network (FCN), was used in brain tumor segmentation and its architecture was enhanced by wavelet transform. In this combination, a wavelet transform was used as a complementary and enhancing tool for CNN in brain tumor segmentation. Comparing the performance of basic FCN architecture against the wavelet-enhanced form revealed a remarkable superiority of enhanced architecture in brain tumor segmentation tasks. Using mathematical functions and enhancing tools such as wavelet transform and other mathematical functions can improve the performance of CNN in any image processing task such as segmentation and classification.

  3. Manifold Regularized Experimental Design for Active Learning.

    Science.gov (United States)

    Zhang, Lining; Shum, Hubert P H; Shao, Ling

    2016-12-02

    Various machine learning and data mining tasks in classification require abundant data samples to be labeled for training. Conventional active learning methods aim at labeling the most informative samples for alleviating the labor of the user. Many previous studies in active learning select one sample after another in a greedy manner. However, this is not very effective because the classification models has to be retrained for each newly labeled sample. Moreover, many popular active learning approaches utilize the most uncertain samples by leveraging the classification hyperplane of the classifier, which is not appropriate since the classification hyperplane is inaccurate when the training data are small-sized. The problem of insufficient training data in real-world systems limits the potential applications of these approaches. This paper presents a novel method of active learning called manifold regularized experimental design (MRED), which can label multiple informative samples at one time for training. In addition, MRED gives an explicit geometric explanation for the selected samples to be labeled by the user. Different from existing active learning methods, our method avoids the intrinsic problems caused by insufficiently labeled samples in real-world applications. Various experiments on synthetic datasets, the Yale face database and the Corel image database have been carried out to show how MRED outperforms existing methods.

  4. Active learning: a step towards automating medical concept extraction.

    Science.gov (United States)

    Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony

    2016-03-01

    This paper presents an automatic, active learning-based system for the extraction of medical concepts from clinical free-text reports. Specifically, (1) the contribution of active learning in reducing the annotation effort and (2) the robustness of incremental active learning framework across different selection criteria and data sets are determined. The comparative performance of an active learning framework and a fully supervised approach were investigated to study how active learning reduces the annotation effort while achieving the same effectiveness as a supervised approach. Conditional random fields as the supervised method, and least confidence and information density as 2 selection criteria for active learning framework were used. The effect of incremental learning vs standard learning on the robustness of the models within the active learning framework with different selection criteria was also investigated. The following 2 clinical data sets were used for evaluation: the Informatics for Integrating Biology and the Bedside/Veteran Affairs (i2b2/VA) 2010 natural language processing challenge and the Shared Annotated Resources/Conference and Labs of the Evaluation Forum (ShARe/CLEF) 2013 eHealth Evaluation Lab. The annotation effort saved by active learning to achieve the same effectiveness as supervised learning is up to 77%, 57%, and 46% of the total number of sequences, tokens, and concepts, respectively. Compared with the random sampling baseline, the saving is at least doubled. Incremental active learning is a promising approach for building effective and robust medical concept extraction models while significantly reducing the burden of manual annotation. © The Author 2015. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. A Novel Teaching Tool Combined With Active-Learning to Teach Antimicrobial Spectrum Activity.

    Science.gov (United States)

    MacDougall, Conan

    2017-03-25

    Objective. To design instructional methods that would promote long-term retention of knowledge of antimicrobial pharmacology, particularly the spectrum of activity for antimicrobial agents, in pharmacy students. Design. An active-learning approach was used to teach selected sessions in a required antimicrobial pharmacology course. Students were expected to review key concepts from the course reader prior to the in-class sessions. During class, brief concept reviews were followed by active-learning exercises, including a novel schematic method for learning antimicrobial spectrum of activity ("flower diagrams"). Assessment. At the beginning of the next quarter (approximately 10 weeks after the in-class sessions), 360 students (three yearly cohorts) completed a low-stakes multiple-choice examination on the concepts in antimicrobial spectrum of activity. When data for students was pooled across years, the mean number of correct items was 75.3% for the items that tested content delivered with the active-learning method vs 70.4% for items that tested content delivered via traditional lecture (mean difference 4.9%). Instructor ratings on student evaluations of the active-learning approach were high (mean scores 4.5-4.8 on a 5-point scale) and student comments were positive about the active-learning approach and flower diagrams. Conclusion. An active-learning approach led to modestly higher scores in a test of long-term retention of pharmacology knowledge and was well-received by students.

  6. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing.

    Science.gov (United States)

    Zhang, Yu-Xuan; Tang, Ding-Lan; Moore, David R; Amitay, Sygal

    2017-01-01

    Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD) with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  7. Supramodal Enhancement of Auditory Perceptual and Cognitive Learning by Video Game Playing

    Directory of Open Access Journals (Sweden)

    Yu-Xuan Zhang

    2017-06-01

    Full Text Available Medical rehabilitation involving behavioral training can produce highly successful outcomes, but those successes are obtained at the cost of long periods of often tedious training, reducing compliance. By contrast, arcade-style video games can be entertaining and highly motivating. We examine here the impact of video game play on contiguous perceptual training. We alternated several periods of auditory pure-tone frequency discrimination (FD with the popular spatial visual-motor game Tetris played in silence. Tetris play alone did not produce any auditory or cognitive benefits. However, when alternated with FD training it enhanced learning of FD and auditory working memory. The learning-enhancing effects of Tetris play cannot be explained simply by the visual-spatial training involved, as the effects were gone when Tetris play was replaced with another visual-spatial task using Tetris-like stimuli but not incorporated into a game environment. The results indicate that game play enhances learning and transfer of the contiguous auditory experiences, pointing to a promising approach for increasing the efficiency and applicability of rehabilitative training.

  8. Agnostic Active Learning Without Constraints

    OpenAIRE

    Beygelzimer, Alina; Hsu, Daniel; Langford, John; Zhang, Tong

    2010-01-01

    We present and analyze an agnostic active learning algorithm that works without keeping a version space. This is unlike all previous approaches where a restricted set of candidate hypotheses is maintained throughout learning, and only hypotheses from this set are ever returned. By avoiding this version space approach, our algorithm sheds the computational burden and brittleness associated with maintaining version spaces, yet still allows for substantial improvements over supervised learning f...

  9. Using assistive technology adaptations to include students with learning disabilities in cooperative learning activities.

    Science.gov (United States)

    Bryant, D P; Bryant, B R

    1998-01-01

    Cooperative learning (CL) is a common instructional arrangement that is used by classroom teachers to foster academic achievement and social acceptance of students with and without learning disabilities. Cooperative learning is appealing to classroom teachers because it can provide an opportunity for more instruction and feedback by peers than can be provided by teachers to individual students who require extra assistance. Recent studies suggest that students with LD may need adaptations during cooperative learning activities. The use of assistive technology adaptations may be necessary to help some students with LD compensate for their specific learning difficulties so that they can engage more readily in cooperative learning activities. A process for integrating technology adaptations into cooperative learning activities is discussed in terms of three components: selecting adaptations, monitoring the use of the adaptations during cooperative learning activities, and evaluating the adaptations' effectiveness. The article concludes with comments regarding barriers to and support systems for technology integration, technology and effective instructional practices, and the need to consider technology adaptations for students who have learning disabilities.

  10. Noradrenergic stimulation modulates activation of extinction-related brain regions and enhances contextual extinction learning without affecting renewal

    Directory of Open Access Journals (Sweden)

    Silke eLissek

    2015-02-01

    Full Text Available Renewal in extinction learning describes the recovery of an extinguished response if the extinction context differs from the context present during acquisition and recall. Attention may have a role in contextual modulation of behavior and contribute to the renewal effect, while noradrenaline is involved in attentional processing. In this functional magnetic resonance imaging (fMRI study we investigated the role of the noradrenergic system for behavioral and brain activation correlates of contextual extinction and renewal, with a particular focus upon hippocampus and ventromedial PFC, which have crucial roles in processing of renewal. Healthy human volunteers received a single dose of the NA reuptake inhibitor atomoxetine prior to extinction learning. During extinction of previously acquired cue-outcome associations, cues were presented in a novel context (ABA or in the acquisition context (AAA. In recall, all cues were again presented in the acquisition context. Atomoxetine participants (ATO showed significantly faster extinction compared to placebo (PLAC. However, atomoxetine did not affect renewal. Hippocampal activation was higher in ATO during extinction and recall, as was ventromedial PFC activation, except for ABA recall. Moreover, ATO showed stronger recruitment of insula, anterior cingulate, and dorsolateral/orbitofrontal PFC. Across groups, cingulate, hippocampus and vmPFC activity during ABA extinction correlated with recall performance, suggesting high relevance of these regions for processing the renewal effect. In summary, the noradrenergic system appears to be involved in the modification of established associations during extinction learning and thus has a role in behavioral flexibility. The assignment of an association to a context and the subsequent decision on an adequate response, however, presumably operate largely independently of noradrenergic mechanisms.

  11. Enhancing Instruction through Constructivism, Cooperative Learning, and Cloud Computing

    Science.gov (United States)

    Denton, David W.

    2012-01-01

    Cloud computing technologies, such as Google Docs and Microsoft Office Live, have the potential to enhance instructional methods predicated on constructivism and cooperative learning. Cloud-based application features like file sharing and online publishing are prompting departments of education across the nation to adopt these technologies.…

  12. Using Mobile Learning in Free-Choice Educational Settings to Enhance Ecological Literacy

    Science.gov (United States)

    Aguayo, Claudio; Eames, Chris

    2017-01-01

    This article presents the case for using mobile technologies to facilitate the integration of classroom and outside-of-classroom learning experiences designed to enhance the ecological literacy of primary school students and their parents. There is growing evidence supporting the transformative potential of mobile learning technologies and tools…

  13. ASPIRE: Teachers and researchers working together to enhance student learning

    Directory of Open Access Journals (Sweden)

    Lollie Garay

    2014-11-01

    Full Text Available Abstract Science, Technology, Engineering, and Math (STEM disciplines have become key focus areas in the education community of the United States. Newly adopted across the nation, Next Generation Science Standards require that educators embrace innovative approaches to teaching. Transforming classrooms to actively engage students through a combination of knowledge and practice develops conceptual understanding and application skills. The partnerships between researchers and educators during the Amundsen Sea Polynya International Research Expedition (ASPIRE offer an example of how academic research can enhance K-12 student learning. In this commentary, we illustrate how ASPIRE teacher–scientist partnerships helped engage students with actual and virtual authentic scientific investigations. Crosscutting concepts of research in polar marine science can serve as intellectual tools to connect important ideas about ocean and climate science for the public good.

  14. Beyond negative valence: 2-week administration of a serotonergic antidepressant enhances both reward and effort learning signals.

    Directory of Open Access Journals (Sweden)

    Jacqueline Scholl

    2017-02-01

    Full Text Available To make good decisions, humans need to learn about and integrate different sources of appetitive and aversive information. While serotonin has been linked to value-based decision-making, its role in learning is less clear, with acute manipulations often producing inconsistent results. Here, we show that when the effects of a selective serotonin reuptake inhibitor (SSRI, citalopram are studied over longer timescales, learning is robustly improved. We measured brain activity with functional magnetic resonance imaging (fMRI in volunteers as they performed a concurrent appetitive (money and aversive (effort learning task. We found that 2 weeks of citalopram enhanced reward and effort learning signals in a widespread network of brain regions, including ventromedial prefrontal and anterior cingulate cortex. At a behavioral level, this was accompanied by more robust reward learning. This suggests that serotonin can modulate the ability to learn via a mechanism that is independent of stimulus valence. Such effects may partly underlie SSRIs' impact in treating psychological illnesses. Our results highlight both a specific function in learning for serotonin and the importance of studying its role across longer timescales.

