WorldWideScience

Sample records for learned headquarters 3d

  1. Pathways for Learning from 3D Technology

    Science.gov (United States)

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2016-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D presentations could provide additional sensorial cues (e.g., depth cues) that lead to a higher sense of being surrounded by the stimulus; a connection through general interest such that 3D presentation increases a viewer’s interest that leads to greater attention paid to the stimulus (e.g., "involvement"); and a connection through discomfort, with the 3D goggles causing discomfort that interferes with involvement and thus with memory. The memories of 396 participants who viewed two-dimensional (2D) or 3D movies at movie theaters in Southern California were tested. Within three days of viewing a movie, participants filled out an online anonymous questionnaire that queried them about their movie content memories, subjective movie-going experiences (including emotional reactions and "presence") and demographic backgrounds. The responses to the questionnaire were subjected to path analyses in which several different links between 3D presentation to memory (and other variables) were explored. The results showed there were no effects of 3D presentation, either directly or indirectly, upon memory. However, the largest effects of 3D presentation were on emotions and immersion, with 3D presentation leading to reduced positive emotions, increased negative emotions and lowered immersion, compared to 2D presentations. PMID:28078331

  2. ROOFN3D: DEEP LEARNING TRAINING DATA FOR 3D BUILDING RECONSTRUCTION

    Directory of Open Access Journals (Sweden)

    A. Wichmann

    2018-05-01

    Full Text Available Machine learning methods have gained in importance through the latest development of artificial intelligence and computer hardware. Particularly approaches based on deep learning have shown that they are able to provide state-of-the-art results for various tasks. However, the direct application of deep learning methods to improve the results of 3D building reconstruction is often not possible due, for example, to the lack of suitable training data. To address this issue, we present RoofN3D which provides a new 3D point cloud training dataset that can be used to train machine learning models for different tasks in the context of 3D building reconstruction. It can be used, among others, to train semantic segmentation networks or to learn the structure of buildings and the geometric model construction. Further details about RoofN3D and the developed data preparation framework, which enables the automatic derivation of training data, are described in this paper. Furthermore, we provide an overview of other available 3D point cloud training data and approaches from current literature in which solutions for the application of deep learning to unstructured and not gridded 3D point cloud data are presented.

  3. 3D Deep Learning Angiography (3D-DLA) from C-arm Conebeam CT.

    Science.gov (United States)

    Montoya, J C; Li, Y; Strother, C; Chen, G-H

    2018-05-01

    Deep learning is a branch of artificial intelligence that has demonstrated unprecedented performance in many medical imaging applications. Our purpose was to develop a deep learning angiography method to generate 3D cerebral angiograms from a single contrast-enhanced C-arm conebeam CT acquisition in order to reduce image artifacts and radiation dose. A set of 105 3D rotational angiography examinations were randomly selected from an internal data base. All were acquired using a clinical system in conjunction with a standard injection protocol. More than 150 million labeled voxels from 35 subjects were used for training. A deep convolutional neural network was trained to classify each image voxel into 3 tissue types (vasculature, bone, and soft tissue). The trained deep learning angiography model was then applied for tissue classification into a validation cohort of 8 subjects and a final testing cohort of the remaining 62 subjects. The final vasculature tissue class was used to generate the 3D deep learning angiography images. To quantify the generalization error of the trained model, we calculated the accuracy, sensitivity, precision, and Dice similarity coefficients for vasculature classification in relevant anatomy. The 3D deep learning angiography and clinical 3D rotational angiography images were subjected to a qualitative assessment for the presence of intersweep motion artifacts. Vasculature classification accuracy and 95% CI in the testing dataset were 98.7% (98.3%-99.1%). No residual signal from osseous structures was observed for any 3D deep learning angiography testing cases except for small regions in the otic capsule and nasal cavity compared with 37% (23/62) of the 3D rotational angiographies. Deep learning angiography accurately recreated the vascular anatomy of the 3D rotational angiography reconstructions without a mask. Deep learning angiography reduced misregistration artifacts induced by intersweep motion, and it reduced radiation exposure

  4. The 3D LAOKOON--Visual and Verbal in 3D Online Learning Environments.

    Science.gov (United States)

    Liestol, Gunnar

    This paper reports on a project where three-dimensional (3D) online gaming environments were exploited for the purpose of academic communication and learning. 3D gaming environments are media and meaning rich and can provide inexpensive solutions for educational purposes. The experiment with teaching and discussions in this setting, however,…

  5. FABLAB PRONTO3D: learning with practice

    Directory of Open Access Journals (Sweden)

    Regiane Trevisan Pupo

    2017-11-01

    Full Text Available The recent development and use of digital fabrication techniques for architecture, product design, engineering, construction, among many others, has caused impact changes on design processes since its beginning until final construction. New construction methods have been developed with the use of those new techniques, spreading many ways of possibilities hardly achieved before. Nowadays, spaces called FABLABs offer a range of procedures and equipment that provide the manufacture of scale models, prototypes or final elements in different fidelity degrees. This paper shows the possibilities and activities being implemented, with the use of technology, at PRONTO3D - Prototyping and New 3D Oriented Technology Laboratory, at UFSC, that belongs to PRONTO3D Network Labs, in Santa Catarina State, since 2013.

  6. A 3D Geometry Model Search Engine to Support Learning

    Science.gov (United States)

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  7. Joint sparse learning for 3-D facial expression generation.

    Science.gov (United States)

    Song, Mingli; Tao, Dacheng; Sun, Shengpeng; Chen, Chun; Bu, Jiajun

    2013-08-01

    3-D facial expression generation, including synthesis and retargeting, has received intensive attentions in recent years, because it is important to produce realistic 3-D faces with specific expressions in modern film production and computer games. In this paper, we present joint sparse learning (JSL) to learn mapping functions and their respective inverses to model the relationship between the high-dimensional 3-D faces (of different expressions and identities) and their corresponding low-dimensional representations. Based on JSL, we can effectively and efficiently generate various expressions of a 3-D face by either synthesizing or retargeting. Furthermore, JSL is able to restore 3-D faces with holes by learning a mapping function between incomplete and intact data. Experimental results on a wide range of 3-D faces demonstrate the effectiveness of the proposed approach by comparing with representative ones in terms of quality, time cost, and robustness.

  8. Developing physics learning media using 3D cartoon

    Science.gov (United States)

    Wati, M.; Hartini, S.; Hikmah, N.; Mahtari, S.

    2018-03-01

    This study focuses on developing physics learning media using 3D cartoon on the static fluid topic. The purpose of this study is to describe: (1) the validity of the learning media, (2) the practicality of the learning media, and (3) the effectiveness of the learning media. This study is a research and development using ADDIE model. The subject of the implementation of media used class XI Science of SMAN 1 Pulau Laut Timur. The data were obtained from the validation sheet of the learning media, questionnaire, and the test of learning outcomes. The results showed that: (1) the validity of the media category is valid, (2) the practicality of the media category is practice, and (3) the effectiveness of the media category is effective. It is concluded that the learning using 3D cartoon on the static fluid topic is eligible to use in learning.

  9. Deep imitation learning for 3D navigation tasks.

    Science.gov (United States)

    Hussein, Ahmed; Elyan, Eyad; Gaber, Mohamed Medhat; Jayne, Chrisina

    2018-01-01

    Deep learning techniques have shown success in learning from raw high-dimensional data in various applications. While deep reinforcement learning is recently gaining popularity as a method to train intelligent agents, utilizing deep learning in imitation learning has been scarcely explored. Imitation learning can be an efficient method to teach intelligent agents by providing a set of demonstrations to learn from. However, generalizing to situations that are not represented in the demonstrations can be challenging, especially in 3D environments. In this paper, we propose a deep imitation learning method to learn navigation tasks from demonstrations in a 3D environment. The supervised policy is refined using active learning in order to generalize to unseen situations. This approach is compared to two popular deep reinforcement learning techniques: deep-Q-networks and Asynchronous actor-critic (A3C). The proposed method as well as the reinforcement learning methods employ deep convolutional neural networks and learn directly from raw visual input. Methods for combining learning from demonstrations and experience are also investigated. This combination aims to join the generalization ability of learning by experience with the efficiency of learning by imitation. The proposed methods are evaluated on 4 navigation tasks in a 3D simulated environment. Navigation tasks are a typical problem that is relevant to many real applications. They pose the challenge of requiring demonstrations of long trajectories to reach the target and only providing delayed rewards (usually terminal) to the agent. The experiments show that the proposed method can successfully learn navigation tasks from raw visual input while learning from experience methods fail to learn an effective policy. Moreover, it is shown that active learning can significantly improve the performance of the initially learned policy using a small number of active samples.

  10. Creating Learning Environment Connecting Engineering Design and 3D Printing

    Science.gov (United States)

    Pikkarainen, Ari; Salminen, Antti; Piili, Heidi

    Engineering education in modern days require continuous development in didactics, pedagogics and used practical methods. 3D printing provides excellent opportunity to connect different engineering areas into practice and produce learning by doing applications. The 3D-printing technology used in this study is FDM (Fused deposition modeling). FDM is the most used 3D-printing technology by commercial numbers at the moment and the qualities of the technology makes it popular especially in academic environments. For achieving the best result possible, students will incorporate the principles of DFAM (Design for additive manufacturing) into their engineering design studies together with 3D printing. This paper presents a plan for creating learning environment for mechanical engineering students combining the aspects of engineering design, 3D-CAD learning and AM (additive manufacturing). As a result, process charts for carrying out the 3D printing process from technological point of view and design process for AM from engineering design point of view were created. These charts are used in engineering design education. The learning environment is developed to work also as a platform for Bachelor theses, work-training environment for students, prototyping service centre for cooperation partners and source of information for mechanical engineering education in Lapland University of Applied Sciences.

  11. 3D dictionary learning based iterative cone beam CT reconstruction

    Directory of Open Access Journals (Sweden)

    Ti Bai

    2014-03-01

    Full Text Available Purpose: This work is to develop a 3D dictionary learning based cone beam CT (CBCT reconstruction algorithm on graphic processing units (GPU to improve the quality of sparse-view CBCT reconstruction with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms of 3 × 3 × 3 was trained from a large number of blocks extracted from a high quality volume image. On the basis, we utilized cholesky decomposition based orthogonal matching pursuit algorithm to find the sparse representation of each block. To accelerate the time-consuming sparse coding in the 3D case, we implemented the sparse coding in a parallel fashion by taking advantage of the tremendous computational power of GPU. Conjugate gradient least square algorithm was adopted to minimize the data fidelity term. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with tight frame (TF by performing reconstructions on a subset data of 121 projections. Results: Compared to TF based CBCT reconstruction that shows good overall performance, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, remove more streaking artifacts and also induce less blocky artifacts. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppress the noise, and hence to achieve high quality reconstruction under the case of sparse view. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential clinical application.-------------------------------Cite this article as: Bai T, Yan H, Shi F, Jia X, Lou Y, Xu Q, Jiang S, Mou X. 3D dictionary learning based iterative cone beam CT reconstruction. Int J Cancer Ther Oncol 2014; 2(2:020240. DOI: 10

  12. 2.5D/3D Models for the enhancement of architectural-urban heritage. An Virtual Tour of design of the Fascist headquarters in Littoria

    Science.gov (United States)

    Ippoliti, E.; Calvano, M.; Mores, L.

    2014-05-01

    Enhancement of cultural heritage is not simply a matter of preserving material objects but comes full circle only when the heritage can be enjoyed and used by the community. This is the rationale behind this presentation: an urban Virtual Tour to explore the 1937 design of the Fascist Headquarters in Littoria, now part of Latina, by the architect Oriolo Frezzotti. Although the application is deliberately "simple", it was part of a much broader framework of goals. One such goal was to create "friendly and perceptively meaningful" interfaces by integrating different "3D models" and so enriching. In fact, by exploiting the activation of natural mechanisms of visual perception and the ensuing emotional emphasis associated with vision, the illusionistic simulation of the scene facilitates access to the data even for "amateur" users. A second goal was to "contextualise the information" on which the concept of cultural heritage is based. In the application, communication of the heritage is linked to its physical and linguistic context; the latter is then used as a basis from which to set out to explore and understand the historical evidence. A third goal was to foster the widespread dissemination and sharing of this heritage of knowledge. On the one hand we worked to make the application usable from the Web, on the other, we established a reliable, rapid operational procedure with high quality processed data and ensuing contents. The procedure was also repeatable on a large scale.

  13. Game-Like Language Learning in 3-D Virtual Environments

    Science.gov (United States)

    Berns, Anke; Gonzalez-Pardo, Antonio; Camacho, David

    2013-01-01

    This paper presents our recent experiences with the design of game-like applications in 3-D virtual environments as well as its impact on student motivation and learning. Therefore our paper starts with a brief analysis of the motivational aspects of videogames and virtual worlds (VWs). We then go on to explore the possible benefits of both in the…

  14. Enhancing Learning within the 3-D Virtual Learning Environment

    OpenAIRE

    Shirin Shafieiyoun; Akbar Moazen Safaei

    2013-01-01

    Today’s using of virtual learning environments becomes more remarkable in education. The potential of virtual learning environments has frequently been related to the expansion of sense of social presence which is obtained from students and educators. This study investigated the effectiveness of social presence within virtual learning environments and analysed the impact of social presence on increasing learning satisfaction within virtual learning environments. Second Life, as an example of ...

  15. Self-expressive Dictionary Learning for Dynamic 3D Reconstruction.

    Science.gov (United States)

    Zheng, Enliang; Ji, Dinghuang; Dunn, Enrique; Frahm, Jan-Michael

    2017-08-22

    We target the problem of sparse 3D reconstruction of dynamic objects observed by multiple unsynchronized video cameras with unknown temporal overlap. To this end, we develop a framework to recover the unknown structure without sequencing information across video sequences. Our proposed compressed sensing framework poses the estimation of 3D structure as the problem of dictionary learning, where the dictionary is defined as an aggregation of the temporally varying 3D structures. Given the smooth motion of dynamic objects, we observe any element in the dictionary can be well approximated by a sparse linear combination of other elements in the same dictionary (i.e. self-expression). Our formulation optimizes a biconvex cost function that leverages a compressed sensing formulation and enforces both structural dependency coherence across video streams, as well as motion smoothness across estimates from common video sources. We further analyze the reconstructability of our approach under different capture scenarios, and its comparison and relation to existing methods. Experimental results on large amounts of synthetic data as well as real imagery demonstrate the effectiveness of our approach.

  16. Distance Learning for Students with Special Needs through 3D Virtual Learning

    Science.gov (United States)

    Laffey, James M.; Stichter, Janine; Galyen, Krista

    2014-01-01

    iSocial is a 3D Virtual Learning Environment (3D VLE) to develop social competency for students who have been identified with High-Functioning Autism Spectrum Disorders. The motivation for developing a 3D VLE is to improve access to special needs curriculum for students who live in rural or small school districts. The paper first describes a…

  17. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    Science.gov (United States)

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  18. Think3d!: Improving mathematics learning through embodied spatial training.

    Science.gov (United States)

    Burte, Heather; Gardony, Aaron L; Hutton, Allyson; Taylor, Holly A

    2017-01-01

    Spatial thinking skills positively relate to Science, Technology, Engineering, and Math (STEM) outcomes, but spatial training is largely absent in elementary school. Elementary school is a time when children develop foundational cognitive skills that will support STEM learning throughout their education. Spatial thinking should be considered a foundational cognitive skill. The present research examined the impact of an embodied spatial training program on elementary students' spatial and mathematical thinking. Students in rural elementary schools completed spatial and math assessments prior to and after participating in an origami and pop-up paper engineering-based program, called Think3d!. Think3d! uses embodied tasks, such as folding and cutting paper, to train two-dimensional to three-dimensional spatial thinking. Analyses explored spatial thinking gains, mathematics gains - specifically for problem types expected to show gains from spatial training - and factors predicting mathematics gains. Results showed spatial thinking gains in two assessments. Using a math categorization to target problems more and less likely to be impacted by spatial training, we found that all students improved on real-world math problems and older students improved on visual and spatial math problems. Further, the results are suggestive of developmental time points for implementing embodied spatial training related to applying spatial thinking to math. Finally, the spatial thinking assessment that was most highly related to training activities also predicted math performance gains. Future research should explore developmental issues related to how embodied spatial training might support STEM learning and outcomes.

  19. 3D Game-Based Learning System for Improving Learning Achievement in Software Engineering Curriculum

    Science.gov (United States)

    Su,Chung-Ho; Cheng, Ching-Hsue

    2013-01-01

    The advancement of game-based learning has encouraged many related studies, such that students could better learn curriculum by 3-dimension virtual reality. To enhance software engineering learning, this paper develops a 3D game-based learning system to assist teaching and assess the students' motivation, satisfaction and learning achievement. A…

  20. 3D Reconstruction of human bones based on dictionary learning.

    Science.gov (United States)

    Zhang, Binkai; Wang, Xiang; Liang, Xiao; Zheng, Jinjin

    2017-11-01

    An effective method for reconstructing a 3D model of human bones from computed tomography (CT) image data based on dictionary learning is proposed. In this study, the dictionary comprises the vertices of triangular meshes, and the sparse coefficient matrix indicates the connectivity information. For better reconstruction performance, we proposed a balance coefficient between the approximation and regularisation terms and a method for optimisation. Moreover, we applied a local updating strategy and a mesh-optimisation method to update the dictionary and the sparse matrix, respectively. The two updating steps are iterated alternately until the objective function converges. Thus, a reconstructed mesh could be obtained with high accuracy and regularisation. The experimental results show that the proposed method has the potential to obtain high precision and high-quality triangular meshes for rapid prototyping, medical diagnosis, and tissue engineering. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Enhancing Nuclear Newcomer Training with 3D Visualization Learning Tools

    International Nuclear Information System (INIS)

    Gagnon, V.

    2016-01-01

    Full text: While the nuclear power industry is trying to reinforce its safety and regain public support post-Fukushima, it is also faced with a very real challenge that affects its day-to-day activities: a rapidly aging workforce. Statistics show that close to 40% of the current nuclear power industry workforce will retire within the next five years. For newcomer countries, the challenge is even greater, having to develop a completely new workforce. The workforce replacement effort introduces nuclear newcomers of a new generation with different backgrounds and affinities. Major lifestyle differences between the two generations of workers result, amongst other things, in different learning habits and needs for this new breed of learners. Interactivity, high visual content and quick access to information are now necessary to achieve a high level of retention. To enhance existing training programmes or to support the establishment of new training programmes for newcomer countries, L-3 MAPPS has devised learning tools to enhance these training programmes focused on the “Practice-by-Doing” principle. L-3 MAPPS has coupled 3D computer visualization with high-fidelity simulation to bring real-time, simulation-driven animated components and systems allowing immersive and participatory, individual or classroom learning. (author

  2. Web3D Technologies in Learning, Education and Training: Motivations, Issues, Opportunities

    Science.gov (United States)

    Chittaro, Luca; Ranon, Roberto

    2007-01-01

    Web3D open standards allow the delivery of interactive 3D virtual learning environments through the Internet, reaching potentially large numbers of learners worldwide, at any time. This paper introduces the educational use of virtual reality based on Web3D technologies. After briefly presenting the main Web3D technologies, we summarize the…

  3. Web based Interactive 3D Learning Objects for Learning Management Systems

    Directory of Open Access Journals (Sweden)

    Stefan Hesse

    2012-02-01

    Full Text Available In this paper, we present an approach to create and integrate interactive 3D learning objects of high quality for higher education into a learning management system. The use of these resources allows to visualize topics, such as electro-technical and physical processes in the interior of complex devices. This paper addresses the challenge of combining rich interactivity and adequate realism with 3D exercise material for distance elearning.

  4. Deep learning for objective quality assessment of 3D images

    NARCIS (Netherlands)

    Mocanu, D.C.; Exarchakos, G.; Liotta, A.

    2014-01-01

    Improving the users' Quality of Experience (QoE) in modern 3D Multimedia Systems is a challenging proposition, mainly due to our limited knowledge of 3D image Quality Assessment algorithms. While subjective QoE methods would better reflect the nature of human perception, these are not suitable in

  5. The 3D Digital Story-telling Media on Batik Learning in Vocational High Schools

    Science.gov (United States)

    Widiaty, I.; Achdiani, Y.; Kuntadi, I.; Mubaroq, S. R.; Zakaria, D.

    2018-02-01

    The aim of this research is to make 3D digital Story-telling Media on Batik Learning in Vocational High School. The digital story-telling developed in this research is focused on 3D-based story-telling. In contrast to the digital story-telling that has been developed in existing learning, this research is expected to be able to improve understanding of vocational students about the value of local wisdom batik more meaningful and “live”. The process of making 3D digital story-telling media consists of two processes, namely the creation of 3D objects and the creation of 3D object viewer.

  6. Perceived Advantages of 3D Lessons in Constructive Learning for South African Student Teachers Encountering Learning Barriers

    Science.gov (United States)

    de Jager, Thelma

    2017-01-01

    Research shows that three-dimensional (3D)-animated lessons can contribute to student teachers' effective learning and comprehension, regardless of the learning barriers they experience. Student teachers majoring in the subject Life Sciences in General Subject Didactics viewed 3D images of the heart during lectures. The 3D images employed in the…

  7. Contextual EFL Learning in a 3D Virtual Environment

    Science.gov (United States)

    Lan, Yu-Ju

    2015-01-01

    The purposes of the current study are to develop virtually immersive EFL learning contexts for EFL learners in Taiwan to pre- and review English materials beyond the regular English class schedule. A 2-iteration action research lasting for one semester was conducted to evaluate the effects of virtual contexts on learners' EFL learning. 132…

  8. Effectiveness of Collaborative Learning with 3D Virtual Worlds

    Science.gov (United States)

    Cho, Young Hoan; Lim, Kenneth Y. T.

    2017-01-01

    Virtual worlds have affordances to enhance collaborative learning in authentic contexts. Despite the potential of collaborative learning with a virtual world, few studies investigated whether it is more effective in student achievements than teacher-directed instruction. This study investigated the effectiveness of collaborative problem solving…

  9. Cabri 3D - assisted collaborative learning to enhance junior high school students’ spatial ability

    Science.gov (United States)

    Muntazhimah; Miatun, A.

    2018-01-01

    The main purpose of this quasi-experimental study was to determine the enhancement of spatial ability of junior high school students who learned through Cabri-3D assisted collaborative learning. The methodology of this study was the nonequivalent group that was conducted to students of the eighth grade in a junior high school as a population. Samples consisted one class of the experimental group who studied with Cabri-3D assisted collaborative learning and one class as a control group who got regular learning activity. The instrument used in this study was a spatial ability test. Analyzing normalized gain of students’ spatial ability based on mathemathical prior knowledge (MPK) and its interactions was tested by two-way ANOVA at a significance level of 5% then continued with using Post Hoc Scheffe test. The research results showed that there was significant difference in enhancement of the spatial ability between students who learnt with Cabri 3D assisted collaborative learning and students who got regular learning, there was significant difference in enhancement of the spatial ability between students who learnt with cabri 3D assisted collaborative learning and students who got regular learning in terms of MPK and there is no significant interaction between learning (Cabri-3D assisted collaborative learning and regular learning) with students’ MPK (high, medium, and low) toward the enhancement of students’ spatial abilities. From the above findings, it can be seen that cabri-3D assisted collaborative learning could enhance spatial ability of junior high school students.

  10. Learn Street Skateboarding through 3D Simulations of Angle Rotations

    Science.gov (United States)

    Adi, Erwin; Aditya, I Gde Made Krisna; Citrawati, Meriyana

    2010-01-01

    Learning physical activities such as sports and games is expensive and time-consuming. A common advice is "repetition makes perfection," which implies that wrong actions must soon be noticed and avoided. A knowledgeable tutor is often required to provide good feedback for that purpose. However, this facility is available only for those…

  11. Learning from graphically integrated 2D and 3D representations improves retention of neuroanatomy

    Science.gov (United States)

    Naaz, Farah

    Visualizations in the form of computer-based learning environments are highly encouraged in science education, especially for teaching spatial material. Some spatial material, such as sectional neuroanatomy, is very challenging to learn. It involves learning the two dimensional (2D) representations that are sampled from the three dimensional (3D) object. In this study, a computer-based learning environment was used to explore the hypothesis that learning sectional neuroanatomy from a graphically integrated 2D and 3D representation will lead to better learning outcomes than learning from a sequential presentation. The integrated representation explicitly demonstrates the 2D-3D transformation and should lead to effective learning. This study was conducted using a computer graphical model of the human brain. There were two learning groups: Whole then Sections, and Integrated 2D3D. Both groups learned whole anatomy (3D neuroanatomy) before learning sectional anatomy (2D neuroanatomy). The Whole then Sections group then learned sectional anatomy using 2D representations only. The Integrated 2D3D group learned sectional anatomy from a graphically integrated 3D and 2D model. A set of tests for generalization of knowledge to interpreting biomedical images was conducted immediately after learning was completed. The order of presentation of the tests of generalization of knowledge was counterbalanced across participants to explore a secondary hypothesis of the study: preparation for future learning. If the computer-based instruction programs used in this study are effective tools for teaching anatomy, the participants should continue learning neuroanatomy with exposure to new representations. A test of long-term retention of sectional anatomy was conducted 4-8 weeks after learning was completed. The Integrated 2D3D group was better than the Whole then Sections group in retaining knowledge of difficult instances of sectional anatomy after the retention interval. The benefit

  12. Learning C# by developing games with Unity 3D

    CERN Document Server

    Norton, Terry

    2013-01-01

    This book uses the learning-by-example approach. It takes simple examples from games to introduce all the main concepts of programming in an easy-to-digest and immediately recognizable way.This book is for the total beginner to any type of programming, focusing on the writing of C# code and scripts only. There are many parts that make up the Unity game engine. It is assumed that the reader already knows their way around Unity's user interface. The code editor used in this book is the MonoDevelop editor supplied by Unity.

  13. 3D Anatomy Models and Impact on Learning: A Review of the Quality of the Literature

    Directory of Open Access Journals (Sweden)

    Samy A. Azer

    2016-12-01

    Conclusions: There was no solid evidence that the use of 3D models is superior to traditional teaching. However, the studies varied in research quality. More studies are needed to examine the short- and long-term impacts of 3D models on learning using valid and appropriate tools.

  14. Use of Colour and Interactive Animation in Learning 3D Vectors

    Science.gov (United States)

    Iskander, Wejdan; Curtis, Sharon

    2005-01-01

    This study investigated the effects of two computer-implemented techniques (colour and interactive animation) on learning 3D vectors. The participants were 43 female Saudi Arabian high school students. They were pre-tested on 3D vectors using a paper questionnaire that consisted of calculation and visualization types of questions. The students…

  15. 3D Virtual Learning Environments in Education: A Meta-Review

    Science.gov (United States)

    Reisoglu, I.; Topu, B.; Yilmaz, R.; Karakus Yilmaz, T.; Göktas, Y.

    2017-01-01

    The aim of this study is to investigate recent empirical research studies about 3D virtual learning environments. A total of 167 empirical studies that involve the use of 3D virtual worlds in education were examined by meta-review. Our findings show that the "Second Life" platform has been frequently used in studies. Among the reviewed…

  16. Headquarters Vienna

    International Nuclear Information System (INIS)

    1985-01-01

    This film presents the IAEA safeguards system showing six inspectors at their work in the nuclear power plants Kozloduy (Bulgaria), Mihama (Japan) as well as in the reprocessing plant La Hague (France). The results of inspections are checked at the IAEA Headquarters in Vienna. The film shows all modern techniques applied in the IAEA safeguards system

  17. Headquarters Vienna

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-12-31

    This film presents the IAEA safeguards system showing six inspectors at their work in the nuclear power plants Kozloduy (Bulgaria), Mihama (Japan) as well as in the reprocessing plant La Hague (France). The results of inspections are checked at the IAEA Headquarters in Vienna. The film shows all modern techniques applied in the IAEA safeguards system

  18. 3D visualization and simulation to enhance nuclear learning

    International Nuclear Information System (INIS)

    Dimitri-Hakim, R.

    2012-01-01

    The nuclear power industry is facing a very real challenge that affects its day-to-day activities: a rapidly aging workforce. For New Nuclear Build (NNB) countries, the challenge is even greater, having to develop a completely new workforce with little to no prior experience or exposure to nuclear power. The workforce replacement introduces workers of a new generation with different backgrounds and affinities than its predecessors. Major lifestyle differences between the new and the old generation of workers result, amongst other things, in different learning habits and needs for this new breed of learners. Interactivity, high visual content and quick access to information are now necessary to achieve high level of retention. (author)

  19. Impact of the 3-D model strategy on science learning of the solar system

    Science.gov (United States)

    Alharbi, Mohammed

    The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.

  20. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    Science.gov (United States)

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  1. eLearning and eMaking: 3D Printing Blurring the Digital and the Physical

    Science.gov (United States)

    Loy, Jennifer

    2014-01-01

    This article considers the potential of 3D printing as an eLearning tool for design education and the role of eMaking in bringing together the virtual and the physical in the design studio. eLearning has matured from the basics of lecture capture into sophisticated, interactive learning activities for students. At the same time, laptops and…

  2. Reduced Mental Load in Learning a Motor Visual Task with Virtual 3D Method

    Science.gov (United States)

    Dan, A.; Reiner, M.

    2018-01-01

    Distance learning is expanding rapidly, fueled by the novel technologies for shared recorded teaching sessions on the Web. Here, we ask whether 3D stereoscopic (3DS) virtual learning environment teaching sessions are more compelling than typical two-dimensional (2D) video sessions and whether this type of teaching results in superior learning. The…

  3. M3D (Media 3D): a new programming language for web-based virtual reality in E-Learning and Edutainment

    Science.gov (United States)

    Chakaveh, Sepideh; Skaley, Detlef; Laine, Patricia; Haeger, Ralf; Maad, Soha

    2003-01-01

    Today, interactive multimedia educational systems are well established, as they prove useful instruments to enhance one's learning capabilities. Hitherto, the main difficulty with almost all E-Learning systems was latent in the rich media implementation techniques. This meant that each and every system should be created individually as reapplying the media, be it only a part, or the whole content was not directly possible, as everything must be applied mechanically i.e. by hand. Consequently making E-learning systems exceedingly expensive to generate, both in time and money terms. Media-3D or M3D is a new platform independent programming language, developed at the Fraunhofer Institute Media Communication to enable visualisation and simulation of E-Learning multimedia content. M3D is an XML-based language, which is capable of distinguishing between the3D models from that of the 3D scenes, as well as handling provisions for animations, within the programme. Here we give a technical account of M3D programming language and briefly describe two specific application scenarios where M3D is applied to create virtual reality E-Learning content for training of technical personnel.

  4. Astrobiology Learning Progressions: Linking Astrobiology Concepts with the 3D Learning Paradigm of NGSS

    Science.gov (United States)

    Scalice, D.; Davis, H. B.; Leach, D.; Chambers, N.

    2016-12-01

    The Next Generation Science Standards (NGSS) introduce a Framework for teaching and learning with three interconnected "dimensions:" Disciplinary Core Ideas (DCI's), Cross-cutting Concepts (CCC's), and Science and Engineering Practices (SEP's). This "3D" Framework outlines progressions of learning from K-12 based on the DCI's, detailing which parts of a concept should be taught at each grade band. We used these discipline-based progressions to synthesize interdisciplinary progressions for core concepts in astrobiology, such as the origins of life, what makes a world habitable, biosignatures, and searching for life on other worlds. The final product is an organizing tool for lesson plans, learning media, and other educational materials in astrobiology, as well as a fundamental resource in astrobiology education that serves both educators and scientists as they plan and carry out their programs for learners.

  5. Blended learning in dentistry: 3-D resources for inquiry-based learning

    Directory of Open Access Journals (Sweden)

    Susan Bridges

    2012-06-01

    Full Text Available Motivation is an important factor for inquiry-based learning, so creative design of learning resources and materials is critical to enhance students’ motivation and hence their cognition. Modern dentistry is moving towards “electronic patient records” for both clinical treatment and teaching. Study models have long been an essential part of dental records. Traditional plaster casts are, however, among the last type of clinical record in the dental field to be converted into digital media as virtual models. Advantages of virtual models include: simpler storage; reduced risk of damage, disappearance, or misplacement; simpler and effective measuring; and easy transferal to colleagues. In order to support student engagement with the rapidly changing world of digital dentistry, and in order to stimulate the students’ motivation and depth of inquiry, this project aims to introduce virtual models into a Bachelor and Dental Surgery (BDS curriculum. Under a “blended” e-learning philosophy, students are first introduced to the new software then 3-D models are incorporated into inquiry-based problems as stimulus materials. Face-to-face tutorials blend virtual model access via interactive whiteboards (IWBs. Students’ perceptions of virtual models including motivation and cognition as well as the virtual models’ functionality were rated after a workshop introducing virtual models and plaster models in parallel. Initial student feedback indicates that the 3-D models have been generally well accepted, which confirmed the functionality of the programme and the positive perception of virtual models for enhancing students’ learning motivation. Further investigation will be carried out to assess the impact of virtual models on students’ learning outcomes.

  6. Learning to Grasp Unknown Objects Based on 3D Edge Information

    DEFF Research Database (Denmark)

    Bodenhagen, Leon; Kraft, Dirk; Popovic, Mila

    2010-01-01

    In this work we refine an initial grasping behavior based on 3D edge information by learning. Based on a set of autonomously generated evaluated grasps and relations between the semi-global 3D edges, a prediction function is learned that computes a likelihood for the success of a grasp using either...... an offline or an online learning scheme. Both methods are implemented using a hybrid artificial neural network containing standard nodes with a sigmoid activation function and nodes with a radial basis function. We show that a significant performance improvement can be achieved....

  7. A Collaborative Virtual Environment for Situated Language Learning Using VEC3D

    Science.gov (United States)

    Shih, Ya-Chun; Yang, Mau-Tsuen

    2008-01-01

    A 3D virtually synchronous communication architecture for situated language learning has been designed to foster communicative competence among undergraduate students who have studied English as a foreign language (EFL). We present an innovative approach that offers better e-learning than the previous virtual reality educational applications. The…

  8. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    Science.gov (United States)

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  9. Coupled Dictionary Learning for the Detail-Enhanced Synthesis of 3-D Facial Expressions.

    Science.gov (United States)

    Liang, Haoran; Liang, Ronghua; Song, Mingli; He, Xiaofei

    2016-04-01

    The desire to reconstruct 3-D face models with expressions from 2-D face images fosters increasing interest in addressing the problem of face modeling. This task is important and challenging in the field of computer animation. Facial contours and wrinkles are essential to generate a face with a certain expression; however, these details are generally ignored or are not seriously considered in previous studies on face model reconstruction. Thus, we employ coupled radius basis function networks to derive an intermediate 3-D face model from a single 2-D face image. To optimize the 3-D face model further through landmarks, a coupled dictionary that is related to 3-D face models and their corresponding 3-D landmarks is learned from the given training set through local coordinate coding. Another coupled dictionary is then constructed to bridge the 2-D and 3-D landmarks for the transfer of vertices on the face model. As a result, the final 3-D face can be generated with the appropriate expression. In the testing phase, the 2-D input faces are converted into 3-D models that display different expressions. Experimental results indicate that the proposed approach to facial expression synthesis can obtain model details more effectively than previous methods can.

  10. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy.

    Science.gov (United States)

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J; Adams, Justin W; McMenamin, Paul G

    2016-05-06

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized controlled trial was undertaken on undergraduate medical students without prior formal cardiac anatomy teaching. Following a pre-test examining baseline external cardiac anatomy knowledge, participants were randomly assigned to three groups who underwent self-directed learning sessions using either cadaveric materials, 3D prints, or a combination of cadaveric materials/3D prints (combined materials). Participants were then subjected to a post-test written by a third party. Fifty-two participants completed the trial; 18 using cadaveric materials, 16 using 3D models, and 18 using combined materials. Age and time since completion of high school were equally distributed between groups. Pre-test scores were not significantly different (P = 0.231), however, post-test scores were significantly higher for 3D prints group compared to the cadaveric materials or combined materials groups (mean of 60.83% vs. 44.81% and 44.62%, P = 0.010, adjusted P = 0.012). A significant improvement in test scores was detected for the 3D prints group (P = 0.003) but not for the other two groups. The finding of this pilot study suggests that use of 3D prints do not disadvantage students relative to cadaveric materials; maximally, results suggest that 3D may confer certain benefits to anatomy learning and supports their use and ongoing evaluation as supplements to cadaver-based curriculums. Anat Sci Educ 9: 213-221. © 2015 American Association of Anatomists. © 2015 American Association of Anatomists.

  11. Navigation and wayfinding in learning spaces in 3D virtual worlds

    OpenAIRE

    Minocha, Shailey; Hardy, Christopher

    2016-01-01

    There is a lack of published research on the design guidelines of learning spaces in virtual worlds. Therefore, when institutions aspire to create learning spaces in Second Life, there are few studies or guidelines to inform them except for individual case studies. The Design of Learning Spaces in 3D Virtual Environments (DELVE) project, funded by the Joint Information Systems Committee in the UK, was one of the first initiatives that identified through empirical investigations the usability ...

  12. Enhancement of Online Robotics Learning Using Real-Time 3D Visualization Technology

    Directory of Open Access Journals (Sweden)

    Richard Chiou

    2010-06-01

    Full Text Available This paper discusses a real-time e-Lab Learning system based on the integration of 3D visualization technology with a remote robotic laboratory. With the emergence and development of the Internet field, online learning is proving to play a significant role in the upcoming era. In an effort to enhance Internet-based learning of robotics and keep up with the rapid progression of technology, a 3- Dimensional scheme of viewing the robotic laboratory has been introduced in addition to the remote controlling of the robots. The uniqueness of the project lies in making this process Internet-based, and remote robot operated and visualized in 3D. This 3D system approach provides the students with a more realistic feel of the 3D robotic laboratory even though they are working remotely. As a result, the 3D visualization technology has been tested as part of a laboratory in the MET 205 Robotics and Mechatronics class and has received positive feedback by most of the students. This type of research has introduced a new level of realism and visual communications to online laboratory learning in a remote classroom.

  13. Designing stereoscopic information visualization for 3D-TV: What can we can learn from S3D gaming?

    Science.gov (United States)

    Schild, Jonas; Masuch, Maic

    2012-03-01

    This paper explores graphical design and spatial alignment of visual information and graphical elements into stereoscopically filmed content, e.g. captions, subtitles, and especially more complex elements in 3D-TV productions. The method used is a descriptive analysis of existing computer- and video games that have been adapted for stereoscopic display using semi-automatic rendering techniques (e.g. Nvidia 3D Vision) or games which have been specifically designed for stereoscopic vision. Digital games often feature compelling visual interfaces that combine high usability with creative visual design. We explore selected examples of game interfaces in stereoscopic vision regarding their stereoscopic characteristics, how they draw attention, how we judge effect and comfort and where the interfaces fail. As a result, we propose a list of five aspects which should be considered when designing stereoscopic visual information: explicit information, implicit information, spatial reference, drawing attention, and vertical alignment. We discuss possible consequences, opportunities and challenges for integrating visual information elements into 3D-TV content. This work shall further help to improve current editing systems and identifies a need for future editing systems for 3DTV, e.g., live editing and real-time alignment of visual information into 3D footage.

  14. Assessing 3D Virtual World Disaster Training Through Adult Learning Theory

    Directory of Open Access Journals (Sweden)

    Lee Taylor-Nelms

    2014-10-01

    Full Text Available As role-play, virtual reality, and simulated environments gain popularity through virtual worlds such as Second Life, the importance of identifying best practices for education and emergency management training becomes necessary. Using a formal needs assessment approach, we examined the extent to which 3D virtual tornado simulation trainings follow the principles of adult learning theory employed by the Federal Emergency Management Agency's (FEMA National Training and Education Division. Through a three-fold methodology of observation, interviews, and reflection on action, 3D virtual world tornado trainings were analyzed for congruence to adult learning theory.

  15. Facilitating role of 3D multimodal visualization and learning rehearsal in memory recall.

    Science.gov (United States)

    Do, Phuong T; Moreland, John R

    2014-04-01

    The present study investigated the influence of 3D multimodal visualization and learning rehearsal on memory recall. Participants (N = 175 college students ranging from 21 to 25 years) were assigned to different training conditions and rehearsal processes to learn a list of 14 terms associated with construction of a wood-frame house. They then completed a memory test determining their cognitive ability to free recall the definitions of the 14 studied terms immediately after training and rehearsal. The audiovisual modality training condition was associated with the highest accuracy, and the visual- and auditory-modality conditions with lower accuracy rates. The no-training condition indicated little learning acquisition. A statistically significant increase in performance accuracy for the audiovisual condition as a function of rehearsal suggested the relative importance of rehearsal strategies in 3D observational learning. Findings revealed the potential application of integrating virtual reality and cognitive sciences to enhance learning and teaching effectiveness.