  15. Courseware Development with Animated Pedagogical Agents in Learning System to Improve Learning Motivation

    Science.gov (United States)

    Chin, Kai-Yi; Hong, Zeng-Wei; Huang, Yueh-Min; Shen, Wei-Wei; Lin, Jim-Min

    2016-01-01

    The addition of animated pedagogical agents (APAs) in computer-assisted learning (CAL) systems could successfully enhance students' learning motivation and engagement in learning activities. Conventionally, the APA incorporated multimedia materials are constructed through the cooperation of teachers and software programmers. However, the thinking…

  16. Deep learning enables reduced gadolinium dose for contrast-enhanced brain MRI.

    Science.gov (United States)

    Gong, Enhao; Pauly, John M; Wintermark, Max; Zaharchuk, Greg

    2018-02-13

    There are concerns over gadolinium deposition from gadolinium-based contrast agents (GBCA) administration. To reduce gadolinium dose in contrast-enhanced brain MRI using a deep learning method. Retrospective, crossover. Sixty patients receiving clinically indicated contrast-enhanced brain MRI. 3D T 1 -weighted inversion-recovery prepped fast-spoiled-gradient-echo (IR-FSPGR) imaging was acquired at both 1.5T and 3T. In 60 brain MRI exams, the IR-FSPGR sequence was obtained under three conditions: precontrast, postcontrast images with 10% low-dose (0.01mmol/kg) and 100% full-dose (0.1 mmol/kg) of gadobenate dimeglumine. We trained a deep learning model using the first 10 cases (with mixed indications) to approximate full-dose images from the precontrast and low-dose images. Synthesized full-dose images were created using the trained model in two test sets: 20 patients with mixed indications and 30 patients with glioma. For both test sets, low-dose, true full-dose, and the synthesized full-dose postcontrast image sets were compared quantitatively using peak-signal-to-noise-ratios (PSNR) and structural-similarity-index (SSIM). For the test set comprised of 20 patients with mixed indications, two neuroradiologists scored blindly and independently for the three postcontrast image sets, evaluating image quality, motion-artifact suppression, and contrast enhancement compared with precontrast images. Results were assessed using paired t-tests and noninferiority tests. The proposed deep learning method yielded significant (n = 50, P 5 dB PSNR gains and >11.0% SSIM). Ratings on image quality (n = 20, P = 0.003) and contrast enhancement (n = 20, P deep learning method, gadolinium dose can be reduced 10-fold while preserving contrast information and avoiding significant image quality degradation. 3 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  17. Active Learning and Just-in-Time Teaching in a Material and Energy Balances Course

    Science.gov (United States)

    Liberatore, Matthew W.

    2013-01-01

    The delivery of a material and energy balances course is enhanced through a series of in-class and out-of-class exercises. An active learning classroom is achieved, even at class sizes over 150 students, using multiple instructors in a single classroom, problem solving in teams, problems based on YouTube videos, and just-in-time teaching. To avoid…

  18. Intrinsic monitoring of learning success facilitates memory encoding via the activation of the SN/VTA-Hippocampal loop

    Science.gov (United States)

    Ripollés, Pablo; Marco-Pallarés, Josep; Alicart, Helena; Tempelmann, Claus; Rodríguez-Fornells, Antoni; Noesselt, Toemme

    2016-01-01

    Humans constantly learn in the absence of explicit rewards. However, the neurobiological mechanisms supporting this type of internally-guided learning (without explicit feedback) are still unclear. Here, participants who completed a task in which no external reward/feedback was provided, exhibited enhanced fMRI-signals within the dopaminergic midbrain, hippocampus, and ventral striatum (the SN/VTA-Hippocampal loop) when successfully grasping the meaning of new-words. Importantly, new-words that were better remembered showed increased activation and enhanced functional connectivity between the midbrain, hippocampus, and ventral striatum. Moreover, enhanced emotion-related physiological measures and subjective pleasantness ratings during encoding were associated with remembered new-words after 24 hr. Furthermore, increased subjective pleasantness ratings were also related to new-words remembered after seven days. These results suggest that intrinsic—potentially reward-related—signals, triggered by self-monitoring of correct performance, can promote the storage of new information into long-term memory through the activation of the SN/VTA-Hippocampal loop, possibly via dopaminergic modulation of the midbrain. DOI: http://dx.doi.org/10.7554/eLife.17441.001 PMID:27644419

  19. Introduction of active learning method in learning physiology by MBBS students.

    Science.gov (United States)

    Gilkar, Suhail Ahmad; Lone, Shabiruddin; Lone, Riyaz Ahmad

    2016-01-01

    Active learning has received considerable attention over the past several years, often presented or perceived as a radical change from traditional instruction methods. Current research on learning indicates that using a variety of teaching strategies in the classroom increases student participation and learning. To introduce active learning methodology, i.e., "jigsaw technique" in undergraduate medical education and assess the student and faculty response to it. This study was carried out in the Department of Physiology in a Medical College of North India. A topic was chosen and taught using one of the active learning methods (ALMs), i.e., jigsaw technique. An instrument (questionnaire) was developed in English through an extensive review of literature and was properly validated. The students were asked to give their response on a five-point Likert scale. The feedback was kept anonymous. Faculty also provided their feedback in a separately provided feedback proforma. The data were collected, compiled, and analyzed. Of 150 students of MBBS-first year batch 2014, 142 participated in this study along with 14 faculty members of the Physiology Department. The majority of the students (>90%) did welcome the introduction of ALM and strongly recommended the use of such methods in teaching many more topics in future. 100% faculty members were of the opinion that many more topics shall be taken up using ALMs. This study establishes the fact that both the medical students and faculty want a change from the traditional way of passive, teacher-centric learning, to the more active teaching-learning techniques.

  20. Dreaming of a Learning Task is Associated with Enhanced Sleep-Dependent Memory Consolidation

    Science.gov (United States)

    Wamsley, Erin J.; Tucker, Matthew; Payne, Jessica D.; Benavides, Joseph; Stickgold, Robert

    2010-01-01

    Summary It is now well established that post-learning sleep is beneficial for human memory performance [1–5]. Meanwhile, human and animal studies demonstrate that learning-related neural activity is re-expressed during post-training non-rapid eye movement sleep (NREM) [6–9]. NREM sleep processes appear to be particularly beneficial for hippocampus-dependent forms of memory [1–3, 10]. These observations suggest that learning triggers the reactivation and reorganization of memory traces during sleep, a systems-level process that in turn enhances behavioral performance. Here, we hypothesized that dreaming about a learning experience during NREM sleep would be associated with improved performance on a hippocampus-dependent spatial memory task. Subjects (n=99) were trained on a virtual navigation task, and then retested on the same task 5 hours after initial training. Improved performance at retest was strongly associated with task-related dream imagery during an intervening afternoon nap. Task-related thoughts during wakefulness, in contrast, did not predict improved performance. These observations suggest that sleep-dependent memory consolidation in humans is facilitated by the offline reactivation of recently formed memories, and furthermore, that dream experiences reflect this memory processing. That similar effects were not seen during wakefulness suggests that these mnemonic processes are specific to the sleep state. PMID:20417102

  1. Active Math Learning

    DEFF Research Database (Denmark)

    The presentation is concerned with general course planning philosophy and a specific case study (boomerang flight geometro-dynamics) for active learning of mathematics via computer assisted and hands-on unfolding of first principles - in this case the understanding of rotations and Eulers equatio...

  2. 7th International Conference in Methodologies and Intelligent Systems for Technology Enhanced Learning

    CERN Document Server

    Gennari, Rosella; Mascio, Tania; Rodríguez, Sara; Prieta, Fernando; Ramos, Carlos; Silveira, Ricardo

    2017-01-01

    This book presents the outcomes of the 7th International Conference in Methodologies and Intelligent Systems for Technology Enhanced Learning (MIS4TEL'17), hosted by the Polytechnic of Porto, Portugal from 21 to 23 June 2017. Expanding on the topics of the previous conferences, it provided an open forum for discussing intelligent systems for technology enhanced learning (TEL) and their roots in novel learning theories, empirical methodologies for their design or evaluation, stand-alone and web-based solutions, and makerspaces. It also fostered entrepreneurship and business startup ideas, bringing together researchers and developers from industry, education and the academic world to report on the latest scientific research, technical advances and methodologies.

  3. Using tasks to enhance beginners’ orientations for learning Chinese as a foreign language

    DEFF Research Database (Denmark)

    Ruan, Youjin; Duan, Xiaoju; Du, Xiangyun

    2015-01-01

    , and by what these changes are caused, in a university-wide CFL course using task-based teaching and learning (TBTL). The study identifies four orientations. Results indicate that the knowledge orientation plays a vital role in the learning process, while instrumental orientation appears to be the least...... important to students. Furthermore, the study indicates that all orientations have been enhanced by the end of the course, meaning the learners have developed clearer goals for further study in a TBTL environment. We also show that several external and internal factors, such as the motivating course design...... and enhance learner motivation. The study also discusses challenges encountered in helping beginners learn a foreign language via TBTL....

  4. Sport students' perception of their learning experience: Amazing ...

    African Journals Online (AJOL)

    Learning environments and activities that focus on learners being active participants can enrich the students' learning experience and in this regard, outdoor adventure education programmes are utilised effectively to enhance the quality and scope of learning. This study investigated the perceived learning experience ...

  5. Enhancing performance expectancies through visual illusions facilitates motor learning in children.

    Science.gov (United States)

    Bahmani, Moslem; Wulf, Gabriele; Ghadiri, Farhad; Karimi, Saeed; Lewthwaite, Rebecca

    2017-10-01

    In a recent study by Chauvel, Wulf, and Maquestiaux (2015), golf putting performance was found to be affected by the Ebbinghaus illusion. Specifically, adult participants demonstrated more effective learning when they practiced with a hole that was surrounded by small circles, making it look larger, than when the hole was surrounded by large circles, making it look smaller. The present study examined whether this learning advantage would generalize to children who are assumed to be less sensitive to the visual illusion. Two groups of 10-year olds practiced putting golf balls from a distance of 2m, with perceived larger or smaller holes resulting from the visual illusion. Self-efficacy was increased in the group with the perceived larger hole. The latter group also demonstrated more accurate putting performance during practice. Importantly, learning (i.e., delayed retention performance without the illusion) was enhanced in the group that practiced with the perceived larger hole. The findings replicate previous results with adult learners and are in line with the notion that enhanced performance expectancies are key to optimal motor learning (Wulf & Lewthwaite, 2016). Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Integration of Technology Enhanced Learning within Business Organizations: Which Strategy to Choose?