  16. 3D web based learning of medical equipment employed in intensive care units.

    Science.gov (United States)

    Cetin, Aydın

    2012-02-01

    In this paper, both synchronous and asynchronous web based learning of 3D medical equipment models used in hospital intensive care unit have been described over the moodle course management system. 3D medical equipment models were designed with 3ds Max 2008, then converted to ASE format and added interactivity displayed with Viewpoint-Enliven. 3D models embedded in a web page in html format with dynamic interactivity-rotating, panning and zooming by dragging a mouse over images-and descriptive information is embedded to 3D model by using xml format. A pilot test course having 15 h was applied to technicians who is responsible for intensive care unit at Medical Devices Repairing and Maintenance Center (TABOM) of Turkish High Specialized Hospital.

  17. Assessing the Applicability of 3D Holographic Technology as an Enhanced Technology for Distance Learning

    Directory of Open Access Journals (Sweden)

    Pradeep Kalansooriya

    2015-08-01

    Full Text Available Distance learning has provided an excellent platform for students in geographically remote locations while enabling them to learn at their own pace and convenience. A number of technologies are currently being utilized to conceptualize, design, enhance and foster distance learning. Teleconferences, electronic field trips, podcasts, webinars, video conferencing and online courses are among such technologies used in providing distance learning opportunities. However limitations in those existing technologies have affected to the increase of distance learners dropout rates. As an attempt to overcome the limitations in the currently adopted distance learning practices, the study aims to utilize 3D Hologram Technology (3DHT in the Engineering discipline. 3D hologram facilitates live and life size 3D telepresence that can interact with remote audiences. A survey had been conducted, using Delphi Technique to gather data from the experts in the field to evaluate the potential of 3DHT over existing technologies. Results of the survey suggested that 3DHT as a good distance learning technology and have the potential of overcoming existing limitations. Lack of infrastructure, High initial cost of infrastructure and Lack of technical know how are the main encounters identified by the experts in the sample. It is expected to develop a classroom environment with 3DHT and to evaluate its effectiveness for the distance learning in the next stage of the study.

  18. Immersive Learning Environment Using 3D Virtual Worlds and Integrated Remote Experimentation

    Directory of Open Access Journals (Sweden)

    Roderval Marcelino

    2013-01-01

    Full Text Available This project seeks to demonstrate the use of remote experimentation and 3D virtual environments applied to the teaching-learning in the areas of exact sciences-physics. In proposing the combination of remote experimentation and 3D virtual worlds in teaching-learning process, we intend to achieve greater geographic coverage, contributing to the construction of new methodologies of teaching support, speed of access and foremost motivation for students to continue in scientific study of the technology areas. The proposed architecture is based on a model implemented fully featured open source and open hardware. The virtual world was built in OpenSim software and integrated it a remote physics experiment called "electrical panel". Accessing the virtual world the user has total control of the experiment within the 3D virtual world.

  19. Learning weighted sparse representation of encoded facial normal information for expression-robust 3D face recognition

    KAUST Repository

    Li, Huibin; Di, Huang; Morvan, Jean-Marie; Chen, Liming

    2011-01-01

    This paper proposes a novel approach for 3D face recognition by learning weighted sparse representation of encoded facial normal information. To comprehensively describe 3D facial surface, three components, in X, Y, and Z-plane respectively

  20. Versatile, immersive, creative and dynamic virtual 3-D healthcare learning environments: a review of the literature.

    Science.gov (United States)

    Hansen, Margaret M

    2008-09-01

    The author provides a critical overview of three-dimensional (3-D) virtual worlds and "serious gaming" that are currently being developed and used in healthcare professional education and medicine. The relevance of this e-learning innovation for teaching students and professionals is debatable and variables influencing adoption, such as increased knowledge, self-directed learning, and peer collaboration, by academics, healthcare professionals, and business executives are examined while looking at various Web 2.0/3.0 applications. There is a need for more empirical research in order to unearth the pedagogical outcomes and advantages associated with this e-learning technology. A brief description of Roger's Diffusion of Innovations Theory and Siemens' Connectivism Theory for today's learners is presented as potential underlying pedagogical tenets to support the use of virtual 3-D learning environments in higher education and healthcare.

  1. Creative Generation of 3D Objects with Deep Learning and Innovation Engines

    DEFF Research Database (Denmark)

    Lehman, Joel Anthony; Risi, Sebastian; Clune, Jeff

    2016-01-01

    Advances in supervised learning with deep neural networks have enabled robust classification in many real world domains. An interesting question is if such advances can also be leveraged effectively for computational creativity. One insight is that because evolutionary algorithms are free from st...... creativity. The results of this automated process are interesting and recognizable 3D-printable objects, demonstrating the creative potential for combining evolutionary computation and deep learning in this way....

  2. Estimating the complexity of 3D structural models using machine learning methods

    Science.gov (United States)

    Mejía-Herrera, Pablo; Kakurina, Maria; Royer, Jean-Jacques

    2016-04-01

    Quantifying the complexity of 3D geological structural models can play a major role in natural resources exploration surveys, for predicting environmental hazards or for forecasting fossil resources. This paper proposes a structural complexity index which can be used to help in defining the degree of effort necessary to build a 3D model for a given degree of confidence, and also to identify locations where addition efforts are required to meet a given acceptable risk of uncertainty. In this work, it is considered that the structural complexity index can be estimated using machine learning methods on raw geo-data. More precisely, the metrics for measuring the complexity can be approximated as the difficulty degree associated to the prediction of the geological objects distribution calculated based on partial information on the actual structural distribution of materials. The proposed methodology is tested on a set of 3D synthetic structural models for which the degree of effort during their building is assessed using various parameters (such as number of faults, number of part in a surface object, number of borders, ...), the rank of geological elements contained in each model, and, finally, their level of deformation (folding and faulting). The results show how the estimated complexity in a 3D model can be approximated by the quantity of partial data necessaries to simulated at a given precision the actual 3D model without error using machine learning algorithms.

  3. Real-time Stereoscopic 3D for E-Robotics Learning

    Directory of Open Access Journals (Sweden)

    Richard Y. Chiou

    2011-02-01

    Full Text Available Following the design and testing of a successful 3-Dimensional surveillance system, this 3D scheme has been implemented into online robotics learning at Drexel University. A real-time application, utilizing robot controllers, programmable logic controllers and sensors, has been developed in the “MET 205 Robotics and Mechatronics” class to provide the students with a better robotic education. The integration of the 3D system allows the students to precisely program the robot and execute functions remotely. Upon the students’ recommendation, polarization has been chosen to be the main platform behind the 3D robotic system. Stereoscopic calculations are carried out for calibration purposes to display the images with the highest possible comfort-level and 3D effect. The calculations are further validated by comparing the results with students’ evaluations. Due to the Internet-based feature, multiple clients have the opportunity to perform the online automation development. In the future, students, in different universities, will be able to cross-control robotic components of different types around the world. With the development of this 3D ERobotics interface, automation resources and robotic learning can be shared and enriched regardless of location.

  4. Deep Correlated Holistic Metric Learning for Sketch-Based 3D Shape Retrieval.

    Science.gov (United States)

    Dai, Guoxian; Xie, Jin; Fang, Yi

    2018-07-01

    How to effectively retrieve desired 3D models with simple queries is a long-standing problem in computer vision community. The model-based approach is quite straightforward but nontrivial, since people could not always have the desired 3D query model available by side. Recently, large amounts of wide-screen electronic devices are prevail in our daily lives, which makes the sketch-based 3D shape retrieval a promising candidate due to its simpleness and efficiency. The main challenge of sketch-based approach is the huge modality gap between sketch and 3D shape. In this paper, we proposed a novel deep correlated holistic metric learning (DCHML) method to mitigate the discrepancy between sketch and 3D shape domains. The proposed DCHML trains two distinct deep neural networks (one for each domain) jointly, which learns two deep nonlinear transformations to map features from both domains into a new feature space. The proposed loss, including discriminative loss and correlation loss, aims to increase the discrimination of features within each domain as well as the correlation between different domains. In the new feature space, the discriminative loss minimizes the intra-class distance of the deep transformed features and maximizes the inter-class distance of the deep transformed features to a large margin within each domain, while the correlation loss focused on mitigating the distribution discrepancy across different domains. Different from existing deep metric learning methods only with loss at the output layer, our proposed DCHML is trained with loss at both hidden layer and output layer to further improve the performance by encouraging features in the hidden layer also with desired properties. Our proposed method is evaluated on three benchmarks, including 3D Shape Retrieval Contest 2013, 2014, and 2016 benchmarks, and the experimental results demonstrate the superiority of our proposed method over the state-of-the-art methods.

  5. An efficient dictionary learning algorithm and its application to 3-D medical image denoising.

    Science.gov (United States)

    Li, Shutao; Fang, Leyuan; Yin, Haitao

    2012-02-01

    In this paper, we propose an efficient dictionary learning algorithm for sparse representation of given data and suggest a way to apply this algorithm to 3-D medical image denoising. Our learning approach is composed of two main parts: sparse coding and dictionary updating. On the sparse coding stage, an efficient algorithm named multiple clusters pursuit (MCP) is proposed. The MCP first applies a dictionary structuring strategy to cluster the atoms with high coherence together, and then employs a multiple-selection strategy to select several competitive atoms at each iteration. These two strategies can greatly reduce the computation complexity of the MCP and assist it to obtain better sparse solution. On the dictionary updating stage, the alternating optimization that efficiently approximates the singular value decomposition is introduced. Furthermore, in the 3-D medical image denoising application, a joint 3-D operation is proposed for taking the learning capabilities of the presented algorithm to simultaneously capture the correlations within each slice and correlations across the nearby slices, thereby obtaining better denoising results. The experiments on both synthetically generated data and real 3-D medical images demonstrate that the proposed approach has superior performance compared to some well-known methods. © 2011 IEEE

  6. GE3D: A Virtual Campus for Technology-Enhanced Distance Learning

    Directory of Open Access Journals (Sweden)

    Jean Grieu

    2010-09-01

    Full Text Available A lot of learning systems platforms are used all over the world. But these conventional E-learning platforms aim at students who are used to work on their own. Our students are young (19 years old – 22 years old, and in their first year at the university. Following extensive interviews with our students, we have designed GE3D, an E-learning platform, according to their expectations and our criteria. In this paper, we describe the students’ demands, resulting from the interviews. Then, we describe our virtual campus. Even if our platform uses some elements coming from the 3D games world, it is always a pedagogical tool. Using this technology, we developed a 3D representation of the real world. GE3D is a multi-users tool, with a synchronous technology, an intuitive interface for end-users and an embedded Intelligent Tutoring System to support learners. We also describe the process of a lecture on the Programmable Logic Controllers (PLC’s in this new universe.

  7. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    Science.gov (United States)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  8. Enhancement of Online Robotics Learning Using Real-Time 3D Visualization Technology

    OpenAIRE

    Richard Chiou; Yongjin (james) Kwon; Tzu-Liang (bill) Tseng; Robin Kizirian; Yueh-Ting Yang

    2010-01-01

    This paper discusses a real-time e-Lab Learning system based on the integration of 3D visualization technology with a remote robotic laboratory. With the emergence and development of the Internet field, online learning is proving to play a significant role in the upcoming era. In an effort to enhance Internet-based learning of robotics and keep up with the rapid progression of technology, a 3- Dimensional scheme of viewing the robotic laboratory has been introduced in addition to the remote c...

  9. Transfer of learning between 2D and 3D sources during infancy: Informing theory and practice.

    Science.gov (United States)

    Barr, Rachel

    2010-06-01

    The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a 2-Dimensional (2D) representation and a 3-Dimensional (3D) object. Understanding the conditions under which young children might accomplish this particular kind of transfer is important because by 2 years of age 90% of US children are viewing television on a daily basis. Recent research shows that children can imitate actions presented on television using the corresponding real-world objects, but this same research also shows that children learn less from television than they do from live demonstrations until they are at least 3 years old; termed the video deficit effect. At present, there is no coherent theory to account for the video deficit effect; how learning is disrupted by this change in context is poorly understood. The aims of the present review are (1) to review the conditions under which children transfer learning between 2D images and 3D objects during early childhood, and (2) to integrate developmental theories of memory processing into the transfer of learning from media literature using Hayne's (2004) developmental representational flexibility account. The review will conclude that studies on the transfer of learning between 2D and 3D sources have important theoretical implications for general developmental theories of cognitive development, and in particular the development of a flexible representational system, as well as policy implications for early education regarding the potential use and limitations of media as effective teaching tools during early childhood.

  10. An Interactive 3D Virtual Anatomy Puzzle for Learning and Simulation - Initial Demonstration and Evaluation.

    Science.gov (United States)

    Messier, Erik; Wilcox, Jascha; Dawson-Elli, Alexander; Diaz, Gabriel; Linte, Cristian A

    2016-01-01

    To inspire young students (grades 6-12) to become medical practitioners and biomedical engineers, it is necessary to expose them to key concepts of the field in a way that is both exciting and informative. Recent advances in medical image acquisition, manipulation, processing, visualization, and display have revolutionized the approach in which the human body and internal anatomy can be seen and studied. It is now possible to collect 3D, 4D, and 5D medical images of patient specific data, and display that data to the end user using consumer level 3D stereoscopic display technology. Despite such advancements, traditional 2D modes of content presentation such as textbooks and slides are still the standard didactic equipment used to teach young students anatomy. More sophisticated methods of display can help to elucidate the complex 3D relationships between structures that are so often missed when viewing only 2D media, and can instill in students an appreciation for the interconnection between medicine and technology. Here we describe the design, implementation, and preliminary evaluation of a 3D virtual anatomy puzzle dedicated to helping users learn the anatomy of various organs and systems by manipulating 3D virtual data. The puzzle currently comprises several components of the human anatomy and can be easily extended to include additional organs and systems. The 3D virtual anatomy puzzle game was implemented and piloted using three display paradigms - a traditional 2D monitor, a 3D TV with active shutter glass, and the DK2 version Oculus Rift, as well as two different user interaction devices - a space mouse and traditional keyboard controls.

  11. Teaching-learning: stereoscopic 3D versus Traditional methods in Mexico City.

    Science.gov (United States)

    Mendoza Oropeza, Laura; Ortiz Sánchez, Ricardo; Ojeda Villagómez, Raúl

    2015-01-01

    In the UNAM Faculty of Odontology, we use a stereoscopic 3D teaching method that has grown more common in the last year, which makes it important to know whether students can learn better with this strategy. The objective of the study is to know, if the 4th year students of the bachelor's degree in dentistry learn more effectively with the use of stereoscopic 3D than the traditional method in Orthodontics. first, we selected the course topics, to be used for both methods; the traditional method using projection of slides and for the stereoscopic third dimension, with the use of videos in digital stereo projection (seen through "passive" polarized 3D glasses). The main topic was supernumerary teeth, including and diverted from their guide eruption. Afterwards we performed an exam on students, containing 24 items, validated by expert judgment in Orthodontics teaching. The results of the data were compared between the two educational methods for determined effectiveness using the model before and after measurement with the statistical package SPSS 20 version. The results presented for the 9 groups of undergraduates in dentistry, were collected with a total of 218 students for 3D and traditional methods, we found in a traditional method a mean 4.91, SD 1.4752 in the pretest and X=6.96, SD 1.26622, St Error 0.12318 for the posttest. The 3D method had a mean 5.21, SD 1.996779 St Error 0.193036 for the pretest X= 7.82, SD =0.963963, St Error 0.09319 posttest; the analysis of Variance between groups F= 5.60 Prob > 0.0000 and Bartlett's test for equal variances 21.0640 Prob > chi2 = 0.007. These results show that the student's learning in 3D means a significant improvement as compared to the traditional teaching method and having a strong association between the two methods. The findings suggest that the stereoscopic 3D method lead to improved student learning compared to traditional teaching.

  12. 3D Visualization Types in Multimedia Applications for Science Learning: A Case Study for 8th Grade Students in Greece

    Science.gov (United States)

    Korakakis, G.; Pavlatou, E. A.; Palyvos, J. A.; Spyrellis, N.

    2009-01-01

    This research aims to determine whether the use of specific types of visualization (3D illustration, 3D animation, and interactive 3D animation) combined with narration and text, contributes to the learning process of 13- and 14- years-old students in science courses. The study was carried out with 212 8th grade students in Greece. This…

  13. eLearning and eMaking: 3D Printing Blurring the Digital and the Physical

    Directory of Open Access Journals (Sweden)

    Jennifer Loy

    2014-02-01

    Full Text Available This article considers the potential of 3D printing as an eLearning tool for design education and the role of eMaking in bringing together the virtual and the physical in the design studio. eLearning has matured from the basics of lecture capture into sophisticated, interactive learning activities for students. At the same time, laptops and internet enabled phones have made computer-based learning mobile, invading classroom learning, changing communication between students, enabling on the spot research, and making the recording of ideas and activities easier. The barriers between online and offline are becoming blurred in a combined digital and physical learning environment. Three-dimensional printing is part of this unification and can be an empowering learning tool for students, changing their relationship with the virtual and the physical, allowing them to take ideas and thinking from screen to reality and back again in an iterative, connected process, however, from an eLearning point of view it is, more importantly, a transformative technology with the potential to change the relationship of the learner to their learning and the scope and nature of their work. Examples from Griffith Product Design student learning illustrate the potential of eMaking to enhance combined learning in a digital age.

  14. A Holistic Approach to Knowledge Management and Social Learning: lessons learnt from military headquarters

    Directory of Open Access Journals (Sweden)

    Leoni Warne

    2001-11-01

    Full Text Available This paper reports on research conducted by the Enterprise Social Learning Architecture (ESLA team of the Defence Science and Technology Organisation. The ESLA team is investigating collaborative social learning within the Australian Defence Organisation (ADO. Social learning is tightly coupled to knowledge management. Three studies in three different settings have been conducted to date. The studies have provided multi-layered findings about social learning, and validated the use of ethnography for this purpose. Preliminary findings are discussed in this paper in terms of identified enablers and motivators for effective social learning and knowledge management. Although the paper deals with the defence environment, the findings can be generalised to other organisational settings, as the study deals with understanding the issues inherent in building sustainable and adaptive learning organisations.

  15. Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides

    Directory of Open Access Journals (Sweden)

    Stanislawski Jerzy

    2013-01-01

    Full Text Available Abstract Background Amyloids are proteins capable of forming fibrils. Many of them underlie serious diseases, like Alzheimer disease. The number of amyloid-associated diseases is constantly increasing. Recent studies indicate that amyloidogenic properties can be associated with short segments of aminoacids, which transform the structure when exposed. A few hundreds of such peptides have been experimentally found. Experimental testing of all possible aminoacid combinations is currently not feasible. Instead, they can be predicted by computational methods. 3D profile is a physicochemical-based method that has generated the most numerous dataset - ZipperDB. However, it is computationally very demanding. Here, we show that dataset generation can be accelerated. Two methods to increase the classification efficiency of amyloidogenic candidates are presented and tested: simplified 3D profile generation and machine learning methods. Results We generated a new dataset of hexapeptides, using more economical 3D profile algorithm, which showed very good classification overlap with ZipperDB (93.5%. The new part of our dataset contains 1779 segments, with 204 classified as amyloidogenic. The dataset of 6-residue sequences with their binary classification, based on the energy of the segment, was applied for training machine learning methods. A separate set of sequences from ZipperDB was used as a test set. The most effective methods were Alternating Decision Tree and Multilayer Perceptron. Both methods obtained area under ROC curve of 0.96, accuracy 91%, true positive rate ca. 78%, and true negative rate 95%. A few other machine learning methods also achieved a good performance. The computational time was reduced from 18-20 CPU-hours (full 3D profile to 0.5 CPU-hours (simplified 3D profile to seconds (machine learning. Conclusions We showed that the simplified profile generation method does not introduce an error with regard to the original method, while

  16. Machine learning methods can replace 3D profile method in classification of amyloidogenic hexapeptides.

    Science.gov (United States)

    Stanislawski, Jerzy; Kotulska, Malgorzata; Unold, Olgierd

    2013-01-17

    Amyloids are proteins capable of forming fibrils. Many of them underlie serious diseases, like Alzheimer disease. The number of amyloid-associated diseases is constantly increasing. Recent studies indicate that amyloidogenic properties can be associated with short segments of aminoacids, which transform the structure when exposed. A few hundreds of such peptides have been experimentally found. Experimental testing of all possible aminoacid combinations is currently not feasible. Instead, they can be predicted by computational methods. 3D profile is a physicochemical-based method that has generated the most numerous dataset - ZipperDB. However, it is computationally very demanding. Here, we show that dataset generation can be accelerated. Two methods to increase the classification efficiency of amyloidogenic candidates are presented and tested: simplified 3D profile generation and machine learning methods. We generated a new dataset of hexapeptides, using more economical 3D profile algorithm, which showed very good classification overlap with ZipperDB (93.5%). The new part of our dataset contains 1779 segments, with 204 classified as amyloidogenic. The dataset of 6-residue sequences with their binary classification, based on the energy of the segment, was applied for training machine learning methods. A separate set of sequences from ZipperDB was used as a test set. The most effective methods were Alternating Decision Tree and Multilayer Perceptron. Both methods obtained area under ROC curve of 0.96, accuracy 91%, true positive rate ca. 78%, and true negative rate 95%. A few other machine learning methods also achieved a good performance. The computational time was reduced from 18-20 CPU-hours (full 3D profile) to 0.5 CPU-hours (simplified 3D profile) to seconds (machine learning). We showed that the simplified profile generation method does not introduce an error with regard to the original method, while increasing the computational efficiency. Our new dataset

  17. Comparing 2D and 3D Game-Based Learning Environments in Terms of Learning Gains and Student Perceptions

    Science.gov (United States)

    Ak, Oguz; Kutlu, Birgul

    2017-01-01

    The aim of this study was to investigate the effectiveness of traditional, 2D and 3D game-based environments assessed by student achievement scores and to reveal student perceptions of the value of these learning environments. A total of 60 university students from the Faculty of Education who were registered in three sections of a required…

  18. Characterization and reconstruction of 3D stochastic microstructures via supervised learning.

    Science.gov (United States)

    Bostanabad, R; Chen, W; Apley, D W

    2016-12-01

    The need for computational characterization and reconstruction of volumetric maps of stochastic microstructures for understanding the role of material structure in the processing-structure-property chain has been highlighted in the literature. Recently, a promising characterization and reconstruction approach has been developed where the essential idea is to convert the digitized microstructure image into an appropriate training dataset to learn the stochastic nature of the morphology by fitting a supervised learning model to the dataset. This compact model can subsequently be used to efficiently reconstruct as many statistically equivalent microstructure samples as desired. The goal of this paper is to build upon the developed approach in three major directions by: (1) extending the approach to characterize 3D stochastic microstructures and efficiently reconstruct 3D samples, (2) improving the performance of the approach by incorporating user-defined predictors into the supervised learning model, and (3) addressing potential computational issues by introducing a reduced model which can perform as effectively as the full model. We test the extended approach on three examples and show that the spatial dependencies, as evaluated via various measures, are well preserved in the reconstructed samples. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.

  19. The Effect of Stereoscopic ("3D") vs. 2D Presentation on Learning through Video and Film

    Science.gov (United States)

    Price, Aaron; Kasal, E.

    2014-01-01

    Two Eyes, 3D is a NSF-funded research project into the effects of stereoscopy on learning of highly spatial concepts. We report final results on one study of the project which tested the effect of stereoscopic presentation on learning outcomes of two short films about Type 1a supernovae and the morphology of the Milky Way. 986 adults watched either film, randomly distributed between stereoscopic and 2D presentation. They took a pre-test and post-test that included multiple choice and drawing tasks related to the spatial nature of the topics in the film. Orientation of the answering device was also tracked and a spatial cognition pre-test was given to control for prior spatial ability. Data collection took place at the Adler Planetarium's Space Visualization Lab and the project is run through the AAVSO.

  20. Nonlinear Synchronization for Automatic Learning of 3D Pose Variability in Human Motion Sequences

    Directory of Open Access Journals (Sweden)

    Mozerov M

    2010-01-01

    Full Text Available A dense matching algorithm that solves the problem of synchronizing prerecorded human motion sequences, which show different speeds and accelerations, is proposed. The approach is based on minimization of MRF energy and solves the problem by using Dynamic Programming. Additionally, an optimal sequence is automatically selected from the input dataset to be a time-scale pattern for all other sequences. The paper utilizes an action specific model which automatically learns the variability of 3D human postures observed in a set of training sequences. The model is trained using the public CMU motion capture dataset for the walking action, and a mean walking performance is automatically learnt. Additionally, statistics about the observed variability of the postures and motion direction are also computed at each time step. The synchronized motion sequences are used to learn a model of human motion for action recognition and full-body tracking purposes.

  1. Active learning in the lecture theatre using 3D printed objects [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    David P. Smith

    2016-06-01

    Full Text Available The ability to conceptualize 3D shapes is central to understanding biological processes. The concept that the structure of a biological molecule leads to function is a core principle of the biochemical field. Visualisation of biological molecules often involves vocal explanations or the use of two dimensional slides and video presentations. A deeper understanding of these molecules can however be obtained by the handling of objects. 3D printed biological molecules can be used as active learning tools to stimulate engagement in large group lectures. These models can be used to build upon initial core knowledge which can be delivered in either a flipped form or a more didactic manner. Within the teaching session the students are able to learn by handling, rotating and viewing the objects to gain an appreciation, for example, of an enzyme’s active site or the difference between the major and minor groove of DNA. Models and other artefacts can be handled in small groups within a lecture theatre and act as a focal point to generate conversation. Through the approach presented here core knowledge is first established and then supplemented with high level problem solving through a "Think-Pair-Share" cooperative learning strategy. The teaching delivery was adjusted based around experiential learning activities by moving the object from mental cognition and into the physical environment. This approach led to students being able to better visualise biological molecules and a positive engagement in the lecture. The use of objects in teaching allows the lecturer to create interactive sessions that both challenge and enable the student.

  2. Active learning in the lecture theatre using 3D printed objects.

    Science.gov (United States)

    Smith, David P

    2016-01-01

    The ability to conceptualize 3D shapes is central to understanding biological processes. The concept that the structure of a biological molecule leads to function is a core principle of the biochemical field. Visualisation of biological molecules often involves vocal explanations or the use of two dimensional slides and video presentations. A deeper understanding of these molecules can however be obtained by the handling of objects. 3D printed biological molecules can be used as active learning tools to stimulate engagement in large group lectures. These models can be used to build upon initial core knowledge which can be delivered in either a flipped form or a more didactic manner. Within the teaching session the students are able to learn by handling, rotating and viewing the objects to gain an appreciation, for example, of an enzyme's active site or the difference between the major and minor groove of DNA. Models and other artefacts can be handled in small groups within a lecture theatre and act as a focal point to generate conversation. Through the approach presented here core knowledge is first established and then supplemented with high level problem solving through a "Think-Pair-Share" cooperative learning strategy. The teaching delivery was adjusted based around experiential learning activities by moving the object from mental cognition and into the physical environment. This approach led to students being able to better visualise biological molecules and a positive engagement in the lecture. The use of objects in teaching allows the lecturer to create interactive sessions that both challenge and enable the student.

  3. Feasibility Study for Ballet E-Learning: Automatic Composition System for Ballet "Enchainement" with Online 3D Motion Data Archive

    Science.gov (United States)

    Umino, Bin; Longstaff, Jeffrey Scott; Soga, Asako

    2009-01-01

    This paper reports on "Web3D dance composer" for ballet e-learning. Elementary "petit allegro" ballet steps were enumerated in collaboration with ballet teachers, digitally acquired through 3D motion capture systems, and categorised into families and sub-families. Digital data was manipulated into virtual reality modelling language (VRML) and fit…

  4. Z-Index Parameterization for Volumetric CT Image Reconstruction via 3-D Dictionary Learning.

    Science.gov (United States)

    Bai, Ti; Yan, Hao; Jia, Xun; Jiang, Steve; Wang, Ge; Mou, Xuanqin

    2017-12-01

    Despite the rapid developments of X-ray cone-beam CT (CBCT), image noise still remains a major issue for the low dose CBCT. To suppress the noise effectively while retain the structures well for low dose CBCT image, in this paper, a sparse constraint based on the 3-D dictionary is incorporated into a regularized iterative reconstruction framework, defining the 3-D dictionary learning (3-DDL) method. In addition, by analyzing the sparsity level curve associated with different regularization parameters, a new adaptive parameter selection strategy is proposed to facilitate our 3-DDL method. To justify the proposed method, we first analyze the distributions of the representation coefficients associated with the 3-D dictionary and the conventional 2-D dictionary to compare their efficiencies in representing volumetric images. Then, multiple real data experiments are conducted for performance validation. Based on these results, we found: 1) the 3-D dictionary-based sparse coefficients have three orders narrower Laplacian distribution compared with the 2-D dictionary, suggesting the higher representation efficiencies of the 3-D dictionary; 2) the sparsity level curve demonstrates a clear Z-shape, and hence referred to as Z-curve, in this paper; 3) the parameter associated with the maximum curvature point of the Z-curve suggests a nice parameter choice, which could be adaptively located with the proposed Z-index parameterization (ZIP) method; 4) the proposed 3-DDL algorithm equipped with the ZIP method could deliver reconstructions with the lowest root mean squared errors and the highest structural similarity index compared with the competing methods; 5) similar noise performance as the regular dose FDK reconstruction regarding the standard deviation metric could be achieved with the proposed method using (1/2)/(1/4)/(1/8) dose level projections. The contrast-noise ratio is improved by ~2.5/3.5 times with respect to two different cases under the (1/8) dose level compared

  5. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

    Science.gov (United States)

    Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. © 2013 American Association of Anatomists.

  6. 3D immersive patient simulators and their impact on learning success: a thematic review.

    Science.gov (United States)

    Kleinert, Robert; Wahba, Roger; Chang, De-Hua; Plum, Patrick; Hölscher, Arnulf H; Stippel, Dirk L

    2015-04-08

    Immersive patient simulators (IPSs) combine the simulation of virtual patients with a three-dimensional (3D) environment and, thus, allow an illusionary immersion into a synthetic world, similar to computer games. Playful learning in a 3D environment is motivating and allows repetitive training and internalization of medical workflows (ie, procedural knowledge) without compromising real patients. The impact of this innovative educational concept on learning success requires review of feasibility and validity. It was the aim of this paper to conduct a survey of all immersive patient simulators currently available. In addition, we address the question of whether the use of these simulators has an impact on knowledge gain by summarizing the existing validation studies. A systematic literature search via PubMed was performed using predefined inclusion criteria (ie, virtual worlds, focus on education of medical students, validation testing) to identify all available simulators. Validation testing was defined as the primary end point. There are currently 13 immersive patient simulators available. Of these, 9 are Web-based simulators and represent feasibility studies. None of these simulators are used routinely for student education. The workstation-based simulators are commercially driven and show a higher quality in terms of graphical quality and/or data content. Out of the studies, 1 showed a positive correlation between simulated content and real content (ie, content validity). There was a positive correlation between the outcome of simulator training and alternative training methods (ie, concordance validity), and a positive coherence between measured outcome and future professional attitude and performance (ie, predictive validity). IPSs can promote learning and consolidation of procedural knowledge. The use of immersive patient simulators is still marginal, and technical and educational approaches are heterogeneous. Academic-driven IPSs could possibly enhance the

  7. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    Science.gov (United States)

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  8. 3D Cloud Field Prediction using A-Train Data and Machine Learning Techniques

    Science.gov (United States)

    Johnson, C. L.

    2017-12-01

    Validation of cloud process parameterizations used in global climate models (GCMs) would greatly benefit from observed 3D cloud fields at the size comparable to that of a GCM grid cell. For the highest resolution simulations, surface grid cells are on the order of 100 km by 100 km. CloudSat/CALIPSO data provides 1 km width of detailed vertical cloud fraction profile (CFP) and liquid and ice water content (LWC/IWC). This work utilizes four machine learning algorithms to create nonlinear regressions of CFP, LWC, and IWC data using radiances, surface type and location of measurement as predictors and applies the regression equations to off-track locations generating 3D cloud fields for 100 km by 100 km domains. The CERES-CloudSat-CALIPSO-MODIS (C3M) merged data set for February 2007 is used. Support Vector Machines, Artificial Neural Networks, Gaussian Processes and Decision Trees are trained on 1000 km of continuous C3M data. Accuracy is computed using existing vertical profiles that are excluded from the training data and occur within 100 km of the training data. Accuracy of the four algorithms is compared. Average accuracy for one day of predicted data is 86% for the most successful algorithm. The methodology for training the algorithms, determining valid prediction regions and applying the equations off-track is discussed. Predicted 3D cloud fields are provided as inputs to the Ed4 NASA LaRC Fu-Liou radiative transfer code and resulting TOA radiances compared to observed CERES/MODIS radiances. Differences in computed radiances using predicted profiles and observed radiances are compared.

  9. 3D animation model with augmented reality for natural science learning in elementary school

    Science.gov (United States)

    Hendajani, F.; Hakim, A.; Lusita, M. D.; Saputra, G. E.; Ramadhana, A. P.

    2018-05-01

    Many opinions from primary school students' on Natural Science are a difficult lesson. Many subjects are not easily understood by students, especially on materials that teach some theories about natural processes. Such as rain process, condensation and many other processes. The difficulty that students experience in understanding it is that students cannot imagine the things that have been taught in the material. Although there is material to practice some theories but is actually quite limited. There is also a video or simulation material in the form of 2D animated images. Understanding concepts in natural science lessons are also poorly understood by students. Natural Science learning media uses 3-dimensional animation models (3D) with augmented reality technology, which offers some visualization of science lessons. This application was created to visualize a process in Natural Science subject matter. The hope of making this application is to improve student's concept. This app is made to run on a personal computer that comes with a webcam with augmented reality. The app will display a 3D animation if the camera can recognize the marker.

  10. 3D surface parameterization using manifold learning for medial shape representation

    Science.gov (United States)

    Ward, Aaron D.; Hamarneh, Ghassan

    2007-03-01

    The choice of 3D shape representation for anatomical structures determines the effectiveness with which segmentation, visualization, deformation, and shape statistics are performed. Medial axis-based shape representations have attracted considerable attention due to their inherent ability to encode information about the natural geometry of parts of the anatomy. In this paper, we propose a novel approach, based on nonlinear manifold learning, to the parameterization of medial sheets and object surfaces based on the results of skeletonization. For each single-sheet figure in an anatomical structure, we skeletonize the figure, and classify its surface points according to whether they lie on the upper or lower surface, based on their relationship to the skeleton points. We then perform nonlinear dimensionality reduction on the skeleton, upper, and lower surface points, to find the intrinsic 2D coordinate system of each. We then center a planar mesh over each of the low-dimensional representations of the points, and map the meshes back to 3D using the mappings obtained by manifold learning. Correspondence between mesh vertices, established in their intrinsic 2D coordinate spaces, is used in order to compute the thickness vectors emanating from the medial sheet. We show results of our algorithm on real brain and musculoskeletal structures extracted from MRI, as well as an artificial multi-sheet example. The main advantages to this method are its relative simplicity and noniterative nature, and its ability to correctly compute nonintersecting thickness vectors for a medial sheet regardless of both the amount of coincident bending and thickness in the object, and of the incidence of local concavities and convexities in the object's surface.

  11. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    Science.gov (United States)

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  12. The effects of 3D interactive animated graphics on student learning and attitudes in computer-based instruction

    Science.gov (United States)

    Moon, Hye Sun

    Visuals are most extensively used as instructional tools in education to present spatially-based information. Recent computer technology allows the generation of 3D animated visuals to extend the presentation in computer-based instruction. Animated visuals in 3D representation not only possess motivational value that promotes positive attitudes toward instruction but also facilitate learning when the subject matter requires dynamic motion and 3D visual cue. In this study, three questions are explored: (1) how 3D graphics affects student learning and attitude, in comparison with 2D graphics; (2) how animated graphics affects student learning and attitude, in comparison with static graphics; and (3) whether the use of 3D graphics, when they are supported by interactive animation, is the most effective visual cues to improve learning and to develop positive attitudes. A total of 145 eighth-grade students participated in a 2 x 2 factorial design study. The subjects were randomly assigned to one of four computer-based instructions: 2D static; 2D animated; 3D static; and 3D animated. The results indicated that: (1) Students in the 3D graphic condition exhibited more positive attitudes toward instruction than those in the 2D graphic condition. No group differences were found between the posttest score of 3D graphic condition and that of 2D graphic condition. However, students in the 3D graphic condition took less time for information retrieval on posttest than those in the 2D graphic condition. (2) Students in the animated graphic condition exhibited slightly more positive attitudes toward instruction than those in the static graphic condition. No group differences were found between the posttest score of animated graphic condition and that of static graphic condition. However, students in the animated graphic condition took less time for information retrieval on posttest than those in the static graphic condition. (3) Students in the 3D animated graphic condition

  13. Learning-based 3D surface optimization from medical image reconstruction

    Science.gov (United States)

    Wei, Mingqiang; Wang, Jun; Guo, Xianglin; Wu, Huisi; Xie, Haoran; Wang, Fu Lee; Qin, Jing

    2018-04-01

    Mesh optimization has been studied from the graphical point of view: It often focuses on 3D surfaces obtained by optical and laser scanners. This is despite the fact that isosurfaced meshes of medical image reconstruction suffer from both staircases and noise: Isotropic filters lead to shape distortion, while anisotropic ones maintain pseudo-features. We present a data-driven method for automatically removing these medical artifacts while not introducing additional ones. We consider mesh optimization as a combination of vertex filtering and facet filtering in two stages: Offline training and runtime optimization. In specific, we first detect staircases based on the scanning direction of CT/MRI scanners, and design a staircase-sensitive Laplacian filter (vertex-based) to remove them; and then design a unilateral filtered facet normal descriptor (uFND) for measuring the geometry features around each facet of a given mesh, and learn the regression functions from a set of medical meshes and their high-resolution reference counterparts for mapping the uFNDs to the facet normals of the reference meshes (facet-based). At runtime, we first perform staircase-sensitive Laplacian filter on an input MC (Marching Cubes) mesh, and then filter the mesh facet normal field using the learned regression functions, and finally deform it to match the new normal field for obtaining a compact approximation of the high-resolution reference model. Tests show that our algorithm achieves higher quality results than previous approaches regarding surface smoothness and surface accuracy.

  14. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    International Nuclear Information System (INIS)

    Guo, Yanrong; Shao, Yeqin; Gao, Yaozong; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-01-01

    different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images

  15. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    Science.gov (United States)

    Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-01-01

    patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images. PMID:24989402

  16. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning.

    Science.gov (United States)

    Guo, Yanrong; Gao, Yaozong; Shao, Yeqin; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-07-01

    prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.

  17. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yanrong; Shao, Yeqin [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Gao, Yaozong; Price, True [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 and Department of Computer Science, University of North Carolina at Chapel Hill, North Carolina 27599 (United States); Oto, Aytekin [Department of Radiology, Section of Urology, University of Chicago, Illinois 60637 (United States); Shen, Dinggang, E-mail: dgshen@med.unc.edu [Department of Radiology and BRIC, University of North Carolina at Chapel Hill, North Carolina 27599 and Department of Brain and Cognitive Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2014-07-15

    different patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.

  18. 3D Printing as Learning Activity in Higher Education A case study in a robotics’ prototyping course

    OpenAIRE

    Drakoulaki, Aikaterini

    2017-01-01

    This thesis is inspired by the new opportunities new technologies provide in education and more precisely in higher education. There is a general focus in higher education on supporting student learning beyond learning the existing knowledge, so that students are prepared for taking part in knowledge- generating activities in their future working environment. Technologies can offer new opportunities for exploring and constructing knowledge. The focus of this study is on 3D printing as a learn...

  19. Learning weighted sparse representation of encoded facial normal information for expression-robust 3D face recognition

    KAUST Repository

    Li, Huibin

    2011-10-01

    This paper proposes a novel approach for 3D face recognition by learning weighted sparse representation of encoded facial normal information. To comprehensively describe 3D facial surface, three components, in X, Y, and Z-plane respectively, of normal vector are encoded locally to their corresponding normal pattern histograms. They are finally fed to a sparse representation classifier enhanced by learning based spatial weights. Experimental results achieved on the FRGC v2.0 database prove that the proposed encoded normal information is much more discriminative than original normal information. Moreover, the patch based weights learned using the FRGC v1.0 and Bosphorus datasets also demonstrate the importance of each facial physical component for 3D face recognition. © 2011 IEEE.