    Science.gov (United States)

    Kaminskiene, Lina; Rutkiene, Aušra; Trepule, Elena

    2015-01-01

    The article discusses a responsible and a responsive strategic organizational approach for a smooth integration of technology enhanced learning (TEL). A response to external and internal contingencies and an involvement of different stakeholders into the development and implementation of the so-called eLearning strategies is one of the approaches…

  7. The Pretesting Effect: Do Unsuccessful Retrieval Attempts Enhance Learning?

    Science.gov (United States)

    Richland, Lindsey E.; Kornell, Nate; Kao, Liche Sean

    2009-01-01

    Testing previously studied information enhances long-term memory, particularly when the information is successfully retrieved from memory. The authors examined the effect of unsuccessful retrieval attempts on learning. Participants in 5 experiments read an essay about vision. In the test condition, they were asked about embedded concepts before…

  8. Integrating Blended Teaching and Learning to Enhance Graduate Attributes

    Science.gov (United States)

    Hermens, Antoine; Clarke, Elizabeth

    2009-01-01

    Purpose: The purpose of this paper is to explore the role of computer based business simulations in higher education as innovative tools of teaching and learning to enhance students' practical understanding of real business problems. Whether the integration of business simulation technologies will enable significant innovation in teaching and…

  9. Strategies for enhancing the teaching and learning of technical ...

    African Journals Online (AJOL)

    The study evaluated strategies for enhancing the teaching and learning of technical drawing in technical colleges in ebonyi state, Nigeria. Data were collected with the aid of structured interview from twenty technical drawing teachers and 120 technical drawing students in the study area. Data were analysed using mean ...

  10. Lesions of the lateral habenula facilitate active avoidance learning and threat extinction.

    Science.gov (United States)

    Song, Mihee; Jo, Yong Sang; Lee, Yeon-Kyung; Choi, June-Seek

    2017-02-01

    The lateral habenula (LHb) is an epithalamic brain structure that provides strong projections to midbrain monoaminergic systems that are involved in motivation, emotion, and reinforcement learning. LHb neurons are known to convey information about aversive outcomes and negative prediction errors, suggesting a role in learning from aversive events. To test this idea, we examined the effects of electrolytic lesions of the LHb on signaled two-way active avoidance learning in which rats were trained to avoid an unconditioned stimulus (US) by taking a proactive shuttling response to an auditory conditioned stimulus (CS). The lesioned animals learned the avoidance response significantly faster than the control groups. In a separate experiment, we also investigated whether the LHb contributes to Pavlovian threat (fear) conditioning and extinction. Following paired presentations of the CS and the US, LHb-lesioned animals showed normal acquisition of conditioned response (CR) measured with freezing. However, extinction of the CR in the subsequent CS-only session was significantly faster. The enhanced performance in avoidance learning and in threat extinction jointly suggests that the LHb normally plays an inhibitory role in learning driven by absence of aversive outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Enhancing a Multi-body Mechanism with Learning-Aided Cues in an Augmented Reality Environment

    International Nuclear Information System (INIS)

    Sidhu, Manjit Singh

    2013-01-01

    Augmented Reality (AR) is a potential area of research for education, covering issues such as tracking and calibration, and realistic rendering of virtual objects. The ability to augment real world with virtual information has opened the possibility of using AR technology in areas such as education and training as well. In the domain of Computer Aided Learning (CAL), researchers have long been looking into enhancing the effectiveness of the teaching and learning process by providing cues that could assist learners to better comprehend the materials presented. Although a number of works were done looking into the effectiveness of learning-aided cues, but none has really addressed this issue for AR-based learning solutions. This paper discusses the design and model of an AR based software that uses visual cues to enhance the learning process and the outcome perception results of the cues.

  12. Enhancing a Multi-body Mechanism with Learning-Aided Cues in an Augmented Reality Environment

    Science.gov (United States)

    Singh Sidhu, Manjit

    2013-06-01

    Augmented Reality (AR) is a potential area of research for education, covering issues such as tracking and calibration, and realistic rendering of virtual objects. The ability to augment real world with virtual information has opened the possibility of using AR technology in areas such as education and training as well. In the domain of Computer Aided Learning (CAL), researchers have long been looking into enhancing the effectiveness of the teaching and learning process by providing cues that could assist learners to better comprehend the materials presented. Although a number of works were done looking into the effectiveness of learning-aided cues, but none has really addressed this issue for AR-based learning solutions. This paper discusses the design and model of an AR based software that uses visual cues to enhance the learning process and the outcome perception results of the cues.

  13. Attention Cueing and Activity Equally Reduce False Alarm Rate in Visual-Auditory Associative Learning through Improving Memory.

    Science.gov (United States)

    Nikouei Mahani, Mohammad-Ali; Haghgoo, Hojjat Allah; Azizi, Solmaz; Nili Ahmadabadi, Majid

    2016-01-01

    In our daily life, we continually exploit already learned multisensory associations and form new ones when facing novel situations. Improving our associative learning results in higher cognitive capabilities. We experimentally and computationally studied the learning performance of healthy subjects in a visual-auditory sensory associative learning task across active learning, attention cueing learning, and passive learning modes. According to our results, the learning mode had no significant effect on learning association of congruent pairs. In addition, subjects' performance in learning congruent samples was not correlated with their vigilance score. Nevertheless, vigilance score was significantly correlated with the learning performance of the non-congruent pairs. Moreover, in the last block of the passive learning mode, subjects significantly made more mistakes in taking non-congruent pairs as associated and consciously reported lower confidence. These results indicate that attention and activity equally enhanced visual-auditory associative learning for non-congruent pairs, while false alarm rate in the passive learning mode did not decrease after the second block. We investigated the cause of higher false alarm rate in the passive learning mode by using a computational model, composed of a reinforcement learning module and a memory-decay module. The results suggest that the higher rate of memory decay is the source of making more mistakes and reporting lower confidence in non-congruent pairs in the passive learning mode.

  14. The Positive Impact of Creative Activity: Effects of Creative Task Engagement and Motivational Focus on College Students' Learning.

    Science.gov (United States)

    Conti, Regina; And Others

    1995-01-01

    Assessed effectiveness of engaging students in a creative activity on a topic as a means of encouraging an active cognitive set toward learning that topic area. Creative task engagement was found to be an effective means of enhancing creativity (in the absence of evaluation expectation), intrinsic motivation, and long-term retention. (JBJ)

  15. Effects of Didactic Instruction and Test-Enhanced Learning in a Nursing Review Course.

    Science.gov (United States)

    Tu, Yu-Ching; Lin, Yi-Jung; Lee, Jonathan W; Fan, Lir-Wan

    2017-11-01

    Determining the most effective approach for students' successful academic performance and achievement on the national licensure examination for RNs is important to nursing education and practice. A quasi-experimental design was used to compare didactic instruction and test-enhanced learning among nursing students divided into two fundamental nursing review courses in their final semester. Students in each course were subdivided into low-, intermediate-, and high-score groups based on their first examination scores. Mixed model of repeated measure and two-way analysis of variance were applied to evaluate students' academic results and both teaching approaches. Intermediate-scoring students' performances improved more through didactic instruction, whereas low-scoring students' performances improved more through test-enhanced learning. Each method had differing effects on individual subgroups within the different performance level groups of their classes, which points to the importance of considering both the didactic and test-enhanced learning approaches. [J Nurs Educ. 2017;56(11):683-687.]. Copyright 2017, SLACK Incorporated.

  16. Active Ageing, Active Learning: Policy and Provision in Hong Kong

    Science.gov (United States)

    Tam, M.

    2011-01-01

    This paper discusses the relationship between ageing and learning, previous literature having confirmed that participation in continued learning in old age contributes to good health, satisfaction with life, independence and self-esteem. Realizing that learning is vital to active ageing, the Hong Kong government has implemented policies and…

  17. A Peer-Assisted Learning Experience in Computer Programming Language Learning and Developing Computer Programming Skills

    Science.gov (United States)

    Altintas, Tugba; Gunes, Ali; Sayan, Hamiyet

    2016-01-01

    Peer learning or, as commonly expressed, peer-assisted learning (PAL) involves school students who actively assist others to learn and in turn benefit from an effective learning environment. This research was designed to support students in becoming more autonomous in their learning, help them enhance their confidence level in tackling computer…

  18. Experiential Learning and Learning Environments: The Case of Active Listening Skills

    Science.gov (United States)

    Huerta-Wong, Juan Enrique; Schoech, Richard

    2010-01-01

    Social work education research frequently has suggested an interaction between teaching techniques and learning environments. However, this interaction has never been tested. This study compared virtual and face-to-face learning environments and included active listening concepts to test whether the effectiveness of learning environments depends…

  19. Visual error augmentation enhances learning in three dimensions.

    Science.gov (United States)

    Sharp, Ian; Huang, Felix; Patton, James

    2011-09-02

    Because recent preliminary evidence points to the use of Error augmentation (EA) for motor learning enhancements, we visually enhanced deviations from a straight line path while subjects practiced a sensorimotor reversal task, similar to laparoscopic surgery. Our study asked 10 healthy subjects in two groups to perform targeted reaching in a simulated virtual reality environment, where the transformation of the hand position matrix was a complete reversal--rotated 180 degrees about an arbitrary axis (hence 2 of the 3 coordinates are reversed). Our data showed that after 500 practice trials, error-augmented-trained subjects reached the desired targets more quickly and with lower error (differences of 0.4 seconds and 0.5 cm Maximum Perpendicular Trajectory deviation) when compared to the control group. Furthermore, the manner in which subjects practiced was influenced by the error augmentation, resulting in more continuous motions for this group and smaller errors. Even with the extreme sensory discordance of a reversal, these data further support that distorted reality can promote more complete adaptation/learning when compared to regular training. Lastly, upon removing the flip all subjects quickly returned to baseline rapidly within 6 trials.

  20. Visual error augmentation enhances learning in three dimensions

    Directory of Open Access Journals (Sweden)

    Huang Felix

    2011-09-01

    Full Text Available Abstract Because recent preliminary evidence points to the use of Error augmentation (EA for motor learning enhancements, we visually enhanced deviations from a straight line path while subjects practiced a sensorimotor reversal task, similar to laparoscopic surgery. Our study asked 10 healthy subjects in two groups to perform targeted reaching in a simulated virtual reality environment, where the transformation of the hand position matrix was a complete reversal--rotated 180 degrees about an arbitrary axis (hence 2 of the 3 coordinates are reversed. Our data showed that after 500 practice trials, error-augmented-trained subjects reached the desired targets more quickly and with lower error (differences of 0.4 seconds and 0.5 cm Maximum Perpendicular Trajectory deviation when compared to the control group. Furthermore, the manner in which subjects practiced was influenced by the error augmentation, resulting in more continuous motions for this group and smaller errors. Even with the extreme sensory discordance of a reversal, these data further support that distorted reality can promote more complete adaptation/learning when compared to regular training. Lastly, upon removing the flip all subjects quickly returned to baseline rapidly within 6 trials.

  1. Mobile Augmented Reality as Usability to Enhance Nurse Prevent Violence Learning Satisfaction.

    Science.gov (United States)

    Hsu, Han-Jen; Weng, Wei-Kai; Chou, Yung-Lang; Huang, Pin-Wei

    2018-01-01

    Violence in hospitals, nurses are at high risk of patient's aggression in the workplace. This learning course application Mobile Augmented Reality to enhance nurse to prevent violence skill. Increasingly, mobile technologies introduced and integrated into classroom teaching and clinical applications. Improving the quality of learning course and providing new experiences for nurses.

  2. What the Student Does: Teaching for Enhanced Learning

    Science.gov (United States)

    Biggs, John

    2012-01-01

    Many teachers see major difficulties in maintaining academic standards in today's larger and more diversified classes. The problem becomes more tractable if learning outcomes are seen as more a function of students' activities than of their fixed characteristics. The teacher's job is then to organise the teaching/learning context so that all…

  3. Developing metacognition: a basis for active learning

    NARCIS (Netherlands)

    Vos, Henk; de Graaff, E.

    2004-01-01

    The reasons to introduce formats of Active Learning in Engineering (ALE) like project work, problem based learning, use of cases, etc., are mostly based on practical experience and sometimes from applied research on teaching and learning. Such research shows that students learn more and different

  4. Innovative Language Teaching and Learning at University: Enhancing Employability

    Science.gov (United States)

    Álvarez-Mayo, Carmen, Ed.; Gallagher-Brett, Angela, Ed.; Michel, Franck, Ed.

    2017-01-01

    This second volume in this series of papers dedicated to innovative language teaching and learning at university focuses on enhancing employability. Throughout the book, which includes a selection of 14 peer-reviewed and edited short papers, authors share good practices drawing on research; reflect on their experience to promote student…

  5. Active Learning Innovations in Knowledge Management Education Generate Higher Quality Learning Outcomes

    Directory of Open Access Journals (Sweden)

    Arthur Shelley

    2014-01-01

    Full Text Available Innovations in how a postgraduate course in knowledge management is delivered have generated better learning outcomes and made the course more engaging for learners. Course participant feedback has shown that collaborative active learning is preferred and provides them with richer insights into how knowledge is created and applied to generate innovation and value. The course applies an andragogy approach in which students collaborate in weekly dialogue of their experiences of the content, rather than learn the content itself. The approach combines systems thinking, learning praxis, and active learning to explore the interdependencies between topics and how they impact outcomes in real world situations. This has stimulated students to apply these ideas in their own workplaces.

  6. Enhancing the Lecture: Revitalizing the Traditional Format.

    Science.gov (United States)

    Bonwell, Charles C.

    1996-01-01

    The traditional lecture format of college courses can be enhanced by including active learning designed to further course goals of learning knowledge, developing skills, or fostering attitudes. Techniques suggested include using pauses, short writing periods, think-pair-share activities, formative quizzes, lecture summaries, and several assessment…

  7. Active learning reduces annotation time for clinical concept extraction.

    Science.gov (United States)

    Kholghi, Mahnoosh; Sitbon, Laurianne; Zuccon, Guido; Nguyen, Anthony

    2017-10-01

    To investigate: (1) the annotation time savings by various active learning query strategies compared to supervised learning and a random sampling baseline, and (2) the benefits of active learning-assisted pre-annotations in accelerating the manual annotation process compared to de novo annotation. There are 73 and 120 discharge summary reports provided by Beth Israel institute in the train and test sets of the concept extraction task in the i2b2/VA 2010 challenge, respectively. The 73 reports were used in user study experiments for manual annotation. First, all sequences within the 73 reports were manually annotated from scratch. Next, active learning models were built to generate pre-annotations for the sequences selected by a query strategy. The annotation/reviewing time per sequence was recorded. The 120 test reports were used to measure the effectiveness of the active learning models. When annotating from scratch, active learning reduced the annotation time up to 35% and 28% compared to a fully supervised approach and a random sampling baseline, respectively. Reviewing active learning-assisted pre-annotations resulted in 20% further reduction of the annotation time when compared to de novo annotation. The number of concepts that require manual annotation is a good indicator of the annotation time for various active learning approaches as demonstrated by high correlation between time rate and concept annotation rate. Active learning has a key role in reducing the time required to manually annotate domain concepts from clinical free text, either when annotating from scratch or reviewing active learning-assisted pre-annotations. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Kernel-Based Relevance Analysis with Enhanced Interpretability for Detection of Brain Activity Patterns

    Directory of Open Access Journals (Sweden)

    Andres M. Alvarez-Meza

    2017-10-01

    Full Text Available We introduce Enhanced Kernel-based Relevance Analysis (EKRA that aims to support the automatic identification of brain activity patterns using electroencephalographic recordings. EKRA is a data-driven strategy that incorporates two kernel functions to take advantage of the available joint information, associating neural responses to a given stimulus condition. Regarding this, a Centered Kernel Alignment functional is adjusted to learning the linear projection that best discriminates the input feature set, optimizing the required free parameters automatically. Our approach is carried out in two scenarios: (i feature selection by computing a relevance vector from extracted neural features to facilitating the physiological interpretation of a given brain activity task, and (ii enhanced feature selection to perform an additional transformation of relevant features aiming to improve the overall identification accuracy. Accordingly, we provide an alternative feature relevance analysis strategy that allows improving the system performance while favoring the data interpretability. For the validation purpose, EKRA is tested in two well-known tasks of brain activity: motor imagery discrimination and epileptic seizure detection. The obtained results show that the EKRA approach estimates a relevant representation space extracted from the provided supervised information, emphasizing the salient input features. As a result, our proposal outperforms the state-of-the-art methods regarding brain activity discrimination accuracy with the benefit of enhanced physiological interpretation about the task at hand.

  9. IMPROVEMENT EFFORTS TO LEARN LESSONS ACTIVITIES CHASSIS POWER TRANSFER STANDARD COMPETENCE AND CORRECT STEERING SYSTEM WITH LEARNING METHOD DISCOVERY INQUIRY CLASS XIB SMK MUHAMMADIYAH GAMPING ACADEMIC YEAR 2013/2014

    Directory of Open Access Journals (Sweden)

    Harry Suharto

    2013-12-01

    Full Text Available The purpose of the study to determine the increase learners' learning activities subjects chassis and power transfer competency standard steering system repair discovery learning through the implementation of class XI inquiry Lightweight Vehicle Technology SMK Muhammadiyah Gamping, Sleman academic year 2013/2014. This research including action research   Research conducted at SMK Muhammadiyah Gamping XIB class academic year 2013/2014 with a sample of 26 students. Techniques of data collection using questionnaire sheet, observation sheets and documentation to determine the increase in student activity. Instrument validation study using experts judgment. Analysis using descriptive statistics using the technique .   The results showed that the increased activity of the first cycle to the second cycle include an increase of 57.7 % Visual activities; Oral activities amounted to 61.6 %; Listening activities amounted to 23.04 %; Writing activities by 8.7 %; Mental activities of 73.1 %; Emotional activities of 42.3 % ( for the spirit of the students in learning activities ; Motor activities amounted to -7.7 % ( decrease negative activity . Based on these results can be known to most students in SMK Muhammadiyah Gamping gave a positive opinion on the use of inquiry and discovery learning method has a view that the use of inquiry discovery learning methods can be useful for students and schools themselves. Learners who have a good perception of the use of discovery learning method of inquiry he has known and fully aware of the standards of achievement of competence theory fix the steering system. Learning discovery learning methods on achievement of competency standards inquiry repair steering systems theory pleased with the learning process, they are also able to: 1 increase the motivation to learn, 2 improving learning achievement; 3 enhancing creativity; 4 listen, respect, and accept the opinion of the participants other students; 5 reduce boredom

  10. Factors enhancing learning possibilities in digital workshops

    Directory of Open Access Journals (Sweden)

    Christian Kobbernagel

    2014-05-01

    Full Text Available This article presents a study of processes supporting student learning possibilities in digital workshops planned and held at art museums in Denmark. The investigation aims to provide insights into factors enhancing learning possibilities, including the educator’s dialogic performance, experiences of art, and perceived qualities of digital content creation processes in art museum education workshops. To address the research question of what conditional and processual factors can be said to support learning possibilities, a model was developed on the basis of fieldwork and theories of media education, art pedagogy and motivation. The model was then analyzed using structural equation modelling (SEM on data collected (N= 502 after workshops in two museums. The results suggest that the dialogic performance of museum educators, a positive art experience and positive perceptions of working with digital media are factors that strongly support student participation and reflection – although to various degrees. The findings also show that, in cases in which students are disinterested and see little value in participating during the workshop, this amotivation is likely to be lower when their art experiences and their perceptions of the media production process are positive. 

  11. Factors enhancing learning possibilities in digital workshops

    Directory of Open Access Journals (Sweden)

    Christian Kobbernagel

    2014-06-01

    Full Text Available This article presents a study of processes supporting student learning possibilities in digital workshops planned and held at art museums in Denmark. The investigation aims to provide insights into factors enhancing learning possibilities, including the educator’s dialogic performance, experiences of art, and perceived qualities of digital content creation processes in art museum education workshops. To address the research question of what conditional and processual factors can be said to support learning possibilities, a model was developed on the basis of fieldwork and theories of media education, art pedagogy and motivation. The model was then analyzed using structural equation modelling (SEM on data collected (N= 502 after workshops in two museums. The results suggest that the dialogic performance of museum educators, a positive art experience and positive perceptions of working with digital media are factors that strongly support student participation and reflection – although to various degrees. The findings also show that, in cases in which students are disinterested and see little value in participating during the workshop, this amotivation is likely to be lower when their art experiences and their perceptions of the media production process are positive.

  12. Enhancement of the Electrocatalytic Activity of Gold Nanoparticles via Anodic Treatment and the Decrease of the Enhanced Activity with Aging

    International Nuclear Information System (INIS)

    Jo, Kyung Min; Kang, Hyun Ju; Yang, Hae Sik

    2011-01-01

    We have recently shown that the electrocatalytic activity of Au nanoparticles (AuNPs) can be enhanced via NaBH 4 treatment and cathodic treatment and that the enhanced activity slowly decreases with aging. We have also demonstrated that the electrocatalytic activity of the AuNPs freshly prepared by electrochemical or chemical reduction slowly decreases with aging in both air and solution. Likewise, the electrocatalytic activity of anodically treated Au electrodes or AuNPs might change with aging. Herein, we report that the electrocatalytic activity of long-aged AuNPs can be enhanced via anodic treatment and that the enhanced electrocatalytic activity decreases with aging in air. The change in the electrocatalytic activity of AuNPs was evaluated by comparing cyclic voltammograms for the electrooxi-dation of hydrogen peroxide (H 2 O 2 ) and formic acid

  13. White noise improves learning by modulating activity in dopaminergic midbrain regions and right superior temporal sulcus.

    Science.gov (United States)

    Rausch, Vanessa H; Bauch, Eva M; Bunzeck, Nico

    2014-07-01

    In neural systems, information processing can be facilitated by adding an optimal level of white noise. Although this phenomenon, the so-called stochastic resonance, has traditionally been linked with perception, recent evidence indicates that white noise may also exert positive effects on cognitive functions, such as learning and memory. The underlying neural mechanisms, however, remain unclear. Here, on the basis of recent theories, we tested the hypothesis that auditory white noise, when presented during the encoding of scene images, enhances subsequent recognition memory performance and modulates activity within the dopaminergic midbrain (i.e., substantia nigra/ventral tegmental area, SN/VTA). Indeed, in a behavioral experiment, we can show in healthy humans that auditory white noise-but not control sounds, such as a sinus tone-slightly improves recognition memory. In an fMRI experiment, white noise selectively enhances stimulus-driven phasic activity in the SN/VTA and auditory cortex. Moreover, it induces stronger connectivity between SN/VTA and right STS, which, in addition, exhibited a positive correlation with subsequent memory improvement by white noise. Our results suggest that the beneficial effects of auditory white noise on learning depend on dopaminergic neuromodulation and enhanced connectivity between midbrain regions and the STS-a key player in attention modulation. Moreover, they indicate that white noise could be particularly useful to facilitate learning in conditions where changes of the mesolimbic system are causally related to memory deficits including healthy and pathological aging.