  20. A machine learning pipeline for automated registration and classification of 3D lidar data

    Science.gov (United States)

    Rajagopal, Abhejit; Chellappan, Karthik; Chandrasekaran, Shivkumar; Brown, Andrew P.

    2017-05-01

    Despite the large availability of geospatial data, registration and exploitation of these datasets remains a persis- tent challenge in geoinformatics. Popular signal processing and machine learning algorithms, such as non-linear SVMs and neural networks, rely on well-formatted input models as well as reliable output labels, which are not always immediately available. In this paper we outline a pipeline for gathering, registering, and classifying initially unlabeled wide-area geospatial data. As an illustrative example, we demonstrate the training and test- ing of a convolutional neural network to recognize 3D models in the OGRIP 2007 LiDAR dataset using fuzzy labels derived from OpenStreetMap as well as other datasets available on OpenTopography.org. When auxiliary label information is required, various text and natural language processing filters are used to extract and cluster keywords useful for identifying potential target classes. A subset of these keywords are subsequently used to form multi-class labels, with no assumption of independence. Finally, we employ class-dependent geometry extraction routines to identify candidates from both training and testing datasets. Our regression networks are able to identify the presence of 6 structural classes, including roads, walls, and buildings, in volumes as big as 8000 m3 in as little as 1.2 seconds on a commodity 4-core Intel CPU. The presented framework is neither dataset nor sensor-modality limited due to the registration process, and is capable of multi-sensor data-fusion.

  1. TU-F-BRF-06: 3D Pancreas MRI Segmentation Using Dictionary Learning and Manifold Clustering

    International Nuclear Information System (INIS)

    Gou, S; Rapacchi, S; Hu, P; Sheng, K

    2014-01-01

    Purpose: The recent advent of MRI guided radiotherapy machines has lent an exciting platform for soft tissue target localization during treatment. However, tools to efficiently utilize MRI images for such purpose have not been developed. Specifically, to efficiently quantify the organ motion, we develop an automated segmentation method using dictionary learning and manifold clustering (DLMC). Methods: Fast 3D HASTE and VIBE MR images of 2 healthy volunteers and 3 patients were acquired. A bounding box was defined to include pancreas and surrounding normal organs including the liver, duodenum and stomach. The first slice of the MRI was used for dictionary learning based on mean-shift clustering and K-SVD sparse representation. Subsequent images were iteratively reconstructed until the error is less than a preset threshold. The preliminarily segmentation was subject to the constraints of manifold clustering. The segmentation results were compared with the mean shift merging (MSM), level set (LS) and manual segmentation methods. Results: DLMC resulted in consistently higher accuracy and robustness than comparing methods. Using manual contours as the ground truth, the mean Dices indices for all subjects are 0.54, 0.56 and 0.67 for MSM, LS and DLMC, respectively based on the HASTE image. The mean Dices indices are 0.70, 0.77 and 0.79 for the three methods based on VIBE images. DLMC is clearly more robust on the patients with the diseased pancreas while LS and MSM tend to over-segment the pancreas. DLMC also achieved higher sensitivity (0.80) and specificity (0.99) combining both imaging techniques. LS achieved equivalent sensitivity on VIBE images but was more computationally inefficient. Conclusion: We showed that pancreas and surrounding normal organs can be reliably segmented based on fast MRI using DLMC. This method will facilitate both planning volume definition and imaging guidance during treatment

  2. 3D/2D model-to-image registration by imitation learning for cardiac procedures.

    Science.gov (United States)

    Toth, Daniel; Miao, Shun; Kurzendorfer, Tanja; Rinaldi, Christopher A; Liao, Rui; Mansi, Tommaso; Rhode, Kawal; Mountney, Peter

    2018-05-12

    In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application. This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images. Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases. Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions.

  3. TU-F-BRF-06: 3D Pancreas MRI Segmentation Using Dictionary Learning and Manifold Clustering

    Energy Technology Data Exchange (ETDEWEB)

    Gou, S; Rapacchi, S; Hu, P; Sheng, K [UCLA School of Medicine, Los Angeles, CA (United States)

    2014-06-15

    Purpose: The recent advent of MRI guided radiotherapy machines has lent an exciting platform for soft tissue target localization during treatment. However, tools to efficiently utilize MRI images for such purpose have not been developed. Specifically, to efficiently quantify the organ motion, we develop an automated segmentation method using dictionary learning and manifold clustering (DLMC). Methods: Fast 3D HASTE and VIBE MR images of 2 healthy volunteers and 3 patients were acquired. A bounding box was defined to include pancreas and surrounding normal organs including the liver, duodenum and stomach. The first slice of the MRI was used for dictionary learning based on mean-shift clustering and K-SVD sparse representation. Subsequent images were iteratively reconstructed until the error is less than a preset threshold. The preliminarily segmentation was subject to the constraints of manifold clustering. The segmentation results were compared with the mean shift merging (MSM), level set (LS) and manual segmentation methods. Results: DLMC resulted in consistently higher accuracy and robustness than comparing methods. Using manual contours as the ground truth, the mean Dices indices for all subjects are 0.54, 0.56 and 0.67 for MSM, LS and DLMC, respectively based on the HASTE image. The mean Dices indices are 0.70, 0.77 and 0.79 for the three methods based on VIBE images. DLMC is clearly more robust on the patients with the diseased pancreas while LS and MSM tend to over-segment the pancreas. DLMC also achieved higher sensitivity (0.80) and specificity (0.99) combining both imaging techniques. LS achieved equivalent sensitivity on VIBE images but was more computationally inefficient. Conclusion: We showed that pancreas and surrounding normal organs can be reliably segmented based on fast MRI using DLMC. This method will facilitate both planning volume definition and imaging guidance during treatment.

  4. EUROPEANA AND 3D

    Directory of Open Access Journals (Sweden)

    D. Pletinckx

    2012-09-01

    Full Text Available The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  5. The Effectiveness of a 3D Computerized Tutorial to Enhance Learning of the Canine Larynx and Hyoid Apparatus.

    Science.gov (United States)

    Nemanic, Sarah; Mills, Serena; Viehdorfer, Matt; Clark, Terri; Bailey, Mike

    Teaching the anatomy of the canine larynx and hyoid apparatus is challenging because dissection disassembles and/or damages these structures, making it difficult to understand their three-dimensional (3D) anatomy and spatial interrelationships. This study assessed the effectiveness of an interactive, computerized 3D tutorial for teaching the anatomy of the canine larynx and hyoid apparatus using a randomized control design with students enrolled in the first-year professional program at Oregon State University College of Veterinary Medicine. All first-year students from 2 consecutive years were eligible. All students received the traditional methods of didactic teaching and dissection to learn the anatomy of the canine larynx and hyoid apparatus, after which they were divided into two statistically equal groups based on their cumulative anatomy test scores from the prior term. The tutorial group received an interactive, computerized tutorial developed by the investigators containing 3D images of the canine larynx and hyoid apparatus, while the control group received the same 3D images without the computerized tutorial. Both groups received the same post-learning assessment and survey. Sixty-three first-year students participated in the study, 28 in the tutorial group, and 35 in the control group. Post-learning assessment and survey scores were both significantly higher among students in the computerized tutorial group than those in the control group. This study demonstrates that a 3D computerized tutorial is more effective in teaching the anatomy of the canine hyoid apparatus and larynx than 3D images without a tutorial. Students likewise rated their learning experience higher when using the 3D computerized tutorial.

  6. Using Videos and 3D Animations for Conceptual Learning in Basic Computer Units

    Science.gov (United States)

    Cakiroglu, Unal; Yilmaz, Huseyin

    2017-01-01

    This article draws on a one-semester study to investigate the effect of videos and 3D animations on students' conceptual understandings about basic computer units. A quasi-experimental design was carried out in two classrooms; videos and 3D animations were used in classroom activities in one group and those were used for homework in the other…

  7. 3D visualization of medical images for personalized learning of human anatomy

    NARCIS (Netherlands)

    Laurence Alpay; Jelle Scheurleer; Harmen Bijwaard

    2015-01-01

    to be held in Lisbon/Portugal on October 15-17, 2015 Medical imaging nowadays often yields high definition 3D images (from CT, PET, MRI, etc.). Usually these images need to be evaluated on 2D monitors. In the transition from 3D to 2D the image becomes more difficult to interpret as a whole. To aid

  8. Selected DOE headquarters publications

    International Nuclear Information System (INIS)

    1979-04-01

    This publication provides listings of (mainly policy and programmatic) publications which have been issued by headquarters organizations of the Department of Energy; assigned a DOE/XXX- type report number code, where XXX is the 1- to 4-letter code for the issuing headquarters organization; received by the Energy Library; and made available to the public

  9. Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease.

    Science.gov (United States)

    Loke, Yue-Hin; Harahsheh, Ashraf S; Krieger, Axel; Olivieri, Laura J

    2017-03-11

    Congenital heart disease (CHD) is the most common human birth defect, and clinicians need to understand the anatomy to effectively care for patients with CHD. However, standard two-dimensional (2D) display methods do not adequately carry the critical spatial information to reflect CHD anatomy. Three-dimensional (3D) models may be useful in improving the understanding of CHD, without requiring a mastery of cardiac imaging. The study aimed to evaluate the impact of 3D models on how pediatric residents understand and learn about tetralogy of Fallot following a teaching session. Pediatric residents rotating through an inpatient Cardiology rotation were recruited. The sessions were randomized into using either conventional 2D drawings of tetralogy of Fallot or physical 3D models printed from 3D cardiac imaging data sets (cardiac MR, CT, and 3D echocardiogram). Knowledge acquisition was measured by comparing pre-session and post-session knowledge test scores. Learner satisfaction and self-efficacy ratings were measured with questionnaires filled out by the residents after the teaching sessions. Comparisons between the test scores, learner satisfaction and self-efficacy questionnaires for the two groups were assessed with paired t-test. Thirty-five pediatric residents enrolled into the study, with no significant differences in background characteristics, including previous clinical exposure to tetralogy of Fallot. The 2D image group (n = 17) and 3D model group (n = 18) demonstrated similar knowledge acquisition in post-test scores. Residents who were taught with 3D models gave a higher composite learner satisfaction scores (P = 0.03). The 3D model group also had higher self-efficacy aggregate scores, but the difference was not statistically significant (P = 0.39). Physical 3D models enhance resident education around the topic of tetralogy of Fallot by improving learner satisfaction. Future studies should examine the impact of models on teaching CHD that

  10. A 3-D Virtual Reality Model of the Sun and the Moon for E-Learning at Elementary Schools

    Science.gov (United States)

    Sun, Koun-Tem; Lin, Ching-Ling; Wang, Sheng-Min

    2010-01-01

    The relative positions of the sun, moon, and earth, their movements, and their relationships are abstract and difficult to understand astronomical concepts in elementary school science. This study proposes a three-dimensional (3-D) virtual reality (VR) model named the "Sun and Moon System." This e-learning resource was designed by…

  11. Effectiveness of Applying 2D Static Depictions and 3D Animations to Orthographic Views Learning in Graphical Course

    Science.gov (United States)

    Wu, Chih-Fu; Chiang, Ming-Chin

    2013-01-01

    This study provides experiment results as an educational reference for instructors to help student obtain a better way to learn orthographic views in graphical course. A visual experiment was held to explore the comprehensive differences between 2D static and 3D animation object features; the goal was to reduce the possible misunderstanding…

  12. Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning.

    Science.gov (United States)

    Hagita, Katsumi; Higuchi, Takeshi; Jinnai, Hiroshi

    2018-04-12

    Scanning electron microscopy equipped with a focused ion beam (FIB-SEM) is a promising three-dimensional (3D) imaging technique for nano- and meso-scale morphologies. In FIB-SEM, the specimen surface is stripped by an ion beam and imaged by an SEM installed orthogonally to the FIB. The lateral resolution is governed by the SEM, while the depth resolution, i.e., the FIB milling direction, is determined by the thickness of the stripped thin layer. In most cases, the lateral resolution is superior to the depth resolution; hence, asymmetric resolution is generated in the 3D image. Here, we propose a new approach based on an image-processing or deep-learning-based method for super-resolution of 3D images with such asymmetric resolution, so as to restore the depth resolution to achieve symmetric resolution. The deep-learning-based method learns from high-resolution sub-images obtained via SEM and recovers low-resolution sub-images parallel to the FIB milling direction. The 3D morphologies of polymeric nano-composites are used as test images, which are subjected to the deep-learning-based method as well as conventional methods. We find that the former yields superior restoration, particularly as the asymmetric resolution is increased. Our super-resolution approach for images having asymmetric resolution enables observation time reduction.

  13. Performance evaluation of 2D and 3D deep learning approaches for automatic segmentation of multiple organs on CT images

    Science.gov (United States)

    Zhou, Xiangrong; Yamada, Kazuma; Kojima, Takuya; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2018-02-01

    The purpose of this study is to evaluate and compare the performance of modern deep learning techniques for automatically recognizing and segmenting multiple organ regions on 3D CT images. CT image segmentation is one of the important task in medical image analysis and is still very challenging. Deep learning approaches have demonstrated the capability of scene recognition and semantic segmentation on nature images and have been used to address segmentation problems of medical images. Although several works showed promising results of CT image segmentation by using deep learning approaches, there is no comprehensive evaluation of segmentation performance of the deep learning on segmenting multiple organs on different portions of CT scans. In this paper, we evaluated and compared the segmentation performance of two different deep learning approaches that used 2D- and 3D deep convolutional neural networks (CNN) without- and with a pre-processing step. A conventional approach that presents the state-of-the-art performance of CT image segmentation without deep learning was also used for comparison. A dataset that includes 240 CT images scanned on different portions of human bodies was used for performance evaluation. The maximum number of 17 types of organ regions in each CT scan were segmented automatically and compared to the human annotations by using ratio of intersection over union (IU) as the criterion. The experimental results demonstrated the IUs of the segmentation results had a mean value of 79% and 67% by averaging 17 types of organs that segmented by a 3D- and 2D deep CNN, respectively. All the results of the deep learning approaches showed a better accuracy and robustness than the conventional segmentation method that used probabilistic atlas and graph-cut methods. The effectiveness and the usefulness of deep learning approaches were demonstrated for solving multiple organs segmentation problem on 3D CT images.

  14. Implementation of 3D virtual learning environment to improve students’ cognitive achievement

    Science.gov (United States)

    Rasim; Langi, A. Z. R.; Rosmansyah, Y.; Munir

    2018-05-01

    Virtual Learning Environment (VLE) has been widely used in assisting learning. This study aims to implement VLE-based learning in software engineering course. VLE provides many facilities for learning. In this research, VLE components used were presenter and quiz chair components. Evaluation results showed a significant difference from classical learning.

  15. Technology infusion of intellectual 3D printers-based prototyping of products into learning process

    Science.gov (United States)

    Boshhenko, T. V.; Chepur, P. V.

    2018-03-01

    The article considers the prospects for the technologies of intellectual design and prototyping applying 3D printers. It presents basic technologies of 3D printing, currently developed and released for construction. The experience of educational activities in the University to train students for the Academic Competitions on three-dimensional modeling and prototyping is described in the present article. Requirements for the prototyping implementation are given, allowing obtaining a positive effect from the technology infusion released for construction. The results of activities to train students for the Academic Competition are stated. It is established that the proposed approaches to the training of students have led to the highest score in the national contest in Novosibirsk when performing tasks for prototyping a stand for a cell phone and manufacturing the product on a 3D printer at the SLS technology, selective laser sintering. The conclusions about the possibilities and prospects of development of this direction in the industry in the entire country are drawn.

  16. DOE headquarters publications

    International Nuclear Information System (INIS)

    1978-09-01

    This bibliography provides listings of (mainly policy and programmatic) publications issued from the U.S. Department of Energy, Washington, D.C. The listings are arranged by the ''report code'' assigned to each of the major organizations at DOE Headquarters, followed by the three categories of environmental reports issued from DOE Headquarters. All of the publications listed, except for those shown as still ''in preparation,'' may be seen in the Energy Library. A title index arranged by title keywords follows the listings. Certain publications are omitted. They include such items as pamphlets, ''fact sheets,'' bulletins and weekly/monthly issuances of DOE's Energy Information Administration and Economic Regulatory Administration, and employee bulletins and newsletters. Omitted from the bibliography altogether are headquarters publications assigned other types of report codes--e.g., ''HCP'' (Headquarters Contractor Publication) and ''CONF'' (conference proceedings)

  17. Beyond Simple Headquarters Configurations

    DEFF Research Database (Denmark)

    Dellestrand, Henrik; Kappen, Philip; Nell, Phillip Christopher

    We investigate “dual headquarters involvement”, i.e. corporate and divisional headquarters’ simultaneous involvement in subsidiaries’ innovation development projects. Analyses draw on 85 innovation projects in 23 multibusiness firms and reveal that cross-divisional innovation importance, i.......e., an innovation that is important for the firm beyond the divisional boundaries, drives dual headquarters involvement in innovation development. Contrary to expectations, on average, a non-significant effect of cross-divisional embeddedness on dual headquarters involvement is found. Yet, both cross......-divisional importance and embeddedness effects are contingent on the overall complexity of the innovation project as signified by the size of the development network. The results lend support for the notion that parenting in complex structures entails complex headquarters structures and that we need to go beyond simple...

  18. Fortune 500 Corporate Headquarters

    Data.gov (United States)

    Department of Homeland Security — Large Corporate Headquarters in the United States This database is composed of 'an annual list of the 500 largest industrial corporations in the U.S., published by...

  19. American Red Cross Headquarters

    Data.gov (United States)

    Department of Homeland Security — This point file represents only the headquarters location for each chapter and does not reflect any branch offices or warehouse facilities. Due to the recent changes...

  20. The WEBD project: a research of new methodologies for a distant-learning 3D system prototype.

    Science.gov (United States)

    Cemenasco, A F; Bianchi, C C; Tornincasa, S; Bianchi, S D

    2004-11-01

    To create and to spread a new interactive multimedia instrument, based upon virtual reality technologies, that allows both the running simulation of machines and equipment and the reproduction via Web of complex three-dimensional (3D) anatomical models such as the skull. There were two main aspects of the project, one of design engineering and the other biomedical engineering, for the creation of "artificial" and anatomical objects. The former were made with 3D Studio Max R4 by Autodesk, San Rafael, CA, while the latter were created starting from real bones scanned with a CT system or a surface scanner and elaborated with different programs (3D Studio Max R4, Scenebuilder by Viewpoint, New York, NY and Spinfire by Actify, San Francisco, CA). The 3D models were to be integrated into web modules and had to respect file limits while preserving a sufficient definition. Two systems of evaluation were used, a questionnaire on a selected sample and an external evaluation by a different university. The Viewpoint format offers the best interactivity and size reduction (up to 96% from the original 3D model). The created modules included production of radiological images, rapid prototyping, and anatomy. The complete "3D Distant Learning Prototype" is available at www.webd.etsii.upm.es. The software currently available permits the construction of interactive modules. The verification on the selected sample and the evaluation by the University of Naples show that the structure is well organized and that the integration of the 3D models meets the requirements.

  1. Effects of Training Method and Gender on Learning 2D/3D Geometry

    Science.gov (United States)

    Khairulanuar, Samsudin; Nazre, Abd Rashid; Jamilah, H.; Sairabanu, Omar Khan; Norasikin, Fabil

    2010-01-01

    This article reports the findings of an experimental study involving 36 primary school students (16 girls, 20 boys, Mean age = 9.5 years, age range: 8-10 years) in geometrical understanding of 2D and 3D objects. Students were assigned into two experimental groups and one control group based on a stratified random sampling procedure. The first…

  2. Learning Three.js the JavaScript 3D library for WebGL

    CERN Document Server

    Dirksen, Jos

    2015-01-01

    If you know JavaScript and want to start creating 3D graphics that run in any browser, this book is a great choice for you. You don't need to know anything about math or WebGL; all that you need is general knowledge of JavaScript and HTML.

  3. Exploring Deep Recurrent Q-Learning for Navigation in a 3D Environment

    DEFF Research Database (Denmark)

    Brejl, Rasmus; Purwins, Hendrik; Schoenau-Fog, Henrik

    2018-01-01

    -Network implementation with a long short-term memory layer for dealing with such tasks by allowing an agent to process recent frames and gain a memory of the environment. An agent was trained in a 3D first-person labyrinth-like environment for 2 million frames. Informal observations indicate that the trained agent...

  4. Using 3D Computer Graphics Multimedia to Motivate Preservice Teachers' Learning of Geometry and Pedagogy

    Science.gov (United States)

    Goodson-Espy, Tracy; Lynch-Davis, Kathleen; Schram, Pamela; Quickenton, Art

    2010-01-01

    This paper describes the genesis and purpose of our geometry methods course, focusing on a geometry-teaching technology we created using NVIDIA[R] Chameleon demonstration. This article presents examples from a sequence of lessons centered about a 3D computer graphics demonstration of the chameleon and its geometry. In addition, we present data…

  5. Learning spectral-temporal features with 3D CNNs for speech emotion recognition

    NARCIS (Netherlands)

    Kim, Jaebok; Truong, Khiet; Englebienne, Gwenn; Evers, Vanessa

    2017-01-01

    In this paper, we propose to use deep 3-dimensional convolutional networks (3D CNNs) in order to address the challenge of modelling spectro-temporal dynamics for speech emotion recognition (SER). Compared to a hybrid of Convolutional Neural Network and Long-Short-Term-Memory (CNN-LSTM), our proposed

  6. Assessing the Applicability of 3D Holographic Technology as an Enhanced Technology for Distance Learning

    Science.gov (United States)

    Kalansooriya, Pradeep; Marasinghe, Ashu; Bandara, K. M. D. N.

    2015-01-01

    Distance learning has provided an excellent platform for students in geographically remote locations while enabling them to learn at their own pace and convenience. A number of technologies are currently being utilized to conceptualize, design, enhance and foster distance learning. Teleconferences, electronic field trips, podcasts, webinars, video…

  7. Eco-Dialogical Learning and Translanguaging in Open-Ended 3D Virtual Learning Environments: Where Place, Time, and Objects Matter

    Science.gov (United States)

    Zheng, Dongping; Schmidt, Matthew; Hu, Ying; Liu, Min; Hsu, Jesse

    2017-01-01

    The purpose of this research was to explore the relationships between design, learning, and translanguaging in a 3D collaborative virtual learning environment for adolescent learners of Chinese and English. We designed an open-ended space congruent with ecological and dialogical perspectives on second language acquisition. In such a space,…

  8. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    Directory of Open Access Journals (Sweden)

    Jin Qi

    Full Text Available Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications.

  9. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    Science.gov (United States)

    Qi, Jin; Yang, Zhiyong

    2014-01-01

    Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications.

  10. Learning process for performing and analyzing 3D/4D transperineal ultrasound imaging and interobserver reliability study.

    Science.gov (United States)

    Siafarikas, F; Staer-Jensen, J; Braekken, I H; Bø, K; Engh, M Ellström

    2013-03-01

    To evaluate the learning process for acquiring three- and four-dimensional (3D/4D) transperineal ultrasound volumes of the levator hiatus (LH) dimensions at rest, during pelvic floor muscle (PFM) contraction and on Valsalva maneuver, and for analyzing the ultrasound volumes, as well as to perform an interobserver reliability study between two independent ultrasound examiners. This was a prospective study including 22 women. We monitored the learning process of an inexperienced examiner (IE) performing 3D/4D transperineal ultrasonography and analyzing the volumes. The examination included acquiring volumes during three PFM contractions and three Valsalva maneuvers. LH dimensions were determined in the axial plane. The learning process was documented by estimating agreement between the IE and an experienced examiner (E) using the intraclass correlation coefficient. Agreement was calculated in blocks of 10 ultrasound examinations and analyzed volumes. After the learning process was complete the interobserver reliability for the technique was calculated between these two independent examiners. For offline analysis of the first 10 ultrasound volumes obtained by E, good to very good agreement between E and IE was achieved for all LH measurements except for the left and right levator-urethra gap and pubic arc. For the next 10 analyzed volumes, agreement improved for all LH measurements. Volumes that had been obtained by IE and E were then re-evaluated by IE, and good to very good agreement was found for all LH measurements indicating consistency in volume acquisition. The interobserver reliability study showed excellent ICC values (ICC, 0.81-0.97) for all LH measurements except the pubic arc (ICC = 0.67). 3D/4D transperineal ultrasound is a reliable technique that can be learned in a short period of time. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  11. Designing Interactive and Collaborative Learning Tasks in a 3-D Virtual Environment

    Science.gov (United States)

    Berns, Anke; Palomo-Duarte, Manuel; Fernández, David Camacho

    2012-01-01

    The aim of our study is to explore several possibilities to use virtual worlds (VWs) and game-applications with learners of the A1 level (CEFR) of German as a foreign language. Our interest focuses especially on designing those learning tools which increase firstly, learner motivation towards online-learning and secondly, enhance autonomous…

  12. 3-D Teaching of Climate Change: An innovative professional learning model for K-12 teachers

    Science.gov (United States)

    Stapleton, M.; Wolfson, J.; Sezen-Barrie, A.

    2017-12-01

    In spite of the presumed controversy over the evidence for climate change, the recently released Next Generation Science Standards (NGSS) for K-12 include a focus on climate literacy and explicitly use the term `climate change.' In addition to the increased focus on climate change, the NGSS are also built upon a new three dimensional framework for teaching and learning science. Three dimensional learning has students engaging in scientific and engineering practices (Dimension 1), while using crosscutting concepts (Dimension 2) to explore and explain natural phenomena using disciplinary core ideas (Dimension 3). The adoption of these new standards in many states across the nation has created a critical need for on-going professional learning as in-service science educators begin to implement both climate change instruction and three dimensional teaching and learning in their classrooms. In response to this need, we developed an innovative professional learning model for preparing teachers to effectively integrate climate change into their new curriculum and engage students in three dimensional learning. Our professional learning model utilized ideas that have emerged from recent science education research and include: a) formative assessment probes for three dimensional learning that monitor students' progress; b) collaboration with scientists with expertise in climate science to understand the domain specific ways of doing science; and c) development of a community of practice for in-service teachers to provide feedback to each other on their implementation. In this poster presentation, we will provide details on the development of this professional learning model and discuss the affordances and challenges of implementing this type of professional learning experience.

  13. MNC Headquarters as Activity Systems

    DEFF Research Database (Denmark)

    Nell, Phillip C.; Larsen, Marcus M.

    2012-01-01

    Recent literature has questioned why multinational corporations (MNC) relocate their headquarters activities overseas. In this paper, we investigate the consequences of this phenomenon. To do this, we conceptualize the MNC headquarters activities as an interdependent system, and develop a set...... of propositions that links headquarters unbundling and relocation to complexity and rising coordination costs. Moreover, we argue that the coordination costs are often neglected in the headquarters reconfiguration process. In sum, we provide a novel perspective on modern MNC headquarters configurations, derive...

  14. DOE headquarters publications

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-09-01

    This bibliography provides listings of (mainly policy and programmatic) publications issued from the U.S. Department of Energy, Washington, D.C. The listings are arranged by the ''report code'' assigned to each of the major organizations at DOE Headquarters, followed by the three categories of environmental reports issued from DOE Headquarters. All of the publications listed, except for those shown as still ''in preparation,'' may be seen in the Energy Library. A title index arranged by title keywords follows the listings. Certain publications are omitted. They include such items as pamphlets, ''fact sheets,'' bulletins and weekly/monthly issuances of DOE's Energy Information Administration and Economic Regulatory Administration, and employee bulletins and newsletters. Omitted from the bibliography altogether are headquarters publications assigned other types of report codes--e.g., ''HCP'' (Headquarters Contractor Publication) and ''CONF'' (conference proceedings). (RWR)

  15. Extracting 3d Semantic Information from Video Surveillance System Using Deep Learning

    Science.gov (United States)

    Zhang, J. S.; Cao, J.; Mao, B.; Shen, D. Q.

    2018-04-01

    At present, intelligent video analysis technology has been widely used in various fields. Object tracking is one of the important part of intelligent video surveillance, but the traditional target tracking technology based on the pixel coordinate system in images still exists some unavoidable problems. Target tracking based on pixel can't reflect the real position information of targets, and it is difficult to track objects across scenes. Based on the analysis of Zhengyou Zhang's camera calibration method, this paper presents a method of target tracking based on the target's space coordinate system after converting the 2-D coordinate of the target into 3-D coordinate. It can be seen from the experimental results: Our method can restore the real position change information of targets well, and can also accurately get the trajectory of the target in space.

  16. Complex scenes and situations visualization in hierarchical learning algorithm with dynamic 3D NeoAxis engine

    Science.gov (United States)

    Graham, James; Ternovskiy, Igor V.

    2013-06-01

    We applied a two stage unsupervised hierarchical learning system to model complex dynamic surveillance and cyber space monitoring systems using a non-commercial version of the NeoAxis visualization software. The hierarchical scene learning and recognition approach is based on hierarchical expectation maximization, and was linked to a 3D graphics engine for validation of learning and classification results and understanding the human - autonomous system relationship. Scene recognition is performed by taking synthetically generated data and feeding it to a dynamic logic algorithm. The algorithm performs hierarchical recognition of the scene by first examining the features of the objects to determine which objects are present, and then determines the scene based on the objects present. This paper presents a framework within which low level data linked to higher-level visualization can provide support to a human operator and be evaluated in a detailed and systematic way.

  17. 3D AutoSysLab Prototype - A Social, Immersive and Mixed Reality Approach for Collaborative Learning Environments

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Pereira

    2012-04-01

    Full Text Available Recent evolutions of social networks, virtual environments, Web technologies and 3D virtual worlds motivate the adoption of new technologies in education, opening successive innovative possibilities. These technologies (or tools can be employed in distance education scenarios, or can also enhance traditional learning-teaching (blended or hybrid learning scenario. It is known and a wide advocated issue that laboratory practice is essential to technical education, foremost in engineering. In order to develop a feasible implementation to this research area, a prototype was developed, called 3DAutoSysLab, in which a metaverse is used as social collaborative interface, experiments (real or simulated are linked to virtual objects, learning objects are displayed as interactive medias, and guiding/feedback are supported via an autonomous tutoring system based on user's interaction data mining. This prototype is under test, but preliminary applied results indicate great acceptance and increase of motivation of students.

  18. 3D Interactions between Virtual Worlds and Real Life in an E-Learning Community

    Directory of Open Access Journals (Sweden)

    Ulrike Lucke

    2011-01-01

    Full Text Available Virtual worlds became an appealing and fascinating component of today's internet. In particular, the number of educational providers that see a potential for E-Learning in such new platforms increases. Unfortunately, most of the environments and processes implemented up to now do not exceed a virtual modelling of real-world scenarios. In particular, this paper shows that Second Life can be more than just another learning platform. A flexible and bidirectional link between the reality and the virtual world enables synchronous and seamless interaction between users and devices across both worlds. The primary advantages of this interconnection are a spatial extension of face-to-face and online learning scenarios and a closer relationship between virtual learners and the real world.

  19. Learning Three.js the JavaScript 3D library for WebGL

    CERN Document Server

    Dirksen, Jos

    2013-01-01

    ""Learning Three.js is a hands-on guide which provides everything you need to start working with the powerful JavaScript library, and start creating awesome in-browser visualizations"".Learning Three.js is written for anyone looking to get started with Three.js, or looking to improve their skills with the popular js library. The book assumes some knowledge of javascript, but you don't need any knowledge of Three.js itself to follow the book.

  20. Integrating a social network group with a 3D collaborative learning environment

    NARCIS (Netherlands)

    Pourmirza, S.; Gardner, M.; Callaghan, V; Augusto, J.C.; Zhang, T.

    2014-01-01

    Although extensive research has been carried out on virtual learning environments and the role of groups and communities in social networks, few studies exist which adequately cover the relationship between these two domains. In this paper, the authors demonstrate the effectiveness of integrating

  1. Nursing Students' Experiential Learning Processes Using an Online 3D Simulation Game

    Science.gov (United States)

    Koivisto, Jaana-Maija; Niemi, Hannele; Multisilta, Jari; Eriksson, Elina

    2017-01-01

    The growing use of game-based simulation in healthcare education reflects the opportunities afforded to learners by serious games, which simulate real-world situations and enable students to emulate the roles of healthcare professionals in a safe and engaging learning environment. As part of a design-based research project to design, test, and…

  2. The depth estimation of 3D face from single 2D picture based on manifold learning constraints

    Science.gov (United States)

    Li, Xia; Yang, Yang; Xiong, Hailiang; Liu, Yunxia

    2018-04-01

    The estimation of depth is virtual important in 3D face reconstruction. In this paper, we propose a t-SNE based on manifold learning constraints and introduce K-means method to divide the original database into several subset, and the selected optimal subset to reconstruct the 3D face depth information can greatly reduce the computational complexity. Firstly, we carry out the t-SNE operation to reduce the key feature points in each 3D face model from 1×249 to 1×2. Secondly, the K-means method is applied to divide the training 3D database into several subset. Thirdly, the Euclidean distance between the 83 feature points of the image to be estimated and the feature point information before the dimension reduction of each cluster center is calculated. The category of the image to be estimated is judged according to the minimum Euclidean distance. Finally, the method Kong D will be applied only in the optimal subset to estimate the depth value information of 83 feature points of 2D face images. Achieving the final depth estimation results, thus the computational complexity is greatly reduced. Compared with the traditional traversal search estimation method, although the proposed method error rate is reduced by 0.49, the number of searches decreases with the change of the category. In order to validate our approach, we use a public database to mimic the task of estimating the depth of face images from 2D images. The average number of searches decreased by 83.19%.

  3. Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation

    Science.gov (United States)

    Lacaze, Alberto; Meystel, Michael; Meystel, Alex

    1994-01-01

    This paper describes a novel approach to the development of a learning control system for autonomous space robot (ASR) which presents the ASR as a 'baby' -- that is, a system with no a priori knowledge of the world in which it operates, but with behavior acquisition techniques that allows it to build this knowledge from the experiences of actions within a particular environment (we will call it an Astro-baby). The learning techniques are rooted in the recursive algorithm for inductive generation of nested schemata molded from processes of early cognitive development in humans. The algorithm extracts data from the environment and by means of correlation and abduction, it creates schemata that are used for control. This system is robust enough to deal with a constantly changing environment because such changes provoke the creation of new schemata by generalizing from experiences, while still maintaining minimal computational complexity, thanks to the system's multiresolutional nature.

  4. DOE headquarters publications

    International Nuclear Information System (INIS)

    1978-12-01

    This bibliography provides listings of (mainly policy and programmatic) publications issued from the U.S. Department of Energy, Washington, D.C. The listings are arranged by the report number assigned to each publication. All of the publications listed, except for those shown as still in preparation, may be seen in the Energy Library. A title index arranged by title keywords follows the listings. Certain publications have been omitted. They include such items as pamphlets, fact sheets, bulletins and weekly/monthly issuances of DOE's Energy Information Administration and Economic Regulatory Administration, and employee bulletins and newsletters. Omitted from the bibliography altogether are headquarters publications assigned other types of report codes--e.g., HCP (Headquarters Contractor Publication) and CONF

  5. Professional Papervision3D

    CERN Document Server

    Lively, Michael

    2010-01-01

    Professional Papervision3D describes how Papervision3D works and how real world applications are built, with a clear look at essential topics such as building websites and games, creating virtual tours, and Adobe's Flash 10. Readers learn important techniques through hands-on applications, and build on those skills as the book progresses. The companion website contains all code examples, video step-by-step explanations, and a collada repository.

  6. Classification of amyloid status using machine learning with histograms of oriented 3D gradients

    Directory of Open Access Journals (Sweden)

    Liam Cattell

    2016-01-01

    Full Text Available Brain amyloid burden may be quantitatively assessed from positron emission tomography imaging using standardised uptake value ratios. Using these ratios as an adjunct to visual image assessment has been shown to improve inter-reader reliability, however, the amyloid positivity threshold is dependent on the tracer and specific image regions used to calculate the uptake ratio. To address this problem, we propose a machine learning approach to amyloid status classification, which is independent of tracer and does not require a specific set of regions of interest. Our method extracts feature vectors from amyloid images, which are based on histograms of oriented three-dimensional gradients. We optimised our method on 133 18F-florbetapir brain volumes, and applied it to a separate test set of 131 volumes. Using the same parameter settings, we then applied our method to 209 11C-PiB images and 128 18F-florbetaben images. We compared our method to classification results achieved using two other methods: standardised uptake value ratios and a machine learning method based on voxel intensities. Our method resulted in the largest mean distances between the subjects and the classification boundary, suggesting that it is less likely to make low-confidence classification decisions. Moreover, our method obtained the highest classification accuracy for all three tracers, and consistently achieved above 96% accuracy.

  7. The Development of a Virtual 3D Model of the Renal Corpuscle from Serial Histological Sections for E-Learning Environments

    Science.gov (United States)

    Roth, Jeremy A.; Wilson, Timothy D.; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated…

  8. ERDA Headquarters reports: March 1977

    International Nuclear Information System (INIS)

    1977-03-01

    ERDA headquarters reports (ERDA 77-41) provides a cumulative record, through various lists and an index, of the reports issued from ERDA Headquarters (''ERDA Reports''). The four sections of this publication are New ERDA Reports, a list of Headquarters reports received in the ERDA Library during the past month; Cumulative List of ERDA Reports, all ERDA Headquarters reports already issued or scheduled to be issued; Reports by Program Division, separate lists of ERDA reports arranged by the division or office at ERDA Headquarters responsible for their preparation and/or issuance; and Index to Keywords in Report Titles

  9. Automatic Quality Inspection of Percussion Cap Mass Production by Means of 3D Machine Vision and Machine Learning Techniques

    Science.gov (United States)

    Tellaeche, A.; Arana, R.; Ibarguren, A.; Martínez-Otzeta, J. M.

    The exhaustive quality control is becoming very important in the world's globalized market. One of these examples where quality control becomes critical is the percussion cap mass production. These elements must achieve a minimum tolerance deviation in their fabrication. This paper outlines a machine vision development using a 3D camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high speed movement of the system and mechanical errors and irregularities in percussion cap placement. Due to these problems, it is impossible to solve the problem by traditional image processing methods, and hence, machine learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.

  10. Scalable, incremental learning with MapReduce parallelization for cell detection in high-resolution 3D microscopy data

    KAUST Repository

    Sung, Chul

    2013-08-01

    Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy techniques such as Knife-Edge Scanning Microscopy (KESM) are enabling whole-brain survey of neuronal distributions. Data from such techniques pose serious challenges to quantitative analysis due to the massive, growing, and sparsely labeled nature of the data. In this paper, we present a scalable, incremental learning algorithm for cell body detection that can address these issues. Our algorithm is computationally efficient (linear mapping, non-iterative) and does not require retraining (unlike gradient-based approaches) or retention of old raw data (unlike instance-based learning). We tested our algorithm on our rat brain Nissl data set, showing superior performance compared to an artificial neural network-based benchmark, and also demonstrated robust performance in a scenario where the data set is rapidly growing in size. Our algorithm is also highly parallelizable due to its incremental nature, and we demonstrated this empirically using a MapReduce-based implementation of the algorithm. We expect our scalable, incremental learning approach to be widely applicable to medical imaging domains where there is a constant flux of new data. © 2013 IEEE.

  11. 3D Simulation as a Learning Environment for Acquiring the Skill of Self-Management: An Experience Involving Spanish University Students of Education

    Science.gov (United States)

    Cela-Ranilla, Jose María; Esteve-Gonzalez, Vanessa; Esteve-Mon, Francesc; Gisbert-Cervera, Merce

    2014-01-01

    In this study we analyze how 57 Spanish university students of Education developed a learning process in a virtual world by conducting activities that involved the skill of self-management. The learning experience comprised a serious game designed in a 3D simulation environment. Descriptive statistics and non-parametric tests were used in the…

  12. iSocial: delivering the Social Competence Intervention for Adolescents (SCI-A) in a 3D virtual learning environment for youth with high functioning autism.