  14. Effect of methylphenidate on enhancement of spatial learning by novel alternated dual task.

    Science.gov (United States)

    Veetil, Praveen Kottath; Mukkadan, Joseph Kurian

    2011-01-01

    The novel alternated dual task (ADT) arranged rats to learn T-maze spontaneous alternation task and radial arm maze (RAM) task alternatively, and by doing ADT, rats could acquire the tasks more easily than non alternated dual task (NADT) group. Also retention capacity of ADT group was significantly more and ADT help to learn a complex task faster than learning it in isolation from other tasks. In the present study effect of methylphenidate (MPD), a mood elevator, known to enhance learning and memory, on ADT procedure is assessed. Also effect of ADT procedure and MPD on spatial learning and memory are compared. Different groups were assigned by administering MPD (intraperitoneal injection at a dose of 3 mg/kg body weight) during different phases of behavioural experiments, and control groups received saline injection. MPD administration increased both acquisition and retention capacities. The amelioration attained for retention of complex task by ADT procedure, could be achieved by NADT rats only by administration of MPD. The influence of ADT procedure on acquisition and retention of TM and RAM tasks were similar to the effects of MPD, especially for the RAM task. MPD at low dose is found to enhance the learning and memory capacity in rats, than deteriorating it, supporting the use of MPD as a drug to treat attention deficit hyperactive disorder. The recent reports suggesting the effect of MPD only on retention and not on acquisition could not be confirmed, as enhancement for both acquisition and retention was found in this study.

  15. Class and Home Problems. Identify-Solve-Broadcast Your Own Transport Phenomenon: Student-Created YouTube Videos to Foster Active Learning in Mass and Heat Transfer

    Science.gov (United States)

    Wen, Fei; Khera, Eshita

    2016-01-01

    Despite the instinctive perception of mass and heat transfer principles in daily life, productive learning in this course continues to be one of the greatest challenges for undergraduate students in chemical engineering. In an effort to enhance student learning in classroom, we initiated an innovative active-learning method titled…

  16. Designing Ubiquitous Computing to Enhance Children's Learning in Museums

    Science.gov (United States)

    Hall, T.; Bannon, L.

    2006-01-01

    In recent years, novel paradigms of computing have emerged, which enable computational power to be embedded in artefacts and in environments in novel ways. These developments may create new possibilities for using computing to enhance learning. This paper presents the results of a design process that set out to explore interactive techniques,…

  17. Evaluation of a Digital Game-Based Learning Program for Enhancing Youth Mental Health: A Structural Equation Modeling of the Program Effectiveness.

    Science.gov (United States)

    Huen, Jenny My; Lai, Eliza Sy; Shum, Angie Ky; So, Sam Wk; Chan, Melissa Ky; Wong, Paul Wc; Law, Y W; Yip, Paul Sf

    2016-10-07

    Digital game-based learning (DGBL) makes use of the entertaining power of digital games for educational purposes. Effectiveness assessment of DGBL programs has been underexplored and no attempt has been made to simultaneously model both important components of DGBL: learning attainment (ie, educational purposes of DGBL) and engagement of users (ie, entertaining power of DGBL) in evaluating program effectiveness. This study aimed to describe and evaluate an Internet-based DGBL program, Professor Gooley and the Flame of Mind, which promotes mental health to adolescents in a positive youth development approach. In particular, we investigated whether user engagement in the DGBL program could enhance their attainment on each of the learning constructs per DGBL module and subsequently enhance their mental health as measured by psychological well-being. Users were assessed on their attainment on each learning construct, psychological well-being, and engagement in each of the modules. One structural equation model was constructed for each DGBL module to model the effect of users' engagement and attainment on the learning construct on their psychological well-being. Of the 498 secondary school students that registered and participated from the first module of the DGBL program, 192 completed all 8 modules of the program. Results from structural equation modeling suggested that a higher extent of engagement in the program activities facilitated users' attainment on the learning constructs on most of the modules and in turn enhanced their psychological well-being after controlling for users' initial psychological well-being and initial attainment on the constructs. This study provided evidence that Internet intervention for mental health, implemented with the technologies and digital innovations of DGBL, could enhance youth mental health. Structural equation modeling is a promising approach in evaluating the effectiveness of DGBL programs.

  18. Grand Challenge Problem 3: Empowering Science Teachers Using Technology-Enhanced Scaffolding to Improve Inquiry Learning

    NARCIS (Netherlands)

    Pedaste, Margus; Lazonder, Adrianus W.; Raes, Annelies; Wajeman, Claire; Moore, Emily; Girault, Isabelle; Eberle, Julia; Lund, Kristine; Tchounikine, Pierre; Fischer, Frank

    2016-01-01

    Inquiry learning in technology-enhanced learning (TEL) environments has potential to support science learning. The “symbiosis” between teachers and TEL environments is needed and, therefore, virtual assistants should be “taught” based on pedagogical theories. These assistants should be dynamically

  19. Deep and surface learning in problem-based learning: a review of the literature.

    Science.gov (United States)

    Dolmans, Diana H J M; Loyens, Sofie M M; Marcq, Hélène; Gijbels, David

    2016-12-01

    In problem-based learning (PBL), implemented worldwide, students learn by discussing professionally relevant problems enhancing application and integration of knowledge, which is assumed to encourage students towards a deep learning approach in which students are intrinsically interested and try to understand what is being studied. This review investigates: (1) the effects of PBL on students' deep and surface approaches to learning, (2) whether and why these effects do differ across (a) the context of the learning environment (single vs. curriculum wide implementation), and (b) study quality. Studies were searched dealing with PBL and students' approaches to learning. Twenty-one studies were included. The results indicate that PBL does enhance deep learning with a small positive average effect size of .11 and a positive effect in eleven of the 21 studies. Four studies show a decrease in deep learning and six studies show no effect. PBL does not seem to have an effect on surface learning as indicated by a very small average effect size (.08) and eleven studies showing no increase in the surface approach. Six studies demonstrate a decrease and four an increase in surface learning. It is concluded that PBL does seem to enhance deep learning and has little effect on surface learning, although more longitudinal research using high quality measurement instruments is needed to support this conclusion with stronger evidence. Differences cannot be explained by the study quality but a curriculum wide implementation of PBL has a more positive impact on the deep approach (effect size .18) compared to an implementation within a single course (effect size of -.05). PBL is assumed to enhance active learning and students' intrinsic motivation, which enhances deep learning. A high perceived workload and assessment that is perceived as not rewarding deep learning are assumed to enhance surface learning.

  20. Active Learning and Cooperative Learning in the Organic Chemistry Lecture Class

    Science.gov (United States)

    Paulson, Donald R.

    1999-08-01

    Faculty in the physical sciences are one of the academic groups least receptive to the use of active learning strategies and cooperative learning in their classrooms. This is particularly so in traditional lecture classes. It is the objective of this paper to show how effective these techniques can be in improving student performance in classes. The use of active learning strategies and cooperative learning groups in my organic chemistry lecture classes has increased the overall pass rate in my classes by an astounding 20-30% over the traditional lecture mode. This has been accomplished without any reduction in "standards". The actual methods employed are presented as well as a discussion of how I came to radically change the way I teach my classes.

  1. Active Learning and Teaching: Improving Postsecondary Library Instruction.

    Science.gov (United States)

    Allen, Eileen E.

    1995-01-01

    Discusses ways to improve postsecondary library instruction based on theories of active learning. Topics include a historical background of active learning; student achievement and attitudes; cognitive development; risks; active teaching; and instructional techniques, including modified lectures, brainstorming, small group work, cooperative…

  2. How Students Perceived Social Media as a Learning Tool in Enhancing Their Language Learning Performance

    Science.gov (United States)

    Kitchakarn, Orachorn

    2016-01-01

    Social media like Facebook has been used for teaching and learning for quite some time. Since it allows for better participation in the learning activities, a fundamental English course at a private university integrated Facebook as a learning platform making it possible for students to do self-study, exchange ideas, give comments, and submit the…

  3. Resource Letter ALIP-1: Active-Learning Instruction in Physics

    Science.gov (United States)

    Meltzer, David E.; Thornton, Ronald K.

    2012-06-01

    This Resource Letter provides a guide to the literature on research-based active-learning instruction in physics. These are instructional methods that are based on, assessed by, and validated through research on the teaching and learning of physics. They involve students in their own learning more deeply and more intensely than does traditional instruction, particularly during class time. The instructional methods and supporting body of research reviewed here offer potential for significantly improved learning in comparison to traditional lecture-based methods of college and university physics instruction. We begin with an introduction to the history of active learning in physics in the United States, and then discuss some methods for and outcomes of assessing pedagogical effectiveness. We enumerate and describe common characteristics of successful active-learning instructional strategies in physics. We then discuss a range of methods for introducing active-learning instruction in physics and provide references to those methods for which there is published documentation of student learning gains.

  4. Using Social Media Technologies to Enhance Online Learning

    Directory of Open Access Journals (Sweden)

    Hershey H. Friedman

    2013-01-01

    Full Text Available Models of distance education have evolved over decades, just in time to collide with modern pedagogies in which communication, interaction, student engagement, and active learning are of critical importance. The number of college students taking online classes continues to grow. Today, nearly 30% of college students are taking at least one online class. The social media technologies encompass a wide variety of Web-based technologies such as blogs, wikis, online social networking, and virtual worlds. This paper examines the relevant published literature, looking at online learning activities through the prism of the defining characteristics of today’s new communication technologies.

  5. Music listening while you learn: no influence of background music on verbal learning.

    Science.gov (United States)

    Jäncke, Lutz; Sandmann, Pascale

    2010-01-07

    Whether listening to background music enhances verbal learning performance is still disputed. In this study we investigated the influence of listening to background music on verbal learning performance and the associated brain activations. Musical excerpts were composed for this study to ensure that they were unknown to the subjects and designed to vary in tempo (fast vs. slow) and consonance (in-tune vs. out-of-tune). Noise was used as control stimulus. 75 subjects were randomly assigned to one of five groups and learned the presented verbal material (non-words with and without semantic connotation) with and without background music. Each group was exposed to one of five different background stimuli (in-tune fast, in-tune slow, out-of-tune fast, out-of-tune slow, and noise). As dependent variable, the number of learned words was used. In addition, event-related desynchronization (ERD) and event-related synchronization (ERS) of the EEG alpha-band were calculated as a measure for cortical activation. We did not find any substantial and consistent influence of background music on verbal learning. There was neither an enhancement nor a decrease in verbal learning performance during the background stimulation conditions. We found however a stronger event-related desynchronization around 800 - 1200 ms after word presentation for the group exposed to in-tune fast music while they learned the verbal material. There was also a stronger event-related synchronization for the group exposed to out-of-tune fast music around 1600 - 2000 ms after word presentation. Verbal learning during the exposure to different background music varying in tempo and consonance did not influence learning of verbal material. There was neither an enhancing nor a detrimental effect on verbal learning performance. The EEG data suggest that the different acoustic background conditions evoke different cortical activations. The reason for these different cortical activations is unclear. The most

  6. Music listening while you learn: No influence of background music on verbal learning

    Directory of Open Access Journals (Sweden)

    Sandmann Pascale

    2010-01-01

    Full Text Available Abstract Background Whether listening to background music enhances verbal learning performance is still disputed. In this study we investigated the influence of listening to background music on verbal learning performance and the associated brain activations. Methods Musical excerpts were composed for this study to ensure that they were unknown to the subjects and designed to vary in tempo (fast vs. slow and consonance (in-tune vs. out-of-tune. Noise was used as control stimulus. 75 subjects were randomly assigned to one of five groups and learned the presented verbal material (non-words with and without semantic connotation with and without background music. Each group was exposed to one of five different background stimuli (in-tune fast, in-tune slow, out-of-tune fast, out-of-tune slow, and noise. As dependent variable, the number of learned words was used. In addition, event-related desynchronization (ERD and event-related synchronization (ERS of the EEG alpha-band were calculated as a measure for cortical activation. Results We did not find any substantial and consistent influence of background music on verbal learning. There was neither an enhancement nor a decrease in verbal learning performance during the background stimulation conditions. We found however a stronger event-related desynchronization around 800 - 1200 ms after word presentation for the group exposed to in-tune fast music while they learned the verbal material. There was also a stronger event-related synchronization for the group exposed to out-of-tune fast music around 1600 - 2000 ms after word presentation. Conclusion Verbal learning during the exposure to different background music varying in tempo and consonance did not influence learning of verbal material. There was neither an enhancing nor a detrimental effect on verbal learning performance. The EEG data suggest that the different acoustic background conditions evoke different cortical activations. The reason for

  7. Empathy and feedback processing in active and observational learning.

    Science.gov (United States)

    Rak, Natalia; Bellebaum, Christian; Thoma, Patrizia

    2013-12-01

    The feedback-related negativity (FRN) and the P300 have been related to the processing of one's own and other individuals' feedback during both active and observational learning. The aim of the present study was to elucidate the role of trait-empathic responding with regard to the modulation of the neural correlates of observational learning in particular. Thirty-four healthy participants completed an active and an observational learning task. On both tasks, the participants' aim was to maximize their monetary gain by choosing from two stimuli the one that showed the higher probability of reward. Participants gained insight into the stimulus-reward contingencies according to monetary feedback presented after they had made an active choice or by observing the choices of a virtual partner. Participants showed a general improvement in learning performance on both learning tasks. P200, FRN, and P300 amplitudes were larger during active, as compared with observational, learning. Furthermore, nonreward elicited a significantly more negative FRN than did reward in the active learning task, while only a trend was observed for observational learning. Distinct subcomponents of trait cognitive empathy were related to poorer performance and smaller P300 amplitudes for observational learning only. Taken together, both the learning performance and event-related potentials during observational learning are affected by different aspects of trait cognitive empathy, and certain types of observational learning may actually be disrupted by a higher tendency to understand and adopt other people's perspectives.

  8. Enhancement of Online Robotics Learning Using Real-Time 3D Visualization Technology

    OpenAIRE

    Richard Chiou; Yongjin (james) Kwon; Tzu-Liang (bill) Tseng; Robin Kizirian; Yueh-Ting Yang

    2010-01-01

    This paper discusses a real-time e-Lab Learning system based on the integration of 3D visualization technology with a remote robotic laboratory. With the emergence and development of the Internet field, online learning is proving to play a significant role in the upcoming era. In an effort to enhance Internet-based learning of robotics and keep up with the rapid progression of technology, a 3- Dimensional scheme of viewing the robotic laboratory has been introduced in addition to the remote c...

  9. Elementary school science teachers' reflection for nature of science: Workshop of NOS explicit and reflective on force and motion learning activity

    Science.gov (United States)

    Patho, Khanittha; Yuenyong, Chokchai; Chamrat, Suthida

    2018-01-01

    The nature of science has been part of Thailand's science education curriculum since 2008. However, teachers lack of understanding about the nature of science (NOS) and its teaching, particularly element school science teachers. In 2012, the Science Institute of Thailand MOE, started a project of Elementary Science Teacher Professional Development to enhance their thinking about the Nature of Science. The project aimed to enhance teachers' understanding of NOS, science teaching for explicit and reflective NOS, with the aim of extending their understanding of NOS to other teachers. This project selected 366 educational persons. The group was made up of a teacher and a teacher supervisor from 183 educational areas in 74 provinces all Thailand. The project provided a one week workshop and a year's follow up. The week-long workshop consisted of 11 activities of science teaching for explicit reflection on 8 aspects of NOS. Workshop of NOS explicit and reflective on force and motion learning activity is one of eight activities. This activity provided participants to learn force and motion and NOS from the traditional toy "Bang-Poh". The activity tried to enhance participants to explicit NOS for 5 aspects including empirical basis, subjectivity, creativity, observation and inference, and sociocultural embeddedness. The explicit NOS worksheet provided questions to ask participants to reflect their existing ideas about NOS. The paper examines elementary school science teachers' understanding of NOS from the force and motion learning activity which provided explicit reflection on 5 NOS aspects. An interpretive paradigm was used to analyse the teachers' reflections in a NOS worksheet. The findings indicated that majority of them could reflect about the empirical basis of science and creativity but few reflected on observation and inference, or sociocultural embeddedness. The paper will explain the teachers' NOS thinking and discuss the further enhancing of their understanding

  10. Stabilization of dendritic spine clusters and hyperactive Ras-MAPK signaling predict enhanced motor learning in an autistic savant mouse model

    Directory of Open Access Journals (Sweden)

    Ryan Thomas Ash

    2014-03-01

    Full Text Available That both prominent behavioral inflexibility and exceptional learning abilities are seen occasionally in autistic patients is a mystery. We hypothesize that these altered patterns of learning and memory can arise from a pathological imbalance between the stability and plasticity of internal neural representations. We evaluated this hypothesis in the mouse model of MECP2 duplication syndrome, which demonstrates enhanced motor learning, stereotyped behaviors, and social avoidance. Learning-associated structural plasticity was measured in the motor cortex of MECP2 duplication mice by 2-photon imaging (Fig. 1A. An increased stabilization rate of learning-associated dendritic spines was observed in mutants, and this correlated with rotarod performance. Analysis of the spatial distribution of stabilized spines revealed that the mutant’s increased spine stabilization was due to a specific increase in the stability of spines jointly formed in ~9-micron clusters. Clustered spine stabilization but not isolated spine stabilization predicted enhanced motor performance in MECP2 duplication mice (Fig. 1B. Biochemical assays of Ras-MAPK and mTOR pathway activation demonstrated profound hyperphosphorylation of MAPK in the motor cortex of MECP2 duplication mice with motor training (Fig. 1C. Taken together these data suggest that a pathological bias towards hyperstability of learning-associated dendritic spine clusters driven by hyperactive Ras-MAPK signaling could contribute to neurobehavioral phenotypes in this form of syndromic autism.

  11. Enhanced learning of natural visual sequences in newborn chicks.

    Science.gov (United States)

    Wood, Justin N; Prasad, Aditya; Goldman, Jason G; Wood, Samantha M W

    2016-07-01

    To what extent are newborn brains designed to operate over natural visual input? To address this question, we used a high-throughput controlled-rearing method to examine whether newborn chicks (Gallus gallus) show enhanced learning of natural visual sequences at the onset of vision. We took the same set of images and grouped them into either natural sequences (i.e., sequences showing different viewpoints of the same real-world object) or unnatural sequences (i.e., sequences showing different images of different real-world objects). When raised in virtual worlds containing natural sequences, newborn chicks developed the ability to recognize familiar images of objects. Conversely, when raised in virtual worlds containing unnatural sequences, newborn chicks' object recognition abilities were severely impaired. In fact, the majority of the chicks raised with the unnatural sequences failed to recognize familiar images of objects despite acquiring over 100 h of visual experience with those images. Thus, newborn chicks show enhanced learning of natural visual sequences at the onset of vision. These results indicate that newborn brains are designed to operate over natural visual input.

  12. Nicotine shifts the temporal activation of hippocampal protein kinase A and extracellular signal-regulated kinase 1/2 to enhance long-term, but not short-term, hippocampus-dependent memory.

    Science.gov (United States)

    Gould, Thomas J; Wilkinson, Derek S; Yildirim, Emre; Poole, Rachel L F; Leach, Prescott T; Simmons, Steven J

    2014-03-01

    Acute nicotine enhances hippocampus-dependent learning through nicotine binding to β2-containing nicotinic acetylcholine receptors (nAChRs), but it is unclear if nicotine is targeting processes involved in short-term memory (STM) leading to a strong long-term memory (LTM) or directly targeting LTM. In addition, the molecular mechanisms involved in the effects of nicotine on learning are unknown. Previous research indicates that protein kinase A (PKA), extracellular signal-regulated kinase 1/2 (ERK1/2), and protein synthesis are crucial for LTM. Therefore, the present study examined the effects of nicotine on STM and LTM and the involvement of PKA, ERK1/2, and protein synthesis in the nicotine-induced enhancement of hippocampus-dependent contextual learning in C57BL/6J mice. The protein synthesis inhibitor anisomycin impaired contextual conditioning assessed at 4 h but not 2 h post-training, delineating time points for STM (2 h) and LTM (4 h and beyond). Nicotine enhanced contextual conditioning at 4, 8, and 24 h but not 2 h post-training, indicating nicotine specifically enhances LTM but not STM. Furthermore, nicotine did not rescue deficits in contextual conditioning produced by anisomycin, suggesting that the nicotine enhancement of contextual conditioning occurs through a protein synthesis-dependent mechanism. In addition, inhibition of dorsal hippocampal PKA activity blocked the effect of acute nicotine on learning, and nicotine shifted the timing of learning-related PKA and ERK1/2 activity in the dorsal and ventral hippocampus. Thus, the present results suggest that nicotine specifically enhances LTM through altering the timing of PKA and ERK1/2 signaling in the hippocampus, and suggests that the timing of PKA and ERK1/2 activity could contribute to the strength of memories. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. The selective serotonin reuptake inhibitor, escitalopram, enhances inhibition of prepotent responding and spatial reversal learning

    Science.gov (United States)

    Brown, Holden D.; Amodeo, Dionisio A.; Sweeney, John A.; Ragozzino, Michael E.

    2011-01-01

    Previous findings indicate treatment with a selective serotonin reuptake inhibitor (SSRI) facilitates behavioral flexibility when conditions require inhibition of a learned response pattern. The present experiment investigated whether acute treatment with the SSRI, escitalopram, affects behavioral flexibility when conditions require inhibition of a naturally-biased response pattern (elevated conflict test) and/or reversal of a learned response pattern (spatial reversal learning). An additional experiment was carried out to determine whether escitalopram, at doses that affected behavioral flexibility, also reduced anxiety as tested in the elevated plus-maze. In each experiment, Long-Evans rats received an intraperitoneal injection of either saline or escitalopram (0.03, 0.3 or 1.0 mg/kg) 30 minutes prior to behavioral testing. Escitalopram, at all doses tested, enhanced acquisition in the elevated conflict test, but did not affect performance in the elevated plus-maze. Escitalopram (0.3 and 1.0 mg/kg) did not alter acquisition of the spatial discrimination, but facilitated reversal learning. In the elevated conflict and spatial reversal learning test, escitalopram enhanced the ability to maintain the relevant strategy after being initially selected. The present findings suggest that enhancing serotonin transmission with a SSRI facilitates inhibitory processes when conditions require a shift away from either a naturally-biased response pattern or a learned choice pattern. PMID:22219222

  14. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-e; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs’ appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers’ attention from different fields and many studies have validated MMORPGs’ positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers’ overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas. PMID:28303097

  15. Language Learning Enhanced by Massive Multiple Online Role-Playing Games (MMORPGs) and the Underlying Behavioral and Neural Mechanisms.