    Science.gov (United States)

    Stichter, Janine P; Laffey, James; Galyen, Krista; Herzog, Melissa

    2014-02-01

    One consistent area of need for students with autism spectrum disorders is in the area of social competence. However, the increasing need to provide qualified teachers to deliver evidence-based practices in areas like social competence leave schools, such as those found in rural areas, in need of support. Distance education and in particular, 3D Virtual Learning, holds great promise for supporting schools and youth to gain social competence through knowledge and social practice in context. iSocial, a distance education, 3D virtual learning environment implemented the 31-lesson social competence intervention for adolescents across three small cohorts totaling 11 students over a period of 4 months. Results demonstrated that the social competence curriculum was delivered with fidelity in the 3D virtual learning environment. Moreover, learning outcomes suggest that the iSocial approach shows promise for social competence benefits for youth.

  13. Computational Sensing of Staphylococcus aureus on Contact Lenses Using 3D Imaging of Curved Surfaces and Machine Learning.

    Science.gov (United States)

    Veli, Muhammed; Ozcan, Aydogan

    2018-03-27

    We present a cost-effective and portable platform based on contact lenses for noninvasively detecting Staphylococcus aureus, which is part of the human ocular microbiome and resides on the cornea and conjunctiva. Using S. aureus-specific antibodies and a surface chemistry protocol that is compatible with human tears, contact lenses are designed to specifically capture S. aureus. After the bacteria capture on the lens and right before its imaging, the captured bacteria are tagged with surface-functionalized polystyrene microparticles. These microbeads provide sufficient signal-to-noise ratio for the quantification of the captured bacteria on the contact lens, without any fluorescent labels, by 3D imaging of the curved surface of each lens using only one hologram taken with a lens-free on-chip microscope. After the 3D surface of the contact lens is computationally reconstructed using rotational field transformations and holographic digital focusing, a machine learning algorithm is employed to automatically count the number of beads on the lens surface, revealing the count of the captured bacteria. To demonstrate its proof-of-concept, we created a field-portable and cost-effective holographic microscope, which weighs 77 g, controlled by a laptop. Using daily contact lenses that are spiked with bacteria, we demonstrated that this computational sensing platform provides a detection limit of ∼16 bacteria/μL. This contact-lens-based wearable sensor can be broadly applicable to detect various bacteria, viruses, and analytes in tears using a cost-effective and portable computational imager that might be used even at home by consumers.

  14. Disaster damage detection through synergistic use of deep learning and 3D point cloud features derived from very high resolution oblique aerial images, and multiple-kernel-learning

    Science.gov (United States)

    Vetrivel, Anand; Gerke, Markus; Kerle, Norman; Nex, Francesco; Vosselman, George

    2018-06-01

    Oblique aerial images offer views of both building roofs and façades, and thus have been recognized as a potential source to detect severe building damages caused by destructive disaster events such as earthquakes. Therefore, they represent an important source of information for first responders or other stakeholders involved in the post-disaster response process. Several automated methods based on supervised learning have already been demonstrated for damage detection using oblique airborne images. However, they often do not generalize well when data from new unseen sites need to be processed, hampering their practical use. Reasons for this limitation include image and scene characteristics, though the most prominent one relates to the image features being used for training the classifier. Recently features based on deep learning approaches, such as convolutional neural networks (CNNs), have been shown to be more effective than conventional hand-crafted features, and have become the state-of-the-art in many domains, including remote sensing. Moreover, often oblique images are captured with high block overlap, facilitating the generation of dense 3D point clouds - an ideal source to derive geometric characteristics. We hypothesized that the use of CNN features, either independently or in combination with 3D point cloud features, would yield improved performance in damage detection. To this end we used CNN and 3D features, both independently and in combination, using images from manned and unmanned aerial platforms over several geographic locations that vary significantly in terms of image and scene characteristics. A multiple-kernel-learning framework, an effective way for integrating features from different modalities, was used for combining the two sets of features for classification. The results are encouraging: while CNN features produced an average classification accuracy of about 91%, the integration of 3D point cloud features led to an additional

  15. 3D game environments create professional 3D game worlds

    CERN Document Server

    Ahearn, Luke

    2008-01-01

    The ultimate resource to help you create triple-A quality art for a variety of game worlds; 3D Game Environments offers detailed tutorials on creating 3D models, applying 2D art to 3D models, and clear concise advice on issues of efficiency and optimization for a 3D game engine. Using Photoshop and 3ds Max as his primary tools, Luke Ahearn explains how to create realistic textures from photo source and uses a variety of techniques to portray dynamic and believable game worlds.From a modern city to a steamy jungle, learn about the planning and technological considerations for 3D modelin

  16. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    Science.gov (United States)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  17. News from IAEA Headquarters

    International Nuclear Information System (INIS)

    1966-01-01

    Full text: Two more countries have joined the Agency - Panama and Jordan - bringing IAEA membership up to 96. Mr. Ginige Richard Walter de Silva (Ceylon) has been appointed Director of the Division of Conference and General Services of the Agency. Born in 1911 at Nugegeda, Ceylon, Mr. de Silva obtained his B.Sc. in Physics at London University and his M.A. in Physics and Mathematics at Cambridge University. He has had a long career in the Civil Service, mainly in the administrative, commercial and finance branches of government. Mr.de Silva took over from Mr. Arthur E. Barrett, Chief of the Conference and Engineering Services, who had been Acting Director of the Division for a long period of time, and who will be leaving the Agency later this year to take up work elsewhere. From the early days of IAEA in 1957, Mr. Barrett has been closely associated with the establishment of the Agency's temporary headquarters in Vienna. He has been in charge of the planning and design of the technical facilities for the various conference installations and responsible for the servicing of all the General Conference sessions since 1958. In fact, Mr. Barrett has played an essential part in the creation of the Vienna Congress Centre in the former Hofburg Imperial Palace. Educated at Cambridge and London Universities, Mr. Barrett has had some 35 years of public service, first in the BBC in London and subsequently with the United Nations in New York. (author)

  18. News from IAEA Headquarters

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-06-15

    Full text: Two more countries have joined the Agency - Panama and Jordan - bringing IAEA membership up to 96. Mr. Ginige Richard Walter de Silva (Ceylon) has been appointed Director of the Division of Conference and General Services of the Agency. Born in 1911 at Nugegeda, Ceylon, Mr. de Silva obtained his B.Sc. in Physics at London University and his M.A. in Physics and Mathematics at Cambridge University. He has had a long career in the Civil Service, mainly in the administrative, commercial and finance branches of government. Mr.de Silva took over from Mr. Arthur E. Barrett, Chief of the Conference and Engineering Services, who had been Acting Director of the Division for a long period of time, and who will be leaving the Agency later this year to take up work elsewhere. From the early days of IAEA in 1957, Mr. Barrett has been closely associated with the establishment of the Agency's temporary headquarters in Vienna. He has been in charge of the planning and design of the technical facilities for the various conference installations and responsible for the servicing of all the General Conference sessions since 1958. In fact, Mr. Barrett has played an essential part in the creation of the Vienna Congress Centre in the former Hofburg Imperial Palace. Educated at Cambridge and London Universities, Mr. Barrett has had some 35 years of public service, first in the BBC in London and subsequently with the United Nations in New York. (author)

  19. INTERACTIVE 3D SYSTEMS OF VIRTUAL REALITY AS ONE OF THE DIRECTIONS FOR EVOLUTION OF DISTANCE LEARNING TECHNOLOGIES IN HIGHER SCOOL

    Directory of Open Access Journals (Sweden)

    Д В Сенашенко

    2016-12-01

    Full Text Available The article describes history of 3D virtual interactive technology developing and gives story of it’s using for different business companies and universities. Statistical analysis of target audience is provided. Features of such systems are described. Particularly author mentions functionality and advantages of 3D-systmes as one of long-term distant learning technology during educational program realization and formulates arguments for introduction of this technology to distant education systems of Russian Higher school. Discusses usability of it for distance learning in high school.

  20. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    Science.gov (United States)

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-10-01

    We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging

  1. Effects of Type of Exploratory Strategy and Prior Knowledge on Middle School Students' Learning of Chemical Formulas from a 3D Role-Playing Game

    Science.gov (United States)

    Chen, Ming-Puu; Wong, Yu-Ting; Wang, Li-Chun

    2014-01-01

    The purpose of this study was to examine the effects of the type of exploratory strategy and level of prior knowledge on middle school students' performance and motivation in learning chemical formulas via a 3D role-playing game (RPG). Two types of exploratory strategies-RPG exploratory with worked-example and RPG exploratory without…

  2. Scalable, incremental learning with MapReduce parallelization for cell detection in high-resolution 3D microscopy data

    KAUST Repository

    Sung, Chul; Woo, Jongwook; Goodman, Matthew; Huffman, Todd; Choe, Yoonsuck

    2013-01-01

    Accurate estimation of neuronal count and distribution is central to the understanding of the organization and layout of cortical maps in the brain, and changes in the cell population induced by brain disorders. High-throughput 3D microscopy

  3. Tangible 3D Modelling

    DEFF Research Database (Denmark)

    Hejlesen, Aske K.; Ovesen, Nis

    2012-01-01

    This paper presents an experimental approach to teaching 3D modelling techniques in an Industrial Design programme. The approach includes the use of tangible free form models as tools for improving the overall learning. The paper is based on lecturer and student experiences obtained through...... facilitated discussions during the course as well as through a survey distributed to the participating students. The analysis of the experiences shows a mixed picture consisting of both benefits and limits to the experimental technique. A discussion about the applicability of the technique and about...

  4. 3D Animation Essentials

    CERN Document Server

    Beane, Andy

    2012-01-01

    The essential fundamentals of 3D animation for aspiring 3D artists 3D is everywhere--video games, movie and television special effects, mobile devices, etc. Many aspiring artists and animators have grown up with 3D and computers, and naturally gravitate to this field as their area of interest. Bringing a blend of studio and classroom experience to offer you thorough coverage of the 3D animation industry, this must-have book shows you what it takes to create compelling and realistic 3D imagery. Serves as the first step to understanding the language of 3D and computer graphics (CG)Covers 3D anim

  5. 3D video

    CERN Document Server

    Lucas, Laurent; Loscos, Céline

    2013-01-01

    While 3D vision has existed for many years, the use of 3D cameras and video-based modeling by the film industry has induced an explosion of interest for 3D acquisition technology, 3D content and 3D displays. As such, 3D video has become one of the new technology trends of this century.The chapters in this book cover a large spectrum of areas connected to 3D video, which are presented both theoretically and technologically, while taking into account both physiological and perceptual aspects. Stepping away from traditional 3D vision, the authors, all currently involved in these areas, provide th

  6. Phase II trial of 3D-conformal accelerated partial breast irradiation: Lessons learned from patients and physicians’ evaluation

    International Nuclear Information System (INIS)

    Azoury, Fares; Heymann, Steve; Acevedo, Catalina; Spielmann, Marc; Vielh, Philippe; Garbay, Jean-Rémi; Taghian, Alphonse G.; Marsiglia, Hugo; Bourgier, Céline

    2012-01-01

    Introduction: The present study prospectively reported both physicians’ and patients’ assessment for toxicities, cosmetic assessment and patients’ satisfaction after 3D-conformal accelerated partial breast irradiation (APBI). Materials and Methods: From October 2007 to September 2009, 30 early breast cancer patients were enrolled in a 3D-conformal APBI Phase II trial (40 Gy/10 fractions/5 days). Treatment related toxicities and cosmetic results were assessed by both patients and physicians at each visit (at 1, 2, 6 months, and then every 6 months). Patient satisfaction was also scored. Results: After a median follow-up of 27.7 months, all patients were satisfied with APBI treatment, regardless of cosmetic results or late adverse events. Good/excellent cosmetic results were noticed by 80% of patients versus 92% of cases by radiation oncologists. Breast pain was systematically underestimated by physicians (8–20% vs. 16.6–26.2%; Kappa coefficient KC = 0.16–0.44). Grade 1 and 2 fibrosis and/or breast retraction occurred in 7–12% of patients and were overestimated by patients (KC = 0.14–0.27). Conclusions: Present results have shown discrepancies between patient and physician assessments. In addition to the assessment of efficacy and toxicity after 3D-conformal APBI, patients’ cosmetic results consideration and satisfaction should be also evaluated.

  7. Development of monograph titled "augmented chemistry aldehida & keton" with 3 dimensional (3D) illustration as a supplement book on chemistry learning

    Science.gov (United States)

    Damayanti, Latifah Adelina; Ikhsan, Jaslin

    2017-05-01

    Integration of information technology in education more rapidly performed in a medium of learning. Three-dimensional (3D) molecular modeling was performed in Augmented Reality as a tangible manifestation of increasingly modern technology utilization. Based on augmented reality, three-dimensional virtual object is projected in real time and the exact environment. This paper reviewed the uses of chemical learning supplement book of aldehydes and ketones which are equipped with three-dimensional molecular modeling by which students can inspect molecules from various viewpoints. To plays the 3D illustration printed on the book, smartphones with the open-source software of the technology based integrated Augmented Reality can be used. The aims of this research were to develop the monograph of aldehydes and ketones with 3 dimensional (3D) illustrations, to determine the specification of the monograph, and to determine the quality of the monograph. The quality of the monograph is evaluated by experiencing chemistry teachers on the five aspects of contents/materials, presentations, language and images, graphs, and software engineering, resulted in the result that the book has a very good quality to be used as a chemistry learning supplement book.

  8. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    International Nuclear Information System (INIS)

    Bai, T; Yan, H; Shi, F; Jia, X; Jiang, Steve B.; Lou, Y; Xu, Q; Mou, X

    2014-01-01

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm in a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential

  9. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bai, T [Xi' an Jiaotong University, Xi' an (China); UT Southwestern Medical Center, Dallas, TX (United States); Yan, H; Shi, F; Jia, X; Jiang, Steve B. [UT Southwestern Medical Center, Dallas, TX (United States); Lou, Y [University of California Irvine, Irvine, CA (United States); Xu, Q; Mou, X [Xi' an Jiaotong University, Xi' an (China)

    2014-06-15

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm in a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential

  10. Transforming clinical imaging and 3D data for virtual reality learning objects: HTML5 and mobile devices implementation.

    Science.gov (United States)

    Trelease, Robert B; Nieder, Gary L

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android tablets. This article describes complementary methods for creating comparable, multiplatform VR learning objects in the new HTML5 standard format, circumventing platform-specific limitations imposed by the QuickTime VR multimedia file format. Multiple types or "dimensions" of anatomical information can be embedded in such learning objects, supporting different kinds of online learning applications, including interactive atlases, examination questions, and complex, multi-structure presentations. Such HTML5 VR learning objects are usable on new mobile devices that do not support QuickTime VR, as well as on personal computers. Furthermore, HTML5 VR learning objects can be embedded in "ebook" document files, supporting the development of new types of electronic textbooks on mobile devices that are increasingly popular and self-adopted for mobile learning. © 2012 American Association of Anatomists.

  11. Transforming Clinical Imaging and 3D Data for Virtual Reality Learning Objects: HTML5 and Mobile Devices Implementation

    Science.gov (United States)

    Trelease, Robert B.; Nieder, Gary L.

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…

  12. Temporal difference learning for the game Tic-Tac-Toe 3D : applying structure to neural networks

    NARCIS (Netherlands)

    van de Steeg, M.; Drugan, M.M.; Wiering, M.

    2015-01-01

    When reinforcement learning is applied to large state spaces, such as those occurring in playing board games, the use of a good function approximator to learn to approximate the value function is very important. In previous research, multi-layer perceptrons have often been quite successfully used as

  13. Proposal of a novel ensemble learning based segmentation with a shape prior and its application to spleen segmentation from a 3D abdominal CT volume

    International Nuclear Information System (INIS)

    Shindo, Kiyo; Shimizu, Akinobu; Kobatake, Hidefumi; Nawano, Shigeru; Shinozaki, Kenji

    2010-01-01

    An organ segmentation learned by a conventional ensemble learning algorithm suffers from unnatural errors because each voxel is classified independently in the segmentation process. This paper proposes a novel ensemble learning algorithm that can take into account global shape and location of organs. It estimates the shape and location of an organ from a given image by combining an intermediate segmentation result with a statistical shape model. Once an ensemble learning algorithm could not improve the segmentation performance in the iterative learning process, it estimates the shape and location by finding an optimal model parameter set with maximum degree of correspondence between a statistical shape model and the intermediate segmentation result. Novel weak classifiers are generated based on a signed distance from a boundary of the estimated shape and a distance from a barycenter of the intermediate segmentation result. Subsequently it continues the learning process with the novel weak classifiers. This paper presents experimental results where the proposed ensemble learning algorithm generates a segmentation process that can extract a spleen from a 3D CT image more precisely than a conventional one. (author)

  14. The Case of Literacy Motivation: Playful 3D Immersive Learning Environments and Problem-Focused Education for Blended Digital Storytelling

    Science.gov (United States)

    Mystakidis, Stylianos; Berki, Eleni

    2018-01-01

    The University of Patras' Library Services designed and offered to primary and secondary schools the pilot educational program "From the Ancient to the Modern Tablets," featuring immersive multimedia learning experiences about the book history. The pilot program consisted of three stages: a playful library tour, followed by an…

  15. Open 3D Projects

    Directory of Open Access Journals (Sweden)

    Felician ALECU

    2010-01-01

    Full Text Available Many professionals and 3D artists consider Blender as being the best open source solution for 3D computer graphics. The main features are related to modeling, rendering, shading, imaging, compositing, animation, physics and particles and realtime 3D/game creation.

  16. IMPLEMENTATION OF 3D TOOLS AND IMMERSIVE EXPERIENCE INTERACTION FOR SUPPORTING LEARNING IN A LIBRARY-ARCHIVE ENVIRONMENT. VISIONS AND CHALLENGES

    Directory of Open Access Journals (Sweden)

    A. Angeletaki

    2013-07-01

    Full Text Available In this paper we present an experimental environment of 3D books combined with a game application that has been developed by a collaboration project between the Norwegian University of Science and Technology in Trondheim, Norway the NTNU University Library, and the Percro laboratory of Santa Anna University in Pisa, Italy. MUBIL is an international research project involving museums, libraries and ICT academy partners aiming to develop a consistent methodology enabling the use of Virtual Environments as a metaphor to present manuscripts content through the paradigms of interaction and immersion, evaluating different possible alternatives. This paper presents the results of the application of two prototypes of books augmented with the use of XVR and IL technology. We explore immersive-reality design strategies in archive and library contexts for attracting new users. Our newly established Mubil-lab has invited school classes to test the books augmented with 3D models and other multimedia content in order to investigate whether the immersion in such environments can create wider engagement and support learning. The metaphor of 3D books and game designs in a combination allows the digital books to be handled through a tactile experience and substitute the physical browsing. In this paper we present some preliminary results about the enrichment of the user experience in such environment.

  17. Implementation of 3d Tools and Immersive Experience Interaction for Supporting Learning in a Library-Archive Environment. Visions and Challenges

    Science.gov (United States)

    Angeletaki, A.; Carrozzino, M.; Johansen, S.

    2013-07-01

    In this paper we present an experimental environment of 3D books combined with a game application that has been developed by a collaboration project between the Norwegian University of Science and Technology in Trondheim, Norway the NTNU University Library, and the Percro laboratory of Santa Anna University in Pisa, Italy. MUBIL is an international research project involving museums, libraries and ICT academy partners aiming to develop a consistent methodology enabling the use of Virtual Environments as a metaphor to present manuscripts content through the paradigms of interaction and immersion, evaluating different possible alternatives. This paper presents the results of the application of two prototypes of books augmented with the use of XVR and IL technology. We explore immersive-reality design strategies in archive and library contexts for attracting new users. Our newly established Mubil-lab has invited school classes to test the books augmented with 3D models and other multimedia content in order to investigate whether the immersion in such environments can create wider engagement and support learning. The metaphor of 3D books and game designs in a combination allows the digital books to be handled through a tactile experience and substitute the physical browsing. In this paper we present some preliminary results about the enrichment of the user experience in such environment.

  18. Selected DOE headquarters publications, October 1979

    International Nuclear Information System (INIS)

    1981-03-01

    A cumulative listing of DOE headquarters publications issued since October 1979 is provided along with an index of title keywords. Three types of headquarters publications have been included: publications dealing mainly with program and policy that are attributed to and issued by headquarters organizations; reports prepared by contractors (and published by DOE headquarters) to describe research and development work they have performed for the department; and environmental development plans, environmental impact statements, and environmental readiness documents. Availabilities of documents are given

  19. Selected DOE headquarters publications, October 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-03-01

    A cumulative listing of DOE headquarters publications issued since October 1979 is provided along with an index of title keywords. Three types of headquarters publications have been included: publications dealing mainly with program and policy that are attributed to and issued by headquarters organizations; reports prepared by contractors (and published by DOE headquarters) to describe research and development work they have performed for the department; and environmental development plans, environmental impact statements, and environmental readiness documents. Availabilities of documents are given. (GHT)

  20. 7 CFR 1726.150 - Headquarters buildings.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Headquarters buildings. 1726.150 Section 1726.150... AGRICULTURE ELECTRIC SYSTEM CONSTRUCTION POLICIES AND PROCEDURES Buildings § 1726.150 Headquarters buildings. This section includes headquarters buildings such as warehouses and equipment service type buildings...

  1. 17 CFR 140.1 - Headquarters office.

    Science.gov (United States)

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Headquarters office. 140.1..., FUNCTIONS, AND PROCEDURES OF THE COMMISSION Organization § 140.1 Headquarters office. (a) General. The headquarters office of the Commission is located at Three Lafayette Centre, 1155 21st Street, NW., Washington...

  2. 7 CFR 2003.5 - Headquarters organization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Headquarters organization. 2003.5 Section 2003.5...) ADMINISTRATIVE REGULATIONS ORGANIZATION Functional Organization of the Rural Development Mission Area § 2003.5 Headquarters organization. (a) The Rural Development Headquarters is comprised of: (1) The Office of the Under...

  3. 7 CFR 2610.2 - Headquarters organization.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Headquarters organization. 2610.2 Section 2610.2... OF AGRICULTURE ORGANIZATION, FUNCTIONS, AND DELEGATIONS OF AUTHORITY § 2610.2 Headquarters organization. (a) The OIG has a headquarters office in Washington, DC, and regional offices throughout the...

  4. Improve 3D laser scanner measurements accuracy using a FFBP neural network with Widrow-Hoff weight/bias learning function

    Science.gov (United States)

    Rodríguez-Quiñonez, J. C.; Sergiyenko, O.; Hernandez-Balbuena, D.; Rivas-Lopez, M.; Flores-Fuentes, W.; Basaca-Preciado, L. C.

    2014-12-01

    Many laser scanners depend on their mechanical construction to guarantee their measurements accuracy, however, the current computational technologies allow us to improve these measurements by mathematical methods implemented in neural networks. In this article we are going to introduce the current laser scanner technologies, give a description of our 3D laser scanner and adjust their measurement error by a previously trained feed forward back propagation (FFBP) neural network with a Widrow-Hoff weight/bias learning function. A comparative analysis with other learning functions such as the Kohonen algorithm and gradient descendent with momentum algorithm is presented. Finally, computational simulations are conducted to verify the performance and method uncertainty in the proposed system.

  5. Development of an Artificial Intelligence Programming Course and Unity3d Based Framework to Motivate Learning in Artistic Minded Students

    DEFF Research Database (Denmark)

    Reng, Lars

    2012-01-01

    between technical and artistic minded students is, however, increased once the students reach the sixth semester. The complex algorithms of the artificial intelligence course seemed to demotivate the artistic minded students even before the course began. This paper will present the extensive changes made...... to the sixth semester artificial intelligence programming course, in order to provide a highly motivating direct visual feedback, and thereby remove the steep initial learning curve for artistic minded students. The framework was developed with close dialog to both the game industry and experienced master...

  6. A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data.

    Science.gov (United States)

    Navarro, Pedro J; Fernández, Carlos; Borraz, Raúl; Alonso, Diego

    2016-12-23

    This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution) is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN), Naïve Bayes classifier (NBC), and Support Vector Machine (SVM). These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%), accuracy (96.2%) and specificity (96.8%).

  7. A Machine Learning Approach to Pedestrian Detection for Autonomous Vehicles Using High-Definition 3D Range Data

    Directory of Open Access Journals (Sweden)

    Pedro J. Navarro

    2016-12-01

    Full Text Available This article describes an automated sensor-based system to detect pedestrians in an autonomous vehicle application. Although the vehicle is equipped with a broad set of sensors, the article focuses on the processing of the information generated by a Velodyne HDL-64E LIDAR sensor. The cloud of points generated by the sensor (more than 1 million points per revolution is processed to detect pedestrians, by selecting cubic shapes and applying machine vision and machine learning algorithms to the XY, XZ, and YZ projections of the points contained in the cube. The work relates an exhaustive analysis of the performance of three different machine learning algorithms: k-Nearest Neighbours (kNN, Naïve Bayes classifier (NBC, and Support Vector Machine (SVM. These algorithms have been trained with 1931 samples. The final performance of the method, measured a real traffic scenery, which contained 16 pedestrians and 469 samples of non-pedestrians, shows sensitivity (81.2%, accuracy (96.2% and specificity (96.8%.

  8. Refined 3d-3d correspondence

    Energy Technology Data Exchange (ETDEWEB)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; Loon, Mark van [Mathematical Institute, University of Oxford, Andrew Wiles Building,Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom)

    2017-04-28

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N=2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N=2 theories constructed from boundary conditions and interfaces in a 4d N=2{sup ∗} theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-’t Hooft loops in the 4d N=2{sup ∗} theory. In the presence of a mass parameter for the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  9. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke

    Directory of Open Access Journals (Sweden)

    Meadmore Katie L

    2012-06-01

    Full Text Available Abstract Background Novel stroke rehabilitation techniques that employ electrical stimulation (ES and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL, a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this.

  10. A 3d-3d appetizer

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Du; Ye, Ke [Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, 91125 (United States)

    2016-11-02

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T[L(p,1)] and the partition function of complex Chern-Simons theory on L(p,1). In particular, for p=1, we show how the familiar S{sup 3} partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p,1)] becomes a constant independent of p. In addition, we study T[L(p,1)] on the squashed three-sphere S{sub b}{sup 3}. This enables us to see clearly, at the level of partition function, to what extent G{sub ℂ} complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  11. Fostering Verbal and Non-Verbal Social Interactions in a 3D Collaborative Virtual Learning Environment: A Case Study of Youth with Autism Spectrum Disorders Learning Social Competence in iSocial

    Science.gov (United States)

    Wang, Xianhui; Laffey, James; Xing, Wanli; Galyen, Krista; Stichter, Janine

    2017-01-01

    This case study describes the verbal and nonverbal social interaction of 11 youth with Autism Spectrum Disorders in a 3D Collaborative Virtual Learning Environment-iSocial. The youth were developing social competence through participation in a social competence intervention curriculum implemented online so as to provide access to high quality…

  12. 3D virtuel udstilling

    DEFF Research Database (Denmark)

    Tournay, Bruno; Rüdiger, Bjarne

    2006-01-01

    3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s.......3d digital model af Arkitektskolens gård med virtuel udstilling af afgangsprojekter fra afgangen sommer 2006. 10 s....

  13. Inner and outer coronary vessel wall segmentation from CCTA using an active contour model with machine learning-based 3D voxel context-aware image force

    Science.gov (United States)

    Sivalingam, Udhayaraj; Wels, Michael; Rempfler, Markus; Grosskopf, Stefan; Suehling, Michael; Menze, Bjoern H.

    2016-03-01

    In this paper, we present a fully automated approach to coronary vessel segmentation, which involves calcification or soft plaque delineation in addition to accurate lumen delineation, from 3D Cardiac Computed Tomography Angiography data. Adequately virtualizing the coronary lumen plays a crucial role for simulating blood ow by means of fluid dynamics while additionally identifying the outer vessel wall in the case of arteriosclerosis is a prerequisite for further plaque compartment analysis. Our method is a hybrid approach complementing Active Contour Model-based segmentation with an external image force that relies on a Random Forest Regression model generated off-line. The regression model provides a strong estimate of the distance to the true vessel surface for every surface candidate point taking into account 3D wavelet-encoded contextual image features, which are aligned with the current surface hypothesis. The associated external image force is integrated in the objective function of the active contour model, such that the overall segmentation approach benefits from the advantages associated with snakes and from the ones associated with machine learning-based regression alike. This yields an integrated approach achieving competitive results on a publicly available benchmark data collection (Rotterdam segmentation challenge).

  14. Underwater 3D filming

    Directory of Open Access Journals (Sweden)

    Roberto Rinaldi

    2014-12-01

    Full Text Available After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Underwater filming in 3D was not that easy and effective as filming in 2D, since not long ago. After almost 3 years of research, a French, Austrian and Italian team realized a perfect tool to film underwater, in 3D, without any constrains. This allows filmmakers to bring the audience deep inside an environment where they most probably will never have the chance to be.

  15. Symposium 20 - PABMB: Teaching biochemistry in a connected world: KEEPING 3D RESOURCES IN THE WEB TO LEARN ON PROTEIN STRUCTURE

    Directory of Open Access Journals (Sweden)

    Raul Herrera

    2015-08-01

    Full Text Available Symposium 20 - PABMB: Teaching biochemistry in a connected world Chair: Miguel Castanho, Universidade de Lisboa, PortugalAbstract:The new paradigm of higher education requires new teaching strategies to meet the learning objectives of biochemistry courses. Teaching biochemistry in the current state of science and society requires a special motivation for learning, especially for students of degrees other than Biochemistry. The traditional way of teaching, based on the teacher-student relationship, mostly unidirectional, does not fulfil the needs imposed in this era. Considering the current situation universities students require new abilities in their training and the use of computers can constitute a place for discovery and research, enabling the experience of new and diverse situations. The design of teaching material for undergraduate students who take biochemistry courses as complementary subject on their careers should be seen as an opportunity to complement theoretical aspects on the current courses. Three different approaches could be used: (I a description of the basic concepts, like in a book but using dynamics figures. (II Modelling proteins highlighting key motifs at the three-dimensional structure and residues where inhibitors can be attached. And (III elaborating active quizzes where students can be driven on their learning. Building knowledge based on practical experience can improve student competences on basic science and the learning process can be complemented in the use of dynamics models. On the other hand, exploring protein structures from the web could give students a better comprehension of residues interaction and non-covalent forces involved in protein-protein or protein-ligand interaction. The use of dynamic models improves the comprehension of protein structure and their special link to amino acids residues or ligands. This work was supported by Anillo ACT1110 project. Key Words: protein structure, 3D source, learning

  16. New management structure at headquarters

    Science.gov (United States)

    On July 1, 1987, AGU Executive Director Fred Spilhaus informed the AGU staff that Judy C. Holoviak has been promoted to the position of Group Director. This is a new management position with responsibility for more than one division. Both the Publications Division and the newly formed Public Information and Marketing Division will report to Holoviak, as will the new Special Assistant for Nonprint Publications.Spilhaus explained that this new position will permit the headquarters management staff to be responsive to the current AGU growth. A stronger management structure is needed to take advantage of the many opportunities facing the Union. In pointing to the initiatives identified by the Planning Committee, he stated that continued growth is the only likely course for AGU.

  17. 3D Virtual Reality Check: Learner Engagement and Constructivist Theory

    Science.gov (United States)

    Bair, Richard A.

    2013-01-01

    The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…

  18. Student-directed investigation of natural phenomena: Using digital simulations to achieve NGSS-aligned 3D learning in middle school

    Science.gov (United States)

    Selvans, M. M.; Spafford, C. D.

    2016-12-01

    Many Earth Science phenomena cannot be observed directly because they happen slowly (e.g., Plate Motion) or at large spatial scales (e.g., Weather Patterns). Such topics are investigated by scientists through analysis of large data sets, numerical modeling, and laboratory studies that isolate aspects of the overall phenomena. Middle school students have limited time and lab equipment in comparison, but can employ authentic science practices through investigations using interactive digital simulations (sims). Designing a sim aligned to the Next Generation Science Standards (NGSS) allows students to explore and connect to science ideas in a seamless and supportive way that also deepens their understanding of the phenomena. We helped develop seven units, including the two above, that cover the middle school Earth Science Disciplinary Core Ideas and give students exposure to the other two dimensions of the NGSS (science practices and cross-cutting concepts). These units are developed by the Learning Design Group and Amplify Science. Sims are key to how students engage in 3D learning in these units. For example, in the Rock Transformations Sim students can investigate the ideas that energy from the sun and from Earth's interior can transform rock, and that the transformation processes change the Earth's surface at varying time and spatial scales (ESS2.A). Students can choose and selectively apply transformation processes (melting, weathering, etc.) or energy sources to rock in a cross-section landscape to explore their effects. Students are able to plan steps for making a particular rock transformation happen and carry out their own investigations. A benefit of using a digital platform for student learning is the ability to embed formative assessment. When students plan and carry out missions to achieve specific objectives, the digital platform can capture a record of their actions to measure how they apply science ideas from instruction. Data of these actions, combined

  19. Underwater 3D filming

    OpenAIRE

    Rinaldi, Roberto

    2014-01-01

    After an experimental phase of many years, 3D filming is now effective and successful. Improvements are still possible, but the film industry achieved memorable success on 3D movie’s box offices due to the overall quality of its products. Special environments such as space (“Gravity” ) and the underwater realm look perfect to be reproduced in 3D. “Filming in space” was possible in “Gravity” using special effects and computer graphic. The underwater realm is still difficult to be handled. Unde...

  20. Blender 3D cookbook

    CERN Document Server

    Valenza, Enrico

    2015-01-01

    This book is aimed at the professionals that already have good 3D CGI experience with commercial packages and have now decided to try the open source Blender and want to experiment with something more complex than the average tutorials on the web. However, it's also aimed at the intermediate Blender users who simply want to go some steps further.It's taken for granted that you already know how to move inside the Blender interface, that you already have 3D modeling knowledge, and also that of basic 3D modeling and rendering concepts, for example, edge-loops, n-gons, or samples. In any case, it'

  1. Modular Structures in a Multinational Force Headquarters

    National Research Council Canada - National Science Library

    Stewart, K; Christie, M

    2004-01-01

    .... It is proposed that future Multinational Force (MNF) military headquarters (HQ) can achieve this flexibility through a modular organizational structure enabled by networked information management and communication technologies...

  2. DELTA 3D PRINTER

    Directory of Open Access Journals (Sweden)

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  3. Qualitative and quantitative analysis of the students’ perceptions to the use of 3D electronic models in problem-based learning

    Directory of Open Access Journals (Sweden)

    Hai Ming Wong

    2017-06-01

    Full Text Available Faculty of Dentistry of the University of Hong Kong has introduced innovative blended problem-based learning (PBL with the aid of 3D electronic models (e-models to Bachelor of Dental Surgery (BDS curriculum. Statistical results of pre- and post-semester questionnaire surveys illustrated compatibility of e-models in PBL settings. The students’ importance ratings of two objectives “Complete assigned tasks on time” and “Active listener”, and twenty-two facilitator evaluation items including critical thinking and group problem-solving skills had increased significantly. The students’ PBL preparation behavior, attentions to problem understanding, problem analysis, and learning resource quality were also found to be related to online support of e-models and its software. Qualitative analysis of open-ended questions with visual text analytic software “Leximancer” improved validity of statistical results. Using e-model functions in treatment planning, problem analysis and giving instructions provided a method of informative communication. Therefore, it is critical for the faculty to continuously provide facilitator training and quality online e-model resources to the students.

  4. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students

    Directory of Open Access Journals (Sweden)

    Stéphanie Giraud

    2017-06-01

    Full Text Available Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students’ autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs.

  5. Map Learning with a 3D Printed Interactive Small-Scale Model: Improvement of Space and Text Memorization in Visually Impaired Students.

    Science.gov (United States)

    Giraud, Stéphanie; Brock, Anke M; Macé, Marc J-M; Jouffrais, Christophe

    2017-01-01

    Special education teachers for visually impaired students rely on tools such as raised-line maps (RLMs) to teach spatial knowledge. These tools do not fully and adequately meet the needs of the teachers because they are long to produce, expensive, and not versatile enough to provide rapid updating of the content. For instance, the same RLM can barely be used during different lessons. In addition, those maps do not provide any interactivity, which reduces students' autonomy. With the emergence of 3D printing and low-cost microcontrollers, it is now easy to design affordable interactive small-scale models (SSMs) which are adapted to the needs of special education teachers. However, no study has previously been conducted to evaluate non-visual learning using interactive SSMs. In collaboration with a specialized teacher, we designed a SSM and a RLM representing the evolution of the geography and history of a fictitious kingdom. The two conditions were compared in a study with 24 visually impaired students regarding the memorization of the spatial layout and historical contents. The study showed that the interactive SSM improved both space and text memorization as compared to the RLM with braille legend. In conclusion, we argue that affordable home-made interactive small scale models can improve learning for visually impaired students. Interestingly, they are adaptable to any teaching situation including students with specific needs.

  6. 39 CFR 221.5 - Headquarters organization.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Headquarters organization. 221.5 Section 221.5 Postal Service UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION GENERAL ORGANIZATION § 221.5 Headquarters organization. (a) Postmaster General—(1) Appointment. The postmaster general (PMG), the chief...

  7. Immersive 3D Geovisualization in Higher Education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  8. Dual Headquarters Involvement in Subsidiary Innovation

    DEFF Research Database (Denmark)

    Dellestrand, Henrik; Kappen, Philip; Nell, Phillip Christopher

    2014-01-01

    The strategy and international business literature has identified the overall potential for headquarters to add value by allocating resources to subsidiary activities, but little is known about the extent to which multiple headquarters simultaneously involves itself in subsidiary operations....... The current paper takes on this neglected question by empirically investigating corporate and divisional headquarters direct involvement in innovation development projects at the subsidiary level. Analyses that draw upon 85 innovation development projects in 23 multinational enterprises reveal that dual...... of the developing subsidiary positively moderates the two aforementioned effects on dual headquarters involvement in innovation development. The results lend support for the notion that parenting in complex structures entails complex headquarters structures. Thus, the results question simplistic views...

  9. Wearable 3D measurement

    Science.gov (United States)

    Manabe, Yoshitsugu; Imura, Masataka; Tsuchiya, Masanobu; Yasumuro, Yoshihiro; Chihara, Kunihiro

    2003-01-01

    Wearable 3D measurement realizes to acquire 3D information of an objects or an environment using a wearable computer. Recently, we can send voice and sound as well as pictures by mobile phone in Japan. Moreover it will become easy to capture and send data of short movie by it. On the other hand, the computers become compact and high performance. And it can easy connect to Internet by wireless LAN. Near future, we can use the wearable computer always and everywhere. So we will be able to send the three-dimensional data that is measured by wearable computer as a next new data. This paper proposes the measurement method and system of three-dimensional data of an object with the using of wearable computer. This method uses slit light projection for 3D measurement and user"s motion instead of scanning system.

  10. 3D Digital Modelling

    DEFF Research Database (Denmark)

    Hundebøl, Jesper

    wave of new building information modelling tools demands further investigation, not least because of industry representatives' somewhat coarse parlance: Now the word is spreading -3D digital modelling is nothing less than a revolution, a shift of paradigm, a new alphabet... Research qeustions. Based...... on empirical probes (interviews, observations, written inscriptions) within the Danish construction industry this paper explores the organizational and managerial dynamics of 3D Digital Modelling. The paper intends to - Illustrate how the network of (non-)human actors engaged in the promotion (and arrest) of 3...... important to appreciate the analysis. Before turning to the presentation of preliminary findings and a discussion of 3D digital modelling, it begins, however, with an outline of industry specific ICT strategic issues. Paper type. Multi-site field study...

  11. 3D ARCHITECTURAL VIDEOMAPPING

    Directory of Open Access Journals (Sweden)

    R. Catanese

    2013-07-01

    Full Text Available 3D architectural mapping is a video projection technique that can be done with a survey of a chosen building in order to realize a perfect correspondence between its shapes and the images in projection. As a performative kind of audiovisual artifact, the real event of the 3D mapping is a combination of a registered video animation file with a real architecture. This new kind of visual art is becoming very popular and its big audience success testifies new expressive chances in the field of urban design. My case study has been experienced in Pisa for the Luminara feast in 2012.

  12. Interaktiv 3D design

    DEFF Research Database (Denmark)

    Villaume, René Domine; Ørstrup, Finn Rude

    2002-01-01

    Projektet undersøger potentialet for interaktiv 3D design via Internettet. Arkitekt Jørn Utzons projekt til Espansiva blev udviklet som et byggesystem med det mål, at kunne skabe mangfoldige planmuligheder og mangfoldige facade- og rumudformninger. Systemets bygningskomponenter er digitaliseret som...... 3D elementer og gjort tilgængelige. Via Internettet er det nu muligt at sammenstille og afprøve en uendelig  række bygningstyper som  systemet blev tænkt og udviklet til....