    Science.gov (United States)

    Zhang, Yongjun; Song, Hongwen; Liu, Xiaoming; Tang, Dinghong; Chen, Yue-E; Zhang, Xiaochu

    2017-01-01

    Massive Multiple Online Role-Playing Games (MMORPGs) have increased in popularity among children, juveniles, and adults since MMORPGs' appearance in this digital age. MMORPGs can be applied to enhancing language learning, which is drawing researchers' attention from different fields and many studies have validated MMORPGs' positive effect on language learning. However, there are few studies on the underlying behavioral or neural mechanism of such effect. This paper reviews the educational application of the MMORPGs based on relevant macroscopic and microscopic studies, showing that gamers' overall language proficiency or some specific language skills can be enhanced by real-time online interaction with peers and game narratives or instructions embedded in the MMORPGs. Mechanisms underlying the educational assistant role of MMORPGs in second language learning are discussed from both behavioral and neural perspectives. We suggest that attentional bias makes gamers/learners allocate more cognitive resources toward task-related stimuli in a controlled or an automatic way. Moreover, with a moderating role played by activation of reward circuit, playing the MMORPGs may strengthen or increase functional connectivity from seed regions such as left anterior insular/frontal operculum (AI/FO) and visual word form area to other language-related brain areas.

  16. Genetically-induced cholinergic hyper-innervation enhances taste learning

    Directory of Open Access Journals (Sweden)

    Selin eNeseliler

    2011-12-01

    Full Text Available Acute inhibition of acetylcholine (ACh has been shown to impair many forms of simple learning, and notably conditioned taste aversion (CTA. The most adhered-to theory that has emerged as a result of this work—that ACh increases a taste’s perceived novelty, and thereby its associability—would be further strengthened by evidence showing that enhanced cholinergic function improves learning above normal levels. Experimental testing of this corollary hypothesis has been limited, however, by side-effects of pharmacological ACh agonism and by the absence of a model that achieves long-term increases in cholinergic signaling. Here, we present this further test of the ACh hypothesis, making use of mice lacking the p75 pan-neurotrophin receptor gene, which show a resultant over-abundance of cholinergic neurons in subregions of the basal forebrain (BF. We first demonstrate that the p75-/- abnormality directly affects portions of the CTA circuit, locating mouse gustatory cortex (GC using a functional assay and then using immunohistochemisty to demonstrate cholinergic hyperinnervation of GC in the mutant mice—hyperinnervation that is unaccompanied by changes in cell numbers or compensatory changes in muscarinic receptor densities. We then demonstrate that both p75-/- and wild-type mice learn robust CTAs, which extinguish more slowly in the mutants. Further testing to distinguish effects on learning from alterations in memory retention demonstrate that p75-/- mice do in fact learn stronger CTAs than wild-type mice. These data provide novel evidence for the hypothesis linking ACh and taste learning.

  17. Selective Activation of M4 Muscarinic Acetylcholine Receptors Reverses MK-801-Induced Behavioral Impairments and Enhances Associative Learning in Rodents

    Science.gov (United States)

    2015-01-01

    Positive allosteric modulators (PAMs) of the M4 muscarinic acetylcholine receptor (mAChR) represent a novel approach for the treatment of psychotic symptoms associated with schizophrenia and other neuropsychiatric disorders. We recently reported that the selective M4 PAM VU0152100 produced an antipsychotic drug-like profile in rodents after amphetamine challenge. Previous studies suggest that enhanced cholinergic activity may also improve cognitive function and reverse deficits observed with reduced signaling through the N-methyl-d-aspartate subtype of the glutamate receptor (NMDAR) in the central nervous system. Prior to this study, the M1 mAChR subtype was viewed as the primary candidate for these actions relative to the other mAChR subtypes. Here we describe the discovery of a novel M4 PAM, VU0467154, with enhanced in vitro potency and improved pharmacokinetic properties relative to other M4 PAMs, enabling a more extensive characterization of M4 actions in rodent models. We used VU0467154 to test the hypothesis that selective potentiation of M4 receptor signaling could ameliorate the behavioral, cognitive, and neurochemical impairments induced by the noncompetitive NMDAR antagonist MK-801. VU0467154 produced a robust dose-dependent reversal of MK-801-induced hyperlocomotion and deficits in preclinical models of associative learning and memory functions, including the touchscreen pairwise visual discrimination task in wild-type mice, but failed to reverse these stimulant-induced deficits in M4 KO mice. VU0467154 also enhanced the acquisition of both contextual and cue-mediated fear conditioning when administered alone in wild-type mice. These novel findings suggest that M4 PAMs may provide a strategy for addressing the more complex affective and cognitive disruptions associated with schizophrenia and other neuropsychiatric disorders. PMID:25137629

  18. Test-Enhanced Learning of Natural Concepts: Effects on Recognition Memory, Classification, and Metacognition

    Science.gov (United States)

    Jacoby, Larry L.; Wahlheim, Christopher N.; Coane, Jennifer H.

    2010-01-01

    Three experiments examined testing effects on learning of natural concepts and metacognitive assessments of such learning. Results revealed that testing enhanced recognition memory and classification accuracy for studied and novel exemplars of bird families on immediate and delayed tests. These effects depended on the balance of study and test…

  19. Faculty Perceptions about Barriers to Active Learning

    Science.gov (United States)

    Michael, Joel

    2007-01-01

    Faculty may perceive many barriers to active learning in their classrooms. Four groups of participants in a faculty development workshop were asked to list their perceived barriers to active learning. Many of the problems identified were present on more than one list. The barriers fall into three categories: student characteristics, issues…

  20. Active Multi-Field Learning for Spam Filtering

    OpenAIRE

    Wuying Liu; Lin Wang; Mianzhu Yi; Nan Xie

    2015-01-01

    Ubiquitous spam messages cause a serious waste of time and resources. This paper addresses the practical spam filtering problem, and proposes a universal approach to fight with various spam messages. The proposed active multi-field learning approach is based on: 1) It is cost-sensitive to obtain a label for a real-world spam filter, which suggests an active learning idea; and 2) Different messages often have a similar multi-field text structure, which suggests a multi-field learning idea. The...

  1. Mobile Game Based Learning: Can it enhance learning of marginalized peer educators?

    OpenAIRE

    Roy, Anupama; Sharples, Mike

    2015-01-01

    This paper describes an investigatory project to pilot an SMS based game to enhance the training of peer educators of MSM (Males having Sex with Males) groups in India. The objective of this research was to increase the efficacy of the MSM peer educators by bridging the gap between the training needs and their real life experiences. An SMS based game was designed using participatory approaches as a learning support, upholding their real life experiences in game form. The game was designed on ...

  2. Stress enhances the consolidation of extinction memory in a predictive learning task

    Directory of Open Access Journals (Sweden)

    Tanja eHamacher-Dang

    2013-08-01

    Full Text Available Extinction is not always permanent, as indicated by several types of recovery effects, such as the renewal effect, which may occur after a context change and points towards the importance of contextual cues. Strengthening the retrieval of extinction memory is a crucial aim of extinction-based psychotherapeutic treatments of anxiety disorders to prevent relapse. Stress is known to modulate learning and memory, with mostly enhancing effects on memory consolidation. However, whether such a consolidation-enhancing effect of acute stress can also be found for extinction memory has not yet been examined in humans. In this study, we investigated the effect of stress after extinction learning on the retrieval of extinction memory in a predictive learning renewal paradigm. Participants took the part of being the doctor of a fictitious patient and learned to predict whether certain food stimuli were associated with ‘stomach trouble’ in two different restaurants (contexts. On the first day, critical stimuli were associated with stomach trouble in context A (acquisition phase. On the second day, these associations were extinguished in context B. Directly after extinction, participants were either exposed to a stressor (socially evaluated cold pressor test; n = 22 or a control condition (n = 24. On the third day, we tested retrieval of critical associations in contexts A and B. Participants exposed to stress after extinction exhibited a reduced recovery of responding at test in context B, suggesting that stress may context-dependently enhance the consolidation of extinction memory. Furthermore, the increase in cortisol in response to the stressor was negatively correlated with the recovery of responding in context A. Our findings suggest that in parallel to the known effects of stress on the consolidation of episodic memory, stress also enhances the consolidation of extinction memory, which might be relevant for potential applications in extinction

  3. A cognitive perspective on technology enhanced learning in medical training: great opportunities, pitfalls and challenges.

    Science.gov (United States)

    Dror, Itiel; Schmidt, Pascal; O'connor, Lanty

    2011-01-01

    As new technology becomes available and is used for educational purposes, educators often take existing training and simply transcribe it into the new technological medium. However, when technology drives e-learning rather than the learner and the learning, and when it uses designs and approaches that were not originally built for e-learning, then often technology does not enhance the learning (it may even be detrimental to it). The success of e-learning depends on it being 'brain friendly', on engaging the learners from an understanding of how the cognitive system works. This enables educators to optimize learning by achieving correct mental representations that will be remembered and applied in practice. Such technology enhanced learning (TEL) involves developing and using novel approaches grounded in cognitive neuroscience; for example, gaming and simulations that distort realism rather than emphasizing visual fidelity and realism, making videos interactive, training for 'error recovery' rather than for 'error reduction', and a whole range of practical ways that result in effective TEL. These are a result of e-learning that is built to fit and support the cognitive system, and therefore optimize the learning.

  4. Active Learning: The Importance of Developing a Comprehensive Measure

    Science.gov (United States)

    Carr, Rodney; Palmer, Stuart; Hagel, Pauline

    2015-01-01

    This article reports on an investigation into the validity of a widely used scale for measuring the extent to which higher education students employ active learning strategies. The scale is the active learning scale in the Australasian Survey of Student Engagement. This scale is based on the Active and Collaborative Learning scale of the National…

  5. Age-related impairments in active learning and strategic visual exploration

    Directory of Open Access Journals (Sweden)

    Kelly L Brandstatt

    2014-02-01

    Full Text Available Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.

  6. Age-related impairments in active learning and strategic visual exploration.

    Science.gov (United States)

    Brandstatt, Kelly L; Voss, Joel L

    2014-01-01

    Old age could impair memory by disrupting learning strategies used by younger individuals. We tested this possibility by manipulating the ability to use visual-exploration strategies during learning. Subjects controlled visual exploration during active learning, thus permitting the use of strategies, whereas strategies were limited during passive learning via predetermined exploration patterns. Performance on tests of object recognition and object-location recall was matched for younger and older subjects for objects studied passively, when learning strategies were restricted. Active learning improved object recognition similarly for younger and older subjects. However, active learning improved object-location recall for younger subjects, but not older subjects. Exploration patterns were used to identify a learning strategy involving repeat viewing. Older subjects used this strategy less frequently and it provided less memory benefit compared to younger subjects. In previous experiments, we linked hippocampal-prefrontal co-activation to improvements in object-location recall from active learning and to the exploration strategy. Collectively, these findings suggest that age-related memory problems result partly from impaired strategies during learning, potentially due to reduced hippocampal-prefrontal co-engagement.

  7. Assessing the Applicability of 3D Holographic Technology as an Enhanced Technology for Distance Learning

    Science.gov (United States)

    Kalansooriya, Pradeep; Marasinghe, Ashu; Bandara, K. M. D. N.

    2015-01-01

    Distance learning has provided an excellent platform for students in geographically remote locations while enabling them to learn at their own pace and convenience. A number of technologies are currently being utilized to conceptualize, design, enhance and foster distance learning. Teleconferences, electronic field trips, podcasts, webinars, video…

  8. Dual-tDCS Enhances Online Motor Skill Learning and Long-Term Retention in Chronic Stroke Patients

    Science.gov (United States)

    Lefebvre, S.; Laloux, P.; Peeters, A.; Desfontaines, P.; Jamart, J.; Vandermeeren, Y.