  13. 3D Projection Installations

    DEFF Research Database (Denmark)

    Halskov, Kim; Johansen, Stine Liv; Bach Mikkelsen, Michelle

    2014-01-01

    Three-dimensional projection installations are particular kinds of augmented spaces in which a digital 3-D model is projected onto a physical three-dimensional object, thereby fusing the digital content and the physical object. Based on interaction design research and media studies, this article ...... Fingerplan to Loop City, is a 3-D projection installation presenting the history and future of city planning for the Copenhagen area in Denmark. The installation was presented as part of the 12th Architecture Biennale in Venice in 2010....

  14. Herramientas SIG 3D

    Directory of Open Access Journals (Sweden)

    Francisco R. Feito Higueruela

    2010-04-01

    Full Text Available Applications of Geographical Information Systems on several Archeology fields have been increasing during the last years. Recent avances in these technologies make possible to work with more realistic 3D models. In this paper we introduce a new paradigm for this system, the GIS Thetrahedron, in which we define the fundamental elements of GIS, in order to provide a better understanding of their capabilities. At the same time the basic 3D characteristics of some comercial and open source software are described, as well as the application to some samples on archeological researchs

  15. Bootstrapping 3D fermions

    Energy Technology Data Exchange (ETDEWEB)

    Iliesiu, Luca [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Kos, Filip; Poland, David [Department of Physics, Yale University, New Haven, CT 06520 (United States); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 (United States); Yacoby, Ran [Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (United States)

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions 〈ψψψψ〉 in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ×ψ OPE, and also on the central charge C{sub T}. We observe features in our bounds that coincide with scaling dimensions in the Gross-Neveu models at large N. We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  16. Getting started in 3D with Maya

    CERN Document Server

    Watkins, Adam

    2012-01-01

    Deliver professional-level 3D content in no time with this comprehensive guide to 3D animation with Maya. With over 12 years of training experience, plus several award winning students under his belt, author Adam Watkins is the ideal mentor to get you up to speed with 3D in Maya. Using a structured and pragmatic approach Getting Started in 3D with Maya begins with basic theory of fundamental techniques, then builds on this knowledge using practical examples and projects to put your new skills to the test. Prepared so that you can learn in an organic fashion, each chapter builds on the know

  17. Shaping 3-D boxes

    DEFF Research Database (Denmark)

    Stenholt, Rasmus; Madsen, Claus B.

    2011-01-01

    Enabling users to shape 3-D boxes in immersive virtual environments is a non-trivial problem. In this paper, a new family of techniques for creating rectangular boxes of arbitrary position, orientation, and size is presented and evaluated. These new techniques are based solely on position data...

  18. 3D Wire 2015

    DEFF Research Database (Denmark)

    Jordi, Moréton; F, Escribano; J. L., Farias

    This document is a general report on the implementation of gamification in 3D Wire 2015 event. As the second gamification experience in this event, we have delved deeply in the previous objectives (attracting public areas less frequented exhibition in previous years and enhance networking) and have...

  19. 3D Harmonic Echocardiography:

    NARCIS (Netherlands)

    M.M. Voormolen (Marco)

    2007-01-01

    textabstractThree dimensional (3D) echocardiography has recently developed from an experimental technique in the ’90 towards an imaging modality for the daily clinical practice. This dissertation describes the considerations, implementation, validation and clinical application of a unique

  20. Post-operative 3D CT feedback improves accuracy and precision in the learning curve of anatomic ACL femoral tunnel placement.

    Science.gov (United States)

    Sirleo, Luigi; Innocenti, Massimo; Innocenti, Matteo; Civinini, Roberto; Carulli, Christian; Matassi, Fabrizio

    2018-02-01

    To evaluate the feedback from post-operative three-dimensional computed tomography (3D-CT) on femoral tunnel placement in the learning process, to obtain an anatomic anterior cruciate ligament (ACL) reconstruction. A series of 60 consecutive patients undergoing primary ACL reconstruction using autologous hamstrings single-bundle outside-in technique were prospectively included in the study. ACL reconstructions were performed by the same trainee-surgeon during his learning phase of anatomic ACL femoral tunnel placement. A CT scan with dedicated tunnel study was performed in all patients within 48 h after surgery. The data obtained from the CT scan were processed into a three-dimensional surface model, and a true medial view of the lateral femoral condyle was used for the femoral tunnel placement analysis. Two independent examiners analysed the tunnel placements. The centre of femoral tunnel was measured using a quadrant method as described by Bernard and Hertel. The coordinates measured were compared with anatomic coordinates values described in the literature [deep-to-shallow distance (X-axis) 28.5%; high-to-low distance (Y-axis) 35.2%]. Tunnel placement was evaluated in terms of accuracy and precision. After each ACL reconstruction, results were shown to the surgeon to receive an instant feedback in order to achieve accurate correction and improve tunnel placement for the next surgery. Complications and arthroscopic time were also recorded. Results were divided into three consecutive series (1, 2, 3) of 20 patients each. A trend to placing femoral tunnel slightly shallow in deep-to-shallow distance and slightly high in high-to-low distance was observed in the first and the second series. A progressive improvement in tunnel position was recorded from the first to second series and from the second to the third series. Both accuracy (+52.4%) and precision (+55.7%) increased from the first to the third series (p process to improve accuracy and precision of femoral

  1. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    van den Bergh, J.; Schutz, J.; Chirayath, V.; Li, A.

    2017-12-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Net's convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign.Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users' input against pre-classified coral imagery to gauge their accuracy and utilizes in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  2. A 3D Active Learning Application for NeMO-Net, the NASA Neural Multi-Modal Observation and Training Network for Global Coral Reef Assessment

    Science.gov (United States)

    van den Bergh, Jarrett; Schutz, Joey; Li, Alan; Chirayath, Ved

    2017-01-01

    NeMO-Net, the NASA neural multi-modal observation and training network for global coral reef assessment, is an open-source deep convolutional neural network and interactive active learning training software aiming to accurately assess the present and past dynamics of coral reef ecosystems through determination of percent living cover and morphology as well as mapping of spatial distribution. We present an interactive video game prototype for tablet and mobile devices where users interactively label morphology classifications over mm-scale 3D coral reef imagery captured using fluid lensing to create a dataset that will be used to train NeMO-Nets convolutional neural network. The application currently allows for users to classify preselected regions of coral in the Pacific and will be expanded to include additional regions captured using our NASA FluidCam instrument, presently the highest-resolution remote sensing benthic imaging technology capable of removing ocean wave distortion, as well as lower-resolution airborne remote sensing data from the ongoing NASA CORAL campaign. Active learning applications present a novel methodology for efficiently training large-scale Neural Networks wherein variances in identification can be rapidly mitigated against control data. NeMO-Net periodically checks users input against pre-classified coral imagery to gauge their accuracy and utilize in-game mechanics to provide classification training. Users actively communicate with a server and are requested to classify areas of coral for which other users had conflicting classifications and contribute their input to a larger database for ranking. In partnering with Mission Blue and IUCN, NeMO-Net leverages an international consortium of subject matter experts to classify areas of confusion identified by NeMO-Net and generate additional labels crucial for identifying decision boundary locations in coral reef assessment.

  3. Selected DOE headquarters publications, October 1979

    International Nuclear Information System (INIS)

    1981-01-01

    The publication provides cumulative listings of and an index to DOE headquarters publications issued since October 1979. Publications issued during October 1977 to September 1979 are covered in DOE/AD-0010/6. Publications from 26 headquarters offices are presented and consist of three types: publications dealing mainly with program and policy that are attributed to and issued by headquarters organizations; reports prepared by contractors (and published by DOE) to describe research and development work they have performed for the Department under 01-type contracts; and environmental development plans, impact statements, and readiness documents. Availability of the documents is described

  4. Selected DOE headquarters publications, October 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-01-01

    The publication provides cumulative listings of and an index to DOE headquarters publications issued since October 1979. Publications issued during October 1977 to September 1979 are covered in DOE/AD-0010/6. Publications from 26 headquarters offices are presented and consist of three types: publications dealing mainly with program and policy that are attributed to and issued by headquarters organizations; reports prepared by contractors (and published by DOE) to describe research and development work they have performed for the Department under 01-type contracts; and environmental development plans, impact statements, and readiness documents. Availability of the documents is described.

  5. Beyond Textbook Illustrations: Hand-Held Models of Ordered DNA and Protein Structures as 3D Supplements to Enhance Student Learning of Helical Biopolymers

    Science.gov (United States)

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-01-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…

  6. 3D Surgical Simulation

    OpenAIRE

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2010-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive ...

  7. Dual Headquarters Involvement in Multibusiness Firms

    DEFF Research Database (Denmark)

    Nell, Phillip Christopher; Kappen, Philip; Dellestrand, Henrik

    The strategy literature has shown that headquarters involve themselves into subsidiary operations to add value. Yet, little is known about the extent to which multiple headquarters do so. Therefore, we investigate antecedents of corporate and divisional headquarters’ involvement in innovation...... development projects of subsidiaries. Analyses of 85 innovation development projects reveal that dual innovation importance (innovation that is important for the division and the rest of the firm), and dual dual embeddedness (innovating subsidiary is embedded both within the division and in the rest...... of the firm) lead to greater dual headquarters involvement, especially when the innovation development network is large. The results contribute to the literature on complex parenting and theory of selective headquarters involvement....

  8. Legitimacy Dynamics in Headquarters-Subsidiary Relationships

    DEFF Research Database (Denmark)

    Gammelgaard, Jens; Kumar, Rajesh

    The relationship between multinational enterprises’ (MNE) headquarters and their subsidiaries has been of considerable interest to international business scholars (e.g., Dörrenbächer and Geppert, 2009). Although a subsidiary is an integral part of an MNE, its interests do not necessarily converge...... with those of headquarters. Many scholars note that relationships between headquarters and subsidiaries are characterized by the simultaneous presence of cooperation and competition (e.g., Bouquet and Birkinshaw, 2008; Otterbeck, 1981). On the one hand, the subsidiary and its managers are dependent...... on headquarters’ resources to fulfill its mandate. On the other hand, the subsidiary and its managers have their own particular goals, which may or may not coincide with the goals of headquarters and its managers. Subsidiary managers may also seek to develop the unit’s own sense of identity, which may...

  9. Headquarters Of APSCO Opens In Beijing

    Institute of Scientific and Technical Information of China (English)

    Xu Yansong

    2009-01-01

    @@ The headquarters of Asia-Pacific Space Cooperation Organization (APSCO) has been inaugurated in Beijing.APSCO is the biggest space organization in Asia. Established in 2008, the organization has 9 members in the Asia-Pacific region.

  10. Selected DOE Headquarters publications, October 1979-

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-01

    This publication provides a cumulative listing of and an index to DOE headquarters publications issued since October 1979. (Publications issued during October 1977 to September 1979 are covered in DOE/AD-0010/6.) Three types of headquarters publications are included: publications dealing mainly with program and policy that are attributed to and issued by headquarters organizations, reports prepared by contractors (and published by DOE) to describe research and development work they have performed for the Department, and environmental development plans, environmental impact statements, and environmental readiness documents. Certain publications have been omitted. They include such items as pamphlets, fact sheets, bulletins, newsletters, and telephone directories. Also omitted are weekly/monthly reports of the Energy Information Administration and headquarters publications issued under the DOE-tr and CONF codes. (RWR)

  11. Selected DOE Headquarters Publications, October 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-09-01

    This publication provides cumulative listings of and an index to DOE headquarters publications issued since October 1979. (Publications issued during October 1977-September 1979 are covered in DOE/AD-0010/6.) Three types of headquarters publications are included: publications dealing mainly with program and policy that are attributed to and issued by headquarters organizations, reports prepared by contractors (and published by DOE) to describe research and development work they have performed for the Department, and environmental development plans and impact statements. Certain publications have been omitted. They include such items as pamphlets, fact sheets, bulletins, newsletters, and telephone directories, headquarters publications issued under the DOE-tr and CONF codes, technical reports from the Jet Propulsion Laboratory and NASA issued under DOE/JPL and DOE/NASA codes, and weekly/monthly reports of the Energy Information Administration. (RWR)

  12. Selected DOE Headquarters publications, October 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-07-01

    This publication provides cumulative listings of and an index to DOE headquarters publications issued since October 1979. Three types of headquarters publications are included: publications dealing mainly with program and policy that are attributed to and issued by headquarters organizations, reports prepared by contractors to describe research and development work they have performed for the Department, and environmental development plans and impact statements. Such items as pamphlets, fact sheets, bulletins, newsletters, telephone directories, headquarters publications issued under the DOE-tr and CONF codes, technical reports from the Jet Propulsion Laboratory and NASA issued under DOE/JPL and DOE/NASA codes, and weekly/monthly reports of the Energy Information Administration are not included. (RWR)

  13. Using machine learning to speed up manual image annotation: application to a 3D imaging protocol for measuring single cell gene expression in the developing C. elegans embryo

    Directory of Open Access Journals (Sweden)

    Waterston Robert H

    2010-02-01

    Full Text Available Abstract Background Image analysis is an essential component in many biological experiments that study gene expression, cell cycle progression, and protein localization. A protocol for tracking the expression of individual C. elegans genes was developed that collects image samples of a developing embryo by 3-D time lapse microscopy. In this protocol, a program called StarryNite performs the automatic recognition of fluorescently labeled cells and traces their lineage. However, due to the amount of noise present in the data and due to the challenges introduced by increasing number of cells in later stages of development, this program is not error free. In the current version, the error correction (i.e., editing is performed manually using a graphical interface tool named AceTree, which is specifically developed for this task. For a single experiment, this manual annotation task takes several hours. Results In this paper, we reduce the time required to correct errors made by StarryNite. We target one of the most frequent error types (movements annotated as divisions and train a support vector machine (SVM classifier to decide whether a division call made by StarryNite is correct or not. We show, via cross-validation experiments on several benchmark data sets, that the SVM successfully identifies this type of error significantly. A new version of StarryNite that includes the trained SVM classifier is available at http://starrynite.sourceforge.net. Conclusions We demonstrate the utility of a machine learning approach to error annotation for StarryNite. In the process, we also provide some general methodologies for developing and validating a classifier with respect to a given pattern recognition task.

  14. 3D Surgical Simulation

    Science.gov (United States)

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  15. 3D Virtual Reality for Teaching Astronomy

    Science.gov (United States)

    Speck, Angela; Ruzhitskaya, L.; Laffey, J.; Ding, N.

    2012-01-01

    We are developing 3D virtual learning environments (VLEs) as learning materials for an undergraduate astronomy course, in which will utilize advances both in technologies available and in our understanding of the social nature of learning. These learning materials will be used to test whether such VLEs can indeed augment science learning so that it is more engaging, active, visual and effective. Our project focuses on the challenges and requirements of introductory college astronomy classes. Here we present our virtual world of the Jupiter system and how we plan to implement it to allow students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The VLE can allow students to work individually or collaboratively. The 3D world also provides an opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of this VLE is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3D environment. We will present the Jupiter-system environment along with a preliminary study of the efficacy and usability of our Jupiter 3D VLE.

  16. 3D virtual table in anatomy education

    DEFF Research Database (Denmark)

    Dahl, Mads Ronald; Simonsen, Eivind Ortind

    The ‘Anatomage’ is a 3D virtual human anatomy table, with touchscreen functionality, where it is possible to upload CT-scans and digital. Learning the human anatomy terminology requires time, a very good memory, anatomy atlas, books and lectures. Learning the 3 dimensional structure, connections...

  17. Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization

    Science.gov (United States)

    2014-05-01

    1 Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization David N. Ford...2014 4. TITLE AND SUBTITLE Potential Cost Savings with 3D Printing Combined With 3D Imaging and CPLM for Fleet Maintenance and Revitalization 5a...Manufacturing ( 3D printing ) 2 Research Context Problem: Learning curve savings forecasted in SHIPMAIN maintenance initiative have not materialized

  18. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    Science.gov (United States)

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  19. SU-D-201-05: On the Automatic Recognition of Patient Safety Hazards in a Radiotherapy Setup Using a Novel 3D Camera System and a Deep Learning Framework

    Energy Technology Data Exchange (ETDEWEB)

    Santhanam, A; Min, Y; Beron, P; Agazaryan, N; Kupelian, P; Low, D [UCLA, Los Angeles, CA (United States)

    2016-06-15

    Purpose: Patient safety hazards such as a wrong patient/site getting treated can lead to catastrophic results. The purpose of this project is to automatically detect potential patient safety hazards during the radiotherapy setup and alert the therapist before the treatment is initiated. Methods: We employed a set of co-located and co-registered 3D cameras placed inside the treatment room. Each camera provided a point-cloud of fraxels (fragment pixels with 3D depth information). Each of the cameras were calibrated using a custom-built calibration target to provide 3D information with less than 2 mm error in the 500 mm neighborhood around the isocenter. To identify potential patient safety hazards, the treatment room components and the patient’s body needed to be identified and tracked in real-time. For feature recognition purposes, we used a graph-cut based feature recognition with principal component analysis (PCA) based feature-to-object correlation to segment the objects in real-time. Changes in the object’s position were tracked using the CamShift algorithm. The 3D object information was then stored for each classified object (e.g. gantry, couch). A deep learning framework was then used to analyze all the classified objects in both 2D and 3D and was then used to fine-tune a convolutional network for object recognition. The number of network layers were optimized to identify the tracked objects with >95% accuracy. Results: Our systematic analyses showed that, the system was effectively able to recognize wrong patient setups and wrong patient accessories. The combined usage of 2D camera information (color + depth) enabled a topology-preserving approach to verify patient safety hazards in an automatic manner and even in scenarios where the depth information is partially available. Conclusion: By utilizing the 3D cameras inside the treatment room and a deep learning based image classification, potential patient safety hazards can be effectively avoided.

  20. SU-D-201-05: On the Automatic Recognition of Patient Safety Hazards in a Radiotherapy Setup Using a Novel 3D Camera System and a Deep Learning Framework

    International Nuclear Information System (INIS)

    Santhanam, A; Min, Y; Beron, P; Agazaryan, N; Kupelian, P; Low, D

    2016-01-01

    Purpose: Patient safety hazards such as a wrong patient/site getting treated can lead to catastrophic results. The purpose of this project is to automatically detect potential patient safety hazards during the radiotherapy setup and alert the therapist before the treatment is initiated. Methods: We employed a set of co-located and co-registered 3D cameras placed inside the treatment room. Each camera provided a point-cloud of fraxels (fragment pixels with 3D depth information). Each of the cameras were calibrated using a custom-built calibration target to provide 3D information with less than 2 mm error in the 500 mm neighborhood around the isocenter. To identify potential patient safety hazards, the treatment room components and the patient’s body needed to be identified and tracked in real-time. For feature recognition purposes, we used a graph-cut based feature recognition with principal component analysis (PCA) based feature-to-object correlation to segment the objects in real-time. Changes in the object’s position were tracked using the CamShift algorithm. The 3D object information was then stored for each classified object (e.g. gantry, couch). A deep learning framework was then used to analyze all the classified objects in both 2D and 3D and was then used to fine-tune a convolutional network for object recognition. The number of network layers were optimized to identify the tracked objects with >95% accuracy. Results: Our systematic analyses showed that, the system was effectively able to recognize wrong patient setups and wrong patient accessories. The combined usage of 2D camera information (color + depth) enabled a topology-preserving approach to verify patient safety hazards in an automatic manner and even in scenarios where the depth information is partially available. Conclusion: By utilizing the 3D cameras inside the treatment room and a deep learning based image classification, potential patient safety hazards can be effectively avoided.

  1. Mobile 3D tomograph

    International Nuclear Information System (INIS)

    Illerhaus, Bernhard; Goebbels, Juergen; Onel, Yener; Sauerwein, Christoph

    2008-01-01

    Mobile tomographs often have the problem that high spatial resolution is impossible owing to the position or setup of the tomograph. While the tree tomograph developed by Messrs. Isotopenforschung Dr. Sauerwein GmbH worked well in practice, it is no longer used as the spatial resolution and measuring time are insufficient for many modern applications. The paper shows that the mechanical base of the method is sufficient for 3D CT measurements with modern detectors and X-ray tubes. CT measurements with very good statistics take less than 10 min. This means that mobile systems can be used, e.g. in examinations of non-transportable cultural objects or monuments. Enhancement of the spatial resolution of mobile tomographs capable of measuring in any position is made difficult by the fact that the tomograph has moving parts and will therefore have weight shifts. With the aid of tomographies whose spatial resolution is far higher than the mechanical accuracy, a correction method is presented for direct integration of the Feldkamp algorithm [de

  2. Conflict Resolution in Headquarters-Subsidiary Relationships

    DEFF Research Database (Denmark)

    Kumar, Rajesh; Gammelgaard, Jens

    2016-01-01

    We demonstrate the role of regulatory fit and moral emotions, that is, contempt and anger, in influencing conflict resolution between the headquarters and subsidiary boundary spanners. We develop a theoretical framework, which integrates literature on international business and headquarters......-subsidiary relationships with regulatory focus, moral emotions, and conflict resolution. The chapter outlines the relationships between the regulatory focus of a headquarters’ boundary spanner, and his or her manner of engagement, conflict sensitivity, violation of code, moral emotions, and the way conflicts are resolved...

  3. 3D Printing and 3D Bioprinting in Pediatrics.

    Science.gov (United States)

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  4. 3D Printing and 3D Bioprinting in Pediatrics

    OpenAIRE

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-01-01

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  5. 3D printing for dummies

    CERN Document Server

    Hausman, Kalani Kirk

    2014-01-01

    Get started printing out 3D objects quickly and inexpensively! 3D printing is no longer just a figment of your imagination. This remarkable technology is coming to the masses with the growing availability of 3D printers. 3D printers create 3-dimensional layered models and they allow users to create prototypes that use multiple materials and colors.  This friendly-but-straightforward guide examines each type of 3D printing technology available today and gives artists, entrepreneurs, engineers, and hobbyists insight into the amazing things 3D printing has to offer. You'll discover methods for

  6. 3D Volume Rendering and 3D Printing (Additive Manufacturing).

    Science.gov (United States)

    Katkar, Rujuta A; Taft, Robert M; Grant, Gerald T

    2018-07-01

    Three-dimensional (3D) volume-rendered images allow 3D insight into the anatomy, facilitating surgical treatment planning and teaching. 3D printing, additive manufacturing, and rapid prototyping techniques are being used with satisfactory accuracy, mostly for diagnosis and surgical planning, followed by direct manufacture of implantable devices. The major limitation is the time and money spent generating 3D objects. Printer type, material, and build thickness are known to influence the accuracy of printed models. In implant dentistry, the use of 3D-printed surgical guides is strongly recommended to facilitate planning and reduce risk of operative complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Headquarters-subsidiary relationship governance in Poland

    NARCIS (Netherlands)

    Gusc, J.S.; Omta, S.W.F.

    2011-01-01

    The study addresses the views of agency and stewardship theory on governance of the relationship between headquarters and subsidiaries. It explores the influence of strategy, task environment and cultural differences on this relationship. The conceptual model is explored based on a survey of 76

  8. MNC Headquarters as Global Network Orchestrators

    DEFF Research Database (Denmark)

    Valentino, Alfredo; Nell, Phillip Christopher; Hotho, Jasper J.

    2014-01-01

    Despite increased interest in headquarters (HQ) and their activities, we still lack a comprehensive understanding of the drivers of HQ relocations and their consequences. We seek to address this gap by examining whether HQ relocations are primarily driven by cost-reduction or value-creation motiv...

  9. Iraqi Civil Defense Headquarters Baghdad, Iraq

    National Research Council Canada - National Science Library

    Johnston, Angelina; O'Connor, Kevin; Rawal, Yogin

    2007-01-01

    .... The assessment team included two engineers/inspectors and three auditors/inspectors. The overall objective of the project was to fully renovate the Civil Defense Headquarters and other buildings on the site to become a fully operational and usable facility.

  10. The Future Is 3D

    Science.gov (United States)

    Carter, Luke

    2015-01-01

    3D printers are a way of producing a 3D model of an item from a digital file. The model builds up in successive layers of material placed by the printer controlled by the information in the computer file. In this article the author argues that 3D printers are one of the greatest technological advances of recent times. He discusses practical uses…

  11. The 3D additivist cookbook

    NARCIS (Netherlands)

    Allahyari, Morehshin; Rourke, Daniel; Rasch, Miriam

    The 3D Additivist Cookbook, devised and edited by Morehshin Allahyari & Daniel Rourke, is a free compendium of imaginative, provocative works from over 100 world-leading artists, activists and theorists. The 3D Additivist Cookbook contains .obj and .stl files for the 3D printer, as well as critical

  12. Wireless Rover Meets 3D Design and Product Development

    Science.gov (United States)

    Deal, Walter F., III; Hsiung, Steve C.

    2016-01-01

    Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…

  13. 3D Spectroscopy in Astronomy

    Science.gov (United States)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  14. 3D technology in fine art and craft exploring 3D printing, scanning, sculpting and milling

    CERN Document Server

    Mongeon, Bridgette

    2015-01-01

    The possibilities for creation are endless with 3D printing, sculpting, scanning, and milling, and new opportunities are popping up faster than artists can keep up with them. 3D Technology in Fine Art and Craft takes the mystery out of these exciting new processes by demonstrating how to navigate their digital components and showing their real world applications. Artists will learn to incorporate these new technologies into their studio work and see their creations come to life in a physical form never before possible. Featuring a primer on 3D basics for beginners,interviews, tutorials, and ar

  15. 3D Elevation Program—Virtual USA in 3D

    Science.gov (United States)

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  16. 3D IBFV : Hardware-Accelerated 3D Flow Visualization

    NARCIS (Netherlands)

    Telea, Alexandru; Wijk, Jarke J. van

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique for 2D flow visualization in two main directions. First, we decompose the 3D flow visualization problem in a

  17. 3D IBFV : hardware-accelerated 3D flow visualization

    NARCIS (Netherlands)

    Telea, A.C.; Wijk, van J.J.

    2003-01-01

    We present a hardware-accelerated method for visualizing 3D flow fields. The method is based on insertion, advection, and decay of dye. To this aim, we extend the texture-based IBFV technique presented by van Wijk (2001) for 2D flow visualization in two main directions. First, we decompose the 3D

  18. Immersive 3D geovisualisation in higher education

    Science.gov (United States)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    Through geovisualisation we explore spatial data, we analyse it towards a specific questions, we synthesise results, and we present and communicate them to a specific audience (MacEachren & Kraak 1997). After centuries of paper maps, the means to represent and visualise our physical environment and its abstract qualities have changed dramatically since the 1990s - and accordingly the methods how to use geovisualisation in teaching. Whereas some people might still consider the traditional classroom as ideal setting for teaching and learning geographic relationships and its mapping, we used a 3D CAVE (computer-animated virtual environment) as environment for a problem-oriented learning project called "GEOSimulator". Focussing on this project, we empirically investigated, if such a technological advance like the CAVE make 3D visualisation, including 3D geovisualisation, not only an important tool for businesses (Abulrub et al. 2012) and for the public (Wissen et al. 2008), but also for educational purposes, for which it had hardly been used yet. The 3D CAVE is a three-sided visualisation platform, that allows for immersive and stereoscopic visualisation of observed and simulated spatial data. We examined the benefits of immersive 3D visualisation for geographic research and education and synthesized three fundamental technology-based visual aspects: First, the conception and comprehension of space and location does not need to be generated, but is instantaneously and intuitively present through stereoscopy. Second, optical immersion into virtual reality strengthens this spatial perception which is in particular important for complex 3D geometries. And third, a significant benefit is interactivity, which is enhanced through immersion and allows for multi-discursive and dynamic data exploration and knowledge transfer. Based on our problem-oriented learning project, which concentrates on a case study on flood risk management at the Wilde Weisseritz in Germany, a river

  19. Building 3D models with modo 701

    CERN Document Server

    García, Juan Jiménez

    2013-01-01

    The book will focus on creating a sample application throughout the book, building gradually from chapter to chapter.If you are new to the 3D world, this is the key to getting started with a modern software in the modern visualization industry. Only minimal previous knowledge is needed.If you have some previous knowledge about 3D content creation, you will find useful tricks that will differentiate the learning experience from a typical user manual from this, a practical guide concerning the most common problems and situations and how to solve them.

  20. Body Language Advanced 3D Character Rigging

    CERN Document Server

    Allen, Eric; Fong, Jared; Sidwell, Adam G

    2011-01-01

    Whether you're a professional Character TD or just like to create 3D characters, this detailed guide reveals the techniques you need to create sophisticated 3D character rigs that range from basic to breathtaking. Packed with step-by-step instructions and full-color illustrations, Body Language walks you through rigging techniques for all the body parts to help you create realistic and believable movements in every character you design. You'll learn advanced rigging concepts that involve MEL scripting and advanced deformation techniques and even how to set up a character pipeline.

  1. Spacecraft 3D Augmented Reality Mobile App

    Science.gov (United States)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  2. 3D for Graphic Designers

    CERN Document Server

    Connell, Ellery

    2011-01-01

    Helping graphic designers expand their 2D skills into the 3D space The trend in graphic design is towards 3D, with the demand for motion graphics, animation, photorealism, and interactivity rapidly increasing. And with the meteoric rise of iPads, smartphones, and other interactive devices, the design landscape is changing faster than ever.2D digital artists who need a quick and efficient way to join this brave new world will want 3D for Graphic Designers. Readers get hands-on basic training in working in the 3D space, including product design, industrial design and visualization, modeling, ani

  3. Using 3D in Visualization

    DEFF Research Database (Denmark)

    Wood, Jo; Kirschenbauer, Sabine; Döllner, Jürgen

    2005-01-01

    to display 3D imagery. The extra cartographic degree of freedom offered by using 3D is explored and offered as a motivation for employing 3D in visualization. The use of VR and the construction of virtual environments exploit navigational and behavioral realism, but become most usefil when combined...... with abstracted representations embedded in a 3D space. The interactions between development of geovisualization, the technology used to implement it and the theory surrounding cartographic representation are explored. The dominance of computing technologies, driven particularly by the gaming industry...

  4. Qademah Fault 3D Survey

    KAUST Repository

    Hanafy, Sherif M.

    2014-01-01

    Objective: Collect 3D seismic data at Qademah Fault location to 1. 3D traveltime tomography 2. 3D surface wave migration 3. 3D phase velocity 4. Possible reflection processing Acquisition Date: 26 – 28 September 2014 Acquisition Team: Sherif, Kai, Mrinal, Bowen, Ahmed Acquisition Layout: We used 288 receiver arranged in 12 parallel lines, each line has 24 receiver. Inline offset is 5 m and crossline offset is 10 m. One shot is fired at each receiver location. We use the 40 kgm weight drop as seismic source, with 8 to 15 stacks at each shot location.

  5. 3D Bayesian contextual classifiers

    DEFF Research Database (Denmark)

    Larsen, Rasmus

    2000-01-01

    We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours.......We extend a series of multivariate Bayesian 2-D contextual classifiers to 3-D by specifying a simultaneous Gaussian distribution for the feature vectors as well as a prior distribution of the class variables of a pixel and its 6 nearest 3-D neighbours....

  6. 3-D printers for libraries

    CERN Document Server

    Griffey, Jason

    2014-01-01

    As the maker movement continues to grow and 3-D printers become more affordable, an expanding group of hobbyists is keen to explore this new technology. In the time-honored tradition of introducing new technologies, many libraries are considering purchasing a 3-D printer. Jason Griffey, an early enthusiast of 3-D printing, has researched the marketplace and seen several systems first hand at the Consumer Electronics Show. In this report he introduces readers to the 3-D printing marketplace, covering such topics asHow fused deposition modeling (FDM) printing workBasic terminology such as build

  7. VIRTUAL ANTI-BULLYING VILLAGE PROJECT FOR COPING WITH BULLYING AND CYBERBULLYING WITHIN A 3D VIRTUAL LEARNING ENVIRONMENT: EVALUATION RESEARCH

    Directory of Open Access Journals (Sweden)

    Dorit Olenik Shemesh

    2014-12-01

    Full Text Available The current study aims to evaluate the implementation of a unique educational project- The Virtual Anti-Bullying Village for Kids and Teens (ABV4KIDS that was designed and operated by the European Commission. A 3D virtual environment as an innovative, international project for adolescents, focused on knowledge acquisition and new ways of coping with bullying and cyberbullying. Sixty seventh graders-Israeli adolescents-completed five questionnaires before and after the project to assess its impacts regarding cyberbullying and socio-emotional variables. They evaluated the project as important, enjoyable, and increasing their knowledge about cyberbullying, but expressed a need for more practical tools for coping. At the end of the project, the control group reported more cyberbullying experiences, as well as a decrease in social support, whereas the research group reported no changes in cyberbullying experiences and in socio-emotional aspects.

  8. 39 CFR 223.1 - Headquarters and areas.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Headquarters and areas. 223.1 Section 223.1 Postal Service UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION RELATIONSHIPS AND COMMUNICATION CHANNELS § 223.1 Headquarters and areas. Headquarters provides policy guidance, procedures, and...

  9. Stimulating Sustainability in Multinational Companies: the Significance of Regional Headquarters

    OpenAIRE

    Andreas G. M. NACHBAGAUER

    2016-01-01

    Recently, regional headquarters have gained practical importance and theoretical attention. Traditionally considered a mere transmission facility to manage complex organisations, advanced approaches, however, locate regional headquarters in a field of tension between hierarchical integration and strategic independence. Given the growing concern for global responsibility, stimulating sustainability also and particularly addresses regional headquarters. This conceptual article combines the call...

  10. The Essential Guide to 3D in Flash

    CERN Document Server

    Olsson, Ronald A

    2010-01-01

    If you are an ActionScript developer or designer and you would like to work with 3D in Flash, this book is for you. You will learn the core Flash 3D concepts, using the open source Away3D engine as a primary tool. Once you have mastered these skills, you will be able to realize the possibilities that the available Flash 3D engines, languages, and technologies have to offer you with Flash and 3D.* Describes 3D concepts in theory and their implementation using Away3D* Dives right in to show readers how to quickly create an interactive, animated 3D scene, and builds on that experience throughout

  11. Abusir 3D survey 2015

    Directory of Open Access Journals (Sweden)

    Yukinori Kawae

    2016-12-01

    Full Text Available In 2015, in collaboration with the Czech Institute of Egyptology, we, a Japanese consortium, initiated the Abusir 3D Survey (A-3DS for the 3D documentation of the site’s pyramids, which have not been updated since the time of the architectural investigations of Vito Maragioglio and Celeste Rinaldi in the 1960s to the 1970s. The first season of our project focused on the exterior of Neferirkare’s pyramid, the largest pyramid at Abusir. By developing a strategic mathematical 3D survey plan, step-by-step 3D documentation to suit specific archaeological needs, and producing a new display method for the 3D data, we successfully measured the dimensions of the pyramid in a cost-effective way.

  12. Advanced 3-D Ultrasound Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Morten Fischer

    The main purpose of the PhD project was to develop methods that increase the 3-D ultrasound imaging quality available for the medical personnel in the clinic. Acquiring a 3-D volume gives the medical doctor the freedom to investigate the measured anatomy in any slice desirable after the scan has...... been completed. This allows for precise measurements of organs dimensions and makes the scan more operator independent. Real-time 3-D ultrasound imaging is still not as widespread in use in the clinics as 2-D imaging. A limiting factor has traditionally been the low image quality achievable using...... a channel limited 2-D transducer array and the conventional 3-D beamforming technique, Parallel Beamforming. The first part of the scientific contributions demonstrate that 3-D synthetic aperture imaging achieves a better image quality than the Parallel Beamforming technique. Data were obtained using both...

  13. 3D vector flow imaging

    DEFF Research Database (Denmark)

    Pihl, Michael Johannes

    The main purpose of this PhD project is to develop an ultrasonic method for 3D vector flow imaging. The motivation is to advance the field of velocity estimation in ultrasound, which plays an important role in the clinic. The velocity of blood has components in all three spatial dimensions, yet...... are (vx, vy, vz) = (-0.03, 95, 1.0) ± (9, 6, 1) cm/s compared with the expected (0, 96, 0) cm/s. Afterwards, 3D vector flow images from a cross-sectional plane of the vessel are presented. The out of plane velocities exhibit the expected 2D circular-symmetric parabolic shape. The experimental results...... verify that the 3D TO method estimates the complete 3D velocity vectors, and that the method is suitable for 3D vector flow imaging....

  14. 3D printing in dentistry.

    Science.gov (United States)

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  15. E3D, 3-D Elastic Seismic Wave Propagation Code

    International Nuclear Information System (INIS)

    Larsen, S.; Harris, D.; Schultz, C.; Maddix, D.; Bakowsky, T.; Bent, L.

    2004-01-01

    1 - Description of program or function: E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output. 2 - Methods: The software simulates wave propagation by solving the elasto-dynamic formulation of the full wave equation on a staggered grid. The solution scheme is 4-order accurate in space, 2-order accurate in time

  16. Facilitating 3D Virtual World Learning Environments Creation by Non-Technical End Users through Template-Based Virtual World Instantiation

    Science.gov (United States)

    Liu, Chang; Zhong, Ying; Ozercan, Sertac; Zhu, Qing

    2013-01-01

    This paper presents a template-based solution to overcome technical barriers non-technical computer end users face when developing functional learning environments in three-dimensional virtual worlds (3DVW). "iVirtualWorld," a prototype of a platform-independent 3DVW creation tool that implements the proposed solution, facilitates 3DVW…

  17. Open Source Software and Design-Based Research Symbiosis in Developing 3D Virtual Learning Environments: Examples from the iSocial Project

    Science.gov (United States)

    Schmidt, Matthew; Galyen, Krista; Laffey, James; Babiuch, Ryan; Schmidt, Carla

    2014-01-01

    Design-based research (DBR) and open source software are both acknowledged as potentially productive ways for advancing learning technologies. These approaches have practical benefits for the design and development process and for building and leveraging community to augment and sustain design and development. This report presents a case study of…

  18. A method to combine target volume data from 3D and 4D planned thoracic radiotherapy patient cohorts for machine learning applications

    NARCIS (Netherlands)

    Johnson, Corinne; Price, Gareth; Khalifa, Jonathan; Faivre-Finn, Corinne; Dekker, Andre; Moore, Christopher; van Herk, Marcel

    2017-01-01

    The gross tumour volume (GTV) is predictive of clinical outcome and consequently features in many machine-learned models. 4D-planning, however, has prompted substitution of the GTV with the internal gross target volume (iGTV). We present and validate a method to synthesise GTV data from the iGTV,

  19. Does Distance to Subsidiaries affect Headquarters Value Added?

    DEFF Research Database (Denmark)

    Nell, Phillip C.; Beugelsdijk, Sjoerd; Ambos, Björn

    2014-01-01

    How does distance between MNC headquarters and their subsidiaries affect the value added generated by headquarters? Integrating theories on spatial transaction costs with the headquarter view of the MNC, we link two types of distances, geographic distance and contextual distance, with headquarters...... value added. We test our hypotheses on an original dataset of 124 manufacturing subsidiaries in Europe. We find that the relation between distance and headquarters value added is conditional on the degree of subsidiaries’ external embeddedness. We find no direct effect of distance. The value added...... of headquarters is highest for subsidiaries that are not externally embedded in the host country and that operate at a large distance. It is lowest for locally responsive subsidiaries with high external embeddedness operating at a large distance. We discuss implications for the literature on headquarters-subsidiaries...

  20. 3-D neutron transport benchmarks

    International Nuclear Information System (INIS)

    Takeda, T.; Ikeda, H.

    1991-03-01

    A set of 3-D neutron transport benchmark problems proposed by the Osaka University to NEACRP in 1988 has been calculated by many participants and the corresponding results are summarized in this report. The results of K eff , control rod worth and region-averaged fluxes for the four proposed core models, calculated by using various 3-D transport codes are compared and discussed. The calculational methods used were: Monte Carlo, Discrete Ordinates (Sn), Spherical Harmonics (Pn), Nodal Transport and others. The solutions of the four core models are quite useful as benchmarks for checking the validity of 3-D neutron transport codes

  1. Handbook of 3D integration

    CERN Document Server

    Garrou , Philip; Ramm , Peter

    2014-01-01

    Edited by key figures in 3D integration and written by top authors from high-tech companies and renowned research institutions, this book covers the intricate details of 3D process technology.As such, the main focus is on silicon via formation, bonding and debonding, thinning, via reveal and backside processing, both from a technological and a materials science perspective. The last part of the book is concerned with assessing and enhancing the reliability of the 3D integrated devices, which is a prerequisite for the large-scale implementation of this emerging technology. Invaluable reading fo

  2. 3D Models of Immunotherapy

    Science.gov (United States)

    This collaborative grant is developing 3D models of both mouse and human biology to investigate aspects of therapeutic vaccination in order to answer key questions relevant to human cancer immunotherapy.