    2013-01-01

    Background: Since motor learning is a key component for stroke recovery, enhancing motor skill learning is a crucial challenge for neurorehabilitation. Transcranial direct current stimulation (tDCS) is a promising approach for improving motor learning. The aim of this trial was to test the hypothesis that dual-tDCS applied bilaterally over the primary motor cortices (M1) improves online motor skill learning with the paretic hand and its long-term retention. Methods: Eighteen chronic stroke patients participated in a randomized, cross-over, placebo-controlled, double bind trial. During separate sessions, dual-tDCS or sham dual-tDCS was applied over 30 min while stroke patients learned a complex visuomotor skill with the paretic hand: using a computer mouse to move a pointer along a complex circuit as quickly and accurately as possible. A learning index involving the evolution of the speed/accuracy trade-off was calculated. Performance of the motor skill was measured at baseline, after intervention and 1 week later. Results: After sham dual-tDCS, eight patients showed performance worsening. In contrast, dual-tDCS enhanced the amount and speed of online motor skill learning compared to sham (p dual-tDCS (n = 10) than after sham (n = 3). More importantly, 1 week later, online enhancement under dual-tDCS had translated into superior long-term retention (+44%) compared to sham (+4%). The improvement generalized to a new untrained circuit and to digital dexterity. Conclusion: A single-session of dual-tDCS, applied while stroke patients trained with the paretic hand significantly enhanced online motor skill learning both quantitatively and qualitatively, leading to successful long-term retention and generalization. The combination of motor skill learning and dual-tDCS is promising for improving post-stroke neurorehabilitation. PMID:23316151

  9. Bringing back the body into the mind: gestures enhance word learning in foreign language.

    Science.gov (United States)

    Macedonia, Manuela

    2014-01-01

    Foreign language education in the twenty-first century still teaches vocabulary mainly through reading and listening activities. This is due to the link between teaching practice and traditional philosophy of language, where language is considered to be an abstract phenomenon of the mind. However, a number of studies have shown that accompanying words or phrases of a foreign language with gestures leads to better memory results. In this paper, I review behavioral research on the positive effects of gestures on memory. Then I move to the factors that have been addressed as contributing to the effect, and I embed the reviewed evidence in the theoretical framework of embodiment. Finally, I argue that gestures accompanying foreign language vocabulary learning create embodied representations of those words. I conclude by advocating the use of gestures in future language education as a learning tool that enhances the mind.

  10. Assessing Student Behaviors and Motivation for Actively Learning Biology

    Science.gov (United States)

    Moore, Michael Edward

    2017-01-01

    Vision and Change states that one of the major changes in the way we design biology courses should be a switch in approach from teacher-centered learning to student-centered learning and identifies active learning as a recommended methods. Studies show performance benefits for students taking courses that use active learning. What is unknown is…

  11. Dimensions of Personalisation in Technology-Enhanced Learning: A Framework and Implications for Design

    Science.gov (United States)

    FitzGerald, Elizabeth; Kucirkova, Natalia; Jones, Ann; Cross, Simon; Ferguson, Rebecca; Herodotou, Christothea; Hillaire, Garron; Scanlon, Eileen

    2018-01-01

    Personalisation of learning is a recurring trend in our society, referred to in government speeches, popular media, conference and research papers and technological innovations. This latter aspect--of using personalisation in technology-enhanced learning (TEL)--has promised much but has not always lived up to the claims made. Personalisation is…

  12. A Professional Learning Program for Enhancing the Competency of Students with Special Needs

    Science.gov (United States)

    Kantavong, Pennee; Sivabaedya, Suwaree

    2010-01-01

    This study used a quasi-experimental research design to examine the impact of a professional learning program designed to enhance the competency of children with Autism, Attention Deficit Hyperactivity Disorder and Learning Disabilities and to develop knowledge, understanding and skills of teachers and parents in helping them. Data were collected…

  13. Students interest in learning science through fieldwork activity encourage critical thinking and problem solving skills among UPSI pre-university students

    Science.gov (United States)

    Jamil, Siti Zaheera Muhamad; Khairuddin, Raja Farhana Raja

    2017-05-01

    Graduates with good critical thinking and problem solving (CTPS) skills are likely to boost their employability to live in 21st century. The demands of graduates to be equipped with CTPS skills have shifted our education system in focusing on these elements in all levels of education, from primary, the secondary, and up to the tertiary education, by fostering interesting teaching and learning activities such as fieldwork activity in science classes. Despite the importance of the CTPS skills, little is known about whether students' interests in teaching and learning activities, such as fieldwork activity, have any influence on the students CTPS skills. Therefore, in this investigation, firstly to examine students interests in learning science through fieldwork activity. Secondly, this study examined whether the students' interest in learning science through fieldwork activity have affect on how the students employ CTPS skills. About 100 Diploma of Science students in Universiti Pendidikan Sultan Idris (UPSI) were randomly chosen to participate in this study. All of the participants completed a survey on how they find the fieldwork activity implemented in their science classes and it relevents towards their CTPS skills development. From our findings, majority of the students (91%) find that fieldwork activity is interesting and helpful in increasing their interest in learning science (learning factor) and accommodate their learning process (utility). Results suggest that students' interest on the fieldwork activity in science classes does have some influence on the students development of CTPS skills. The findings could be used as an initial guideline by incorporating students' interest on other teaching and learning activities that being implemented in science classes in order to know the impacts of these learning activities in enhancing their CTPS skills.

  14. A tailorable infrastructure to enhance mobile seamless learning

    DEFF Research Database (Denmark)

    Malandrino, Delfina; Manno, Ilaria; Palmieri, Giuseppina

    2015-01-01

    The widespread use of mobile devices is leading towards their adoption in the learning process, even if some pedagogical challenges are still not fully addressed when integrating mobile-assisted activities into regular curricula activities. In this paper, we first define some guidelines to design...

  15. Enhancing Possible Sentence through Cooperative Learning (Open to Suggestion).

    Science.gov (United States)

    Jensen, Sharon J.; Duffelmeyer, Frederick A.

    1996-01-01

    Describes using Think-Pair-Share (a three-step cooperative learning activity) to complement the sentence-generation phase of the Possible Sentences Activity, a highly recommended prereading vocabulary strategy. (SR)

  16. Rubrics and the enhancement of student learning

    Directory of Open Access Journals (Sweden)

    Malini Y Reddy

    2007-06-01

    Full Text Available Empirical research on the effectiveness of rubrics has primarily concentrated on its contribution towards improvement in academic performance, as reflected in attainment of higher grades. Its role in assessing the other dimensions of SL such as attitudes, behaviors and perceptions that affect students’ inclination and ability to learn has been largely unexplored. There is also a paucity of literature on how the tool can be used for informing course delivery and course design. The objectives of the study are derived from these gaps in literature. The proposed study seeks to explore the usefulness of rubrics from the perspective of students, drawing motivation from two recent studies – the study by Andrade & Du (2005, which examined the usage of rubrics by students to support their own learning and academic performance and the study by Petkov & Petkova(2006, which explored the possibility of developing curriculum wide rubrics at post-graduate level. This study intends to investigate the contribution of rubrics referenced feedback towards enhancement of motivation, development of self- regulation characteristics and improvement in academic performance. It seeks to achieve this by assessing student-learning outcomes in a multiple courses of general Masters in Business Administration (MBA program in two or more business schools in Hyderabad including, ICFAI Business School, Hyderabad.

  17. Enhancing Student Success in Online Learning Experiences through the Use of Self-Regulation Strategies

    Science.gov (United States)

    Sharp, Laurie A.; Sharp, Jason H.

    2016-01-01

    Online learning experiences have greatly changed the landscape of instruction. Many courses in postsecondary environments incorporate some type of technological enhancement, which holds benefits for both postsecondary institutions and learners. However, online learning experiences require different pedagogical characteristics than traditional…

  18. Learning-dependent and -independent enhancement of mitral/tufted cell glomerular odor responses following olfactory fear conditioning in awake mice.

    Science.gov (United States)

    Ross, Jordan M; Fletcher, Max L

    2018-04-18

    Associative fear learning produces fear toward the conditioned stimulus (CS) and often generalization, the expansion of fear from the CS to similar, unlearned stimuli. However, how fear learning affects early sensory processing of learned and unlearned stimuli in relation to behavioral fear responses to these stimuli remains unclear. We subjected male and female mice expressing the fluorescent calcium indicator GCaMP3 in olfactory bulb mitral and tufted cells to a classical olfactory fear conditioning paradigm. We then used awake, in vivo calcium imaging to quantify learning-induced changes in glomerular odor responses, which constitute the first site of olfactory processing in the brain. The results demonstrate that odor-shock pairing non-specifically enhances glomerular odor representations in a learning-dependent manner and increases representational similarity between the CS and non-conditioned odors, potentially priming the system towards generalization of learned fear. Additionally, CS-specific glomerular enhancements remain even when associative learning is blocked, suggesting two separate mechanisms lead to enhanced glomerular responses following odor-shock pairings. SIGNIFICANCE STATEMENT In the olfactory bulb (OB), odors are uniquely coded in a spatial map that represents odor identity, making the OB a unique model system for investigating how learned fear alters sensory processing. Classical fear conditioning causes fear of the conditioned stimulus (CS) and of neutral stimuli, known as generalization. Combining fear conditioning with fluorescent calcium imaging of OB glomeruli, we found enhanced glomerular responses of the CS as well as neutral stimuli in awake mice, which mirrors fear generalization. We report that CS and neutral stimuli enhancements are, respectively, learning- independent and learning-dependent. Together, these results reveal distinct mechanisms leading to enhanced OB processing of fear-inducing stimuli and provide important

  19. The potential use of mobile technology: enhancing accessibility and communication in a blended learning course

    Directory of Open Access Journals (Sweden)

    Tabisa Mayisela

    2013-01-01

    Full Text Available Mobile technology is increasingly being used to support blended learning beyond computer centres. It has been considered as a potential solution to the problem of a shortage of computers for accessing online learning materials (courseware in a blended learning course. The purpose of the study was to establish how the use of mobile technology could enhance accessibility and communication in a blended learning course. Data were solicitedfrom a purposive convenience sample of 36 students engaged in the blended learning course. The case study utilized a mixed-methods approach. An unstructured interview was conducted with the course lecturer and these data informed the design of the students' semi-structured questionnaire. It was found that students with access to mobile technology had an increased opportunity to access the courseware of the blended learning course. Mobile technology further enhanced student-to-student and student-to-lecturer communication by means of social networks. The study concludes that mobile technology has the potential to increase accessibility and communication in a blended learning course. Recommendations, limitations of the present study, and suggestionsforfuture research were made.

  20. Active learning for noisy oracle via density power divergence.

    Science.gov (United States)

    Sogawa, Yasuhiro; Ueno, Tsuyoshi; Kawahara, Yoshinobu; Washio, Takashi

    2013-10-01

    The accuracy of active learning is critically influenced by the existence of noisy labels given by a noisy oracle. In this paper, we propose a novel pool-based active learning framework through robust measures based on density power divergence. By minimizing density power divergence, such as β-divergence and γ-divergence, one can estimate the model accurately even under the existence of noisy labels within data. Accordingly, we develop query selecting measures for pool-based active learning using these divergences. In addition, we propose an evaluation scheme for these measures based on asymptotic statistical analyses, which enables us to perform active learning by evaluating an estimation error directly. Experiments with benchmark datasets and real-world image datasets show that our active learning scheme performs better than several baseline methods. Copyright © 2013 Elsevier Ltd. All rights reserved.