  3. AI 3D Cybug Gaming

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this short paper I briefly discuss 3D war Game based on artificial intelligence concepts called AI WAR. Going in to the details, I present the importance of CAICL language and how this language is used in AI WAR. Moreover I also present a designed and implemented 3D War Cybug for AI WAR using CAICL and discus the implemented strategy to defeat its enemies during the game life.

  4. 3D Face Apperance Model

    DEFF Research Database (Denmark)

    Lading, Brian; Larsen, Rasmus; Astrom, K

    2006-01-01

    We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations......We build a 3D face shape model, including inter- and intra-shape variations, derive the analytical Jacobian of its resulting 2D rendered image, and show example of its fitting performance with light, pose, id, expression and texture variations...

  5. 3D accelerator magnet calculations using MAGNUS-3D

    International Nuclear Information System (INIS)

    Pissanetzky, S.; Miao, Y.

    1989-01-01

    The steady trend towards increased magnetic and geometric complexity in the design of accelerator magnets has caused a need for reliable 3D computer models and a better understanding of the behavior of magnetic system in three dimensions. The capabilities of the MAGNUS-3D family of programs are ideally suited to solve this class of problems and provide insight into 3D effects. MAGNUS-3D can solve any problem of magnetostatics involving permanent magnets, nonlinear ferromagnetic materials and electric conductors. MAGNUS-3D uses the finite element method and the two-scalar-potentials formulation of Maxwell's equations to obtain the solution, which can then be used interactively to obtain tables of field components at specific points or lines, plots of field lines, function graphs representing a field component plotted against a coordinate along any line in space (such as the beam line), and views of the conductors, the mesh and the magnetic bodies. The magnetic quantities that can be calculated include the force or torque on conductors or magnetic parts, the energy, the flux through a specified surface, line integrals of any field component along any line in space, and the average field or potential harmonic coefficients. We describe the programs with emphasis placed on their use for accelerator magnet design, and present an advanced example of actual calculations. (orig.)

  6. 3D Modeling Techniques for Print and Digital Media

    Science.gov (United States)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  7. Stimulating Sustainability in Multinational Companies: the Significance of Regional Headquarters

    Directory of Open Access Journals (Sweden)

    Andreas G. M. NACHBAGAUER

    2016-06-01

    Full Text Available Recently, regional headquarters have gained practical importance and theoretical attention. Traditionally considered a mere transmission facility to manage complex organisations, advanced approaches, however, locate regional headquarters in a field of tension between hierarchical integration and strategic independence. Given the growing concern for global responsibility, stimulating sustainability also and particularly addresses regional headquarters. This conceptual article combines the call for sustainability with the upcoming importance of regional headquarters: which contributions can the regional headquarters of a multinational company deliver to stimulate the development of sustainable corporate strategy and operations? The main topics are the effects different versions of embedding regional headquarters into the corporate context have on opportunities to implement sustainability policies: Are there different chances for successful implementation depending on the strategic setup of the company? Does the distribution of competences matter? Which types of interaction between headquarters and branch are suitable to introduce sustainability sustainably? Is the mix of national contexts of headquarters and branch of importance? First results show that depending on the companywide strategy, and especially on the structure and distribution of competences, regional headquarters can play a significant role as trigger of sustainability. The literature favours strong involvement and large autonomy of both branches as well as regional headquarters for the development and management of sustainability. The parts of the company involved in a critical environment often are the starting point of sustainability policies.

  8. From 3D view to 3D print

    Science.gov (United States)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  9. 3D imaging, 3D printing and 3D virtual planning in endodontics.

    Science.gov (United States)

    Shah, Pratik; Chong, B S

    2018-03-01

    The adoption and adaptation of recent advances in digital technology, such as three-dimensional (3D) printed objects and haptic simulators, in dentistry have influenced teaching and/or management of cases involving implant, craniofacial, maxillofacial, orthognathic and periodontal treatments. 3D printed models and guides may help operators plan and tackle complicated non-surgical and surgical endodontic treatment and may aid skill acquisition. Haptic simulators may assist in the development of competency in endodontic procedures through the acquisition of psycho-motor skills. This review explores and discusses the potential applications of 3D printed models and guides, and haptic simulators in the teaching and management of endodontic procedures. An understanding of the pertinent technology related to the production of 3D printed objects and the operation of haptic simulators are also presented.

  10. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    Science.gov (United States)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  11. Materialedreven 3d digital formgivning

    DEFF Research Database (Denmark)

    Hansen, Flemming Tvede

    2010-01-01

    Formålet med forskningsprojektet er for det første at understøtte keramikeren i at arbejde eksperimenterende med digital formgivning, og for det andet at bidrage til en tværfaglig diskurs om brugen af digital formgivning. Forskningsprojektet fokuserer på 3d formgivning og derved på 3d digital...... formgivning og Rapid Prototyping (RP). RP er en fællesbetegnelse for en række af de teknikker, der muliggør at overføre den digitale form til 3d fysisk form. Forskningsprojektet koncentrerer sig om to overordnede forskningsspørgsmål. Det første handler om, hvordan viden og erfaring indenfor det keramiske...... fagområde kan blive udnyttet i forhold til 3d digital formgivning. Det andet handler om, hvad en sådan tilgang kan bidrage med, og hvordan den kan blive udnyttet i et dynamisk samspil med det keramiske materiale i formgivningen af 3d keramiske artefakter. Materialedreven formgivning er karakteriseret af en...

  12. 3D future internet media

    CERN Document Server

    Dagiuklas, Tasos

    2014-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The main contributions are based on the results of the FP7 European Projects ROMEO, which focus on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the Future Internet (www.ict-romeo.eu). The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of constant video quality to both fixed and mobile users. ROMEO will design and develop hybrid-networking solutions that co...

  13. Novel 3D media technologies

    CERN Document Server

    Dagiuklas, Tasos

    2015-01-01

    This book describes recent innovations in 3D media and technologies, with coverage of 3D media capturing, processing, encoding, and adaptation, networking aspects for 3D Media, and quality of user experience (QoE). The contributions are based on the results of the FP7 European Project ROMEO, which focuses on new methods for the compression and delivery of 3D multi-view video and spatial audio, as well as the optimization of networking and compression jointly across the future Internet. The delivery of 3D media to individual users remains a highly challenging problem due to the large amount of data involved, diverse network characteristics and user terminal requirements, as well as the user’s context such as their preferences and location. As the number of visual views increases, current systems will struggle to meet the demanding requirements in terms of delivery of consistent video quality to fixed and mobile users. ROMEO will present hybrid networking solutions that combine the DVB-T2 and DVB-NGH broadcas...

  14. What is 3D good for? A review of human performance on stereoscopic 3D displays

    Science.gov (United States)

    McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.

    2012-06-01

    This work reviews the human factors-related literature on the task performance implications of stereoscopic 3D displays, in order to point out the specific performance benefits (or lack thereof) one might reasonably expect to observe when utilizing these displays. What exactly is 3D good for? Relative to traditional 2D displays, stereoscopic displays have been shown to enhance performance on a variety of depth-related tasks. These tasks include judging absolute and relative distances, finding and identifying objects (by breaking camouflage and eliciting perceptual "pop-out"), performing spatial manipulations of objects (object positioning, orienting, and tracking), and navigating. More cognitively, stereoscopic displays can improve the spatial understanding of 3D scenes or objects, improve memory/recall of scenes or objects, and improve learning of spatial relationships and environments. However, for tasks that are relatively simple, that do not strictly require depth information for good performance, where other strong cues to depth can be utilized, or for depth tasks that lie outside the effective viewing volume of the display, the purported performance benefits of 3D may be small or altogether absent. Stereoscopic 3D displays come with a host of unique human factors problems including the simulator-sickness-type symptoms of eyestrain, headache, fatigue, disorientation, nausea, and malaise, which appear to effect large numbers of viewers (perhaps as many as 25% to 50% of the general population). Thus, 3D technology should be wielded delicately and applied carefully; and perhaps used only as is necessary to ensure good performance.

  15. Modification of 3D milling machine to 3D printer

    OpenAIRE

    Taska, Abraham

    2014-01-01

    Tato práce se zabývá přestavbou gravírovací frézky na 3D tiskárnu. V první části se práce zabývá možnými technologiemi 3D tisku a možností jejich využití u přestavby. Dále jsou popsány a vybrány vhodné součásti pro přestavbu. V další části je realizováno řízení ohřevu podložky, trysky a řízení posuvu drátu pomocí softwaru TwinCat od společnosti Beckhoff na průmyslovém počítači. Výsledkem práce by měla být oživená 3D tiskárna. This thesis deals with rebuilding of engraving machine to 3D pri...

  16. Aspects of defects in 3d-3d correspondence

    International Nuclear Information System (INIS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-01-01

    In this paper we study supersymmetric co-dimension 2 and 4 defects in the compactification of the 6d (2,0) theory of type A_N_−_1 on a 3-manifold M. The so-called 3d-3d correspondence is a relation between complexified Chern-Simons theory (with gauge group SL(N,ℂ)) on M and a 3d N=2 theory T_N[M]. We study this correspondence in the presence of supersymmetric defects, which are knots/links inside the 3-manifold. Our study employs a number of different methods: state-integral models for complex Chern-Simons theory, cluster algebra techniques, domain wall theory T[SU(N)], 5d N=2 SYM, and also supergravity analysis through holography. These methods are complementary and we find agreement between them. In some cases the results lead to highly non-trivial predictions on the partition function. Our discussion includes a general expression for the cluster partition function, which can be used to compute in the presence of maximal and certain class of non-maximal punctures when N>2. We also highlight the non-Abelian description of the 3d N=2T_N[M] theory with defect included, when such a description is available. This paper is a companion to our shorter paper http://dx.doi.org/10.1088/1751-8113/49/30/30LT02, which summarizes our main results.

  17. How do Regional Headquarters Influence Corporate Decisions in Networked MNCs?

    DEFF Research Database (Denmark)

    Mahnke, Volker; Ambos, Björn; Nell, Phillip Christopher

    2012-01-01

    In networked MNCs where knowledge and power are distributed, corporate strategy processes benefit from input arising from many different levels of the organization. Recently, the regional (i.e., supra-national) level has been emphasized as an important additional source of knowledge and input......, and as a bridge between local subsidiaries and global corporate headquarters. This paper builds theory on the antecedents to regional headquarters' influence on corporate decisions (i.e., organizational, behavioral, and motivational). Based on a survey of regional headquarters in Europe and their relations...... with MNC headquarters, we provide empirical evidence that a regional headquarters' autonomy and signaling behavior have significant effects on its influence on corporate strategy. Furthermore, we find support for our hypothesis that the regional headquarters' charter moderates such bottom–up influence....

  18. Stereoscopic 3D graphics generation

    Science.gov (United States)

    Li, Zhi; Liu, Jianping; Zan, Y.

    1997-05-01

    Stereoscopic display technology is one of the key techniques of areas such as simulation, multimedia, entertainment, virtual reality, and so on. Moreover, stereoscopic 3D graphics generation is an important part of stereoscopic 3D display system. In this paper, at first, we describe the principle of stereoscopic display and summarize some methods to generate stereoscopic 3D graphics. Secondly, to overcome the problems which came from the methods of user defined models (such as inconvenience, long modifying period and so on), we put forward the vector graphics files defined method. Thus we can design more directly; modify the model simply and easily; generate more conveniently; furthermore, we can make full use of graphics accelerator card and so on. Finally, we discuss the problem of how to speed up the generation.

  19. 3-D Vector Flow Imaging

    DEFF Research Database (Denmark)

    Holbek, Simon

    , if this significant reduction in the element count can still provide precise and robust 3-D vector flow estimates in a plane. The study concludes that the RC array is capable of estimating precise 3-D vector flow both in a plane and in a volume, despite the low channel count. However, some inherent new challenges...... ultrasonic vector flow estimation and bring it a step closer to a clinical application. A method for high frame rate 3-D vector flow estimation in a plane using the transverse oscillation method combined with a 1024 channel 2-D matrix array is presented. The proposed method is validated both through phantom...... hampers the task of real-time processing. In a second study, some of the issue with the 2-D matrix array are solved by introducing a 2-D row-column (RC) addressing array with only 62 + 62 elements. It is investigated both through simulations and via experimental setups in various flow conditions...

  20. 3D Printed Bionic Nanodevices.

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  1. 3D Printed Bionic Nanodevices

    Science.gov (United States)

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  2. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  3. Markerless 3D Face Tracking

    DEFF Research Database (Denmark)

    Walder, Christian; Breidt, Martin; Bulthoff, Heinrich

    2009-01-01

    We present a novel algorithm for the markerless tracking of deforming surfaces such as faces. We acquire a sequence of 3D scans along with color images at 40Hz. The data is then represented by implicit surface and color functions, using a novel partition-of-unity type method of efficiently...... the scanned surface, using the variation of both shape and color as features in a dynamic energy minimization problem. Our prototype system yields high-quality animated 3D models in correspondence, at a rate of approximately twenty seconds per timestep. Tracking results for faces and other objects...

  4. Physical fitness and health education program at NASA Headquarters

    Science.gov (United States)

    Angotti, Cathy

    1993-01-01

    The topics discussed include the following: policy procedures to enter the NASA Headquarters Physical Fitness and Health Program; eligibility; TDY eligibility; health promotions offered; and general facility management.

  5. Narratives from the Agora 3D world

    DEFF Research Database (Denmark)

    Olsen, Sanne Fejfer; Siggaard Jensen, Sisse; Bolander, Klara

    2004-01-01

    is on presence and knowledge sharing in interaction with avatars communicating in chat while building a 3D Agora AWEDU world (www.activeworlds.com). The narratives and reflections on knowledge sharing are all produced in explorative sessions carried out in a special interest group (SIG 5) on ?Knowledge sharing...... across knowledge cultures? in the EU project EQUEL on quality in e-learning. The understanding of social interaction and knowledge sharing in the Agora 3D world is based on explorative and experiential approaches and sessions. Joint explorations have been carried out to facilitate the sharing...... of experience among participants in the Agora world SIG. The idea with these sessions has been to build a community of shared knowledge based on practicing, acting and interacting with avatars. The underlying assumption being that first hand experience with collaboration and knowledge sharing are essential...

  6. Why 3D Print? The 21st-Century Skills Students Develop While Engaging in 3D Printing Projects

    Science.gov (United States)

    Trust, Torrey; Maloy, Robert W.

    2017-01-01

    The emergence of 3D printing has raised hopes and concerns about how it can be used effectively as an educational technology in school classrooms. This paper presents the results of a survey asking teachers from multiple grade levels and subject fields about the impact of 3D projects on student learning. Teachers were asked about the kinds of 3D…

  7. 3D Holographic Technology and Its Educational Potential

    Science.gov (United States)

    Lee, Hyangsook

    2013-01-01

    This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.

  8. 3D Terahertz Beam Profiling

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Strikwerda, Andrew; Jepsen, Peter Uhd

    2013-01-01

    We present a characterization of THz beams generated in both a two-color air plasma and in a LiNbO3 crystal. Using a commercial THz camera, we record intensity images as a function of distance through the beam waist, from which we extract 2D beam profiles and visualize our measurements into 3D beam...

  9. 3D Printing: Exploring Capabilities

    Science.gov (United States)

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  10. 3D Pit Stop Printing

    Science.gov (United States)

    Wright, Lael; Shaw, Daniel; Gaidds, Kimberly; Lyman, Gregory; Sorey, Timothy

    2018-01-01

    Although solving an engineering design project problem with limited resources or structural capabilities of materials can be part of the challenge, students making their own parts can support creativity. The authors of this article found an exciting solution: 3D printers are not only one of several tools for making but also facilitate a creative…

  11. 3D histomorphometric quantification from 3D computed tomography

    International Nuclear Information System (INIS)

    Oliveira, L.F. de; Lopes, R.T.

    2004-01-01

    The histomorphometric analysis is based on stereologic concepts and was originally applied to biologic samples. This technique has been used to evaluate different complex structures such as ceramic filters, net structures and cancellous objects that are objects with inner connected structures. The measured histomorphometric parameters of structure are: sample volume to total reconstructed volume (BV/TV), sample surface to sample volume (BS/BV), connection thickness (Tb Th ), connection number (Tb N ) and connection separation (Tb Sp ). The anisotropy was evaluated as well. These parameters constitute the base of histomorphometric analysis. The quantification is realized over cross-sections recovered by cone beam reconstruction, where a real-time microfocus radiographic system is used as tomographic system. The three-dimensional (3D) histomorphometry, obtained from tomography, corresponds to an evolution of conventional method that is based on 2D analysis. It is more coherent with morphologic and topologic context of the sample. This work shows result from 3D histomorphometric quantification to characterize objects examined by 3D computer tomography. The results, which characterizes the internal structures of ceramic foams with different porous density, are compared to results from conventional methods

  12. DYNA3D2000*, Explicit 3-D Hydrodynamic FEM Program

    International Nuclear Information System (INIS)

    Lin, J.

    2002-01-01

    1 - Description of program or function: DYNA3D2000 is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation. 2 - Method of solution: Discretization of a continuous model transforms partial differential equations into algebraic equations. A numerical solution is then obtained by solving these algebraic equations through a direct time marching scheme. 3 - Restrictions on the complexity of the problem: Recent software improvements have eliminated most of the user identified limitations with dynamic memory allocation and a very large format description that has pushed potential problem sizes beyond the reach of most users. The dominant restrictions remain in code execution speed and robustness, which the developers constantly strive to improve

  13. 3-D Discrete Analytical Ridgelet Transform

    OpenAIRE

    Helbert , David; Carré , Philippe; Andrès , Éric

    2006-01-01

    International audience; In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines:...

  14. Media development effectiveness of geography 3d muckups

    Science.gov (United States)

    Prasetya, S. P.; Daryono; Budiyanto, E.

    2018-01-01

    Geography examines geosphere phenomena that occurs in a space associated with humans on earth’s surface. Media 3D models are an important visual media in presenting spatial objects on the earth’s surface. This study aims to develop a decent 3D mockups media used for learning materials and test the effectiveness of media geography 3D mockups on learning outcomes. The study involved 90 students of Geography Education, Faculty of Social Sciences and Law, State University of Surabaya. Method development using a model of the Borg and Gall (1989) which has been modified into three stages, namely the introduction, development, and testing. The study produced instructional media 3D Muckups eligible to be used as a learning medium for the material hydrosphere geography, geology, and geomorphology. 3D mockups media use in learning geography materials can increase the activity of students, student interest and a positive response to raise the student learning outcomes as the material can be delivered more concrete geography. Based on observations conducted student activity occurs continuously increase in the use of 3D models for learning geography material.

  15. Practical algorithms for 3D computer graphics

    CERN Document Server

    Ferguson, R Stuart

    2013-01-01

    ""A valuable book to accompany any course that mixes the theory and practice of 3D graphics. The book's web site has many useful programs and code samples.""-Karen Rafferty, Queen's University, Belfast""The topics covered by this book are backed by the OpenFX modeling and animation software. This is a big plus in that it provides a practical perspective and encourages experimentation. … [This] will offer students a more interesting and hands-on learning experience, especially for those wishing to pursue a career in computer game development.""-Naganand Madhavapeddy, GameDeveloper>

  16. Location trends of large company headquarters during the 1990s

    OpenAIRE

    Thomas H. Klier; William A. Testa

    2002-01-01

    This article documents changes in the spatial distribution of corporate headquarters of large U.S.-domiciled corporations during the 1990s. The authors find that the largest metropolitan areas continue to host a disproportionate share of headquarters, but there have been significant shifts toward cities with population between one and two million.

  17. 3D integrated superconducting qubits

    Science.gov (United States)

    Rosenberg, D.; Kim, D.; Das, R.; Yost, D.; Gustavsson, S.; Hover, D.; Krantz, P.; Melville, A.; Racz, L.; Samach, G. O.; Weber, S. J.; Yan, F.; Yoder, J. L.; Kerman, A. J.; Oliver, W. D.

    2017-10-01

    As the field of quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1, T2,echo > 20 μs) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips.

  18. 3D Printed Robotic Hand

    Science.gov (United States)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  19. Mortars for 3D printing

    Directory of Open Access Journals (Sweden)

    Demyanenko Olga

    2018-01-01

    Full Text Available The paper is aimed at developing scientifically proven compositions of mortars for 3D printing modified by a peat-based admixture with improved operational characteristics. The paper outlines the results of experimental research on hardened cement paste and concrete mixture with the use of modifying admixture MT-600 (thermally modified peat. It is found that strength of hardened cement paste increases at early age when using finely dispersed admixtures, which is the key factor for formation of construction and technical specifications of concrete for 3D printing technologies. The composition of new formations of hardened cement paste modified by MT-600 admixture were obtained, which enabled to suggest the possibility of their physico-chemical interaction while hardening.

  20. Automated 3-D Radiation Mapping

    International Nuclear Information System (INIS)

    Tarpinian, J. E.

    1991-01-01

    This work describes an automated radiation detection and imaging system which combines several state-of-the-art technologies to produce a portable but very powerful visualization tool for planning work in radiation environments. The system combines a radiation detection system, a computerized radiation imaging program, and computerized 3-D modeling to automatically locate and measurements are automatically collected and imaging techniques are used to produce colored, 'isodose' images of the measured radiation fields. The isodose lines from the images are then superimposed over the 3-D model of the area. The final display shows the various components in a room and their associated radiation fields. The use of an automated radiation detection system increases the quality of radiation survey obtained measurements. The additional use of a three-dimensional display allows easier visualization of the area and associated radiological conditions than two-dimensional sketches

  1. Forensic 3D Scene Reconstruction

    International Nuclear Information System (INIS)

    LITTLE, CHARLES Q.; PETERS, RALPH R.; RIGDON, J. BRIAN; SMALL, DANIEL E.

    1999-01-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene

  2. 3D neutron transport modelization

    International Nuclear Information System (INIS)

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.)

  3. 3D Printing A Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Zulkifl Hasan

    2017-08-01

    Full Text Available Solid free fabrication SFF are produced to enhance the printing instrument utilizing distinctive strategies like Piezo spout control multi-spout injet printers or STL arrange utilizing cutting information. The procedure is utilized to diminish the cost and enhance the speed of printing. A few techniques take long at last because of extra process like dry the printing. This study will concentrate on SFFS utilizing UV gum for 3D printing.

  4. 3D neutron transport modelization

    Energy Technology Data Exchange (ETDEWEB)

    Warin, X.

    1996-12-01

    Some nodal methods to solve the transport equation in 3D are presented. Two nodal methods presented at an OCDE congress are described: a first one is a low degree one called RTN0; a second one is a high degree one called BDM1. The two methods can be made faster with a totally consistent DSA. Some results of parallelization show that: 98% of the time is spent in sweeps; transport sweeps are easily parallelized. (K.A.). 10 refs.

  5. Conducting polymer 3D microelectrodes

    DEFF Research Database (Denmark)

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained...... showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared...

  6. [Real time 3D echocardiography

    Science.gov (United States)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  7. 3D treatment planning systems.

    Science.gov (United States)

    Saw, Cheng B; Li, Sicong

    2018-01-01

    Three-dimensional (3D) treatment planning systems have evolved and become crucial components of modern radiation therapy. The systems are computer-aided designing or planning softwares that speed up the treatment planning processes to arrive at the best dose plans for the patients undergoing radiation therapy. Furthermore, the systems provide new technology to solve problems that would not have been considered without the use of computers such as conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). The 3D treatment planning systems vary amongst the vendors and also the dose delivery systems they are designed to support. As such these systems have different planning tools to generate the treatment plans and convert the treatment plans into executable instructions that can be implemented by the dose delivery systems. The rapid advancements in computer technology and accelerators have facilitated constant upgrades and the introduction of different and unique dose delivery systems than the traditional C-arm type medical linear accelerators. The focus of this special issue is to gather relevant 3D treatment planning systems for the radiation oncology community to keep abreast of technology advancement by assess the planning tools available as well as those unique "tricks or tips" used to support the different dose delivery systems. Copyright © 2018 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  8. Compact 3D quantum memory

    Science.gov (United States)

    Xie, Edwar; Deppe, Frank; Renger, Michael; Repp, Daniel; Eder, Peter; Fischer, Michael; Goetz, Jan; Pogorzalek, Stefan; Fedorov, Kirill G.; Marx, Achim; Gross, Rudolf

    2018-05-01

    Superconducting 3D microwave cavities offer state-of-the-art coherence times and a well-controlled environment for superconducting qubits. In order to realize at the same time fast readout and long-lived quantum information storage, one can couple the qubit to both a low-quality readout and a high-quality storage cavity. However, such systems are bulky compared to their less coherent 2D counterparts. A more compact and scalable approach is achieved by making use of the multimode structure of a 3D cavity. In our work, we investigate such a device where a transmon qubit is capacitively coupled to two modes of a single 3D cavity. External coupling is engineered so that the memory mode has an about 100 times larger quality factor than the readout mode. Using an all-microwave second-order protocol, we realize a lifetime enhancement of the stored state over the qubit lifetime by a factor of 6 with a fidelity of approximately 80% determined via quantum process tomography. We also find that this enhancement is not limited by fundamental constraints.

  9. 3D Graphics with Spreadsheets

    Directory of Open Access Journals (Sweden)

    Jan Benacka

    2009-06-01

    Full Text Available In the article, the formulas for orthographic parallel projection of 3D bodies on computer screen are derived using secondary school vector algebra. The spreadsheet implementation is demonstrated in six applications that project bodies with increasing intricacy – a convex body (cube with non-solved visibility, convex bodies (cube, chapel with solved visibility, a coloured convex body (chapel with solved visibility, and a coloured non-convex body (church with solved visibility. The projections are revolvable in horizontal and vertical plane, and they are changeable in size. The examples show an unusual way of using spreadsheets as a 3D computer graphics tool. The applications can serve as a simple introduction to the general principles of computer graphics, to the graphics with spreadsheets, and as a tool for exercising stereoscopic vision. The presented approach is usable at visualising 3D scenes within some topics of secondary school curricula as solid geometry (angles and distances of lines and planes within simple bodies or analytic geometry in space (angles and distances of lines and planes in E3, and even at university level within calculus at visualising graphs of z = f(x,y functions. Examples are pictured.

  10. Longview District Operations and Maintenance Headquarters: Environmental assessment

    International Nuclear Information System (INIS)

    1992-03-01

    Bonneville Power Administration (BPA) operations and maintenance staff are presently based at a headquarters next to the Longview Substation. These headquarters buildings, however, were built in 1941 and have deteriorated to the point of needing extensive repair. They also lack sufficient inside storage space. New buildings cannot be constructed on the site because of surrounding development. In addition, the site is within an area exposed to industrial fallout (coal tar pitch and metallic particles) that may be damaging buildings, equipment, and vehicles. BPA is concerned about the potential health risk to headquarters staff from the fallout. In light of these problems, BPA proposes to construct a new operations and maintenance headquarters at a different location, and to demolish the existing headquarters. This paper discusses the environmental impacts of the proposed action and alternatives

  11. 3D composite image, 3D MRI, 3D SPECT, hydrocephalus

    International Nuclear Information System (INIS)

    Mito, T.; Shibata, I.; Sugo, N.; Takano, M.; Takahashi, H.

    2002-01-01

    The three-dimensional (3D)SPECT imaging technique we have studied and published for the past several years is an analytical tool that permits visual expression of the cerebral circulation profile in various cerebral diseases. The greatest drawback of SPECT is that the limitation on precision of spacial resolution makes intracranial localization impossible. In 3D SPECT imaging, intracranial volume and morphology may vary with the threshold established. To solve this problem, we have produced complimentarily combined SPECT and helical-CT 3D images by means of general-purpose visualization software for intracranial localization. In hydrocephalus, however, the key subject to be studied is the profile of cerebral circulation around the ventricles of the brain. This suggests that, for displaying the cerebral ventricles in three dimensions, CT is a difficult technique whereas MRI is more useful. For this reason, we attempted to establish the profile of cerebral circulation around the cerebral ventricles by the production of combined 3D images of SPECT and MRI. In patients who had shunt surgery for hydrocephalus, a difference between pre- and postoperative cerebral circulation profiles was assessed by a voxel distribution curve, 3D SPECT images, and combined 3D SPECT and MRI images. As the shunt system in this study, an Orbis-Sigma valve of the automatic cerebrospinal fluid volume adjustment type was used in place of the variable pressure type Medos valve currently in use, because this device requires frequent changes in pressure and a change in pressure may be detected after MRI procedure. The SPECT apparatus used was PRISM3000 of the three-detector type, and 123I-IMP was used as the radionuclide in a dose of 222 MBq. MRI data were collected with an MAGNEXa+2 with a magnetic flux density of 0.5 tesla under the following conditions: field echo; TR 50 msec; TE, 10 msec; flip, 30ueK; 1 NEX; FOV, 23 cm; 1-mm slices; and gapless. 3D images are produced on the workstation TITAN

  12. 3D silicon strip detectors

    International Nuclear Information System (INIS)

    Parzefall, Ulrich; Bates, Richard; Boscardin, Maurizio; Dalla Betta, Gian-Franco; Eckert, Simon; Eklund, Lars; Fleta, Celeste; Jakobs, Karl; Kuehn, Susanne; Lozano, Manuel; Pahn, Gregor; Parkes, Chris; Pellegrini, Giulio; Pennicard, David; Piemonte, Claudio; Ronchin, Sabina; Szumlak, Tomasz; Zoboli, Andrea; Zorzi, Nicola

    2009-01-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10 15 N eq /cm 2 , which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10 15 N eq /cm 2 . The tests were performed with three systems: a highly focused IR-laser with 5μm spot size to make position-resolved scans of the charge collection efficiency, an Sr 90 β-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of the results obtained with 3D-STC-modules.

  13. 3D silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Parzefall, Ulrich [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany)], E-mail: ulrich.parzefall@physik.uni-freiburg.de; Bates, Richard [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Boscardin, Maurizio [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Dalla Betta, Gian-Franco [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Eckert, Simon [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Eklund, Lars; Fleta, Celeste [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Jakobs, Karl; Kuehn, Susanne [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Lozano, Manuel [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pahn, Gregor [Physikalisches Institut, Universitaet Freiburg, Hermann-Herder-Str. 3, D-79104 Freiburg (Germany); Parkes, Chris [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Pellegrini, Giulio [Instituto de Microelectronica de Barcelona, IMB-CNM, CSIC, Barcelona (Spain); Pennicard, David [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Piemonte, Claudio; Ronchin, Sabina [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy); Szumlak, Tomasz [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Zoboli, Andrea [INFN and Universita' di Trento, via Sommarive 14, 38050 Povo di Trento (Italy); Zorzi, Nicola [FBK-irst, Center for Materials and Microsystems, via Sommarive 18, 38050 Povo di Trento (Italy)

    2009-06-01

    While the Large Hadron Collider (LHC) at CERN has started operation in autumn 2008, plans for a luminosity upgrade to the Super-LHC (sLHC) have already been developed for several years. This projected luminosity increase by an order of magnitude gives rise to a challenging radiation environment for tracking detectors at the LHC experiments. Significant improvements in radiation hardness are required with respect to the LHC. Using a strawman layout for the new tracker of the ATLAS experiment as an example, silicon strip detectors (SSDs) with short strips of 2-3 cm length are foreseen to cover the region from 28 to 60 cm distance to the beam. These SSD will be exposed to radiation levels up to 10{sup 15}N{sub eq}/cm{sup 2}, which makes radiation resistance a major concern for the upgraded ATLAS tracker. Several approaches to increasing the radiation hardness of silicon detectors exist. In this article, it is proposed to combine the radiation hard 3D-design originally conceived for pixel-style applications with the benefits of the established planar technology for strip detectors by using SSDs that have regularly spaced doped columns extending into the silicon bulk under the detector strips. The first 3D SSDs to become available for testing were made in the Single Type Column (STC) design, a technological simplification of the original 3D design. With such 3D SSDs, a small number of prototype sLHC detector modules with LHC-speed front-end electronics as used in the semiconductor tracking systems of present LHC experiments were built. Modules were tested before and after irradiation to fluences of 10{sup 15}N{sub eq}/cm{sup 2}. The tests were performed with three systems: a highly focused IR-laser with 5{mu}m spot size to make position-resolved scans of the charge collection efficiency, an Sr{sup 90}{beta}-source set-up to measure the signal levels for a minimum ionizing particle (MIP), and a beam test with 180 GeV pions at CERN. This article gives a brief overview of

  14. Magmatic Systems in 3-D

    Science.gov (United States)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  15. The Agency's permanent headquarters in the Donaupark

    International Nuclear Information System (INIS)

    1975-01-01

    Early in 1967 the Government of Austria announced to the Board of Governors that it was making offers to the IAEA and UNIDO to establish Permanent Headquarters on 'the Donaupark site' to include office buildings, conference rooms required for the performance of the organizations' functions, as well as buildings for common services. The site of 160,000 square meters on the banks of the Danube River is 7 km from the centre of Vienna An International Architects' Competition was held in 1969. The Federal Government selected the plans of Architect Johann Staber in December 1970 and commissioned him with the work. A company, the IAKW (Internationales Amtssitzund Konferenzzentrum Wien AG), was founded in May 1971 and charged with the administrative, financial, and co-ordinating functions for the entire project. The construction of the office towers began in April 1973 and the shell of these towers was completed in the spring of 1975, the completed facades having already been placed on certain towers during that time. The conference building and the common services buildings are presently under construction. Completion of the whole complex is scheduled for the latter part of 1978 and work is progressing according to schedule. The actual building costs for the whole project are estimated at 6.8 billion Austrian schillings with an additional 6.2 billion schillings financing cost, and are shared between the Federal Government (65%) and the City of Vienna (35%); in addition, the City of Vienna has provided the land. Included in the total costs are the costs for traffic lanes within and leading to the area

  16. Wireless 3D Chocolate Printer

    Directory of Open Access Journals (Sweden)

    FROILAN G. DESTREZA

    2014-02-01

    Full Text Available This study is for the BSHRM Students of Batangas State University (BatStateU ARASOF for the researchers believe that the Wireless 3D Chocolate Printer would be helpful in their degree program especially on making creative, artistic, personalized and decorative chocolate designs. The researchers used the Prototyping model as procedural method for the successful development and implementation of the hardware and software. This method has five phases which are the following: quick plan, quick design, prototype construction, delivery and feedback and communication. This study was evaluated by the BSHRM Students and the assessment of the respondents regarding the software and hardware application are all excellent in terms of Accuracy, Effecitveness, Efficiency, Maintainability, Reliability and User-friendliness. Also, the overall level of acceptability of the design project as evaluated by the respondents is excellent. With regard to the observation about the best raw material to use in 3D printing, the chocolate is good to use as the printed material is slightly distorted,durable and very easy to prepare; the icing is also good to use as the printed material is not distorted and is very durable but consumes time to prepare; the flour is not good as the printed material is distorted, not durable but it is easy to prepare. The computation of the economic viability level of 3d printer with reference to ROI is 37.14%. The recommendation of the researchers in the design project are as follows: adding a cooling system so that the raw material will be more durable, development of a more simplified version and improving the extrusion process wherein the user do not need to stop the printing process just to replace the empty syringe with a new one.

  17. Interactive 3D Mars Visualization

    Science.gov (United States)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  18. Virtual 3-D Facial Reconstruction

    Directory of Open Access Journals (Sweden)

    Martin Paul Evison

    2000-06-01

    Full Text Available Facial reconstructions in archaeology allow empathy with people who lived in the past and enjoy considerable popularity with the public. It is a common misconception that facial reconstruction will produce an exact likeness; a resemblance is the best that can be hoped for. Research at Sheffield University is aimed at the development of a computer system for facial reconstruction that will be accurate, rapid, repeatable, accessible and flexible. This research is described and prototypical 3-D facial reconstructions are presented. Interpolation models simulating obesity, ageing and ethnic affiliation are also described. Some strengths and weaknesses in the models, and their potential for application in archaeology are discussed.

  19. Analysis of 3-D images

    Science.gov (United States)

    Wani, M. Arif; Batchelor, Bruce G.

    1992-03-01

    Deriving generalized representation of 3-D objects for analysis and recognition is a very difficult task. Three types of representations based on type of an object is used in this paper. Objects which have well-defined geometrical shapes are segmented by using a fast edge region based segmentation technique. The segmented image is represented by plan and elevation of each part of the object if the object parts are symmetrical about their central axis. The plan and elevation concept enables representing and analyzing such objects quickly and efficiently. The second type of representation is used for objects having parts which are not symmetrical about their central axis. The segmented surface patches of such objects are represented by the 3-D boundary and the surface features of each segmented surface. Finally, the third type of representation is used for objects which don't have well-defined geometrical shapes (for example a loaf of bread). These objects are represented and analyzed from its features which are derived using a multiscale contour based technique. Anisotropic Gaussian smoothing technique is introduced to segment the contours at various scales of smoothing. A new merging technique is used which enables getting the current best estimate of break points at each scale. This new technique enables elimination of loss of accuracy of localization effects at coarser scales without using scale space tracking approach.

  20. 3D Printed Bionic Ears

    Science.gov (United States)

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  1. 3D DNA Origami Crystals.

    Science.gov (United States)

    Zhang, Tao; Hartl, Caroline; Frank, Kilian; Heuer-Jungemann, Amelie; Fischer, Stefan; Nickels, Philipp C; Nickel, Bert; Liedl, Tim

    2018-05-18

    3D crystals assembled entirely from DNA provide a route to design materials on a molecular level and to arrange guest particles in predefined lattices. This requires design schemes that provide high rigidity and sufficiently large open guest space. A DNA-origami-based "tensegrity triangle" structure that assembles into a 3D rhombohedral crystalline lattice with an open structure in which 90% of the volume is empty space is presented here. Site-specific placement of gold nanoparticles within the lattice demonstrates that these crystals are spacious enough to efficiently host 20 nm particles in a cavity size of 1.83 × 10 5 nm 3 , which would also suffice to accommodate ribosome-sized macromolecules. The accurate assembly of the DNA origami lattice itself, as well as the precise incorporation of gold particles, is validated by electron microscopy and small-angle X-ray scattering experiments. The results show that it is possible to create DNA building blocks that assemble into lattices with customized geometry. Site-specific hosting of nano objects in the optically transparent DNA lattice sets the stage for metamaterial and structural biology applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 3D printed bionic ears.

    Science.gov (United States)

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  3. RELAP5-3D User Problems

    International Nuclear Information System (INIS)

    Riemke, Richard Allan

    2001-01-01

    The Reactor Excursion and Leak Analysis Program with 3D capability (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics and 3D neutron kinetics. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution

  4. LOTT RANCH 3D PROJECT

    International Nuclear Information System (INIS)

    Larry Lawrence; Bruce Miller

    2004-01-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  5. In Depth: Interactive Copyright Education for 3D Objects

    Directory of Open Access Journals (Sweden)

    Camille Thomas

    2018-03-01

    Full Text Available The growth of makerspaces and 3D services in libraries means new opportunities to utilize library expertise, partnerships, and exemptions to inform patrons about copyright in creative environments. Wide access to 3D printing, trademarks, and patents are relevant topics, but this paper only focuses on copyright. Little to no literature has been produced about how to educate makers about copyright for 3D objects. This paper will present a framework to encourage creators of 3D objects to analyze and interpret copyright information for their own purposes. It also discusses the process of designing and embedding learning tools into the database for SHAPES, a project for inter-library loans of 3D renderings. NOTE: New information about the methods and progress of this project has been added since the Kraemer Copyright Conference.

  6. 3D Virtual Dig: a 3D Application for Teaching Fieldwork in Archaeology

    Directory of Open Access Journals (Sweden)

    Paola Di Giuseppantonio Di Franco

    2012-12-01

    Full Text Available Archaeology is a material, embodied discipline; communicating this experience is critical to student success. In the context of lower-division archaeology courses, the present study examines the efficacy of 3D virtual and 2D archaeological representations of digs. This presentation aims to show a 3D application created to teach the archaeological excavation process to freshmen students. An archaeological environment was virtually re-created in 3D, and inserted in a virtual reality software application that allows users to work with the reconstructed excavation area. The software was tested in class for teaching the basics of archaeological fieldwork. The application interface is user-friendly and especially easy for 21st century students. The study employed a pre-survey, post-test, and post-survey design, used to understand the students' previous familiarity with archaeology, and test their awareness after the use of the application. Their level of knowledge was then compared with that of those students who had accessed written material only. This case-study demonstrates how a digital approach to laboratory work can positively affect student learning. Increased abilities to complete ill-defined problems (characteristic of the high-order thinking in the field, can, in fact, be demonstrated. 3D Virtual reconstruction serves, then, as an important bridge from traditional coursework to fieldwork.

  7. 3D biometrics systems and applications

    CERN Document Server

    Zhang, David

    2013-01-01

    Includes discussions on popular 3D imaging technologies, combines them with biometric applications, and then presents real 3D biometric systems Introduces many efficient 3D feature extraction, matching, and fusion algorithms Techniques presented have been supported by experimental results using various 3D biometric classifications

  8. Telerobotics and 3-d TV

    International Nuclear Information System (INIS)

    Able, E.

    1990-01-01

    This paper reports on the development of telerobotic techniques that can be used in the nuclear industry. The approach has been to apply available equipment, modify available equipment, or design and build anew. The authors have successfully built an input controller which can be used with standard industrial robots, converting them into telerobots. A clean room industrial robot has been re-engineered into an advanced telerobot engineered for the nuclear industry, using a knowledge of radiation tolerance design principles and collaboration with the manufacturer. A powerful hydraulic manipulator has been built to respond to a need for more heavy duty devices for in-cell handling. A variety of easy to use 3-D TV systems has been developed

  9. Conducting Polymer 3D Microelectrodes

    Directory of Open Access Journals (Sweden)

    Jenny Emnéus

    2010-12-01

    Full Text Available Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements.

  10. Implementing a 3D printing service in a biomedical library.

    Science.gov (United States)

    Walker, Verma

    2017-01-01

    Three-dimensional (3D) printing is opening new opportunities in biomedicine by enabling creative problem solving, faster prototyping of ideas, advances in tissue engineering, and customized patient solutions. The National Institutes of Health (NIH) Library purchased a Makerbot Replicator 2 3D printer to give scientists a chance to try out this technology. To launch the service, the library offered training, conducted a survey on service model preferences, and tracked usage and class attendance. 3D printing was very popular, with new lab equipment prototypes being the most common model type. Most survey respondents indicated they would use the service again and be willing to pay for models. There was high interest in training for 3D modeling, which has a steep learning curve. 3D printers also require significant care and repairs. NIH scientists are using 3D printing to improve their research, and it is opening new avenues for problem solving in labs. Several scientists found the 3D printer so helpful they bought one for their labs. Having a printer in a central and open location like a library can help scientists, doctors, and students learn how to use this technology in their work.

  11. Implementing a 3D printing service in a biomedical library

    Directory of Open Access Journals (Sweden)

    Verma Walker, MLIS

    2017-01-01

    Full Text Available Three-dimensional (3D printing is opening new opportunities in biomedicine by enabling creative problem solving, faster prototyping of ideas, advances in tissue engineering, and customized patient solutions. The National Institutes of Health (NIH Library purchased a Makerbot Replicator 2 3D printer to give scientists a chance to try out this technology. To launch the service, the library offered training, conducted a survey on service model preferences, and tracked usage and class attendance. 3D printing was very popular, with new lab equipment prototypes being the most common model type. Most survey respondents indicated they would use the service again and be willing to pay for models. There was high interest in training for 3D modeling, which has a steep learning curve. 3D printers also require significant care and repairs. NIH scientists are using 3D printing to improve their research, and it is opening new avenues for problem solving in labs. Several scientists found the 3D printer so helpful they bought one for their labs. Having a printer in a central and open location like a library can help scientists, doctors, and students learn how to use this technology in their work.

  12. Embedding complex objects with 3d printing

    KAUST Repository

    Hussain, Muhammad Mustafa

    2017-10-12

    A CMOS technology-compatible fabrication process for flexible CMOS electronics embedded during additive manufacturing (i.e. 3D printing). A method for such a process may include printing a first portion of a 3D structure; pausing the step of printing the 3D structure to embed the flexible silicon substrate; placing the flexible silicon substrate in a cavity of the first portion of the 3D structure to embed the flexible silicon substrate in the 3D structure; and resuming the step of printing the 3D structure to form the second portion of the 3D structure.

  13. Supernova Remnant in 3-D

    Science.gov (United States)

    2009-01-01

    of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through. The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave. This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron. High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these structures, but their orientation and

  14. Selected DOE Headquarters publications received by the Energy Library

    International Nuclear Information System (INIS)

    1978-07-01

    This bibliography provides listings of (mainly policy and programmatic) publications issued from the U.S. Department of Energy, Washington, D.C. The listings are arranged by the ''report code'' assigned to the major organizations at DOE Headquarters, followed by the three categories of environmental reports issued from DOE Headquarters. All of the publications listed, except for those shown as still ''in preparation,'' may be seen in the Energy Library. A title index arranged by title keywords follows the listings. Certain publications have been omitted. They include such items as pamphlets, ''fact sheets,'' bulletins and weekly/monthly issuances of DOE's Energy Information Administration and Economic Regulatory Administration, and employee bulletins and newsletters. Omitted from the bibliography altogether are headquarters publications assigned other types of report codes--e.g., ''HCP'' (Headquarters Contractor Publication) and ''CONF''

  15. Selected DOE Headquarters publications, October 1977-September 1979

    International Nuclear Information System (INIS)

    1979-11-01

    This sixth issue of cumulative listings of DOE Headquarters publications covers the first two years of the Department's operation (October 1, 1977 - September 30, 1979). It lists two groups of publications issued by then-existing Headquarters organizations and provides an index to their title keywords. The two groups of publications are publications assigned a DOE/XXX-type report number code and Headquarters contractor reports prepared by contractors (and published by DOE) to describe research and development work they have performed for the Department. Certain publications are omitted. They include such items as pamphlets, fact sheets, bulletins, newsletters, and telephone directories, as well as headquarters publications issued under the DOE-tr (DOE translation) and CONF (conference proceedings) codes, and technical reports from the Jet Propulsion Laboratory and NASA issued under DOE/JPL and DOE/NASA codes. The contents of this issue will not be repeated in subsequent issues of DOE/AD-0010

  16. Selected DOE Headquarters publications, October 1977-September 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    This sixth issue of cumulative listings of DOE Headquarters publications covers the first two years of the Department's operation (October 1, 1977 - September 30, 1979). It lists two groups of publications issued by then-existing Headquarters organizations and provides an index to their title keywords. The two groups of publications are publications assigned a DOE/XXX-type report number code and Headquarters contractor reports prepared by contractors (and published by DOE) to describe research and development work they have performed for the Department. Certain publications are omitted. They include such items as pamphlets, fact sheets, bulletins, newsletters, and telephone directories, as well as headquarters publications issued under the DOE-tr (DOE translation) and CONF (conference proceedings) codes, and technical reports from the Jet Propulsion Laboratory and NASA issued under DOE/JPL and DOE/NASA codes. The contents of this issue will not be repeated in subsequent issues of DOE/AD-0010. (RWR)

  17. Key Management Theories ... and What They Have to Say with Regards to Contemporary Headquarters Structures

    DEFF Research Database (Denmark)

    Nell, Phillip Christopher

    2018-01-01

    Multinational and multibusiness headquarters increasingly structure their headquarters in novel ways. They use several locations spread around the world, differentiate different types of headquarters activities in a very fine-grained way, they temporarily relocate top management teams, or relocate...

  18. 75 FR 76040 - Weyerhaeuser Company Corporate Headquarters Including On-Site Leased Workers From Volt Services...

    Science.gov (United States)

    2010-12-07

    ... Assistance on June 2, 2010, applicable to workers of Weyerhaeuser Company, Corporate Headquarters, including... Weyerhaeuser Company, Corporate Headquarters to be considered leased workers. Based on these findings, the... the Federal Way, Washington location of Weyerhaeuser Company, Corporate Headquarters. The amended...

  19. Bringing 3D Printing to Geophysical Science Education

    Science.gov (United States)

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  20. Natural fibre composites for 3D Printing

    OpenAIRE

    Pandey, Kapil

    2015-01-01

    3D printing has been common option for prototyping. Not all the materials are suitable for 3D printing. Various studies have been done and still many are ongoing regarding the suitability of the materials for 3D printing. This thesis work discloses the possibility of 3D printing of certain polymer composite materials. The main objective of this thesis work was to study the possibility for 3D printing the polymer composite material composed of natural fibre composite and various different ...

  1. Social Interaction and Its Realization in 3-D Virtual Learning Environment%社会性交互及其在三维虚拟学习环境中的实现

    Institute of Scientific and Technical Information of China (English)

    刘永娜; 张树玲; 孙波

    2015-01-01

    Learning is a social process, while the teaching interaction is an important factor affecting the learning effect. Teaching interaction includes individual interaction and social interaction. The social interaction plays a significant role in learning. Its teaching function can strengthen the cognitive process of students, and its social function can enhance the social emotion and social process of students. Though with inconsistent starting time and different attention, the study and cognition of social interaction at home and abroad both developed from the media attribute theory with the narrowest social presence at the beginning gradually to the understanding that the social presence is dynamic, and the key to promote social interaction is to establish and cultivate social presence. Although traditional 2-D virtual learning environment has realized the important value of teaching intelligent agent in supporting teaching interaction, its support to social interaction is still limited. By contrary, 3-D virtual reality learning environment has unique characteristics in the scope, time, and depth of the interaction with its incarnation technology, intelligent virtual agent technology, and 3I specialty. Therefore, it provides a more effective environment and tool in establishing and cultivating social presence and learning social emotion. The support system for social emotion learning based on 3-D virtual learning environment improves the feedback speed of social interaction and promotes the production and deepening of social interaction in virtual learning environment by giving social interaction capability to virtual teachers.%学习是一种社会化的过程,教学交互是影响学习效果的重要因素。教学交互分为个别化交互和社会性交互,社会性交互在学习过程中起着非常重要的作用,其教学功能可以强化学生的认知过程,社会功能可以强化学生的社会情感以及社会过程。国内外对社会性

  2. 3-D discrete analytical ridgelet transform.

    Science.gov (United States)

    Helbert, David; Carré, Philippe; Andres, Eric

    2006-12-01

    In this paper, we propose an implementation of the 3-D Ridgelet transform: the 3-D discrete analytical Ridgelet transform (3-D DART). This transform uses the Fourier strategy for the computation of the associated 3-D discrete Radon transform. The innovative step is the definition of a discrete 3-D transform with the discrete analytical geometry theory by the construction of 3-D discrete analytical lines in the Fourier domain. We propose two types of 3-D discrete lines: 3-D discrete radial lines going through the origin defined from their orthogonal projections and 3-D planes covered with 2-D discrete line segments. These discrete analytical lines have a parameter called arithmetical thickness, allowing us to define a 3-D DART adapted to a specific application. Indeed, the 3-D DART representation is not orthogonal, It is associated with a flexible redundancy factor. The 3-D DART has a very simple forward/inverse algorithm that provides an exact reconstruction without any iterative method. In order to illustrate the potentiality of this new discrete transform, we apply the 3-D DART and its extension to the Local-DART (with smooth windowing) to the denoising of 3-D image and color video. These experimental results show that the simple thresholding of the 3-D DART coefficients is efficient.

  3. Virtual VMASC: A 3D Game Environment

    Science.gov (United States)

    Manepalli, Suchitra; Shen, Yuzhong; Garcia, Hector M.; Lawsure, Kaleen

    2010-01-01

    The advantages of creating interactive 3D simulations that allow viewing, exploring, and interacting with land improvements, such as buildings, in digital form are manifold and range from allowing individuals from anywhere in the world to explore those virtual land improvements online, to training military personnel in dealing with war-time environments, and to making those land improvements available in virtual worlds such as Second Life. While we haven't fully explored the true potential of such simulations, we have identified a requirement within our organization to use simulations like those to replace our front-desk personnel and allow visitors to query, naVigate, and communicate virtually with various entities within the building. We implemented the Virtual VMASC 3D simulation of the Virginia Modeling Analysis and Simulation Center (VMASC) office building to not only meet our front-desk requirement but also to evaluate the effort required in designing such a simulation and, thereby, leverage the experience we gained in future projects of this kind. This paper describes the goals we set for our implementation, the software approach taken, the modeling contribution made, and the technologies used such as XNA Game Studio, .NET framework, Autodesk software packages, and, finally, the applicability of our implementation on a variety of architectures including Xbox 360 and PC. This paper also summarizes the result of our evaluation and the lessons learned from our effort.

  4. ORMGEN3D, 3-D Crack Geometry FEM Mesh Generator

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.

    1994-01-01

    1 - Description of program or function: ORMGEN3D is a finite element mesh generator for computational fracture mechanics analysis. The program automatically generates a three-dimensional finite element model for six different crack geometries. These geometries include flat plates with straight or curved surface cracks and cylinders with part-through cracks on the outer or inner surface. Mathematical or user-defined crack shapes may be considered. The curved cracks may be semicircular, semi-elliptical, or user-defined. A cladding option is available that allows for either an embedded or penetrating crack in the clad material. 2 - Method of solution: In general, one eighth or one-quarter of the structure is modelled depending on the configuration or option selected. The program generates a core of special wedge or collapsed prism elements at the crack front to introduce the appropriate stress singularity at the crack tip. The remainder of the structure is modelled with conventional 20-node iso-parametric brick elements. Element group I of the finite element model consists of an inner core of special crack tip elements surrounding the crack front enclosed by a single layer of conventional brick elements. Eight element divisions are used in a plane orthogonal to the crack front, while the number of element divisions along the arc length of the crack front is user-specified. The remaining conventional brick elements of the model constitute element group II. 3 - Restrictions on the complexity of the problem: Maxima of 5,500 nodes, 4 layers of clad elements

  5. Cutting Fat or Removing the Brain: Is the Divisional ADA Battalion Headquarters Necessary?

    National Research Council Canada - National Science Library

    Sauter, Daniel

    1998-01-01

    .... This monograph examines whether the divisional ADA battalion headquarters, an intermediate headquarters, is necessary to command and control divisional air defense operations in a Force XXI environment...

  6. Enhancing Nuclear Training with 3D Visualization

    International Nuclear Information System (INIS)

    Gagnon, V.; Gagnon, B.

    2016-01-01

    Full text: While the nuclear power industry is trying to reinforce its safety and regain public support post-Fukushima, it is also faced with a very real challenge that affects its day-to-day activities: a rapidly aging workforce. Statistics show that close to 40% of the current nuclear power industry workforce will retire within the next five years. For newcomer countries, the challenge is even greater, having to develop a completely new workforce. The workforce replacement effort introduces nuclear newcomers of a new generation with different backgrounds and affinities. Major lifestyle differences between the two generations of workers result, amongst other things, in different learning habits and needs for this new breed of learners. Interactivity, high visual content and quick access to information are now necessary to achieve a high level of retention. To enhance existing training programmes or to support the establishment of new training programmes for newcomer countries, L-3 MAPPS has devised learning tools to enhance these training programmes focused on the “Practice-by-Doing” principle. L-3 MAPPS has coupled 3D computer visualization with high-fidelity simulation to bring real-time, simulation-driven animated components and systems allowing immersive and participatory, individual or classroom learning. (author

  7. Crowdsourcing Based 3d Modeling

    Science.gov (United States)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  8. CROWDSOURCING BASED 3D MODELING

    Directory of Open Access Journals (Sweden)

    A. Somogyi

    2016-06-01

    Full Text Available Web-based photo albums that support organizing and viewing the users’ images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  9. Enhancing Cognitive Theory of Multimedia Leaning through 3D Animation

    Directory of Open Access Journals (Sweden)

    Zeeshan Bhatti

    2017-12-01

    Full Text Available Cognitive theory of Multimedia learning has been a widely used principle in education. However, with current technological advancements and usage, the teaching and learning trend of children’s have also changed with more dependability towards technology. This research work explores and implement the use of 3D Animation as tool for multimedia learning based on cognitive theory. This new dimension in cognitive learning, will foster the latest multimedia tools and application driven through 3D Animation, Virtual Reality and Augmented Reality. The three principles, that facilitate cognitive theory of multimedia learning using animation, addressed in this research are temporal contiguity principle (screening matching narration with animation simultaneously rather than successively, personalization principle (screening text or dialogs in casual form rather than formal style and finally the multimedia principle (screen animation and audio narration together instead of just narration. The result of this new model would yield a new technique of educating the young children through 3D animation and virtual reality. The adaptation of  cognitive theory through 3D animation as a source of multimedia learning with various key principles produces a reliable paradigm for educational enhancement.

  10. Vrste i tehnike 3D modeliranja

    OpenAIRE

    Bernik, Andrija

    2010-01-01

    Proces stvaranja 3D stvarnih ili imaginarnih objekata naziva se 3D modeliranje. Razvoj računalne tehnologije omogućuje korisniku odabir raznih metoda i tehnika kako bi se postigla optimalna učinkovitost. Odabir je vezan za klasično 3D modeliranje ili 3D skeniranje pomoću specijaliziranih programskih i sklopovskih rješenja. 3D tehnikama modeliranja korisnik može izraditi 3D model na nekoliko načina: koristi poligone, krivulje ili hibrid dviju spomenutih tehnika pod nazivom subdivizijsko modeli...

  11. Kuvaus 3D-tulostamisesta hammastekniikassa

    OpenAIRE

    Munne, Mauri; Mustonen, Tuomas; Vähäjylkkä, Jaakko

    2013-01-01

    3D-tulostaminen kehittyy nopeasti ja yleistyy koko ajan. Tulostimien tarkkuuksien kehittyessä 3D-tulostus on ottamassa myös jalansijaa hammastekniikan alalta. Tämän opinnäytetyön tarkoituksena on kuvata 3D-tulostamisen tilaa hammastekniikassa. 3D-tulostaminen on Suomessa vielä melko harvinaista, joten opinnäytetyön tavoitteena on koota yhteen kaikki mahdollinen tieto liittyen 3D-tulostamiseen hammastekniikassa. Tavoitteena on myös 3D-tulostimen testaaminen käytännössä aina suun skannaami...

  12. NIF Ignition Target 3D Point Design

    Energy Technology Data Exchange (ETDEWEB)

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  13. AutoCAD Civil 3D 2014 essentials

    CERN Document Server

    Chappell, Eric

    2013-01-01

    Quickly learn essential Civil 3D tools and techniques Get a thorough introduction to AutoCAD Civil 3D, the industry-leading engineering software used to design roads, highways, subdivisions, drainage and sewer systems, and more. This Autodesk Official Press book is a unique learning resource that features concise, straightforward explanations and real-world, hands-on exercises and tutorials. With compelling full-color screenshots and approachable exercises that demonstrate core features and functions, the book helps you gain understanding and confidence as you master this premiere

  14. Volumetric 3D Display System with Static Screen

    Science.gov (United States)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  15. Magma emplacement in 3D

    Science.gov (United States)

    Gorczyk, W.; Vogt, K.

    2017-12-01

    Magma intrusion is a major material transfer process in Earth's continental crust. Yet, the mechanical behavior of the intruding magma and its host are a matter of debate. In this study, we present a series of numerical thermo-mechanical experiments on mafic magma emplacement in 3D.In our model, we place the magmatic source region (40 km diameter) at the base of the mantle lithosphere and connect it to the crust by a 3 km wide channel, which may have evolved at early stages of magmatism during rapid ascent of hot magmatic fluids/melts. Our results demonstrate continental crustal response due to magma intrusion. We observe change in intrusion geometries between dikes, cone-sheets, sills, plutons, ponds, funnels, finger-shaped and stock-like intrusions as well as injection time. The rheology and temperature of the host-rock are the main controlling factors in the transition between these different modes of intrusion. Viscous deformation in the warm and deep crust favours host rock displacement and magma pools along the crust-mantle boundary forming deep-seated plutons or magma ponds in the lower to middle-crust. Brittle deformation in the cool and shallow crust induces cone-shaped fractures in the host rock and enables emplacement of finger- or stock-like intrusions at shallow or intermediate depth. A combination of viscous and brittle deformation forms funnel-shaped intrusions in the middle-crust. Low-density source magma results in T-shaped intrusions in cross-section with magma sheets at the surface.

  16. Will 3D printers manufacture your meals?

    NARCIS (Netherlands)

    Bommel, K.J.C. van

    2013-01-01

    These days, 3D printers are laying down plastics, metals, resins, and other materials in whatever configurations creative people can dream up. But when the next 3D printing revolution comes, you'll be able to eat it.

  17. Eesti 3D jaoks kitsas / Virge Haavasalu

    Index Scriptorium Estoniae

    Haavasalu, Virge

    2009-01-01

    Produktsioonifirma Digitaalne Sputnik: Kaur ja Kaspar Kallas tegelevad filmide produtseerimise ning 3D digitaalkaamerate tootearendusega (Silicon Imaging LLC). Vendade Kallaste 3D-kaamerast. Kommenteerib Eesti Filmi Sihtasutuse direktor Marge Liiske

  18. 3D-Printed Millimeter Wave Structures

    Science.gov (United States)

    2016-03-14

    demonstrates the resolution of the printer with a 10 micron nozzle. Figure 2: Measured loss tangent of SEBS and SBS samples. 3D - Printed Millimeter... 3D printing of styrene-butadiene-styrene (SBS) and styrene ethylene/butylene-styrene (SEBS) is used to demonstrate the feasibility of 3D - printed ...Additionally, a dielectric lens is printed which improves the antenna gain of an open-ended WR-28 waveguide from 7 to 8.5 dBi. Keywords: 3D printing

  19. Digital Dentistry — 3D Printing Applications

    OpenAIRE

    Zaharia Cristian; Gabor Alin-Gabriel; Gavrilovici Andrei; Stan Adrian Tudor; Idorasi Laura; Sinescu Cosmin; Negruțiu Meda-Lavinia

    2017-01-01

    Three-dimensional (3D) printing is an additive manufacturing method in which a 3D item is formed by laying down successive layers of material. 3D printers are machines that produce representations of objects either planned with a CAD program or scanned with a 3D scanner. Printing is a method for replicating text and pictures, typically with ink on paper. We can print different dental pieces using different methods such as selective laser sintering (SLS), stereolithography, fused deposition mo...

  20. Detectors in 3D available for assessment

    CERN Document Server

    Re, Valerio

    2014-01-01

    This deliverable reports on 3D devices resulting from the vertical integration of pixel sensors and readout electronics. After 3D integration steps such as etching of through-silicon vias and backside metallization of readout integrated circuits, ASICs and sensors are interconnected to form a 3D pixel detector. Various 3D detectors have been devised in AIDA WP3 and their status and performance is assessed here.

  1. Initial operations in local nuclear emergency response headquarter

    International Nuclear Information System (INIS)

    2012-06-01

    As a result of the Fukushima nuclear accident due to the Great East Japan Earthquake and the tsunami that occurred thereafter, local nuclear emergency response headquarters (local headquarters) was set up at off-site center (OFC). However, several obstacles such as the collapse of means of communication resulting from severed communication lines, food and fuel shortage resulting from stagnant physical distribution, and increasing radiation dose around the center significantly restricted originally intended operation of local headquarters. In such severe situation, the personnel gathered at the OFC from the government, local public bodies and electric companies from March 11 to 15 acted without sufficient food, sleep or rest and did all they could against successively occurring unexpected challenges by using limited means of communication. However, issues requiring further consideration were activities of each functional group, location of OFC and the functions of equipment, machines and materials and reflecting the consideration results into future protective measures and revision of the manual for nuclear emergency response were greatly important. This report described investigated results on initial operations in local headquarters such as situation of activities conducted by local headquarters and operations at functional groups. (T. Tanaka)

  2. 3D modelling for multipurpose cadastre

    NARCIS (Netherlands)

    Abduhl Rahman, A.; Van Oosterom, P.J.M.; Hua, T.C.; Sharkawi, K.H.; Duncan, E.E.; Azri, N.; Hassan, M.I.

    2012-01-01

    Three-dimensional (3D) modelling of cadastral objects (such as legal spaces around buildings, around utility networks and other spaces) is one of the important aspects for a multipurpose cadastre (MPC). This paper describes the 3D modelling of the objects for MPC and its usage to the knowledge of 3D

  3. Expanding Geometry Understanding with 3D Printing

    Science.gov (United States)

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  4. 3D Characterization of Recrystallization Boundaries

    DEFF Research Database (Denmark)

    Zhang, Yubin; Godfrey, Andrew William; MacDonald, A. Nicole

    2016-01-01

    A three-dimensional (3D) volume containing a recrystallizing grain and a deformed matrix in a partially recrystallized pure aluminum was characterized using the 3D electron backscattering diffraction technique. The 3D shape of a recrystallizing boundary, separating the recrystallizing grain...... on the formation of protrusions/retrusions....

  5. 3D-Printable Antimicrobial Composite Resins

    NARCIS (Netherlands)

    Yue, Jun; Zhao, Pei; Gerasimov, Jennifer Y.; van de Lagemaat, Marieke; Grotenhuis, Arjen; Rustema-Abbing, Minie; van der Mei, Henny C.; Busscher, Henk J.; Herrmann, Andreas; Ren, Yijin

    2015-01-01

    3D printing is seen as a game-changing manufacturing process in many domains, including general medicine and dentistry, but the integration of more complex functions into 3D-printed materials remains lacking. Here, it is expanded on the repertoire of 3D-printable materials to include antimicrobial

  6. 3D Modeling and Printing in History/Social Studies Classrooms: Initial Lessons and Insights

    Science.gov (United States)

    Maloy, Robert; Trust, Torrey; Kommers, Suzan; Malinowski, Allison; LaRoche, Irene

    2017-01-01

    This exploratory study examines the use of 3D technology by teachers and students in four middle school history/social studies classrooms. As part of a university-developed 3D Printing 4 Teaching & Learning project, teachers integrated 3D modeling and printing into curriculum topics in world geography, U.S. history, and government/civics.…

  7. Analysis of 3D Modeling Software Usage Patterns for K-12 Students

    Science.gov (United States)

    Wu, Yi-Chieh; Liao, Wen-Hung; Chi, Ming-Te; Li, Tsai-Yen

    2016-01-01

    In response to the recent trend in maker movement, teachers are learning 3D techniques actively and bringing 3D printing into the classroom to enhance variety and creativity in designing lectures. This study investigates the usage pattern of a 3D modeling software, Qmodel Creator, which is targeted at K-12 students. User logs containing…

  8. VR versus LF: towards the limitation-free 3D

    Science.gov (United States)

    Balogh, Tibor; Kara, Peter A.

    2017-06-01

    The evolution of 3D technologies shows a cyclical learning curve with a series of hypes and dead ends, with mistakes and consequences. 3D images contain significantly more information than the corresponding 2D ones. 3D display systems should be built on more pixels, or higher speed components. For true 3D, this factor is in the order of 100x, which is a real technological challenge. If not fulfilled, the capabilities of 3D systems will be compromised: headgears will be needed, or the viewers should be positioned or tracked, single-user devices, lack of parallax, missing cues, etc. The temptation is always there: why to provide all the information, just what the person absorbs that moment (subjective or objective visualization). Virtual Reality (VR) glasses have been around for more than two decades. With the latest technical improvements, VR became the next hype. 3D immersion was added as a new phenomenon; however, VR represents an isolated experience, and still requires headgears and a controlled environment. Augmented Reality (AR) in this sense is different. Will the VR/AR hype with the headgears be a dead end? While VR headsets may sell better than smart glasses or 3D TV glasses, also consider that using the technology may require a set of behavioral changes that the majority of people do not want to make. Displays and technologies that restrict viewers, or cause any discomfort will not be accepted on the long term. The newer wave of 3D is forecasted to 2018-2020, answering the need for unaided, limitation-free 3D experience. Light Field (LF) systems represent the next-generation in 3D. The HoloVizio system, having a capacity in the order of 100x, offers natural, restrictions-free 3D experience on a full field of view, enabling collaborative use for an unlimited number of viewers, even in a wider, immersive space. As a scalable technology, the display range goes from monitor-style units, through automotive 3D HUDs, screen-less solutions, up to cinema systems

  9. Automating 3D reconstruction using a probabilistic grammar

    Science.gov (United States)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2015-10-01

    3D reconstruction of objects from point clouds with a laser scanner is still a laborious task in many applications. Automating 3D process is an ongoing research topic and suffers from the complex structure of the data. The main difficulty is due to lack of knowledge of real world objects structure. In this paper, we accumulate such structure knowledge by a probabilistic grammar learned from examples in the same category. The rules of the grammar capture compositional structures at different levels, and a feature dependent probability function is attached for every rule. The learned grammar can be used to parse new 3D point clouds, organize segment patches in a hierarchal way, and assign them meaningful labels. The parsed semantics can be used to guide the reconstruction algorithms automatically. Some examples are given to explain the method.

  10. A New Method of 3D Facial Expression Animation

    Directory of Open Access Journals (Sweden)

    Shuo Sun

    2014-01-01

    Full Text Available Animating expressive facial animation is a very challenging topic within the graphics community. In this paper, we introduce a novel ERI (expression ratio image driving framework based on SVR and MPEG-4 for automatic 3D facial expression animation. Through using the method of support vector regression (SVR, the framework can learn and forecast the regression relationship between the facial animation parameters (FAPs and the parameters of expression ratio image. Firstly, we build a 3D face animation system driven by FAP. Secondly, through using the method of principle component analysis (PCA, we generate the parameter sets of eigen-ERI space, which will rebuild reasonable expression ratio image. Then we learn a model with the support vector regression mapping, and facial animation parameters can be synthesized quickly with the parameters of eigen-ERI. Finally, we implement our 3D face animation system driving by the result of FAP and it works effectively.

  11. View-based 3-D object retrieval

    CERN Document Server

    Gao, Yue

    2014-01-01

    Content-based 3-D object retrieval has attracted extensive attention recently and has applications in a variety of fields, such as, computer-aided design, tele-medicine,mobile multimedia, virtual reality, and entertainment. The development of efficient and effective content-based 3-D object retrieval techniques has enabled the use of fast 3-D reconstruction and model design. Recent technical progress, such as the development of camera technologies, has made it possible to capture the views of 3-D objects. As a result, view-based 3-D object retrieval has become an essential but challenging res

  12. Wafer level 3-D ICs process technology

    CERN Document Server

    Tan, Chuan Seng; Reif, L Rafael

    2009-01-01

    This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

  13. 3D Printing of Fluid Flow Structures

    OpenAIRE

    Taira, Kunihiko; Sun, Yiyang; Canuto, Daniel

    2017-01-01

    We discuss the use of 3D printing to physically visualize (materialize) fluid flow structures. Such 3D models can serve as a refreshing hands-on means to gain deeper physical insights into the formation of complex coherent structures in fluid flows. In this short paper, we present a general procedure for taking 3D flow field data and producing a file format that can be supplied to a 3D printer, with two examples of 3D printed flow structures. A sample code to perform this process is also prov...

  14. The Esri 3D city information model

    International Nuclear Information System (INIS)

    Reitz, T; Schubiger-Banz, S

    2014-01-01

    With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases

  15. A Contextualized Model of Headquarters-subsidiary Agency Problems

    DEFF Research Database (Denmark)

    Kostova, Tatiana; Nell, Phillip Christopher; Hoenen, Anne Kristin

    This paper proposes an agency model for headquarters-subsidiary relationships in multinational organizations with headquarters as the principal and the subsidiary as the agent. As a departure from classical agency theory, our model is developed for the unit level of analysis and considers two root...... in which the headquarters-subsidiary dyad is embedded. We then discuss several agency scenarios that lead to different manifestations of the agency problem. The framework informs more relevant applications of agency theory in organizational studies and motivates future research....... causes of the agency problem – self-interest and bounded rationality. We argue that one cannot assume absolute self-interest and perfect rationality of agents but should allow them to vary. We explain subsidiary-level variation through a set of internal organizational and external social conditions...

  16. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    Science.gov (United States)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  17. RELAP5-3D User Problems

    Energy Technology Data Exchange (ETDEWEB)

    Riemke, Richard Allan

    2002-09-01

    The Reactor Excursion and Leak Analysis Program with 3D capability1 (RELAP5-3D) is a reactor system analysis code that has been developed at the Idaho National Engineering and Environmental Laboratory (INEEL) for the U. S. Department of Energy (DOE). The 3D capability in RELAP5-3D includes 3D hydrodynamics2 and 3D neutron kinetics3,4. Assessment, verification, and validation of the 3D capability in RELAP5-3D is discussed in the literature5,6,7,8,9,10. Additional assessment, verification, and validation of the 3D capability of RELAP5-3D will be presented in other papers in this users seminar. As with any software, user problems occur. User problems usually fall into the categories of input processing failure, code execution failure, restart/renodalization failure, unphysical result, and installation. This presentation will discuss some of the more generic user problems that have been reported on RELAP5-3D as well as their resolution.

  18. 3DSEM: A 3D microscopy dataset

    Directory of Open Access Journals (Sweden)

    Ahmad P. Tafti

    2016-03-01

    Full Text Available The Scanning Electron Microscope (SEM as a 2D imaging instrument has been widely used in many scientific disciplines including biological, mechanical, and materials sciences to determine the surface attributes of microscopic objects. However the SEM micrographs still remain 2D images. To effectively measure and visualize the surface properties, we need to truly restore the 3D shape model from 2D SEM images. Having 3D surfaces would provide anatomic shape of micro-samples which allows for quantitative measurements and informative visualization of the specimens being investigated. The 3DSEM is a dataset for 3D microscopy vision which is freely available at [1] for any academic, educational, and research purposes. The dataset includes both 2D images and 3D reconstructed surfaces of several real microscopic samples. Keywords: 3D microscopy dataset, 3D microscopy vision, 3D SEM surface reconstruction, Scanning Electron Microscope (SEM

  19. Automated Finger Spelling by Highly Realistic 3D Animation

    Science.gov (United States)

    Adamo-Villani, Nicoletta; Beni, Gerardo

    2004-01-01

    We present the design of a new 3D animation tool for self-teaching (signing and reading) finger spelling the first basic component in learning any sign language. We have designed a highly realistic hand with natural animation of the finger motions. Smoothness of motion (in real time) is achieved via programmable blending of animation segments. The…

  20. 3D Digital Legos for Teaching Security Protocols

    Science.gov (United States)

    Yu, Li; Harrison, L.; Lu, Aidong; Li, Zhiwei; Wang, Weichao

    2011-01-01

    We have designed and developed a 3D digital Lego system as an education tool for teaching security protocols effectively in Information Assurance courses (Lego is a trademark of the LEGO Group. Here, we use it only to represent the pieces of a construction set.). Our approach applies the pedagogical methods learned from toy construction sets by…

  1. local government headquarters and spatial interaction within rivers

    African Journals Online (AJOL)

    user

    headquarters and rural hinterland settlements in Rivers South East ... of Rivers State is responsible for over seventy percent (70%) of the total employment in the ... even proportion and balanced development for all could not completely ... Rivers West ... agricultural under development, unemployment, poor quality of life due.

  2. Corporate headquarters as physical embodiments of organisational change

    NARCIS (Netherlands)

    van Marrewijk, A.H.

    2009-01-01

    Purpose: The purpose of this paper is to explore the interdependency of corporate architecture and organisation cultural change. Corporate headquarters have become symbols of corporate change ambitions to endure cultural value sets. The paper seeks to contribute to the growing interest in the

  3. Identification of the transition arrays 3d74s-3d74p in Br X and 3d64s-3d64p in Br XI

    International Nuclear Information System (INIS)

    Zeng, X.T.; Jupen, C.; Bengtsson, P.; Engstroem, L.; Westerlind, M.; Martinson, I.

    1991-01-01

    We report a beam-foil study of multiply ionized bromine in the region 400-1300A, performed with 6 and 8 MeV Br ions from a tandem accelerator. At these energies transitions belonging to Fe-like Br X and Mn-like Br XI are expected to be prominent. We have identified 31 lines as 3d 7 4s-3d 7 4p transitions in Br X, from which 16 levels of the previously unknown 3d 7 4s configuration could be established. We have also added 6 new 3d 7 4p levels to the 99 previously known. For Br XI we have classified 9 lines as 3d 6 4s-3d 6 4p combinations. The line identifications have been corroborated by isoelectronic comparisons and theoretical calculations using the superposition-of-configurations technique. (orig.)

  4. 3D PHOTOGRAPHS IN CULTURAL HERITAGE

    Directory of Open Access Journals (Sweden)

    W. Schuhr

    2013-07-01

    Full Text Available This paper on providing "oo-information" (= objective object-information on cultural monuments and sites, based on 3D photographs is also a contribution of CIPA task group 3 to the 2013 CIPA Symposium in Strasbourg. To stimulate the interest in 3D photography for scientists as well as for amateurs, 3D-Masterpieces are presented. Exemplary it is shown, due to their high documentary value ("near reality", 3D photography support, e.g. the recording, the visualization, the interpretation, the preservation and the restoration of architectural and archaeological objects. This also includes samples for excavation documentation, 3D coordinate calculation, 3D photographs applied for virtual museum purposes and as educational tools. In addition 3D photography is used for virtual museum purposes, as well as an educational tool and for spatial structure enhancement, which in particular holds for inscriptions and in rock arts. This paper is also an invitation to participate in a systematic survey on existing international archives of 3D photographs. In this respect it is also reported on first results, to define an optimum digitization rate for analog stereo views. It is more than overdue, in addition to the access to international archives for 3D photography, the available 3D photography data should appear in a global GIS(cloud-system, like on, e.g., google earth. This contribution also deals with exposing new 3D photographs to document monuments of importance for Cultural Heritage, including the use of 3D and single lense cameras from a 10m telescope staff, to be used for extremely low earth based airborne 3D photography, as well as for "underwater staff photography". In addition it is reported on the use of captive balloon and drone platforms for 3D photography in Cultural Heritage. It is liked to emphasize, the still underestimated 3D effect on real objects even allows, e.g., the spatial perception of extremely small scratches as well as of nuances in

  5. 3D Systems” ‘Stuck in the Middle’ of the 3D Printer Boom?

    NARCIS (Netherlands)

    A. Hoffmann (Alan)

    2014-01-01

    textabstract3D Systems, the pioneer of 3D printing, predicted a future where "kids from 8 to 80" could design and print their ideas at home. By 2013, 9 years after the creation of the first working 3D printer, there were more than 30 major 3D printing companies competing for market share. 3DS and

  6. 3D Scientific Visualization with Blender

    Science.gov (United States)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender (an open source visualization suite widely used in the entertainment and gaming industries) for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  7. Remote Collaborative 3D Printing - Process Investigation

    Science.gov (United States)

    2016-04-01

    COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION Cody M. Reese, PE CAD MODEL PRINT MODEL PRINT PREVIEW PRINTED PART AERIAL VIRTUAL This...REMOTE COLLABORATIVE 3D PRINTING - PROCESS INVESTIGATION 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Cody M. Reese...release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The Remote Collaborative 3D Printing project is a collaboration between

  8. Microfabricating 3D Structures by Laser Origami

    Science.gov (United States)

    2011-11-09

    10.1117/2.1201111.003952 Microfabricating 3D structures by laser origami Alberto Piqué, Scott Mathews, Andrew Birnbaum, and Nicholas Charipar A new...folding known as origami allows the transformation of flat patterns into 3D shapes. A similar approach can be used to generate 3D structures com... geometries . The overarching challenge is to move away from traditional planar semiconductor photolitho- graphic techniques, which severely limit the type of

  9. 3D Scientific Visualization with Blender

    Science.gov (United States)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  10. 3D images and expert system

    International Nuclear Information System (INIS)

    Hasegawa, Jun-ichi

    1998-01-01

    This paper presents an expert system called 3D-IMPRESS for supporting applications of three dimensional (3D) image processing. This system can automatically construct a 3D image processing procedure based on a pictorial example of the goal given by a user. In the paper, to evaluate the performance of the system, it was applied to construction of procedures for extracting specific component figures from practical chest X-ray CT images. (author)

  11. ERP system for 3D printing industry

    Directory of Open Access Journals (Sweden)

    Deaky Bogdan

    2017-01-01

    Full Text Available GOCREATE is an original cloud-based production management and optimization service which helps 3D printing service providers to use their resources better. The proposed Enterprise Resource Planning system can significantly increase income through improved productivity. With GOCREATE, the 3D printing service providers get a much higher production efficiency at a much lower licensing cost, to increase their competitiveness in the fast growing 3D printing market.

  12. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    Science.gov (United States)

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  13. Perspectives on Materials Science in 3D

    DEFF Research Database (Denmark)

    Juul Jensen, Dorte

    2012-01-01

    Materials characterization in 3D has opened a new era in materials science, which is discussed in this paper. The original motivations and visions behind the development of one of the new 3D techniques, namely the three dimensional x-ray diffraction (3DXRD) method, are presented and the route...... to its implementation is described. The present status of materials science in 3D is illustrated by examples related to recrystallization. Finally, challenges and suggestions for the future success for 3D Materials Science relating to hardware evolution, data analysis, data exchange and modeling...

  14. Illustrating Mathematics using 3D Printers

    OpenAIRE

    Knill, Oliver; Slavkovsky, Elizabeth

    2013-01-01

    3D printing technology can help to visualize proofs in mathematics. In this document we aim to illustrate how 3D printing can help to visualize concepts and mathematical proofs. As already known to educators in ancient Greece, models allow to bring mathematics closer to the public. The new 3D printing technology makes the realization of such tools more accessible than ever. This is an updated version of a paper included in book Low-Cost 3D Printing for science, education and Sustainable Devel...

  15. A 3d game in python

    OpenAIRE

    Xu, Minghui

    2014-01-01

    3D game has widely been accepted and loved by many game players. More and more different kinds of 3D games were developed to feed people’s needs. The most common programming language for development of 3D game is C++ nowadays. Python is a high-level scripting language. It is simple and clear. The concise syntax could speed up the development cycle. This project was to develop a 3D game using only Python. The game is about how a cat lives in the street. In order to live, the player need...

  16. Dimensional accuracy of 3D printed vertebra

    Science.gov (United States)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  17. 3D Virtual Worlds as Art Media and Exhibition Arenas: Students' Responses and Challenges in Contemporary Art Education

    Science.gov (United States)

    Lu, Lilly

    2013-01-01

    3D virtual worlds (3D VWs) are considered one of the emerging learning spaces of the 21st century; however, few empirical studies have investigated educational applications and student learning aspects in art education. This study focused on students' responses to and challenges with 3D VWs in both aspects. The findings show that most participants…

  18. Tangible 3D modeling of coherent and themed structures

    DEFF Research Database (Denmark)

    Walther, Jeppe Ullè; Bærentzen, J. Andreas; Aanæs, Henrik

    2016-01-01

    We present CubeBuilder, a system for interactive, tangible 3D shape modeling. CubeBuilder allows the user to create a digital 3D model by placing physical, non-interlocking cubic blocks. These blocks may be placed in a completely arbitrary fashion and combined with other objects. In effect......, this turns the task of 3D modeling into a playful activity that hardly requires any learning on the part of the user. The blocks are registered using a depth camera and entered into the cube graph where each block is a node and adjacent blocks are connected by edges. From the cube graph, we transform......, allows the user to tangibly build structures of greater details than the blocks provide in and of themselves. We show a number of shapes that have been modeled by users and are indicative of the expressive power of the system. Furthermore, we demonstrate the scalability of the tangible interface which...

  19. Exploring the educational potential of 3D virtual environments

    Directory of Open Access Journals (Sweden)

    Francesc Marc ESTEVE MON

    2013-12-01

    Full Text Available 3D virtual environments are advanced technology systems, with some potentialities in the teaching and learning process.In recent years, different institutions have promoted the acquisition of XXI century skills. Competences such as initiative, teamwork, creativity, flexibility or digital literacy.Multi-user virtual environments, sometimes called virtual worlds or 3D simulators, are immersive, interactive, customizable, accessible and programmable systems. This kind of environments allow to design educational complex activities to develop these key competences. For this purpose it’s necessary to set an appropriate teaching strategy to put this knowledge and skills into action, and design suitable mechanisms for registration and systematization. This paper analyzes the potential of these environments and presents two experiences in 3D virtual environments: (1 to develop teamwork and self-management skills, and (2 to assess digital literacy in preservice teachers.

  20. Understanding 3D human torso shape via manifold clustering

    Science.gov (United States)

    Li, Sheng; Li, Peng; Fu, Yun

    2013-05-01

    Discovering the variations in human torso shape plays a key role in many design-oriented applications, such as suit designing. With recent advances in 3D surface imaging technologies, people can obtain 3D human torso data that provide more information than traditional measurements. However, how to find different human shapes from 3D torso data is still an open problem. In this paper, we propose to use spectral clustering approach on torso manifold to address this problem. We first represent high-dimensional torso data in a low-dimensional space using manifold learning algorithm. Then the spectral clustering method is performed to get several disjoint clusters. Experimental results show that the clusters discovered by our approach can describe the discrepancies in both genders and human shapes, and our approach achieves better performance than the compared clustering method.

  1. Towards sustainable and clean 3D Geoinformation

    NARCIS (Netherlands)

    Stoter, J.E.; Ledoux, H.; Zlatanova, S.; Biljecki, F.; Kolbe, T.H.; Bill, R.; Donaubauer, A.

    2016-01-01

    This paper summarises the on going research activities of the 3D Geoinformation Group at the Delft University of Technology. The main challenge underpinning the research of this group is providing clean and appropriate 3D data about our environment in order to serve a wide variety of applications.

  2. Pattern recognition: invariants in 3D

    International Nuclear Information System (INIS)

    Proriol, J.

    1992-01-01

    In e + e - events, the jets have a spherical 3D symmetry. A set of invariants are defined for 3D objects with a spherical symmetry. These new invariants are used to tag the number of jets in e + e - events. (K.A.) 3 refs

  3. 3D Printing: What Are the Hazards?

    Science.gov (United States)

    Randolph, Susan A

    2018-03-01

    As the popularity of three-dimensional (3D) printers increases, more research will be conducted to evaluate the benefits and risks of this technology. Occupational health professionals should stay abreast of new recommendations to protect workers from exposure to 3D printer emissions.

  4. Illustrating the disassembly of 3D models

    KAUST Repository

    Guo, Jianwei; Yan, Dongming; Li, Er; Dong, Weiming; Wonka, Peter; Zhang, Xiaopeng

    2013-01-01

    We present a framework for the automatic disassembly of 3D man-made models and the illustration of the disassembly process. Given an assembled 3D model, we first analyze the individual parts using sharp edge loops and extract the contact faces

  5. 3D, or Not to Be?

    Science.gov (United States)

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  6. Embedding complex objects with 3d printing

    KAUST Repository

    Hussain, Muhammad Mustafa; Diaz, Cordero Marlon Steven

    2017-01-01

    A CMOS technology-compatible fabrication process for flexible CMOS electronics embedded during additive manufacturing (i.e. 3D printing). A method for such a process may include printing a first portion of a 3D structure; pausing the step

  7. 3D Printing of Molecular Models

    Science.gov (United States)

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  8. 3D printing of functional structures

    NARCIS (Netherlands)

    Krijnen, Gijsbertus J.M.

    The technology colloquial known as ‘3D printing’ has developed in such diversity in printing technologies and application fields that meanwhile it seems anything is possible. However, clearly the ideal 3D Printer, with high resolution, multi-material capability, fast printing, etc. is yet to be

  9. 3D Printing. What's the Harm?

    Science.gov (United States)

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  10. 3D Printed Block Copolymer Nanostructures

    Science.gov (United States)

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  11. 3D-printed cereal foods

    NARCIS (Netherlands)

    Noort, M.; Bommel, K. van; Renzetti, S.

    2017-01-01

    Additive manufacturing, also known as 3D printing, is an up-and-coming production technology based on layer-by-layer deposition of material to reproduce a computer-generated 3D design. Additive manufacturing is a collective term used for a variety of technologies, such as fused deposition modeling

  12. A Framework for 3d Printing

    DEFF Research Database (Denmark)

    Pilkington, Alan; Frandsen, Thomas; Kapetaniou, Chrystalla

    3D printing technologies and processes offer such a radical range of options for firms that we currently lack a structured way of recording possible impact and recommending actions for managers. The changes arising from 3d printing includes more than just new options for product design, but also...

  13. The 3D-city model

    DEFF Research Database (Denmark)

    Holmgren, Steen; Rüdiger, Bjarne; Tournay, Bruno

    2001-01-01

    We have worked with the construction and use of 3D city models for about ten years. This work has given us valuable experience concerning model methodology. In addition to this collection of knowledge, our perception of the concept of city models has changed radically. In order to explain...... of 3D city models....

  14. 3D Programmable Micro Self Assembly

    National Research Council Canada - National Science Library

    Bohringer, Karl F; Parviz, Babak A; Klavins, Eric

    2005-01-01

    .... We have developed a "self assembly tool box" consisting of a range of methods for micro-scale self-assembly in 2D and 3D We have shown physical demonstrations of simple 3D self-assemblies which lead...

  15. Wow! 3D Content Awakens the Classroom

    Science.gov (United States)

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  16. Digital Dentistry — 3D Printing Applications

    Directory of Open Access Journals (Sweden)

    Zaharia Cristian

    2017-03-01

    Full Text Available Three-dimensional (3D printing is an additive manufacturing method in which a 3D item is formed by laying down successive layers of material. 3D printers are machines that produce representations of objects either planned with a CAD program or scanned with a 3D scanner. Printing is a method for replicating text and pictures, typically with ink on paper. We can print different dental pieces using different methods such as selective laser sintering (SLS, stereolithography, fused deposition modeling, and laminated object manufacturing. The materials are certified for printing individual impression trays, orthodontic models, gingiva mask, and different prosthetic objects. The material can reach a flexural strength of more than 80 MPa. 3D printing takes the effectiveness of digital projects to the production phase. Dental laboratories are able to produce crowns, bridges, stone models, and various orthodontic appliances by methods that combine oral scanning, 3D printing, and CAD/CAM design. Modern 3D printing has been used for the development of prototypes for several years, and it has begun to find its use in the world of manufacturing. Digital technology and 3D printing have significantly elevated the rate of success in dental implantology using custom surgical guides and improving the quality and accuracy of dental work.

  17. Case study of 3D fingerprints applications.

    Directory of Open Access Journals (Sweden)

    Feng Liu

    Full Text Available Human fingers are 3D objects. More information will be provided if three dimensional (3D fingerprints are available compared with two dimensional (2D fingerprints. Thus, this paper firstly collected 3D finger point cloud data by Structured-light Illumination method. Additional features from 3D fingerprint images are then studied and extracted. The applications of these features are finally discussed. A series of experiments are conducted to demonstrate the helpfulness of 3D information to fingerprint recognition. Results show that a quick alignment can be easily implemented under the guidance of 3D finger shape feature even though this feature does not work for fingerprint recognition directly. The newly defined distinctive 3D shape ridge feature can be used for personal authentication with Equal Error Rate (EER of ~8.3%. Also, it is helpful to remove false core point. Furthermore, a promising of EER ~1.3% is realized by combining this feature with 2D features for fingerprint recognition which indicates the prospect of 3D fingerprint recognition.

  18. LandSIM3D: modellazione in real time 3D di dati geografici

    Directory of Open Access Journals (Sweden)

    Lambo Srl Lambo Srl

    2009-03-01

    Full Text Available LandSIM3D: realtime 3D modelling of geographic data LandSIM3D allows to model in 3D an existing landscape in a few hours only and geo-referenced offering great landscape analysis and understanding tools. 3D projects can then be inserted into the existing landscape with ease and precision. The project alternatives and impact can then be visualized and studied into their immediate environmental. The complex evolution of the landscape in the future can also be simulated and the landscape model can be manipulated interactively and better shared with colleagues. For that reason, LandSIM3D is different from traditional 3D imagery solutions, normally reserved for computer graphics experts. For more information about LandSIM3D, go to www.landsim3d.com.

  19. Inclined nanoimprinting lithography for 3D nanopatterning

    International Nuclear Information System (INIS)

    Liu Zhan; Bucknall, David G; Allen, Mark G

    2011-01-01

    We report a non-conventional shear-force-driven nanofabrication approach, inclined nanoimprint lithography (INIL), for producing 3D nanostructures of varying heights on planar substrates in a single imprinting step. Such 3D nanostructures are fabricated by exploiting polymer anisotropic dewetting where the degree of anisotropy can be controlled by the magnitude of the inclination angle. The feature size is reduced from micron scale of the template to a resultant nanoscale pattern. The underlying INIL mechanism is investigated both experimentally and theoretically. The results indicate that the shear force generated at a non-zero inclination angle induced by the INIL apparatus essentially leads to asymmetry in the polymer flow direction ultimately resulting in 3D nanopatterns with different heights. INIL removes the requirements in conventional nanolithography of either utilizing 3D templates or using multiple lithographic steps. This technique enables various 3D nanoscale devices including angle-resolved photonic and plasmonic crystals to be fabricated.

  20. Density-Based 3D Shape Descriptors

    Directory of Open Access Journals (Sweden)

    Schmitt Francis

    2007-01-01

    Full Text Available We propose a novel probabilistic framework for the extraction of density-based 3D shape descriptors using kernel density estimation. Our descriptors are derived from the probability density functions (pdf of local surface features characterizing the 3D object geometry. Assuming that the shape of the 3D object is represented as a mesh consisting of triangles with arbitrary size and shape, we provide efficient means to approximate the moments of geometric features on a triangle basis. Our framework produces a number of 3D shape descriptors that prove to be quite discriminative in retrieval applications. We test our descriptors and compare them with several other histogram-based methods on two 3D model databases, Princeton Shape Benchmark and Sculpteur, which are fundamentally different in semantic content and mesh quality. Experimental results show that our methodology not only improves the performance of existing descriptors, but also provides a rigorous framework to advance and to test new ones.

  1. 3D-grafiikka ja pelimoottorit

    OpenAIRE

    Sillanpää, Otto

    2014-01-01

    Tässä opinnäytetyössä tutkitaan miten 3D-mallit saadaan sellaiseen muotoon, että ne olisivat käytettävissä eri pelimoottoreissa. Tutkimuksen tarkoituksena on selvittää, miten luodaan 3D-malleja pelimoottoreihin, sekä miten 3D-mallinnusohjelmat ja pelimoottorit eroavat toisistaan, kun käsitellään 3D-malleja. Tässä työssä pelimoottoreina toimivat Valven Source sekä Epic Gamesin Unreal Engine 3. 3D-mallinnusohjelmista käytössä olivat Autodeskin 3ds Max 2014 ja Blender Foundationin Blender 2.7...

  2. BEAMS3D Neutral Beam Injection Model

    Energy Technology Data Exchange (ETDEWEB)

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  3. Fabrication of 3D Silicon Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  4. Maintaining and troubleshooting your 3D printer

    CERN Document Server

    Bell, Charles

    2014-01-01

    Maintaining and Troubleshooting Your 3D Printer by Charles Bell is your guide to keeping your 3D printer running through preventive maintenance, repair, and diagnosing and solving problems in 3D printing. If you've bought or built a 3D printer such as a MakerBot only to be confounded by jagged edges, corner lift, top layers that aren't solid, or any of a myriad of other problems that plague 3D printer enthusiasts, then here is the book to help you get past all that and recapture the joy of creative fabrication. The book also includes valuable tips for builders and those who want to modify the

  5. The psychology of the 3D experience

    Science.gov (United States)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  6. 3D Visualization Development of SIUE Campus

    Science.gov (United States)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  7. The business impact and value of 3-D seismic

    International Nuclear Information System (INIS)

    Aylor, W.K.

    1996-01-01

    3-D Seismic has had a profound and lasting impact on the hydrocarbon exploration and production industry. It is a technology which is often excellent at assessing the risk associated with trap definition, seal and reservoir distribution, the very parameters which are the most critical to optimizing the economics associated with E and P projects. This paper discusses Amoco Corporation's experience with 3-D Seismic when used for new field rate acceleration, older field extension, and wildcat exploration. Its emphasis is on assessing the value added by 3-D by reviewing recent E and P experiences in a post-appraisal mode and then in applying the lessons learned from these analyses and case histories to potential new projects. This work is significant because it first assesses the impact 3-D has had on a large number of business situations at Amoco; that is, it is based on data collected on159 3-D surveys acquired at Amoco between 1991--1994. Second, it uses the data collected from these surveys and applies the business improvements observed in the data to typical international business opportunities to quantify, in expected value $ terms, the value that the technology brings to an average project. Finally, it looks at project economics not only from an oil company perspective, but from the standpoint of a host government, with a discussion of insights and implications of the data, economics and techniques utilized

  8. Integration of Multiple Cues for Robust 3D Object Description: A Computational and Psychophysical Study with Applications

    National Research Council Canada - National Science Library

    Farag, Aly

    2001-01-01

    ...., provides a 3D - to - 3D mapping. The research focuses on the representation and fusion of information form differing image sources and the use of machine learning techniques to perform the fusion...

  9. MO-A-9A-01: Innovation in Medical Physics Practice: 3D Printing Applications

    Energy Technology Data Exchange (ETDEWEB)

    Ehler, E [University of Minnesota, Minneapolis, MN (United States); Perks, J [UC Davis Medical Center, Sacramento, CA (United States); Rasmussen, K [East Carolina University, Greenville, NC (United States); Bakic, P [University of Pennsylvania, Philadelphia, PA (United States)

    2014-06-15

    3D printing, also called additive manufacturing, has great potential to advance the field of medicine. Many medical uses have been exhibited from facial reconstruction to the repair of pulmonary obstructions. The strength of 3D printing is to quickly convert a 3D computer model into a physical object. Medical use of 3D models is already ubiquitous with technologies such as computed tomography and magnetic resonance imaging. Thus tailoring 3D printing technology to medical functions has the potential to impact patient care. This session will discuss applications to the field of Medical Physics. Topics discussed will include introduction to 3D printing methods as well as examples of real-world uses of 3D printing spanning clinical and research practice in diagnostic imaging and radiation therapy. The session will also compare 3D printing to other manufacturing processes and discuss a variety of uses of 3D printing technology outside the field of Medical Physics. Learning Objectives: Understand the technologies available for 3D Printing Understand methods to generate 3D models Identify the benefits and drawbacks to rapid prototyping / 3D Printing Understand the potential issues related to clinical use of 3D Printing.

  10. MO-A-9A-01: Innovation in Medical Physics Practice: 3D Printing Applications

    International Nuclear Information System (INIS)

    Ehler, E; Perks, J; Rasmussen, K; Bakic, P

    2014-01-01

    3D printing, also called additive manufacturing, has great potential to advance the field of medicine. Many medical uses have been exhibited from facial reconstruction to the repair of pulmonary obstructions. The strength of 3D printing is to quickly convert a 3D computer model into a physical object. Medical use of 3D models is already ubiquitous with technologies such as computed tomography and magnetic resonance imaging. Thus tailoring 3D printing technology to medical functions has the potential to impact patient care. This session will discuss applications to the field of Medical Physics. Topics discussed will include introduction to 3D printing methods as well as examples of real-world uses of 3D printing spanning clinical and research practice in diagnostic imaging and radiation therapy. The session will also compare 3D printing to other manufacturing processes and discuss a variety of uses of 3D printing technology outside the field of Medical Physics. Learning Objectives: Understand the technologies available for 3D Printing Understand methods to generate 3D models Identify the benefits and drawbacks to rapid prototyping / 3D Printing Understand the potential issues related to clinical use of 3D Printing

  11. 3D Laser Scanner for Underwater Manipulation

    Directory of Open Access Journals (Sweden)

    Albert Palomer

    2018-04-01

    Full Text Available Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS is used to autonomously grasp an object from the bottom of a water tank.

  12. 3D Laser Scanner for Underwater Manipulation.

    Science.gov (United States)

    Palomer, Albert; Ridao, Pere; Youakim, Dina; Ribas, David; Forest, Josep; Petillot, Yvan

    2018-04-04

    Nowadays, research in autonomous underwater manipulation has demonstrated simple applications like picking an object from the sea floor, turning a valve or plugging and unplugging a connector. These are fairly simple tasks compared with those already demonstrated by the mobile robotics community, which include, among others, safe arm motion within areas populated with a priori unknown obstacles or the recognition and location of objects based on their 3D model to grasp them. Kinect-like 3D sensors have contributed significantly to the advance of mobile manipulation providing 3D sensing capabilities in real-time at low cost. Unfortunately, the underwater robotics community is lacking a 3D sensor with similar capabilities to provide rich 3D information of the work space. In this paper, we present a new underwater 3D laser scanner and demonstrate its capabilities for underwater manipulation. In order to use this sensor in conjunction with manipulators, a calibration method to find the relative position between the manipulator and the 3D laser scanner is presented. Then, two different advanced underwater manipulation tasks beyond the state of the art are demonstrated using two different manipulation systems. First, an eight Degrees of Freedom (DoF) fixed-base manipulator system is used to demonstrate arm motion within a work space populated with a priori unknown fixed obstacles. Next, an eight DoF free floating Underwater Vehicle-Manipulator System (UVMS) is used to autonomously grasp an object from the bottom of a water tank.

  13. Medical 3D Printing for the Radiologist

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A.; Cai, Tianrun; Kumamaru, Kanako K.; George, Elizabeth; Wake, Nicole; Caterson, Edward J.; Pomahac, Bohdan; Ho, Vincent B.; Grant, Gerald T.

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26562233

  14. 3D bioprinting of tissues and organs.

    Science.gov (United States)

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

  15. Medical 3D Printing for the Radiologist.

    Science.gov (United States)

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. (©)RSNA, 2015.

  16. A 3D virtual reality ophthalmoscopy trainer.

    Science.gov (United States)

    Wilson, Andrew S; O'Connor, Jake; Taylor, Lewis; Carruthers, David

    2017-12-01

    Performing eye examinations is an important clinical skill that medical students often find difficult to become proficient in. This paper describes the development and evaluation of an innovative 3D virtual reality (VR) training application to support learning these skills. The VR ophthalmoscope was developed by a clinical team and technologist using the unity game engine, smartphone and virtual reality headset. It has a series of tasks that include performing systematic eye examinations, identifying common eye pathologies and a knowledge quiz. As part of their clinical training, 15 fourth-year medical students were surveyed for their views on this teaching approach. The Technology Acceptance Model was used to evaluate perceived usefulness and ease of use. Data were also collected on the usability of the app, together with the students' written comments about it. Users agreed that the teaching approach improved their understanding of ophthalmoscopy (n = 14), their ability to identify landmarks in the eye (n = 14) and their ability to recognise abnormalities (n = 15). They found the app easy to use (n = 15), the teaching approach informative (n = 13) and that it would increase students' confidence when performing these tasks in future (n = 15). Performing eye examinations is an important clinical skill DISCUSSION: The evaluation showed that a VR app can successfully simulate the processes involved in performing eye examinations. The app was highly rated for all elements of perceived usefulness, ease of use and usability. Medical students stated that they would like to be taught other medical skills in this way in future. © 2017 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  17. Extra Dimensions: 3D in PDF Documentation

    International Nuclear Information System (INIS)

    Graf, Norman A

    2012-01-01

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  18. Advanced 3D Printers for Cellular Solids

    Science.gov (United States)

    2016-06-30

    06-2016 1-Aug-2014 31-Dec-2015 Final Report: Advanced 3D printers for Cellular Solids The views, opinions and/or findings contained in this report are...2211 3d printing, cellular solids REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...Papers published in non peer-reviewed journals: Final Report: Advanced 3D printers for Cellular Solids Report Title Final Report for DURIP grant W911NF

  19. Pharmacophore definition and 3D searches.

    Science.gov (United States)

    Langer, T; Wolber, G

    2004-12-01

    The most common pharmacophore building concepts based on either 3D structure of the target or ligand information are discussed together with the application of such models as queries for 3D database search. An overview of the key techniques available on the market is given and differences with respect to algorithms used and performance obtained are highlighted. Pharmacophore modelling and 3D database search are shown to be successful tools for enriching screening experiments aimed at the discovery of novel bio-active compounds.: © 2004 Elsevier Ltd . All rights reserved.

  20. 3D radiative transfer in stellar atmospheres

    International Nuclear Information System (INIS)

    Carlsson, M

    2008-01-01

    Three-dimensional (3D) radiative transfer in stellar atmospheres is reviewed with special emphasis on the atmospheres of cool stars and applications. A short review of methods in 3D radiative transfer shows that mature methods exist, both for taking into account radiation as an energy transport mechanism in 3D (magneto-) hydrodynamical simulations of stellar atmospheres and for the diagnostic problem of calculating the emergent spectrum in more detail from such models, both assuming local thermodynamic equilibrium (LTE) and in non-LTE. Such methods have been implemented in several codes, and examples of applications are given.

  1. Nonperturbative summation over 3D discrete topologies

    International Nuclear Information System (INIS)

    Freidel, Laurent; Louapre, David

    2003-01-01

    The group field theories realizing the sum over all triangulations of all topologies of 3D discrete gravity amplitudes are known to be nonuniquely Borel summable. We modify these models to construct a new group field theory which is proved to be uniquely Borel summable, defining in an unambiguous way a nonperturbative sum over topologies in the context of 3D dynamical triangulations and spin foam models. Moreover, we give some arguments to support the fact that, despite our modification, this new model is similar to the original one, and therefore could be taken as a definition of the sum over topologies of 3D quantum gravity amplitudes

  2. 3D background aerodynamics using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N.N.

    2002-11-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnation points between 2D and 3D computations. The inner most sections shows clear evidence of 3D radial pumping, with increased lift compared to 2D values. In contrast to earlier investigated airfoils a very limited impact on the drag values are observed. (au)

  3. 3D Printing the ATLAS' barrel toroid

    CERN Document Server

    Goncalves, Tiago Barreiro

    2016-01-01

    The present report summarizes my work as part of the Summer Student Programme 2016 in the CERN IR-ECO-TSP department (International Relations – Education, Communication & Outreach – Teacher and Student Programmes). Particularly, I worked closely with the S’Cool LAB team on a science education project. This project included the 3D designing, 3D printing, and assembling of a model of the ATLAS’ barrel toroid. A detailed description of the project' development is presented and a short manual on how to use 3D printing software and hardware is attached.

  4. [3D planning in maxillofacial surgery].

    Science.gov (United States)

    Hoarau, R; Zweifel, D; Lanthemann, E; Zrounba, H; Broome, M

    2014-10-01

    The development of new technologies such as three-dimensional (3D) planning has changed the everyday practice in maxillofacial surgery. Rapid prototyping associated with the 3D planning has also enabled the creation of patient specific surgical tools, such as cutting guides. As with all new technologies, uses, practicalities, cost effectiveness and especially benefits for the patients have to be carefully evaluated. In this paper, several examples of 3D planning that have been used in our institution are presented. The advantages such as the accuracy of the reconstructive surgery and decreased operating time, as well as the difficulties have also been addressed.

  5. Participation and 3D Visualization Tools

    DEFF Research Database (Denmark)

    Mullins, Michael; Jensen, Mikkel Holm; Henriksen, Sune

    2004-01-01

    With a departure point in a workshop held at the VR Media Lab at Aalborg University , this paper deals with aspects of public participation and the use of 3D visualisation tools. The workshop grew from a desire to involve a broad collaboration between the many actors in the city through using new...... perceptions of architectural representation in urban design where 3D visualisation techniques are used. It is the authors? general finding that, while 3D visualisation media have the potential to increase understanding of virtual space for the lay public, as well as for professionals, the lay public require...

  6. 3D Bio-Printing Review

    Science.gov (United States)

    Du, Xianbin

    2018-01-01

    Ultimate goal of tissue engineering is to replace pathological or necrotic body tissue or organ by artificial tissue or organ and tissue engineering is a very promising research field. 3D bio-printing is a kind of emerging technologies and a branch of tissue engineering. It has made significant progress in the past decade. 3D bio-printing can realize tissue and organ construction in vitro and has wide application in basic research and pharmacy. This paper is to make an analysis and review on 3D bio-printing from the perspectives of bioink, printing technology and technology application.

  7. 3D printed magnetic polymer composite transformers

    Science.gov (United States)

    Bollig, Lindsey M.; Hilpisch, Peter J.; Mowry, Greg S.; Nelson-Cheeseman, Brittany B.

    2017-11-01

    The possibility of 3D printing a transformer core using fused deposition modeling methods is explored. With the use of additive manufacturing, ideal transformer core geometries can be achieved in order to produce a more efficient transformer. In this work, different 3D printed settings and toroidal geometries are tested using a custom integrated magnetic circuit capable of measuring the hysteresis loop of a transformer. These different properties are then characterized, and it was determined the most effective 3D printed transformer core requires a high fill factor along with a high concentration of magnetic particulate.

  8. An Improved Version of TOPAZ 3D

    International Nuclear Information System (INIS)

    Krasnykh, Anatoly

    2003-01-01

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results

  9. 3D face modeling, analysis and recognition

    CERN Document Server

    Daoudi, Mohamed; Veltkamp, Remco

    2013-01-01

    3D Face Modeling, Analysis and Recognition presents methodologies for analyzing shapes of facial surfaces, develops computational tools for analyzing 3D face data, and illustrates them using state-of-the-art applications. The methodologies chosen are based on efficient representations, metrics, comparisons, and classifications of features that are especially relevant in the context of 3D measurements of human faces. These frameworks have a long-term utility in face analysis, taking into account the anticipated improvements in data collection, data storage, processing speeds, and application s

  10. 3D background aerodynamics using CFD

    DEFF Research Database (Denmark)

    Sørensen, Niels N.

    2002-01-01

    3D rotor computations for the Greek Geovilogiki (GEO) 44 meter rotor equipped with 19 meters blades are performed. The lift and drag polars are extracted at five spanvise locations r/R= (.37, .55, .71, .82, .93) based on identification of stagnationpoints between 2D and 3D computations. The inner...... most sections shows clear evidence of 3D radial pumping, with increased lift compared to 2D values. In contrast to earlier investigated airfoils a very limited impact on the drag values are observed....

  11. FUN3D Manual: 13.3

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2018-01-01

    This manual describes the installation and execution of FUN3D version 13.3, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  12. FUN3D Manual: 12.8

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  13. FUN3D Manual: 13.1

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  14. FUN3D Manual: 13.2

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.2, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  15. FUN3D Manual: 12.9

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  16. FUN3D Manual: 13.0

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  17. FUN3D Manual: 12.7

    Science.gov (United States)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; hide

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  18. Determination of the 3d34d and 3d35s configurations of Fe V

    International Nuclear Information System (INIS)

    Azarov, V.I.

    2001-01-01

    The analysis of the spectrum of four times ionized iron, Fe V, has led to the determination of the 3d 3 4d and 3d 3 5s configurations. From 975 classified lines in the region 645-1190 A we have established 123 of 168 theoretically possible 3d 3 4d levels and 26 of 38 possible 3d 3 5s levels. The estimated accuracy of values of energy levels of these two configurations is about 0.7 cm -1 and 1.0 cm -1 , respectively. The level structure of the system of the 3d 4 , 3d 3 4s, 3d 3 4d and 3d 3 5s configurations has been theoretically interpreted and the energy parameters have been determined by a least squares fit to the observed levels. A comparison of parameters in Cr III and Fe V ions is given. (orig.)

  19. 3D object-oriented image analysis in 3D geophysical modelling

    DEFF Research Database (Denmark)

    Fadel, I.; van der Meijde, M.; Kerle, N.

    2015-01-01

    Non-uniqueness of satellite gravity interpretation has traditionally been reduced by using a priori information from seismic tomography models. This reduction in the non-uniqueness has been based on velocity-density conversion formulas or user interpretation of the 3D subsurface structures (objects......) based on the seismic tomography models and then forward modelling these objects. However, this form of object-based approach has been done without a standardized methodology on how to extract the subsurface structures from the 3D models. In this research, a 3D object-oriented image analysis (3D OOA......) approach was implemented to extract the 3D subsurface structures from geophysical data. The approach was applied on a 3D shear wave seismic tomography model of the central part of the East African Rift System. Subsequently, the extracted 3D objects from the tomography model were reconstructed in the 3D...

  20. 78 FR 52982 - Experian, Experian US Headquarters: Corporate Departments (Finance, HRMD, Contracts, Corporate...

    Science.gov (United States)

    2013-08-27

    ...,506R] Experian, Experian US Headquarters: Corporate Departments (Finance, HRMD, Contracts, Corporate... Headquarters: Corporate Departments (finance, HRMD, Contracts, Corporate Marketing, Global Corporate Systems... (finance, HRMD, Contracts, Corporate Marketing, Global Corporate Systems, Legal & Regulatory, Risk...

  1. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    Science.gov (United States)

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  2. 3D-modeling and 3D-printing explorations on Japanese tea ceremony utensils

    NARCIS (Netherlands)

    Levy, P.D.; Yamada, Shigeru

    2017-01-01

    In this paper, we inquire aesthetical aspects of the Japanese tea ceremony, described as the aesthetics in the imperfection, based on novel fabrication technologies: 3D-modeling and 3D-printing. To do so, 3D-printed utensils (chashaku and chasen) were iteratively designed for the ceremony and were

  3. Designing Biomaterials for 3D Printing.

    Science.gov (United States)

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  4. Tissue and Organ 3D Bioprinting.

    Science.gov (United States)

    Xia, Zengmin; Jin, Sha; Ye, Kaiming

    2018-02-01

    Three-dimensional (3D) bioprinting enables the creation of tissue constructs with heterogeneous compositions and complex architectures. It was initially used for preparing scaffolds for bone tissue engineering. It has recently been adopted to create living tissues, such as cartilage, skin, and heart valve. To facilitate vascularization, hollow channels have been created in the hydrogels by 3D bioprinting. This review discusses the state of the art of the technology, along with a broad range of biomaterials used for 3D bioprinting. It provides an update on recent developments in bioprinting and its applications. 3D bioprinting has profound impacts on biomedical research and industry. It offers a new way to industrialize tissue biofabrication. It has great potential for regenerating tissues and organs to overcome the shortage of organ transplantation.

  5. Mobile 3D Viewer Supporting RFID System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J J; Yang, S W; Choi, Y [Chungang Univ., Seoul (Korea, Republic of)

    2007-07-01

    As hardware capabilities of mobile devices are being rapidly enhanced, applications based upon mobile devices are also being developed in wider areas. In this paper, a prototype mobile 3D viewer with the object identification through RFID system is presented. To visualize 3D engineering data such as CAD data, we need a process to compute triangulated data from boundary based surface like B-rep solid or trimmed surfaces. Since existing rendering engines on mobile devices do not provide triangulation capability, mobile 3D programs have focused only on an efficient handling with pre-tessellated geometry. We have developed a light and fast triangulation process based on constrained Delaunay triangulation suitable for mobile devices in the previous research. This triangulation software is used as a core for the mobile 3D viewer on a PDA with RFID system that may have potentially wide applications in many areas.

  6. Nonlaser-based 3D surface imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  7. 3D Maps Representation Using GNG

    Directory of Open Access Journals (Sweden)

    Vicente Morell

    2014-01-01

    Full Text Available Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods.

  8. Advances in 3D neuronal cell culture

    NARCIS (Netherlands)

    Frimat, Jean Philippe; Xie, Sijia; Bastiaens, Alex; Schurink, Bart; Wolbers, Floor; Den Toonder, Jaap; Luttge, Regina

    2015-01-01

    In this contribution, the authors present our advances in three-dimensional (3D) neuronal cell culture platform technology contributing to controlled environments for microtissue engineering and analysis of cellular physiological and pathological responses. First, a micromachined silicon sieving

  9. 3D VISUALIZATION FOR VIRTUAL MUSEUM DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. Skamantzari

    2016-06-01

    Full Text Available The interest in the development of virtual museums is nowadays rising rapidly. During the last decades there have been numerous efforts concerning the 3D digitization of cultural heritage and the development of virtual museums, digital libraries and serious games. The realistic result has always been the main concern and a real challenge when it comes to 3D modelling of monuments, artifacts and especially sculptures. This paper implements, investigates and evaluates the results of the photogrammetric methods and 3D surveys that were used for the development of a virtual museum. Moreover, the decisions, the actions, the methodology and the main elements that this kind of application should include and take into consideration are described and analysed. It is believed that the outcomes of this application will be useful to researchers who are planning to develop and further improve the attempts made on virtual museums and mass production of 3D models.

  10. Intrinsic defects in 3D printed materials

    OpenAIRE

    Bolton, Christopher; Dagastine, Raymond

    2015-01-01

    We discuss the impact of bulk structural defects on the coherence, phase and polarisation of light passing through transparent 3D printed materials fabricated using a variety of commercial print technologies.

  11. Mobile 3D Viewer Supporting RFID System

    International Nuclear Information System (INIS)

    Kim, J. J.; Yang, S. W.; Choi, Y.

    2007-01-01

    As hardware capabilities of mobile devices are being rapidly enhanced, applications based upon mobile devices are also being developed in wider areas. In this paper, a prototype mobile 3D viewer with the object identification through RFID system is presented. To visualize 3D engineering data such as CAD data, we need a process to compute triangulated data from boundary based surface like B-rep solid or trimmed surfaces. Since existing rendering engines on mobile devices do not provide triangulation capability, mobile 3D programs have focused only on an efficient handling with pre-tessellated geometry. We have developed a light and fast triangulation process based on constrained Delaunay triangulation suitable for mobile devices in the previous research. This triangulation software is used as a core for the mobile 3D viewer on a PDA with RFID system that may have potentially wide applications in many areas

  12. Measuring Visual Closeness of 3-D Models

    KAUST Repository

    Gollaz Morales, Jose Alejandro

    2012-09-01

    Measuring visual closeness of 3-D models is an important issue for different problems and there is still no standardized metric or algorithm to do it. The normal of a surface plays a vital role in the shading of a 3-D object. Motivated by this, we developed two applications to measure visualcloseness, introducing normal difference as a parameter in a weighted metric in Metro’s sampling approach to obtain the maximum and mean distance between 3-D models using 3-D and 6-D correspondence search structures. A visual closeness metric should provide accurate information on what the human observers would perceive as visually close objects. We performed a validation study with a group of people to evaluate the correlation of our metrics with subjective perception. The results were positive since the metrics predicted the subjective rankings more accurately than the Hausdorff distance.

  13. Radiosity diffusion model in 3D

    Science.gov (United States)

    Riley, Jason D.; Arridge, Simon R.; Chrysanthou, Yiorgos; Dehghani, Hamid; Hillman, Elizabeth M. C.; Schweiger, Martin

    2001-11-01

    We present the Radiosity-Diffusion model in three dimensions(3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.

  14. 3D Membrane Imaging and Porosity Visualization

    KAUST Repository

    Sundaramoorthi, Ganesh; Hadwiger, Markus; Ben Romdhane, Mohamed; Behzad, Ali Reza; Madhavan, Poornima; Nunes, Suzana Pereira

    2016-01-01

    Ultrafiltration asymmetric porous membranes were imaged by two microscopy methods, which allow 3D reconstruction: Focused Ion Beam and Serial Block Face Scanning Electron Microscopy. A new algorithm was proposed to evaluate porosity and average pore

  15. 3D-printed Bioanalytical Devices

    Science.gov (United States)

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-01-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897

  16. Eyes on the Earth 3D

    Science.gov (United States)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  17. Expedient Gap Definition Using 3D LADAR

    National Research Council Canada - National Science Library

    Edwards, Lulu; Jersey, Sarah R

    2006-01-01

    .... Army Engineer Research and Development Center (ERDC), ASI has developed an algorithm to reduce the 3D point cloud acquired with the LADAR system into sets of 2D profiles that describe the terrain...

  18. 3D modeling of the marine relief

    OpenAIRE

    Mànuel-González, Bernat; Garcia Benadí, Albert; Río Fernandez, Joaquín del; Cadena Muñoz, Francisco Javier; Manuel Lázaro, Antonio

    2012-01-01

    The article detail the systematic process for transformation the 2D representation to 3D representation, likewise the systematic process for gather up of data, and the considerations and instrumentation necessary for this action. Peer Reviewed

  19. 3D Visualization for Planetary Missions

    Science.gov (United States)

    DeWolfe, A. W.; Larsen, K.; Brain, D.

    2018-04-01

    We have developed visualization tools for viewing planetary orbiters and science data in 3D for both Earth and Mars, using the Cesium Javascript library, allowing viewers to visualize the position and orientation of spacecraft and science data.

  20. Lightning fast animation in Element 3D

    CERN Document Server

    Audronis, Ty

    2014-01-01

    An easy-to-follow and all-inclusive guide, in which the underlying principles of 3D animation as well as their importance are explained in detail. The lessons are designed to teach you how to think of 3D animation in such a way that you can troubleshoot any problem, or animate any scene that comes your way.If you are a Digital Artist, Animation Artist, or a Game Programmer and you want to become an expert in Element 3D, this is the book for you. Although there are a lot of basics for beginners in this book, it includes some advanced techniques for both animating in Element 3D, and overcoming i